1 /* 2 * This file is part of UBIFS. 3 * 4 * Copyright (C) 2006-2008 Nokia Corporation 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 as published by 8 * the Free Software Foundation. 9 * 10 * This program is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program; if not, write to the Free Software Foundation, Inc., 51 17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 18 * 19 * Authors: Artem Bityutskiy (Битюцкий Артём) 20 * Adrian Hunter 21 */ 22 23 /* 24 * This file implements most of the debugging stuff which is compiled in only 25 * when it is enabled. But some debugging check functions are implemented in 26 * corresponding subsystem, just because they are closely related and utilize 27 * various local functions of those subsystems. 28 */ 29 30 #include <linux/module.h> 31 #include <linux/debugfs.h> 32 #include <linux/math64.h> 33 #include <linux/uaccess.h> 34 #include <linux/random.h> 35 #include "ubifs.h" 36 37 #ifdef CONFIG_UBIFS_FS_DEBUG 38 39 DEFINE_SPINLOCK(dbg_lock); 40 41 static char dbg_key_buf0[128]; 42 static char dbg_key_buf1[128]; 43 44 static const char *get_key_fmt(int fmt) 45 { 46 switch (fmt) { 47 case UBIFS_SIMPLE_KEY_FMT: 48 return "simple"; 49 default: 50 return "unknown/invalid format"; 51 } 52 } 53 54 static const char *get_key_hash(int hash) 55 { 56 switch (hash) { 57 case UBIFS_KEY_HASH_R5: 58 return "R5"; 59 case UBIFS_KEY_HASH_TEST: 60 return "test"; 61 default: 62 return "unknown/invalid name hash"; 63 } 64 } 65 66 static const char *get_key_type(int type) 67 { 68 switch (type) { 69 case UBIFS_INO_KEY: 70 return "inode"; 71 case UBIFS_DENT_KEY: 72 return "direntry"; 73 case UBIFS_XENT_KEY: 74 return "xentry"; 75 case UBIFS_DATA_KEY: 76 return "data"; 77 case UBIFS_TRUN_KEY: 78 return "truncate"; 79 default: 80 return "unknown/invalid key"; 81 } 82 } 83 84 static const char *get_dent_type(int type) 85 { 86 switch (type) { 87 case UBIFS_ITYPE_REG: 88 return "file"; 89 case UBIFS_ITYPE_DIR: 90 return "dir"; 91 case UBIFS_ITYPE_LNK: 92 return "symlink"; 93 case UBIFS_ITYPE_BLK: 94 return "blkdev"; 95 case UBIFS_ITYPE_CHR: 96 return "char dev"; 97 case UBIFS_ITYPE_FIFO: 98 return "fifo"; 99 case UBIFS_ITYPE_SOCK: 100 return "socket"; 101 default: 102 return "unknown/invalid type"; 103 } 104 } 105 106 static void sprintf_key(const struct ubifs_info *c, const union ubifs_key *key, 107 char *buffer) 108 { 109 char *p = buffer; 110 int type = key_type(c, key); 111 112 if (c->key_fmt == UBIFS_SIMPLE_KEY_FMT) { 113 switch (type) { 114 case UBIFS_INO_KEY: 115 sprintf(p, "(%lu, %s)", (unsigned long)key_inum(c, key), 116 get_key_type(type)); 117 break; 118 case UBIFS_DENT_KEY: 119 case UBIFS_XENT_KEY: 120 sprintf(p, "(%lu, %s, %#08x)", 121 (unsigned long)key_inum(c, key), 122 get_key_type(type), key_hash(c, key)); 123 break; 124 case UBIFS_DATA_KEY: 125 sprintf(p, "(%lu, %s, %u)", 126 (unsigned long)key_inum(c, key), 127 get_key_type(type), key_block(c, key)); 128 break; 129 case UBIFS_TRUN_KEY: 130 sprintf(p, "(%lu, %s)", 131 (unsigned long)key_inum(c, key), 132 get_key_type(type)); 133 break; 134 default: 135 sprintf(p, "(bad key type: %#08x, %#08x)", 136 key->u32[0], key->u32[1]); 137 } 138 } else 139 sprintf(p, "bad key format %d", c->key_fmt); 140 } 141 142 const char *dbg_key_str0(const struct ubifs_info *c, const union ubifs_key *key) 143 { 144 /* dbg_lock must be held */ 145 sprintf_key(c, key, dbg_key_buf0); 146 return dbg_key_buf0; 147 } 148 149 const char *dbg_key_str1(const struct ubifs_info *c, const union ubifs_key *key) 150 { 151 /* dbg_lock must be held */ 152 sprintf_key(c, key, dbg_key_buf1); 153 return dbg_key_buf1; 154 } 155 156 const char *dbg_ntype(int type) 157 { 158 switch (type) { 159 case UBIFS_PAD_NODE: 160 return "padding node"; 161 case UBIFS_SB_NODE: 162 return "superblock node"; 163 case UBIFS_MST_NODE: 164 return "master node"; 165 case UBIFS_REF_NODE: 166 return "reference node"; 167 case UBIFS_INO_NODE: 168 return "inode node"; 169 case UBIFS_DENT_NODE: 170 return "direntry node"; 171 case UBIFS_XENT_NODE: 172 return "xentry node"; 173 case UBIFS_DATA_NODE: 174 return "data node"; 175 case UBIFS_TRUN_NODE: 176 return "truncate node"; 177 case UBIFS_IDX_NODE: 178 return "indexing node"; 179 case UBIFS_CS_NODE: 180 return "commit start node"; 181 case UBIFS_ORPH_NODE: 182 return "orphan node"; 183 default: 184 return "unknown node"; 185 } 186 } 187 188 static const char *dbg_gtype(int type) 189 { 190 switch (type) { 191 case UBIFS_NO_NODE_GROUP: 192 return "no node group"; 193 case UBIFS_IN_NODE_GROUP: 194 return "in node group"; 195 case UBIFS_LAST_OF_NODE_GROUP: 196 return "last of node group"; 197 default: 198 return "unknown"; 199 } 200 } 201 202 const char *dbg_cstate(int cmt_state) 203 { 204 switch (cmt_state) { 205 case COMMIT_RESTING: 206 return "commit resting"; 207 case COMMIT_BACKGROUND: 208 return "background commit requested"; 209 case COMMIT_REQUIRED: 210 return "commit required"; 211 case COMMIT_RUNNING_BACKGROUND: 212 return "BACKGROUND commit running"; 213 case COMMIT_RUNNING_REQUIRED: 214 return "commit running and required"; 215 case COMMIT_BROKEN: 216 return "broken commit"; 217 default: 218 return "unknown commit state"; 219 } 220 } 221 222 const char *dbg_jhead(int jhead) 223 { 224 switch (jhead) { 225 case GCHD: 226 return "0 (GC)"; 227 case BASEHD: 228 return "1 (base)"; 229 case DATAHD: 230 return "2 (data)"; 231 default: 232 return "unknown journal head"; 233 } 234 } 235 236 static void dump_ch(const struct ubifs_ch *ch) 237 { 238 printk(KERN_DEBUG "\tmagic %#x\n", le32_to_cpu(ch->magic)); 239 printk(KERN_DEBUG "\tcrc %#x\n", le32_to_cpu(ch->crc)); 240 printk(KERN_DEBUG "\tnode_type %d (%s)\n", ch->node_type, 241 dbg_ntype(ch->node_type)); 242 printk(KERN_DEBUG "\tgroup_type %d (%s)\n", ch->group_type, 243 dbg_gtype(ch->group_type)); 244 printk(KERN_DEBUG "\tsqnum %llu\n", 245 (unsigned long long)le64_to_cpu(ch->sqnum)); 246 printk(KERN_DEBUG "\tlen %u\n", le32_to_cpu(ch->len)); 247 } 248 249 void dbg_dump_inode(struct ubifs_info *c, const struct inode *inode) 250 { 251 const struct ubifs_inode *ui = ubifs_inode(inode); 252 struct qstr nm = { .name = NULL }; 253 union ubifs_key key; 254 struct ubifs_dent_node *dent, *pdent = NULL; 255 int count = 2; 256 257 printk(KERN_DEBUG "Dump in-memory inode:"); 258 printk(KERN_DEBUG "\tinode %lu\n", inode->i_ino); 259 printk(KERN_DEBUG "\tsize %llu\n", 260 (unsigned long long)i_size_read(inode)); 261 printk(KERN_DEBUG "\tnlink %u\n", inode->i_nlink); 262 printk(KERN_DEBUG "\tuid %u\n", (unsigned int)inode->i_uid); 263 printk(KERN_DEBUG "\tgid %u\n", (unsigned int)inode->i_gid); 264 printk(KERN_DEBUG "\tatime %u.%u\n", 265 (unsigned int)inode->i_atime.tv_sec, 266 (unsigned int)inode->i_atime.tv_nsec); 267 printk(KERN_DEBUG "\tmtime %u.%u\n", 268 (unsigned int)inode->i_mtime.tv_sec, 269 (unsigned int)inode->i_mtime.tv_nsec); 270 printk(KERN_DEBUG "\tctime %u.%u\n", 271 (unsigned int)inode->i_ctime.tv_sec, 272 (unsigned int)inode->i_ctime.tv_nsec); 273 printk(KERN_DEBUG "\tcreat_sqnum %llu\n", ui->creat_sqnum); 274 printk(KERN_DEBUG "\txattr_size %u\n", ui->xattr_size); 275 printk(KERN_DEBUG "\txattr_cnt %u\n", ui->xattr_cnt); 276 printk(KERN_DEBUG "\txattr_names %u\n", ui->xattr_names); 277 printk(KERN_DEBUG "\tdirty %u\n", ui->dirty); 278 printk(KERN_DEBUG "\txattr %u\n", ui->xattr); 279 printk(KERN_DEBUG "\tbulk_read %u\n", ui->xattr); 280 printk(KERN_DEBUG "\tsynced_i_size %llu\n", 281 (unsigned long long)ui->synced_i_size); 282 printk(KERN_DEBUG "\tui_size %llu\n", 283 (unsigned long long)ui->ui_size); 284 printk(KERN_DEBUG "\tflags %d\n", ui->flags); 285 printk(KERN_DEBUG "\tcompr_type %d\n", ui->compr_type); 286 printk(KERN_DEBUG "\tlast_page_read %lu\n", ui->last_page_read); 287 printk(KERN_DEBUG "\tread_in_a_row %lu\n", ui->read_in_a_row); 288 printk(KERN_DEBUG "\tdata_len %d\n", ui->data_len); 289 290 if (!S_ISDIR(inode->i_mode)) 291 return; 292 293 printk(KERN_DEBUG "List of directory entries:\n"); 294 ubifs_assert(!mutex_is_locked(&c->tnc_mutex)); 295 296 lowest_dent_key(c, &key, inode->i_ino); 297 while (1) { 298 dent = ubifs_tnc_next_ent(c, &key, &nm); 299 if (IS_ERR(dent)) { 300 if (PTR_ERR(dent) != -ENOENT) 301 printk(KERN_DEBUG "error %ld\n", PTR_ERR(dent)); 302 break; 303 } 304 305 printk(KERN_DEBUG "\t%d: %s (%s)\n", 306 count++, dent->name, get_dent_type(dent->type)); 307 308 nm.name = dent->name; 309 nm.len = le16_to_cpu(dent->nlen); 310 kfree(pdent); 311 pdent = dent; 312 key_read(c, &dent->key, &key); 313 } 314 kfree(pdent); 315 } 316 317 void dbg_dump_node(const struct ubifs_info *c, const void *node) 318 { 319 int i, n; 320 union ubifs_key key; 321 const struct ubifs_ch *ch = node; 322 323 if (dbg_is_tst_rcvry(c)) 324 return; 325 326 /* If the magic is incorrect, just hexdump the first bytes */ 327 if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) { 328 printk(KERN_DEBUG "Not a node, first %zu bytes:", UBIFS_CH_SZ); 329 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1, 330 (void *)node, UBIFS_CH_SZ, 1); 331 return; 332 } 333 334 spin_lock(&dbg_lock); 335 dump_ch(node); 336 337 switch (ch->node_type) { 338 case UBIFS_PAD_NODE: 339 { 340 const struct ubifs_pad_node *pad = node; 341 342 printk(KERN_DEBUG "\tpad_len %u\n", 343 le32_to_cpu(pad->pad_len)); 344 break; 345 } 346 case UBIFS_SB_NODE: 347 { 348 const struct ubifs_sb_node *sup = node; 349 unsigned int sup_flags = le32_to_cpu(sup->flags); 350 351 printk(KERN_DEBUG "\tkey_hash %d (%s)\n", 352 (int)sup->key_hash, get_key_hash(sup->key_hash)); 353 printk(KERN_DEBUG "\tkey_fmt %d (%s)\n", 354 (int)sup->key_fmt, get_key_fmt(sup->key_fmt)); 355 printk(KERN_DEBUG "\tflags %#x\n", sup_flags); 356 printk(KERN_DEBUG "\t big_lpt %u\n", 357 !!(sup_flags & UBIFS_FLG_BIGLPT)); 358 printk(KERN_DEBUG "\t space_fixup %u\n", 359 !!(sup_flags & UBIFS_FLG_SPACE_FIXUP)); 360 printk(KERN_DEBUG "\tmin_io_size %u\n", 361 le32_to_cpu(sup->min_io_size)); 362 printk(KERN_DEBUG "\tleb_size %u\n", 363 le32_to_cpu(sup->leb_size)); 364 printk(KERN_DEBUG "\tleb_cnt %u\n", 365 le32_to_cpu(sup->leb_cnt)); 366 printk(KERN_DEBUG "\tmax_leb_cnt %u\n", 367 le32_to_cpu(sup->max_leb_cnt)); 368 printk(KERN_DEBUG "\tmax_bud_bytes %llu\n", 369 (unsigned long long)le64_to_cpu(sup->max_bud_bytes)); 370 printk(KERN_DEBUG "\tlog_lebs %u\n", 371 le32_to_cpu(sup->log_lebs)); 372 printk(KERN_DEBUG "\tlpt_lebs %u\n", 373 le32_to_cpu(sup->lpt_lebs)); 374 printk(KERN_DEBUG "\torph_lebs %u\n", 375 le32_to_cpu(sup->orph_lebs)); 376 printk(KERN_DEBUG "\tjhead_cnt %u\n", 377 le32_to_cpu(sup->jhead_cnt)); 378 printk(KERN_DEBUG "\tfanout %u\n", 379 le32_to_cpu(sup->fanout)); 380 printk(KERN_DEBUG "\tlsave_cnt %u\n", 381 le32_to_cpu(sup->lsave_cnt)); 382 printk(KERN_DEBUG "\tdefault_compr %u\n", 383 (int)le16_to_cpu(sup->default_compr)); 384 printk(KERN_DEBUG "\trp_size %llu\n", 385 (unsigned long long)le64_to_cpu(sup->rp_size)); 386 printk(KERN_DEBUG "\trp_uid %u\n", 387 le32_to_cpu(sup->rp_uid)); 388 printk(KERN_DEBUG "\trp_gid %u\n", 389 le32_to_cpu(sup->rp_gid)); 390 printk(KERN_DEBUG "\tfmt_version %u\n", 391 le32_to_cpu(sup->fmt_version)); 392 printk(KERN_DEBUG "\ttime_gran %u\n", 393 le32_to_cpu(sup->time_gran)); 394 printk(KERN_DEBUG "\tUUID %pUB\n", 395 sup->uuid); 396 break; 397 } 398 case UBIFS_MST_NODE: 399 { 400 const struct ubifs_mst_node *mst = node; 401 402 printk(KERN_DEBUG "\thighest_inum %llu\n", 403 (unsigned long long)le64_to_cpu(mst->highest_inum)); 404 printk(KERN_DEBUG "\tcommit number %llu\n", 405 (unsigned long long)le64_to_cpu(mst->cmt_no)); 406 printk(KERN_DEBUG "\tflags %#x\n", 407 le32_to_cpu(mst->flags)); 408 printk(KERN_DEBUG "\tlog_lnum %u\n", 409 le32_to_cpu(mst->log_lnum)); 410 printk(KERN_DEBUG "\troot_lnum %u\n", 411 le32_to_cpu(mst->root_lnum)); 412 printk(KERN_DEBUG "\troot_offs %u\n", 413 le32_to_cpu(mst->root_offs)); 414 printk(KERN_DEBUG "\troot_len %u\n", 415 le32_to_cpu(mst->root_len)); 416 printk(KERN_DEBUG "\tgc_lnum %u\n", 417 le32_to_cpu(mst->gc_lnum)); 418 printk(KERN_DEBUG "\tihead_lnum %u\n", 419 le32_to_cpu(mst->ihead_lnum)); 420 printk(KERN_DEBUG "\tihead_offs %u\n", 421 le32_to_cpu(mst->ihead_offs)); 422 printk(KERN_DEBUG "\tindex_size %llu\n", 423 (unsigned long long)le64_to_cpu(mst->index_size)); 424 printk(KERN_DEBUG "\tlpt_lnum %u\n", 425 le32_to_cpu(mst->lpt_lnum)); 426 printk(KERN_DEBUG "\tlpt_offs %u\n", 427 le32_to_cpu(mst->lpt_offs)); 428 printk(KERN_DEBUG "\tnhead_lnum %u\n", 429 le32_to_cpu(mst->nhead_lnum)); 430 printk(KERN_DEBUG "\tnhead_offs %u\n", 431 le32_to_cpu(mst->nhead_offs)); 432 printk(KERN_DEBUG "\tltab_lnum %u\n", 433 le32_to_cpu(mst->ltab_lnum)); 434 printk(KERN_DEBUG "\tltab_offs %u\n", 435 le32_to_cpu(mst->ltab_offs)); 436 printk(KERN_DEBUG "\tlsave_lnum %u\n", 437 le32_to_cpu(mst->lsave_lnum)); 438 printk(KERN_DEBUG "\tlsave_offs %u\n", 439 le32_to_cpu(mst->lsave_offs)); 440 printk(KERN_DEBUG "\tlscan_lnum %u\n", 441 le32_to_cpu(mst->lscan_lnum)); 442 printk(KERN_DEBUG "\tleb_cnt %u\n", 443 le32_to_cpu(mst->leb_cnt)); 444 printk(KERN_DEBUG "\tempty_lebs %u\n", 445 le32_to_cpu(mst->empty_lebs)); 446 printk(KERN_DEBUG "\tidx_lebs %u\n", 447 le32_to_cpu(mst->idx_lebs)); 448 printk(KERN_DEBUG "\ttotal_free %llu\n", 449 (unsigned long long)le64_to_cpu(mst->total_free)); 450 printk(KERN_DEBUG "\ttotal_dirty %llu\n", 451 (unsigned long long)le64_to_cpu(mst->total_dirty)); 452 printk(KERN_DEBUG "\ttotal_used %llu\n", 453 (unsigned long long)le64_to_cpu(mst->total_used)); 454 printk(KERN_DEBUG "\ttotal_dead %llu\n", 455 (unsigned long long)le64_to_cpu(mst->total_dead)); 456 printk(KERN_DEBUG "\ttotal_dark %llu\n", 457 (unsigned long long)le64_to_cpu(mst->total_dark)); 458 break; 459 } 460 case UBIFS_REF_NODE: 461 { 462 const struct ubifs_ref_node *ref = node; 463 464 printk(KERN_DEBUG "\tlnum %u\n", 465 le32_to_cpu(ref->lnum)); 466 printk(KERN_DEBUG "\toffs %u\n", 467 le32_to_cpu(ref->offs)); 468 printk(KERN_DEBUG "\tjhead %u\n", 469 le32_to_cpu(ref->jhead)); 470 break; 471 } 472 case UBIFS_INO_NODE: 473 { 474 const struct ubifs_ino_node *ino = node; 475 476 key_read(c, &ino->key, &key); 477 printk(KERN_DEBUG "\tkey %s\n", DBGKEY(&key)); 478 printk(KERN_DEBUG "\tcreat_sqnum %llu\n", 479 (unsigned long long)le64_to_cpu(ino->creat_sqnum)); 480 printk(KERN_DEBUG "\tsize %llu\n", 481 (unsigned long long)le64_to_cpu(ino->size)); 482 printk(KERN_DEBUG "\tnlink %u\n", 483 le32_to_cpu(ino->nlink)); 484 printk(KERN_DEBUG "\tatime %lld.%u\n", 485 (long long)le64_to_cpu(ino->atime_sec), 486 le32_to_cpu(ino->atime_nsec)); 487 printk(KERN_DEBUG "\tmtime %lld.%u\n", 488 (long long)le64_to_cpu(ino->mtime_sec), 489 le32_to_cpu(ino->mtime_nsec)); 490 printk(KERN_DEBUG "\tctime %lld.%u\n", 491 (long long)le64_to_cpu(ino->ctime_sec), 492 le32_to_cpu(ino->ctime_nsec)); 493 printk(KERN_DEBUG "\tuid %u\n", 494 le32_to_cpu(ino->uid)); 495 printk(KERN_DEBUG "\tgid %u\n", 496 le32_to_cpu(ino->gid)); 497 printk(KERN_DEBUG "\tmode %u\n", 498 le32_to_cpu(ino->mode)); 499 printk(KERN_DEBUG "\tflags %#x\n", 500 le32_to_cpu(ino->flags)); 501 printk(KERN_DEBUG "\txattr_cnt %u\n", 502 le32_to_cpu(ino->xattr_cnt)); 503 printk(KERN_DEBUG "\txattr_size %u\n", 504 le32_to_cpu(ino->xattr_size)); 505 printk(KERN_DEBUG "\txattr_names %u\n", 506 le32_to_cpu(ino->xattr_names)); 507 printk(KERN_DEBUG "\tcompr_type %#x\n", 508 (int)le16_to_cpu(ino->compr_type)); 509 printk(KERN_DEBUG "\tdata len %u\n", 510 le32_to_cpu(ino->data_len)); 511 break; 512 } 513 case UBIFS_DENT_NODE: 514 case UBIFS_XENT_NODE: 515 { 516 const struct ubifs_dent_node *dent = node; 517 int nlen = le16_to_cpu(dent->nlen); 518 519 key_read(c, &dent->key, &key); 520 printk(KERN_DEBUG "\tkey %s\n", DBGKEY(&key)); 521 printk(KERN_DEBUG "\tinum %llu\n", 522 (unsigned long long)le64_to_cpu(dent->inum)); 523 printk(KERN_DEBUG "\ttype %d\n", (int)dent->type); 524 printk(KERN_DEBUG "\tnlen %d\n", nlen); 525 printk(KERN_DEBUG "\tname "); 526 527 if (nlen > UBIFS_MAX_NLEN) 528 printk(KERN_DEBUG "(bad name length, not printing, " 529 "bad or corrupted node)"); 530 else { 531 for (i = 0; i < nlen && dent->name[i]; i++) 532 printk(KERN_CONT "%c", dent->name[i]); 533 } 534 printk(KERN_CONT "\n"); 535 536 break; 537 } 538 case UBIFS_DATA_NODE: 539 { 540 const struct ubifs_data_node *dn = node; 541 int dlen = le32_to_cpu(ch->len) - UBIFS_DATA_NODE_SZ; 542 543 key_read(c, &dn->key, &key); 544 printk(KERN_DEBUG "\tkey %s\n", DBGKEY(&key)); 545 printk(KERN_DEBUG "\tsize %u\n", 546 le32_to_cpu(dn->size)); 547 printk(KERN_DEBUG "\tcompr_typ %d\n", 548 (int)le16_to_cpu(dn->compr_type)); 549 printk(KERN_DEBUG "\tdata size %d\n", 550 dlen); 551 printk(KERN_DEBUG "\tdata:\n"); 552 print_hex_dump(KERN_DEBUG, "\t", DUMP_PREFIX_OFFSET, 32, 1, 553 (void *)&dn->data, dlen, 0); 554 break; 555 } 556 case UBIFS_TRUN_NODE: 557 { 558 const struct ubifs_trun_node *trun = node; 559 560 printk(KERN_DEBUG "\tinum %u\n", 561 le32_to_cpu(trun->inum)); 562 printk(KERN_DEBUG "\told_size %llu\n", 563 (unsigned long long)le64_to_cpu(trun->old_size)); 564 printk(KERN_DEBUG "\tnew_size %llu\n", 565 (unsigned long long)le64_to_cpu(trun->new_size)); 566 break; 567 } 568 case UBIFS_IDX_NODE: 569 { 570 const struct ubifs_idx_node *idx = node; 571 572 n = le16_to_cpu(idx->child_cnt); 573 printk(KERN_DEBUG "\tchild_cnt %d\n", n); 574 printk(KERN_DEBUG "\tlevel %d\n", 575 (int)le16_to_cpu(idx->level)); 576 printk(KERN_DEBUG "\tBranches:\n"); 577 578 for (i = 0; i < n && i < c->fanout - 1; i++) { 579 const struct ubifs_branch *br; 580 581 br = ubifs_idx_branch(c, idx, i); 582 key_read(c, &br->key, &key); 583 printk(KERN_DEBUG "\t%d: LEB %d:%d len %d key %s\n", 584 i, le32_to_cpu(br->lnum), le32_to_cpu(br->offs), 585 le32_to_cpu(br->len), DBGKEY(&key)); 586 } 587 break; 588 } 589 case UBIFS_CS_NODE: 590 break; 591 case UBIFS_ORPH_NODE: 592 { 593 const struct ubifs_orph_node *orph = node; 594 595 printk(KERN_DEBUG "\tcommit number %llu\n", 596 (unsigned long long) 597 le64_to_cpu(orph->cmt_no) & LLONG_MAX); 598 printk(KERN_DEBUG "\tlast node flag %llu\n", 599 (unsigned long long)(le64_to_cpu(orph->cmt_no)) >> 63); 600 n = (le32_to_cpu(ch->len) - UBIFS_ORPH_NODE_SZ) >> 3; 601 printk(KERN_DEBUG "\t%d orphan inode numbers:\n", n); 602 for (i = 0; i < n; i++) 603 printk(KERN_DEBUG "\t ino %llu\n", 604 (unsigned long long)le64_to_cpu(orph->inos[i])); 605 break; 606 } 607 default: 608 printk(KERN_DEBUG "node type %d was not recognized\n", 609 (int)ch->node_type); 610 } 611 spin_unlock(&dbg_lock); 612 } 613 614 void dbg_dump_budget_req(const struct ubifs_budget_req *req) 615 { 616 spin_lock(&dbg_lock); 617 printk(KERN_DEBUG "Budgeting request: new_ino %d, dirtied_ino %d\n", 618 req->new_ino, req->dirtied_ino); 619 printk(KERN_DEBUG "\tnew_ino_d %d, dirtied_ino_d %d\n", 620 req->new_ino_d, req->dirtied_ino_d); 621 printk(KERN_DEBUG "\tnew_page %d, dirtied_page %d\n", 622 req->new_page, req->dirtied_page); 623 printk(KERN_DEBUG "\tnew_dent %d, mod_dent %d\n", 624 req->new_dent, req->mod_dent); 625 printk(KERN_DEBUG "\tidx_growth %d\n", req->idx_growth); 626 printk(KERN_DEBUG "\tdata_growth %d dd_growth %d\n", 627 req->data_growth, req->dd_growth); 628 spin_unlock(&dbg_lock); 629 } 630 631 void dbg_dump_lstats(const struct ubifs_lp_stats *lst) 632 { 633 spin_lock(&dbg_lock); 634 printk(KERN_DEBUG "(pid %d) Lprops statistics: empty_lebs %d, " 635 "idx_lebs %d\n", current->pid, lst->empty_lebs, lst->idx_lebs); 636 printk(KERN_DEBUG "\ttaken_empty_lebs %d, total_free %lld, " 637 "total_dirty %lld\n", lst->taken_empty_lebs, lst->total_free, 638 lst->total_dirty); 639 printk(KERN_DEBUG "\ttotal_used %lld, total_dark %lld, " 640 "total_dead %lld\n", lst->total_used, lst->total_dark, 641 lst->total_dead); 642 spin_unlock(&dbg_lock); 643 } 644 645 void dbg_dump_budg(struct ubifs_info *c, const struct ubifs_budg_info *bi) 646 { 647 int i; 648 struct rb_node *rb; 649 struct ubifs_bud *bud; 650 struct ubifs_gced_idx_leb *idx_gc; 651 long long available, outstanding, free; 652 653 spin_lock(&c->space_lock); 654 spin_lock(&dbg_lock); 655 printk(KERN_DEBUG "(pid %d) Budgeting info: data budget sum %lld, " 656 "total budget sum %lld\n", current->pid, 657 bi->data_growth + bi->dd_growth, 658 bi->data_growth + bi->dd_growth + bi->idx_growth); 659 printk(KERN_DEBUG "\tbudg_data_growth %lld, budg_dd_growth %lld, " 660 "budg_idx_growth %lld\n", bi->data_growth, bi->dd_growth, 661 bi->idx_growth); 662 printk(KERN_DEBUG "\tmin_idx_lebs %d, old_idx_sz %llu, " 663 "uncommitted_idx %lld\n", bi->min_idx_lebs, bi->old_idx_sz, 664 bi->uncommitted_idx); 665 printk(KERN_DEBUG "\tpage_budget %d, inode_budget %d, dent_budget %d\n", 666 bi->page_budget, bi->inode_budget, bi->dent_budget); 667 printk(KERN_DEBUG "\tnospace %u, nospace_rp %u\n", 668 bi->nospace, bi->nospace_rp); 669 printk(KERN_DEBUG "\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n", 670 c->dark_wm, c->dead_wm, c->max_idx_node_sz); 671 672 if (bi != &c->bi) 673 /* 674 * If we are dumping saved budgeting data, do not print 675 * additional information which is about the current state, not 676 * the old one which corresponded to the saved budgeting data. 677 */ 678 goto out_unlock; 679 680 printk(KERN_DEBUG "\tfreeable_cnt %d, calc_idx_sz %lld, idx_gc_cnt %d\n", 681 c->freeable_cnt, c->calc_idx_sz, c->idx_gc_cnt); 682 printk(KERN_DEBUG "\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, " 683 "clean_zn_cnt %ld\n", atomic_long_read(&c->dirty_pg_cnt), 684 atomic_long_read(&c->dirty_zn_cnt), 685 atomic_long_read(&c->clean_zn_cnt)); 686 printk(KERN_DEBUG "\tgc_lnum %d, ihead_lnum %d\n", 687 c->gc_lnum, c->ihead_lnum); 688 689 /* If we are in R/O mode, journal heads do not exist */ 690 if (c->jheads) 691 for (i = 0; i < c->jhead_cnt; i++) 692 printk(KERN_DEBUG "\tjhead %s\t LEB %d\n", 693 dbg_jhead(c->jheads[i].wbuf.jhead), 694 c->jheads[i].wbuf.lnum); 695 for (rb = rb_first(&c->buds); rb; rb = rb_next(rb)) { 696 bud = rb_entry(rb, struct ubifs_bud, rb); 697 printk(KERN_DEBUG "\tbud LEB %d\n", bud->lnum); 698 } 699 list_for_each_entry(bud, &c->old_buds, list) 700 printk(KERN_DEBUG "\told bud LEB %d\n", bud->lnum); 701 list_for_each_entry(idx_gc, &c->idx_gc, list) 702 printk(KERN_DEBUG "\tGC'ed idx LEB %d unmap %d\n", 703 idx_gc->lnum, idx_gc->unmap); 704 printk(KERN_DEBUG "\tcommit state %d\n", c->cmt_state); 705 706 /* Print budgeting predictions */ 707 available = ubifs_calc_available(c, c->bi.min_idx_lebs); 708 outstanding = c->bi.data_growth + c->bi.dd_growth; 709 free = ubifs_get_free_space_nolock(c); 710 printk(KERN_DEBUG "Budgeting predictions:\n"); 711 printk(KERN_DEBUG "\tavailable: %lld, outstanding %lld, free %lld\n", 712 available, outstanding, free); 713 out_unlock: 714 spin_unlock(&dbg_lock); 715 spin_unlock(&c->space_lock); 716 } 717 718 void dbg_dump_lprop(const struct ubifs_info *c, const struct ubifs_lprops *lp) 719 { 720 int i, spc, dark = 0, dead = 0; 721 struct rb_node *rb; 722 struct ubifs_bud *bud; 723 724 spc = lp->free + lp->dirty; 725 if (spc < c->dead_wm) 726 dead = spc; 727 else 728 dark = ubifs_calc_dark(c, spc); 729 730 if (lp->flags & LPROPS_INDEX) 731 printk(KERN_DEBUG "LEB %-7d free %-8d dirty %-8d used %-8d " 732 "free + dirty %-8d flags %#x (", lp->lnum, lp->free, 733 lp->dirty, c->leb_size - spc, spc, lp->flags); 734 else 735 printk(KERN_DEBUG "LEB %-7d free %-8d dirty %-8d used %-8d " 736 "free + dirty %-8d dark %-4d dead %-4d nodes fit %-3d " 737 "flags %#-4x (", lp->lnum, lp->free, lp->dirty, 738 c->leb_size - spc, spc, dark, dead, 739 (int)(spc / UBIFS_MAX_NODE_SZ), lp->flags); 740 741 if (lp->flags & LPROPS_TAKEN) { 742 if (lp->flags & LPROPS_INDEX) 743 printk(KERN_CONT "index, taken"); 744 else 745 printk(KERN_CONT "taken"); 746 } else { 747 const char *s; 748 749 if (lp->flags & LPROPS_INDEX) { 750 switch (lp->flags & LPROPS_CAT_MASK) { 751 case LPROPS_DIRTY_IDX: 752 s = "dirty index"; 753 break; 754 case LPROPS_FRDI_IDX: 755 s = "freeable index"; 756 break; 757 default: 758 s = "index"; 759 } 760 } else { 761 switch (lp->flags & LPROPS_CAT_MASK) { 762 case LPROPS_UNCAT: 763 s = "not categorized"; 764 break; 765 case LPROPS_DIRTY: 766 s = "dirty"; 767 break; 768 case LPROPS_FREE: 769 s = "free"; 770 break; 771 case LPROPS_EMPTY: 772 s = "empty"; 773 break; 774 case LPROPS_FREEABLE: 775 s = "freeable"; 776 break; 777 default: 778 s = NULL; 779 break; 780 } 781 } 782 printk(KERN_CONT "%s", s); 783 } 784 785 for (rb = rb_first((struct rb_root *)&c->buds); rb; rb = rb_next(rb)) { 786 bud = rb_entry(rb, struct ubifs_bud, rb); 787 if (bud->lnum == lp->lnum) { 788 int head = 0; 789 for (i = 0; i < c->jhead_cnt; i++) { 790 /* 791 * Note, if we are in R/O mode or in the middle 792 * of mounting/re-mounting, the write-buffers do 793 * not exist. 794 */ 795 if (c->jheads && 796 lp->lnum == c->jheads[i].wbuf.lnum) { 797 printk(KERN_CONT ", jhead %s", 798 dbg_jhead(i)); 799 head = 1; 800 } 801 } 802 if (!head) 803 printk(KERN_CONT ", bud of jhead %s", 804 dbg_jhead(bud->jhead)); 805 } 806 } 807 if (lp->lnum == c->gc_lnum) 808 printk(KERN_CONT ", GC LEB"); 809 printk(KERN_CONT ")\n"); 810 } 811 812 void dbg_dump_lprops(struct ubifs_info *c) 813 { 814 int lnum, err; 815 struct ubifs_lprops lp; 816 struct ubifs_lp_stats lst; 817 818 printk(KERN_DEBUG "(pid %d) start dumping LEB properties\n", 819 current->pid); 820 ubifs_get_lp_stats(c, &lst); 821 dbg_dump_lstats(&lst); 822 823 for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) { 824 err = ubifs_read_one_lp(c, lnum, &lp); 825 if (err) 826 ubifs_err("cannot read lprops for LEB %d", lnum); 827 828 dbg_dump_lprop(c, &lp); 829 } 830 printk(KERN_DEBUG "(pid %d) finish dumping LEB properties\n", 831 current->pid); 832 } 833 834 void dbg_dump_lpt_info(struct ubifs_info *c) 835 { 836 int i; 837 838 spin_lock(&dbg_lock); 839 printk(KERN_DEBUG "(pid %d) dumping LPT information\n", current->pid); 840 printk(KERN_DEBUG "\tlpt_sz: %lld\n", c->lpt_sz); 841 printk(KERN_DEBUG "\tpnode_sz: %d\n", c->pnode_sz); 842 printk(KERN_DEBUG "\tnnode_sz: %d\n", c->nnode_sz); 843 printk(KERN_DEBUG "\tltab_sz: %d\n", c->ltab_sz); 844 printk(KERN_DEBUG "\tlsave_sz: %d\n", c->lsave_sz); 845 printk(KERN_DEBUG "\tbig_lpt: %d\n", c->big_lpt); 846 printk(KERN_DEBUG "\tlpt_hght: %d\n", c->lpt_hght); 847 printk(KERN_DEBUG "\tpnode_cnt: %d\n", c->pnode_cnt); 848 printk(KERN_DEBUG "\tnnode_cnt: %d\n", c->nnode_cnt); 849 printk(KERN_DEBUG "\tdirty_pn_cnt: %d\n", c->dirty_pn_cnt); 850 printk(KERN_DEBUG "\tdirty_nn_cnt: %d\n", c->dirty_nn_cnt); 851 printk(KERN_DEBUG "\tlsave_cnt: %d\n", c->lsave_cnt); 852 printk(KERN_DEBUG "\tspace_bits: %d\n", c->space_bits); 853 printk(KERN_DEBUG "\tlpt_lnum_bits: %d\n", c->lpt_lnum_bits); 854 printk(KERN_DEBUG "\tlpt_offs_bits: %d\n", c->lpt_offs_bits); 855 printk(KERN_DEBUG "\tlpt_spc_bits: %d\n", c->lpt_spc_bits); 856 printk(KERN_DEBUG "\tpcnt_bits: %d\n", c->pcnt_bits); 857 printk(KERN_DEBUG "\tlnum_bits: %d\n", c->lnum_bits); 858 printk(KERN_DEBUG "\tLPT root is at %d:%d\n", c->lpt_lnum, c->lpt_offs); 859 printk(KERN_DEBUG "\tLPT head is at %d:%d\n", 860 c->nhead_lnum, c->nhead_offs); 861 printk(KERN_DEBUG "\tLPT ltab is at %d:%d\n", 862 c->ltab_lnum, c->ltab_offs); 863 if (c->big_lpt) 864 printk(KERN_DEBUG "\tLPT lsave is at %d:%d\n", 865 c->lsave_lnum, c->lsave_offs); 866 for (i = 0; i < c->lpt_lebs; i++) 867 printk(KERN_DEBUG "\tLPT LEB %d free %d dirty %d tgc %d " 868 "cmt %d\n", i + c->lpt_first, c->ltab[i].free, 869 c->ltab[i].dirty, c->ltab[i].tgc, c->ltab[i].cmt); 870 spin_unlock(&dbg_lock); 871 } 872 873 void dbg_dump_sleb(const struct ubifs_info *c, 874 const struct ubifs_scan_leb *sleb, int offs) 875 { 876 struct ubifs_scan_node *snod; 877 878 printk(KERN_DEBUG "(pid %d) start dumping scanned data from LEB %d:%d\n", 879 current->pid, sleb->lnum, offs); 880 881 list_for_each_entry(snod, &sleb->nodes, list) { 882 cond_resched(); 883 printk(KERN_DEBUG "Dumping node at LEB %d:%d len %d\n", sleb->lnum, 884 snod->offs, snod->len); 885 dbg_dump_node(c, snod->node); 886 } 887 } 888 889 void dbg_dump_leb(const struct ubifs_info *c, int lnum) 890 { 891 struct ubifs_scan_leb *sleb; 892 struct ubifs_scan_node *snod; 893 void *buf; 894 895 if (dbg_is_tst_rcvry(c)) 896 return; 897 898 printk(KERN_DEBUG "(pid %d) start dumping LEB %d\n", 899 current->pid, lnum); 900 901 buf = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL); 902 if (!buf) { 903 ubifs_err("cannot allocate memory for dumping LEB %d", lnum); 904 return; 905 } 906 907 sleb = ubifs_scan(c, lnum, 0, buf, 0); 908 if (IS_ERR(sleb)) { 909 ubifs_err("scan error %d", (int)PTR_ERR(sleb)); 910 goto out; 911 } 912 913 printk(KERN_DEBUG "LEB %d has %d nodes ending at %d\n", lnum, 914 sleb->nodes_cnt, sleb->endpt); 915 916 list_for_each_entry(snod, &sleb->nodes, list) { 917 cond_resched(); 918 printk(KERN_DEBUG "Dumping node at LEB %d:%d len %d\n", lnum, 919 snod->offs, snod->len); 920 dbg_dump_node(c, snod->node); 921 } 922 923 printk(KERN_DEBUG "(pid %d) finish dumping LEB %d\n", 924 current->pid, lnum); 925 ubifs_scan_destroy(sleb); 926 927 out: 928 vfree(buf); 929 return; 930 } 931 932 void dbg_dump_znode(const struct ubifs_info *c, 933 const struct ubifs_znode *znode) 934 { 935 int n; 936 const struct ubifs_zbranch *zbr; 937 938 spin_lock(&dbg_lock); 939 if (znode->parent) 940 zbr = &znode->parent->zbranch[znode->iip]; 941 else 942 zbr = &c->zroot; 943 944 printk(KERN_DEBUG "znode %p, LEB %d:%d len %d parent %p iip %d level %d" 945 " child_cnt %d flags %lx\n", znode, zbr->lnum, zbr->offs, 946 zbr->len, znode->parent, znode->iip, znode->level, 947 znode->child_cnt, znode->flags); 948 949 if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) { 950 spin_unlock(&dbg_lock); 951 return; 952 } 953 954 printk(KERN_DEBUG "zbranches:\n"); 955 for (n = 0; n < znode->child_cnt; n++) { 956 zbr = &znode->zbranch[n]; 957 if (znode->level > 0) 958 printk(KERN_DEBUG "\t%d: znode %p LEB %d:%d len %d key " 959 "%s\n", n, zbr->znode, zbr->lnum, 960 zbr->offs, zbr->len, 961 DBGKEY(&zbr->key)); 962 else 963 printk(KERN_DEBUG "\t%d: LNC %p LEB %d:%d len %d key " 964 "%s\n", n, zbr->znode, zbr->lnum, 965 zbr->offs, zbr->len, 966 DBGKEY(&zbr->key)); 967 } 968 spin_unlock(&dbg_lock); 969 } 970 971 void dbg_dump_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat) 972 { 973 int i; 974 975 printk(KERN_DEBUG "(pid %d) start dumping heap cat %d (%d elements)\n", 976 current->pid, cat, heap->cnt); 977 for (i = 0; i < heap->cnt; i++) { 978 struct ubifs_lprops *lprops = heap->arr[i]; 979 980 printk(KERN_DEBUG "\t%d. LEB %d hpos %d free %d dirty %d " 981 "flags %d\n", i, lprops->lnum, lprops->hpos, 982 lprops->free, lprops->dirty, lprops->flags); 983 } 984 printk(KERN_DEBUG "(pid %d) finish dumping heap\n", current->pid); 985 } 986 987 void dbg_dump_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode, 988 struct ubifs_nnode *parent, int iip) 989 { 990 int i; 991 992 printk(KERN_DEBUG "(pid %d) dumping pnode:\n", current->pid); 993 printk(KERN_DEBUG "\taddress %zx parent %zx cnext %zx\n", 994 (size_t)pnode, (size_t)parent, (size_t)pnode->cnext); 995 printk(KERN_DEBUG "\tflags %lu iip %d level %d num %d\n", 996 pnode->flags, iip, pnode->level, pnode->num); 997 for (i = 0; i < UBIFS_LPT_FANOUT; i++) { 998 struct ubifs_lprops *lp = &pnode->lprops[i]; 999 1000 printk(KERN_DEBUG "\t%d: free %d dirty %d flags %d lnum %d\n", 1001 i, lp->free, lp->dirty, lp->flags, lp->lnum); 1002 } 1003 } 1004 1005 void dbg_dump_tnc(struct ubifs_info *c) 1006 { 1007 struct ubifs_znode *znode; 1008 int level; 1009 1010 printk(KERN_DEBUG "\n"); 1011 printk(KERN_DEBUG "(pid %d) start dumping TNC tree\n", current->pid); 1012 znode = ubifs_tnc_levelorder_next(c->zroot.znode, NULL); 1013 level = znode->level; 1014 printk(KERN_DEBUG "== Level %d ==\n", level); 1015 while (znode) { 1016 if (level != znode->level) { 1017 level = znode->level; 1018 printk(KERN_DEBUG "== Level %d ==\n", level); 1019 } 1020 dbg_dump_znode(c, znode); 1021 znode = ubifs_tnc_levelorder_next(c->zroot.znode, znode); 1022 } 1023 printk(KERN_DEBUG "(pid %d) finish dumping TNC tree\n", current->pid); 1024 } 1025 1026 static int dump_znode(struct ubifs_info *c, struct ubifs_znode *znode, 1027 void *priv) 1028 { 1029 dbg_dump_znode(c, znode); 1030 return 0; 1031 } 1032 1033 /** 1034 * dbg_dump_index - dump the on-flash index. 1035 * @c: UBIFS file-system description object 1036 * 1037 * This function dumps whole UBIFS indexing B-tree, unlike 'dbg_dump_tnc()' 1038 * which dumps only in-memory znodes and does not read znodes which from flash. 1039 */ 1040 void dbg_dump_index(struct ubifs_info *c) 1041 { 1042 dbg_walk_index(c, NULL, dump_znode, NULL); 1043 } 1044 1045 /** 1046 * dbg_save_space_info - save information about flash space. 1047 * @c: UBIFS file-system description object 1048 * 1049 * This function saves information about UBIFS free space, dirty space, etc, in 1050 * order to check it later. 1051 */ 1052 void dbg_save_space_info(struct ubifs_info *c) 1053 { 1054 struct ubifs_debug_info *d = c->dbg; 1055 int freeable_cnt; 1056 1057 spin_lock(&c->space_lock); 1058 memcpy(&d->saved_lst, &c->lst, sizeof(struct ubifs_lp_stats)); 1059 memcpy(&d->saved_bi, &c->bi, sizeof(struct ubifs_budg_info)); 1060 d->saved_idx_gc_cnt = c->idx_gc_cnt; 1061 1062 /* 1063 * We use a dirty hack here and zero out @c->freeable_cnt, because it 1064 * affects the free space calculations, and UBIFS might not know about 1065 * all freeable eraseblocks. Indeed, we know about freeable eraseblocks 1066 * only when we read their lprops, and we do this only lazily, upon the 1067 * need. So at any given point of time @c->freeable_cnt might be not 1068 * exactly accurate. 1069 * 1070 * Just one example about the issue we hit when we did not zero 1071 * @c->freeable_cnt. 1072 * 1. The file-system is mounted R/O, c->freeable_cnt is %0. We save the 1073 * amount of free space in @d->saved_free 1074 * 2. We re-mount R/W, which makes UBIFS to read the "lsave" 1075 * information from flash, where we cache LEBs from various 1076 * categories ('ubifs_remount_fs()' -> 'ubifs_lpt_init()' 1077 * -> 'lpt_init_wr()' -> 'read_lsave()' -> 'ubifs_lpt_lookup()' 1078 * -> 'ubifs_get_pnode()' -> 'update_cats()' 1079 * -> 'ubifs_add_to_cat()'). 1080 * 3. Lsave contains a freeable eraseblock, and @c->freeable_cnt 1081 * becomes %1. 1082 * 4. We calculate the amount of free space when the re-mount is 1083 * finished in 'dbg_check_space_info()' and it does not match 1084 * @d->saved_free. 1085 */ 1086 freeable_cnt = c->freeable_cnt; 1087 c->freeable_cnt = 0; 1088 d->saved_free = ubifs_get_free_space_nolock(c); 1089 c->freeable_cnt = freeable_cnt; 1090 spin_unlock(&c->space_lock); 1091 } 1092 1093 /** 1094 * dbg_check_space_info - check flash space information. 1095 * @c: UBIFS file-system description object 1096 * 1097 * This function compares current flash space information with the information 1098 * which was saved when the 'dbg_save_space_info()' function was called. 1099 * Returns zero if the information has not changed, and %-EINVAL it it has 1100 * changed. 1101 */ 1102 int dbg_check_space_info(struct ubifs_info *c) 1103 { 1104 struct ubifs_debug_info *d = c->dbg; 1105 struct ubifs_lp_stats lst; 1106 long long free; 1107 int freeable_cnt; 1108 1109 spin_lock(&c->space_lock); 1110 freeable_cnt = c->freeable_cnt; 1111 c->freeable_cnt = 0; 1112 free = ubifs_get_free_space_nolock(c); 1113 c->freeable_cnt = freeable_cnt; 1114 spin_unlock(&c->space_lock); 1115 1116 if (free != d->saved_free) { 1117 ubifs_err("free space changed from %lld to %lld", 1118 d->saved_free, free); 1119 goto out; 1120 } 1121 1122 return 0; 1123 1124 out: 1125 ubifs_msg("saved lprops statistics dump"); 1126 dbg_dump_lstats(&d->saved_lst); 1127 ubifs_msg("saved budgeting info dump"); 1128 dbg_dump_budg(c, &d->saved_bi); 1129 ubifs_msg("saved idx_gc_cnt %d", d->saved_idx_gc_cnt); 1130 ubifs_msg("current lprops statistics dump"); 1131 ubifs_get_lp_stats(c, &lst); 1132 dbg_dump_lstats(&lst); 1133 ubifs_msg("current budgeting info dump"); 1134 dbg_dump_budg(c, &c->bi); 1135 dump_stack(); 1136 return -EINVAL; 1137 } 1138 1139 /** 1140 * dbg_check_synced_i_size - check synchronized inode size. 1141 * @c: UBIFS file-system description object 1142 * @inode: inode to check 1143 * 1144 * If inode is clean, synchronized inode size has to be equivalent to current 1145 * inode size. This function has to be called only for locked inodes (@i_mutex 1146 * has to be locked). Returns %0 if synchronized inode size if correct, and 1147 * %-EINVAL if not. 1148 */ 1149 int dbg_check_synced_i_size(const struct ubifs_info *c, struct inode *inode) 1150 { 1151 int err = 0; 1152 struct ubifs_inode *ui = ubifs_inode(inode); 1153 1154 if (!dbg_is_chk_gen(c)) 1155 return 0; 1156 if (!S_ISREG(inode->i_mode)) 1157 return 0; 1158 1159 mutex_lock(&ui->ui_mutex); 1160 spin_lock(&ui->ui_lock); 1161 if (ui->ui_size != ui->synced_i_size && !ui->dirty) { 1162 ubifs_err("ui_size is %lld, synced_i_size is %lld, but inode " 1163 "is clean", ui->ui_size, ui->synced_i_size); 1164 ubifs_err("i_ino %lu, i_mode %#x, i_size %lld", inode->i_ino, 1165 inode->i_mode, i_size_read(inode)); 1166 dbg_dump_stack(); 1167 err = -EINVAL; 1168 } 1169 spin_unlock(&ui->ui_lock); 1170 mutex_unlock(&ui->ui_mutex); 1171 return err; 1172 } 1173 1174 /* 1175 * dbg_check_dir - check directory inode size and link count. 1176 * @c: UBIFS file-system description object 1177 * @dir: the directory to calculate size for 1178 * @size: the result is returned here 1179 * 1180 * This function makes sure that directory size and link count are correct. 1181 * Returns zero in case of success and a negative error code in case of 1182 * failure. 1183 * 1184 * Note, it is good idea to make sure the @dir->i_mutex is locked before 1185 * calling this function. 1186 */ 1187 int dbg_check_dir(struct ubifs_info *c, const struct inode *dir) 1188 { 1189 unsigned int nlink = 2; 1190 union ubifs_key key; 1191 struct ubifs_dent_node *dent, *pdent = NULL; 1192 struct qstr nm = { .name = NULL }; 1193 loff_t size = UBIFS_INO_NODE_SZ; 1194 1195 if (!dbg_is_chk_gen(c)) 1196 return 0; 1197 1198 if (!S_ISDIR(dir->i_mode)) 1199 return 0; 1200 1201 lowest_dent_key(c, &key, dir->i_ino); 1202 while (1) { 1203 int err; 1204 1205 dent = ubifs_tnc_next_ent(c, &key, &nm); 1206 if (IS_ERR(dent)) { 1207 err = PTR_ERR(dent); 1208 if (err == -ENOENT) 1209 break; 1210 return err; 1211 } 1212 1213 nm.name = dent->name; 1214 nm.len = le16_to_cpu(dent->nlen); 1215 size += CALC_DENT_SIZE(nm.len); 1216 if (dent->type == UBIFS_ITYPE_DIR) 1217 nlink += 1; 1218 kfree(pdent); 1219 pdent = dent; 1220 key_read(c, &dent->key, &key); 1221 } 1222 kfree(pdent); 1223 1224 if (i_size_read(dir) != size) { 1225 ubifs_err("directory inode %lu has size %llu, " 1226 "but calculated size is %llu", dir->i_ino, 1227 (unsigned long long)i_size_read(dir), 1228 (unsigned long long)size); 1229 dbg_dump_inode(c, dir); 1230 dump_stack(); 1231 return -EINVAL; 1232 } 1233 if (dir->i_nlink != nlink) { 1234 ubifs_err("directory inode %lu has nlink %u, but calculated " 1235 "nlink is %u", dir->i_ino, dir->i_nlink, nlink); 1236 dbg_dump_inode(c, dir); 1237 dump_stack(); 1238 return -EINVAL; 1239 } 1240 1241 return 0; 1242 } 1243 1244 /** 1245 * dbg_check_key_order - make sure that colliding keys are properly ordered. 1246 * @c: UBIFS file-system description object 1247 * @zbr1: first zbranch 1248 * @zbr2: following zbranch 1249 * 1250 * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of 1251 * names of the direntries/xentries which are referred by the keys. This 1252 * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes 1253 * sure the name of direntry/xentry referred by @zbr1 is less than 1254 * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not, 1255 * and a negative error code in case of failure. 1256 */ 1257 static int dbg_check_key_order(struct ubifs_info *c, struct ubifs_zbranch *zbr1, 1258 struct ubifs_zbranch *zbr2) 1259 { 1260 int err, nlen1, nlen2, cmp; 1261 struct ubifs_dent_node *dent1, *dent2; 1262 union ubifs_key key; 1263 1264 ubifs_assert(!keys_cmp(c, &zbr1->key, &zbr2->key)); 1265 dent1 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS); 1266 if (!dent1) 1267 return -ENOMEM; 1268 dent2 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS); 1269 if (!dent2) { 1270 err = -ENOMEM; 1271 goto out_free; 1272 } 1273 1274 err = ubifs_tnc_read_node(c, zbr1, dent1); 1275 if (err) 1276 goto out_free; 1277 err = ubifs_validate_entry(c, dent1); 1278 if (err) 1279 goto out_free; 1280 1281 err = ubifs_tnc_read_node(c, zbr2, dent2); 1282 if (err) 1283 goto out_free; 1284 err = ubifs_validate_entry(c, dent2); 1285 if (err) 1286 goto out_free; 1287 1288 /* Make sure node keys are the same as in zbranch */ 1289 err = 1; 1290 key_read(c, &dent1->key, &key); 1291 if (keys_cmp(c, &zbr1->key, &key)) { 1292 dbg_err("1st entry at %d:%d has key %s", zbr1->lnum, 1293 zbr1->offs, DBGKEY(&key)); 1294 dbg_err("but it should have key %s according to tnc", 1295 DBGKEY(&zbr1->key)); 1296 dbg_dump_node(c, dent1); 1297 goto out_free; 1298 } 1299 1300 key_read(c, &dent2->key, &key); 1301 if (keys_cmp(c, &zbr2->key, &key)) { 1302 dbg_err("2nd entry at %d:%d has key %s", zbr1->lnum, 1303 zbr1->offs, DBGKEY(&key)); 1304 dbg_err("but it should have key %s according to tnc", 1305 DBGKEY(&zbr2->key)); 1306 dbg_dump_node(c, dent2); 1307 goto out_free; 1308 } 1309 1310 nlen1 = le16_to_cpu(dent1->nlen); 1311 nlen2 = le16_to_cpu(dent2->nlen); 1312 1313 cmp = memcmp(dent1->name, dent2->name, min_t(int, nlen1, nlen2)); 1314 if (cmp < 0 || (cmp == 0 && nlen1 < nlen2)) { 1315 err = 0; 1316 goto out_free; 1317 } 1318 if (cmp == 0 && nlen1 == nlen2) 1319 dbg_err("2 xent/dent nodes with the same name"); 1320 else 1321 dbg_err("bad order of colliding key %s", 1322 DBGKEY(&key)); 1323 1324 ubifs_msg("first node at %d:%d\n", zbr1->lnum, zbr1->offs); 1325 dbg_dump_node(c, dent1); 1326 ubifs_msg("second node at %d:%d\n", zbr2->lnum, zbr2->offs); 1327 dbg_dump_node(c, dent2); 1328 1329 out_free: 1330 kfree(dent2); 1331 kfree(dent1); 1332 return err; 1333 } 1334 1335 /** 1336 * dbg_check_znode - check if znode is all right. 1337 * @c: UBIFS file-system description object 1338 * @zbr: zbranch which points to this znode 1339 * 1340 * This function makes sure that znode referred to by @zbr is all right. 1341 * Returns zero if it is, and %-EINVAL if it is not. 1342 */ 1343 static int dbg_check_znode(struct ubifs_info *c, struct ubifs_zbranch *zbr) 1344 { 1345 struct ubifs_znode *znode = zbr->znode; 1346 struct ubifs_znode *zp = znode->parent; 1347 int n, err, cmp; 1348 1349 if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) { 1350 err = 1; 1351 goto out; 1352 } 1353 if (znode->level < 0) { 1354 err = 2; 1355 goto out; 1356 } 1357 if (znode->iip < 0 || znode->iip >= c->fanout) { 1358 err = 3; 1359 goto out; 1360 } 1361 1362 if (zbr->len == 0) 1363 /* Only dirty zbranch may have no on-flash nodes */ 1364 if (!ubifs_zn_dirty(znode)) { 1365 err = 4; 1366 goto out; 1367 } 1368 1369 if (ubifs_zn_dirty(znode)) { 1370 /* 1371 * If znode is dirty, its parent has to be dirty as well. The 1372 * order of the operation is important, so we have to have 1373 * memory barriers. 1374 */ 1375 smp_mb(); 1376 if (zp && !ubifs_zn_dirty(zp)) { 1377 /* 1378 * The dirty flag is atomic and is cleared outside the 1379 * TNC mutex, so znode's dirty flag may now have 1380 * been cleared. The child is always cleared before the 1381 * parent, so we just need to check again. 1382 */ 1383 smp_mb(); 1384 if (ubifs_zn_dirty(znode)) { 1385 err = 5; 1386 goto out; 1387 } 1388 } 1389 } 1390 1391 if (zp) { 1392 const union ubifs_key *min, *max; 1393 1394 if (znode->level != zp->level - 1) { 1395 err = 6; 1396 goto out; 1397 } 1398 1399 /* Make sure the 'parent' pointer in our znode is correct */ 1400 err = ubifs_search_zbranch(c, zp, &zbr->key, &n); 1401 if (!err) { 1402 /* This zbranch does not exist in the parent */ 1403 err = 7; 1404 goto out; 1405 } 1406 1407 if (znode->iip >= zp->child_cnt) { 1408 err = 8; 1409 goto out; 1410 } 1411 1412 if (znode->iip != n) { 1413 /* This may happen only in case of collisions */ 1414 if (keys_cmp(c, &zp->zbranch[n].key, 1415 &zp->zbranch[znode->iip].key)) { 1416 err = 9; 1417 goto out; 1418 } 1419 n = znode->iip; 1420 } 1421 1422 /* 1423 * Make sure that the first key in our znode is greater than or 1424 * equal to the key in the pointing zbranch. 1425 */ 1426 min = &zbr->key; 1427 cmp = keys_cmp(c, min, &znode->zbranch[0].key); 1428 if (cmp == 1) { 1429 err = 10; 1430 goto out; 1431 } 1432 1433 if (n + 1 < zp->child_cnt) { 1434 max = &zp->zbranch[n + 1].key; 1435 1436 /* 1437 * Make sure the last key in our znode is less or 1438 * equivalent than the key in the zbranch which goes 1439 * after our pointing zbranch. 1440 */ 1441 cmp = keys_cmp(c, max, 1442 &znode->zbranch[znode->child_cnt - 1].key); 1443 if (cmp == -1) { 1444 err = 11; 1445 goto out; 1446 } 1447 } 1448 } else { 1449 /* This may only be root znode */ 1450 if (zbr != &c->zroot) { 1451 err = 12; 1452 goto out; 1453 } 1454 } 1455 1456 /* 1457 * Make sure that next key is greater or equivalent then the previous 1458 * one. 1459 */ 1460 for (n = 1; n < znode->child_cnt; n++) { 1461 cmp = keys_cmp(c, &znode->zbranch[n - 1].key, 1462 &znode->zbranch[n].key); 1463 if (cmp > 0) { 1464 err = 13; 1465 goto out; 1466 } 1467 if (cmp == 0) { 1468 /* This can only be keys with colliding hash */ 1469 if (!is_hash_key(c, &znode->zbranch[n].key)) { 1470 err = 14; 1471 goto out; 1472 } 1473 1474 if (znode->level != 0 || c->replaying) 1475 continue; 1476 1477 /* 1478 * Colliding keys should follow binary order of 1479 * corresponding xentry/dentry names. 1480 */ 1481 err = dbg_check_key_order(c, &znode->zbranch[n - 1], 1482 &znode->zbranch[n]); 1483 if (err < 0) 1484 return err; 1485 if (err) { 1486 err = 15; 1487 goto out; 1488 } 1489 } 1490 } 1491 1492 for (n = 0; n < znode->child_cnt; n++) { 1493 if (!znode->zbranch[n].znode && 1494 (znode->zbranch[n].lnum == 0 || 1495 znode->zbranch[n].len == 0)) { 1496 err = 16; 1497 goto out; 1498 } 1499 1500 if (znode->zbranch[n].lnum != 0 && 1501 znode->zbranch[n].len == 0) { 1502 err = 17; 1503 goto out; 1504 } 1505 1506 if (znode->zbranch[n].lnum == 0 && 1507 znode->zbranch[n].len != 0) { 1508 err = 18; 1509 goto out; 1510 } 1511 1512 if (znode->zbranch[n].lnum == 0 && 1513 znode->zbranch[n].offs != 0) { 1514 err = 19; 1515 goto out; 1516 } 1517 1518 if (znode->level != 0 && znode->zbranch[n].znode) 1519 if (znode->zbranch[n].znode->parent != znode) { 1520 err = 20; 1521 goto out; 1522 } 1523 } 1524 1525 return 0; 1526 1527 out: 1528 ubifs_err("failed, error %d", err); 1529 ubifs_msg("dump of the znode"); 1530 dbg_dump_znode(c, znode); 1531 if (zp) { 1532 ubifs_msg("dump of the parent znode"); 1533 dbg_dump_znode(c, zp); 1534 } 1535 dump_stack(); 1536 return -EINVAL; 1537 } 1538 1539 /** 1540 * dbg_check_tnc - check TNC tree. 1541 * @c: UBIFS file-system description object 1542 * @extra: do extra checks that are possible at start commit 1543 * 1544 * This function traverses whole TNC tree and checks every znode. Returns zero 1545 * if everything is all right and %-EINVAL if something is wrong with TNC. 1546 */ 1547 int dbg_check_tnc(struct ubifs_info *c, int extra) 1548 { 1549 struct ubifs_znode *znode; 1550 long clean_cnt = 0, dirty_cnt = 0; 1551 int err, last; 1552 1553 if (!dbg_is_chk_index(c)) 1554 return 0; 1555 1556 ubifs_assert(mutex_is_locked(&c->tnc_mutex)); 1557 if (!c->zroot.znode) 1558 return 0; 1559 1560 znode = ubifs_tnc_postorder_first(c->zroot.znode); 1561 while (1) { 1562 struct ubifs_znode *prev; 1563 struct ubifs_zbranch *zbr; 1564 1565 if (!znode->parent) 1566 zbr = &c->zroot; 1567 else 1568 zbr = &znode->parent->zbranch[znode->iip]; 1569 1570 err = dbg_check_znode(c, zbr); 1571 if (err) 1572 return err; 1573 1574 if (extra) { 1575 if (ubifs_zn_dirty(znode)) 1576 dirty_cnt += 1; 1577 else 1578 clean_cnt += 1; 1579 } 1580 1581 prev = znode; 1582 znode = ubifs_tnc_postorder_next(znode); 1583 if (!znode) 1584 break; 1585 1586 /* 1587 * If the last key of this znode is equivalent to the first key 1588 * of the next znode (collision), then check order of the keys. 1589 */ 1590 last = prev->child_cnt - 1; 1591 if (prev->level == 0 && znode->level == 0 && !c->replaying && 1592 !keys_cmp(c, &prev->zbranch[last].key, 1593 &znode->zbranch[0].key)) { 1594 err = dbg_check_key_order(c, &prev->zbranch[last], 1595 &znode->zbranch[0]); 1596 if (err < 0) 1597 return err; 1598 if (err) { 1599 ubifs_msg("first znode"); 1600 dbg_dump_znode(c, prev); 1601 ubifs_msg("second znode"); 1602 dbg_dump_znode(c, znode); 1603 return -EINVAL; 1604 } 1605 } 1606 } 1607 1608 if (extra) { 1609 if (clean_cnt != atomic_long_read(&c->clean_zn_cnt)) { 1610 ubifs_err("incorrect clean_zn_cnt %ld, calculated %ld", 1611 atomic_long_read(&c->clean_zn_cnt), 1612 clean_cnt); 1613 return -EINVAL; 1614 } 1615 if (dirty_cnt != atomic_long_read(&c->dirty_zn_cnt)) { 1616 ubifs_err("incorrect dirty_zn_cnt %ld, calculated %ld", 1617 atomic_long_read(&c->dirty_zn_cnt), 1618 dirty_cnt); 1619 return -EINVAL; 1620 } 1621 } 1622 1623 return 0; 1624 } 1625 1626 /** 1627 * dbg_walk_index - walk the on-flash index. 1628 * @c: UBIFS file-system description object 1629 * @leaf_cb: called for each leaf node 1630 * @znode_cb: called for each indexing node 1631 * @priv: private data which is passed to callbacks 1632 * 1633 * This function walks the UBIFS index and calls the @leaf_cb for each leaf 1634 * node and @znode_cb for each indexing node. Returns zero in case of success 1635 * and a negative error code in case of failure. 1636 * 1637 * It would be better if this function removed every znode it pulled to into 1638 * the TNC, so that the behavior more closely matched the non-debugging 1639 * behavior. 1640 */ 1641 int dbg_walk_index(struct ubifs_info *c, dbg_leaf_callback leaf_cb, 1642 dbg_znode_callback znode_cb, void *priv) 1643 { 1644 int err; 1645 struct ubifs_zbranch *zbr; 1646 struct ubifs_znode *znode, *child; 1647 1648 mutex_lock(&c->tnc_mutex); 1649 /* If the root indexing node is not in TNC - pull it */ 1650 if (!c->zroot.znode) { 1651 c->zroot.znode = ubifs_load_znode(c, &c->zroot, NULL, 0); 1652 if (IS_ERR(c->zroot.znode)) { 1653 err = PTR_ERR(c->zroot.znode); 1654 c->zroot.znode = NULL; 1655 goto out_unlock; 1656 } 1657 } 1658 1659 /* 1660 * We are going to traverse the indexing tree in the postorder manner. 1661 * Go down and find the leftmost indexing node where we are going to 1662 * start from. 1663 */ 1664 znode = c->zroot.znode; 1665 while (znode->level > 0) { 1666 zbr = &znode->zbranch[0]; 1667 child = zbr->znode; 1668 if (!child) { 1669 child = ubifs_load_znode(c, zbr, znode, 0); 1670 if (IS_ERR(child)) { 1671 err = PTR_ERR(child); 1672 goto out_unlock; 1673 } 1674 zbr->znode = child; 1675 } 1676 1677 znode = child; 1678 } 1679 1680 /* Iterate over all indexing nodes */ 1681 while (1) { 1682 int idx; 1683 1684 cond_resched(); 1685 1686 if (znode_cb) { 1687 err = znode_cb(c, znode, priv); 1688 if (err) { 1689 ubifs_err("znode checking function returned " 1690 "error %d", err); 1691 dbg_dump_znode(c, znode); 1692 goto out_dump; 1693 } 1694 } 1695 if (leaf_cb && znode->level == 0) { 1696 for (idx = 0; idx < znode->child_cnt; idx++) { 1697 zbr = &znode->zbranch[idx]; 1698 err = leaf_cb(c, zbr, priv); 1699 if (err) { 1700 ubifs_err("leaf checking function " 1701 "returned error %d, for leaf " 1702 "at LEB %d:%d", 1703 err, zbr->lnum, zbr->offs); 1704 goto out_dump; 1705 } 1706 } 1707 } 1708 1709 if (!znode->parent) 1710 break; 1711 1712 idx = znode->iip + 1; 1713 znode = znode->parent; 1714 if (idx < znode->child_cnt) { 1715 /* Switch to the next index in the parent */ 1716 zbr = &znode->zbranch[idx]; 1717 child = zbr->znode; 1718 if (!child) { 1719 child = ubifs_load_znode(c, zbr, znode, idx); 1720 if (IS_ERR(child)) { 1721 err = PTR_ERR(child); 1722 goto out_unlock; 1723 } 1724 zbr->znode = child; 1725 } 1726 znode = child; 1727 } else 1728 /* 1729 * This is the last child, switch to the parent and 1730 * continue. 1731 */ 1732 continue; 1733 1734 /* Go to the lowest leftmost znode in the new sub-tree */ 1735 while (znode->level > 0) { 1736 zbr = &znode->zbranch[0]; 1737 child = zbr->znode; 1738 if (!child) { 1739 child = ubifs_load_znode(c, zbr, znode, 0); 1740 if (IS_ERR(child)) { 1741 err = PTR_ERR(child); 1742 goto out_unlock; 1743 } 1744 zbr->znode = child; 1745 } 1746 znode = child; 1747 } 1748 } 1749 1750 mutex_unlock(&c->tnc_mutex); 1751 return 0; 1752 1753 out_dump: 1754 if (znode->parent) 1755 zbr = &znode->parent->zbranch[znode->iip]; 1756 else 1757 zbr = &c->zroot; 1758 ubifs_msg("dump of znode at LEB %d:%d", zbr->lnum, zbr->offs); 1759 dbg_dump_znode(c, znode); 1760 out_unlock: 1761 mutex_unlock(&c->tnc_mutex); 1762 return err; 1763 } 1764 1765 /** 1766 * add_size - add znode size to partially calculated index size. 1767 * @c: UBIFS file-system description object 1768 * @znode: znode to add size for 1769 * @priv: partially calculated index size 1770 * 1771 * This is a helper function for 'dbg_check_idx_size()' which is called for 1772 * every indexing node and adds its size to the 'long long' variable pointed to 1773 * by @priv. 1774 */ 1775 static int add_size(struct ubifs_info *c, struct ubifs_znode *znode, void *priv) 1776 { 1777 long long *idx_size = priv; 1778 int add; 1779 1780 add = ubifs_idx_node_sz(c, znode->child_cnt); 1781 add = ALIGN(add, 8); 1782 *idx_size += add; 1783 return 0; 1784 } 1785 1786 /** 1787 * dbg_check_idx_size - check index size. 1788 * @c: UBIFS file-system description object 1789 * @idx_size: size to check 1790 * 1791 * This function walks the UBIFS index, calculates its size and checks that the 1792 * size is equivalent to @idx_size. Returns zero in case of success and a 1793 * negative error code in case of failure. 1794 */ 1795 int dbg_check_idx_size(struct ubifs_info *c, long long idx_size) 1796 { 1797 int err; 1798 long long calc = 0; 1799 1800 if (!dbg_is_chk_index(c)) 1801 return 0; 1802 1803 err = dbg_walk_index(c, NULL, add_size, &calc); 1804 if (err) { 1805 ubifs_err("error %d while walking the index", err); 1806 return err; 1807 } 1808 1809 if (calc != idx_size) { 1810 ubifs_err("index size check failed: calculated size is %lld, " 1811 "should be %lld", calc, idx_size); 1812 dump_stack(); 1813 return -EINVAL; 1814 } 1815 1816 return 0; 1817 } 1818 1819 /** 1820 * struct fsck_inode - information about an inode used when checking the file-system. 1821 * @rb: link in the RB-tree of inodes 1822 * @inum: inode number 1823 * @mode: inode type, permissions, etc 1824 * @nlink: inode link count 1825 * @xattr_cnt: count of extended attributes 1826 * @references: how many directory/xattr entries refer this inode (calculated 1827 * while walking the index) 1828 * @calc_cnt: for directory inode count of child directories 1829 * @size: inode size (read from on-flash inode) 1830 * @xattr_sz: summary size of all extended attributes (read from on-flash 1831 * inode) 1832 * @calc_sz: for directories calculated directory size 1833 * @calc_xcnt: count of extended attributes 1834 * @calc_xsz: calculated summary size of all extended attributes 1835 * @xattr_nms: sum of lengths of all extended attribute names belonging to this 1836 * inode (read from on-flash inode) 1837 * @calc_xnms: calculated sum of lengths of all extended attribute names 1838 */ 1839 struct fsck_inode { 1840 struct rb_node rb; 1841 ino_t inum; 1842 umode_t mode; 1843 unsigned int nlink; 1844 unsigned int xattr_cnt; 1845 int references; 1846 int calc_cnt; 1847 long long size; 1848 unsigned int xattr_sz; 1849 long long calc_sz; 1850 long long calc_xcnt; 1851 long long calc_xsz; 1852 unsigned int xattr_nms; 1853 long long calc_xnms; 1854 }; 1855 1856 /** 1857 * struct fsck_data - private FS checking information. 1858 * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects) 1859 */ 1860 struct fsck_data { 1861 struct rb_root inodes; 1862 }; 1863 1864 /** 1865 * add_inode - add inode information to RB-tree of inodes. 1866 * @c: UBIFS file-system description object 1867 * @fsckd: FS checking information 1868 * @ino: raw UBIFS inode to add 1869 * 1870 * This is a helper function for 'check_leaf()' which adds information about 1871 * inode @ino to the RB-tree of inodes. Returns inode information pointer in 1872 * case of success and a negative error code in case of failure. 1873 */ 1874 static struct fsck_inode *add_inode(struct ubifs_info *c, 1875 struct fsck_data *fsckd, 1876 struct ubifs_ino_node *ino) 1877 { 1878 struct rb_node **p, *parent = NULL; 1879 struct fsck_inode *fscki; 1880 ino_t inum = key_inum_flash(c, &ino->key); 1881 struct inode *inode; 1882 struct ubifs_inode *ui; 1883 1884 p = &fsckd->inodes.rb_node; 1885 while (*p) { 1886 parent = *p; 1887 fscki = rb_entry(parent, struct fsck_inode, rb); 1888 if (inum < fscki->inum) 1889 p = &(*p)->rb_left; 1890 else if (inum > fscki->inum) 1891 p = &(*p)->rb_right; 1892 else 1893 return fscki; 1894 } 1895 1896 if (inum > c->highest_inum) { 1897 ubifs_err("too high inode number, max. is %lu", 1898 (unsigned long)c->highest_inum); 1899 return ERR_PTR(-EINVAL); 1900 } 1901 1902 fscki = kzalloc(sizeof(struct fsck_inode), GFP_NOFS); 1903 if (!fscki) 1904 return ERR_PTR(-ENOMEM); 1905 1906 inode = ilookup(c->vfs_sb, inum); 1907 1908 fscki->inum = inum; 1909 /* 1910 * If the inode is present in the VFS inode cache, use it instead of 1911 * the on-flash inode which might be out-of-date. E.g., the size might 1912 * be out-of-date. If we do not do this, the following may happen, for 1913 * example: 1914 * 1. A power cut happens 1915 * 2. We mount the file-system R/O, the replay process fixes up the 1916 * inode size in the VFS cache, but on on-flash. 1917 * 3. 'check_leaf()' fails because it hits a data node beyond inode 1918 * size. 1919 */ 1920 if (!inode) { 1921 fscki->nlink = le32_to_cpu(ino->nlink); 1922 fscki->size = le64_to_cpu(ino->size); 1923 fscki->xattr_cnt = le32_to_cpu(ino->xattr_cnt); 1924 fscki->xattr_sz = le32_to_cpu(ino->xattr_size); 1925 fscki->xattr_nms = le32_to_cpu(ino->xattr_names); 1926 fscki->mode = le32_to_cpu(ino->mode); 1927 } else { 1928 ui = ubifs_inode(inode); 1929 fscki->nlink = inode->i_nlink; 1930 fscki->size = inode->i_size; 1931 fscki->xattr_cnt = ui->xattr_cnt; 1932 fscki->xattr_sz = ui->xattr_size; 1933 fscki->xattr_nms = ui->xattr_names; 1934 fscki->mode = inode->i_mode; 1935 iput(inode); 1936 } 1937 1938 if (S_ISDIR(fscki->mode)) { 1939 fscki->calc_sz = UBIFS_INO_NODE_SZ; 1940 fscki->calc_cnt = 2; 1941 } 1942 1943 rb_link_node(&fscki->rb, parent, p); 1944 rb_insert_color(&fscki->rb, &fsckd->inodes); 1945 1946 return fscki; 1947 } 1948 1949 /** 1950 * search_inode - search inode in the RB-tree of inodes. 1951 * @fsckd: FS checking information 1952 * @inum: inode number to search 1953 * 1954 * This is a helper function for 'check_leaf()' which searches inode @inum in 1955 * the RB-tree of inodes and returns an inode information pointer or %NULL if 1956 * the inode was not found. 1957 */ 1958 static struct fsck_inode *search_inode(struct fsck_data *fsckd, ino_t inum) 1959 { 1960 struct rb_node *p; 1961 struct fsck_inode *fscki; 1962 1963 p = fsckd->inodes.rb_node; 1964 while (p) { 1965 fscki = rb_entry(p, struct fsck_inode, rb); 1966 if (inum < fscki->inum) 1967 p = p->rb_left; 1968 else if (inum > fscki->inum) 1969 p = p->rb_right; 1970 else 1971 return fscki; 1972 } 1973 return NULL; 1974 } 1975 1976 /** 1977 * read_add_inode - read inode node and add it to RB-tree of inodes. 1978 * @c: UBIFS file-system description object 1979 * @fsckd: FS checking information 1980 * @inum: inode number to read 1981 * 1982 * This is a helper function for 'check_leaf()' which finds inode node @inum in 1983 * the index, reads it, and adds it to the RB-tree of inodes. Returns inode 1984 * information pointer in case of success and a negative error code in case of 1985 * failure. 1986 */ 1987 static struct fsck_inode *read_add_inode(struct ubifs_info *c, 1988 struct fsck_data *fsckd, ino_t inum) 1989 { 1990 int n, err; 1991 union ubifs_key key; 1992 struct ubifs_znode *znode; 1993 struct ubifs_zbranch *zbr; 1994 struct ubifs_ino_node *ino; 1995 struct fsck_inode *fscki; 1996 1997 fscki = search_inode(fsckd, inum); 1998 if (fscki) 1999 return fscki; 2000 2001 ino_key_init(c, &key, inum); 2002 err = ubifs_lookup_level0(c, &key, &znode, &n); 2003 if (!err) { 2004 ubifs_err("inode %lu not found in index", (unsigned long)inum); 2005 return ERR_PTR(-ENOENT); 2006 } else if (err < 0) { 2007 ubifs_err("error %d while looking up inode %lu", 2008 err, (unsigned long)inum); 2009 return ERR_PTR(err); 2010 } 2011 2012 zbr = &znode->zbranch[n]; 2013 if (zbr->len < UBIFS_INO_NODE_SZ) { 2014 ubifs_err("bad node %lu node length %d", 2015 (unsigned long)inum, zbr->len); 2016 return ERR_PTR(-EINVAL); 2017 } 2018 2019 ino = kmalloc(zbr->len, GFP_NOFS); 2020 if (!ino) 2021 return ERR_PTR(-ENOMEM); 2022 2023 err = ubifs_tnc_read_node(c, zbr, ino); 2024 if (err) { 2025 ubifs_err("cannot read inode node at LEB %d:%d, error %d", 2026 zbr->lnum, zbr->offs, err); 2027 kfree(ino); 2028 return ERR_PTR(err); 2029 } 2030 2031 fscki = add_inode(c, fsckd, ino); 2032 kfree(ino); 2033 if (IS_ERR(fscki)) { 2034 ubifs_err("error %ld while adding inode %lu node", 2035 PTR_ERR(fscki), (unsigned long)inum); 2036 return fscki; 2037 } 2038 2039 return fscki; 2040 } 2041 2042 /** 2043 * check_leaf - check leaf node. 2044 * @c: UBIFS file-system description object 2045 * @zbr: zbranch of the leaf node to check 2046 * @priv: FS checking information 2047 * 2048 * This is a helper function for 'dbg_check_filesystem()' which is called for 2049 * every single leaf node while walking the indexing tree. It checks that the 2050 * leaf node referred from the indexing tree exists, has correct CRC, and does 2051 * some other basic validation. This function is also responsible for building 2052 * an RB-tree of inodes - it adds all inodes into the RB-tree. It also 2053 * calculates reference count, size, etc for each inode in order to later 2054 * compare them to the information stored inside the inodes and detect possible 2055 * inconsistencies. Returns zero in case of success and a negative error code 2056 * in case of failure. 2057 */ 2058 static int check_leaf(struct ubifs_info *c, struct ubifs_zbranch *zbr, 2059 void *priv) 2060 { 2061 ino_t inum; 2062 void *node; 2063 struct ubifs_ch *ch; 2064 int err, type = key_type(c, &zbr->key); 2065 struct fsck_inode *fscki; 2066 2067 if (zbr->len < UBIFS_CH_SZ) { 2068 ubifs_err("bad leaf length %d (LEB %d:%d)", 2069 zbr->len, zbr->lnum, zbr->offs); 2070 return -EINVAL; 2071 } 2072 2073 node = kmalloc(zbr->len, GFP_NOFS); 2074 if (!node) 2075 return -ENOMEM; 2076 2077 err = ubifs_tnc_read_node(c, zbr, node); 2078 if (err) { 2079 ubifs_err("cannot read leaf node at LEB %d:%d, error %d", 2080 zbr->lnum, zbr->offs, err); 2081 goto out_free; 2082 } 2083 2084 /* If this is an inode node, add it to RB-tree of inodes */ 2085 if (type == UBIFS_INO_KEY) { 2086 fscki = add_inode(c, priv, node); 2087 if (IS_ERR(fscki)) { 2088 err = PTR_ERR(fscki); 2089 ubifs_err("error %d while adding inode node", err); 2090 goto out_dump; 2091 } 2092 goto out; 2093 } 2094 2095 if (type != UBIFS_DENT_KEY && type != UBIFS_XENT_KEY && 2096 type != UBIFS_DATA_KEY) { 2097 ubifs_err("unexpected node type %d at LEB %d:%d", 2098 type, zbr->lnum, zbr->offs); 2099 err = -EINVAL; 2100 goto out_free; 2101 } 2102 2103 ch = node; 2104 if (le64_to_cpu(ch->sqnum) > c->max_sqnum) { 2105 ubifs_err("too high sequence number, max. is %llu", 2106 c->max_sqnum); 2107 err = -EINVAL; 2108 goto out_dump; 2109 } 2110 2111 if (type == UBIFS_DATA_KEY) { 2112 long long blk_offs; 2113 struct ubifs_data_node *dn = node; 2114 2115 /* 2116 * Search the inode node this data node belongs to and insert 2117 * it to the RB-tree of inodes. 2118 */ 2119 inum = key_inum_flash(c, &dn->key); 2120 fscki = read_add_inode(c, priv, inum); 2121 if (IS_ERR(fscki)) { 2122 err = PTR_ERR(fscki); 2123 ubifs_err("error %d while processing data node and " 2124 "trying to find inode node %lu", 2125 err, (unsigned long)inum); 2126 goto out_dump; 2127 } 2128 2129 /* Make sure the data node is within inode size */ 2130 blk_offs = key_block_flash(c, &dn->key); 2131 blk_offs <<= UBIFS_BLOCK_SHIFT; 2132 blk_offs += le32_to_cpu(dn->size); 2133 if (blk_offs > fscki->size) { 2134 ubifs_err("data node at LEB %d:%d is not within inode " 2135 "size %lld", zbr->lnum, zbr->offs, 2136 fscki->size); 2137 err = -EINVAL; 2138 goto out_dump; 2139 } 2140 } else { 2141 int nlen; 2142 struct ubifs_dent_node *dent = node; 2143 struct fsck_inode *fscki1; 2144 2145 err = ubifs_validate_entry(c, dent); 2146 if (err) 2147 goto out_dump; 2148 2149 /* 2150 * Search the inode node this entry refers to and the parent 2151 * inode node and insert them to the RB-tree of inodes. 2152 */ 2153 inum = le64_to_cpu(dent->inum); 2154 fscki = read_add_inode(c, priv, inum); 2155 if (IS_ERR(fscki)) { 2156 err = PTR_ERR(fscki); 2157 ubifs_err("error %d while processing entry node and " 2158 "trying to find inode node %lu", 2159 err, (unsigned long)inum); 2160 goto out_dump; 2161 } 2162 2163 /* Count how many direntries or xentries refers this inode */ 2164 fscki->references += 1; 2165 2166 inum = key_inum_flash(c, &dent->key); 2167 fscki1 = read_add_inode(c, priv, inum); 2168 if (IS_ERR(fscki1)) { 2169 err = PTR_ERR(fscki1); 2170 ubifs_err("error %d while processing entry node and " 2171 "trying to find parent inode node %lu", 2172 err, (unsigned long)inum); 2173 goto out_dump; 2174 } 2175 2176 nlen = le16_to_cpu(dent->nlen); 2177 if (type == UBIFS_XENT_KEY) { 2178 fscki1->calc_xcnt += 1; 2179 fscki1->calc_xsz += CALC_DENT_SIZE(nlen); 2180 fscki1->calc_xsz += CALC_XATTR_BYTES(fscki->size); 2181 fscki1->calc_xnms += nlen; 2182 } else { 2183 fscki1->calc_sz += CALC_DENT_SIZE(nlen); 2184 if (dent->type == UBIFS_ITYPE_DIR) 2185 fscki1->calc_cnt += 1; 2186 } 2187 } 2188 2189 out: 2190 kfree(node); 2191 return 0; 2192 2193 out_dump: 2194 ubifs_msg("dump of node at LEB %d:%d", zbr->lnum, zbr->offs); 2195 dbg_dump_node(c, node); 2196 out_free: 2197 kfree(node); 2198 return err; 2199 } 2200 2201 /** 2202 * free_inodes - free RB-tree of inodes. 2203 * @fsckd: FS checking information 2204 */ 2205 static void free_inodes(struct fsck_data *fsckd) 2206 { 2207 struct rb_node *this = fsckd->inodes.rb_node; 2208 struct fsck_inode *fscki; 2209 2210 while (this) { 2211 if (this->rb_left) 2212 this = this->rb_left; 2213 else if (this->rb_right) 2214 this = this->rb_right; 2215 else { 2216 fscki = rb_entry(this, struct fsck_inode, rb); 2217 this = rb_parent(this); 2218 if (this) { 2219 if (this->rb_left == &fscki->rb) 2220 this->rb_left = NULL; 2221 else 2222 this->rb_right = NULL; 2223 } 2224 kfree(fscki); 2225 } 2226 } 2227 } 2228 2229 /** 2230 * check_inodes - checks all inodes. 2231 * @c: UBIFS file-system description object 2232 * @fsckd: FS checking information 2233 * 2234 * This is a helper function for 'dbg_check_filesystem()' which walks the 2235 * RB-tree of inodes after the index scan has been finished, and checks that 2236 * inode nlink, size, etc are correct. Returns zero if inodes are fine, 2237 * %-EINVAL if not, and a negative error code in case of failure. 2238 */ 2239 static int check_inodes(struct ubifs_info *c, struct fsck_data *fsckd) 2240 { 2241 int n, err; 2242 union ubifs_key key; 2243 struct ubifs_znode *znode; 2244 struct ubifs_zbranch *zbr; 2245 struct ubifs_ino_node *ino; 2246 struct fsck_inode *fscki; 2247 struct rb_node *this = rb_first(&fsckd->inodes); 2248 2249 while (this) { 2250 fscki = rb_entry(this, struct fsck_inode, rb); 2251 this = rb_next(this); 2252 2253 if (S_ISDIR(fscki->mode)) { 2254 /* 2255 * Directories have to have exactly one reference (they 2256 * cannot have hardlinks), although root inode is an 2257 * exception. 2258 */ 2259 if (fscki->inum != UBIFS_ROOT_INO && 2260 fscki->references != 1) { 2261 ubifs_err("directory inode %lu has %d " 2262 "direntries which refer it, but " 2263 "should be 1", 2264 (unsigned long)fscki->inum, 2265 fscki->references); 2266 goto out_dump; 2267 } 2268 if (fscki->inum == UBIFS_ROOT_INO && 2269 fscki->references != 0) { 2270 ubifs_err("root inode %lu has non-zero (%d) " 2271 "direntries which refer it", 2272 (unsigned long)fscki->inum, 2273 fscki->references); 2274 goto out_dump; 2275 } 2276 if (fscki->calc_sz != fscki->size) { 2277 ubifs_err("directory inode %lu size is %lld, " 2278 "but calculated size is %lld", 2279 (unsigned long)fscki->inum, 2280 fscki->size, fscki->calc_sz); 2281 goto out_dump; 2282 } 2283 if (fscki->calc_cnt != fscki->nlink) { 2284 ubifs_err("directory inode %lu nlink is %d, " 2285 "but calculated nlink is %d", 2286 (unsigned long)fscki->inum, 2287 fscki->nlink, fscki->calc_cnt); 2288 goto out_dump; 2289 } 2290 } else { 2291 if (fscki->references != fscki->nlink) { 2292 ubifs_err("inode %lu nlink is %d, but " 2293 "calculated nlink is %d", 2294 (unsigned long)fscki->inum, 2295 fscki->nlink, fscki->references); 2296 goto out_dump; 2297 } 2298 } 2299 if (fscki->xattr_sz != fscki->calc_xsz) { 2300 ubifs_err("inode %lu has xattr size %u, but " 2301 "calculated size is %lld", 2302 (unsigned long)fscki->inum, fscki->xattr_sz, 2303 fscki->calc_xsz); 2304 goto out_dump; 2305 } 2306 if (fscki->xattr_cnt != fscki->calc_xcnt) { 2307 ubifs_err("inode %lu has %u xattrs, but " 2308 "calculated count is %lld", 2309 (unsigned long)fscki->inum, 2310 fscki->xattr_cnt, fscki->calc_xcnt); 2311 goto out_dump; 2312 } 2313 if (fscki->xattr_nms != fscki->calc_xnms) { 2314 ubifs_err("inode %lu has xattr names' size %u, but " 2315 "calculated names' size is %lld", 2316 (unsigned long)fscki->inum, fscki->xattr_nms, 2317 fscki->calc_xnms); 2318 goto out_dump; 2319 } 2320 } 2321 2322 return 0; 2323 2324 out_dump: 2325 /* Read the bad inode and dump it */ 2326 ino_key_init(c, &key, fscki->inum); 2327 err = ubifs_lookup_level0(c, &key, &znode, &n); 2328 if (!err) { 2329 ubifs_err("inode %lu not found in index", 2330 (unsigned long)fscki->inum); 2331 return -ENOENT; 2332 } else if (err < 0) { 2333 ubifs_err("error %d while looking up inode %lu", 2334 err, (unsigned long)fscki->inum); 2335 return err; 2336 } 2337 2338 zbr = &znode->zbranch[n]; 2339 ino = kmalloc(zbr->len, GFP_NOFS); 2340 if (!ino) 2341 return -ENOMEM; 2342 2343 err = ubifs_tnc_read_node(c, zbr, ino); 2344 if (err) { 2345 ubifs_err("cannot read inode node at LEB %d:%d, error %d", 2346 zbr->lnum, zbr->offs, err); 2347 kfree(ino); 2348 return err; 2349 } 2350 2351 ubifs_msg("dump of the inode %lu sitting in LEB %d:%d", 2352 (unsigned long)fscki->inum, zbr->lnum, zbr->offs); 2353 dbg_dump_node(c, ino); 2354 kfree(ino); 2355 return -EINVAL; 2356 } 2357 2358 /** 2359 * dbg_check_filesystem - check the file-system. 2360 * @c: UBIFS file-system description object 2361 * 2362 * This function checks the file system, namely: 2363 * o makes sure that all leaf nodes exist and their CRCs are correct; 2364 * o makes sure inode nlink, size, xattr size/count are correct (for all 2365 * inodes). 2366 * 2367 * The function reads whole indexing tree and all nodes, so it is pretty 2368 * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if 2369 * not, and a negative error code in case of failure. 2370 */ 2371 int dbg_check_filesystem(struct ubifs_info *c) 2372 { 2373 int err; 2374 struct fsck_data fsckd; 2375 2376 if (!dbg_is_chk_fs(c)) 2377 return 0; 2378 2379 fsckd.inodes = RB_ROOT; 2380 err = dbg_walk_index(c, check_leaf, NULL, &fsckd); 2381 if (err) 2382 goto out_free; 2383 2384 err = check_inodes(c, &fsckd); 2385 if (err) 2386 goto out_free; 2387 2388 free_inodes(&fsckd); 2389 return 0; 2390 2391 out_free: 2392 ubifs_err("file-system check failed with error %d", err); 2393 dump_stack(); 2394 free_inodes(&fsckd); 2395 return err; 2396 } 2397 2398 /** 2399 * dbg_check_data_nodes_order - check that list of data nodes is sorted. 2400 * @c: UBIFS file-system description object 2401 * @head: the list of nodes ('struct ubifs_scan_node' objects) 2402 * 2403 * This function returns zero if the list of data nodes is sorted correctly, 2404 * and %-EINVAL if not. 2405 */ 2406 int dbg_check_data_nodes_order(struct ubifs_info *c, struct list_head *head) 2407 { 2408 struct list_head *cur; 2409 struct ubifs_scan_node *sa, *sb; 2410 2411 if (!dbg_is_chk_gen(c)) 2412 return 0; 2413 2414 for (cur = head->next; cur->next != head; cur = cur->next) { 2415 ino_t inuma, inumb; 2416 uint32_t blka, blkb; 2417 2418 cond_resched(); 2419 sa = container_of(cur, struct ubifs_scan_node, list); 2420 sb = container_of(cur->next, struct ubifs_scan_node, list); 2421 2422 if (sa->type != UBIFS_DATA_NODE) { 2423 ubifs_err("bad node type %d", sa->type); 2424 dbg_dump_node(c, sa->node); 2425 return -EINVAL; 2426 } 2427 if (sb->type != UBIFS_DATA_NODE) { 2428 ubifs_err("bad node type %d", sb->type); 2429 dbg_dump_node(c, sb->node); 2430 return -EINVAL; 2431 } 2432 2433 inuma = key_inum(c, &sa->key); 2434 inumb = key_inum(c, &sb->key); 2435 2436 if (inuma < inumb) 2437 continue; 2438 if (inuma > inumb) { 2439 ubifs_err("larger inum %lu goes before inum %lu", 2440 (unsigned long)inuma, (unsigned long)inumb); 2441 goto error_dump; 2442 } 2443 2444 blka = key_block(c, &sa->key); 2445 blkb = key_block(c, &sb->key); 2446 2447 if (blka > blkb) { 2448 ubifs_err("larger block %u goes before %u", blka, blkb); 2449 goto error_dump; 2450 } 2451 if (blka == blkb) { 2452 ubifs_err("two data nodes for the same block"); 2453 goto error_dump; 2454 } 2455 } 2456 2457 return 0; 2458 2459 error_dump: 2460 dbg_dump_node(c, sa->node); 2461 dbg_dump_node(c, sb->node); 2462 return -EINVAL; 2463 } 2464 2465 /** 2466 * dbg_check_nondata_nodes_order - check that list of data nodes is sorted. 2467 * @c: UBIFS file-system description object 2468 * @head: the list of nodes ('struct ubifs_scan_node' objects) 2469 * 2470 * This function returns zero if the list of non-data nodes is sorted correctly, 2471 * and %-EINVAL if not. 2472 */ 2473 int dbg_check_nondata_nodes_order(struct ubifs_info *c, struct list_head *head) 2474 { 2475 struct list_head *cur; 2476 struct ubifs_scan_node *sa, *sb; 2477 2478 if (!dbg_is_chk_gen(c)) 2479 return 0; 2480 2481 for (cur = head->next; cur->next != head; cur = cur->next) { 2482 ino_t inuma, inumb; 2483 uint32_t hasha, hashb; 2484 2485 cond_resched(); 2486 sa = container_of(cur, struct ubifs_scan_node, list); 2487 sb = container_of(cur->next, struct ubifs_scan_node, list); 2488 2489 if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE && 2490 sa->type != UBIFS_XENT_NODE) { 2491 ubifs_err("bad node type %d", sa->type); 2492 dbg_dump_node(c, sa->node); 2493 return -EINVAL; 2494 } 2495 if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE && 2496 sa->type != UBIFS_XENT_NODE) { 2497 ubifs_err("bad node type %d", sb->type); 2498 dbg_dump_node(c, sb->node); 2499 return -EINVAL; 2500 } 2501 2502 if (sa->type != UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) { 2503 ubifs_err("non-inode node goes before inode node"); 2504 goto error_dump; 2505 } 2506 2507 if (sa->type == UBIFS_INO_NODE && sb->type != UBIFS_INO_NODE) 2508 continue; 2509 2510 if (sa->type == UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) { 2511 /* Inode nodes are sorted in descending size order */ 2512 if (sa->len < sb->len) { 2513 ubifs_err("smaller inode node goes first"); 2514 goto error_dump; 2515 } 2516 continue; 2517 } 2518 2519 /* 2520 * This is either a dentry or xentry, which should be sorted in 2521 * ascending (parent ino, hash) order. 2522 */ 2523 inuma = key_inum(c, &sa->key); 2524 inumb = key_inum(c, &sb->key); 2525 2526 if (inuma < inumb) 2527 continue; 2528 if (inuma > inumb) { 2529 ubifs_err("larger inum %lu goes before inum %lu", 2530 (unsigned long)inuma, (unsigned long)inumb); 2531 goto error_dump; 2532 } 2533 2534 hasha = key_block(c, &sa->key); 2535 hashb = key_block(c, &sb->key); 2536 2537 if (hasha > hashb) { 2538 ubifs_err("larger hash %u goes before %u", 2539 hasha, hashb); 2540 goto error_dump; 2541 } 2542 } 2543 2544 return 0; 2545 2546 error_dump: 2547 ubifs_msg("dumping first node"); 2548 dbg_dump_node(c, sa->node); 2549 ubifs_msg("dumping second node"); 2550 dbg_dump_node(c, sb->node); 2551 return -EINVAL; 2552 return 0; 2553 } 2554 2555 static inline int chance(unsigned int n, unsigned int out_of) 2556 { 2557 return !!((random32() % out_of) + 1 <= n); 2558 2559 } 2560 2561 static int power_cut_emulated(struct ubifs_info *c, int lnum, int write) 2562 { 2563 struct ubifs_debug_info *d = c->dbg; 2564 2565 ubifs_assert(dbg_is_tst_rcvry(c)); 2566 2567 if (!d->pc_cnt) { 2568 /* First call - decide delay to the power cut */ 2569 if (chance(1, 2)) { 2570 unsigned long delay; 2571 2572 if (chance(1, 2)) { 2573 d->pc_delay = 1; 2574 /* Fail withing 1 minute */ 2575 delay = random32() % 60000; 2576 d->pc_timeout = jiffies; 2577 d->pc_timeout += msecs_to_jiffies(delay); 2578 ubifs_warn("failing after %lums", delay); 2579 } else { 2580 d->pc_delay = 2; 2581 delay = random32() % 10000; 2582 /* Fail within 10000 operations */ 2583 d->pc_cnt_max = delay; 2584 ubifs_warn("failing after %lu calls", delay); 2585 } 2586 } 2587 2588 d->pc_cnt += 1; 2589 } 2590 2591 /* Determine if failure delay has expired */ 2592 if (d->pc_delay == 1 && time_before(jiffies, d->pc_timeout)) 2593 return 0; 2594 if (d->pc_delay == 2 && d->pc_cnt++ < d->pc_cnt_max) 2595 return 0; 2596 2597 if (lnum == UBIFS_SB_LNUM) { 2598 if (write && chance(1, 2)) 2599 return 0; 2600 if (chance(19, 20)) 2601 return 0; 2602 ubifs_warn("failing in super block LEB %d", lnum); 2603 } else if (lnum == UBIFS_MST_LNUM || lnum == UBIFS_MST_LNUM + 1) { 2604 if (chance(19, 20)) 2605 return 0; 2606 ubifs_warn("failing in master LEB %d", lnum); 2607 } else if (lnum >= UBIFS_LOG_LNUM && lnum <= c->log_last) { 2608 if (write && chance(99, 100)) 2609 return 0; 2610 if (chance(399, 400)) 2611 return 0; 2612 ubifs_warn("failing in log LEB %d", lnum); 2613 } else if (lnum >= c->lpt_first && lnum <= c->lpt_last) { 2614 if (write && chance(7, 8)) 2615 return 0; 2616 if (chance(19, 20)) 2617 return 0; 2618 ubifs_warn("failing in LPT LEB %d", lnum); 2619 } else if (lnum >= c->orph_first && lnum <= c->orph_last) { 2620 if (write && chance(1, 2)) 2621 return 0; 2622 if (chance(9, 10)) 2623 return 0; 2624 ubifs_warn("failing in orphan LEB %d", lnum); 2625 } else if (lnum == c->ihead_lnum) { 2626 if (chance(99, 100)) 2627 return 0; 2628 ubifs_warn("failing in index head LEB %d", lnum); 2629 } else if (c->jheads && lnum == c->jheads[GCHD].wbuf.lnum) { 2630 if (chance(9, 10)) 2631 return 0; 2632 ubifs_warn("failing in GC head LEB %d", lnum); 2633 } else if (write && !RB_EMPTY_ROOT(&c->buds) && 2634 !ubifs_search_bud(c, lnum)) { 2635 if (chance(19, 20)) 2636 return 0; 2637 ubifs_warn("failing in non-bud LEB %d", lnum); 2638 } else if (c->cmt_state == COMMIT_RUNNING_BACKGROUND || 2639 c->cmt_state == COMMIT_RUNNING_REQUIRED) { 2640 if (chance(999, 1000)) 2641 return 0; 2642 ubifs_warn("failing in bud LEB %d commit running", lnum); 2643 } else { 2644 if (chance(9999, 10000)) 2645 return 0; 2646 ubifs_warn("failing in bud LEB %d commit not running", lnum); 2647 } 2648 2649 d->pc_happened = 1; 2650 ubifs_warn("========== Power cut emulated =========="); 2651 dump_stack(); 2652 return 1; 2653 } 2654 2655 static void cut_data(const void *buf, unsigned int len) 2656 { 2657 unsigned int from, to, i, ffs = chance(1, 2); 2658 unsigned char *p = (void *)buf; 2659 2660 from = random32() % (len + 1); 2661 if (chance(1, 2)) 2662 to = random32() % (len - from + 1); 2663 else 2664 to = len; 2665 2666 if (from < to) 2667 ubifs_warn("filled bytes %u-%u with %s", from, to - 1, 2668 ffs ? "0xFFs" : "random data"); 2669 2670 if (ffs) 2671 for (i = from; i < to; i++) 2672 p[i] = 0xFF; 2673 else 2674 for (i = from; i < to; i++) 2675 p[i] = random32() % 0x100; 2676 } 2677 2678 int dbg_leb_write(struct ubifs_info *c, int lnum, const void *buf, 2679 int offs, int len, int dtype) 2680 { 2681 int err, failing; 2682 2683 if (c->dbg->pc_happened) 2684 return -EROFS; 2685 2686 failing = power_cut_emulated(c, lnum, 1); 2687 if (failing) 2688 cut_data(buf, len); 2689 err = ubi_leb_write(c->ubi, lnum, buf, offs, len, dtype); 2690 if (err) 2691 return err; 2692 if (failing) 2693 return -EROFS; 2694 return 0; 2695 } 2696 2697 int dbg_leb_change(struct ubifs_info *c, int lnum, const void *buf, 2698 int len, int dtype) 2699 { 2700 int err; 2701 2702 if (c->dbg->pc_happened) 2703 return -EROFS; 2704 if (power_cut_emulated(c, lnum, 1)) 2705 return -EROFS; 2706 err = ubi_leb_change(c->ubi, lnum, buf, len, dtype); 2707 if (err) 2708 return err; 2709 if (power_cut_emulated(c, lnum, 1)) 2710 return -EROFS; 2711 return 0; 2712 } 2713 2714 int dbg_leb_unmap(struct ubifs_info *c, int lnum) 2715 { 2716 int err; 2717 2718 if (c->dbg->pc_happened) 2719 return -EROFS; 2720 if (power_cut_emulated(c, lnum, 0)) 2721 return -EROFS; 2722 err = ubi_leb_unmap(c->ubi, lnum); 2723 if (err) 2724 return err; 2725 if (power_cut_emulated(c, lnum, 0)) 2726 return -EROFS; 2727 return 0; 2728 } 2729 2730 int dbg_leb_map(struct ubifs_info *c, int lnum, int dtype) 2731 { 2732 int err; 2733 2734 if (c->dbg->pc_happened) 2735 return -EROFS; 2736 if (power_cut_emulated(c, lnum, 0)) 2737 return -EROFS; 2738 err = ubi_leb_map(c->ubi, lnum, dtype); 2739 if (err) 2740 return err; 2741 if (power_cut_emulated(c, lnum, 0)) 2742 return -EROFS; 2743 return 0; 2744 } 2745 2746 /* 2747 * Root directory for UBIFS stuff in debugfs. Contains sub-directories which 2748 * contain the stuff specific to particular file-system mounts. 2749 */ 2750 static struct dentry *dfs_rootdir; 2751 2752 static int dfs_file_open(struct inode *inode, struct file *file) 2753 { 2754 file->private_data = inode->i_private; 2755 return nonseekable_open(inode, file); 2756 } 2757 2758 /** 2759 * provide_user_output - provide output to the user reading a debugfs file. 2760 * @val: boolean value for the answer 2761 * @u: the buffer to store the answer at 2762 * @count: size of the buffer 2763 * @ppos: position in the @u output buffer 2764 * 2765 * This is a simple helper function which stores @val boolean value in the user 2766 * buffer when the user reads one of UBIFS debugfs files. Returns amount of 2767 * bytes written to @u in case of success and a negative error code in case of 2768 * failure. 2769 */ 2770 static int provide_user_output(int val, char __user *u, size_t count, 2771 loff_t *ppos) 2772 { 2773 char buf[3]; 2774 2775 if (val) 2776 buf[0] = '1'; 2777 else 2778 buf[0] = '0'; 2779 buf[1] = '\n'; 2780 buf[2] = 0x00; 2781 2782 return simple_read_from_buffer(u, count, ppos, buf, 2); 2783 } 2784 2785 static ssize_t dfs_file_read(struct file *file, char __user *u, size_t count, 2786 loff_t *ppos) 2787 { 2788 struct dentry *dent = file->f_path.dentry; 2789 struct ubifs_info *c = file->private_data; 2790 struct ubifs_debug_info *d = c->dbg; 2791 int val; 2792 2793 if (dent == d->dfs_chk_gen) 2794 val = d->chk_gen; 2795 else if (dent == d->dfs_chk_index) 2796 val = d->chk_index; 2797 else if (dent == d->dfs_chk_orph) 2798 val = d->chk_orph; 2799 else if (dent == d->dfs_chk_lprops) 2800 val = d->chk_lprops; 2801 else if (dent == d->dfs_chk_fs) 2802 val = d->chk_fs; 2803 else if (dent == d->dfs_tst_rcvry) 2804 val = d->tst_rcvry; 2805 else 2806 return -EINVAL; 2807 2808 return provide_user_output(val, u, count, ppos); 2809 } 2810 2811 /** 2812 * interpret_user_input - interpret user debugfs file input. 2813 * @u: user-provided buffer with the input 2814 * @count: buffer size 2815 * 2816 * This is a helper function which interpret user input to a boolean UBIFS 2817 * debugfs file. Returns %0 or %1 in case of success and a negative error code 2818 * in case of failure. 2819 */ 2820 static int interpret_user_input(const char __user *u, size_t count) 2821 { 2822 size_t buf_size; 2823 char buf[8]; 2824 2825 buf_size = min_t(size_t, count, (sizeof(buf) - 1)); 2826 if (copy_from_user(buf, u, buf_size)) 2827 return -EFAULT; 2828 2829 if (buf[0] == '1') 2830 return 1; 2831 else if (buf[0] == '0') 2832 return 0; 2833 2834 return -EINVAL; 2835 } 2836 2837 static ssize_t dfs_file_write(struct file *file, const char __user *u, 2838 size_t count, loff_t *ppos) 2839 { 2840 struct ubifs_info *c = file->private_data; 2841 struct ubifs_debug_info *d = c->dbg; 2842 struct dentry *dent = file->f_path.dentry; 2843 int val; 2844 2845 /* 2846 * TODO: this is racy - the file-system might have already been 2847 * unmounted and we'd oops in this case. The plan is to fix it with 2848 * help of 'iterate_supers_type()' which we should have in v3.0: when 2849 * a debugfs opened, we rember FS's UUID in file->private_data. Then 2850 * whenever we access the FS via a debugfs file, we iterate all UBIFS 2851 * superblocks and fine the one with the same UUID, and take the 2852 * locking right. 2853 * 2854 * The other way to go suggested by Al Viro is to create a separate 2855 * 'ubifs-debug' file-system instead. 2856 */ 2857 if (file->f_path.dentry == d->dfs_dump_lprops) { 2858 dbg_dump_lprops(c); 2859 return count; 2860 } 2861 if (file->f_path.dentry == d->dfs_dump_budg) { 2862 dbg_dump_budg(c, &c->bi); 2863 return count; 2864 } 2865 if (file->f_path.dentry == d->dfs_dump_tnc) { 2866 mutex_lock(&c->tnc_mutex); 2867 dbg_dump_tnc(c); 2868 mutex_unlock(&c->tnc_mutex); 2869 return count; 2870 } 2871 2872 val = interpret_user_input(u, count); 2873 if (val < 0) 2874 return val; 2875 2876 if (dent == d->dfs_chk_gen) 2877 d->chk_gen = val; 2878 else if (dent == d->dfs_chk_index) 2879 d->chk_index = val; 2880 else if (dent == d->dfs_chk_orph) 2881 d->chk_orph = val; 2882 else if (dent == d->dfs_chk_lprops) 2883 d->chk_lprops = val; 2884 else if (dent == d->dfs_chk_fs) 2885 d->chk_fs = val; 2886 else if (dent == d->dfs_tst_rcvry) 2887 d->tst_rcvry = val; 2888 else 2889 return -EINVAL; 2890 2891 return count; 2892 } 2893 2894 static const struct file_operations dfs_fops = { 2895 .open = dfs_file_open, 2896 .read = dfs_file_read, 2897 .write = dfs_file_write, 2898 .owner = THIS_MODULE, 2899 .llseek = no_llseek, 2900 }; 2901 2902 /** 2903 * dbg_debugfs_init_fs - initialize debugfs for UBIFS instance. 2904 * @c: UBIFS file-system description object 2905 * 2906 * This function creates all debugfs files for this instance of UBIFS. Returns 2907 * zero in case of success and a negative error code in case of failure. 2908 * 2909 * Note, the only reason we have not merged this function with the 2910 * 'ubifs_debugging_init()' function is because it is better to initialize 2911 * debugfs interfaces at the very end of the mount process, and remove them at 2912 * the very beginning of the mount process. 2913 */ 2914 int dbg_debugfs_init_fs(struct ubifs_info *c) 2915 { 2916 int err, n; 2917 const char *fname; 2918 struct dentry *dent; 2919 struct ubifs_debug_info *d = c->dbg; 2920 2921 n = snprintf(d->dfs_dir_name, UBIFS_DFS_DIR_LEN + 1, UBIFS_DFS_DIR_NAME, 2922 c->vi.ubi_num, c->vi.vol_id); 2923 if (n == UBIFS_DFS_DIR_LEN) { 2924 /* The array size is too small */ 2925 fname = UBIFS_DFS_DIR_NAME; 2926 dent = ERR_PTR(-EINVAL); 2927 goto out; 2928 } 2929 2930 fname = d->dfs_dir_name; 2931 dent = debugfs_create_dir(fname, dfs_rootdir); 2932 if (IS_ERR_OR_NULL(dent)) 2933 goto out; 2934 d->dfs_dir = dent; 2935 2936 fname = "dump_lprops"; 2937 dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops); 2938 if (IS_ERR_OR_NULL(dent)) 2939 goto out_remove; 2940 d->dfs_dump_lprops = dent; 2941 2942 fname = "dump_budg"; 2943 dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops); 2944 if (IS_ERR_OR_NULL(dent)) 2945 goto out_remove; 2946 d->dfs_dump_budg = dent; 2947 2948 fname = "dump_tnc"; 2949 dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops); 2950 if (IS_ERR_OR_NULL(dent)) 2951 goto out_remove; 2952 d->dfs_dump_tnc = dent; 2953 2954 fname = "chk_general"; 2955 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c, 2956 &dfs_fops); 2957 if (IS_ERR_OR_NULL(dent)) 2958 goto out_remove; 2959 d->dfs_chk_gen = dent; 2960 2961 fname = "chk_index"; 2962 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c, 2963 &dfs_fops); 2964 if (IS_ERR_OR_NULL(dent)) 2965 goto out_remove; 2966 d->dfs_chk_index = dent; 2967 2968 fname = "chk_orphans"; 2969 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c, 2970 &dfs_fops); 2971 if (IS_ERR_OR_NULL(dent)) 2972 goto out_remove; 2973 d->dfs_chk_orph = dent; 2974 2975 fname = "chk_lprops"; 2976 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c, 2977 &dfs_fops); 2978 if (IS_ERR_OR_NULL(dent)) 2979 goto out_remove; 2980 d->dfs_chk_lprops = dent; 2981 2982 fname = "chk_fs"; 2983 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c, 2984 &dfs_fops); 2985 if (IS_ERR_OR_NULL(dent)) 2986 goto out_remove; 2987 d->dfs_chk_fs = dent; 2988 2989 fname = "tst_recovery"; 2990 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c, 2991 &dfs_fops); 2992 if (IS_ERR_OR_NULL(dent)) 2993 goto out_remove; 2994 d->dfs_tst_rcvry = dent; 2995 2996 return 0; 2997 2998 out_remove: 2999 debugfs_remove_recursive(d->dfs_dir); 3000 out: 3001 err = dent ? PTR_ERR(dent) : -ENODEV; 3002 ubifs_err("cannot create \"%s\" debugfs file or directory, error %d\n", 3003 fname, err); 3004 return err; 3005 } 3006 3007 /** 3008 * dbg_debugfs_exit_fs - remove all debugfs files. 3009 * @c: UBIFS file-system description object 3010 */ 3011 void dbg_debugfs_exit_fs(struct ubifs_info *c) 3012 { 3013 debugfs_remove_recursive(c->dbg->dfs_dir); 3014 } 3015 3016 struct ubifs_global_debug_info ubifs_dbg; 3017 3018 static struct dentry *dfs_chk_gen; 3019 static struct dentry *dfs_chk_index; 3020 static struct dentry *dfs_chk_orph; 3021 static struct dentry *dfs_chk_lprops; 3022 static struct dentry *dfs_chk_fs; 3023 static struct dentry *dfs_tst_rcvry; 3024 3025 static ssize_t dfs_global_file_read(struct file *file, char __user *u, 3026 size_t count, loff_t *ppos) 3027 { 3028 struct dentry *dent = file->f_path.dentry; 3029 int val; 3030 3031 if (dent == dfs_chk_gen) 3032 val = ubifs_dbg.chk_gen; 3033 else if (dent == dfs_chk_index) 3034 val = ubifs_dbg.chk_index; 3035 else if (dent == dfs_chk_orph) 3036 val = ubifs_dbg.chk_orph; 3037 else if (dent == dfs_chk_lprops) 3038 val = ubifs_dbg.chk_lprops; 3039 else if (dent == dfs_chk_fs) 3040 val = ubifs_dbg.chk_fs; 3041 else if (dent == dfs_tst_rcvry) 3042 val = ubifs_dbg.tst_rcvry; 3043 else 3044 return -EINVAL; 3045 3046 return provide_user_output(val, u, count, ppos); 3047 } 3048 3049 static ssize_t dfs_global_file_write(struct file *file, const char __user *u, 3050 size_t count, loff_t *ppos) 3051 { 3052 struct dentry *dent = file->f_path.dentry; 3053 int val; 3054 3055 val = interpret_user_input(u, count); 3056 if (val < 0) 3057 return val; 3058 3059 if (dent == dfs_chk_gen) 3060 ubifs_dbg.chk_gen = val; 3061 else if (dent == dfs_chk_index) 3062 ubifs_dbg.chk_index = val; 3063 else if (dent == dfs_chk_orph) 3064 ubifs_dbg.chk_orph = val; 3065 else if (dent == dfs_chk_lprops) 3066 ubifs_dbg.chk_lprops = val; 3067 else if (dent == dfs_chk_fs) 3068 ubifs_dbg.chk_fs = val; 3069 else if (dent == dfs_tst_rcvry) 3070 ubifs_dbg.tst_rcvry = val; 3071 else 3072 return -EINVAL; 3073 3074 return count; 3075 } 3076 3077 static const struct file_operations dfs_global_fops = { 3078 .read = dfs_global_file_read, 3079 .write = dfs_global_file_write, 3080 .owner = THIS_MODULE, 3081 .llseek = no_llseek, 3082 }; 3083 3084 /** 3085 * dbg_debugfs_init - initialize debugfs file-system. 3086 * 3087 * UBIFS uses debugfs file-system to expose various debugging knobs to 3088 * user-space. This function creates "ubifs" directory in the debugfs 3089 * file-system. Returns zero in case of success and a negative error code in 3090 * case of failure. 3091 */ 3092 int dbg_debugfs_init(void) 3093 { 3094 int err; 3095 const char *fname; 3096 struct dentry *dent; 3097 3098 fname = "ubifs"; 3099 dent = debugfs_create_dir(fname, NULL); 3100 if (IS_ERR_OR_NULL(dent)) 3101 goto out; 3102 dfs_rootdir = dent; 3103 3104 fname = "chk_general"; 3105 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL, 3106 &dfs_global_fops); 3107 if (IS_ERR_OR_NULL(dent)) 3108 goto out_remove; 3109 dfs_chk_gen = dent; 3110 3111 fname = "chk_index"; 3112 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL, 3113 &dfs_global_fops); 3114 if (IS_ERR_OR_NULL(dent)) 3115 goto out_remove; 3116 dfs_chk_index = dent; 3117 3118 fname = "chk_orphans"; 3119 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL, 3120 &dfs_global_fops); 3121 if (IS_ERR_OR_NULL(dent)) 3122 goto out_remove; 3123 dfs_chk_orph = dent; 3124 3125 fname = "chk_lprops"; 3126 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL, 3127 &dfs_global_fops); 3128 if (IS_ERR_OR_NULL(dent)) 3129 goto out_remove; 3130 dfs_chk_lprops = dent; 3131 3132 fname = "chk_fs"; 3133 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL, 3134 &dfs_global_fops); 3135 if (IS_ERR_OR_NULL(dent)) 3136 goto out_remove; 3137 dfs_chk_fs = dent; 3138 3139 fname = "tst_recovery"; 3140 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL, 3141 &dfs_global_fops); 3142 if (IS_ERR_OR_NULL(dent)) 3143 goto out_remove; 3144 dfs_tst_rcvry = dent; 3145 3146 return 0; 3147 3148 out_remove: 3149 debugfs_remove_recursive(dfs_rootdir); 3150 out: 3151 err = dent ? PTR_ERR(dent) : -ENODEV; 3152 ubifs_err("cannot create \"%s\" debugfs file or directory, error %d\n", 3153 fname, err); 3154 return err; 3155 } 3156 3157 /** 3158 * dbg_debugfs_exit - remove the "ubifs" directory from debugfs file-system. 3159 */ 3160 void dbg_debugfs_exit(void) 3161 { 3162 debugfs_remove_recursive(dfs_rootdir); 3163 } 3164 3165 /** 3166 * ubifs_debugging_init - initialize UBIFS debugging. 3167 * @c: UBIFS file-system description object 3168 * 3169 * This function initializes debugging-related data for the file system. 3170 * Returns zero in case of success and a negative error code in case of 3171 * failure. 3172 */ 3173 int ubifs_debugging_init(struct ubifs_info *c) 3174 { 3175 c->dbg = kzalloc(sizeof(struct ubifs_debug_info), GFP_KERNEL); 3176 if (!c->dbg) 3177 return -ENOMEM; 3178 3179 return 0; 3180 } 3181 3182 /** 3183 * ubifs_debugging_exit - free debugging data. 3184 * @c: UBIFS file-system description object 3185 */ 3186 void ubifs_debugging_exit(struct ubifs_info *c) 3187 { 3188 kfree(c->dbg); 3189 } 3190 3191 #endif /* CONFIG_UBIFS_FS_DEBUG */ 3192