xref: /openbmc/linux/fs/ubifs/debug.c (revision c4c0d19d39d26c5f58633f8fcca75f03b2854fc0)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * This file is part of UBIFS.
4  *
5  * Copyright (C) 2006-2008 Nokia Corporation
6  *
7  * Authors: Artem Bityutskiy (Битюцкий Артём)
8  *          Adrian Hunter
9  */
10 
11 /*
12  * This file implements most of the debugging stuff which is compiled in only
13  * when it is enabled. But some debugging check functions are implemented in
14  * corresponding subsystem, just because they are closely related and utilize
15  * various local functions of those subsystems.
16  */
17 
18 #include <linux/module.h>
19 #include <linux/debugfs.h>
20 #include <linux/math64.h>
21 #include <linux/uaccess.h>
22 #include <linux/random.h>
23 #include <linux/ctype.h>
24 #include "ubifs.h"
25 
26 static DEFINE_SPINLOCK(dbg_lock);
27 
28 static const char *get_key_fmt(int fmt)
29 {
30 	switch (fmt) {
31 	case UBIFS_SIMPLE_KEY_FMT:
32 		return "simple";
33 	default:
34 		return "unknown/invalid format";
35 	}
36 }
37 
38 static const char *get_key_hash(int hash)
39 {
40 	switch (hash) {
41 	case UBIFS_KEY_HASH_R5:
42 		return "R5";
43 	case UBIFS_KEY_HASH_TEST:
44 		return "test";
45 	default:
46 		return "unknown/invalid name hash";
47 	}
48 }
49 
50 static const char *get_key_type(int type)
51 {
52 	switch (type) {
53 	case UBIFS_INO_KEY:
54 		return "inode";
55 	case UBIFS_DENT_KEY:
56 		return "direntry";
57 	case UBIFS_XENT_KEY:
58 		return "xentry";
59 	case UBIFS_DATA_KEY:
60 		return "data";
61 	case UBIFS_TRUN_KEY:
62 		return "truncate";
63 	default:
64 		return "unknown/invalid key";
65 	}
66 }
67 
68 static const char *get_dent_type(int type)
69 {
70 	switch (type) {
71 	case UBIFS_ITYPE_REG:
72 		return "file";
73 	case UBIFS_ITYPE_DIR:
74 		return "dir";
75 	case UBIFS_ITYPE_LNK:
76 		return "symlink";
77 	case UBIFS_ITYPE_BLK:
78 		return "blkdev";
79 	case UBIFS_ITYPE_CHR:
80 		return "char dev";
81 	case UBIFS_ITYPE_FIFO:
82 		return "fifo";
83 	case UBIFS_ITYPE_SOCK:
84 		return "socket";
85 	default:
86 		return "unknown/invalid type";
87 	}
88 }
89 
90 const char *dbg_snprintf_key(const struct ubifs_info *c,
91 			     const union ubifs_key *key, char *buffer, int len)
92 {
93 	char *p = buffer;
94 	int type = key_type(c, key);
95 
96 	if (c->key_fmt == UBIFS_SIMPLE_KEY_FMT) {
97 		switch (type) {
98 		case UBIFS_INO_KEY:
99 			len -= snprintf(p, len, "(%lu, %s)",
100 					(unsigned long)key_inum(c, key),
101 					get_key_type(type));
102 			break;
103 		case UBIFS_DENT_KEY:
104 		case UBIFS_XENT_KEY:
105 			len -= snprintf(p, len, "(%lu, %s, %#08x)",
106 					(unsigned long)key_inum(c, key),
107 					get_key_type(type), key_hash(c, key));
108 			break;
109 		case UBIFS_DATA_KEY:
110 			len -= snprintf(p, len, "(%lu, %s, %u)",
111 					(unsigned long)key_inum(c, key),
112 					get_key_type(type), key_block(c, key));
113 			break;
114 		case UBIFS_TRUN_KEY:
115 			len -= snprintf(p, len, "(%lu, %s)",
116 					(unsigned long)key_inum(c, key),
117 					get_key_type(type));
118 			break;
119 		default:
120 			len -= snprintf(p, len, "(bad key type: %#08x, %#08x)",
121 					key->u32[0], key->u32[1]);
122 		}
123 	} else
124 		len -= snprintf(p, len, "bad key format %d", c->key_fmt);
125 	ubifs_assert(c, len > 0);
126 	return p;
127 }
128 
129 const char *dbg_ntype(int type)
130 {
131 	switch (type) {
132 	case UBIFS_PAD_NODE:
133 		return "padding node";
134 	case UBIFS_SB_NODE:
135 		return "superblock node";
136 	case UBIFS_MST_NODE:
137 		return "master node";
138 	case UBIFS_REF_NODE:
139 		return "reference node";
140 	case UBIFS_INO_NODE:
141 		return "inode node";
142 	case UBIFS_DENT_NODE:
143 		return "direntry node";
144 	case UBIFS_XENT_NODE:
145 		return "xentry node";
146 	case UBIFS_DATA_NODE:
147 		return "data node";
148 	case UBIFS_TRUN_NODE:
149 		return "truncate node";
150 	case UBIFS_IDX_NODE:
151 		return "indexing node";
152 	case UBIFS_CS_NODE:
153 		return "commit start node";
154 	case UBIFS_ORPH_NODE:
155 		return "orphan node";
156 	case UBIFS_AUTH_NODE:
157 		return "auth node";
158 	default:
159 		return "unknown node";
160 	}
161 }
162 
163 static const char *dbg_gtype(int type)
164 {
165 	switch (type) {
166 	case UBIFS_NO_NODE_GROUP:
167 		return "no node group";
168 	case UBIFS_IN_NODE_GROUP:
169 		return "in node group";
170 	case UBIFS_LAST_OF_NODE_GROUP:
171 		return "last of node group";
172 	default:
173 		return "unknown";
174 	}
175 }
176 
177 const char *dbg_cstate(int cmt_state)
178 {
179 	switch (cmt_state) {
180 	case COMMIT_RESTING:
181 		return "commit resting";
182 	case COMMIT_BACKGROUND:
183 		return "background commit requested";
184 	case COMMIT_REQUIRED:
185 		return "commit required";
186 	case COMMIT_RUNNING_BACKGROUND:
187 		return "BACKGROUND commit running";
188 	case COMMIT_RUNNING_REQUIRED:
189 		return "commit running and required";
190 	case COMMIT_BROKEN:
191 		return "broken commit";
192 	default:
193 		return "unknown commit state";
194 	}
195 }
196 
197 const char *dbg_jhead(int jhead)
198 {
199 	switch (jhead) {
200 	case GCHD:
201 		return "0 (GC)";
202 	case BASEHD:
203 		return "1 (base)";
204 	case DATAHD:
205 		return "2 (data)";
206 	default:
207 		return "unknown journal head";
208 	}
209 }
210 
211 static void dump_ch(const struct ubifs_ch *ch)
212 {
213 	pr_err("\tmagic          %#x\n", le32_to_cpu(ch->magic));
214 	pr_err("\tcrc            %#x\n", le32_to_cpu(ch->crc));
215 	pr_err("\tnode_type      %d (%s)\n", ch->node_type,
216 	       dbg_ntype(ch->node_type));
217 	pr_err("\tgroup_type     %d (%s)\n", ch->group_type,
218 	       dbg_gtype(ch->group_type));
219 	pr_err("\tsqnum          %llu\n",
220 	       (unsigned long long)le64_to_cpu(ch->sqnum));
221 	pr_err("\tlen            %u\n", le32_to_cpu(ch->len));
222 }
223 
224 void ubifs_dump_inode(struct ubifs_info *c, const struct inode *inode)
225 {
226 	const struct ubifs_inode *ui = ubifs_inode(inode);
227 	struct fscrypt_name nm = {0};
228 	union ubifs_key key;
229 	struct ubifs_dent_node *dent, *pdent = NULL;
230 	int count = 2;
231 
232 	pr_err("Dump in-memory inode:");
233 	pr_err("\tinode          %lu\n", inode->i_ino);
234 	pr_err("\tsize           %llu\n",
235 	       (unsigned long long)i_size_read(inode));
236 	pr_err("\tnlink          %u\n", inode->i_nlink);
237 	pr_err("\tuid            %u\n", (unsigned int)i_uid_read(inode));
238 	pr_err("\tgid            %u\n", (unsigned int)i_gid_read(inode));
239 	pr_err("\tatime          %u.%u\n",
240 	       (unsigned int)inode->i_atime.tv_sec,
241 	       (unsigned int)inode->i_atime.tv_nsec);
242 	pr_err("\tmtime          %u.%u\n",
243 	       (unsigned int)inode->i_mtime.tv_sec,
244 	       (unsigned int)inode->i_mtime.tv_nsec);
245 	pr_err("\tctime          %u.%u\n",
246 	       (unsigned int)inode->i_ctime.tv_sec,
247 	       (unsigned int)inode->i_ctime.tv_nsec);
248 	pr_err("\tcreat_sqnum    %llu\n", ui->creat_sqnum);
249 	pr_err("\txattr_size     %u\n", ui->xattr_size);
250 	pr_err("\txattr_cnt      %u\n", ui->xattr_cnt);
251 	pr_err("\txattr_names    %u\n", ui->xattr_names);
252 	pr_err("\tdirty          %u\n", ui->dirty);
253 	pr_err("\txattr          %u\n", ui->xattr);
254 	pr_err("\tbulk_read      %u\n", ui->bulk_read);
255 	pr_err("\tsynced_i_size  %llu\n",
256 	       (unsigned long long)ui->synced_i_size);
257 	pr_err("\tui_size        %llu\n",
258 	       (unsigned long long)ui->ui_size);
259 	pr_err("\tflags          %d\n", ui->flags);
260 	pr_err("\tcompr_type     %d\n", ui->compr_type);
261 	pr_err("\tlast_page_read %lu\n", ui->last_page_read);
262 	pr_err("\tread_in_a_row  %lu\n", ui->read_in_a_row);
263 	pr_err("\tdata_len       %d\n", ui->data_len);
264 
265 	if (!S_ISDIR(inode->i_mode))
266 		return;
267 
268 	pr_err("List of directory entries:\n");
269 	ubifs_assert(c, !mutex_is_locked(&c->tnc_mutex));
270 
271 	lowest_dent_key(c, &key, inode->i_ino);
272 	while (1) {
273 		dent = ubifs_tnc_next_ent(c, &key, &nm);
274 		if (IS_ERR(dent)) {
275 			if (PTR_ERR(dent) != -ENOENT)
276 				pr_err("error %ld\n", PTR_ERR(dent));
277 			break;
278 		}
279 
280 		pr_err("\t%d: inode %llu, type %s, len %d\n",
281 		       count++, (unsigned long long) le64_to_cpu(dent->inum),
282 		       get_dent_type(dent->type),
283 		       le16_to_cpu(dent->nlen));
284 
285 		fname_name(&nm) = dent->name;
286 		fname_len(&nm) = le16_to_cpu(dent->nlen);
287 		kfree(pdent);
288 		pdent = dent;
289 		key_read(c, &dent->key, &key);
290 	}
291 	kfree(pdent);
292 }
293 
294 void ubifs_dump_node(const struct ubifs_info *c, const void *node, int node_len)
295 {
296 	int i, n, type, safe_len, max_node_len, min_node_len;
297 	union ubifs_key key;
298 	const struct ubifs_ch *ch = node;
299 	char key_buf[DBG_KEY_BUF_LEN];
300 
301 	/* If the magic is incorrect, just hexdump the first bytes */
302 	if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) {
303 		pr_err("Not a node, first %zu bytes:", UBIFS_CH_SZ);
304 		print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 32, 1,
305 			       (void *)node, UBIFS_CH_SZ, 1);
306 		return;
307 	}
308 
309 	/* Skip dumping unknown type node */
310 	type = ch->node_type;
311 	if (type < 0 || type >= UBIFS_NODE_TYPES_CNT) {
312 		pr_err("node type %d was not recognized\n", type);
313 		return;
314 	}
315 
316 	spin_lock(&dbg_lock);
317 	dump_ch(node);
318 
319 	if (c->ranges[type].max_len == 0) {
320 		max_node_len = min_node_len = c->ranges[type].len;
321 	} else {
322 		max_node_len = c->ranges[type].max_len;
323 		min_node_len = c->ranges[type].min_len;
324 	}
325 	safe_len = le32_to_cpu(ch->len);
326 	safe_len = safe_len > 0 ? safe_len : 0;
327 	safe_len = min3(safe_len, max_node_len, node_len);
328 	if (safe_len < min_node_len) {
329 		pr_err("node len(%d) is too short for %s, left %d bytes:\n",
330 		       safe_len, dbg_ntype(type),
331 		       safe_len > UBIFS_CH_SZ ?
332 		       safe_len - (int)UBIFS_CH_SZ : 0);
333 		if (safe_len > UBIFS_CH_SZ)
334 			print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 32, 1,
335 				       (void *)node + UBIFS_CH_SZ,
336 				       safe_len - UBIFS_CH_SZ, 0);
337 		goto out_unlock;
338 	}
339 	if (safe_len != le32_to_cpu(ch->len))
340 		pr_err("\ttruncated node length      %d\n", safe_len);
341 
342 	switch (type) {
343 	case UBIFS_PAD_NODE:
344 	{
345 		const struct ubifs_pad_node *pad = node;
346 
347 		pr_err("\tpad_len        %u\n", le32_to_cpu(pad->pad_len));
348 		break;
349 	}
350 	case UBIFS_SB_NODE:
351 	{
352 		const struct ubifs_sb_node *sup = node;
353 		unsigned int sup_flags = le32_to_cpu(sup->flags);
354 
355 		pr_err("\tkey_hash       %d (%s)\n",
356 		       (int)sup->key_hash, get_key_hash(sup->key_hash));
357 		pr_err("\tkey_fmt        %d (%s)\n",
358 		       (int)sup->key_fmt, get_key_fmt(sup->key_fmt));
359 		pr_err("\tflags          %#x\n", sup_flags);
360 		pr_err("\tbig_lpt        %u\n",
361 		       !!(sup_flags & UBIFS_FLG_BIGLPT));
362 		pr_err("\tspace_fixup    %u\n",
363 		       !!(sup_flags & UBIFS_FLG_SPACE_FIXUP));
364 		pr_err("\tmin_io_size    %u\n", le32_to_cpu(sup->min_io_size));
365 		pr_err("\tleb_size       %u\n", le32_to_cpu(sup->leb_size));
366 		pr_err("\tleb_cnt        %u\n", le32_to_cpu(sup->leb_cnt));
367 		pr_err("\tmax_leb_cnt    %u\n", le32_to_cpu(sup->max_leb_cnt));
368 		pr_err("\tmax_bud_bytes  %llu\n",
369 		       (unsigned long long)le64_to_cpu(sup->max_bud_bytes));
370 		pr_err("\tlog_lebs       %u\n", le32_to_cpu(sup->log_lebs));
371 		pr_err("\tlpt_lebs       %u\n", le32_to_cpu(sup->lpt_lebs));
372 		pr_err("\torph_lebs      %u\n", le32_to_cpu(sup->orph_lebs));
373 		pr_err("\tjhead_cnt      %u\n", le32_to_cpu(sup->jhead_cnt));
374 		pr_err("\tfanout         %u\n", le32_to_cpu(sup->fanout));
375 		pr_err("\tlsave_cnt      %u\n", le32_to_cpu(sup->lsave_cnt));
376 		pr_err("\tdefault_compr  %u\n",
377 		       (int)le16_to_cpu(sup->default_compr));
378 		pr_err("\trp_size        %llu\n",
379 		       (unsigned long long)le64_to_cpu(sup->rp_size));
380 		pr_err("\trp_uid         %u\n", le32_to_cpu(sup->rp_uid));
381 		pr_err("\trp_gid         %u\n", le32_to_cpu(sup->rp_gid));
382 		pr_err("\tfmt_version    %u\n", le32_to_cpu(sup->fmt_version));
383 		pr_err("\ttime_gran      %u\n", le32_to_cpu(sup->time_gran));
384 		pr_err("\tUUID           %pUB\n", sup->uuid);
385 		break;
386 	}
387 	case UBIFS_MST_NODE:
388 	{
389 		const struct ubifs_mst_node *mst = node;
390 
391 		pr_err("\thighest_inum   %llu\n",
392 		       (unsigned long long)le64_to_cpu(mst->highest_inum));
393 		pr_err("\tcommit number  %llu\n",
394 		       (unsigned long long)le64_to_cpu(mst->cmt_no));
395 		pr_err("\tflags          %#x\n", le32_to_cpu(mst->flags));
396 		pr_err("\tlog_lnum       %u\n", le32_to_cpu(mst->log_lnum));
397 		pr_err("\troot_lnum      %u\n", le32_to_cpu(mst->root_lnum));
398 		pr_err("\troot_offs      %u\n", le32_to_cpu(mst->root_offs));
399 		pr_err("\troot_len       %u\n", le32_to_cpu(mst->root_len));
400 		pr_err("\tgc_lnum        %u\n", le32_to_cpu(mst->gc_lnum));
401 		pr_err("\tihead_lnum     %u\n", le32_to_cpu(mst->ihead_lnum));
402 		pr_err("\tihead_offs     %u\n", le32_to_cpu(mst->ihead_offs));
403 		pr_err("\tindex_size     %llu\n",
404 		       (unsigned long long)le64_to_cpu(mst->index_size));
405 		pr_err("\tlpt_lnum       %u\n", le32_to_cpu(mst->lpt_lnum));
406 		pr_err("\tlpt_offs       %u\n", le32_to_cpu(mst->lpt_offs));
407 		pr_err("\tnhead_lnum     %u\n", le32_to_cpu(mst->nhead_lnum));
408 		pr_err("\tnhead_offs     %u\n", le32_to_cpu(mst->nhead_offs));
409 		pr_err("\tltab_lnum      %u\n", le32_to_cpu(mst->ltab_lnum));
410 		pr_err("\tltab_offs      %u\n", le32_to_cpu(mst->ltab_offs));
411 		pr_err("\tlsave_lnum     %u\n", le32_to_cpu(mst->lsave_lnum));
412 		pr_err("\tlsave_offs     %u\n", le32_to_cpu(mst->lsave_offs));
413 		pr_err("\tlscan_lnum     %u\n", le32_to_cpu(mst->lscan_lnum));
414 		pr_err("\tleb_cnt        %u\n", le32_to_cpu(mst->leb_cnt));
415 		pr_err("\tempty_lebs     %u\n", le32_to_cpu(mst->empty_lebs));
416 		pr_err("\tidx_lebs       %u\n", le32_to_cpu(mst->idx_lebs));
417 		pr_err("\ttotal_free     %llu\n",
418 		       (unsigned long long)le64_to_cpu(mst->total_free));
419 		pr_err("\ttotal_dirty    %llu\n",
420 		       (unsigned long long)le64_to_cpu(mst->total_dirty));
421 		pr_err("\ttotal_used     %llu\n",
422 		       (unsigned long long)le64_to_cpu(mst->total_used));
423 		pr_err("\ttotal_dead     %llu\n",
424 		       (unsigned long long)le64_to_cpu(mst->total_dead));
425 		pr_err("\ttotal_dark     %llu\n",
426 		       (unsigned long long)le64_to_cpu(mst->total_dark));
427 		break;
428 	}
429 	case UBIFS_REF_NODE:
430 	{
431 		const struct ubifs_ref_node *ref = node;
432 
433 		pr_err("\tlnum           %u\n", le32_to_cpu(ref->lnum));
434 		pr_err("\toffs           %u\n", le32_to_cpu(ref->offs));
435 		pr_err("\tjhead          %u\n", le32_to_cpu(ref->jhead));
436 		break;
437 	}
438 	case UBIFS_INO_NODE:
439 	{
440 		const struct ubifs_ino_node *ino = node;
441 
442 		key_read(c, &ino->key, &key);
443 		pr_err("\tkey            %s\n",
444 		       dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
445 		pr_err("\tcreat_sqnum    %llu\n",
446 		       (unsigned long long)le64_to_cpu(ino->creat_sqnum));
447 		pr_err("\tsize           %llu\n",
448 		       (unsigned long long)le64_to_cpu(ino->size));
449 		pr_err("\tnlink          %u\n", le32_to_cpu(ino->nlink));
450 		pr_err("\tatime          %lld.%u\n",
451 		       (long long)le64_to_cpu(ino->atime_sec),
452 		       le32_to_cpu(ino->atime_nsec));
453 		pr_err("\tmtime          %lld.%u\n",
454 		       (long long)le64_to_cpu(ino->mtime_sec),
455 		       le32_to_cpu(ino->mtime_nsec));
456 		pr_err("\tctime          %lld.%u\n",
457 		       (long long)le64_to_cpu(ino->ctime_sec),
458 		       le32_to_cpu(ino->ctime_nsec));
459 		pr_err("\tuid            %u\n", le32_to_cpu(ino->uid));
460 		pr_err("\tgid            %u\n", le32_to_cpu(ino->gid));
461 		pr_err("\tmode           %u\n", le32_to_cpu(ino->mode));
462 		pr_err("\tflags          %#x\n", le32_to_cpu(ino->flags));
463 		pr_err("\txattr_cnt      %u\n", le32_to_cpu(ino->xattr_cnt));
464 		pr_err("\txattr_size     %u\n", le32_to_cpu(ino->xattr_size));
465 		pr_err("\txattr_names    %u\n", le32_to_cpu(ino->xattr_names));
466 		pr_err("\tcompr_type     %#x\n",
467 		       (int)le16_to_cpu(ino->compr_type));
468 		pr_err("\tdata len       %u\n", le32_to_cpu(ino->data_len));
469 		break;
470 	}
471 	case UBIFS_DENT_NODE:
472 	case UBIFS_XENT_NODE:
473 	{
474 		const struct ubifs_dent_node *dent = node;
475 		int nlen = le16_to_cpu(dent->nlen);
476 
477 		key_read(c, &dent->key, &key);
478 		pr_err("\tkey            %s\n",
479 		       dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
480 		pr_err("\tinum           %llu\n",
481 		       (unsigned long long)le64_to_cpu(dent->inum));
482 		pr_err("\ttype           %d\n", (int)dent->type);
483 		pr_err("\tnlen           %d\n", nlen);
484 		pr_err("\tname           ");
485 
486 		if (nlen > UBIFS_MAX_NLEN ||
487 		    nlen > safe_len - UBIFS_DENT_NODE_SZ)
488 			pr_err("(bad name length, not printing, bad or corrupted node)");
489 		else {
490 			for (i = 0; i < nlen && dent->name[i]; i++)
491 				pr_cont("%c", isprint(dent->name[i]) ?
492 					dent->name[i] : '?');
493 		}
494 		pr_cont("\n");
495 
496 		break;
497 	}
498 	case UBIFS_DATA_NODE:
499 	{
500 		const struct ubifs_data_node *dn = node;
501 
502 		key_read(c, &dn->key, &key);
503 		pr_err("\tkey            %s\n",
504 		       dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
505 		pr_err("\tsize           %u\n", le32_to_cpu(dn->size));
506 		pr_err("\tcompr_typ      %d\n",
507 		       (int)le16_to_cpu(dn->compr_type));
508 		pr_err("\tdata size      %u\n",
509 		       le32_to_cpu(ch->len) - (unsigned int)UBIFS_DATA_NODE_SZ);
510 		pr_err("\tdata (length = %d):\n",
511 		       safe_len - (int)UBIFS_DATA_NODE_SZ);
512 		print_hex_dump(KERN_ERR, "\t", DUMP_PREFIX_OFFSET, 32, 1,
513 			       (void *)&dn->data,
514 			       safe_len - (int)UBIFS_DATA_NODE_SZ, 0);
515 		break;
516 	}
517 	case UBIFS_TRUN_NODE:
518 	{
519 		const struct ubifs_trun_node *trun = node;
520 
521 		pr_err("\tinum           %u\n", le32_to_cpu(trun->inum));
522 		pr_err("\told_size       %llu\n",
523 		       (unsigned long long)le64_to_cpu(trun->old_size));
524 		pr_err("\tnew_size       %llu\n",
525 		       (unsigned long long)le64_to_cpu(trun->new_size));
526 		break;
527 	}
528 	case UBIFS_IDX_NODE:
529 	{
530 		const struct ubifs_idx_node *idx = node;
531 		int max_child_cnt = (safe_len - UBIFS_IDX_NODE_SZ) /
532 				    (ubifs_idx_node_sz(c, 1) -
533 				    UBIFS_IDX_NODE_SZ);
534 
535 		n = min_t(int, le16_to_cpu(idx->child_cnt), max_child_cnt);
536 		pr_err("\tchild_cnt      %d\n", (int)le16_to_cpu(idx->child_cnt));
537 		pr_err("\tlevel          %d\n", (int)le16_to_cpu(idx->level));
538 		pr_err("\tBranches:\n");
539 
540 		for (i = 0; i < n && i < c->fanout - 1; i++) {
541 			const struct ubifs_branch *br;
542 
543 			br = ubifs_idx_branch(c, idx, i);
544 			key_read(c, &br->key, &key);
545 			pr_err("\t%d: LEB %d:%d len %d key %s\n",
546 			       i, le32_to_cpu(br->lnum), le32_to_cpu(br->offs),
547 			       le32_to_cpu(br->len),
548 			       dbg_snprintf_key(c, &key, key_buf,
549 						DBG_KEY_BUF_LEN));
550 		}
551 		break;
552 	}
553 	case UBIFS_CS_NODE:
554 		break;
555 	case UBIFS_ORPH_NODE:
556 	{
557 		const struct ubifs_orph_node *orph = node;
558 
559 		pr_err("\tcommit number  %llu\n",
560 		       (unsigned long long)
561 				le64_to_cpu(orph->cmt_no) & LLONG_MAX);
562 		pr_err("\tlast node flag %llu\n",
563 		       (unsigned long long)(le64_to_cpu(orph->cmt_no)) >> 63);
564 		n = (safe_len - UBIFS_ORPH_NODE_SZ) >> 3;
565 		pr_err("\t%d orphan inode numbers:\n", n);
566 		for (i = 0; i < n; i++)
567 			pr_err("\t  ino %llu\n",
568 			       (unsigned long long)le64_to_cpu(orph->inos[i]));
569 		break;
570 	}
571 	case UBIFS_AUTH_NODE:
572 	{
573 		break;
574 	}
575 	default:
576 		pr_err("node type %d was not recognized\n", type);
577 	}
578 
579 out_unlock:
580 	spin_unlock(&dbg_lock);
581 }
582 
583 void ubifs_dump_budget_req(const struct ubifs_budget_req *req)
584 {
585 	spin_lock(&dbg_lock);
586 	pr_err("Budgeting request: new_ino %d, dirtied_ino %d\n",
587 	       req->new_ino, req->dirtied_ino);
588 	pr_err("\tnew_ino_d   %d, dirtied_ino_d %d\n",
589 	       req->new_ino_d, req->dirtied_ino_d);
590 	pr_err("\tnew_page    %d, dirtied_page %d\n",
591 	       req->new_page, req->dirtied_page);
592 	pr_err("\tnew_dent    %d, mod_dent     %d\n",
593 	       req->new_dent, req->mod_dent);
594 	pr_err("\tidx_growth  %d\n", req->idx_growth);
595 	pr_err("\tdata_growth %d dd_growth     %d\n",
596 	       req->data_growth, req->dd_growth);
597 	spin_unlock(&dbg_lock);
598 }
599 
600 void ubifs_dump_lstats(const struct ubifs_lp_stats *lst)
601 {
602 	spin_lock(&dbg_lock);
603 	pr_err("(pid %d) Lprops statistics: empty_lebs %d, idx_lebs  %d\n",
604 	       current->pid, lst->empty_lebs, lst->idx_lebs);
605 	pr_err("\ttaken_empty_lebs %d, total_free %lld, total_dirty %lld\n",
606 	       lst->taken_empty_lebs, lst->total_free, lst->total_dirty);
607 	pr_err("\ttotal_used %lld, total_dark %lld, total_dead %lld\n",
608 	       lst->total_used, lst->total_dark, lst->total_dead);
609 	spin_unlock(&dbg_lock);
610 }
611 
612 void ubifs_dump_budg(struct ubifs_info *c, const struct ubifs_budg_info *bi)
613 {
614 	int i;
615 	struct rb_node *rb;
616 	struct ubifs_bud *bud;
617 	struct ubifs_gced_idx_leb *idx_gc;
618 	long long available, outstanding, free;
619 
620 	spin_lock(&c->space_lock);
621 	spin_lock(&dbg_lock);
622 	pr_err("(pid %d) Budgeting info: data budget sum %lld, total budget sum %lld\n",
623 	       current->pid, bi->data_growth + bi->dd_growth,
624 	       bi->data_growth + bi->dd_growth + bi->idx_growth);
625 	pr_err("\tbudg_data_growth %lld, budg_dd_growth %lld, budg_idx_growth %lld\n",
626 	       bi->data_growth, bi->dd_growth, bi->idx_growth);
627 	pr_err("\tmin_idx_lebs %d, old_idx_sz %llu, uncommitted_idx %lld\n",
628 	       bi->min_idx_lebs, bi->old_idx_sz, bi->uncommitted_idx);
629 	pr_err("\tpage_budget %d, inode_budget %d, dent_budget %d\n",
630 	       bi->page_budget, bi->inode_budget, bi->dent_budget);
631 	pr_err("\tnospace %u, nospace_rp %u\n", bi->nospace, bi->nospace_rp);
632 	pr_err("\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n",
633 	       c->dark_wm, c->dead_wm, c->max_idx_node_sz);
634 
635 	if (bi != &c->bi)
636 		/*
637 		 * If we are dumping saved budgeting data, do not print
638 		 * additional information which is about the current state, not
639 		 * the old one which corresponded to the saved budgeting data.
640 		 */
641 		goto out_unlock;
642 
643 	pr_err("\tfreeable_cnt %d, calc_idx_sz %lld, idx_gc_cnt %d\n",
644 	       c->freeable_cnt, c->calc_idx_sz, c->idx_gc_cnt);
645 	pr_err("\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, clean_zn_cnt %ld\n",
646 	       atomic_long_read(&c->dirty_pg_cnt),
647 	       atomic_long_read(&c->dirty_zn_cnt),
648 	       atomic_long_read(&c->clean_zn_cnt));
649 	pr_err("\tgc_lnum %d, ihead_lnum %d\n", c->gc_lnum, c->ihead_lnum);
650 
651 	/* If we are in R/O mode, journal heads do not exist */
652 	if (c->jheads)
653 		for (i = 0; i < c->jhead_cnt; i++)
654 			pr_err("\tjhead %s\t LEB %d\n",
655 			       dbg_jhead(c->jheads[i].wbuf.jhead),
656 			       c->jheads[i].wbuf.lnum);
657 	for (rb = rb_first(&c->buds); rb; rb = rb_next(rb)) {
658 		bud = rb_entry(rb, struct ubifs_bud, rb);
659 		pr_err("\tbud LEB %d\n", bud->lnum);
660 	}
661 	list_for_each_entry(bud, &c->old_buds, list)
662 		pr_err("\told bud LEB %d\n", bud->lnum);
663 	list_for_each_entry(idx_gc, &c->idx_gc, list)
664 		pr_err("\tGC'ed idx LEB %d unmap %d\n",
665 		       idx_gc->lnum, idx_gc->unmap);
666 	pr_err("\tcommit state %d\n", c->cmt_state);
667 
668 	/* Print budgeting predictions */
669 	available = ubifs_calc_available(c, c->bi.min_idx_lebs);
670 	outstanding = c->bi.data_growth + c->bi.dd_growth;
671 	free = ubifs_get_free_space_nolock(c);
672 	pr_err("Budgeting predictions:\n");
673 	pr_err("\tavailable: %lld, outstanding %lld, free %lld\n",
674 	       available, outstanding, free);
675 out_unlock:
676 	spin_unlock(&dbg_lock);
677 	spin_unlock(&c->space_lock);
678 }
679 
680 void ubifs_dump_lprop(const struct ubifs_info *c, const struct ubifs_lprops *lp)
681 {
682 	int i, spc, dark = 0, dead = 0;
683 	struct rb_node *rb;
684 	struct ubifs_bud *bud;
685 
686 	spc = lp->free + lp->dirty;
687 	if (spc < c->dead_wm)
688 		dead = spc;
689 	else
690 		dark = ubifs_calc_dark(c, spc);
691 
692 	if (lp->flags & LPROPS_INDEX)
693 		pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d flags %#x (",
694 		       lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc,
695 		       lp->flags);
696 	else
697 		pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d dark %-4d dead %-4d nodes fit %-3d flags %#-4x (",
698 		       lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc,
699 		       dark, dead, (int)(spc / UBIFS_MAX_NODE_SZ), lp->flags);
700 
701 	if (lp->flags & LPROPS_TAKEN) {
702 		if (lp->flags & LPROPS_INDEX)
703 			pr_cont("index, taken");
704 		else
705 			pr_cont("taken");
706 	} else {
707 		const char *s;
708 
709 		if (lp->flags & LPROPS_INDEX) {
710 			switch (lp->flags & LPROPS_CAT_MASK) {
711 			case LPROPS_DIRTY_IDX:
712 				s = "dirty index";
713 				break;
714 			case LPROPS_FRDI_IDX:
715 				s = "freeable index";
716 				break;
717 			default:
718 				s = "index";
719 			}
720 		} else {
721 			switch (lp->flags & LPROPS_CAT_MASK) {
722 			case LPROPS_UNCAT:
723 				s = "not categorized";
724 				break;
725 			case LPROPS_DIRTY:
726 				s = "dirty";
727 				break;
728 			case LPROPS_FREE:
729 				s = "free";
730 				break;
731 			case LPROPS_EMPTY:
732 				s = "empty";
733 				break;
734 			case LPROPS_FREEABLE:
735 				s = "freeable";
736 				break;
737 			default:
738 				s = NULL;
739 				break;
740 			}
741 		}
742 		pr_cont("%s", s);
743 	}
744 
745 	for (rb = rb_first((struct rb_root *)&c->buds); rb; rb = rb_next(rb)) {
746 		bud = rb_entry(rb, struct ubifs_bud, rb);
747 		if (bud->lnum == lp->lnum) {
748 			int head = 0;
749 			for (i = 0; i < c->jhead_cnt; i++) {
750 				/*
751 				 * Note, if we are in R/O mode or in the middle
752 				 * of mounting/re-mounting, the write-buffers do
753 				 * not exist.
754 				 */
755 				if (c->jheads &&
756 				    lp->lnum == c->jheads[i].wbuf.lnum) {
757 					pr_cont(", jhead %s", dbg_jhead(i));
758 					head = 1;
759 				}
760 			}
761 			if (!head)
762 				pr_cont(", bud of jhead %s",
763 				       dbg_jhead(bud->jhead));
764 		}
765 	}
766 	if (lp->lnum == c->gc_lnum)
767 		pr_cont(", GC LEB");
768 	pr_cont(")\n");
769 }
770 
771 void ubifs_dump_lprops(struct ubifs_info *c)
772 {
773 	int lnum, err;
774 	struct ubifs_lprops lp;
775 	struct ubifs_lp_stats lst;
776 
777 	pr_err("(pid %d) start dumping LEB properties\n", current->pid);
778 	ubifs_get_lp_stats(c, &lst);
779 	ubifs_dump_lstats(&lst);
780 
781 	for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) {
782 		err = ubifs_read_one_lp(c, lnum, &lp);
783 		if (err) {
784 			ubifs_err(c, "cannot read lprops for LEB %d", lnum);
785 			continue;
786 		}
787 
788 		ubifs_dump_lprop(c, &lp);
789 	}
790 	pr_err("(pid %d) finish dumping LEB properties\n", current->pid);
791 }
792 
793 void ubifs_dump_lpt_info(struct ubifs_info *c)
794 {
795 	int i;
796 
797 	spin_lock(&dbg_lock);
798 	pr_err("(pid %d) dumping LPT information\n", current->pid);
799 	pr_err("\tlpt_sz:        %lld\n", c->lpt_sz);
800 	pr_err("\tpnode_sz:      %d\n", c->pnode_sz);
801 	pr_err("\tnnode_sz:      %d\n", c->nnode_sz);
802 	pr_err("\tltab_sz:       %d\n", c->ltab_sz);
803 	pr_err("\tlsave_sz:      %d\n", c->lsave_sz);
804 	pr_err("\tbig_lpt:       %u\n", c->big_lpt);
805 	pr_err("\tlpt_hght:      %d\n", c->lpt_hght);
806 	pr_err("\tpnode_cnt:     %d\n", c->pnode_cnt);
807 	pr_err("\tnnode_cnt:     %d\n", c->nnode_cnt);
808 	pr_err("\tdirty_pn_cnt:  %d\n", c->dirty_pn_cnt);
809 	pr_err("\tdirty_nn_cnt:  %d\n", c->dirty_nn_cnt);
810 	pr_err("\tlsave_cnt:     %d\n", c->lsave_cnt);
811 	pr_err("\tspace_bits:    %d\n", c->space_bits);
812 	pr_err("\tlpt_lnum_bits: %d\n", c->lpt_lnum_bits);
813 	pr_err("\tlpt_offs_bits: %d\n", c->lpt_offs_bits);
814 	pr_err("\tlpt_spc_bits:  %d\n", c->lpt_spc_bits);
815 	pr_err("\tpcnt_bits:     %d\n", c->pcnt_bits);
816 	pr_err("\tlnum_bits:     %d\n", c->lnum_bits);
817 	pr_err("\tLPT root is at %d:%d\n", c->lpt_lnum, c->lpt_offs);
818 	pr_err("\tLPT head is at %d:%d\n",
819 	       c->nhead_lnum, c->nhead_offs);
820 	pr_err("\tLPT ltab is at %d:%d\n", c->ltab_lnum, c->ltab_offs);
821 	if (c->big_lpt)
822 		pr_err("\tLPT lsave is at %d:%d\n",
823 		       c->lsave_lnum, c->lsave_offs);
824 	for (i = 0; i < c->lpt_lebs; i++)
825 		pr_err("\tLPT LEB %d free %d dirty %d tgc %d cmt %d\n",
826 		       i + c->lpt_first, c->ltab[i].free, c->ltab[i].dirty,
827 		       c->ltab[i].tgc, c->ltab[i].cmt);
828 	spin_unlock(&dbg_lock);
829 }
830 
831 void ubifs_dump_sleb(const struct ubifs_info *c,
832 		     const struct ubifs_scan_leb *sleb, int offs)
833 {
834 	struct ubifs_scan_node *snod;
835 
836 	pr_err("(pid %d) start dumping scanned data from LEB %d:%d\n",
837 	       current->pid, sleb->lnum, offs);
838 
839 	list_for_each_entry(snod, &sleb->nodes, list) {
840 		cond_resched();
841 		pr_err("Dumping node at LEB %d:%d len %d\n",
842 		       sleb->lnum, snod->offs, snod->len);
843 		ubifs_dump_node(c, snod->node);
844 	}
845 }
846 
847 void ubifs_dump_leb(const struct ubifs_info *c, int lnum)
848 {
849 	struct ubifs_scan_leb *sleb;
850 	struct ubifs_scan_node *snod;
851 	void *buf;
852 
853 	pr_err("(pid %d) start dumping LEB %d\n", current->pid, lnum);
854 
855 	buf = __vmalloc(c->leb_size, GFP_NOFS);
856 	if (!buf) {
857 		ubifs_err(c, "cannot allocate memory for dumping LEB %d", lnum);
858 		return;
859 	}
860 
861 	sleb = ubifs_scan(c, lnum, 0, buf, 0);
862 	if (IS_ERR(sleb)) {
863 		ubifs_err(c, "scan error %d", (int)PTR_ERR(sleb));
864 		goto out;
865 	}
866 
867 	pr_err("LEB %d has %d nodes ending at %d\n", lnum,
868 	       sleb->nodes_cnt, sleb->endpt);
869 
870 	list_for_each_entry(snod, &sleb->nodes, list) {
871 		cond_resched();
872 		pr_err("Dumping node at LEB %d:%d len %d\n", lnum,
873 		       snod->offs, snod->len);
874 		ubifs_dump_node(c, snod->node);
875 	}
876 
877 	pr_err("(pid %d) finish dumping LEB %d\n", current->pid, lnum);
878 	ubifs_scan_destroy(sleb);
879 
880 out:
881 	vfree(buf);
882 	return;
883 }
884 
885 void ubifs_dump_znode(const struct ubifs_info *c,
886 		      const struct ubifs_znode *znode)
887 {
888 	int n;
889 	const struct ubifs_zbranch *zbr;
890 	char key_buf[DBG_KEY_BUF_LEN];
891 
892 	spin_lock(&dbg_lock);
893 	if (znode->parent)
894 		zbr = &znode->parent->zbranch[znode->iip];
895 	else
896 		zbr = &c->zroot;
897 
898 	pr_err("znode %p, LEB %d:%d len %d parent %p iip %d level %d child_cnt %d flags %lx\n",
899 	       znode, zbr->lnum, zbr->offs, zbr->len, znode->parent, znode->iip,
900 	       znode->level, znode->child_cnt, znode->flags);
901 
902 	if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
903 		spin_unlock(&dbg_lock);
904 		return;
905 	}
906 
907 	pr_err("zbranches:\n");
908 	for (n = 0; n < znode->child_cnt; n++) {
909 		zbr = &znode->zbranch[n];
910 		if (znode->level > 0)
911 			pr_err("\t%d: znode %p LEB %d:%d len %d key %s\n",
912 			       n, zbr->znode, zbr->lnum, zbr->offs, zbr->len,
913 			       dbg_snprintf_key(c, &zbr->key, key_buf,
914 						DBG_KEY_BUF_LEN));
915 		else
916 			pr_err("\t%d: LNC %p LEB %d:%d len %d key %s\n",
917 			       n, zbr->znode, zbr->lnum, zbr->offs, zbr->len,
918 			       dbg_snprintf_key(c, &zbr->key, key_buf,
919 						DBG_KEY_BUF_LEN));
920 	}
921 	spin_unlock(&dbg_lock);
922 }
923 
924 void ubifs_dump_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat)
925 {
926 	int i;
927 
928 	pr_err("(pid %d) start dumping heap cat %d (%d elements)\n",
929 	       current->pid, cat, heap->cnt);
930 	for (i = 0; i < heap->cnt; i++) {
931 		struct ubifs_lprops *lprops = heap->arr[i];
932 
933 		pr_err("\t%d. LEB %d hpos %d free %d dirty %d flags %d\n",
934 		       i, lprops->lnum, lprops->hpos, lprops->free,
935 		       lprops->dirty, lprops->flags);
936 	}
937 	pr_err("(pid %d) finish dumping heap\n", current->pid);
938 }
939 
940 void ubifs_dump_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode,
941 		      struct ubifs_nnode *parent, int iip)
942 {
943 	int i;
944 
945 	pr_err("(pid %d) dumping pnode:\n", current->pid);
946 	pr_err("\taddress %zx parent %zx cnext %zx\n",
947 	       (size_t)pnode, (size_t)parent, (size_t)pnode->cnext);
948 	pr_err("\tflags %lu iip %d level %d num %d\n",
949 	       pnode->flags, iip, pnode->level, pnode->num);
950 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
951 		struct ubifs_lprops *lp = &pnode->lprops[i];
952 
953 		pr_err("\t%d: free %d dirty %d flags %d lnum %d\n",
954 		       i, lp->free, lp->dirty, lp->flags, lp->lnum);
955 	}
956 }
957 
958 void ubifs_dump_tnc(struct ubifs_info *c)
959 {
960 	struct ubifs_znode *znode;
961 	int level;
962 
963 	pr_err("\n");
964 	pr_err("(pid %d) start dumping TNC tree\n", current->pid);
965 	znode = ubifs_tnc_levelorder_next(c, c->zroot.znode, NULL);
966 	level = znode->level;
967 	pr_err("== Level %d ==\n", level);
968 	while (znode) {
969 		if (level != znode->level) {
970 			level = znode->level;
971 			pr_err("== Level %d ==\n", level);
972 		}
973 		ubifs_dump_znode(c, znode);
974 		znode = ubifs_tnc_levelorder_next(c, c->zroot.znode, znode);
975 	}
976 	pr_err("(pid %d) finish dumping TNC tree\n", current->pid);
977 }
978 
979 static int dump_znode(struct ubifs_info *c, struct ubifs_znode *znode,
980 		      void *priv)
981 {
982 	ubifs_dump_znode(c, znode);
983 	return 0;
984 }
985 
986 /**
987  * ubifs_dump_index - dump the on-flash index.
988  * @c: UBIFS file-system description object
989  *
990  * This function dumps whole UBIFS indexing B-tree, unlike 'ubifs_dump_tnc()'
991  * which dumps only in-memory znodes and does not read znodes which from flash.
992  */
993 void ubifs_dump_index(struct ubifs_info *c)
994 {
995 	dbg_walk_index(c, NULL, dump_znode, NULL);
996 }
997 
998 /**
999  * dbg_save_space_info - save information about flash space.
1000  * @c: UBIFS file-system description object
1001  *
1002  * This function saves information about UBIFS free space, dirty space, etc, in
1003  * order to check it later.
1004  */
1005 void dbg_save_space_info(struct ubifs_info *c)
1006 {
1007 	struct ubifs_debug_info *d = c->dbg;
1008 	int freeable_cnt;
1009 
1010 	spin_lock(&c->space_lock);
1011 	memcpy(&d->saved_lst, &c->lst, sizeof(struct ubifs_lp_stats));
1012 	memcpy(&d->saved_bi, &c->bi, sizeof(struct ubifs_budg_info));
1013 	d->saved_idx_gc_cnt = c->idx_gc_cnt;
1014 
1015 	/*
1016 	 * We use a dirty hack here and zero out @c->freeable_cnt, because it
1017 	 * affects the free space calculations, and UBIFS might not know about
1018 	 * all freeable eraseblocks. Indeed, we know about freeable eraseblocks
1019 	 * only when we read their lprops, and we do this only lazily, upon the
1020 	 * need. So at any given point of time @c->freeable_cnt might be not
1021 	 * exactly accurate.
1022 	 *
1023 	 * Just one example about the issue we hit when we did not zero
1024 	 * @c->freeable_cnt.
1025 	 * 1. The file-system is mounted R/O, c->freeable_cnt is %0. We save the
1026 	 *    amount of free space in @d->saved_free
1027 	 * 2. We re-mount R/W, which makes UBIFS to read the "lsave"
1028 	 *    information from flash, where we cache LEBs from various
1029 	 *    categories ('ubifs_remount_fs()' -> 'ubifs_lpt_init()'
1030 	 *    -> 'lpt_init_wr()' -> 'read_lsave()' -> 'ubifs_lpt_lookup()'
1031 	 *    -> 'ubifs_get_pnode()' -> 'update_cats()'
1032 	 *    -> 'ubifs_add_to_cat()').
1033 	 * 3. Lsave contains a freeable eraseblock, and @c->freeable_cnt
1034 	 *    becomes %1.
1035 	 * 4. We calculate the amount of free space when the re-mount is
1036 	 *    finished in 'dbg_check_space_info()' and it does not match
1037 	 *    @d->saved_free.
1038 	 */
1039 	freeable_cnt = c->freeable_cnt;
1040 	c->freeable_cnt = 0;
1041 	d->saved_free = ubifs_get_free_space_nolock(c);
1042 	c->freeable_cnt = freeable_cnt;
1043 	spin_unlock(&c->space_lock);
1044 }
1045 
1046 /**
1047  * dbg_check_space_info - check flash space information.
1048  * @c: UBIFS file-system description object
1049  *
1050  * This function compares current flash space information with the information
1051  * which was saved when the 'dbg_save_space_info()' function was called.
1052  * Returns zero if the information has not changed, and %-EINVAL if it has
1053  * changed.
1054  */
1055 int dbg_check_space_info(struct ubifs_info *c)
1056 {
1057 	struct ubifs_debug_info *d = c->dbg;
1058 	struct ubifs_lp_stats lst;
1059 	long long free;
1060 	int freeable_cnt;
1061 
1062 	spin_lock(&c->space_lock);
1063 	freeable_cnt = c->freeable_cnt;
1064 	c->freeable_cnt = 0;
1065 	free = ubifs_get_free_space_nolock(c);
1066 	c->freeable_cnt = freeable_cnt;
1067 	spin_unlock(&c->space_lock);
1068 
1069 	if (free != d->saved_free) {
1070 		ubifs_err(c, "free space changed from %lld to %lld",
1071 			  d->saved_free, free);
1072 		goto out;
1073 	}
1074 
1075 	return 0;
1076 
1077 out:
1078 	ubifs_msg(c, "saved lprops statistics dump");
1079 	ubifs_dump_lstats(&d->saved_lst);
1080 	ubifs_msg(c, "saved budgeting info dump");
1081 	ubifs_dump_budg(c, &d->saved_bi);
1082 	ubifs_msg(c, "saved idx_gc_cnt %d", d->saved_idx_gc_cnt);
1083 	ubifs_msg(c, "current lprops statistics dump");
1084 	ubifs_get_lp_stats(c, &lst);
1085 	ubifs_dump_lstats(&lst);
1086 	ubifs_msg(c, "current budgeting info dump");
1087 	ubifs_dump_budg(c, &c->bi);
1088 	dump_stack();
1089 	return -EINVAL;
1090 }
1091 
1092 /**
1093  * dbg_check_synced_i_size - check synchronized inode size.
1094  * @c: UBIFS file-system description object
1095  * @inode: inode to check
1096  *
1097  * If inode is clean, synchronized inode size has to be equivalent to current
1098  * inode size. This function has to be called only for locked inodes (@i_mutex
1099  * has to be locked). Returns %0 if synchronized inode size if correct, and
1100  * %-EINVAL if not.
1101  */
1102 int dbg_check_synced_i_size(const struct ubifs_info *c, struct inode *inode)
1103 {
1104 	int err = 0;
1105 	struct ubifs_inode *ui = ubifs_inode(inode);
1106 
1107 	if (!dbg_is_chk_gen(c))
1108 		return 0;
1109 	if (!S_ISREG(inode->i_mode))
1110 		return 0;
1111 
1112 	mutex_lock(&ui->ui_mutex);
1113 	spin_lock(&ui->ui_lock);
1114 	if (ui->ui_size != ui->synced_i_size && !ui->dirty) {
1115 		ubifs_err(c, "ui_size is %lld, synced_i_size is %lld, but inode is clean",
1116 			  ui->ui_size, ui->synced_i_size);
1117 		ubifs_err(c, "i_ino %lu, i_mode %#x, i_size %lld", inode->i_ino,
1118 			  inode->i_mode, i_size_read(inode));
1119 		dump_stack();
1120 		err = -EINVAL;
1121 	}
1122 	spin_unlock(&ui->ui_lock);
1123 	mutex_unlock(&ui->ui_mutex);
1124 	return err;
1125 }
1126 
1127 /*
1128  * dbg_check_dir - check directory inode size and link count.
1129  * @c: UBIFS file-system description object
1130  * @dir: the directory to calculate size for
1131  * @size: the result is returned here
1132  *
1133  * This function makes sure that directory size and link count are correct.
1134  * Returns zero in case of success and a negative error code in case of
1135  * failure.
1136  *
1137  * Note, it is good idea to make sure the @dir->i_mutex is locked before
1138  * calling this function.
1139  */
1140 int dbg_check_dir(struct ubifs_info *c, const struct inode *dir)
1141 {
1142 	unsigned int nlink = 2;
1143 	union ubifs_key key;
1144 	struct ubifs_dent_node *dent, *pdent = NULL;
1145 	struct fscrypt_name nm = {0};
1146 	loff_t size = UBIFS_INO_NODE_SZ;
1147 
1148 	if (!dbg_is_chk_gen(c))
1149 		return 0;
1150 
1151 	if (!S_ISDIR(dir->i_mode))
1152 		return 0;
1153 
1154 	lowest_dent_key(c, &key, dir->i_ino);
1155 	while (1) {
1156 		int err;
1157 
1158 		dent = ubifs_tnc_next_ent(c, &key, &nm);
1159 		if (IS_ERR(dent)) {
1160 			err = PTR_ERR(dent);
1161 			if (err == -ENOENT)
1162 				break;
1163 			kfree(pdent);
1164 			return err;
1165 		}
1166 
1167 		fname_name(&nm) = dent->name;
1168 		fname_len(&nm) = le16_to_cpu(dent->nlen);
1169 		size += CALC_DENT_SIZE(fname_len(&nm));
1170 		if (dent->type == UBIFS_ITYPE_DIR)
1171 			nlink += 1;
1172 		kfree(pdent);
1173 		pdent = dent;
1174 		key_read(c, &dent->key, &key);
1175 	}
1176 	kfree(pdent);
1177 
1178 	if (i_size_read(dir) != size) {
1179 		ubifs_err(c, "directory inode %lu has size %llu, but calculated size is %llu",
1180 			  dir->i_ino, (unsigned long long)i_size_read(dir),
1181 			  (unsigned long long)size);
1182 		ubifs_dump_inode(c, dir);
1183 		dump_stack();
1184 		return -EINVAL;
1185 	}
1186 	if (dir->i_nlink != nlink) {
1187 		ubifs_err(c, "directory inode %lu has nlink %u, but calculated nlink is %u",
1188 			  dir->i_ino, dir->i_nlink, nlink);
1189 		ubifs_dump_inode(c, dir);
1190 		dump_stack();
1191 		return -EINVAL;
1192 	}
1193 
1194 	return 0;
1195 }
1196 
1197 /**
1198  * dbg_check_key_order - make sure that colliding keys are properly ordered.
1199  * @c: UBIFS file-system description object
1200  * @zbr1: first zbranch
1201  * @zbr2: following zbranch
1202  *
1203  * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of
1204  * names of the direntries/xentries which are referred by the keys. This
1205  * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes
1206  * sure the name of direntry/xentry referred by @zbr1 is less than
1207  * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not,
1208  * and a negative error code in case of failure.
1209  */
1210 static int dbg_check_key_order(struct ubifs_info *c, struct ubifs_zbranch *zbr1,
1211 			       struct ubifs_zbranch *zbr2)
1212 {
1213 	int err, nlen1, nlen2, cmp;
1214 	struct ubifs_dent_node *dent1, *dent2;
1215 	union ubifs_key key;
1216 	char key_buf[DBG_KEY_BUF_LEN];
1217 
1218 	ubifs_assert(c, !keys_cmp(c, &zbr1->key, &zbr2->key));
1219 	dent1 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1220 	if (!dent1)
1221 		return -ENOMEM;
1222 	dent2 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1223 	if (!dent2) {
1224 		err = -ENOMEM;
1225 		goto out_free;
1226 	}
1227 
1228 	err = ubifs_tnc_read_node(c, zbr1, dent1);
1229 	if (err)
1230 		goto out_free;
1231 	err = ubifs_validate_entry(c, dent1);
1232 	if (err)
1233 		goto out_free;
1234 
1235 	err = ubifs_tnc_read_node(c, zbr2, dent2);
1236 	if (err)
1237 		goto out_free;
1238 	err = ubifs_validate_entry(c, dent2);
1239 	if (err)
1240 		goto out_free;
1241 
1242 	/* Make sure node keys are the same as in zbranch */
1243 	err = 1;
1244 	key_read(c, &dent1->key, &key);
1245 	if (keys_cmp(c, &zbr1->key, &key)) {
1246 		ubifs_err(c, "1st entry at %d:%d has key %s", zbr1->lnum,
1247 			  zbr1->offs, dbg_snprintf_key(c, &key, key_buf,
1248 						       DBG_KEY_BUF_LEN));
1249 		ubifs_err(c, "but it should have key %s according to tnc",
1250 			  dbg_snprintf_key(c, &zbr1->key, key_buf,
1251 					   DBG_KEY_BUF_LEN));
1252 		ubifs_dump_node(c, dent1);
1253 		goto out_free;
1254 	}
1255 
1256 	key_read(c, &dent2->key, &key);
1257 	if (keys_cmp(c, &zbr2->key, &key)) {
1258 		ubifs_err(c, "2nd entry at %d:%d has key %s", zbr1->lnum,
1259 			  zbr1->offs, dbg_snprintf_key(c, &key, key_buf,
1260 						       DBG_KEY_BUF_LEN));
1261 		ubifs_err(c, "but it should have key %s according to tnc",
1262 			  dbg_snprintf_key(c, &zbr2->key, key_buf,
1263 					   DBG_KEY_BUF_LEN));
1264 		ubifs_dump_node(c, dent2);
1265 		goto out_free;
1266 	}
1267 
1268 	nlen1 = le16_to_cpu(dent1->nlen);
1269 	nlen2 = le16_to_cpu(dent2->nlen);
1270 
1271 	cmp = memcmp(dent1->name, dent2->name, min_t(int, nlen1, nlen2));
1272 	if (cmp < 0 || (cmp == 0 && nlen1 < nlen2)) {
1273 		err = 0;
1274 		goto out_free;
1275 	}
1276 	if (cmp == 0 && nlen1 == nlen2)
1277 		ubifs_err(c, "2 xent/dent nodes with the same name");
1278 	else
1279 		ubifs_err(c, "bad order of colliding key %s",
1280 			  dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
1281 
1282 	ubifs_msg(c, "first node at %d:%d\n", zbr1->lnum, zbr1->offs);
1283 	ubifs_dump_node(c, dent1);
1284 	ubifs_msg(c, "second node at %d:%d\n", zbr2->lnum, zbr2->offs);
1285 	ubifs_dump_node(c, dent2);
1286 
1287 out_free:
1288 	kfree(dent2);
1289 	kfree(dent1);
1290 	return err;
1291 }
1292 
1293 /**
1294  * dbg_check_znode - check if znode is all right.
1295  * @c: UBIFS file-system description object
1296  * @zbr: zbranch which points to this znode
1297  *
1298  * This function makes sure that znode referred to by @zbr is all right.
1299  * Returns zero if it is, and %-EINVAL if it is not.
1300  */
1301 static int dbg_check_znode(struct ubifs_info *c, struct ubifs_zbranch *zbr)
1302 {
1303 	struct ubifs_znode *znode = zbr->znode;
1304 	struct ubifs_znode *zp = znode->parent;
1305 	int n, err, cmp;
1306 
1307 	if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
1308 		err = 1;
1309 		goto out;
1310 	}
1311 	if (znode->level < 0) {
1312 		err = 2;
1313 		goto out;
1314 	}
1315 	if (znode->iip < 0 || znode->iip >= c->fanout) {
1316 		err = 3;
1317 		goto out;
1318 	}
1319 
1320 	if (zbr->len == 0)
1321 		/* Only dirty zbranch may have no on-flash nodes */
1322 		if (!ubifs_zn_dirty(znode)) {
1323 			err = 4;
1324 			goto out;
1325 		}
1326 
1327 	if (ubifs_zn_dirty(znode)) {
1328 		/*
1329 		 * If znode is dirty, its parent has to be dirty as well. The
1330 		 * order of the operation is important, so we have to have
1331 		 * memory barriers.
1332 		 */
1333 		smp_mb();
1334 		if (zp && !ubifs_zn_dirty(zp)) {
1335 			/*
1336 			 * The dirty flag is atomic and is cleared outside the
1337 			 * TNC mutex, so znode's dirty flag may now have
1338 			 * been cleared. The child is always cleared before the
1339 			 * parent, so we just need to check again.
1340 			 */
1341 			smp_mb();
1342 			if (ubifs_zn_dirty(znode)) {
1343 				err = 5;
1344 				goto out;
1345 			}
1346 		}
1347 	}
1348 
1349 	if (zp) {
1350 		const union ubifs_key *min, *max;
1351 
1352 		if (znode->level != zp->level - 1) {
1353 			err = 6;
1354 			goto out;
1355 		}
1356 
1357 		/* Make sure the 'parent' pointer in our znode is correct */
1358 		err = ubifs_search_zbranch(c, zp, &zbr->key, &n);
1359 		if (!err) {
1360 			/* This zbranch does not exist in the parent */
1361 			err = 7;
1362 			goto out;
1363 		}
1364 
1365 		if (znode->iip >= zp->child_cnt) {
1366 			err = 8;
1367 			goto out;
1368 		}
1369 
1370 		if (znode->iip != n) {
1371 			/* This may happen only in case of collisions */
1372 			if (keys_cmp(c, &zp->zbranch[n].key,
1373 				     &zp->zbranch[znode->iip].key)) {
1374 				err = 9;
1375 				goto out;
1376 			}
1377 			n = znode->iip;
1378 		}
1379 
1380 		/*
1381 		 * Make sure that the first key in our znode is greater than or
1382 		 * equal to the key in the pointing zbranch.
1383 		 */
1384 		min = &zbr->key;
1385 		cmp = keys_cmp(c, min, &znode->zbranch[0].key);
1386 		if (cmp == 1) {
1387 			err = 10;
1388 			goto out;
1389 		}
1390 
1391 		if (n + 1 < zp->child_cnt) {
1392 			max = &zp->zbranch[n + 1].key;
1393 
1394 			/*
1395 			 * Make sure the last key in our znode is less or
1396 			 * equivalent than the key in the zbranch which goes
1397 			 * after our pointing zbranch.
1398 			 */
1399 			cmp = keys_cmp(c, max,
1400 				&znode->zbranch[znode->child_cnt - 1].key);
1401 			if (cmp == -1) {
1402 				err = 11;
1403 				goto out;
1404 			}
1405 		}
1406 	} else {
1407 		/* This may only be root znode */
1408 		if (zbr != &c->zroot) {
1409 			err = 12;
1410 			goto out;
1411 		}
1412 	}
1413 
1414 	/*
1415 	 * Make sure that next key is greater or equivalent then the previous
1416 	 * one.
1417 	 */
1418 	for (n = 1; n < znode->child_cnt; n++) {
1419 		cmp = keys_cmp(c, &znode->zbranch[n - 1].key,
1420 			       &znode->zbranch[n].key);
1421 		if (cmp > 0) {
1422 			err = 13;
1423 			goto out;
1424 		}
1425 		if (cmp == 0) {
1426 			/* This can only be keys with colliding hash */
1427 			if (!is_hash_key(c, &znode->zbranch[n].key)) {
1428 				err = 14;
1429 				goto out;
1430 			}
1431 
1432 			if (znode->level != 0 || c->replaying)
1433 				continue;
1434 
1435 			/*
1436 			 * Colliding keys should follow binary order of
1437 			 * corresponding xentry/dentry names.
1438 			 */
1439 			err = dbg_check_key_order(c, &znode->zbranch[n - 1],
1440 						  &znode->zbranch[n]);
1441 			if (err < 0)
1442 				return err;
1443 			if (err) {
1444 				err = 15;
1445 				goto out;
1446 			}
1447 		}
1448 	}
1449 
1450 	for (n = 0; n < znode->child_cnt; n++) {
1451 		if (!znode->zbranch[n].znode &&
1452 		    (znode->zbranch[n].lnum == 0 ||
1453 		     znode->zbranch[n].len == 0)) {
1454 			err = 16;
1455 			goto out;
1456 		}
1457 
1458 		if (znode->zbranch[n].lnum != 0 &&
1459 		    znode->zbranch[n].len == 0) {
1460 			err = 17;
1461 			goto out;
1462 		}
1463 
1464 		if (znode->zbranch[n].lnum == 0 &&
1465 		    znode->zbranch[n].len != 0) {
1466 			err = 18;
1467 			goto out;
1468 		}
1469 
1470 		if (znode->zbranch[n].lnum == 0 &&
1471 		    znode->zbranch[n].offs != 0) {
1472 			err = 19;
1473 			goto out;
1474 		}
1475 
1476 		if (znode->level != 0 && znode->zbranch[n].znode)
1477 			if (znode->zbranch[n].znode->parent != znode) {
1478 				err = 20;
1479 				goto out;
1480 			}
1481 	}
1482 
1483 	return 0;
1484 
1485 out:
1486 	ubifs_err(c, "failed, error %d", err);
1487 	ubifs_msg(c, "dump of the znode");
1488 	ubifs_dump_znode(c, znode);
1489 	if (zp) {
1490 		ubifs_msg(c, "dump of the parent znode");
1491 		ubifs_dump_znode(c, zp);
1492 	}
1493 	dump_stack();
1494 	return -EINVAL;
1495 }
1496 
1497 /**
1498  * dbg_check_tnc - check TNC tree.
1499  * @c: UBIFS file-system description object
1500  * @extra: do extra checks that are possible at start commit
1501  *
1502  * This function traverses whole TNC tree and checks every znode. Returns zero
1503  * if everything is all right and %-EINVAL if something is wrong with TNC.
1504  */
1505 int dbg_check_tnc(struct ubifs_info *c, int extra)
1506 {
1507 	struct ubifs_znode *znode;
1508 	long clean_cnt = 0, dirty_cnt = 0;
1509 	int err, last;
1510 
1511 	if (!dbg_is_chk_index(c))
1512 		return 0;
1513 
1514 	ubifs_assert(c, mutex_is_locked(&c->tnc_mutex));
1515 	if (!c->zroot.znode)
1516 		return 0;
1517 
1518 	znode = ubifs_tnc_postorder_first(c->zroot.znode);
1519 	while (1) {
1520 		struct ubifs_znode *prev;
1521 		struct ubifs_zbranch *zbr;
1522 
1523 		if (!znode->parent)
1524 			zbr = &c->zroot;
1525 		else
1526 			zbr = &znode->parent->zbranch[znode->iip];
1527 
1528 		err = dbg_check_znode(c, zbr);
1529 		if (err)
1530 			return err;
1531 
1532 		if (extra) {
1533 			if (ubifs_zn_dirty(znode))
1534 				dirty_cnt += 1;
1535 			else
1536 				clean_cnt += 1;
1537 		}
1538 
1539 		prev = znode;
1540 		znode = ubifs_tnc_postorder_next(c, znode);
1541 		if (!znode)
1542 			break;
1543 
1544 		/*
1545 		 * If the last key of this znode is equivalent to the first key
1546 		 * of the next znode (collision), then check order of the keys.
1547 		 */
1548 		last = prev->child_cnt - 1;
1549 		if (prev->level == 0 && znode->level == 0 && !c->replaying &&
1550 		    !keys_cmp(c, &prev->zbranch[last].key,
1551 			      &znode->zbranch[0].key)) {
1552 			err = dbg_check_key_order(c, &prev->zbranch[last],
1553 						  &znode->zbranch[0]);
1554 			if (err < 0)
1555 				return err;
1556 			if (err) {
1557 				ubifs_msg(c, "first znode");
1558 				ubifs_dump_znode(c, prev);
1559 				ubifs_msg(c, "second znode");
1560 				ubifs_dump_znode(c, znode);
1561 				return -EINVAL;
1562 			}
1563 		}
1564 	}
1565 
1566 	if (extra) {
1567 		if (clean_cnt != atomic_long_read(&c->clean_zn_cnt)) {
1568 			ubifs_err(c, "incorrect clean_zn_cnt %ld, calculated %ld",
1569 				  atomic_long_read(&c->clean_zn_cnt),
1570 				  clean_cnt);
1571 			return -EINVAL;
1572 		}
1573 		if (dirty_cnt != atomic_long_read(&c->dirty_zn_cnt)) {
1574 			ubifs_err(c, "incorrect dirty_zn_cnt %ld, calculated %ld",
1575 				  atomic_long_read(&c->dirty_zn_cnt),
1576 				  dirty_cnt);
1577 			return -EINVAL;
1578 		}
1579 	}
1580 
1581 	return 0;
1582 }
1583 
1584 /**
1585  * dbg_walk_index - walk the on-flash index.
1586  * @c: UBIFS file-system description object
1587  * @leaf_cb: called for each leaf node
1588  * @znode_cb: called for each indexing node
1589  * @priv: private data which is passed to callbacks
1590  *
1591  * This function walks the UBIFS index and calls the @leaf_cb for each leaf
1592  * node and @znode_cb for each indexing node. Returns zero in case of success
1593  * and a negative error code in case of failure.
1594  *
1595  * It would be better if this function removed every znode it pulled to into
1596  * the TNC, so that the behavior more closely matched the non-debugging
1597  * behavior.
1598  */
1599 int dbg_walk_index(struct ubifs_info *c, dbg_leaf_callback leaf_cb,
1600 		   dbg_znode_callback znode_cb, void *priv)
1601 {
1602 	int err;
1603 	struct ubifs_zbranch *zbr;
1604 	struct ubifs_znode *znode, *child;
1605 
1606 	mutex_lock(&c->tnc_mutex);
1607 	/* If the root indexing node is not in TNC - pull it */
1608 	if (!c->zroot.znode) {
1609 		c->zroot.znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1610 		if (IS_ERR(c->zroot.znode)) {
1611 			err = PTR_ERR(c->zroot.znode);
1612 			c->zroot.znode = NULL;
1613 			goto out_unlock;
1614 		}
1615 	}
1616 
1617 	/*
1618 	 * We are going to traverse the indexing tree in the postorder manner.
1619 	 * Go down and find the leftmost indexing node where we are going to
1620 	 * start from.
1621 	 */
1622 	znode = c->zroot.znode;
1623 	while (znode->level > 0) {
1624 		zbr = &znode->zbranch[0];
1625 		child = zbr->znode;
1626 		if (!child) {
1627 			child = ubifs_load_znode(c, zbr, znode, 0);
1628 			if (IS_ERR(child)) {
1629 				err = PTR_ERR(child);
1630 				goto out_unlock;
1631 			}
1632 		}
1633 
1634 		znode = child;
1635 	}
1636 
1637 	/* Iterate over all indexing nodes */
1638 	while (1) {
1639 		int idx;
1640 
1641 		cond_resched();
1642 
1643 		if (znode_cb) {
1644 			err = znode_cb(c, znode, priv);
1645 			if (err) {
1646 				ubifs_err(c, "znode checking function returned error %d",
1647 					  err);
1648 				ubifs_dump_znode(c, znode);
1649 				goto out_dump;
1650 			}
1651 		}
1652 		if (leaf_cb && znode->level == 0) {
1653 			for (idx = 0; idx < znode->child_cnt; idx++) {
1654 				zbr = &znode->zbranch[idx];
1655 				err = leaf_cb(c, zbr, priv);
1656 				if (err) {
1657 					ubifs_err(c, "leaf checking function returned error %d, for leaf at LEB %d:%d",
1658 						  err, zbr->lnum, zbr->offs);
1659 					goto out_dump;
1660 				}
1661 			}
1662 		}
1663 
1664 		if (!znode->parent)
1665 			break;
1666 
1667 		idx = znode->iip + 1;
1668 		znode = znode->parent;
1669 		if (idx < znode->child_cnt) {
1670 			/* Switch to the next index in the parent */
1671 			zbr = &znode->zbranch[idx];
1672 			child = zbr->znode;
1673 			if (!child) {
1674 				child = ubifs_load_znode(c, zbr, znode, idx);
1675 				if (IS_ERR(child)) {
1676 					err = PTR_ERR(child);
1677 					goto out_unlock;
1678 				}
1679 				zbr->znode = child;
1680 			}
1681 			znode = child;
1682 		} else
1683 			/*
1684 			 * This is the last child, switch to the parent and
1685 			 * continue.
1686 			 */
1687 			continue;
1688 
1689 		/* Go to the lowest leftmost znode in the new sub-tree */
1690 		while (znode->level > 0) {
1691 			zbr = &znode->zbranch[0];
1692 			child = zbr->znode;
1693 			if (!child) {
1694 				child = ubifs_load_znode(c, zbr, znode, 0);
1695 				if (IS_ERR(child)) {
1696 					err = PTR_ERR(child);
1697 					goto out_unlock;
1698 				}
1699 				zbr->znode = child;
1700 			}
1701 			znode = child;
1702 		}
1703 	}
1704 
1705 	mutex_unlock(&c->tnc_mutex);
1706 	return 0;
1707 
1708 out_dump:
1709 	if (znode->parent)
1710 		zbr = &znode->parent->zbranch[znode->iip];
1711 	else
1712 		zbr = &c->zroot;
1713 	ubifs_msg(c, "dump of znode at LEB %d:%d", zbr->lnum, zbr->offs);
1714 	ubifs_dump_znode(c, znode);
1715 out_unlock:
1716 	mutex_unlock(&c->tnc_mutex);
1717 	return err;
1718 }
1719 
1720 /**
1721  * add_size - add znode size to partially calculated index size.
1722  * @c: UBIFS file-system description object
1723  * @znode: znode to add size for
1724  * @priv: partially calculated index size
1725  *
1726  * This is a helper function for 'dbg_check_idx_size()' which is called for
1727  * every indexing node and adds its size to the 'long long' variable pointed to
1728  * by @priv.
1729  */
1730 static int add_size(struct ubifs_info *c, struct ubifs_znode *znode, void *priv)
1731 {
1732 	long long *idx_size = priv;
1733 	int add;
1734 
1735 	add = ubifs_idx_node_sz(c, znode->child_cnt);
1736 	add = ALIGN(add, 8);
1737 	*idx_size += add;
1738 	return 0;
1739 }
1740 
1741 /**
1742  * dbg_check_idx_size - check index size.
1743  * @c: UBIFS file-system description object
1744  * @idx_size: size to check
1745  *
1746  * This function walks the UBIFS index, calculates its size and checks that the
1747  * size is equivalent to @idx_size. Returns zero in case of success and a
1748  * negative error code in case of failure.
1749  */
1750 int dbg_check_idx_size(struct ubifs_info *c, long long idx_size)
1751 {
1752 	int err;
1753 	long long calc = 0;
1754 
1755 	if (!dbg_is_chk_index(c))
1756 		return 0;
1757 
1758 	err = dbg_walk_index(c, NULL, add_size, &calc);
1759 	if (err) {
1760 		ubifs_err(c, "error %d while walking the index", err);
1761 		return err;
1762 	}
1763 
1764 	if (calc != idx_size) {
1765 		ubifs_err(c, "index size check failed: calculated size is %lld, should be %lld",
1766 			  calc, idx_size);
1767 		dump_stack();
1768 		return -EINVAL;
1769 	}
1770 
1771 	return 0;
1772 }
1773 
1774 /**
1775  * struct fsck_inode - information about an inode used when checking the file-system.
1776  * @rb: link in the RB-tree of inodes
1777  * @inum: inode number
1778  * @mode: inode type, permissions, etc
1779  * @nlink: inode link count
1780  * @xattr_cnt: count of extended attributes
1781  * @references: how many directory/xattr entries refer this inode (calculated
1782  *              while walking the index)
1783  * @calc_cnt: for directory inode count of child directories
1784  * @size: inode size (read from on-flash inode)
1785  * @xattr_sz: summary size of all extended attributes (read from on-flash
1786  *            inode)
1787  * @calc_sz: for directories calculated directory size
1788  * @calc_xcnt: count of extended attributes
1789  * @calc_xsz: calculated summary size of all extended attributes
1790  * @xattr_nms: sum of lengths of all extended attribute names belonging to this
1791  *             inode (read from on-flash inode)
1792  * @calc_xnms: calculated sum of lengths of all extended attribute names
1793  */
1794 struct fsck_inode {
1795 	struct rb_node rb;
1796 	ino_t inum;
1797 	umode_t mode;
1798 	unsigned int nlink;
1799 	unsigned int xattr_cnt;
1800 	int references;
1801 	int calc_cnt;
1802 	long long size;
1803 	unsigned int xattr_sz;
1804 	long long calc_sz;
1805 	long long calc_xcnt;
1806 	long long calc_xsz;
1807 	unsigned int xattr_nms;
1808 	long long calc_xnms;
1809 };
1810 
1811 /**
1812  * struct fsck_data - private FS checking information.
1813  * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects)
1814  */
1815 struct fsck_data {
1816 	struct rb_root inodes;
1817 };
1818 
1819 /**
1820  * add_inode - add inode information to RB-tree of inodes.
1821  * @c: UBIFS file-system description object
1822  * @fsckd: FS checking information
1823  * @ino: raw UBIFS inode to add
1824  *
1825  * This is a helper function for 'check_leaf()' which adds information about
1826  * inode @ino to the RB-tree of inodes. Returns inode information pointer in
1827  * case of success and a negative error code in case of failure.
1828  */
1829 static struct fsck_inode *add_inode(struct ubifs_info *c,
1830 				    struct fsck_data *fsckd,
1831 				    struct ubifs_ino_node *ino)
1832 {
1833 	struct rb_node **p, *parent = NULL;
1834 	struct fsck_inode *fscki;
1835 	ino_t inum = key_inum_flash(c, &ino->key);
1836 	struct inode *inode;
1837 	struct ubifs_inode *ui;
1838 
1839 	p = &fsckd->inodes.rb_node;
1840 	while (*p) {
1841 		parent = *p;
1842 		fscki = rb_entry(parent, struct fsck_inode, rb);
1843 		if (inum < fscki->inum)
1844 			p = &(*p)->rb_left;
1845 		else if (inum > fscki->inum)
1846 			p = &(*p)->rb_right;
1847 		else
1848 			return fscki;
1849 	}
1850 
1851 	if (inum > c->highest_inum) {
1852 		ubifs_err(c, "too high inode number, max. is %lu",
1853 			  (unsigned long)c->highest_inum);
1854 		return ERR_PTR(-EINVAL);
1855 	}
1856 
1857 	fscki = kzalloc(sizeof(struct fsck_inode), GFP_NOFS);
1858 	if (!fscki)
1859 		return ERR_PTR(-ENOMEM);
1860 
1861 	inode = ilookup(c->vfs_sb, inum);
1862 
1863 	fscki->inum = inum;
1864 	/*
1865 	 * If the inode is present in the VFS inode cache, use it instead of
1866 	 * the on-flash inode which might be out-of-date. E.g., the size might
1867 	 * be out-of-date. If we do not do this, the following may happen, for
1868 	 * example:
1869 	 *   1. A power cut happens
1870 	 *   2. We mount the file-system R/O, the replay process fixes up the
1871 	 *      inode size in the VFS cache, but on on-flash.
1872 	 *   3. 'check_leaf()' fails because it hits a data node beyond inode
1873 	 *      size.
1874 	 */
1875 	if (!inode) {
1876 		fscki->nlink = le32_to_cpu(ino->nlink);
1877 		fscki->size = le64_to_cpu(ino->size);
1878 		fscki->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
1879 		fscki->xattr_sz = le32_to_cpu(ino->xattr_size);
1880 		fscki->xattr_nms = le32_to_cpu(ino->xattr_names);
1881 		fscki->mode = le32_to_cpu(ino->mode);
1882 	} else {
1883 		ui = ubifs_inode(inode);
1884 		fscki->nlink = inode->i_nlink;
1885 		fscki->size = inode->i_size;
1886 		fscki->xattr_cnt = ui->xattr_cnt;
1887 		fscki->xattr_sz = ui->xattr_size;
1888 		fscki->xattr_nms = ui->xattr_names;
1889 		fscki->mode = inode->i_mode;
1890 		iput(inode);
1891 	}
1892 
1893 	if (S_ISDIR(fscki->mode)) {
1894 		fscki->calc_sz = UBIFS_INO_NODE_SZ;
1895 		fscki->calc_cnt = 2;
1896 	}
1897 
1898 	rb_link_node(&fscki->rb, parent, p);
1899 	rb_insert_color(&fscki->rb, &fsckd->inodes);
1900 
1901 	return fscki;
1902 }
1903 
1904 /**
1905  * search_inode - search inode in the RB-tree of inodes.
1906  * @fsckd: FS checking information
1907  * @inum: inode number to search
1908  *
1909  * This is a helper function for 'check_leaf()' which searches inode @inum in
1910  * the RB-tree of inodes and returns an inode information pointer or %NULL if
1911  * the inode was not found.
1912  */
1913 static struct fsck_inode *search_inode(struct fsck_data *fsckd, ino_t inum)
1914 {
1915 	struct rb_node *p;
1916 	struct fsck_inode *fscki;
1917 
1918 	p = fsckd->inodes.rb_node;
1919 	while (p) {
1920 		fscki = rb_entry(p, struct fsck_inode, rb);
1921 		if (inum < fscki->inum)
1922 			p = p->rb_left;
1923 		else if (inum > fscki->inum)
1924 			p = p->rb_right;
1925 		else
1926 			return fscki;
1927 	}
1928 	return NULL;
1929 }
1930 
1931 /**
1932  * read_add_inode - read inode node and add it to RB-tree of inodes.
1933  * @c: UBIFS file-system description object
1934  * @fsckd: FS checking information
1935  * @inum: inode number to read
1936  *
1937  * This is a helper function for 'check_leaf()' which finds inode node @inum in
1938  * the index, reads it, and adds it to the RB-tree of inodes. Returns inode
1939  * information pointer in case of success and a negative error code in case of
1940  * failure.
1941  */
1942 static struct fsck_inode *read_add_inode(struct ubifs_info *c,
1943 					 struct fsck_data *fsckd, ino_t inum)
1944 {
1945 	int n, err;
1946 	union ubifs_key key;
1947 	struct ubifs_znode *znode;
1948 	struct ubifs_zbranch *zbr;
1949 	struct ubifs_ino_node *ino;
1950 	struct fsck_inode *fscki;
1951 
1952 	fscki = search_inode(fsckd, inum);
1953 	if (fscki)
1954 		return fscki;
1955 
1956 	ino_key_init(c, &key, inum);
1957 	err = ubifs_lookup_level0(c, &key, &znode, &n);
1958 	if (!err) {
1959 		ubifs_err(c, "inode %lu not found in index", (unsigned long)inum);
1960 		return ERR_PTR(-ENOENT);
1961 	} else if (err < 0) {
1962 		ubifs_err(c, "error %d while looking up inode %lu",
1963 			  err, (unsigned long)inum);
1964 		return ERR_PTR(err);
1965 	}
1966 
1967 	zbr = &znode->zbranch[n];
1968 	if (zbr->len < UBIFS_INO_NODE_SZ) {
1969 		ubifs_err(c, "bad node %lu node length %d",
1970 			  (unsigned long)inum, zbr->len);
1971 		return ERR_PTR(-EINVAL);
1972 	}
1973 
1974 	ino = kmalloc(zbr->len, GFP_NOFS);
1975 	if (!ino)
1976 		return ERR_PTR(-ENOMEM);
1977 
1978 	err = ubifs_tnc_read_node(c, zbr, ino);
1979 	if (err) {
1980 		ubifs_err(c, "cannot read inode node at LEB %d:%d, error %d",
1981 			  zbr->lnum, zbr->offs, err);
1982 		kfree(ino);
1983 		return ERR_PTR(err);
1984 	}
1985 
1986 	fscki = add_inode(c, fsckd, ino);
1987 	kfree(ino);
1988 	if (IS_ERR(fscki)) {
1989 		ubifs_err(c, "error %ld while adding inode %lu node",
1990 			  PTR_ERR(fscki), (unsigned long)inum);
1991 		return fscki;
1992 	}
1993 
1994 	return fscki;
1995 }
1996 
1997 /**
1998  * check_leaf - check leaf node.
1999  * @c: UBIFS file-system description object
2000  * @zbr: zbranch of the leaf node to check
2001  * @priv: FS checking information
2002  *
2003  * This is a helper function for 'dbg_check_filesystem()' which is called for
2004  * every single leaf node while walking the indexing tree. It checks that the
2005  * leaf node referred from the indexing tree exists, has correct CRC, and does
2006  * some other basic validation. This function is also responsible for building
2007  * an RB-tree of inodes - it adds all inodes into the RB-tree. It also
2008  * calculates reference count, size, etc for each inode in order to later
2009  * compare them to the information stored inside the inodes and detect possible
2010  * inconsistencies. Returns zero in case of success and a negative error code
2011  * in case of failure.
2012  */
2013 static int check_leaf(struct ubifs_info *c, struct ubifs_zbranch *zbr,
2014 		      void *priv)
2015 {
2016 	ino_t inum;
2017 	void *node;
2018 	struct ubifs_ch *ch;
2019 	int err, type = key_type(c, &zbr->key);
2020 	struct fsck_inode *fscki;
2021 
2022 	if (zbr->len < UBIFS_CH_SZ) {
2023 		ubifs_err(c, "bad leaf length %d (LEB %d:%d)",
2024 			  zbr->len, zbr->lnum, zbr->offs);
2025 		return -EINVAL;
2026 	}
2027 
2028 	node = kmalloc(zbr->len, GFP_NOFS);
2029 	if (!node)
2030 		return -ENOMEM;
2031 
2032 	err = ubifs_tnc_read_node(c, zbr, node);
2033 	if (err) {
2034 		ubifs_err(c, "cannot read leaf node at LEB %d:%d, error %d",
2035 			  zbr->lnum, zbr->offs, err);
2036 		goto out_free;
2037 	}
2038 
2039 	/* If this is an inode node, add it to RB-tree of inodes */
2040 	if (type == UBIFS_INO_KEY) {
2041 		fscki = add_inode(c, priv, node);
2042 		if (IS_ERR(fscki)) {
2043 			err = PTR_ERR(fscki);
2044 			ubifs_err(c, "error %d while adding inode node", err);
2045 			goto out_dump;
2046 		}
2047 		goto out;
2048 	}
2049 
2050 	if (type != UBIFS_DENT_KEY && type != UBIFS_XENT_KEY &&
2051 	    type != UBIFS_DATA_KEY) {
2052 		ubifs_err(c, "unexpected node type %d at LEB %d:%d",
2053 			  type, zbr->lnum, zbr->offs);
2054 		err = -EINVAL;
2055 		goto out_free;
2056 	}
2057 
2058 	ch = node;
2059 	if (le64_to_cpu(ch->sqnum) > c->max_sqnum) {
2060 		ubifs_err(c, "too high sequence number, max. is %llu",
2061 			  c->max_sqnum);
2062 		err = -EINVAL;
2063 		goto out_dump;
2064 	}
2065 
2066 	if (type == UBIFS_DATA_KEY) {
2067 		long long blk_offs;
2068 		struct ubifs_data_node *dn = node;
2069 
2070 		ubifs_assert(c, zbr->len >= UBIFS_DATA_NODE_SZ);
2071 
2072 		/*
2073 		 * Search the inode node this data node belongs to and insert
2074 		 * it to the RB-tree of inodes.
2075 		 */
2076 		inum = key_inum_flash(c, &dn->key);
2077 		fscki = read_add_inode(c, priv, inum);
2078 		if (IS_ERR(fscki)) {
2079 			err = PTR_ERR(fscki);
2080 			ubifs_err(c, "error %d while processing data node and trying to find inode node %lu",
2081 				  err, (unsigned long)inum);
2082 			goto out_dump;
2083 		}
2084 
2085 		/* Make sure the data node is within inode size */
2086 		blk_offs = key_block_flash(c, &dn->key);
2087 		blk_offs <<= UBIFS_BLOCK_SHIFT;
2088 		blk_offs += le32_to_cpu(dn->size);
2089 		if (blk_offs > fscki->size) {
2090 			ubifs_err(c, "data node at LEB %d:%d is not within inode size %lld",
2091 				  zbr->lnum, zbr->offs, fscki->size);
2092 			err = -EINVAL;
2093 			goto out_dump;
2094 		}
2095 	} else {
2096 		int nlen;
2097 		struct ubifs_dent_node *dent = node;
2098 		struct fsck_inode *fscki1;
2099 
2100 		ubifs_assert(c, zbr->len >= UBIFS_DENT_NODE_SZ);
2101 
2102 		err = ubifs_validate_entry(c, dent);
2103 		if (err)
2104 			goto out_dump;
2105 
2106 		/*
2107 		 * Search the inode node this entry refers to and the parent
2108 		 * inode node and insert them to the RB-tree of inodes.
2109 		 */
2110 		inum = le64_to_cpu(dent->inum);
2111 		fscki = read_add_inode(c, priv, inum);
2112 		if (IS_ERR(fscki)) {
2113 			err = PTR_ERR(fscki);
2114 			ubifs_err(c, "error %d while processing entry node and trying to find inode node %lu",
2115 				  err, (unsigned long)inum);
2116 			goto out_dump;
2117 		}
2118 
2119 		/* Count how many direntries or xentries refers this inode */
2120 		fscki->references += 1;
2121 
2122 		inum = key_inum_flash(c, &dent->key);
2123 		fscki1 = read_add_inode(c, priv, inum);
2124 		if (IS_ERR(fscki1)) {
2125 			err = PTR_ERR(fscki1);
2126 			ubifs_err(c, "error %d while processing entry node and trying to find parent inode node %lu",
2127 				  err, (unsigned long)inum);
2128 			goto out_dump;
2129 		}
2130 
2131 		nlen = le16_to_cpu(dent->nlen);
2132 		if (type == UBIFS_XENT_KEY) {
2133 			fscki1->calc_xcnt += 1;
2134 			fscki1->calc_xsz += CALC_DENT_SIZE(nlen);
2135 			fscki1->calc_xsz += CALC_XATTR_BYTES(fscki->size);
2136 			fscki1->calc_xnms += nlen;
2137 		} else {
2138 			fscki1->calc_sz += CALC_DENT_SIZE(nlen);
2139 			if (dent->type == UBIFS_ITYPE_DIR)
2140 				fscki1->calc_cnt += 1;
2141 		}
2142 	}
2143 
2144 out:
2145 	kfree(node);
2146 	return 0;
2147 
2148 out_dump:
2149 	ubifs_msg(c, "dump of node at LEB %d:%d", zbr->lnum, zbr->offs);
2150 	ubifs_dump_node(c, node);
2151 out_free:
2152 	kfree(node);
2153 	return err;
2154 }
2155 
2156 /**
2157  * free_inodes - free RB-tree of inodes.
2158  * @fsckd: FS checking information
2159  */
2160 static void free_inodes(struct fsck_data *fsckd)
2161 {
2162 	struct fsck_inode *fscki, *n;
2163 
2164 	rbtree_postorder_for_each_entry_safe(fscki, n, &fsckd->inodes, rb)
2165 		kfree(fscki);
2166 }
2167 
2168 /**
2169  * check_inodes - checks all inodes.
2170  * @c: UBIFS file-system description object
2171  * @fsckd: FS checking information
2172  *
2173  * This is a helper function for 'dbg_check_filesystem()' which walks the
2174  * RB-tree of inodes after the index scan has been finished, and checks that
2175  * inode nlink, size, etc are correct. Returns zero if inodes are fine,
2176  * %-EINVAL if not, and a negative error code in case of failure.
2177  */
2178 static int check_inodes(struct ubifs_info *c, struct fsck_data *fsckd)
2179 {
2180 	int n, err;
2181 	union ubifs_key key;
2182 	struct ubifs_znode *znode;
2183 	struct ubifs_zbranch *zbr;
2184 	struct ubifs_ino_node *ino;
2185 	struct fsck_inode *fscki;
2186 	struct rb_node *this = rb_first(&fsckd->inodes);
2187 
2188 	while (this) {
2189 		fscki = rb_entry(this, struct fsck_inode, rb);
2190 		this = rb_next(this);
2191 
2192 		if (S_ISDIR(fscki->mode)) {
2193 			/*
2194 			 * Directories have to have exactly one reference (they
2195 			 * cannot have hardlinks), although root inode is an
2196 			 * exception.
2197 			 */
2198 			if (fscki->inum != UBIFS_ROOT_INO &&
2199 			    fscki->references != 1) {
2200 				ubifs_err(c, "directory inode %lu has %d direntries which refer it, but should be 1",
2201 					  (unsigned long)fscki->inum,
2202 					  fscki->references);
2203 				goto out_dump;
2204 			}
2205 			if (fscki->inum == UBIFS_ROOT_INO &&
2206 			    fscki->references != 0) {
2207 				ubifs_err(c, "root inode %lu has non-zero (%d) direntries which refer it",
2208 					  (unsigned long)fscki->inum,
2209 					  fscki->references);
2210 				goto out_dump;
2211 			}
2212 			if (fscki->calc_sz != fscki->size) {
2213 				ubifs_err(c, "directory inode %lu size is %lld, but calculated size is %lld",
2214 					  (unsigned long)fscki->inum,
2215 					  fscki->size, fscki->calc_sz);
2216 				goto out_dump;
2217 			}
2218 			if (fscki->calc_cnt != fscki->nlink) {
2219 				ubifs_err(c, "directory inode %lu nlink is %d, but calculated nlink is %d",
2220 					  (unsigned long)fscki->inum,
2221 					  fscki->nlink, fscki->calc_cnt);
2222 				goto out_dump;
2223 			}
2224 		} else {
2225 			if (fscki->references != fscki->nlink) {
2226 				ubifs_err(c, "inode %lu nlink is %d, but calculated nlink is %d",
2227 					  (unsigned long)fscki->inum,
2228 					  fscki->nlink, fscki->references);
2229 				goto out_dump;
2230 			}
2231 		}
2232 		if (fscki->xattr_sz != fscki->calc_xsz) {
2233 			ubifs_err(c, "inode %lu has xattr size %u, but calculated size is %lld",
2234 				  (unsigned long)fscki->inum, fscki->xattr_sz,
2235 				  fscki->calc_xsz);
2236 			goto out_dump;
2237 		}
2238 		if (fscki->xattr_cnt != fscki->calc_xcnt) {
2239 			ubifs_err(c, "inode %lu has %u xattrs, but calculated count is %lld",
2240 				  (unsigned long)fscki->inum,
2241 				  fscki->xattr_cnt, fscki->calc_xcnt);
2242 			goto out_dump;
2243 		}
2244 		if (fscki->xattr_nms != fscki->calc_xnms) {
2245 			ubifs_err(c, "inode %lu has xattr names' size %u, but calculated names' size is %lld",
2246 				  (unsigned long)fscki->inum, fscki->xattr_nms,
2247 				  fscki->calc_xnms);
2248 			goto out_dump;
2249 		}
2250 	}
2251 
2252 	return 0;
2253 
2254 out_dump:
2255 	/* Read the bad inode and dump it */
2256 	ino_key_init(c, &key, fscki->inum);
2257 	err = ubifs_lookup_level0(c, &key, &znode, &n);
2258 	if (!err) {
2259 		ubifs_err(c, "inode %lu not found in index",
2260 			  (unsigned long)fscki->inum);
2261 		return -ENOENT;
2262 	} else if (err < 0) {
2263 		ubifs_err(c, "error %d while looking up inode %lu",
2264 			  err, (unsigned long)fscki->inum);
2265 		return err;
2266 	}
2267 
2268 	zbr = &znode->zbranch[n];
2269 	ino = kmalloc(zbr->len, GFP_NOFS);
2270 	if (!ino)
2271 		return -ENOMEM;
2272 
2273 	err = ubifs_tnc_read_node(c, zbr, ino);
2274 	if (err) {
2275 		ubifs_err(c, "cannot read inode node at LEB %d:%d, error %d",
2276 			  zbr->lnum, zbr->offs, err);
2277 		kfree(ino);
2278 		return err;
2279 	}
2280 
2281 	ubifs_msg(c, "dump of the inode %lu sitting in LEB %d:%d",
2282 		  (unsigned long)fscki->inum, zbr->lnum, zbr->offs);
2283 	ubifs_dump_node(c, ino);
2284 	kfree(ino);
2285 	return -EINVAL;
2286 }
2287 
2288 /**
2289  * dbg_check_filesystem - check the file-system.
2290  * @c: UBIFS file-system description object
2291  *
2292  * This function checks the file system, namely:
2293  * o makes sure that all leaf nodes exist and their CRCs are correct;
2294  * o makes sure inode nlink, size, xattr size/count are correct (for all
2295  *   inodes).
2296  *
2297  * The function reads whole indexing tree and all nodes, so it is pretty
2298  * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if
2299  * not, and a negative error code in case of failure.
2300  */
2301 int dbg_check_filesystem(struct ubifs_info *c)
2302 {
2303 	int err;
2304 	struct fsck_data fsckd;
2305 
2306 	if (!dbg_is_chk_fs(c))
2307 		return 0;
2308 
2309 	fsckd.inodes = RB_ROOT;
2310 	err = dbg_walk_index(c, check_leaf, NULL, &fsckd);
2311 	if (err)
2312 		goto out_free;
2313 
2314 	err = check_inodes(c, &fsckd);
2315 	if (err)
2316 		goto out_free;
2317 
2318 	free_inodes(&fsckd);
2319 	return 0;
2320 
2321 out_free:
2322 	ubifs_err(c, "file-system check failed with error %d", err);
2323 	dump_stack();
2324 	free_inodes(&fsckd);
2325 	return err;
2326 }
2327 
2328 /**
2329  * dbg_check_data_nodes_order - check that list of data nodes is sorted.
2330  * @c: UBIFS file-system description object
2331  * @head: the list of nodes ('struct ubifs_scan_node' objects)
2332  *
2333  * This function returns zero if the list of data nodes is sorted correctly,
2334  * and %-EINVAL if not.
2335  */
2336 int dbg_check_data_nodes_order(struct ubifs_info *c, struct list_head *head)
2337 {
2338 	struct list_head *cur;
2339 	struct ubifs_scan_node *sa, *sb;
2340 
2341 	if (!dbg_is_chk_gen(c))
2342 		return 0;
2343 
2344 	for (cur = head->next; cur->next != head; cur = cur->next) {
2345 		ino_t inuma, inumb;
2346 		uint32_t blka, blkb;
2347 
2348 		cond_resched();
2349 		sa = container_of(cur, struct ubifs_scan_node, list);
2350 		sb = container_of(cur->next, struct ubifs_scan_node, list);
2351 
2352 		if (sa->type != UBIFS_DATA_NODE) {
2353 			ubifs_err(c, "bad node type %d", sa->type);
2354 			ubifs_dump_node(c, sa->node);
2355 			return -EINVAL;
2356 		}
2357 		if (sb->type != UBIFS_DATA_NODE) {
2358 			ubifs_err(c, "bad node type %d", sb->type);
2359 			ubifs_dump_node(c, sb->node);
2360 			return -EINVAL;
2361 		}
2362 
2363 		inuma = key_inum(c, &sa->key);
2364 		inumb = key_inum(c, &sb->key);
2365 
2366 		if (inuma < inumb)
2367 			continue;
2368 		if (inuma > inumb) {
2369 			ubifs_err(c, "larger inum %lu goes before inum %lu",
2370 				  (unsigned long)inuma, (unsigned long)inumb);
2371 			goto error_dump;
2372 		}
2373 
2374 		blka = key_block(c, &sa->key);
2375 		blkb = key_block(c, &sb->key);
2376 
2377 		if (blka > blkb) {
2378 			ubifs_err(c, "larger block %u goes before %u", blka, blkb);
2379 			goto error_dump;
2380 		}
2381 		if (blka == blkb) {
2382 			ubifs_err(c, "two data nodes for the same block");
2383 			goto error_dump;
2384 		}
2385 	}
2386 
2387 	return 0;
2388 
2389 error_dump:
2390 	ubifs_dump_node(c, sa->node);
2391 	ubifs_dump_node(c, sb->node);
2392 	return -EINVAL;
2393 }
2394 
2395 /**
2396  * dbg_check_nondata_nodes_order - check that list of data nodes is sorted.
2397  * @c: UBIFS file-system description object
2398  * @head: the list of nodes ('struct ubifs_scan_node' objects)
2399  *
2400  * This function returns zero if the list of non-data nodes is sorted correctly,
2401  * and %-EINVAL if not.
2402  */
2403 int dbg_check_nondata_nodes_order(struct ubifs_info *c, struct list_head *head)
2404 {
2405 	struct list_head *cur;
2406 	struct ubifs_scan_node *sa, *sb;
2407 
2408 	if (!dbg_is_chk_gen(c))
2409 		return 0;
2410 
2411 	for (cur = head->next; cur->next != head; cur = cur->next) {
2412 		ino_t inuma, inumb;
2413 		uint32_t hasha, hashb;
2414 
2415 		cond_resched();
2416 		sa = container_of(cur, struct ubifs_scan_node, list);
2417 		sb = container_of(cur->next, struct ubifs_scan_node, list);
2418 
2419 		if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
2420 		    sa->type != UBIFS_XENT_NODE) {
2421 			ubifs_err(c, "bad node type %d", sa->type);
2422 			ubifs_dump_node(c, sa->node);
2423 			return -EINVAL;
2424 		}
2425 		if (sb->type != UBIFS_INO_NODE && sb->type != UBIFS_DENT_NODE &&
2426 		    sb->type != UBIFS_XENT_NODE) {
2427 			ubifs_err(c, "bad node type %d", sb->type);
2428 			ubifs_dump_node(c, sb->node);
2429 			return -EINVAL;
2430 		}
2431 
2432 		if (sa->type != UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2433 			ubifs_err(c, "non-inode node goes before inode node");
2434 			goto error_dump;
2435 		}
2436 
2437 		if (sa->type == UBIFS_INO_NODE && sb->type != UBIFS_INO_NODE)
2438 			continue;
2439 
2440 		if (sa->type == UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2441 			/* Inode nodes are sorted in descending size order */
2442 			if (sa->len < sb->len) {
2443 				ubifs_err(c, "smaller inode node goes first");
2444 				goto error_dump;
2445 			}
2446 			continue;
2447 		}
2448 
2449 		/*
2450 		 * This is either a dentry or xentry, which should be sorted in
2451 		 * ascending (parent ino, hash) order.
2452 		 */
2453 		inuma = key_inum(c, &sa->key);
2454 		inumb = key_inum(c, &sb->key);
2455 
2456 		if (inuma < inumb)
2457 			continue;
2458 		if (inuma > inumb) {
2459 			ubifs_err(c, "larger inum %lu goes before inum %lu",
2460 				  (unsigned long)inuma, (unsigned long)inumb);
2461 			goto error_dump;
2462 		}
2463 
2464 		hasha = key_block(c, &sa->key);
2465 		hashb = key_block(c, &sb->key);
2466 
2467 		if (hasha > hashb) {
2468 			ubifs_err(c, "larger hash %u goes before %u",
2469 				  hasha, hashb);
2470 			goto error_dump;
2471 		}
2472 	}
2473 
2474 	return 0;
2475 
2476 error_dump:
2477 	ubifs_msg(c, "dumping first node");
2478 	ubifs_dump_node(c, sa->node);
2479 	ubifs_msg(c, "dumping second node");
2480 	ubifs_dump_node(c, sb->node);
2481 	return -EINVAL;
2482 }
2483 
2484 static inline int chance(unsigned int n, unsigned int out_of)
2485 {
2486 	return !!((prandom_u32() % out_of) + 1 <= n);
2487 
2488 }
2489 
2490 static int power_cut_emulated(struct ubifs_info *c, int lnum, int write)
2491 {
2492 	struct ubifs_debug_info *d = c->dbg;
2493 
2494 	ubifs_assert(c, dbg_is_tst_rcvry(c));
2495 
2496 	if (!d->pc_cnt) {
2497 		/* First call - decide delay to the power cut */
2498 		if (chance(1, 2)) {
2499 			unsigned long delay;
2500 
2501 			if (chance(1, 2)) {
2502 				d->pc_delay = 1;
2503 				/* Fail within 1 minute */
2504 				delay = prandom_u32() % 60000;
2505 				d->pc_timeout = jiffies;
2506 				d->pc_timeout += msecs_to_jiffies(delay);
2507 				ubifs_warn(c, "failing after %lums", delay);
2508 			} else {
2509 				d->pc_delay = 2;
2510 				delay = prandom_u32() % 10000;
2511 				/* Fail within 10000 operations */
2512 				d->pc_cnt_max = delay;
2513 				ubifs_warn(c, "failing after %lu calls", delay);
2514 			}
2515 		}
2516 
2517 		d->pc_cnt += 1;
2518 	}
2519 
2520 	/* Determine if failure delay has expired */
2521 	if (d->pc_delay == 1 && time_before(jiffies, d->pc_timeout))
2522 			return 0;
2523 	if (d->pc_delay == 2 && d->pc_cnt++ < d->pc_cnt_max)
2524 			return 0;
2525 
2526 	if (lnum == UBIFS_SB_LNUM) {
2527 		if (write && chance(1, 2))
2528 			return 0;
2529 		if (chance(19, 20))
2530 			return 0;
2531 		ubifs_warn(c, "failing in super block LEB %d", lnum);
2532 	} else if (lnum == UBIFS_MST_LNUM || lnum == UBIFS_MST_LNUM + 1) {
2533 		if (chance(19, 20))
2534 			return 0;
2535 		ubifs_warn(c, "failing in master LEB %d", lnum);
2536 	} else if (lnum >= UBIFS_LOG_LNUM && lnum <= c->log_last) {
2537 		if (write && chance(99, 100))
2538 			return 0;
2539 		if (chance(399, 400))
2540 			return 0;
2541 		ubifs_warn(c, "failing in log LEB %d", lnum);
2542 	} else if (lnum >= c->lpt_first && lnum <= c->lpt_last) {
2543 		if (write && chance(7, 8))
2544 			return 0;
2545 		if (chance(19, 20))
2546 			return 0;
2547 		ubifs_warn(c, "failing in LPT LEB %d", lnum);
2548 	} else if (lnum >= c->orph_first && lnum <= c->orph_last) {
2549 		if (write && chance(1, 2))
2550 			return 0;
2551 		if (chance(9, 10))
2552 			return 0;
2553 		ubifs_warn(c, "failing in orphan LEB %d", lnum);
2554 	} else if (lnum == c->ihead_lnum) {
2555 		if (chance(99, 100))
2556 			return 0;
2557 		ubifs_warn(c, "failing in index head LEB %d", lnum);
2558 	} else if (c->jheads && lnum == c->jheads[GCHD].wbuf.lnum) {
2559 		if (chance(9, 10))
2560 			return 0;
2561 		ubifs_warn(c, "failing in GC head LEB %d", lnum);
2562 	} else if (write && !RB_EMPTY_ROOT(&c->buds) &&
2563 		   !ubifs_search_bud(c, lnum)) {
2564 		if (chance(19, 20))
2565 			return 0;
2566 		ubifs_warn(c, "failing in non-bud LEB %d", lnum);
2567 	} else if (c->cmt_state == COMMIT_RUNNING_BACKGROUND ||
2568 		   c->cmt_state == COMMIT_RUNNING_REQUIRED) {
2569 		if (chance(999, 1000))
2570 			return 0;
2571 		ubifs_warn(c, "failing in bud LEB %d commit running", lnum);
2572 	} else {
2573 		if (chance(9999, 10000))
2574 			return 0;
2575 		ubifs_warn(c, "failing in bud LEB %d commit not running", lnum);
2576 	}
2577 
2578 	d->pc_happened = 1;
2579 	ubifs_warn(c, "========== Power cut emulated ==========");
2580 	dump_stack();
2581 	return 1;
2582 }
2583 
2584 static int corrupt_data(const struct ubifs_info *c, const void *buf,
2585 			unsigned int len)
2586 {
2587 	unsigned int from, to, ffs = chance(1, 2);
2588 	unsigned char *p = (void *)buf;
2589 
2590 	from = prandom_u32() % len;
2591 	/* Corruption span max to end of write unit */
2592 	to = min(len, ALIGN(from + 1, c->max_write_size));
2593 
2594 	ubifs_warn(c, "filled bytes %u-%u with %s", from, to - 1,
2595 		   ffs ? "0xFFs" : "random data");
2596 
2597 	if (ffs)
2598 		memset(p + from, 0xFF, to - from);
2599 	else
2600 		prandom_bytes(p + from, to - from);
2601 
2602 	return to;
2603 }
2604 
2605 int dbg_leb_write(struct ubifs_info *c, int lnum, const void *buf,
2606 		  int offs, int len)
2607 {
2608 	int err, failing;
2609 
2610 	if (dbg_is_power_cut(c))
2611 		return -EROFS;
2612 
2613 	failing = power_cut_emulated(c, lnum, 1);
2614 	if (failing) {
2615 		len = corrupt_data(c, buf, len);
2616 		ubifs_warn(c, "actually write %d bytes to LEB %d:%d (the buffer was corrupted)",
2617 			   len, lnum, offs);
2618 	}
2619 	err = ubi_leb_write(c->ubi, lnum, buf, offs, len);
2620 	if (err)
2621 		return err;
2622 	if (failing)
2623 		return -EROFS;
2624 	return 0;
2625 }
2626 
2627 int dbg_leb_change(struct ubifs_info *c, int lnum, const void *buf,
2628 		   int len)
2629 {
2630 	int err;
2631 
2632 	if (dbg_is_power_cut(c))
2633 		return -EROFS;
2634 	if (power_cut_emulated(c, lnum, 1))
2635 		return -EROFS;
2636 	err = ubi_leb_change(c->ubi, lnum, buf, len);
2637 	if (err)
2638 		return err;
2639 	if (power_cut_emulated(c, lnum, 1))
2640 		return -EROFS;
2641 	return 0;
2642 }
2643 
2644 int dbg_leb_unmap(struct ubifs_info *c, int lnum)
2645 {
2646 	int err;
2647 
2648 	if (dbg_is_power_cut(c))
2649 		return -EROFS;
2650 	if (power_cut_emulated(c, lnum, 0))
2651 		return -EROFS;
2652 	err = ubi_leb_unmap(c->ubi, lnum);
2653 	if (err)
2654 		return err;
2655 	if (power_cut_emulated(c, lnum, 0))
2656 		return -EROFS;
2657 	return 0;
2658 }
2659 
2660 int dbg_leb_map(struct ubifs_info *c, int lnum)
2661 {
2662 	int err;
2663 
2664 	if (dbg_is_power_cut(c))
2665 		return -EROFS;
2666 	if (power_cut_emulated(c, lnum, 0))
2667 		return -EROFS;
2668 	err = ubi_leb_map(c->ubi, lnum);
2669 	if (err)
2670 		return err;
2671 	if (power_cut_emulated(c, lnum, 0))
2672 		return -EROFS;
2673 	return 0;
2674 }
2675 
2676 /*
2677  * Root directory for UBIFS stuff in debugfs. Contains sub-directories which
2678  * contain the stuff specific to particular file-system mounts.
2679  */
2680 static struct dentry *dfs_rootdir;
2681 
2682 static int dfs_file_open(struct inode *inode, struct file *file)
2683 {
2684 	file->private_data = inode->i_private;
2685 	return nonseekable_open(inode, file);
2686 }
2687 
2688 /**
2689  * provide_user_output - provide output to the user reading a debugfs file.
2690  * @val: boolean value for the answer
2691  * @u: the buffer to store the answer at
2692  * @count: size of the buffer
2693  * @ppos: position in the @u output buffer
2694  *
2695  * This is a simple helper function which stores @val boolean value in the user
2696  * buffer when the user reads one of UBIFS debugfs files. Returns amount of
2697  * bytes written to @u in case of success and a negative error code in case of
2698  * failure.
2699  */
2700 static int provide_user_output(int val, char __user *u, size_t count,
2701 			       loff_t *ppos)
2702 {
2703 	char buf[3];
2704 
2705 	if (val)
2706 		buf[0] = '1';
2707 	else
2708 		buf[0] = '0';
2709 	buf[1] = '\n';
2710 	buf[2] = 0x00;
2711 
2712 	return simple_read_from_buffer(u, count, ppos, buf, 2);
2713 }
2714 
2715 static ssize_t dfs_file_read(struct file *file, char __user *u, size_t count,
2716 			     loff_t *ppos)
2717 {
2718 	struct dentry *dent = file->f_path.dentry;
2719 	struct ubifs_info *c = file->private_data;
2720 	struct ubifs_debug_info *d = c->dbg;
2721 	int val;
2722 
2723 	if (dent == d->dfs_chk_gen)
2724 		val = d->chk_gen;
2725 	else if (dent == d->dfs_chk_index)
2726 		val = d->chk_index;
2727 	else if (dent == d->dfs_chk_orph)
2728 		val = d->chk_orph;
2729 	else if (dent == d->dfs_chk_lprops)
2730 		val = d->chk_lprops;
2731 	else if (dent == d->dfs_chk_fs)
2732 		val = d->chk_fs;
2733 	else if (dent == d->dfs_tst_rcvry)
2734 		val = d->tst_rcvry;
2735 	else if (dent == d->dfs_ro_error)
2736 		val = c->ro_error;
2737 	else
2738 		return -EINVAL;
2739 
2740 	return provide_user_output(val, u, count, ppos);
2741 }
2742 
2743 /**
2744  * interpret_user_input - interpret user debugfs file input.
2745  * @u: user-provided buffer with the input
2746  * @count: buffer size
2747  *
2748  * This is a helper function which interpret user input to a boolean UBIFS
2749  * debugfs file. Returns %0 or %1 in case of success and a negative error code
2750  * in case of failure.
2751  */
2752 static int interpret_user_input(const char __user *u, size_t count)
2753 {
2754 	size_t buf_size;
2755 	char buf[8];
2756 
2757 	buf_size = min_t(size_t, count, (sizeof(buf) - 1));
2758 	if (copy_from_user(buf, u, buf_size))
2759 		return -EFAULT;
2760 
2761 	if (buf[0] == '1')
2762 		return 1;
2763 	else if (buf[0] == '0')
2764 		return 0;
2765 
2766 	return -EINVAL;
2767 }
2768 
2769 static ssize_t dfs_file_write(struct file *file, const char __user *u,
2770 			      size_t count, loff_t *ppos)
2771 {
2772 	struct ubifs_info *c = file->private_data;
2773 	struct ubifs_debug_info *d = c->dbg;
2774 	struct dentry *dent = file->f_path.dentry;
2775 	int val;
2776 
2777 	if (file->f_path.dentry == d->dfs_dump_lprops) {
2778 		ubifs_dump_lprops(c);
2779 		return count;
2780 	}
2781 	if (file->f_path.dentry == d->dfs_dump_budg) {
2782 		ubifs_dump_budg(c, &c->bi);
2783 		return count;
2784 	}
2785 	if (file->f_path.dentry == d->dfs_dump_tnc) {
2786 		mutex_lock(&c->tnc_mutex);
2787 		ubifs_dump_tnc(c);
2788 		mutex_unlock(&c->tnc_mutex);
2789 		return count;
2790 	}
2791 
2792 	val = interpret_user_input(u, count);
2793 	if (val < 0)
2794 		return val;
2795 
2796 	if (dent == d->dfs_chk_gen)
2797 		d->chk_gen = val;
2798 	else if (dent == d->dfs_chk_index)
2799 		d->chk_index = val;
2800 	else if (dent == d->dfs_chk_orph)
2801 		d->chk_orph = val;
2802 	else if (dent == d->dfs_chk_lprops)
2803 		d->chk_lprops = val;
2804 	else if (dent == d->dfs_chk_fs)
2805 		d->chk_fs = val;
2806 	else if (dent == d->dfs_tst_rcvry)
2807 		d->tst_rcvry = val;
2808 	else if (dent == d->dfs_ro_error)
2809 		c->ro_error = !!val;
2810 	else
2811 		return -EINVAL;
2812 
2813 	return count;
2814 }
2815 
2816 static const struct file_operations dfs_fops = {
2817 	.open = dfs_file_open,
2818 	.read = dfs_file_read,
2819 	.write = dfs_file_write,
2820 	.owner = THIS_MODULE,
2821 	.llseek = no_llseek,
2822 };
2823 
2824 /**
2825  * dbg_debugfs_init_fs - initialize debugfs for UBIFS instance.
2826  * @c: UBIFS file-system description object
2827  *
2828  * This function creates all debugfs files for this instance of UBIFS.
2829  *
2830  * Note, the only reason we have not merged this function with the
2831  * 'ubifs_debugging_init()' function is because it is better to initialize
2832  * debugfs interfaces at the very end of the mount process, and remove them at
2833  * the very beginning of the mount process.
2834  */
2835 void dbg_debugfs_init_fs(struct ubifs_info *c)
2836 {
2837 	int n;
2838 	const char *fname;
2839 	struct ubifs_debug_info *d = c->dbg;
2840 
2841 	n = snprintf(d->dfs_dir_name, UBIFS_DFS_DIR_LEN + 1, UBIFS_DFS_DIR_NAME,
2842 		     c->vi.ubi_num, c->vi.vol_id);
2843 	if (n == UBIFS_DFS_DIR_LEN) {
2844 		/* The array size is too small */
2845 		return;
2846 	}
2847 
2848 	fname = d->dfs_dir_name;
2849 	d->dfs_dir = debugfs_create_dir(fname, dfs_rootdir);
2850 
2851 	fname = "dump_lprops";
2852 	d->dfs_dump_lprops = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c,
2853 						 &dfs_fops);
2854 
2855 	fname = "dump_budg";
2856 	d->dfs_dump_budg = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c,
2857 					       &dfs_fops);
2858 
2859 	fname = "dump_tnc";
2860 	d->dfs_dump_tnc = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c,
2861 					      &dfs_fops);
2862 
2863 	fname = "chk_general";
2864 	d->dfs_chk_gen = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2865 					     d->dfs_dir, c, &dfs_fops);
2866 
2867 	fname = "chk_index";
2868 	d->dfs_chk_index = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2869 					       d->dfs_dir, c, &dfs_fops);
2870 
2871 	fname = "chk_orphans";
2872 	d->dfs_chk_orph = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2873 					      d->dfs_dir, c, &dfs_fops);
2874 
2875 	fname = "chk_lprops";
2876 	d->dfs_chk_lprops = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2877 						d->dfs_dir, c, &dfs_fops);
2878 
2879 	fname = "chk_fs";
2880 	d->dfs_chk_fs = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2881 					    d->dfs_dir, c, &dfs_fops);
2882 
2883 	fname = "tst_recovery";
2884 	d->dfs_tst_rcvry = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2885 					       d->dfs_dir, c, &dfs_fops);
2886 
2887 	fname = "ro_error";
2888 	d->dfs_ro_error = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2889 					      d->dfs_dir, c, &dfs_fops);
2890 }
2891 
2892 /**
2893  * dbg_debugfs_exit_fs - remove all debugfs files.
2894  * @c: UBIFS file-system description object
2895  */
2896 void dbg_debugfs_exit_fs(struct ubifs_info *c)
2897 {
2898 	debugfs_remove_recursive(c->dbg->dfs_dir);
2899 }
2900 
2901 struct ubifs_global_debug_info ubifs_dbg;
2902 
2903 static struct dentry *dfs_chk_gen;
2904 static struct dentry *dfs_chk_index;
2905 static struct dentry *dfs_chk_orph;
2906 static struct dentry *dfs_chk_lprops;
2907 static struct dentry *dfs_chk_fs;
2908 static struct dentry *dfs_tst_rcvry;
2909 
2910 static ssize_t dfs_global_file_read(struct file *file, char __user *u,
2911 				    size_t count, loff_t *ppos)
2912 {
2913 	struct dentry *dent = file->f_path.dentry;
2914 	int val;
2915 
2916 	if (dent == dfs_chk_gen)
2917 		val = ubifs_dbg.chk_gen;
2918 	else if (dent == dfs_chk_index)
2919 		val = ubifs_dbg.chk_index;
2920 	else if (dent == dfs_chk_orph)
2921 		val = ubifs_dbg.chk_orph;
2922 	else if (dent == dfs_chk_lprops)
2923 		val = ubifs_dbg.chk_lprops;
2924 	else if (dent == dfs_chk_fs)
2925 		val = ubifs_dbg.chk_fs;
2926 	else if (dent == dfs_tst_rcvry)
2927 		val = ubifs_dbg.tst_rcvry;
2928 	else
2929 		return -EINVAL;
2930 
2931 	return provide_user_output(val, u, count, ppos);
2932 }
2933 
2934 static ssize_t dfs_global_file_write(struct file *file, const char __user *u,
2935 				     size_t count, loff_t *ppos)
2936 {
2937 	struct dentry *dent = file->f_path.dentry;
2938 	int val;
2939 
2940 	val = interpret_user_input(u, count);
2941 	if (val < 0)
2942 		return val;
2943 
2944 	if (dent == dfs_chk_gen)
2945 		ubifs_dbg.chk_gen = val;
2946 	else if (dent == dfs_chk_index)
2947 		ubifs_dbg.chk_index = val;
2948 	else if (dent == dfs_chk_orph)
2949 		ubifs_dbg.chk_orph = val;
2950 	else if (dent == dfs_chk_lprops)
2951 		ubifs_dbg.chk_lprops = val;
2952 	else if (dent == dfs_chk_fs)
2953 		ubifs_dbg.chk_fs = val;
2954 	else if (dent == dfs_tst_rcvry)
2955 		ubifs_dbg.tst_rcvry = val;
2956 	else
2957 		return -EINVAL;
2958 
2959 	return count;
2960 }
2961 
2962 static const struct file_operations dfs_global_fops = {
2963 	.read = dfs_global_file_read,
2964 	.write = dfs_global_file_write,
2965 	.owner = THIS_MODULE,
2966 	.llseek = no_llseek,
2967 };
2968 
2969 /**
2970  * dbg_debugfs_init - initialize debugfs file-system.
2971  *
2972  * UBIFS uses debugfs file-system to expose various debugging knobs to
2973  * user-space. This function creates "ubifs" directory in the debugfs
2974  * file-system.
2975  */
2976 void dbg_debugfs_init(void)
2977 {
2978 	const char *fname;
2979 
2980 	fname = "ubifs";
2981 	dfs_rootdir = debugfs_create_dir(fname, NULL);
2982 
2983 	fname = "chk_general";
2984 	dfs_chk_gen = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir,
2985 					  NULL, &dfs_global_fops);
2986 
2987 	fname = "chk_index";
2988 	dfs_chk_index = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2989 					    dfs_rootdir, NULL, &dfs_global_fops);
2990 
2991 	fname = "chk_orphans";
2992 	dfs_chk_orph = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2993 					   dfs_rootdir, NULL, &dfs_global_fops);
2994 
2995 	fname = "chk_lprops";
2996 	dfs_chk_lprops = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2997 					     dfs_rootdir, NULL, &dfs_global_fops);
2998 
2999 	fname = "chk_fs";
3000 	dfs_chk_fs = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir,
3001 					 NULL, &dfs_global_fops);
3002 
3003 	fname = "tst_recovery";
3004 	dfs_tst_rcvry = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
3005 					    dfs_rootdir, NULL, &dfs_global_fops);
3006 }
3007 
3008 /**
3009  * dbg_debugfs_exit - remove the "ubifs" directory from debugfs file-system.
3010  */
3011 void dbg_debugfs_exit(void)
3012 {
3013 	debugfs_remove_recursive(dfs_rootdir);
3014 }
3015 
3016 void ubifs_assert_failed(struct ubifs_info *c, const char *expr,
3017 			 const char *file, int line)
3018 {
3019 	ubifs_err(c, "UBIFS assert failed: %s, in %s:%u", expr, file, line);
3020 
3021 	switch (c->assert_action) {
3022 		case ASSACT_PANIC:
3023 		BUG();
3024 		break;
3025 
3026 		case ASSACT_RO:
3027 		ubifs_ro_mode(c, -EINVAL);
3028 		break;
3029 
3030 		case ASSACT_REPORT:
3031 		default:
3032 		dump_stack();
3033 		break;
3034 
3035 	}
3036 }
3037 
3038 /**
3039  * ubifs_debugging_init - initialize UBIFS debugging.
3040  * @c: UBIFS file-system description object
3041  *
3042  * This function initializes debugging-related data for the file system.
3043  * Returns zero in case of success and a negative error code in case of
3044  * failure.
3045  */
3046 int ubifs_debugging_init(struct ubifs_info *c)
3047 {
3048 	c->dbg = kzalloc(sizeof(struct ubifs_debug_info), GFP_KERNEL);
3049 	if (!c->dbg)
3050 		return -ENOMEM;
3051 
3052 	return 0;
3053 }
3054 
3055 /**
3056  * ubifs_debugging_exit - free debugging data.
3057  * @c: UBIFS file-system description object
3058  */
3059 void ubifs_debugging_exit(struct ubifs_info *c)
3060 {
3061 	kfree(c->dbg);
3062 }
3063