1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * This file is part of UBIFS. 4 * 5 * Copyright (C) 2006-2008 Nokia Corporation 6 * 7 * Authors: Artem Bityutskiy (Битюцкий Артём) 8 * Adrian Hunter 9 */ 10 11 /* 12 * This file implements most of the debugging stuff which is compiled in only 13 * when it is enabled. But some debugging check functions are implemented in 14 * corresponding subsystem, just because they are closely related and utilize 15 * various local functions of those subsystems. 16 */ 17 18 #include <linux/module.h> 19 #include <linux/debugfs.h> 20 #include <linux/math64.h> 21 #include <linux/uaccess.h> 22 #include <linux/random.h> 23 #include <linux/ctype.h> 24 #include "ubifs.h" 25 26 static DEFINE_SPINLOCK(dbg_lock); 27 28 static const char *get_key_fmt(int fmt) 29 { 30 switch (fmt) { 31 case UBIFS_SIMPLE_KEY_FMT: 32 return "simple"; 33 default: 34 return "unknown/invalid format"; 35 } 36 } 37 38 static const char *get_key_hash(int hash) 39 { 40 switch (hash) { 41 case UBIFS_KEY_HASH_R5: 42 return "R5"; 43 case UBIFS_KEY_HASH_TEST: 44 return "test"; 45 default: 46 return "unknown/invalid name hash"; 47 } 48 } 49 50 static const char *get_key_type(int type) 51 { 52 switch (type) { 53 case UBIFS_INO_KEY: 54 return "inode"; 55 case UBIFS_DENT_KEY: 56 return "direntry"; 57 case UBIFS_XENT_KEY: 58 return "xentry"; 59 case UBIFS_DATA_KEY: 60 return "data"; 61 case UBIFS_TRUN_KEY: 62 return "truncate"; 63 default: 64 return "unknown/invalid key"; 65 } 66 } 67 68 static const char *get_dent_type(int type) 69 { 70 switch (type) { 71 case UBIFS_ITYPE_REG: 72 return "file"; 73 case UBIFS_ITYPE_DIR: 74 return "dir"; 75 case UBIFS_ITYPE_LNK: 76 return "symlink"; 77 case UBIFS_ITYPE_BLK: 78 return "blkdev"; 79 case UBIFS_ITYPE_CHR: 80 return "char dev"; 81 case UBIFS_ITYPE_FIFO: 82 return "fifo"; 83 case UBIFS_ITYPE_SOCK: 84 return "socket"; 85 default: 86 return "unknown/invalid type"; 87 } 88 } 89 90 const char *dbg_snprintf_key(const struct ubifs_info *c, 91 const union ubifs_key *key, char *buffer, int len) 92 { 93 char *p = buffer; 94 int type = key_type(c, key); 95 96 if (c->key_fmt == UBIFS_SIMPLE_KEY_FMT) { 97 switch (type) { 98 case UBIFS_INO_KEY: 99 len -= snprintf(p, len, "(%lu, %s)", 100 (unsigned long)key_inum(c, key), 101 get_key_type(type)); 102 break; 103 case UBIFS_DENT_KEY: 104 case UBIFS_XENT_KEY: 105 len -= snprintf(p, len, "(%lu, %s, %#08x)", 106 (unsigned long)key_inum(c, key), 107 get_key_type(type), key_hash(c, key)); 108 break; 109 case UBIFS_DATA_KEY: 110 len -= snprintf(p, len, "(%lu, %s, %u)", 111 (unsigned long)key_inum(c, key), 112 get_key_type(type), key_block(c, key)); 113 break; 114 case UBIFS_TRUN_KEY: 115 len -= snprintf(p, len, "(%lu, %s)", 116 (unsigned long)key_inum(c, key), 117 get_key_type(type)); 118 break; 119 default: 120 len -= snprintf(p, len, "(bad key type: %#08x, %#08x)", 121 key->u32[0], key->u32[1]); 122 } 123 } else 124 len -= snprintf(p, len, "bad key format %d", c->key_fmt); 125 ubifs_assert(c, len > 0); 126 return p; 127 } 128 129 const char *dbg_ntype(int type) 130 { 131 switch (type) { 132 case UBIFS_PAD_NODE: 133 return "padding node"; 134 case UBIFS_SB_NODE: 135 return "superblock node"; 136 case UBIFS_MST_NODE: 137 return "master node"; 138 case UBIFS_REF_NODE: 139 return "reference node"; 140 case UBIFS_INO_NODE: 141 return "inode node"; 142 case UBIFS_DENT_NODE: 143 return "direntry node"; 144 case UBIFS_XENT_NODE: 145 return "xentry node"; 146 case UBIFS_DATA_NODE: 147 return "data node"; 148 case UBIFS_TRUN_NODE: 149 return "truncate node"; 150 case UBIFS_IDX_NODE: 151 return "indexing node"; 152 case UBIFS_CS_NODE: 153 return "commit start node"; 154 case UBIFS_ORPH_NODE: 155 return "orphan node"; 156 case UBIFS_AUTH_NODE: 157 return "auth node"; 158 default: 159 return "unknown node"; 160 } 161 } 162 163 static const char *dbg_gtype(int type) 164 { 165 switch (type) { 166 case UBIFS_NO_NODE_GROUP: 167 return "no node group"; 168 case UBIFS_IN_NODE_GROUP: 169 return "in node group"; 170 case UBIFS_LAST_OF_NODE_GROUP: 171 return "last of node group"; 172 default: 173 return "unknown"; 174 } 175 } 176 177 const char *dbg_cstate(int cmt_state) 178 { 179 switch (cmt_state) { 180 case COMMIT_RESTING: 181 return "commit resting"; 182 case COMMIT_BACKGROUND: 183 return "background commit requested"; 184 case COMMIT_REQUIRED: 185 return "commit required"; 186 case COMMIT_RUNNING_BACKGROUND: 187 return "BACKGROUND commit running"; 188 case COMMIT_RUNNING_REQUIRED: 189 return "commit running and required"; 190 case COMMIT_BROKEN: 191 return "broken commit"; 192 default: 193 return "unknown commit state"; 194 } 195 } 196 197 const char *dbg_jhead(int jhead) 198 { 199 switch (jhead) { 200 case GCHD: 201 return "0 (GC)"; 202 case BASEHD: 203 return "1 (base)"; 204 case DATAHD: 205 return "2 (data)"; 206 default: 207 return "unknown journal head"; 208 } 209 } 210 211 static void dump_ch(const struct ubifs_ch *ch) 212 { 213 pr_err("\tmagic %#x\n", le32_to_cpu(ch->magic)); 214 pr_err("\tcrc %#x\n", le32_to_cpu(ch->crc)); 215 pr_err("\tnode_type %d (%s)\n", ch->node_type, 216 dbg_ntype(ch->node_type)); 217 pr_err("\tgroup_type %d (%s)\n", ch->group_type, 218 dbg_gtype(ch->group_type)); 219 pr_err("\tsqnum %llu\n", 220 (unsigned long long)le64_to_cpu(ch->sqnum)); 221 pr_err("\tlen %u\n", le32_to_cpu(ch->len)); 222 } 223 224 void ubifs_dump_inode(struct ubifs_info *c, const struct inode *inode) 225 { 226 const struct ubifs_inode *ui = ubifs_inode(inode); 227 struct fscrypt_name nm = {0}; 228 union ubifs_key key; 229 struct ubifs_dent_node *dent, *pdent = NULL; 230 int count = 2; 231 232 pr_err("Dump in-memory inode:"); 233 pr_err("\tinode %lu\n", inode->i_ino); 234 pr_err("\tsize %llu\n", 235 (unsigned long long)i_size_read(inode)); 236 pr_err("\tnlink %u\n", inode->i_nlink); 237 pr_err("\tuid %u\n", (unsigned int)i_uid_read(inode)); 238 pr_err("\tgid %u\n", (unsigned int)i_gid_read(inode)); 239 pr_err("\tatime %u.%u\n", 240 (unsigned int)inode->i_atime.tv_sec, 241 (unsigned int)inode->i_atime.tv_nsec); 242 pr_err("\tmtime %u.%u\n", 243 (unsigned int)inode->i_mtime.tv_sec, 244 (unsigned int)inode->i_mtime.tv_nsec); 245 pr_err("\tctime %u.%u\n", 246 (unsigned int)inode->i_ctime.tv_sec, 247 (unsigned int)inode->i_ctime.tv_nsec); 248 pr_err("\tcreat_sqnum %llu\n", ui->creat_sqnum); 249 pr_err("\txattr_size %u\n", ui->xattr_size); 250 pr_err("\txattr_cnt %u\n", ui->xattr_cnt); 251 pr_err("\txattr_names %u\n", ui->xattr_names); 252 pr_err("\tdirty %u\n", ui->dirty); 253 pr_err("\txattr %u\n", ui->xattr); 254 pr_err("\tbulk_read %u\n", ui->bulk_read); 255 pr_err("\tsynced_i_size %llu\n", 256 (unsigned long long)ui->synced_i_size); 257 pr_err("\tui_size %llu\n", 258 (unsigned long long)ui->ui_size); 259 pr_err("\tflags %d\n", ui->flags); 260 pr_err("\tcompr_type %d\n", ui->compr_type); 261 pr_err("\tlast_page_read %lu\n", ui->last_page_read); 262 pr_err("\tread_in_a_row %lu\n", ui->read_in_a_row); 263 pr_err("\tdata_len %d\n", ui->data_len); 264 265 if (!S_ISDIR(inode->i_mode)) 266 return; 267 268 pr_err("List of directory entries:\n"); 269 ubifs_assert(c, !mutex_is_locked(&c->tnc_mutex)); 270 271 lowest_dent_key(c, &key, inode->i_ino); 272 while (1) { 273 dent = ubifs_tnc_next_ent(c, &key, &nm); 274 if (IS_ERR(dent)) { 275 if (PTR_ERR(dent) != -ENOENT) 276 pr_err("error %ld\n", PTR_ERR(dent)); 277 break; 278 } 279 280 pr_err("\t%d: inode %llu, type %s, len %d\n", 281 count++, (unsigned long long) le64_to_cpu(dent->inum), 282 get_dent_type(dent->type), 283 le16_to_cpu(dent->nlen)); 284 285 fname_name(&nm) = dent->name; 286 fname_len(&nm) = le16_to_cpu(dent->nlen); 287 kfree(pdent); 288 pdent = dent; 289 key_read(c, &dent->key, &key); 290 } 291 kfree(pdent); 292 } 293 294 void ubifs_dump_node(const struct ubifs_info *c, const void *node, int node_len) 295 { 296 int i, n, type, safe_len, max_node_len, min_node_len; 297 union ubifs_key key; 298 const struct ubifs_ch *ch = node; 299 char key_buf[DBG_KEY_BUF_LEN]; 300 301 /* If the magic is incorrect, just hexdump the first bytes */ 302 if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) { 303 pr_err("Not a node, first %zu bytes:", UBIFS_CH_SZ); 304 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 32, 1, 305 (void *)node, UBIFS_CH_SZ, 1); 306 return; 307 } 308 309 /* Skip dumping unknown type node */ 310 type = ch->node_type; 311 if (type < 0 || type >= UBIFS_NODE_TYPES_CNT) { 312 pr_err("node type %d was not recognized\n", type); 313 return; 314 } 315 316 spin_lock(&dbg_lock); 317 dump_ch(node); 318 319 if (c->ranges[type].max_len == 0) { 320 max_node_len = min_node_len = c->ranges[type].len; 321 } else { 322 max_node_len = c->ranges[type].max_len; 323 min_node_len = c->ranges[type].min_len; 324 } 325 safe_len = le32_to_cpu(ch->len); 326 safe_len = safe_len > 0 ? safe_len : 0; 327 safe_len = min3(safe_len, max_node_len, node_len); 328 if (safe_len < min_node_len) { 329 pr_err("node len(%d) is too short for %s, left %d bytes:\n", 330 safe_len, dbg_ntype(type), 331 safe_len > UBIFS_CH_SZ ? 332 safe_len - (int)UBIFS_CH_SZ : 0); 333 if (safe_len > UBIFS_CH_SZ) 334 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 32, 1, 335 (void *)node + UBIFS_CH_SZ, 336 safe_len - UBIFS_CH_SZ, 0); 337 goto out_unlock; 338 } 339 if (safe_len != le32_to_cpu(ch->len)) 340 pr_err("\ttruncated node length %d\n", safe_len); 341 342 switch (type) { 343 case UBIFS_PAD_NODE: 344 { 345 const struct ubifs_pad_node *pad = node; 346 347 pr_err("\tpad_len %u\n", le32_to_cpu(pad->pad_len)); 348 break; 349 } 350 case UBIFS_SB_NODE: 351 { 352 const struct ubifs_sb_node *sup = node; 353 unsigned int sup_flags = le32_to_cpu(sup->flags); 354 355 pr_err("\tkey_hash %d (%s)\n", 356 (int)sup->key_hash, get_key_hash(sup->key_hash)); 357 pr_err("\tkey_fmt %d (%s)\n", 358 (int)sup->key_fmt, get_key_fmt(sup->key_fmt)); 359 pr_err("\tflags %#x\n", sup_flags); 360 pr_err("\tbig_lpt %u\n", 361 !!(sup_flags & UBIFS_FLG_BIGLPT)); 362 pr_err("\tspace_fixup %u\n", 363 !!(sup_flags & UBIFS_FLG_SPACE_FIXUP)); 364 pr_err("\tmin_io_size %u\n", le32_to_cpu(sup->min_io_size)); 365 pr_err("\tleb_size %u\n", le32_to_cpu(sup->leb_size)); 366 pr_err("\tleb_cnt %u\n", le32_to_cpu(sup->leb_cnt)); 367 pr_err("\tmax_leb_cnt %u\n", le32_to_cpu(sup->max_leb_cnt)); 368 pr_err("\tmax_bud_bytes %llu\n", 369 (unsigned long long)le64_to_cpu(sup->max_bud_bytes)); 370 pr_err("\tlog_lebs %u\n", le32_to_cpu(sup->log_lebs)); 371 pr_err("\tlpt_lebs %u\n", le32_to_cpu(sup->lpt_lebs)); 372 pr_err("\torph_lebs %u\n", le32_to_cpu(sup->orph_lebs)); 373 pr_err("\tjhead_cnt %u\n", le32_to_cpu(sup->jhead_cnt)); 374 pr_err("\tfanout %u\n", le32_to_cpu(sup->fanout)); 375 pr_err("\tlsave_cnt %u\n", le32_to_cpu(sup->lsave_cnt)); 376 pr_err("\tdefault_compr %u\n", 377 (int)le16_to_cpu(sup->default_compr)); 378 pr_err("\trp_size %llu\n", 379 (unsigned long long)le64_to_cpu(sup->rp_size)); 380 pr_err("\trp_uid %u\n", le32_to_cpu(sup->rp_uid)); 381 pr_err("\trp_gid %u\n", le32_to_cpu(sup->rp_gid)); 382 pr_err("\tfmt_version %u\n", le32_to_cpu(sup->fmt_version)); 383 pr_err("\ttime_gran %u\n", le32_to_cpu(sup->time_gran)); 384 pr_err("\tUUID %pUB\n", sup->uuid); 385 break; 386 } 387 case UBIFS_MST_NODE: 388 { 389 const struct ubifs_mst_node *mst = node; 390 391 pr_err("\thighest_inum %llu\n", 392 (unsigned long long)le64_to_cpu(mst->highest_inum)); 393 pr_err("\tcommit number %llu\n", 394 (unsigned long long)le64_to_cpu(mst->cmt_no)); 395 pr_err("\tflags %#x\n", le32_to_cpu(mst->flags)); 396 pr_err("\tlog_lnum %u\n", le32_to_cpu(mst->log_lnum)); 397 pr_err("\troot_lnum %u\n", le32_to_cpu(mst->root_lnum)); 398 pr_err("\troot_offs %u\n", le32_to_cpu(mst->root_offs)); 399 pr_err("\troot_len %u\n", le32_to_cpu(mst->root_len)); 400 pr_err("\tgc_lnum %u\n", le32_to_cpu(mst->gc_lnum)); 401 pr_err("\tihead_lnum %u\n", le32_to_cpu(mst->ihead_lnum)); 402 pr_err("\tihead_offs %u\n", le32_to_cpu(mst->ihead_offs)); 403 pr_err("\tindex_size %llu\n", 404 (unsigned long long)le64_to_cpu(mst->index_size)); 405 pr_err("\tlpt_lnum %u\n", le32_to_cpu(mst->lpt_lnum)); 406 pr_err("\tlpt_offs %u\n", le32_to_cpu(mst->lpt_offs)); 407 pr_err("\tnhead_lnum %u\n", le32_to_cpu(mst->nhead_lnum)); 408 pr_err("\tnhead_offs %u\n", le32_to_cpu(mst->nhead_offs)); 409 pr_err("\tltab_lnum %u\n", le32_to_cpu(mst->ltab_lnum)); 410 pr_err("\tltab_offs %u\n", le32_to_cpu(mst->ltab_offs)); 411 pr_err("\tlsave_lnum %u\n", le32_to_cpu(mst->lsave_lnum)); 412 pr_err("\tlsave_offs %u\n", le32_to_cpu(mst->lsave_offs)); 413 pr_err("\tlscan_lnum %u\n", le32_to_cpu(mst->lscan_lnum)); 414 pr_err("\tleb_cnt %u\n", le32_to_cpu(mst->leb_cnt)); 415 pr_err("\tempty_lebs %u\n", le32_to_cpu(mst->empty_lebs)); 416 pr_err("\tidx_lebs %u\n", le32_to_cpu(mst->idx_lebs)); 417 pr_err("\ttotal_free %llu\n", 418 (unsigned long long)le64_to_cpu(mst->total_free)); 419 pr_err("\ttotal_dirty %llu\n", 420 (unsigned long long)le64_to_cpu(mst->total_dirty)); 421 pr_err("\ttotal_used %llu\n", 422 (unsigned long long)le64_to_cpu(mst->total_used)); 423 pr_err("\ttotal_dead %llu\n", 424 (unsigned long long)le64_to_cpu(mst->total_dead)); 425 pr_err("\ttotal_dark %llu\n", 426 (unsigned long long)le64_to_cpu(mst->total_dark)); 427 break; 428 } 429 case UBIFS_REF_NODE: 430 { 431 const struct ubifs_ref_node *ref = node; 432 433 pr_err("\tlnum %u\n", le32_to_cpu(ref->lnum)); 434 pr_err("\toffs %u\n", le32_to_cpu(ref->offs)); 435 pr_err("\tjhead %u\n", le32_to_cpu(ref->jhead)); 436 break; 437 } 438 case UBIFS_INO_NODE: 439 { 440 const struct ubifs_ino_node *ino = node; 441 442 key_read(c, &ino->key, &key); 443 pr_err("\tkey %s\n", 444 dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN)); 445 pr_err("\tcreat_sqnum %llu\n", 446 (unsigned long long)le64_to_cpu(ino->creat_sqnum)); 447 pr_err("\tsize %llu\n", 448 (unsigned long long)le64_to_cpu(ino->size)); 449 pr_err("\tnlink %u\n", le32_to_cpu(ino->nlink)); 450 pr_err("\tatime %lld.%u\n", 451 (long long)le64_to_cpu(ino->atime_sec), 452 le32_to_cpu(ino->atime_nsec)); 453 pr_err("\tmtime %lld.%u\n", 454 (long long)le64_to_cpu(ino->mtime_sec), 455 le32_to_cpu(ino->mtime_nsec)); 456 pr_err("\tctime %lld.%u\n", 457 (long long)le64_to_cpu(ino->ctime_sec), 458 le32_to_cpu(ino->ctime_nsec)); 459 pr_err("\tuid %u\n", le32_to_cpu(ino->uid)); 460 pr_err("\tgid %u\n", le32_to_cpu(ino->gid)); 461 pr_err("\tmode %u\n", le32_to_cpu(ino->mode)); 462 pr_err("\tflags %#x\n", le32_to_cpu(ino->flags)); 463 pr_err("\txattr_cnt %u\n", le32_to_cpu(ino->xattr_cnt)); 464 pr_err("\txattr_size %u\n", le32_to_cpu(ino->xattr_size)); 465 pr_err("\txattr_names %u\n", le32_to_cpu(ino->xattr_names)); 466 pr_err("\tcompr_type %#x\n", 467 (int)le16_to_cpu(ino->compr_type)); 468 pr_err("\tdata len %u\n", le32_to_cpu(ino->data_len)); 469 break; 470 } 471 case UBIFS_DENT_NODE: 472 case UBIFS_XENT_NODE: 473 { 474 const struct ubifs_dent_node *dent = node; 475 int nlen = le16_to_cpu(dent->nlen); 476 477 key_read(c, &dent->key, &key); 478 pr_err("\tkey %s\n", 479 dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN)); 480 pr_err("\tinum %llu\n", 481 (unsigned long long)le64_to_cpu(dent->inum)); 482 pr_err("\ttype %d\n", (int)dent->type); 483 pr_err("\tnlen %d\n", nlen); 484 pr_err("\tname "); 485 486 if (nlen > UBIFS_MAX_NLEN || 487 nlen > safe_len - UBIFS_DENT_NODE_SZ) 488 pr_err("(bad name length, not printing, bad or corrupted node)"); 489 else { 490 for (i = 0; i < nlen && dent->name[i]; i++) 491 pr_cont("%c", isprint(dent->name[i]) ? 492 dent->name[i] : '?'); 493 } 494 pr_cont("\n"); 495 496 break; 497 } 498 case UBIFS_DATA_NODE: 499 { 500 const struct ubifs_data_node *dn = node; 501 502 key_read(c, &dn->key, &key); 503 pr_err("\tkey %s\n", 504 dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN)); 505 pr_err("\tsize %u\n", le32_to_cpu(dn->size)); 506 pr_err("\tcompr_typ %d\n", 507 (int)le16_to_cpu(dn->compr_type)); 508 pr_err("\tdata size %u\n", 509 le32_to_cpu(ch->len) - (unsigned int)UBIFS_DATA_NODE_SZ); 510 pr_err("\tdata (length = %d):\n", 511 safe_len - (int)UBIFS_DATA_NODE_SZ); 512 print_hex_dump(KERN_ERR, "\t", DUMP_PREFIX_OFFSET, 32, 1, 513 (void *)&dn->data, 514 safe_len - (int)UBIFS_DATA_NODE_SZ, 0); 515 break; 516 } 517 case UBIFS_TRUN_NODE: 518 { 519 const struct ubifs_trun_node *trun = node; 520 521 pr_err("\tinum %u\n", le32_to_cpu(trun->inum)); 522 pr_err("\told_size %llu\n", 523 (unsigned long long)le64_to_cpu(trun->old_size)); 524 pr_err("\tnew_size %llu\n", 525 (unsigned long long)le64_to_cpu(trun->new_size)); 526 break; 527 } 528 case UBIFS_IDX_NODE: 529 { 530 const struct ubifs_idx_node *idx = node; 531 int max_child_cnt = (safe_len - UBIFS_IDX_NODE_SZ) / 532 (ubifs_idx_node_sz(c, 1) - 533 UBIFS_IDX_NODE_SZ); 534 535 n = min_t(int, le16_to_cpu(idx->child_cnt), max_child_cnt); 536 pr_err("\tchild_cnt %d\n", (int)le16_to_cpu(idx->child_cnt)); 537 pr_err("\tlevel %d\n", (int)le16_to_cpu(idx->level)); 538 pr_err("\tBranches:\n"); 539 540 for (i = 0; i < n && i < c->fanout - 1; i++) { 541 const struct ubifs_branch *br; 542 543 br = ubifs_idx_branch(c, idx, i); 544 key_read(c, &br->key, &key); 545 pr_err("\t%d: LEB %d:%d len %d key %s\n", 546 i, le32_to_cpu(br->lnum), le32_to_cpu(br->offs), 547 le32_to_cpu(br->len), 548 dbg_snprintf_key(c, &key, key_buf, 549 DBG_KEY_BUF_LEN)); 550 } 551 break; 552 } 553 case UBIFS_CS_NODE: 554 break; 555 case UBIFS_ORPH_NODE: 556 { 557 const struct ubifs_orph_node *orph = node; 558 559 pr_err("\tcommit number %llu\n", 560 (unsigned long long) 561 le64_to_cpu(orph->cmt_no) & LLONG_MAX); 562 pr_err("\tlast node flag %llu\n", 563 (unsigned long long)(le64_to_cpu(orph->cmt_no)) >> 63); 564 n = (safe_len - UBIFS_ORPH_NODE_SZ) >> 3; 565 pr_err("\t%d orphan inode numbers:\n", n); 566 for (i = 0; i < n; i++) 567 pr_err("\t ino %llu\n", 568 (unsigned long long)le64_to_cpu(orph->inos[i])); 569 break; 570 } 571 case UBIFS_AUTH_NODE: 572 { 573 break; 574 } 575 default: 576 pr_err("node type %d was not recognized\n", type); 577 } 578 579 out_unlock: 580 spin_unlock(&dbg_lock); 581 } 582 583 void ubifs_dump_budget_req(const struct ubifs_budget_req *req) 584 { 585 spin_lock(&dbg_lock); 586 pr_err("Budgeting request: new_ino %d, dirtied_ino %d\n", 587 req->new_ino, req->dirtied_ino); 588 pr_err("\tnew_ino_d %d, dirtied_ino_d %d\n", 589 req->new_ino_d, req->dirtied_ino_d); 590 pr_err("\tnew_page %d, dirtied_page %d\n", 591 req->new_page, req->dirtied_page); 592 pr_err("\tnew_dent %d, mod_dent %d\n", 593 req->new_dent, req->mod_dent); 594 pr_err("\tidx_growth %d\n", req->idx_growth); 595 pr_err("\tdata_growth %d dd_growth %d\n", 596 req->data_growth, req->dd_growth); 597 spin_unlock(&dbg_lock); 598 } 599 600 void ubifs_dump_lstats(const struct ubifs_lp_stats *lst) 601 { 602 spin_lock(&dbg_lock); 603 pr_err("(pid %d) Lprops statistics: empty_lebs %d, idx_lebs %d\n", 604 current->pid, lst->empty_lebs, lst->idx_lebs); 605 pr_err("\ttaken_empty_lebs %d, total_free %lld, total_dirty %lld\n", 606 lst->taken_empty_lebs, lst->total_free, lst->total_dirty); 607 pr_err("\ttotal_used %lld, total_dark %lld, total_dead %lld\n", 608 lst->total_used, lst->total_dark, lst->total_dead); 609 spin_unlock(&dbg_lock); 610 } 611 612 void ubifs_dump_budg(struct ubifs_info *c, const struct ubifs_budg_info *bi) 613 { 614 int i; 615 struct rb_node *rb; 616 struct ubifs_bud *bud; 617 struct ubifs_gced_idx_leb *idx_gc; 618 long long available, outstanding, free; 619 620 spin_lock(&c->space_lock); 621 spin_lock(&dbg_lock); 622 pr_err("(pid %d) Budgeting info: data budget sum %lld, total budget sum %lld\n", 623 current->pid, bi->data_growth + bi->dd_growth, 624 bi->data_growth + bi->dd_growth + bi->idx_growth); 625 pr_err("\tbudg_data_growth %lld, budg_dd_growth %lld, budg_idx_growth %lld\n", 626 bi->data_growth, bi->dd_growth, bi->idx_growth); 627 pr_err("\tmin_idx_lebs %d, old_idx_sz %llu, uncommitted_idx %lld\n", 628 bi->min_idx_lebs, bi->old_idx_sz, bi->uncommitted_idx); 629 pr_err("\tpage_budget %d, inode_budget %d, dent_budget %d\n", 630 bi->page_budget, bi->inode_budget, bi->dent_budget); 631 pr_err("\tnospace %u, nospace_rp %u\n", bi->nospace, bi->nospace_rp); 632 pr_err("\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n", 633 c->dark_wm, c->dead_wm, c->max_idx_node_sz); 634 635 if (bi != &c->bi) 636 /* 637 * If we are dumping saved budgeting data, do not print 638 * additional information which is about the current state, not 639 * the old one which corresponded to the saved budgeting data. 640 */ 641 goto out_unlock; 642 643 pr_err("\tfreeable_cnt %d, calc_idx_sz %lld, idx_gc_cnt %d\n", 644 c->freeable_cnt, c->calc_idx_sz, c->idx_gc_cnt); 645 pr_err("\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, clean_zn_cnt %ld\n", 646 atomic_long_read(&c->dirty_pg_cnt), 647 atomic_long_read(&c->dirty_zn_cnt), 648 atomic_long_read(&c->clean_zn_cnt)); 649 pr_err("\tgc_lnum %d, ihead_lnum %d\n", c->gc_lnum, c->ihead_lnum); 650 651 /* If we are in R/O mode, journal heads do not exist */ 652 if (c->jheads) 653 for (i = 0; i < c->jhead_cnt; i++) 654 pr_err("\tjhead %s\t LEB %d\n", 655 dbg_jhead(c->jheads[i].wbuf.jhead), 656 c->jheads[i].wbuf.lnum); 657 for (rb = rb_first(&c->buds); rb; rb = rb_next(rb)) { 658 bud = rb_entry(rb, struct ubifs_bud, rb); 659 pr_err("\tbud LEB %d\n", bud->lnum); 660 } 661 list_for_each_entry(bud, &c->old_buds, list) 662 pr_err("\told bud LEB %d\n", bud->lnum); 663 list_for_each_entry(idx_gc, &c->idx_gc, list) 664 pr_err("\tGC'ed idx LEB %d unmap %d\n", 665 idx_gc->lnum, idx_gc->unmap); 666 pr_err("\tcommit state %d\n", c->cmt_state); 667 668 /* Print budgeting predictions */ 669 available = ubifs_calc_available(c, c->bi.min_idx_lebs); 670 outstanding = c->bi.data_growth + c->bi.dd_growth; 671 free = ubifs_get_free_space_nolock(c); 672 pr_err("Budgeting predictions:\n"); 673 pr_err("\tavailable: %lld, outstanding %lld, free %lld\n", 674 available, outstanding, free); 675 out_unlock: 676 spin_unlock(&dbg_lock); 677 spin_unlock(&c->space_lock); 678 } 679 680 void ubifs_dump_lprop(const struct ubifs_info *c, const struct ubifs_lprops *lp) 681 { 682 int i, spc, dark = 0, dead = 0; 683 struct rb_node *rb; 684 struct ubifs_bud *bud; 685 686 spc = lp->free + lp->dirty; 687 if (spc < c->dead_wm) 688 dead = spc; 689 else 690 dark = ubifs_calc_dark(c, spc); 691 692 if (lp->flags & LPROPS_INDEX) 693 pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d flags %#x (", 694 lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc, 695 lp->flags); 696 else 697 pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d dark %-4d dead %-4d nodes fit %-3d flags %#-4x (", 698 lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc, 699 dark, dead, (int)(spc / UBIFS_MAX_NODE_SZ), lp->flags); 700 701 if (lp->flags & LPROPS_TAKEN) { 702 if (lp->flags & LPROPS_INDEX) 703 pr_cont("index, taken"); 704 else 705 pr_cont("taken"); 706 } else { 707 const char *s; 708 709 if (lp->flags & LPROPS_INDEX) { 710 switch (lp->flags & LPROPS_CAT_MASK) { 711 case LPROPS_DIRTY_IDX: 712 s = "dirty index"; 713 break; 714 case LPROPS_FRDI_IDX: 715 s = "freeable index"; 716 break; 717 default: 718 s = "index"; 719 } 720 } else { 721 switch (lp->flags & LPROPS_CAT_MASK) { 722 case LPROPS_UNCAT: 723 s = "not categorized"; 724 break; 725 case LPROPS_DIRTY: 726 s = "dirty"; 727 break; 728 case LPROPS_FREE: 729 s = "free"; 730 break; 731 case LPROPS_EMPTY: 732 s = "empty"; 733 break; 734 case LPROPS_FREEABLE: 735 s = "freeable"; 736 break; 737 default: 738 s = NULL; 739 break; 740 } 741 } 742 pr_cont("%s", s); 743 } 744 745 for (rb = rb_first((struct rb_root *)&c->buds); rb; rb = rb_next(rb)) { 746 bud = rb_entry(rb, struct ubifs_bud, rb); 747 if (bud->lnum == lp->lnum) { 748 int head = 0; 749 for (i = 0; i < c->jhead_cnt; i++) { 750 /* 751 * Note, if we are in R/O mode or in the middle 752 * of mounting/re-mounting, the write-buffers do 753 * not exist. 754 */ 755 if (c->jheads && 756 lp->lnum == c->jheads[i].wbuf.lnum) { 757 pr_cont(", jhead %s", dbg_jhead(i)); 758 head = 1; 759 } 760 } 761 if (!head) 762 pr_cont(", bud of jhead %s", 763 dbg_jhead(bud->jhead)); 764 } 765 } 766 if (lp->lnum == c->gc_lnum) 767 pr_cont(", GC LEB"); 768 pr_cont(")\n"); 769 } 770 771 void ubifs_dump_lprops(struct ubifs_info *c) 772 { 773 int lnum, err; 774 struct ubifs_lprops lp; 775 struct ubifs_lp_stats lst; 776 777 pr_err("(pid %d) start dumping LEB properties\n", current->pid); 778 ubifs_get_lp_stats(c, &lst); 779 ubifs_dump_lstats(&lst); 780 781 for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) { 782 err = ubifs_read_one_lp(c, lnum, &lp); 783 if (err) { 784 ubifs_err(c, "cannot read lprops for LEB %d", lnum); 785 continue; 786 } 787 788 ubifs_dump_lprop(c, &lp); 789 } 790 pr_err("(pid %d) finish dumping LEB properties\n", current->pid); 791 } 792 793 void ubifs_dump_lpt_info(struct ubifs_info *c) 794 { 795 int i; 796 797 spin_lock(&dbg_lock); 798 pr_err("(pid %d) dumping LPT information\n", current->pid); 799 pr_err("\tlpt_sz: %lld\n", c->lpt_sz); 800 pr_err("\tpnode_sz: %d\n", c->pnode_sz); 801 pr_err("\tnnode_sz: %d\n", c->nnode_sz); 802 pr_err("\tltab_sz: %d\n", c->ltab_sz); 803 pr_err("\tlsave_sz: %d\n", c->lsave_sz); 804 pr_err("\tbig_lpt: %u\n", c->big_lpt); 805 pr_err("\tlpt_hght: %d\n", c->lpt_hght); 806 pr_err("\tpnode_cnt: %d\n", c->pnode_cnt); 807 pr_err("\tnnode_cnt: %d\n", c->nnode_cnt); 808 pr_err("\tdirty_pn_cnt: %d\n", c->dirty_pn_cnt); 809 pr_err("\tdirty_nn_cnt: %d\n", c->dirty_nn_cnt); 810 pr_err("\tlsave_cnt: %d\n", c->lsave_cnt); 811 pr_err("\tspace_bits: %d\n", c->space_bits); 812 pr_err("\tlpt_lnum_bits: %d\n", c->lpt_lnum_bits); 813 pr_err("\tlpt_offs_bits: %d\n", c->lpt_offs_bits); 814 pr_err("\tlpt_spc_bits: %d\n", c->lpt_spc_bits); 815 pr_err("\tpcnt_bits: %d\n", c->pcnt_bits); 816 pr_err("\tlnum_bits: %d\n", c->lnum_bits); 817 pr_err("\tLPT root is at %d:%d\n", c->lpt_lnum, c->lpt_offs); 818 pr_err("\tLPT head is at %d:%d\n", 819 c->nhead_lnum, c->nhead_offs); 820 pr_err("\tLPT ltab is at %d:%d\n", c->ltab_lnum, c->ltab_offs); 821 if (c->big_lpt) 822 pr_err("\tLPT lsave is at %d:%d\n", 823 c->lsave_lnum, c->lsave_offs); 824 for (i = 0; i < c->lpt_lebs; i++) 825 pr_err("\tLPT LEB %d free %d dirty %d tgc %d cmt %d\n", 826 i + c->lpt_first, c->ltab[i].free, c->ltab[i].dirty, 827 c->ltab[i].tgc, c->ltab[i].cmt); 828 spin_unlock(&dbg_lock); 829 } 830 831 void ubifs_dump_sleb(const struct ubifs_info *c, 832 const struct ubifs_scan_leb *sleb, int offs) 833 { 834 struct ubifs_scan_node *snod; 835 836 pr_err("(pid %d) start dumping scanned data from LEB %d:%d\n", 837 current->pid, sleb->lnum, offs); 838 839 list_for_each_entry(snod, &sleb->nodes, list) { 840 cond_resched(); 841 pr_err("Dumping node at LEB %d:%d len %d\n", 842 sleb->lnum, snod->offs, snod->len); 843 ubifs_dump_node(c, snod->node); 844 } 845 } 846 847 void ubifs_dump_leb(const struct ubifs_info *c, int lnum) 848 { 849 struct ubifs_scan_leb *sleb; 850 struct ubifs_scan_node *snod; 851 void *buf; 852 853 pr_err("(pid %d) start dumping LEB %d\n", current->pid, lnum); 854 855 buf = __vmalloc(c->leb_size, GFP_NOFS); 856 if (!buf) { 857 ubifs_err(c, "cannot allocate memory for dumping LEB %d", lnum); 858 return; 859 } 860 861 sleb = ubifs_scan(c, lnum, 0, buf, 0); 862 if (IS_ERR(sleb)) { 863 ubifs_err(c, "scan error %d", (int)PTR_ERR(sleb)); 864 goto out; 865 } 866 867 pr_err("LEB %d has %d nodes ending at %d\n", lnum, 868 sleb->nodes_cnt, sleb->endpt); 869 870 list_for_each_entry(snod, &sleb->nodes, list) { 871 cond_resched(); 872 pr_err("Dumping node at LEB %d:%d len %d\n", lnum, 873 snod->offs, snod->len); 874 ubifs_dump_node(c, snod->node); 875 } 876 877 pr_err("(pid %d) finish dumping LEB %d\n", current->pid, lnum); 878 ubifs_scan_destroy(sleb); 879 880 out: 881 vfree(buf); 882 return; 883 } 884 885 void ubifs_dump_znode(const struct ubifs_info *c, 886 const struct ubifs_znode *znode) 887 { 888 int n; 889 const struct ubifs_zbranch *zbr; 890 char key_buf[DBG_KEY_BUF_LEN]; 891 892 spin_lock(&dbg_lock); 893 if (znode->parent) 894 zbr = &znode->parent->zbranch[znode->iip]; 895 else 896 zbr = &c->zroot; 897 898 pr_err("znode %p, LEB %d:%d len %d parent %p iip %d level %d child_cnt %d flags %lx\n", 899 znode, zbr->lnum, zbr->offs, zbr->len, znode->parent, znode->iip, 900 znode->level, znode->child_cnt, znode->flags); 901 902 if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) { 903 spin_unlock(&dbg_lock); 904 return; 905 } 906 907 pr_err("zbranches:\n"); 908 for (n = 0; n < znode->child_cnt; n++) { 909 zbr = &znode->zbranch[n]; 910 if (znode->level > 0) 911 pr_err("\t%d: znode %p LEB %d:%d len %d key %s\n", 912 n, zbr->znode, zbr->lnum, zbr->offs, zbr->len, 913 dbg_snprintf_key(c, &zbr->key, key_buf, 914 DBG_KEY_BUF_LEN)); 915 else 916 pr_err("\t%d: LNC %p LEB %d:%d len %d key %s\n", 917 n, zbr->znode, zbr->lnum, zbr->offs, zbr->len, 918 dbg_snprintf_key(c, &zbr->key, key_buf, 919 DBG_KEY_BUF_LEN)); 920 } 921 spin_unlock(&dbg_lock); 922 } 923 924 void ubifs_dump_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat) 925 { 926 int i; 927 928 pr_err("(pid %d) start dumping heap cat %d (%d elements)\n", 929 current->pid, cat, heap->cnt); 930 for (i = 0; i < heap->cnt; i++) { 931 struct ubifs_lprops *lprops = heap->arr[i]; 932 933 pr_err("\t%d. LEB %d hpos %d free %d dirty %d flags %d\n", 934 i, lprops->lnum, lprops->hpos, lprops->free, 935 lprops->dirty, lprops->flags); 936 } 937 pr_err("(pid %d) finish dumping heap\n", current->pid); 938 } 939 940 void ubifs_dump_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode, 941 struct ubifs_nnode *parent, int iip) 942 { 943 int i; 944 945 pr_err("(pid %d) dumping pnode:\n", current->pid); 946 pr_err("\taddress %zx parent %zx cnext %zx\n", 947 (size_t)pnode, (size_t)parent, (size_t)pnode->cnext); 948 pr_err("\tflags %lu iip %d level %d num %d\n", 949 pnode->flags, iip, pnode->level, pnode->num); 950 for (i = 0; i < UBIFS_LPT_FANOUT; i++) { 951 struct ubifs_lprops *lp = &pnode->lprops[i]; 952 953 pr_err("\t%d: free %d dirty %d flags %d lnum %d\n", 954 i, lp->free, lp->dirty, lp->flags, lp->lnum); 955 } 956 } 957 958 void ubifs_dump_tnc(struct ubifs_info *c) 959 { 960 struct ubifs_znode *znode; 961 int level; 962 963 pr_err("\n"); 964 pr_err("(pid %d) start dumping TNC tree\n", current->pid); 965 znode = ubifs_tnc_levelorder_next(c, c->zroot.znode, NULL); 966 level = znode->level; 967 pr_err("== Level %d ==\n", level); 968 while (znode) { 969 if (level != znode->level) { 970 level = znode->level; 971 pr_err("== Level %d ==\n", level); 972 } 973 ubifs_dump_znode(c, znode); 974 znode = ubifs_tnc_levelorder_next(c, c->zroot.znode, znode); 975 } 976 pr_err("(pid %d) finish dumping TNC tree\n", current->pid); 977 } 978 979 static int dump_znode(struct ubifs_info *c, struct ubifs_znode *znode, 980 void *priv) 981 { 982 ubifs_dump_znode(c, znode); 983 return 0; 984 } 985 986 /** 987 * ubifs_dump_index - dump the on-flash index. 988 * @c: UBIFS file-system description object 989 * 990 * This function dumps whole UBIFS indexing B-tree, unlike 'ubifs_dump_tnc()' 991 * which dumps only in-memory znodes and does not read znodes which from flash. 992 */ 993 void ubifs_dump_index(struct ubifs_info *c) 994 { 995 dbg_walk_index(c, NULL, dump_znode, NULL); 996 } 997 998 /** 999 * dbg_save_space_info - save information about flash space. 1000 * @c: UBIFS file-system description object 1001 * 1002 * This function saves information about UBIFS free space, dirty space, etc, in 1003 * order to check it later. 1004 */ 1005 void dbg_save_space_info(struct ubifs_info *c) 1006 { 1007 struct ubifs_debug_info *d = c->dbg; 1008 int freeable_cnt; 1009 1010 spin_lock(&c->space_lock); 1011 memcpy(&d->saved_lst, &c->lst, sizeof(struct ubifs_lp_stats)); 1012 memcpy(&d->saved_bi, &c->bi, sizeof(struct ubifs_budg_info)); 1013 d->saved_idx_gc_cnt = c->idx_gc_cnt; 1014 1015 /* 1016 * We use a dirty hack here and zero out @c->freeable_cnt, because it 1017 * affects the free space calculations, and UBIFS might not know about 1018 * all freeable eraseblocks. Indeed, we know about freeable eraseblocks 1019 * only when we read their lprops, and we do this only lazily, upon the 1020 * need. So at any given point of time @c->freeable_cnt might be not 1021 * exactly accurate. 1022 * 1023 * Just one example about the issue we hit when we did not zero 1024 * @c->freeable_cnt. 1025 * 1. The file-system is mounted R/O, c->freeable_cnt is %0. We save the 1026 * amount of free space in @d->saved_free 1027 * 2. We re-mount R/W, which makes UBIFS to read the "lsave" 1028 * information from flash, where we cache LEBs from various 1029 * categories ('ubifs_remount_fs()' -> 'ubifs_lpt_init()' 1030 * -> 'lpt_init_wr()' -> 'read_lsave()' -> 'ubifs_lpt_lookup()' 1031 * -> 'ubifs_get_pnode()' -> 'update_cats()' 1032 * -> 'ubifs_add_to_cat()'). 1033 * 3. Lsave contains a freeable eraseblock, and @c->freeable_cnt 1034 * becomes %1. 1035 * 4. We calculate the amount of free space when the re-mount is 1036 * finished in 'dbg_check_space_info()' and it does not match 1037 * @d->saved_free. 1038 */ 1039 freeable_cnt = c->freeable_cnt; 1040 c->freeable_cnt = 0; 1041 d->saved_free = ubifs_get_free_space_nolock(c); 1042 c->freeable_cnt = freeable_cnt; 1043 spin_unlock(&c->space_lock); 1044 } 1045 1046 /** 1047 * dbg_check_space_info - check flash space information. 1048 * @c: UBIFS file-system description object 1049 * 1050 * This function compares current flash space information with the information 1051 * which was saved when the 'dbg_save_space_info()' function was called. 1052 * Returns zero if the information has not changed, and %-EINVAL if it has 1053 * changed. 1054 */ 1055 int dbg_check_space_info(struct ubifs_info *c) 1056 { 1057 struct ubifs_debug_info *d = c->dbg; 1058 struct ubifs_lp_stats lst; 1059 long long free; 1060 int freeable_cnt; 1061 1062 spin_lock(&c->space_lock); 1063 freeable_cnt = c->freeable_cnt; 1064 c->freeable_cnt = 0; 1065 free = ubifs_get_free_space_nolock(c); 1066 c->freeable_cnt = freeable_cnt; 1067 spin_unlock(&c->space_lock); 1068 1069 if (free != d->saved_free) { 1070 ubifs_err(c, "free space changed from %lld to %lld", 1071 d->saved_free, free); 1072 goto out; 1073 } 1074 1075 return 0; 1076 1077 out: 1078 ubifs_msg(c, "saved lprops statistics dump"); 1079 ubifs_dump_lstats(&d->saved_lst); 1080 ubifs_msg(c, "saved budgeting info dump"); 1081 ubifs_dump_budg(c, &d->saved_bi); 1082 ubifs_msg(c, "saved idx_gc_cnt %d", d->saved_idx_gc_cnt); 1083 ubifs_msg(c, "current lprops statistics dump"); 1084 ubifs_get_lp_stats(c, &lst); 1085 ubifs_dump_lstats(&lst); 1086 ubifs_msg(c, "current budgeting info dump"); 1087 ubifs_dump_budg(c, &c->bi); 1088 dump_stack(); 1089 return -EINVAL; 1090 } 1091 1092 /** 1093 * dbg_check_synced_i_size - check synchronized inode size. 1094 * @c: UBIFS file-system description object 1095 * @inode: inode to check 1096 * 1097 * If inode is clean, synchronized inode size has to be equivalent to current 1098 * inode size. This function has to be called only for locked inodes (@i_mutex 1099 * has to be locked). Returns %0 if synchronized inode size if correct, and 1100 * %-EINVAL if not. 1101 */ 1102 int dbg_check_synced_i_size(const struct ubifs_info *c, struct inode *inode) 1103 { 1104 int err = 0; 1105 struct ubifs_inode *ui = ubifs_inode(inode); 1106 1107 if (!dbg_is_chk_gen(c)) 1108 return 0; 1109 if (!S_ISREG(inode->i_mode)) 1110 return 0; 1111 1112 mutex_lock(&ui->ui_mutex); 1113 spin_lock(&ui->ui_lock); 1114 if (ui->ui_size != ui->synced_i_size && !ui->dirty) { 1115 ubifs_err(c, "ui_size is %lld, synced_i_size is %lld, but inode is clean", 1116 ui->ui_size, ui->synced_i_size); 1117 ubifs_err(c, "i_ino %lu, i_mode %#x, i_size %lld", inode->i_ino, 1118 inode->i_mode, i_size_read(inode)); 1119 dump_stack(); 1120 err = -EINVAL; 1121 } 1122 spin_unlock(&ui->ui_lock); 1123 mutex_unlock(&ui->ui_mutex); 1124 return err; 1125 } 1126 1127 /* 1128 * dbg_check_dir - check directory inode size and link count. 1129 * @c: UBIFS file-system description object 1130 * @dir: the directory to calculate size for 1131 * @size: the result is returned here 1132 * 1133 * This function makes sure that directory size and link count are correct. 1134 * Returns zero in case of success and a negative error code in case of 1135 * failure. 1136 * 1137 * Note, it is good idea to make sure the @dir->i_mutex is locked before 1138 * calling this function. 1139 */ 1140 int dbg_check_dir(struct ubifs_info *c, const struct inode *dir) 1141 { 1142 unsigned int nlink = 2; 1143 union ubifs_key key; 1144 struct ubifs_dent_node *dent, *pdent = NULL; 1145 struct fscrypt_name nm = {0}; 1146 loff_t size = UBIFS_INO_NODE_SZ; 1147 1148 if (!dbg_is_chk_gen(c)) 1149 return 0; 1150 1151 if (!S_ISDIR(dir->i_mode)) 1152 return 0; 1153 1154 lowest_dent_key(c, &key, dir->i_ino); 1155 while (1) { 1156 int err; 1157 1158 dent = ubifs_tnc_next_ent(c, &key, &nm); 1159 if (IS_ERR(dent)) { 1160 err = PTR_ERR(dent); 1161 if (err == -ENOENT) 1162 break; 1163 kfree(pdent); 1164 return err; 1165 } 1166 1167 fname_name(&nm) = dent->name; 1168 fname_len(&nm) = le16_to_cpu(dent->nlen); 1169 size += CALC_DENT_SIZE(fname_len(&nm)); 1170 if (dent->type == UBIFS_ITYPE_DIR) 1171 nlink += 1; 1172 kfree(pdent); 1173 pdent = dent; 1174 key_read(c, &dent->key, &key); 1175 } 1176 kfree(pdent); 1177 1178 if (i_size_read(dir) != size) { 1179 ubifs_err(c, "directory inode %lu has size %llu, but calculated size is %llu", 1180 dir->i_ino, (unsigned long long)i_size_read(dir), 1181 (unsigned long long)size); 1182 ubifs_dump_inode(c, dir); 1183 dump_stack(); 1184 return -EINVAL; 1185 } 1186 if (dir->i_nlink != nlink) { 1187 ubifs_err(c, "directory inode %lu has nlink %u, but calculated nlink is %u", 1188 dir->i_ino, dir->i_nlink, nlink); 1189 ubifs_dump_inode(c, dir); 1190 dump_stack(); 1191 return -EINVAL; 1192 } 1193 1194 return 0; 1195 } 1196 1197 /** 1198 * dbg_check_key_order - make sure that colliding keys are properly ordered. 1199 * @c: UBIFS file-system description object 1200 * @zbr1: first zbranch 1201 * @zbr2: following zbranch 1202 * 1203 * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of 1204 * names of the direntries/xentries which are referred by the keys. This 1205 * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes 1206 * sure the name of direntry/xentry referred by @zbr1 is less than 1207 * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not, 1208 * and a negative error code in case of failure. 1209 */ 1210 static int dbg_check_key_order(struct ubifs_info *c, struct ubifs_zbranch *zbr1, 1211 struct ubifs_zbranch *zbr2) 1212 { 1213 int err, nlen1, nlen2, cmp; 1214 struct ubifs_dent_node *dent1, *dent2; 1215 union ubifs_key key; 1216 char key_buf[DBG_KEY_BUF_LEN]; 1217 1218 ubifs_assert(c, !keys_cmp(c, &zbr1->key, &zbr2->key)); 1219 dent1 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS); 1220 if (!dent1) 1221 return -ENOMEM; 1222 dent2 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS); 1223 if (!dent2) { 1224 err = -ENOMEM; 1225 goto out_free; 1226 } 1227 1228 err = ubifs_tnc_read_node(c, zbr1, dent1); 1229 if (err) 1230 goto out_free; 1231 err = ubifs_validate_entry(c, dent1); 1232 if (err) 1233 goto out_free; 1234 1235 err = ubifs_tnc_read_node(c, zbr2, dent2); 1236 if (err) 1237 goto out_free; 1238 err = ubifs_validate_entry(c, dent2); 1239 if (err) 1240 goto out_free; 1241 1242 /* Make sure node keys are the same as in zbranch */ 1243 err = 1; 1244 key_read(c, &dent1->key, &key); 1245 if (keys_cmp(c, &zbr1->key, &key)) { 1246 ubifs_err(c, "1st entry at %d:%d has key %s", zbr1->lnum, 1247 zbr1->offs, dbg_snprintf_key(c, &key, key_buf, 1248 DBG_KEY_BUF_LEN)); 1249 ubifs_err(c, "but it should have key %s according to tnc", 1250 dbg_snprintf_key(c, &zbr1->key, key_buf, 1251 DBG_KEY_BUF_LEN)); 1252 ubifs_dump_node(c, dent1); 1253 goto out_free; 1254 } 1255 1256 key_read(c, &dent2->key, &key); 1257 if (keys_cmp(c, &zbr2->key, &key)) { 1258 ubifs_err(c, "2nd entry at %d:%d has key %s", zbr1->lnum, 1259 zbr1->offs, dbg_snprintf_key(c, &key, key_buf, 1260 DBG_KEY_BUF_LEN)); 1261 ubifs_err(c, "but it should have key %s according to tnc", 1262 dbg_snprintf_key(c, &zbr2->key, key_buf, 1263 DBG_KEY_BUF_LEN)); 1264 ubifs_dump_node(c, dent2); 1265 goto out_free; 1266 } 1267 1268 nlen1 = le16_to_cpu(dent1->nlen); 1269 nlen2 = le16_to_cpu(dent2->nlen); 1270 1271 cmp = memcmp(dent1->name, dent2->name, min_t(int, nlen1, nlen2)); 1272 if (cmp < 0 || (cmp == 0 && nlen1 < nlen2)) { 1273 err = 0; 1274 goto out_free; 1275 } 1276 if (cmp == 0 && nlen1 == nlen2) 1277 ubifs_err(c, "2 xent/dent nodes with the same name"); 1278 else 1279 ubifs_err(c, "bad order of colliding key %s", 1280 dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN)); 1281 1282 ubifs_msg(c, "first node at %d:%d\n", zbr1->lnum, zbr1->offs); 1283 ubifs_dump_node(c, dent1); 1284 ubifs_msg(c, "second node at %d:%d\n", zbr2->lnum, zbr2->offs); 1285 ubifs_dump_node(c, dent2); 1286 1287 out_free: 1288 kfree(dent2); 1289 kfree(dent1); 1290 return err; 1291 } 1292 1293 /** 1294 * dbg_check_znode - check if znode is all right. 1295 * @c: UBIFS file-system description object 1296 * @zbr: zbranch which points to this znode 1297 * 1298 * This function makes sure that znode referred to by @zbr is all right. 1299 * Returns zero if it is, and %-EINVAL if it is not. 1300 */ 1301 static int dbg_check_znode(struct ubifs_info *c, struct ubifs_zbranch *zbr) 1302 { 1303 struct ubifs_znode *znode = zbr->znode; 1304 struct ubifs_znode *zp = znode->parent; 1305 int n, err, cmp; 1306 1307 if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) { 1308 err = 1; 1309 goto out; 1310 } 1311 if (znode->level < 0) { 1312 err = 2; 1313 goto out; 1314 } 1315 if (znode->iip < 0 || znode->iip >= c->fanout) { 1316 err = 3; 1317 goto out; 1318 } 1319 1320 if (zbr->len == 0) 1321 /* Only dirty zbranch may have no on-flash nodes */ 1322 if (!ubifs_zn_dirty(znode)) { 1323 err = 4; 1324 goto out; 1325 } 1326 1327 if (ubifs_zn_dirty(znode)) { 1328 /* 1329 * If znode is dirty, its parent has to be dirty as well. The 1330 * order of the operation is important, so we have to have 1331 * memory barriers. 1332 */ 1333 smp_mb(); 1334 if (zp && !ubifs_zn_dirty(zp)) { 1335 /* 1336 * The dirty flag is atomic and is cleared outside the 1337 * TNC mutex, so znode's dirty flag may now have 1338 * been cleared. The child is always cleared before the 1339 * parent, so we just need to check again. 1340 */ 1341 smp_mb(); 1342 if (ubifs_zn_dirty(znode)) { 1343 err = 5; 1344 goto out; 1345 } 1346 } 1347 } 1348 1349 if (zp) { 1350 const union ubifs_key *min, *max; 1351 1352 if (znode->level != zp->level - 1) { 1353 err = 6; 1354 goto out; 1355 } 1356 1357 /* Make sure the 'parent' pointer in our znode is correct */ 1358 err = ubifs_search_zbranch(c, zp, &zbr->key, &n); 1359 if (!err) { 1360 /* This zbranch does not exist in the parent */ 1361 err = 7; 1362 goto out; 1363 } 1364 1365 if (znode->iip >= zp->child_cnt) { 1366 err = 8; 1367 goto out; 1368 } 1369 1370 if (znode->iip != n) { 1371 /* This may happen only in case of collisions */ 1372 if (keys_cmp(c, &zp->zbranch[n].key, 1373 &zp->zbranch[znode->iip].key)) { 1374 err = 9; 1375 goto out; 1376 } 1377 n = znode->iip; 1378 } 1379 1380 /* 1381 * Make sure that the first key in our znode is greater than or 1382 * equal to the key in the pointing zbranch. 1383 */ 1384 min = &zbr->key; 1385 cmp = keys_cmp(c, min, &znode->zbranch[0].key); 1386 if (cmp == 1) { 1387 err = 10; 1388 goto out; 1389 } 1390 1391 if (n + 1 < zp->child_cnt) { 1392 max = &zp->zbranch[n + 1].key; 1393 1394 /* 1395 * Make sure the last key in our znode is less or 1396 * equivalent than the key in the zbranch which goes 1397 * after our pointing zbranch. 1398 */ 1399 cmp = keys_cmp(c, max, 1400 &znode->zbranch[znode->child_cnt - 1].key); 1401 if (cmp == -1) { 1402 err = 11; 1403 goto out; 1404 } 1405 } 1406 } else { 1407 /* This may only be root znode */ 1408 if (zbr != &c->zroot) { 1409 err = 12; 1410 goto out; 1411 } 1412 } 1413 1414 /* 1415 * Make sure that next key is greater or equivalent then the previous 1416 * one. 1417 */ 1418 for (n = 1; n < znode->child_cnt; n++) { 1419 cmp = keys_cmp(c, &znode->zbranch[n - 1].key, 1420 &znode->zbranch[n].key); 1421 if (cmp > 0) { 1422 err = 13; 1423 goto out; 1424 } 1425 if (cmp == 0) { 1426 /* This can only be keys with colliding hash */ 1427 if (!is_hash_key(c, &znode->zbranch[n].key)) { 1428 err = 14; 1429 goto out; 1430 } 1431 1432 if (znode->level != 0 || c->replaying) 1433 continue; 1434 1435 /* 1436 * Colliding keys should follow binary order of 1437 * corresponding xentry/dentry names. 1438 */ 1439 err = dbg_check_key_order(c, &znode->zbranch[n - 1], 1440 &znode->zbranch[n]); 1441 if (err < 0) 1442 return err; 1443 if (err) { 1444 err = 15; 1445 goto out; 1446 } 1447 } 1448 } 1449 1450 for (n = 0; n < znode->child_cnt; n++) { 1451 if (!znode->zbranch[n].znode && 1452 (znode->zbranch[n].lnum == 0 || 1453 znode->zbranch[n].len == 0)) { 1454 err = 16; 1455 goto out; 1456 } 1457 1458 if (znode->zbranch[n].lnum != 0 && 1459 znode->zbranch[n].len == 0) { 1460 err = 17; 1461 goto out; 1462 } 1463 1464 if (znode->zbranch[n].lnum == 0 && 1465 znode->zbranch[n].len != 0) { 1466 err = 18; 1467 goto out; 1468 } 1469 1470 if (znode->zbranch[n].lnum == 0 && 1471 znode->zbranch[n].offs != 0) { 1472 err = 19; 1473 goto out; 1474 } 1475 1476 if (znode->level != 0 && znode->zbranch[n].znode) 1477 if (znode->zbranch[n].znode->parent != znode) { 1478 err = 20; 1479 goto out; 1480 } 1481 } 1482 1483 return 0; 1484 1485 out: 1486 ubifs_err(c, "failed, error %d", err); 1487 ubifs_msg(c, "dump of the znode"); 1488 ubifs_dump_znode(c, znode); 1489 if (zp) { 1490 ubifs_msg(c, "dump of the parent znode"); 1491 ubifs_dump_znode(c, zp); 1492 } 1493 dump_stack(); 1494 return -EINVAL; 1495 } 1496 1497 /** 1498 * dbg_check_tnc - check TNC tree. 1499 * @c: UBIFS file-system description object 1500 * @extra: do extra checks that are possible at start commit 1501 * 1502 * This function traverses whole TNC tree and checks every znode. Returns zero 1503 * if everything is all right and %-EINVAL if something is wrong with TNC. 1504 */ 1505 int dbg_check_tnc(struct ubifs_info *c, int extra) 1506 { 1507 struct ubifs_znode *znode; 1508 long clean_cnt = 0, dirty_cnt = 0; 1509 int err, last; 1510 1511 if (!dbg_is_chk_index(c)) 1512 return 0; 1513 1514 ubifs_assert(c, mutex_is_locked(&c->tnc_mutex)); 1515 if (!c->zroot.znode) 1516 return 0; 1517 1518 znode = ubifs_tnc_postorder_first(c->zroot.znode); 1519 while (1) { 1520 struct ubifs_znode *prev; 1521 struct ubifs_zbranch *zbr; 1522 1523 if (!znode->parent) 1524 zbr = &c->zroot; 1525 else 1526 zbr = &znode->parent->zbranch[znode->iip]; 1527 1528 err = dbg_check_znode(c, zbr); 1529 if (err) 1530 return err; 1531 1532 if (extra) { 1533 if (ubifs_zn_dirty(znode)) 1534 dirty_cnt += 1; 1535 else 1536 clean_cnt += 1; 1537 } 1538 1539 prev = znode; 1540 znode = ubifs_tnc_postorder_next(c, znode); 1541 if (!znode) 1542 break; 1543 1544 /* 1545 * If the last key of this znode is equivalent to the first key 1546 * of the next znode (collision), then check order of the keys. 1547 */ 1548 last = prev->child_cnt - 1; 1549 if (prev->level == 0 && znode->level == 0 && !c->replaying && 1550 !keys_cmp(c, &prev->zbranch[last].key, 1551 &znode->zbranch[0].key)) { 1552 err = dbg_check_key_order(c, &prev->zbranch[last], 1553 &znode->zbranch[0]); 1554 if (err < 0) 1555 return err; 1556 if (err) { 1557 ubifs_msg(c, "first znode"); 1558 ubifs_dump_znode(c, prev); 1559 ubifs_msg(c, "second znode"); 1560 ubifs_dump_znode(c, znode); 1561 return -EINVAL; 1562 } 1563 } 1564 } 1565 1566 if (extra) { 1567 if (clean_cnt != atomic_long_read(&c->clean_zn_cnt)) { 1568 ubifs_err(c, "incorrect clean_zn_cnt %ld, calculated %ld", 1569 atomic_long_read(&c->clean_zn_cnt), 1570 clean_cnt); 1571 return -EINVAL; 1572 } 1573 if (dirty_cnt != atomic_long_read(&c->dirty_zn_cnt)) { 1574 ubifs_err(c, "incorrect dirty_zn_cnt %ld, calculated %ld", 1575 atomic_long_read(&c->dirty_zn_cnt), 1576 dirty_cnt); 1577 return -EINVAL; 1578 } 1579 } 1580 1581 return 0; 1582 } 1583 1584 /** 1585 * dbg_walk_index - walk the on-flash index. 1586 * @c: UBIFS file-system description object 1587 * @leaf_cb: called for each leaf node 1588 * @znode_cb: called for each indexing node 1589 * @priv: private data which is passed to callbacks 1590 * 1591 * This function walks the UBIFS index and calls the @leaf_cb for each leaf 1592 * node and @znode_cb for each indexing node. Returns zero in case of success 1593 * and a negative error code in case of failure. 1594 * 1595 * It would be better if this function removed every znode it pulled to into 1596 * the TNC, so that the behavior more closely matched the non-debugging 1597 * behavior. 1598 */ 1599 int dbg_walk_index(struct ubifs_info *c, dbg_leaf_callback leaf_cb, 1600 dbg_znode_callback znode_cb, void *priv) 1601 { 1602 int err; 1603 struct ubifs_zbranch *zbr; 1604 struct ubifs_znode *znode, *child; 1605 1606 mutex_lock(&c->tnc_mutex); 1607 /* If the root indexing node is not in TNC - pull it */ 1608 if (!c->zroot.znode) { 1609 c->zroot.znode = ubifs_load_znode(c, &c->zroot, NULL, 0); 1610 if (IS_ERR(c->zroot.znode)) { 1611 err = PTR_ERR(c->zroot.znode); 1612 c->zroot.znode = NULL; 1613 goto out_unlock; 1614 } 1615 } 1616 1617 /* 1618 * We are going to traverse the indexing tree in the postorder manner. 1619 * Go down and find the leftmost indexing node where we are going to 1620 * start from. 1621 */ 1622 znode = c->zroot.znode; 1623 while (znode->level > 0) { 1624 zbr = &znode->zbranch[0]; 1625 child = zbr->znode; 1626 if (!child) { 1627 child = ubifs_load_znode(c, zbr, znode, 0); 1628 if (IS_ERR(child)) { 1629 err = PTR_ERR(child); 1630 goto out_unlock; 1631 } 1632 } 1633 1634 znode = child; 1635 } 1636 1637 /* Iterate over all indexing nodes */ 1638 while (1) { 1639 int idx; 1640 1641 cond_resched(); 1642 1643 if (znode_cb) { 1644 err = znode_cb(c, znode, priv); 1645 if (err) { 1646 ubifs_err(c, "znode checking function returned error %d", 1647 err); 1648 ubifs_dump_znode(c, znode); 1649 goto out_dump; 1650 } 1651 } 1652 if (leaf_cb && znode->level == 0) { 1653 for (idx = 0; idx < znode->child_cnt; idx++) { 1654 zbr = &znode->zbranch[idx]; 1655 err = leaf_cb(c, zbr, priv); 1656 if (err) { 1657 ubifs_err(c, "leaf checking function returned error %d, for leaf at LEB %d:%d", 1658 err, zbr->lnum, zbr->offs); 1659 goto out_dump; 1660 } 1661 } 1662 } 1663 1664 if (!znode->parent) 1665 break; 1666 1667 idx = znode->iip + 1; 1668 znode = znode->parent; 1669 if (idx < znode->child_cnt) { 1670 /* Switch to the next index in the parent */ 1671 zbr = &znode->zbranch[idx]; 1672 child = zbr->znode; 1673 if (!child) { 1674 child = ubifs_load_znode(c, zbr, znode, idx); 1675 if (IS_ERR(child)) { 1676 err = PTR_ERR(child); 1677 goto out_unlock; 1678 } 1679 zbr->znode = child; 1680 } 1681 znode = child; 1682 } else 1683 /* 1684 * This is the last child, switch to the parent and 1685 * continue. 1686 */ 1687 continue; 1688 1689 /* Go to the lowest leftmost znode in the new sub-tree */ 1690 while (znode->level > 0) { 1691 zbr = &znode->zbranch[0]; 1692 child = zbr->znode; 1693 if (!child) { 1694 child = ubifs_load_znode(c, zbr, znode, 0); 1695 if (IS_ERR(child)) { 1696 err = PTR_ERR(child); 1697 goto out_unlock; 1698 } 1699 zbr->znode = child; 1700 } 1701 znode = child; 1702 } 1703 } 1704 1705 mutex_unlock(&c->tnc_mutex); 1706 return 0; 1707 1708 out_dump: 1709 if (znode->parent) 1710 zbr = &znode->parent->zbranch[znode->iip]; 1711 else 1712 zbr = &c->zroot; 1713 ubifs_msg(c, "dump of znode at LEB %d:%d", zbr->lnum, zbr->offs); 1714 ubifs_dump_znode(c, znode); 1715 out_unlock: 1716 mutex_unlock(&c->tnc_mutex); 1717 return err; 1718 } 1719 1720 /** 1721 * add_size - add znode size to partially calculated index size. 1722 * @c: UBIFS file-system description object 1723 * @znode: znode to add size for 1724 * @priv: partially calculated index size 1725 * 1726 * This is a helper function for 'dbg_check_idx_size()' which is called for 1727 * every indexing node and adds its size to the 'long long' variable pointed to 1728 * by @priv. 1729 */ 1730 static int add_size(struct ubifs_info *c, struct ubifs_znode *znode, void *priv) 1731 { 1732 long long *idx_size = priv; 1733 int add; 1734 1735 add = ubifs_idx_node_sz(c, znode->child_cnt); 1736 add = ALIGN(add, 8); 1737 *idx_size += add; 1738 return 0; 1739 } 1740 1741 /** 1742 * dbg_check_idx_size - check index size. 1743 * @c: UBIFS file-system description object 1744 * @idx_size: size to check 1745 * 1746 * This function walks the UBIFS index, calculates its size and checks that the 1747 * size is equivalent to @idx_size. Returns zero in case of success and a 1748 * negative error code in case of failure. 1749 */ 1750 int dbg_check_idx_size(struct ubifs_info *c, long long idx_size) 1751 { 1752 int err; 1753 long long calc = 0; 1754 1755 if (!dbg_is_chk_index(c)) 1756 return 0; 1757 1758 err = dbg_walk_index(c, NULL, add_size, &calc); 1759 if (err) { 1760 ubifs_err(c, "error %d while walking the index", err); 1761 return err; 1762 } 1763 1764 if (calc != idx_size) { 1765 ubifs_err(c, "index size check failed: calculated size is %lld, should be %lld", 1766 calc, idx_size); 1767 dump_stack(); 1768 return -EINVAL; 1769 } 1770 1771 return 0; 1772 } 1773 1774 /** 1775 * struct fsck_inode - information about an inode used when checking the file-system. 1776 * @rb: link in the RB-tree of inodes 1777 * @inum: inode number 1778 * @mode: inode type, permissions, etc 1779 * @nlink: inode link count 1780 * @xattr_cnt: count of extended attributes 1781 * @references: how many directory/xattr entries refer this inode (calculated 1782 * while walking the index) 1783 * @calc_cnt: for directory inode count of child directories 1784 * @size: inode size (read from on-flash inode) 1785 * @xattr_sz: summary size of all extended attributes (read from on-flash 1786 * inode) 1787 * @calc_sz: for directories calculated directory size 1788 * @calc_xcnt: count of extended attributes 1789 * @calc_xsz: calculated summary size of all extended attributes 1790 * @xattr_nms: sum of lengths of all extended attribute names belonging to this 1791 * inode (read from on-flash inode) 1792 * @calc_xnms: calculated sum of lengths of all extended attribute names 1793 */ 1794 struct fsck_inode { 1795 struct rb_node rb; 1796 ino_t inum; 1797 umode_t mode; 1798 unsigned int nlink; 1799 unsigned int xattr_cnt; 1800 int references; 1801 int calc_cnt; 1802 long long size; 1803 unsigned int xattr_sz; 1804 long long calc_sz; 1805 long long calc_xcnt; 1806 long long calc_xsz; 1807 unsigned int xattr_nms; 1808 long long calc_xnms; 1809 }; 1810 1811 /** 1812 * struct fsck_data - private FS checking information. 1813 * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects) 1814 */ 1815 struct fsck_data { 1816 struct rb_root inodes; 1817 }; 1818 1819 /** 1820 * add_inode - add inode information to RB-tree of inodes. 1821 * @c: UBIFS file-system description object 1822 * @fsckd: FS checking information 1823 * @ino: raw UBIFS inode to add 1824 * 1825 * This is a helper function for 'check_leaf()' which adds information about 1826 * inode @ino to the RB-tree of inodes. Returns inode information pointer in 1827 * case of success and a negative error code in case of failure. 1828 */ 1829 static struct fsck_inode *add_inode(struct ubifs_info *c, 1830 struct fsck_data *fsckd, 1831 struct ubifs_ino_node *ino) 1832 { 1833 struct rb_node **p, *parent = NULL; 1834 struct fsck_inode *fscki; 1835 ino_t inum = key_inum_flash(c, &ino->key); 1836 struct inode *inode; 1837 struct ubifs_inode *ui; 1838 1839 p = &fsckd->inodes.rb_node; 1840 while (*p) { 1841 parent = *p; 1842 fscki = rb_entry(parent, struct fsck_inode, rb); 1843 if (inum < fscki->inum) 1844 p = &(*p)->rb_left; 1845 else if (inum > fscki->inum) 1846 p = &(*p)->rb_right; 1847 else 1848 return fscki; 1849 } 1850 1851 if (inum > c->highest_inum) { 1852 ubifs_err(c, "too high inode number, max. is %lu", 1853 (unsigned long)c->highest_inum); 1854 return ERR_PTR(-EINVAL); 1855 } 1856 1857 fscki = kzalloc(sizeof(struct fsck_inode), GFP_NOFS); 1858 if (!fscki) 1859 return ERR_PTR(-ENOMEM); 1860 1861 inode = ilookup(c->vfs_sb, inum); 1862 1863 fscki->inum = inum; 1864 /* 1865 * If the inode is present in the VFS inode cache, use it instead of 1866 * the on-flash inode which might be out-of-date. E.g., the size might 1867 * be out-of-date. If we do not do this, the following may happen, for 1868 * example: 1869 * 1. A power cut happens 1870 * 2. We mount the file-system R/O, the replay process fixes up the 1871 * inode size in the VFS cache, but on on-flash. 1872 * 3. 'check_leaf()' fails because it hits a data node beyond inode 1873 * size. 1874 */ 1875 if (!inode) { 1876 fscki->nlink = le32_to_cpu(ino->nlink); 1877 fscki->size = le64_to_cpu(ino->size); 1878 fscki->xattr_cnt = le32_to_cpu(ino->xattr_cnt); 1879 fscki->xattr_sz = le32_to_cpu(ino->xattr_size); 1880 fscki->xattr_nms = le32_to_cpu(ino->xattr_names); 1881 fscki->mode = le32_to_cpu(ino->mode); 1882 } else { 1883 ui = ubifs_inode(inode); 1884 fscki->nlink = inode->i_nlink; 1885 fscki->size = inode->i_size; 1886 fscki->xattr_cnt = ui->xattr_cnt; 1887 fscki->xattr_sz = ui->xattr_size; 1888 fscki->xattr_nms = ui->xattr_names; 1889 fscki->mode = inode->i_mode; 1890 iput(inode); 1891 } 1892 1893 if (S_ISDIR(fscki->mode)) { 1894 fscki->calc_sz = UBIFS_INO_NODE_SZ; 1895 fscki->calc_cnt = 2; 1896 } 1897 1898 rb_link_node(&fscki->rb, parent, p); 1899 rb_insert_color(&fscki->rb, &fsckd->inodes); 1900 1901 return fscki; 1902 } 1903 1904 /** 1905 * search_inode - search inode in the RB-tree of inodes. 1906 * @fsckd: FS checking information 1907 * @inum: inode number to search 1908 * 1909 * This is a helper function for 'check_leaf()' which searches inode @inum in 1910 * the RB-tree of inodes and returns an inode information pointer or %NULL if 1911 * the inode was not found. 1912 */ 1913 static struct fsck_inode *search_inode(struct fsck_data *fsckd, ino_t inum) 1914 { 1915 struct rb_node *p; 1916 struct fsck_inode *fscki; 1917 1918 p = fsckd->inodes.rb_node; 1919 while (p) { 1920 fscki = rb_entry(p, struct fsck_inode, rb); 1921 if (inum < fscki->inum) 1922 p = p->rb_left; 1923 else if (inum > fscki->inum) 1924 p = p->rb_right; 1925 else 1926 return fscki; 1927 } 1928 return NULL; 1929 } 1930 1931 /** 1932 * read_add_inode - read inode node and add it to RB-tree of inodes. 1933 * @c: UBIFS file-system description object 1934 * @fsckd: FS checking information 1935 * @inum: inode number to read 1936 * 1937 * This is a helper function for 'check_leaf()' which finds inode node @inum in 1938 * the index, reads it, and adds it to the RB-tree of inodes. Returns inode 1939 * information pointer in case of success and a negative error code in case of 1940 * failure. 1941 */ 1942 static struct fsck_inode *read_add_inode(struct ubifs_info *c, 1943 struct fsck_data *fsckd, ino_t inum) 1944 { 1945 int n, err; 1946 union ubifs_key key; 1947 struct ubifs_znode *znode; 1948 struct ubifs_zbranch *zbr; 1949 struct ubifs_ino_node *ino; 1950 struct fsck_inode *fscki; 1951 1952 fscki = search_inode(fsckd, inum); 1953 if (fscki) 1954 return fscki; 1955 1956 ino_key_init(c, &key, inum); 1957 err = ubifs_lookup_level0(c, &key, &znode, &n); 1958 if (!err) { 1959 ubifs_err(c, "inode %lu not found in index", (unsigned long)inum); 1960 return ERR_PTR(-ENOENT); 1961 } else if (err < 0) { 1962 ubifs_err(c, "error %d while looking up inode %lu", 1963 err, (unsigned long)inum); 1964 return ERR_PTR(err); 1965 } 1966 1967 zbr = &znode->zbranch[n]; 1968 if (zbr->len < UBIFS_INO_NODE_SZ) { 1969 ubifs_err(c, "bad node %lu node length %d", 1970 (unsigned long)inum, zbr->len); 1971 return ERR_PTR(-EINVAL); 1972 } 1973 1974 ino = kmalloc(zbr->len, GFP_NOFS); 1975 if (!ino) 1976 return ERR_PTR(-ENOMEM); 1977 1978 err = ubifs_tnc_read_node(c, zbr, ino); 1979 if (err) { 1980 ubifs_err(c, "cannot read inode node at LEB %d:%d, error %d", 1981 zbr->lnum, zbr->offs, err); 1982 kfree(ino); 1983 return ERR_PTR(err); 1984 } 1985 1986 fscki = add_inode(c, fsckd, ino); 1987 kfree(ino); 1988 if (IS_ERR(fscki)) { 1989 ubifs_err(c, "error %ld while adding inode %lu node", 1990 PTR_ERR(fscki), (unsigned long)inum); 1991 return fscki; 1992 } 1993 1994 return fscki; 1995 } 1996 1997 /** 1998 * check_leaf - check leaf node. 1999 * @c: UBIFS file-system description object 2000 * @zbr: zbranch of the leaf node to check 2001 * @priv: FS checking information 2002 * 2003 * This is a helper function for 'dbg_check_filesystem()' which is called for 2004 * every single leaf node while walking the indexing tree. It checks that the 2005 * leaf node referred from the indexing tree exists, has correct CRC, and does 2006 * some other basic validation. This function is also responsible for building 2007 * an RB-tree of inodes - it adds all inodes into the RB-tree. It also 2008 * calculates reference count, size, etc for each inode in order to later 2009 * compare them to the information stored inside the inodes and detect possible 2010 * inconsistencies. Returns zero in case of success and a negative error code 2011 * in case of failure. 2012 */ 2013 static int check_leaf(struct ubifs_info *c, struct ubifs_zbranch *zbr, 2014 void *priv) 2015 { 2016 ino_t inum; 2017 void *node; 2018 struct ubifs_ch *ch; 2019 int err, type = key_type(c, &zbr->key); 2020 struct fsck_inode *fscki; 2021 2022 if (zbr->len < UBIFS_CH_SZ) { 2023 ubifs_err(c, "bad leaf length %d (LEB %d:%d)", 2024 zbr->len, zbr->lnum, zbr->offs); 2025 return -EINVAL; 2026 } 2027 2028 node = kmalloc(zbr->len, GFP_NOFS); 2029 if (!node) 2030 return -ENOMEM; 2031 2032 err = ubifs_tnc_read_node(c, zbr, node); 2033 if (err) { 2034 ubifs_err(c, "cannot read leaf node at LEB %d:%d, error %d", 2035 zbr->lnum, zbr->offs, err); 2036 goto out_free; 2037 } 2038 2039 /* If this is an inode node, add it to RB-tree of inodes */ 2040 if (type == UBIFS_INO_KEY) { 2041 fscki = add_inode(c, priv, node); 2042 if (IS_ERR(fscki)) { 2043 err = PTR_ERR(fscki); 2044 ubifs_err(c, "error %d while adding inode node", err); 2045 goto out_dump; 2046 } 2047 goto out; 2048 } 2049 2050 if (type != UBIFS_DENT_KEY && type != UBIFS_XENT_KEY && 2051 type != UBIFS_DATA_KEY) { 2052 ubifs_err(c, "unexpected node type %d at LEB %d:%d", 2053 type, zbr->lnum, zbr->offs); 2054 err = -EINVAL; 2055 goto out_free; 2056 } 2057 2058 ch = node; 2059 if (le64_to_cpu(ch->sqnum) > c->max_sqnum) { 2060 ubifs_err(c, "too high sequence number, max. is %llu", 2061 c->max_sqnum); 2062 err = -EINVAL; 2063 goto out_dump; 2064 } 2065 2066 if (type == UBIFS_DATA_KEY) { 2067 long long blk_offs; 2068 struct ubifs_data_node *dn = node; 2069 2070 ubifs_assert(c, zbr->len >= UBIFS_DATA_NODE_SZ); 2071 2072 /* 2073 * Search the inode node this data node belongs to and insert 2074 * it to the RB-tree of inodes. 2075 */ 2076 inum = key_inum_flash(c, &dn->key); 2077 fscki = read_add_inode(c, priv, inum); 2078 if (IS_ERR(fscki)) { 2079 err = PTR_ERR(fscki); 2080 ubifs_err(c, "error %d while processing data node and trying to find inode node %lu", 2081 err, (unsigned long)inum); 2082 goto out_dump; 2083 } 2084 2085 /* Make sure the data node is within inode size */ 2086 blk_offs = key_block_flash(c, &dn->key); 2087 blk_offs <<= UBIFS_BLOCK_SHIFT; 2088 blk_offs += le32_to_cpu(dn->size); 2089 if (blk_offs > fscki->size) { 2090 ubifs_err(c, "data node at LEB %d:%d is not within inode size %lld", 2091 zbr->lnum, zbr->offs, fscki->size); 2092 err = -EINVAL; 2093 goto out_dump; 2094 } 2095 } else { 2096 int nlen; 2097 struct ubifs_dent_node *dent = node; 2098 struct fsck_inode *fscki1; 2099 2100 ubifs_assert(c, zbr->len >= UBIFS_DENT_NODE_SZ); 2101 2102 err = ubifs_validate_entry(c, dent); 2103 if (err) 2104 goto out_dump; 2105 2106 /* 2107 * Search the inode node this entry refers to and the parent 2108 * inode node and insert them to the RB-tree of inodes. 2109 */ 2110 inum = le64_to_cpu(dent->inum); 2111 fscki = read_add_inode(c, priv, inum); 2112 if (IS_ERR(fscki)) { 2113 err = PTR_ERR(fscki); 2114 ubifs_err(c, "error %d while processing entry node and trying to find inode node %lu", 2115 err, (unsigned long)inum); 2116 goto out_dump; 2117 } 2118 2119 /* Count how many direntries or xentries refers this inode */ 2120 fscki->references += 1; 2121 2122 inum = key_inum_flash(c, &dent->key); 2123 fscki1 = read_add_inode(c, priv, inum); 2124 if (IS_ERR(fscki1)) { 2125 err = PTR_ERR(fscki1); 2126 ubifs_err(c, "error %d while processing entry node and trying to find parent inode node %lu", 2127 err, (unsigned long)inum); 2128 goto out_dump; 2129 } 2130 2131 nlen = le16_to_cpu(dent->nlen); 2132 if (type == UBIFS_XENT_KEY) { 2133 fscki1->calc_xcnt += 1; 2134 fscki1->calc_xsz += CALC_DENT_SIZE(nlen); 2135 fscki1->calc_xsz += CALC_XATTR_BYTES(fscki->size); 2136 fscki1->calc_xnms += nlen; 2137 } else { 2138 fscki1->calc_sz += CALC_DENT_SIZE(nlen); 2139 if (dent->type == UBIFS_ITYPE_DIR) 2140 fscki1->calc_cnt += 1; 2141 } 2142 } 2143 2144 out: 2145 kfree(node); 2146 return 0; 2147 2148 out_dump: 2149 ubifs_msg(c, "dump of node at LEB %d:%d", zbr->lnum, zbr->offs); 2150 ubifs_dump_node(c, node); 2151 out_free: 2152 kfree(node); 2153 return err; 2154 } 2155 2156 /** 2157 * free_inodes - free RB-tree of inodes. 2158 * @fsckd: FS checking information 2159 */ 2160 static void free_inodes(struct fsck_data *fsckd) 2161 { 2162 struct fsck_inode *fscki, *n; 2163 2164 rbtree_postorder_for_each_entry_safe(fscki, n, &fsckd->inodes, rb) 2165 kfree(fscki); 2166 } 2167 2168 /** 2169 * check_inodes - checks all inodes. 2170 * @c: UBIFS file-system description object 2171 * @fsckd: FS checking information 2172 * 2173 * This is a helper function for 'dbg_check_filesystem()' which walks the 2174 * RB-tree of inodes after the index scan has been finished, and checks that 2175 * inode nlink, size, etc are correct. Returns zero if inodes are fine, 2176 * %-EINVAL if not, and a negative error code in case of failure. 2177 */ 2178 static int check_inodes(struct ubifs_info *c, struct fsck_data *fsckd) 2179 { 2180 int n, err; 2181 union ubifs_key key; 2182 struct ubifs_znode *znode; 2183 struct ubifs_zbranch *zbr; 2184 struct ubifs_ino_node *ino; 2185 struct fsck_inode *fscki; 2186 struct rb_node *this = rb_first(&fsckd->inodes); 2187 2188 while (this) { 2189 fscki = rb_entry(this, struct fsck_inode, rb); 2190 this = rb_next(this); 2191 2192 if (S_ISDIR(fscki->mode)) { 2193 /* 2194 * Directories have to have exactly one reference (they 2195 * cannot have hardlinks), although root inode is an 2196 * exception. 2197 */ 2198 if (fscki->inum != UBIFS_ROOT_INO && 2199 fscki->references != 1) { 2200 ubifs_err(c, "directory inode %lu has %d direntries which refer it, but should be 1", 2201 (unsigned long)fscki->inum, 2202 fscki->references); 2203 goto out_dump; 2204 } 2205 if (fscki->inum == UBIFS_ROOT_INO && 2206 fscki->references != 0) { 2207 ubifs_err(c, "root inode %lu has non-zero (%d) direntries which refer it", 2208 (unsigned long)fscki->inum, 2209 fscki->references); 2210 goto out_dump; 2211 } 2212 if (fscki->calc_sz != fscki->size) { 2213 ubifs_err(c, "directory inode %lu size is %lld, but calculated size is %lld", 2214 (unsigned long)fscki->inum, 2215 fscki->size, fscki->calc_sz); 2216 goto out_dump; 2217 } 2218 if (fscki->calc_cnt != fscki->nlink) { 2219 ubifs_err(c, "directory inode %lu nlink is %d, but calculated nlink is %d", 2220 (unsigned long)fscki->inum, 2221 fscki->nlink, fscki->calc_cnt); 2222 goto out_dump; 2223 } 2224 } else { 2225 if (fscki->references != fscki->nlink) { 2226 ubifs_err(c, "inode %lu nlink is %d, but calculated nlink is %d", 2227 (unsigned long)fscki->inum, 2228 fscki->nlink, fscki->references); 2229 goto out_dump; 2230 } 2231 } 2232 if (fscki->xattr_sz != fscki->calc_xsz) { 2233 ubifs_err(c, "inode %lu has xattr size %u, but calculated size is %lld", 2234 (unsigned long)fscki->inum, fscki->xattr_sz, 2235 fscki->calc_xsz); 2236 goto out_dump; 2237 } 2238 if (fscki->xattr_cnt != fscki->calc_xcnt) { 2239 ubifs_err(c, "inode %lu has %u xattrs, but calculated count is %lld", 2240 (unsigned long)fscki->inum, 2241 fscki->xattr_cnt, fscki->calc_xcnt); 2242 goto out_dump; 2243 } 2244 if (fscki->xattr_nms != fscki->calc_xnms) { 2245 ubifs_err(c, "inode %lu has xattr names' size %u, but calculated names' size is %lld", 2246 (unsigned long)fscki->inum, fscki->xattr_nms, 2247 fscki->calc_xnms); 2248 goto out_dump; 2249 } 2250 } 2251 2252 return 0; 2253 2254 out_dump: 2255 /* Read the bad inode and dump it */ 2256 ino_key_init(c, &key, fscki->inum); 2257 err = ubifs_lookup_level0(c, &key, &znode, &n); 2258 if (!err) { 2259 ubifs_err(c, "inode %lu not found in index", 2260 (unsigned long)fscki->inum); 2261 return -ENOENT; 2262 } else if (err < 0) { 2263 ubifs_err(c, "error %d while looking up inode %lu", 2264 err, (unsigned long)fscki->inum); 2265 return err; 2266 } 2267 2268 zbr = &znode->zbranch[n]; 2269 ino = kmalloc(zbr->len, GFP_NOFS); 2270 if (!ino) 2271 return -ENOMEM; 2272 2273 err = ubifs_tnc_read_node(c, zbr, ino); 2274 if (err) { 2275 ubifs_err(c, "cannot read inode node at LEB %d:%d, error %d", 2276 zbr->lnum, zbr->offs, err); 2277 kfree(ino); 2278 return err; 2279 } 2280 2281 ubifs_msg(c, "dump of the inode %lu sitting in LEB %d:%d", 2282 (unsigned long)fscki->inum, zbr->lnum, zbr->offs); 2283 ubifs_dump_node(c, ino); 2284 kfree(ino); 2285 return -EINVAL; 2286 } 2287 2288 /** 2289 * dbg_check_filesystem - check the file-system. 2290 * @c: UBIFS file-system description object 2291 * 2292 * This function checks the file system, namely: 2293 * o makes sure that all leaf nodes exist and their CRCs are correct; 2294 * o makes sure inode nlink, size, xattr size/count are correct (for all 2295 * inodes). 2296 * 2297 * The function reads whole indexing tree and all nodes, so it is pretty 2298 * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if 2299 * not, and a negative error code in case of failure. 2300 */ 2301 int dbg_check_filesystem(struct ubifs_info *c) 2302 { 2303 int err; 2304 struct fsck_data fsckd; 2305 2306 if (!dbg_is_chk_fs(c)) 2307 return 0; 2308 2309 fsckd.inodes = RB_ROOT; 2310 err = dbg_walk_index(c, check_leaf, NULL, &fsckd); 2311 if (err) 2312 goto out_free; 2313 2314 err = check_inodes(c, &fsckd); 2315 if (err) 2316 goto out_free; 2317 2318 free_inodes(&fsckd); 2319 return 0; 2320 2321 out_free: 2322 ubifs_err(c, "file-system check failed with error %d", err); 2323 dump_stack(); 2324 free_inodes(&fsckd); 2325 return err; 2326 } 2327 2328 /** 2329 * dbg_check_data_nodes_order - check that list of data nodes is sorted. 2330 * @c: UBIFS file-system description object 2331 * @head: the list of nodes ('struct ubifs_scan_node' objects) 2332 * 2333 * This function returns zero if the list of data nodes is sorted correctly, 2334 * and %-EINVAL if not. 2335 */ 2336 int dbg_check_data_nodes_order(struct ubifs_info *c, struct list_head *head) 2337 { 2338 struct list_head *cur; 2339 struct ubifs_scan_node *sa, *sb; 2340 2341 if (!dbg_is_chk_gen(c)) 2342 return 0; 2343 2344 for (cur = head->next; cur->next != head; cur = cur->next) { 2345 ino_t inuma, inumb; 2346 uint32_t blka, blkb; 2347 2348 cond_resched(); 2349 sa = container_of(cur, struct ubifs_scan_node, list); 2350 sb = container_of(cur->next, struct ubifs_scan_node, list); 2351 2352 if (sa->type != UBIFS_DATA_NODE) { 2353 ubifs_err(c, "bad node type %d", sa->type); 2354 ubifs_dump_node(c, sa->node); 2355 return -EINVAL; 2356 } 2357 if (sb->type != UBIFS_DATA_NODE) { 2358 ubifs_err(c, "bad node type %d", sb->type); 2359 ubifs_dump_node(c, sb->node); 2360 return -EINVAL; 2361 } 2362 2363 inuma = key_inum(c, &sa->key); 2364 inumb = key_inum(c, &sb->key); 2365 2366 if (inuma < inumb) 2367 continue; 2368 if (inuma > inumb) { 2369 ubifs_err(c, "larger inum %lu goes before inum %lu", 2370 (unsigned long)inuma, (unsigned long)inumb); 2371 goto error_dump; 2372 } 2373 2374 blka = key_block(c, &sa->key); 2375 blkb = key_block(c, &sb->key); 2376 2377 if (blka > blkb) { 2378 ubifs_err(c, "larger block %u goes before %u", blka, blkb); 2379 goto error_dump; 2380 } 2381 if (blka == blkb) { 2382 ubifs_err(c, "two data nodes for the same block"); 2383 goto error_dump; 2384 } 2385 } 2386 2387 return 0; 2388 2389 error_dump: 2390 ubifs_dump_node(c, sa->node); 2391 ubifs_dump_node(c, sb->node); 2392 return -EINVAL; 2393 } 2394 2395 /** 2396 * dbg_check_nondata_nodes_order - check that list of data nodes is sorted. 2397 * @c: UBIFS file-system description object 2398 * @head: the list of nodes ('struct ubifs_scan_node' objects) 2399 * 2400 * This function returns zero if the list of non-data nodes is sorted correctly, 2401 * and %-EINVAL if not. 2402 */ 2403 int dbg_check_nondata_nodes_order(struct ubifs_info *c, struct list_head *head) 2404 { 2405 struct list_head *cur; 2406 struct ubifs_scan_node *sa, *sb; 2407 2408 if (!dbg_is_chk_gen(c)) 2409 return 0; 2410 2411 for (cur = head->next; cur->next != head; cur = cur->next) { 2412 ino_t inuma, inumb; 2413 uint32_t hasha, hashb; 2414 2415 cond_resched(); 2416 sa = container_of(cur, struct ubifs_scan_node, list); 2417 sb = container_of(cur->next, struct ubifs_scan_node, list); 2418 2419 if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE && 2420 sa->type != UBIFS_XENT_NODE) { 2421 ubifs_err(c, "bad node type %d", sa->type); 2422 ubifs_dump_node(c, sa->node); 2423 return -EINVAL; 2424 } 2425 if (sb->type != UBIFS_INO_NODE && sb->type != UBIFS_DENT_NODE && 2426 sb->type != UBIFS_XENT_NODE) { 2427 ubifs_err(c, "bad node type %d", sb->type); 2428 ubifs_dump_node(c, sb->node); 2429 return -EINVAL; 2430 } 2431 2432 if (sa->type != UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) { 2433 ubifs_err(c, "non-inode node goes before inode node"); 2434 goto error_dump; 2435 } 2436 2437 if (sa->type == UBIFS_INO_NODE && sb->type != UBIFS_INO_NODE) 2438 continue; 2439 2440 if (sa->type == UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) { 2441 /* Inode nodes are sorted in descending size order */ 2442 if (sa->len < sb->len) { 2443 ubifs_err(c, "smaller inode node goes first"); 2444 goto error_dump; 2445 } 2446 continue; 2447 } 2448 2449 /* 2450 * This is either a dentry or xentry, which should be sorted in 2451 * ascending (parent ino, hash) order. 2452 */ 2453 inuma = key_inum(c, &sa->key); 2454 inumb = key_inum(c, &sb->key); 2455 2456 if (inuma < inumb) 2457 continue; 2458 if (inuma > inumb) { 2459 ubifs_err(c, "larger inum %lu goes before inum %lu", 2460 (unsigned long)inuma, (unsigned long)inumb); 2461 goto error_dump; 2462 } 2463 2464 hasha = key_block(c, &sa->key); 2465 hashb = key_block(c, &sb->key); 2466 2467 if (hasha > hashb) { 2468 ubifs_err(c, "larger hash %u goes before %u", 2469 hasha, hashb); 2470 goto error_dump; 2471 } 2472 } 2473 2474 return 0; 2475 2476 error_dump: 2477 ubifs_msg(c, "dumping first node"); 2478 ubifs_dump_node(c, sa->node); 2479 ubifs_msg(c, "dumping second node"); 2480 ubifs_dump_node(c, sb->node); 2481 return -EINVAL; 2482 } 2483 2484 static inline int chance(unsigned int n, unsigned int out_of) 2485 { 2486 return !!((prandom_u32() % out_of) + 1 <= n); 2487 2488 } 2489 2490 static int power_cut_emulated(struct ubifs_info *c, int lnum, int write) 2491 { 2492 struct ubifs_debug_info *d = c->dbg; 2493 2494 ubifs_assert(c, dbg_is_tst_rcvry(c)); 2495 2496 if (!d->pc_cnt) { 2497 /* First call - decide delay to the power cut */ 2498 if (chance(1, 2)) { 2499 unsigned long delay; 2500 2501 if (chance(1, 2)) { 2502 d->pc_delay = 1; 2503 /* Fail within 1 minute */ 2504 delay = prandom_u32() % 60000; 2505 d->pc_timeout = jiffies; 2506 d->pc_timeout += msecs_to_jiffies(delay); 2507 ubifs_warn(c, "failing after %lums", delay); 2508 } else { 2509 d->pc_delay = 2; 2510 delay = prandom_u32() % 10000; 2511 /* Fail within 10000 operations */ 2512 d->pc_cnt_max = delay; 2513 ubifs_warn(c, "failing after %lu calls", delay); 2514 } 2515 } 2516 2517 d->pc_cnt += 1; 2518 } 2519 2520 /* Determine if failure delay has expired */ 2521 if (d->pc_delay == 1 && time_before(jiffies, d->pc_timeout)) 2522 return 0; 2523 if (d->pc_delay == 2 && d->pc_cnt++ < d->pc_cnt_max) 2524 return 0; 2525 2526 if (lnum == UBIFS_SB_LNUM) { 2527 if (write && chance(1, 2)) 2528 return 0; 2529 if (chance(19, 20)) 2530 return 0; 2531 ubifs_warn(c, "failing in super block LEB %d", lnum); 2532 } else if (lnum == UBIFS_MST_LNUM || lnum == UBIFS_MST_LNUM + 1) { 2533 if (chance(19, 20)) 2534 return 0; 2535 ubifs_warn(c, "failing in master LEB %d", lnum); 2536 } else if (lnum >= UBIFS_LOG_LNUM && lnum <= c->log_last) { 2537 if (write && chance(99, 100)) 2538 return 0; 2539 if (chance(399, 400)) 2540 return 0; 2541 ubifs_warn(c, "failing in log LEB %d", lnum); 2542 } else if (lnum >= c->lpt_first && lnum <= c->lpt_last) { 2543 if (write && chance(7, 8)) 2544 return 0; 2545 if (chance(19, 20)) 2546 return 0; 2547 ubifs_warn(c, "failing in LPT LEB %d", lnum); 2548 } else if (lnum >= c->orph_first && lnum <= c->orph_last) { 2549 if (write && chance(1, 2)) 2550 return 0; 2551 if (chance(9, 10)) 2552 return 0; 2553 ubifs_warn(c, "failing in orphan LEB %d", lnum); 2554 } else if (lnum == c->ihead_lnum) { 2555 if (chance(99, 100)) 2556 return 0; 2557 ubifs_warn(c, "failing in index head LEB %d", lnum); 2558 } else if (c->jheads && lnum == c->jheads[GCHD].wbuf.lnum) { 2559 if (chance(9, 10)) 2560 return 0; 2561 ubifs_warn(c, "failing in GC head LEB %d", lnum); 2562 } else if (write && !RB_EMPTY_ROOT(&c->buds) && 2563 !ubifs_search_bud(c, lnum)) { 2564 if (chance(19, 20)) 2565 return 0; 2566 ubifs_warn(c, "failing in non-bud LEB %d", lnum); 2567 } else if (c->cmt_state == COMMIT_RUNNING_BACKGROUND || 2568 c->cmt_state == COMMIT_RUNNING_REQUIRED) { 2569 if (chance(999, 1000)) 2570 return 0; 2571 ubifs_warn(c, "failing in bud LEB %d commit running", lnum); 2572 } else { 2573 if (chance(9999, 10000)) 2574 return 0; 2575 ubifs_warn(c, "failing in bud LEB %d commit not running", lnum); 2576 } 2577 2578 d->pc_happened = 1; 2579 ubifs_warn(c, "========== Power cut emulated =========="); 2580 dump_stack(); 2581 return 1; 2582 } 2583 2584 static int corrupt_data(const struct ubifs_info *c, const void *buf, 2585 unsigned int len) 2586 { 2587 unsigned int from, to, ffs = chance(1, 2); 2588 unsigned char *p = (void *)buf; 2589 2590 from = prandom_u32() % len; 2591 /* Corruption span max to end of write unit */ 2592 to = min(len, ALIGN(from + 1, c->max_write_size)); 2593 2594 ubifs_warn(c, "filled bytes %u-%u with %s", from, to - 1, 2595 ffs ? "0xFFs" : "random data"); 2596 2597 if (ffs) 2598 memset(p + from, 0xFF, to - from); 2599 else 2600 prandom_bytes(p + from, to - from); 2601 2602 return to; 2603 } 2604 2605 int dbg_leb_write(struct ubifs_info *c, int lnum, const void *buf, 2606 int offs, int len) 2607 { 2608 int err, failing; 2609 2610 if (dbg_is_power_cut(c)) 2611 return -EROFS; 2612 2613 failing = power_cut_emulated(c, lnum, 1); 2614 if (failing) { 2615 len = corrupt_data(c, buf, len); 2616 ubifs_warn(c, "actually write %d bytes to LEB %d:%d (the buffer was corrupted)", 2617 len, lnum, offs); 2618 } 2619 err = ubi_leb_write(c->ubi, lnum, buf, offs, len); 2620 if (err) 2621 return err; 2622 if (failing) 2623 return -EROFS; 2624 return 0; 2625 } 2626 2627 int dbg_leb_change(struct ubifs_info *c, int lnum, const void *buf, 2628 int len) 2629 { 2630 int err; 2631 2632 if (dbg_is_power_cut(c)) 2633 return -EROFS; 2634 if (power_cut_emulated(c, lnum, 1)) 2635 return -EROFS; 2636 err = ubi_leb_change(c->ubi, lnum, buf, len); 2637 if (err) 2638 return err; 2639 if (power_cut_emulated(c, lnum, 1)) 2640 return -EROFS; 2641 return 0; 2642 } 2643 2644 int dbg_leb_unmap(struct ubifs_info *c, int lnum) 2645 { 2646 int err; 2647 2648 if (dbg_is_power_cut(c)) 2649 return -EROFS; 2650 if (power_cut_emulated(c, lnum, 0)) 2651 return -EROFS; 2652 err = ubi_leb_unmap(c->ubi, lnum); 2653 if (err) 2654 return err; 2655 if (power_cut_emulated(c, lnum, 0)) 2656 return -EROFS; 2657 return 0; 2658 } 2659 2660 int dbg_leb_map(struct ubifs_info *c, int lnum) 2661 { 2662 int err; 2663 2664 if (dbg_is_power_cut(c)) 2665 return -EROFS; 2666 if (power_cut_emulated(c, lnum, 0)) 2667 return -EROFS; 2668 err = ubi_leb_map(c->ubi, lnum); 2669 if (err) 2670 return err; 2671 if (power_cut_emulated(c, lnum, 0)) 2672 return -EROFS; 2673 return 0; 2674 } 2675 2676 /* 2677 * Root directory for UBIFS stuff in debugfs. Contains sub-directories which 2678 * contain the stuff specific to particular file-system mounts. 2679 */ 2680 static struct dentry *dfs_rootdir; 2681 2682 static int dfs_file_open(struct inode *inode, struct file *file) 2683 { 2684 file->private_data = inode->i_private; 2685 return nonseekable_open(inode, file); 2686 } 2687 2688 /** 2689 * provide_user_output - provide output to the user reading a debugfs file. 2690 * @val: boolean value for the answer 2691 * @u: the buffer to store the answer at 2692 * @count: size of the buffer 2693 * @ppos: position in the @u output buffer 2694 * 2695 * This is a simple helper function which stores @val boolean value in the user 2696 * buffer when the user reads one of UBIFS debugfs files. Returns amount of 2697 * bytes written to @u in case of success and a negative error code in case of 2698 * failure. 2699 */ 2700 static int provide_user_output(int val, char __user *u, size_t count, 2701 loff_t *ppos) 2702 { 2703 char buf[3]; 2704 2705 if (val) 2706 buf[0] = '1'; 2707 else 2708 buf[0] = '0'; 2709 buf[1] = '\n'; 2710 buf[2] = 0x00; 2711 2712 return simple_read_from_buffer(u, count, ppos, buf, 2); 2713 } 2714 2715 static ssize_t dfs_file_read(struct file *file, char __user *u, size_t count, 2716 loff_t *ppos) 2717 { 2718 struct dentry *dent = file->f_path.dentry; 2719 struct ubifs_info *c = file->private_data; 2720 struct ubifs_debug_info *d = c->dbg; 2721 int val; 2722 2723 if (dent == d->dfs_chk_gen) 2724 val = d->chk_gen; 2725 else if (dent == d->dfs_chk_index) 2726 val = d->chk_index; 2727 else if (dent == d->dfs_chk_orph) 2728 val = d->chk_orph; 2729 else if (dent == d->dfs_chk_lprops) 2730 val = d->chk_lprops; 2731 else if (dent == d->dfs_chk_fs) 2732 val = d->chk_fs; 2733 else if (dent == d->dfs_tst_rcvry) 2734 val = d->tst_rcvry; 2735 else if (dent == d->dfs_ro_error) 2736 val = c->ro_error; 2737 else 2738 return -EINVAL; 2739 2740 return provide_user_output(val, u, count, ppos); 2741 } 2742 2743 /** 2744 * interpret_user_input - interpret user debugfs file input. 2745 * @u: user-provided buffer with the input 2746 * @count: buffer size 2747 * 2748 * This is a helper function which interpret user input to a boolean UBIFS 2749 * debugfs file. Returns %0 or %1 in case of success and a negative error code 2750 * in case of failure. 2751 */ 2752 static int interpret_user_input(const char __user *u, size_t count) 2753 { 2754 size_t buf_size; 2755 char buf[8]; 2756 2757 buf_size = min_t(size_t, count, (sizeof(buf) - 1)); 2758 if (copy_from_user(buf, u, buf_size)) 2759 return -EFAULT; 2760 2761 if (buf[0] == '1') 2762 return 1; 2763 else if (buf[0] == '0') 2764 return 0; 2765 2766 return -EINVAL; 2767 } 2768 2769 static ssize_t dfs_file_write(struct file *file, const char __user *u, 2770 size_t count, loff_t *ppos) 2771 { 2772 struct ubifs_info *c = file->private_data; 2773 struct ubifs_debug_info *d = c->dbg; 2774 struct dentry *dent = file->f_path.dentry; 2775 int val; 2776 2777 if (file->f_path.dentry == d->dfs_dump_lprops) { 2778 ubifs_dump_lprops(c); 2779 return count; 2780 } 2781 if (file->f_path.dentry == d->dfs_dump_budg) { 2782 ubifs_dump_budg(c, &c->bi); 2783 return count; 2784 } 2785 if (file->f_path.dentry == d->dfs_dump_tnc) { 2786 mutex_lock(&c->tnc_mutex); 2787 ubifs_dump_tnc(c); 2788 mutex_unlock(&c->tnc_mutex); 2789 return count; 2790 } 2791 2792 val = interpret_user_input(u, count); 2793 if (val < 0) 2794 return val; 2795 2796 if (dent == d->dfs_chk_gen) 2797 d->chk_gen = val; 2798 else if (dent == d->dfs_chk_index) 2799 d->chk_index = val; 2800 else if (dent == d->dfs_chk_orph) 2801 d->chk_orph = val; 2802 else if (dent == d->dfs_chk_lprops) 2803 d->chk_lprops = val; 2804 else if (dent == d->dfs_chk_fs) 2805 d->chk_fs = val; 2806 else if (dent == d->dfs_tst_rcvry) 2807 d->tst_rcvry = val; 2808 else if (dent == d->dfs_ro_error) 2809 c->ro_error = !!val; 2810 else 2811 return -EINVAL; 2812 2813 return count; 2814 } 2815 2816 static const struct file_operations dfs_fops = { 2817 .open = dfs_file_open, 2818 .read = dfs_file_read, 2819 .write = dfs_file_write, 2820 .owner = THIS_MODULE, 2821 .llseek = no_llseek, 2822 }; 2823 2824 /** 2825 * dbg_debugfs_init_fs - initialize debugfs for UBIFS instance. 2826 * @c: UBIFS file-system description object 2827 * 2828 * This function creates all debugfs files for this instance of UBIFS. 2829 * 2830 * Note, the only reason we have not merged this function with the 2831 * 'ubifs_debugging_init()' function is because it is better to initialize 2832 * debugfs interfaces at the very end of the mount process, and remove them at 2833 * the very beginning of the mount process. 2834 */ 2835 void dbg_debugfs_init_fs(struct ubifs_info *c) 2836 { 2837 int n; 2838 const char *fname; 2839 struct ubifs_debug_info *d = c->dbg; 2840 2841 n = snprintf(d->dfs_dir_name, UBIFS_DFS_DIR_LEN + 1, UBIFS_DFS_DIR_NAME, 2842 c->vi.ubi_num, c->vi.vol_id); 2843 if (n == UBIFS_DFS_DIR_LEN) { 2844 /* The array size is too small */ 2845 return; 2846 } 2847 2848 fname = d->dfs_dir_name; 2849 d->dfs_dir = debugfs_create_dir(fname, dfs_rootdir); 2850 2851 fname = "dump_lprops"; 2852 d->dfs_dump_lprops = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, 2853 &dfs_fops); 2854 2855 fname = "dump_budg"; 2856 d->dfs_dump_budg = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, 2857 &dfs_fops); 2858 2859 fname = "dump_tnc"; 2860 d->dfs_dump_tnc = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, 2861 &dfs_fops); 2862 2863 fname = "chk_general"; 2864 d->dfs_chk_gen = debugfs_create_file(fname, S_IRUSR | S_IWUSR, 2865 d->dfs_dir, c, &dfs_fops); 2866 2867 fname = "chk_index"; 2868 d->dfs_chk_index = debugfs_create_file(fname, S_IRUSR | S_IWUSR, 2869 d->dfs_dir, c, &dfs_fops); 2870 2871 fname = "chk_orphans"; 2872 d->dfs_chk_orph = debugfs_create_file(fname, S_IRUSR | S_IWUSR, 2873 d->dfs_dir, c, &dfs_fops); 2874 2875 fname = "chk_lprops"; 2876 d->dfs_chk_lprops = debugfs_create_file(fname, S_IRUSR | S_IWUSR, 2877 d->dfs_dir, c, &dfs_fops); 2878 2879 fname = "chk_fs"; 2880 d->dfs_chk_fs = debugfs_create_file(fname, S_IRUSR | S_IWUSR, 2881 d->dfs_dir, c, &dfs_fops); 2882 2883 fname = "tst_recovery"; 2884 d->dfs_tst_rcvry = debugfs_create_file(fname, S_IRUSR | S_IWUSR, 2885 d->dfs_dir, c, &dfs_fops); 2886 2887 fname = "ro_error"; 2888 d->dfs_ro_error = debugfs_create_file(fname, S_IRUSR | S_IWUSR, 2889 d->dfs_dir, c, &dfs_fops); 2890 } 2891 2892 /** 2893 * dbg_debugfs_exit_fs - remove all debugfs files. 2894 * @c: UBIFS file-system description object 2895 */ 2896 void dbg_debugfs_exit_fs(struct ubifs_info *c) 2897 { 2898 debugfs_remove_recursive(c->dbg->dfs_dir); 2899 } 2900 2901 struct ubifs_global_debug_info ubifs_dbg; 2902 2903 static struct dentry *dfs_chk_gen; 2904 static struct dentry *dfs_chk_index; 2905 static struct dentry *dfs_chk_orph; 2906 static struct dentry *dfs_chk_lprops; 2907 static struct dentry *dfs_chk_fs; 2908 static struct dentry *dfs_tst_rcvry; 2909 2910 static ssize_t dfs_global_file_read(struct file *file, char __user *u, 2911 size_t count, loff_t *ppos) 2912 { 2913 struct dentry *dent = file->f_path.dentry; 2914 int val; 2915 2916 if (dent == dfs_chk_gen) 2917 val = ubifs_dbg.chk_gen; 2918 else if (dent == dfs_chk_index) 2919 val = ubifs_dbg.chk_index; 2920 else if (dent == dfs_chk_orph) 2921 val = ubifs_dbg.chk_orph; 2922 else if (dent == dfs_chk_lprops) 2923 val = ubifs_dbg.chk_lprops; 2924 else if (dent == dfs_chk_fs) 2925 val = ubifs_dbg.chk_fs; 2926 else if (dent == dfs_tst_rcvry) 2927 val = ubifs_dbg.tst_rcvry; 2928 else 2929 return -EINVAL; 2930 2931 return provide_user_output(val, u, count, ppos); 2932 } 2933 2934 static ssize_t dfs_global_file_write(struct file *file, const char __user *u, 2935 size_t count, loff_t *ppos) 2936 { 2937 struct dentry *dent = file->f_path.dentry; 2938 int val; 2939 2940 val = interpret_user_input(u, count); 2941 if (val < 0) 2942 return val; 2943 2944 if (dent == dfs_chk_gen) 2945 ubifs_dbg.chk_gen = val; 2946 else if (dent == dfs_chk_index) 2947 ubifs_dbg.chk_index = val; 2948 else if (dent == dfs_chk_orph) 2949 ubifs_dbg.chk_orph = val; 2950 else if (dent == dfs_chk_lprops) 2951 ubifs_dbg.chk_lprops = val; 2952 else if (dent == dfs_chk_fs) 2953 ubifs_dbg.chk_fs = val; 2954 else if (dent == dfs_tst_rcvry) 2955 ubifs_dbg.tst_rcvry = val; 2956 else 2957 return -EINVAL; 2958 2959 return count; 2960 } 2961 2962 static const struct file_operations dfs_global_fops = { 2963 .read = dfs_global_file_read, 2964 .write = dfs_global_file_write, 2965 .owner = THIS_MODULE, 2966 .llseek = no_llseek, 2967 }; 2968 2969 /** 2970 * dbg_debugfs_init - initialize debugfs file-system. 2971 * 2972 * UBIFS uses debugfs file-system to expose various debugging knobs to 2973 * user-space. This function creates "ubifs" directory in the debugfs 2974 * file-system. 2975 */ 2976 void dbg_debugfs_init(void) 2977 { 2978 const char *fname; 2979 2980 fname = "ubifs"; 2981 dfs_rootdir = debugfs_create_dir(fname, NULL); 2982 2983 fname = "chk_general"; 2984 dfs_chk_gen = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, 2985 NULL, &dfs_global_fops); 2986 2987 fname = "chk_index"; 2988 dfs_chk_index = debugfs_create_file(fname, S_IRUSR | S_IWUSR, 2989 dfs_rootdir, NULL, &dfs_global_fops); 2990 2991 fname = "chk_orphans"; 2992 dfs_chk_orph = debugfs_create_file(fname, S_IRUSR | S_IWUSR, 2993 dfs_rootdir, NULL, &dfs_global_fops); 2994 2995 fname = "chk_lprops"; 2996 dfs_chk_lprops = debugfs_create_file(fname, S_IRUSR | S_IWUSR, 2997 dfs_rootdir, NULL, &dfs_global_fops); 2998 2999 fname = "chk_fs"; 3000 dfs_chk_fs = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, 3001 NULL, &dfs_global_fops); 3002 3003 fname = "tst_recovery"; 3004 dfs_tst_rcvry = debugfs_create_file(fname, S_IRUSR | S_IWUSR, 3005 dfs_rootdir, NULL, &dfs_global_fops); 3006 } 3007 3008 /** 3009 * dbg_debugfs_exit - remove the "ubifs" directory from debugfs file-system. 3010 */ 3011 void dbg_debugfs_exit(void) 3012 { 3013 debugfs_remove_recursive(dfs_rootdir); 3014 } 3015 3016 void ubifs_assert_failed(struct ubifs_info *c, const char *expr, 3017 const char *file, int line) 3018 { 3019 ubifs_err(c, "UBIFS assert failed: %s, in %s:%u", expr, file, line); 3020 3021 switch (c->assert_action) { 3022 case ASSACT_PANIC: 3023 BUG(); 3024 break; 3025 3026 case ASSACT_RO: 3027 ubifs_ro_mode(c, -EINVAL); 3028 break; 3029 3030 case ASSACT_REPORT: 3031 default: 3032 dump_stack(); 3033 break; 3034 3035 } 3036 } 3037 3038 /** 3039 * ubifs_debugging_init - initialize UBIFS debugging. 3040 * @c: UBIFS file-system description object 3041 * 3042 * This function initializes debugging-related data for the file system. 3043 * Returns zero in case of success and a negative error code in case of 3044 * failure. 3045 */ 3046 int ubifs_debugging_init(struct ubifs_info *c) 3047 { 3048 c->dbg = kzalloc(sizeof(struct ubifs_debug_info), GFP_KERNEL); 3049 if (!c->dbg) 3050 return -ENOMEM; 3051 3052 return 0; 3053 } 3054 3055 /** 3056 * ubifs_debugging_exit - free debugging data. 3057 * @c: UBIFS file-system description object 3058 */ 3059 void ubifs_debugging_exit(struct ubifs_info *c) 3060 { 3061 kfree(c->dbg); 3062 } 3063