1 /* 2 * This file is part of UBIFS. 3 * 4 * Copyright (C) 2006-2008 Nokia Corporation 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 as published by 8 * the Free Software Foundation. 9 * 10 * This program is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program; if not, write to the Free Software Foundation, Inc., 51 17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 18 * 19 * Authors: Artem Bityutskiy (Битюцкий Артём) 20 * Adrian Hunter 21 */ 22 23 /* 24 * This file implements most of the debugging stuff which is compiled in only 25 * when it is enabled. But some debugging check functions are implemented in 26 * corresponding subsystem, just because they are closely related and utilize 27 * various local functions of those subsystems. 28 */ 29 30 #define UBIFS_DBG_PRESERVE_UBI 31 32 #include "ubifs.h" 33 #include <linux/module.h> 34 #include <linux/moduleparam.h> 35 #include <linux/debugfs.h> 36 #include <linux/math64.h> 37 38 #ifdef CONFIG_UBIFS_FS_DEBUG 39 40 DEFINE_SPINLOCK(dbg_lock); 41 42 static char dbg_key_buf0[128]; 43 static char dbg_key_buf1[128]; 44 45 unsigned int ubifs_msg_flags; 46 unsigned int ubifs_chk_flags; 47 unsigned int ubifs_tst_flags; 48 49 module_param_named(debug_msgs, ubifs_msg_flags, uint, S_IRUGO | S_IWUSR); 50 module_param_named(debug_chks, ubifs_chk_flags, uint, S_IRUGO | S_IWUSR); 51 module_param_named(debug_tsts, ubifs_tst_flags, uint, S_IRUGO | S_IWUSR); 52 53 MODULE_PARM_DESC(debug_msgs, "Debug message type flags"); 54 MODULE_PARM_DESC(debug_chks, "Debug check flags"); 55 MODULE_PARM_DESC(debug_tsts, "Debug special test flags"); 56 57 static const char *get_key_fmt(int fmt) 58 { 59 switch (fmt) { 60 case UBIFS_SIMPLE_KEY_FMT: 61 return "simple"; 62 default: 63 return "unknown/invalid format"; 64 } 65 } 66 67 static const char *get_key_hash(int hash) 68 { 69 switch (hash) { 70 case UBIFS_KEY_HASH_R5: 71 return "R5"; 72 case UBIFS_KEY_HASH_TEST: 73 return "test"; 74 default: 75 return "unknown/invalid name hash"; 76 } 77 } 78 79 static const char *get_key_type(int type) 80 { 81 switch (type) { 82 case UBIFS_INO_KEY: 83 return "inode"; 84 case UBIFS_DENT_KEY: 85 return "direntry"; 86 case UBIFS_XENT_KEY: 87 return "xentry"; 88 case UBIFS_DATA_KEY: 89 return "data"; 90 case UBIFS_TRUN_KEY: 91 return "truncate"; 92 default: 93 return "unknown/invalid key"; 94 } 95 } 96 97 static void sprintf_key(const struct ubifs_info *c, const union ubifs_key *key, 98 char *buffer) 99 { 100 char *p = buffer; 101 int type = key_type(c, key); 102 103 if (c->key_fmt == UBIFS_SIMPLE_KEY_FMT) { 104 switch (type) { 105 case UBIFS_INO_KEY: 106 sprintf(p, "(%lu, %s)", (unsigned long)key_inum(c, key), 107 get_key_type(type)); 108 break; 109 case UBIFS_DENT_KEY: 110 case UBIFS_XENT_KEY: 111 sprintf(p, "(%lu, %s, %#08x)", 112 (unsigned long)key_inum(c, key), 113 get_key_type(type), key_hash(c, key)); 114 break; 115 case UBIFS_DATA_KEY: 116 sprintf(p, "(%lu, %s, %u)", 117 (unsigned long)key_inum(c, key), 118 get_key_type(type), key_block(c, key)); 119 break; 120 case UBIFS_TRUN_KEY: 121 sprintf(p, "(%lu, %s)", 122 (unsigned long)key_inum(c, key), 123 get_key_type(type)); 124 break; 125 default: 126 sprintf(p, "(bad key type: %#08x, %#08x)", 127 key->u32[0], key->u32[1]); 128 } 129 } else 130 sprintf(p, "bad key format %d", c->key_fmt); 131 } 132 133 const char *dbg_key_str0(const struct ubifs_info *c, const union ubifs_key *key) 134 { 135 /* dbg_lock must be held */ 136 sprintf_key(c, key, dbg_key_buf0); 137 return dbg_key_buf0; 138 } 139 140 const char *dbg_key_str1(const struct ubifs_info *c, const union ubifs_key *key) 141 { 142 /* dbg_lock must be held */ 143 sprintf_key(c, key, dbg_key_buf1); 144 return dbg_key_buf1; 145 } 146 147 const char *dbg_ntype(int type) 148 { 149 switch (type) { 150 case UBIFS_PAD_NODE: 151 return "padding node"; 152 case UBIFS_SB_NODE: 153 return "superblock node"; 154 case UBIFS_MST_NODE: 155 return "master node"; 156 case UBIFS_REF_NODE: 157 return "reference node"; 158 case UBIFS_INO_NODE: 159 return "inode node"; 160 case UBIFS_DENT_NODE: 161 return "direntry node"; 162 case UBIFS_XENT_NODE: 163 return "xentry node"; 164 case UBIFS_DATA_NODE: 165 return "data node"; 166 case UBIFS_TRUN_NODE: 167 return "truncate node"; 168 case UBIFS_IDX_NODE: 169 return "indexing node"; 170 case UBIFS_CS_NODE: 171 return "commit start node"; 172 case UBIFS_ORPH_NODE: 173 return "orphan node"; 174 default: 175 return "unknown node"; 176 } 177 } 178 179 static const char *dbg_gtype(int type) 180 { 181 switch (type) { 182 case UBIFS_NO_NODE_GROUP: 183 return "no node group"; 184 case UBIFS_IN_NODE_GROUP: 185 return "in node group"; 186 case UBIFS_LAST_OF_NODE_GROUP: 187 return "last of node group"; 188 default: 189 return "unknown"; 190 } 191 } 192 193 const char *dbg_cstate(int cmt_state) 194 { 195 switch (cmt_state) { 196 case COMMIT_RESTING: 197 return "commit resting"; 198 case COMMIT_BACKGROUND: 199 return "background commit requested"; 200 case COMMIT_REQUIRED: 201 return "commit required"; 202 case COMMIT_RUNNING_BACKGROUND: 203 return "BACKGROUND commit running"; 204 case COMMIT_RUNNING_REQUIRED: 205 return "commit running and required"; 206 case COMMIT_BROKEN: 207 return "broken commit"; 208 default: 209 return "unknown commit state"; 210 } 211 } 212 213 const char *dbg_jhead(int jhead) 214 { 215 switch (jhead) { 216 case GCHD: 217 return "0 (GC)"; 218 case BASEHD: 219 return "1 (base)"; 220 case DATAHD: 221 return "2 (data)"; 222 default: 223 return "unknown journal head"; 224 } 225 } 226 227 static void dump_ch(const struct ubifs_ch *ch) 228 { 229 printk(KERN_DEBUG "\tmagic %#x\n", le32_to_cpu(ch->magic)); 230 printk(KERN_DEBUG "\tcrc %#x\n", le32_to_cpu(ch->crc)); 231 printk(KERN_DEBUG "\tnode_type %d (%s)\n", ch->node_type, 232 dbg_ntype(ch->node_type)); 233 printk(KERN_DEBUG "\tgroup_type %d (%s)\n", ch->group_type, 234 dbg_gtype(ch->group_type)); 235 printk(KERN_DEBUG "\tsqnum %llu\n", 236 (unsigned long long)le64_to_cpu(ch->sqnum)); 237 printk(KERN_DEBUG "\tlen %u\n", le32_to_cpu(ch->len)); 238 } 239 240 void dbg_dump_inode(const struct ubifs_info *c, const struct inode *inode) 241 { 242 const struct ubifs_inode *ui = ubifs_inode(inode); 243 244 printk(KERN_DEBUG "Dump in-memory inode:"); 245 printk(KERN_DEBUG "\tinode %lu\n", inode->i_ino); 246 printk(KERN_DEBUG "\tsize %llu\n", 247 (unsigned long long)i_size_read(inode)); 248 printk(KERN_DEBUG "\tnlink %u\n", inode->i_nlink); 249 printk(KERN_DEBUG "\tuid %u\n", (unsigned int)inode->i_uid); 250 printk(KERN_DEBUG "\tgid %u\n", (unsigned int)inode->i_gid); 251 printk(KERN_DEBUG "\tatime %u.%u\n", 252 (unsigned int)inode->i_atime.tv_sec, 253 (unsigned int)inode->i_atime.tv_nsec); 254 printk(KERN_DEBUG "\tmtime %u.%u\n", 255 (unsigned int)inode->i_mtime.tv_sec, 256 (unsigned int)inode->i_mtime.tv_nsec); 257 printk(KERN_DEBUG "\tctime %u.%u\n", 258 (unsigned int)inode->i_ctime.tv_sec, 259 (unsigned int)inode->i_ctime.tv_nsec); 260 printk(KERN_DEBUG "\tcreat_sqnum %llu\n", ui->creat_sqnum); 261 printk(KERN_DEBUG "\txattr_size %u\n", ui->xattr_size); 262 printk(KERN_DEBUG "\txattr_cnt %u\n", ui->xattr_cnt); 263 printk(KERN_DEBUG "\txattr_names %u\n", ui->xattr_names); 264 printk(KERN_DEBUG "\tdirty %u\n", ui->dirty); 265 printk(KERN_DEBUG "\txattr %u\n", ui->xattr); 266 printk(KERN_DEBUG "\tbulk_read %u\n", ui->xattr); 267 printk(KERN_DEBUG "\tsynced_i_size %llu\n", 268 (unsigned long long)ui->synced_i_size); 269 printk(KERN_DEBUG "\tui_size %llu\n", 270 (unsigned long long)ui->ui_size); 271 printk(KERN_DEBUG "\tflags %d\n", ui->flags); 272 printk(KERN_DEBUG "\tcompr_type %d\n", ui->compr_type); 273 printk(KERN_DEBUG "\tlast_page_read %lu\n", ui->last_page_read); 274 printk(KERN_DEBUG "\tread_in_a_row %lu\n", ui->read_in_a_row); 275 printk(KERN_DEBUG "\tdata_len %d\n", ui->data_len); 276 } 277 278 void dbg_dump_node(const struct ubifs_info *c, const void *node) 279 { 280 int i, n; 281 union ubifs_key key; 282 const struct ubifs_ch *ch = node; 283 284 if (dbg_failure_mode) 285 return; 286 287 /* If the magic is incorrect, just hexdump the first bytes */ 288 if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) { 289 printk(KERN_DEBUG "Not a node, first %zu bytes:", UBIFS_CH_SZ); 290 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1, 291 (void *)node, UBIFS_CH_SZ, 1); 292 return; 293 } 294 295 spin_lock(&dbg_lock); 296 dump_ch(node); 297 298 switch (ch->node_type) { 299 case UBIFS_PAD_NODE: 300 { 301 const struct ubifs_pad_node *pad = node; 302 303 printk(KERN_DEBUG "\tpad_len %u\n", 304 le32_to_cpu(pad->pad_len)); 305 break; 306 } 307 case UBIFS_SB_NODE: 308 { 309 const struct ubifs_sb_node *sup = node; 310 unsigned int sup_flags = le32_to_cpu(sup->flags); 311 312 printk(KERN_DEBUG "\tkey_hash %d (%s)\n", 313 (int)sup->key_hash, get_key_hash(sup->key_hash)); 314 printk(KERN_DEBUG "\tkey_fmt %d (%s)\n", 315 (int)sup->key_fmt, get_key_fmt(sup->key_fmt)); 316 printk(KERN_DEBUG "\tflags %#x\n", sup_flags); 317 printk(KERN_DEBUG "\t big_lpt %u\n", 318 !!(sup_flags & UBIFS_FLG_BIGLPT)); 319 printk(KERN_DEBUG "\tmin_io_size %u\n", 320 le32_to_cpu(sup->min_io_size)); 321 printk(KERN_DEBUG "\tleb_size %u\n", 322 le32_to_cpu(sup->leb_size)); 323 printk(KERN_DEBUG "\tleb_cnt %u\n", 324 le32_to_cpu(sup->leb_cnt)); 325 printk(KERN_DEBUG "\tmax_leb_cnt %u\n", 326 le32_to_cpu(sup->max_leb_cnt)); 327 printk(KERN_DEBUG "\tmax_bud_bytes %llu\n", 328 (unsigned long long)le64_to_cpu(sup->max_bud_bytes)); 329 printk(KERN_DEBUG "\tlog_lebs %u\n", 330 le32_to_cpu(sup->log_lebs)); 331 printk(KERN_DEBUG "\tlpt_lebs %u\n", 332 le32_to_cpu(sup->lpt_lebs)); 333 printk(KERN_DEBUG "\torph_lebs %u\n", 334 le32_to_cpu(sup->orph_lebs)); 335 printk(KERN_DEBUG "\tjhead_cnt %u\n", 336 le32_to_cpu(sup->jhead_cnt)); 337 printk(KERN_DEBUG "\tfanout %u\n", 338 le32_to_cpu(sup->fanout)); 339 printk(KERN_DEBUG "\tlsave_cnt %u\n", 340 le32_to_cpu(sup->lsave_cnt)); 341 printk(KERN_DEBUG "\tdefault_compr %u\n", 342 (int)le16_to_cpu(sup->default_compr)); 343 printk(KERN_DEBUG "\trp_size %llu\n", 344 (unsigned long long)le64_to_cpu(sup->rp_size)); 345 printk(KERN_DEBUG "\trp_uid %u\n", 346 le32_to_cpu(sup->rp_uid)); 347 printk(KERN_DEBUG "\trp_gid %u\n", 348 le32_to_cpu(sup->rp_gid)); 349 printk(KERN_DEBUG "\tfmt_version %u\n", 350 le32_to_cpu(sup->fmt_version)); 351 printk(KERN_DEBUG "\ttime_gran %u\n", 352 le32_to_cpu(sup->time_gran)); 353 printk(KERN_DEBUG "\tUUID %pUB\n", 354 sup->uuid); 355 break; 356 } 357 case UBIFS_MST_NODE: 358 { 359 const struct ubifs_mst_node *mst = node; 360 361 printk(KERN_DEBUG "\thighest_inum %llu\n", 362 (unsigned long long)le64_to_cpu(mst->highest_inum)); 363 printk(KERN_DEBUG "\tcommit number %llu\n", 364 (unsigned long long)le64_to_cpu(mst->cmt_no)); 365 printk(KERN_DEBUG "\tflags %#x\n", 366 le32_to_cpu(mst->flags)); 367 printk(KERN_DEBUG "\tlog_lnum %u\n", 368 le32_to_cpu(mst->log_lnum)); 369 printk(KERN_DEBUG "\troot_lnum %u\n", 370 le32_to_cpu(mst->root_lnum)); 371 printk(KERN_DEBUG "\troot_offs %u\n", 372 le32_to_cpu(mst->root_offs)); 373 printk(KERN_DEBUG "\troot_len %u\n", 374 le32_to_cpu(mst->root_len)); 375 printk(KERN_DEBUG "\tgc_lnum %u\n", 376 le32_to_cpu(mst->gc_lnum)); 377 printk(KERN_DEBUG "\tihead_lnum %u\n", 378 le32_to_cpu(mst->ihead_lnum)); 379 printk(KERN_DEBUG "\tihead_offs %u\n", 380 le32_to_cpu(mst->ihead_offs)); 381 printk(KERN_DEBUG "\tindex_size %llu\n", 382 (unsigned long long)le64_to_cpu(mst->index_size)); 383 printk(KERN_DEBUG "\tlpt_lnum %u\n", 384 le32_to_cpu(mst->lpt_lnum)); 385 printk(KERN_DEBUG "\tlpt_offs %u\n", 386 le32_to_cpu(mst->lpt_offs)); 387 printk(KERN_DEBUG "\tnhead_lnum %u\n", 388 le32_to_cpu(mst->nhead_lnum)); 389 printk(KERN_DEBUG "\tnhead_offs %u\n", 390 le32_to_cpu(mst->nhead_offs)); 391 printk(KERN_DEBUG "\tltab_lnum %u\n", 392 le32_to_cpu(mst->ltab_lnum)); 393 printk(KERN_DEBUG "\tltab_offs %u\n", 394 le32_to_cpu(mst->ltab_offs)); 395 printk(KERN_DEBUG "\tlsave_lnum %u\n", 396 le32_to_cpu(mst->lsave_lnum)); 397 printk(KERN_DEBUG "\tlsave_offs %u\n", 398 le32_to_cpu(mst->lsave_offs)); 399 printk(KERN_DEBUG "\tlscan_lnum %u\n", 400 le32_to_cpu(mst->lscan_lnum)); 401 printk(KERN_DEBUG "\tleb_cnt %u\n", 402 le32_to_cpu(mst->leb_cnt)); 403 printk(KERN_DEBUG "\tempty_lebs %u\n", 404 le32_to_cpu(mst->empty_lebs)); 405 printk(KERN_DEBUG "\tidx_lebs %u\n", 406 le32_to_cpu(mst->idx_lebs)); 407 printk(KERN_DEBUG "\ttotal_free %llu\n", 408 (unsigned long long)le64_to_cpu(mst->total_free)); 409 printk(KERN_DEBUG "\ttotal_dirty %llu\n", 410 (unsigned long long)le64_to_cpu(mst->total_dirty)); 411 printk(KERN_DEBUG "\ttotal_used %llu\n", 412 (unsigned long long)le64_to_cpu(mst->total_used)); 413 printk(KERN_DEBUG "\ttotal_dead %llu\n", 414 (unsigned long long)le64_to_cpu(mst->total_dead)); 415 printk(KERN_DEBUG "\ttotal_dark %llu\n", 416 (unsigned long long)le64_to_cpu(mst->total_dark)); 417 break; 418 } 419 case UBIFS_REF_NODE: 420 { 421 const struct ubifs_ref_node *ref = node; 422 423 printk(KERN_DEBUG "\tlnum %u\n", 424 le32_to_cpu(ref->lnum)); 425 printk(KERN_DEBUG "\toffs %u\n", 426 le32_to_cpu(ref->offs)); 427 printk(KERN_DEBUG "\tjhead %u\n", 428 le32_to_cpu(ref->jhead)); 429 break; 430 } 431 case UBIFS_INO_NODE: 432 { 433 const struct ubifs_ino_node *ino = node; 434 435 key_read(c, &ino->key, &key); 436 printk(KERN_DEBUG "\tkey %s\n", DBGKEY(&key)); 437 printk(KERN_DEBUG "\tcreat_sqnum %llu\n", 438 (unsigned long long)le64_to_cpu(ino->creat_sqnum)); 439 printk(KERN_DEBUG "\tsize %llu\n", 440 (unsigned long long)le64_to_cpu(ino->size)); 441 printk(KERN_DEBUG "\tnlink %u\n", 442 le32_to_cpu(ino->nlink)); 443 printk(KERN_DEBUG "\tatime %lld.%u\n", 444 (long long)le64_to_cpu(ino->atime_sec), 445 le32_to_cpu(ino->atime_nsec)); 446 printk(KERN_DEBUG "\tmtime %lld.%u\n", 447 (long long)le64_to_cpu(ino->mtime_sec), 448 le32_to_cpu(ino->mtime_nsec)); 449 printk(KERN_DEBUG "\tctime %lld.%u\n", 450 (long long)le64_to_cpu(ino->ctime_sec), 451 le32_to_cpu(ino->ctime_nsec)); 452 printk(KERN_DEBUG "\tuid %u\n", 453 le32_to_cpu(ino->uid)); 454 printk(KERN_DEBUG "\tgid %u\n", 455 le32_to_cpu(ino->gid)); 456 printk(KERN_DEBUG "\tmode %u\n", 457 le32_to_cpu(ino->mode)); 458 printk(KERN_DEBUG "\tflags %#x\n", 459 le32_to_cpu(ino->flags)); 460 printk(KERN_DEBUG "\txattr_cnt %u\n", 461 le32_to_cpu(ino->xattr_cnt)); 462 printk(KERN_DEBUG "\txattr_size %u\n", 463 le32_to_cpu(ino->xattr_size)); 464 printk(KERN_DEBUG "\txattr_names %u\n", 465 le32_to_cpu(ino->xattr_names)); 466 printk(KERN_DEBUG "\tcompr_type %#x\n", 467 (int)le16_to_cpu(ino->compr_type)); 468 printk(KERN_DEBUG "\tdata len %u\n", 469 le32_to_cpu(ino->data_len)); 470 break; 471 } 472 case UBIFS_DENT_NODE: 473 case UBIFS_XENT_NODE: 474 { 475 const struct ubifs_dent_node *dent = node; 476 int nlen = le16_to_cpu(dent->nlen); 477 478 key_read(c, &dent->key, &key); 479 printk(KERN_DEBUG "\tkey %s\n", DBGKEY(&key)); 480 printk(KERN_DEBUG "\tinum %llu\n", 481 (unsigned long long)le64_to_cpu(dent->inum)); 482 printk(KERN_DEBUG "\ttype %d\n", (int)dent->type); 483 printk(KERN_DEBUG "\tnlen %d\n", nlen); 484 printk(KERN_DEBUG "\tname "); 485 486 if (nlen > UBIFS_MAX_NLEN) 487 printk(KERN_DEBUG "(bad name length, not printing, " 488 "bad or corrupted node)"); 489 else { 490 for (i = 0; i < nlen && dent->name[i]; i++) 491 printk(KERN_CONT "%c", dent->name[i]); 492 } 493 printk(KERN_CONT "\n"); 494 495 break; 496 } 497 case UBIFS_DATA_NODE: 498 { 499 const struct ubifs_data_node *dn = node; 500 int dlen = le32_to_cpu(ch->len) - UBIFS_DATA_NODE_SZ; 501 502 key_read(c, &dn->key, &key); 503 printk(KERN_DEBUG "\tkey %s\n", DBGKEY(&key)); 504 printk(KERN_DEBUG "\tsize %u\n", 505 le32_to_cpu(dn->size)); 506 printk(KERN_DEBUG "\tcompr_typ %d\n", 507 (int)le16_to_cpu(dn->compr_type)); 508 printk(KERN_DEBUG "\tdata size %d\n", 509 dlen); 510 printk(KERN_DEBUG "\tdata:\n"); 511 print_hex_dump(KERN_DEBUG, "\t", DUMP_PREFIX_OFFSET, 32, 1, 512 (void *)&dn->data, dlen, 0); 513 break; 514 } 515 case UBIFS_TRUN_NODE: 516 { 517 const struct ubifs_trun_node *trun = node; 518 519 printk(KERN_DEBUG "\tinum %u\n", 520 le32_to_cpu(trun->inum)); 521 printk(KERN_DEBUG "\told_size %llu\n", 522 (unsigned long long)le64_to_cpu(trun->old_size)); 523 printk(KERN_DEBUG "\tnew_size %llu\n", 524 (unsigned long long)le64_to_cpu(trun->new_size)); 525 break; 526 } 527 case UBIFS_IDX_NODE: 528 { 529 const struct ubifs_idx_node *idx = node; 530 531 n = le16_to_cpu(idx->child_cnt); 532 printk(KERN_DEBUG "\tchild_cnt %d\n", n); 533 printk(KERN_DEBUG "\tlevel %d\n", 534 (int)le16_to_cpu(idx->level)); 535 printk(KERN_DEBUG "\tBranches:\n"); 536 537 for (i = 0; i < n && i < c->fanout - 1; i++) { 538 const struct ubifs_branch *br; 539 540 br = ubifs_idx_branch(c, idx, i); 541 key_read(c, &br->key, &key); 542 printk(KERN_DEBUG "\t%d: LEB %d:%d len %d key %s\n", 543 i, le32_to_cpu(br->lnum), le32_to_cpu(br->offs), 544 le32_to_cpu(br->len), DBGKEY(&key)); 545 } 546 break; 547 } 548 case UBIFS_CS_NODE: 549 break; 550 case UBIFS_ORPH_NODE: 551 { 552 const struct ubifs_orph_node *orph = node; 553 554 printk(KERN_DEBUG "\tcommit number %llu\n", 555 (unsigned long long) 556 le64_to_cpu(orph->cmt_no) & LLONG_MAX); 557 printk(KERN_DEBUG "\tlast node flag %llu\n", 558 (unsigned long long)(le64_to_cpu(orph->cmt_no)) >> 63); 559 n = (le32_to_cpu(ch->len) - UBIFS_ORPH_NODE_SZ) >> 3; 560 printk(KERN_DEBUG "\t%d orphan inode numbers:\n", n); 561 for (i = 0; i < n; i++) 562 printk(KERN_DEBUG "\t ino %llu\n", 563 (unsigned long long)le64_to_cpu(orph->inos[i])); 564 break; 565 } 566 default: 567 printk(KERN_DEBUG "node type %d was not recognized\n", 568 (int)ch->node_type); 569 } 570 spin_unlock(&dbg_lock); 571 } 572 573 void dbg_dump_budget_req(const struct ubifs_budget_req *req) 574 { 575 spin_lock(&dbg_lock); 576 printk(KERN_DEBUG "Budgeting request: new_ino %d, dirtied_ino %d\n", 577 req->new_ino, req->dirtied_ino); 578 printk(KERN_DEBUG "\tnew_ino_d %d, dirtied_ino_d %d\n", 579 req->new_ino_d, req->dirtied_ino_d); 580 printk(KERN_DEBUG "\tnew_page %d, dirtied_page %d\n", 581 req->new_page, req->dirtied_page); 582 printk(KERN_DEBUG "\tnew_dent %d, mod_dent %d\n", 583 req->new_dent, req->mod_dent); 584 printk(KERN_DEBUG "\tidx_growth %d\n", req->idx_growth); 585 printk(KERN_DEBUG "\tdata_growth %d dd_growth %d\n", 586 req->data_growth, req->dd_growth); 587 spin_unlock(&dbg_lock); 588 } 589 590 void dbg_dump_lstats(const struct ubifs_lp_stats *lst) 591 { 592 spin_lock(&dbg_lock); 593 printk(KERN_DEBUG "(pid %d) Lprops statistics: empty_lebs %d, " 594 "idx_lebs %d\n", current->pid, lst->empty_lebs, lst->idx_lebs); 595 printk(KERN_DEBUG "\ttaken_empty_lebs %d, total_free %lld, " 596 "total_dirty %lld\n", lst->taken_empty_lebs, lst->total_free, 597 lst->total_dirty); 598 printk(KERN_DEBUG "\ttotal_used %lld, total_dark %lld, " 599 "total_dead %lld\n", lst->total_used, lst->total_dark, 600 lst->total_dead); 601 spin_unlock(&dbg_lock); 602 } 603 604 void dbg_dump_budg(struct ubifs_info *c, const struct ubifs_budg_info *bi) 605 { 606 int i; 607 struct rb_node *rb; 608 struct ubifs_bud *bud; 609 struct ubifs_gced_idx_leb *idx_gc; 610 long long available, outstanding, free; 611 612 spin_lock(&c->space_lock); 613 spin_lock(&dbg_lock); 614 printk(KERN_DEBUG "(pid %d) Budgeting info: data budget sum %lld, " 615 "total budget sum %lld\n", current->pid, 616 bi->data_growth + bi->dd_growth, 617 bi->data_growth + bi->dd_growth + bi->idx_growth); 618 printk(KERN_DEBUG "\tbudg_data_growth %lld, budg_dd_growth %lld, " 619 "budg_idx_growth %lld\n", bi->data_growth, bi->dd_growth, 620 bi->idx_growth); 621 printk(KERN_DEBUG "\tmin_idx_lebs %d, old_idx_sz %llu, " 622 "uncommitted_idx %lld\n", bi->min_idx_lebs, bi->old_idx_sz, 623 bi->uncommitted_idx); 624 printk(KERN_DEBUG "\tpage_budget %d, inode_budget %d, dent_budget %d\n", 625 bi->page_budget, bi->inode_budget, bi->dent_budget); 626 printk(KERN_DEBUG "\tnospace %u, nospace_rp %u\n", 627 bi->nospace, bi->nospace_rp); 628 printk(KERN_DEBUG "\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n", 629 c->dark_wm, c->dead_wm, c->max_idx_node_sz); 630 631 if (bi != &c->bi) 632 /* 633 * If we are dumping saved budgeting data, do not print 634 * additional information which is about the current state, not 635 * the old one which corresponded to the saved budgeting data. 636 */ 637 goto out_unlock; 638 639 printk(KERN_DEBUG "\tfreeable_cnt %d, calc_idx_sz %lld, idx_gc_cnt %d\n", 640 c->freeable_cnt, c->calc_idx_sz, c->idx_gc_cnt); 641 printk(KERN_DEBUG "\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, " 642 "clean_zn_cnt %ld\n", atomic_long_read(&c->dirty_pg_cnt), 643 atomic_long_read(&c->dirty_zn_cnt), 644 atomic_long_read(&c->clean_zn_cnt)); 645 printk(KERN_DEBUG "\tgc_lnum %d, ihead_lnum %d\n", 646 c->gc_lnum, c->ihead_lnum); 647 648 /* If we are in R/O mode, journal heads do not exist */ 649 if (c->jheads) 650 for (i = 0; i < c->jhead_cnt; i++) 651 printk(KERN_DEBUG "\tjhead %s\t LEB %d\n", 652 dbg_jhead(c->jheads[i].wbuf.jhead), 653 c->jheads[i].wbuf.lnum); 654 for (rb = rb_first(&c->buds); rb; rb = rb_next(rb)) { 655 bud = rb_entry(rb, struct ubifs_bud, rb); 656 printk(KERN_DEBUG "\tbud LEB %d\n", bud->lnum); 657 } 658 list_for_each_entry(bud, &c->old_buds, list) 659 printk(KERN_DEBUG "\told bud LEB %d\n", bud->lnum); 660 list_for_each_entry(idx_gc, &c->idx_gc, list) 661 printk(KERN_DEBUG "\tGC'ed idx LEB %d unmap %d\n", 662 idx_gc->lnum, idx_gc->unmap); 663 printk(KERN_DEBUG "\tcommit state %d\n", c->cmt_state); 664 665 /* Print budgeting predictions */ 666 available = ubifs_calc_available(c, c->bi.min_idx_lebs); 667 outstanding = c->bi.data_growth + c->bi.dd_growth; 668 free = ubifs_get_free_space_nolock(c); 669 printk(KERN_DEBUG "Budgeting predictions:\n"); 670 printk(KERN_DEBUG "\tavailable: %lld, outstanding %lld, free %lld\n", 671 available, outstanding, free); 672 out_unlock: 673 spin_unlock(&dbg_lock); 674 spin_unlock(&c->space_lock); 675 } 676 677 void dbg_dump_lprop(const struct ubifs_info *c, const struct ubifs_lprops *lp) 678 { 679 int i, spc, dark = 0, dead = 0; 680 struct rb_node *rb; 681 struct ubifs_bud *bud; 682 683 spc = lp->free + lp->dirty; 684 if (spc < c->dead_wm) 685 dead = spc; 686 else 687 dark = ubifs_calc_dark(c, spc); 688 689 if (lp->flags & LPROPS_INDEX) 690 printk(KERN_DEBUG "LEB %-7d free %-8d dirty %-8d used %-8d " 691 "free + dirty %-8d flags %#x (", lp->lnum, lp->free, 692 lp->dirty, c->leb_size - spc, spc, lp->flags); 693 else 694 printk(KERN_DEBUG "LEB %-7d free %-8d dirty %-8d used %-8d " 695 "free + dirty %-8d dark %-4d dead %-4d nodes fit %-3d " 696 "flags %#-4x (", lp->lnum, lp->free, lp->dirty, 697 c->leb_size - spc, spc, dark, dead, 698 (int)(spc / UBIFS_MAX_NODE_SZ), lp->flags); 699 700 if (lp->flags & LPROPS_TAKEN) { 701 if (lp->flags & LPROPS_INDEX) 702 printk(KERN_CONT "index, taken"); 703 else 704 printk(KERN_CONT "taken"); 705 } else { 706 const char *s; 707 708 if (lp->flags & LPROPS_INDEX) { 709 switch (lp->flags & LPROPS_CAT_MASK) { 710 case LPROPS_DIRTY_IDX: 711 s = "dirty index"; 712 break; 713 case LPROPS_FRDI_IDX: 714 s = "freeable index"; 715 break; 716 default: 717 s = "index"; 718 } 719 } else { 720 switch (lp->flags & LPROPS_CAT_MASK) { 721 case LPROPS_UNCAT: 722 s = "not categorized"; 723 break; 724 case LPROPS_DIRTY: 725 s = "dirty"; 726 break; 727 case LPROPS_FREE: 728 s = "free"; 729 break; 730 case LPROPS_EMPTY: 731 s = "empty"; 732 break; 733 case LPROPS_FREEABLE: 734 s = "freeable"; 735 break; 736 default: 737 s = NULL; 738 break; 739 } 740 } 741 printk(KERN_CONT "%s", s); 742 } 743 744 for (rb = rb_first((struct rb_root *)&c->buds); rb; rb = rb_next(rb)) { 745 bud = rb_entry(rb, struct ubifs_bud, rb); 746 if (bud->lnum == lp->lnum) { 747 int head = 0; 748 for (i = 0; i < c->jhead_cnt; i++) { 749 if (lp->lnum == c->jheads[i].wbuf.lnum) { 750 printk(KERN_CONT ", jhead %s", 751 dbg_jhead(i)); 752 head = 1; 753 } 754 } 755 if (!head) 756 printk(KERN_CONT ", bud of jhead %s", 757 dbg_jhead(bud->jhead)); 758 } 759 } 760 if (lp->lnum == c->gc_lnum) 761 printk(KERN_CONT ", GC LEB"); 762 printk(KERN_CONT ")\n"); 763 } 764 765 void dbg_dump_lprops(struct ubifs_info *c) 766 { 767 int lnum, err; 768 struct ubifs_lprops lp; 769 struct ubifs_lp_stats lst; 770 771 printk(KERN_DEBUG "(pid %d) start dumping LEB properties\n", 772 current->pid); 773 ubifs_get_lp_stats(c, &lst); 774 dbg_dump_lstats(&lst); 775 776 for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) { 777 err = ubifs_read_one_lp(c, lnum, &lp); 778 if (err) 779 ubifs_err("cannot read lprops for LEB %d", lnum); 780 781 dbg_dump_lprop(c, &lp); 782 } 783 printk(KERN_DEBUG "(pid %d) finish dumping LEB properties\n", 784 current->pid); 785 } 786 787 void dbg_dump_lpt_info(struct ubifs_info *c) 788 { 789 int i; 790 791 spin_lock(&dbg_lock); 792 printk(KERN_DEBUG "(pid %d) dumping LPT information\n", current->pid); 793 printk(KERN_DEBUG "\tlpt_sz: %lld\n", c->lpt_sz); 794 printk(KERN_DEBUG "\tpnode_sz: %d\n", c->pnode_sz); 795 printk(KERN_DEBUG "\tnnode_sz: %d\n", c->nnode_sz); 796 printk(KERN_DEBUG "\tltab_sz: %d\n", c->ltab_sz); 797 printk(KERN_DEBUG "\tlsave_sz: %d\n", c->lsave_sz); 798 printk(KERN_DEBUG "\tbig_lpt: %d\n", c->big_lpt); 799 printk(KERN_DEBUG "\tlpt_hght: %d\n", c->lpt_hght); 800 printk(KERN_DEBUG "\tpnode_cnt: %d\n", c->pnode_cnt); 801 printk(KERN_DEBUG "\tnnode_cnt: %d\n", c->nnode_cnt); 802 printk(KERN_DEBUG "\tdirty_pn_cnt: %d\n", c->dirty_pn_cnt); 803 printk(KERN_DEBUG "\tdirty_nn_cnt: %d\n", c->dirty_nn_cnt); 804 printk(KERN_DEBUG "\tlsave_cnt: %d\n", c->lsave_cnt); 805 printk(KERN_DEBUG "\tspace_bits: %d\n", c->space_bits); 806 printk(KERN_DEBUG "\tlpt_lnum_bits: %d\n", c->lpt_lnum_bits); 807 printk(KERN_DEBUG "\tlpt_offs_bits: %d\n", c->lpt_offs_bits); 808 printk(KERN_DEBUG "\tlpt_spc_bits: %d\n", c->lpt_spc_bits); 809 printk(KERN_DEBUG "\tpcnt_bits: %d\n", c->pcnt_bits); 810 printk(KERN_DEBUG "\tlnum_bits: %d\n", c->lnum_bits); 811 printk(KERN_DEBUG "\tLPT root is at %d:%d\n", c->lpt_lnum, c->lpt_offs); 812 printk(KERN_DEBUG "\tLPT head is at %d:%d\n", 813 c->nhead_lnum, c->nhead_offs); 814 printk(KERN_DEBUG "\tLPT ltab is at %d:%d\n", 815 c->ltab_lnum, c->ltab_offs); 816 if (c->big_lpt) 817 printk(KERN_DEBUG "\tLPT lsave is at %d:%d\n", 818 c->lsave_lnum, c->lsave_offs); 819 for (i = 0; i < c->lpt_lebs; i++) 820 printk(KERN_DEBUG "\tLPT LEB %d free %d dirty %d tgc %d " 821 "cmt %d\n", i + c->lpt_first, c->ltab[i].free, 822 c->ltab[i].dirty, c->ltab[i].tgc, c->ltab[i].cmt); 823 spin_unlock(&dbg_lock); 824 } 825 826 void dbg_dump_leb(const struct ubifs_info *c, int lnum) 827 { 828 struct ubifs_scan_leb *sleb; 829 struct ubifs_scan_node *snod; 830 void *buf; 831 832 if (dbg_failure_mode) 833 return; 834 835 printk(KERN_DEBUG "(pid %d) start dumping LEB %d\n", 836 current->pid, lnum); 837 838 buf = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL); 839 if (!buf) { 840 ubifs_err("cannot allocate memory for dumping LEB %d", lnum); 841 return; 842 } 843 844 sleb = ubifs_scan(c, lnum, 0, buf, 0); 845 if (IS_ERR(sleb)) { 846 ubifs_err("scan error %d", (int)PTR_ERR(sleb)); 847 goto out; 848 } 849 850 printk(KERN_DEBUG "LEB %d has %d nodes ending at %d\n", lnum, 851 sleb->nodes_cnt, sleb->endpt); 852 853 list_for_each_entry(snod, &sleb->nodes, list) { 854 cond_resched(); 855 printk(KERN_DEBUG "Dumping node at LEB %d:%d len %d\n", lnum, 856 snod->offs, snod->len); 857 dbg_dump_node(c, snod->node); 858 } 859 860 printk(KERN_DEBUG "(pid %d) finish dumping LEB %d\n", 861 current->pid, lnum); 862 ubifs_scan_destroy(sleb); 863 864 out: 865 vfree(buf); 866 return; 867 } 868 869 void dbg_dump_znode(const struct ubifs_info *c, 870 const struct ubifs_znode *znode) 871 { 872 int n; 873 const struct ubifs_zbranch *zbr; 874 875 spin_lock(&dbg_lock); 876 if (znode->parent) 877 zbr = &znode->parent->zbranch[znode->iip]; 878 else 879 zbr = &c->zroot; 880 881 printk(KERN_DEBUG "znode %p, LEB %d:%d len %d parent %p iip %d level %d" 882 " child_cnt %d flags %lx\n", znode, zbr->lnum, zbr->offs, 883 zbr->len, znode->parent, znode->iip, znode->level, 884 znode->child_cnt, znode->flags); 885 886 if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) { 887 spin_unlock(&dbg_lock); 888 return; 889 } 890 891 printk(KERN_DEBUG "zbranches:\n"); 892 for (n = 0; n < znode->child_cnt; n++) { 893 zbr = &znode->zbranch[n]; 894 if (znode->level > 0) 895 printk(KERN_DEBUG "\t%d: znode %p LEB %d:%d len %d key " 896 "%s\n", n, zbr->znode, zbr->lnum, 897 zbr->offs, zbr->len, 898 DBGKEY(&zbr->key)); 899 else 900 printk(KERN_DEBUG "\t%d: LNC %p LEB %d:%d len %d key " 901 "%s\n", n, zbr->znode, zbr->lnum, 902 zbr->offs, zbr->len, 903 DBGKEY(&zbr->key)); 904 } 905 spin_unlock(&dbg_lock); 906 } 907 908 void dbg_dump_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat) 909 { 910 int i; 911 912 printk(KERN_DEBUG "(pid %d) start dumping heap cat %d (%d elements)\n", 913 current->pid, cat, heap->cnt); 914 for (i = 0; i < heap->cnt; i++) { 915 struct ubifs_lprops *lprops = heap->arr[i]; 916 917 printk(KERN_DEBUG "\t%d. LEB %d hpos %d free %d dirty %d " 918 "flags %d\n", i, lprops->lnum, lprops->hpos, 919 lprops->free, lprops->dirty, lprops->flags); 920 } 921 printk(KERN_DEBUG "(pid %d) finish dumping heap\n", current->pid); 922 } 923 924 void dbg_dump_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode, 925 struct ubifs_nnode *parent, int iip) 926 { 927 int i; 928 929 printk(KERN_DEBUG "(pid %d) dumping pnode:\n", current->pid); 930 printk(KERN_DEBUG "\taddress %zx parent %zx cnext %zx\n", 931 (size_t)pnode, (size_t)parent, (size_t)pnode->cnext); 932 printk(KERN_DEBUG "\tflags %lu iip %d level %d num %d\n", 933 pnode->flags, iip, pnode->level, pnode->num); 934 for (i = 0; i < UBIFS_LPT_FANOUT; i++) { 935 struct ubifs_lprops *lp = &pnode->lprops[i]; 936 937 printk(KERN_DEBUG "\t%d: free %d dirty %d flags %d lnum %d\n", 938 i, lp->free, lp->dirty, lp->flags, lp->lnum); 939 } 940 } 941 942 void dbg_dump_tnc(struct ubifs_info *c) 943 { 944 struct ubifs_znode *znode; 945 int level; 946 947 printk(KERN_DEBUG "\n"); 948 printk(KERN_DEBUG "(pid %d) start dumping TNC tree\n", current->pid); 949 znode = ubifs_tnc_levelorder_next(c->zroot.znode, NULL); 950 level = znode->level; 951 printk(KERN_DEBUG "== Level %d ==\n", level); 952 while (znode) { 953 if (level != znode->level) { 954 level = znode->level; 955 printk(KERN_DEBUG "== Level %d ==\n", level); 956 } 957 dbg_dump_znode(c, znode); 958 znode = ubifs_tnc_levelorder_next(c->zroot.znode, znode); 959 } 960 printk(KERN_DEBUG "(pid %d) finish dumping TNC tree\n", current->pid); 961 } 962 963 static int dump_znode(struct ubifs_info *c, struct ubifs_znode *znode, 964 void *priv) 965 { 966 dbg_dump_znode(c, znode); 967 return 0; 968 } 969 970 /** 971 * dbg_dump_index - dump the on-flash index. 972 * @c: UBIFS file-system description object 973 * 974 * This function dumps whole UBIFS indexing B-tree, unlike 'dbg_dump_tnc()' 975 * which dumps only in-memory znodes and does not read znodes which from flash. 976 */ 977 void dbg_dump_index(struct ubifs_info *c) 978 { 979 dbg_walk_index(c, NULL, dump_znode, NULL); 980 } 981 982 /** 983 * dbg_save_space_info - save information about flash space. 984 * @c: UBIFS file-system description object 985 * 986 * This function saves information about UBIFS free space, dirty space, etc, in 987 * order to check it later. 988 */ 989 void dbg_save_space_info(struct ubifs_info *c) 990 { 991 struct ubifs_debug_info *d = c->dbg; 992 int freeable_cnt; 993 994 spin_lock(&c->space_lock); 995 memcpy(&d->saved_lst, &c->lst, sizeof(struct ubifs_lp_stats)); 996 memcpy(&d->saved_bi, &c->bi, sizeof(struct ubifs_budg_info)); 997 d->saved_idx_gc_cnt = c->idx_gc_cnt; 998 999 /* 1000 * We use a dirty hack here and zero out @c->freeable_cnt, because it 1001 * affects the free space calculations, and UBIFS might not know about 1002 * all freeable eraseblocks. Indeed, we know about freeable eraseblocks 1003 * only when we read their lprops, and we do this only lazily, upon the 1004 * need. So at any given point of time @c->freeable_cnt might be not 1005 * exactly accurate. 1006 * 1007 * Just one example about the issue we hit when we did not zero 1008 * @c->freeable_cnt. 1009 * 1. The file-system is mounted R/O, c->freeable_cnt is %0. We save the 1010 * amount of free space in @d->saved_free 1011 * 2. We re-mount R/W, which makes UBIFS to read the "lsave" 1012 * information from flash, where we cache LEBs from various 1013 * categories ('ubifs_remount_fs()' -> 'ubifs_lpt_init()' 1014 * -> 'lpt_init_wr()' -> 'read_lsave()' -> 'ubifs_lpt_lookup()' 1015 * -> 'ubifs_get_pnode()' -> 'update_cats()' 1016 * -> 'ubifs_add_to_cat()'). 1017 * 3. Lsave contains a freeable eraseblock, and @c->freeable_cnt 1018 * becomes %1. 1019 * 4. We calculate the amount of free space when the re-mount is 1020 * finished in 'dbg_check_space_info()' and it does not match 1021 * @d->saved_free. 1022 */ 1023 freeable_cnt = c->freeable_cnt; 1024 c->freeable_cnt = 0; 1025 d->saved_free = ubifs_get_free_space_nolock(c); 1026 c->freeable_cnt = freeable_cnt; 1027 spin_unlock(&c->space_lock); 1028 } 1029 1030 /** 1031 * dbg_check_space_info - check flash space information. 1032 * @c: UBIFS file-system description object 1033 * 1034 * This function compares current flash space information with the information 1035 * which was saved when the 'dbg_save_space_info()' function was called. 1036 * Returns zero if the information has not changed, and %-EINVAL it it has 1037 * changed. 1038 */ 1039 int dbg_check_space_info(struct ubifs_info *c) 1040 { 1041 struct ubifs_debug_info *d = c->dbg; 1042 struct ubifs_lp_stats lst; 1043 long long free; 1044 int freeable_cnt; 1045 1046 spin_lock(&c->space_lock); 1047 freeable_cnt = c->freeable_cnt; 1048 c->freeable_cnt = 0; 1049 free = ubifs_get_free_space_nolock(c); 1050 c->freeable_cnt = freeable_cnt; 1051 spin_unlock(&c->space_lock); 1052 1053 if (free != d->saved_free) { 1054 ubifs_err("free space changed from %lld to %lld", 1055 d->saved_free, free); 1056 goto out; 1057 } 1058 1059 return 0; 1060 1061 out: 1062 ubifs_msg("saved lprops statistics dump"); 1063 dbg_dump_lstats(&d->saved_lst); 1064 ubifs_msg("saved budgeting info dump"); 1065 dbg_dump_budg(c, &d->saved_bi); 1066 ubifs_msg("saved idx_gc_cnt %d", d->saved_idx_gc_cnt); 1067 ubifs_msg("current lprops statistics dump"); 1068 ubifs_get_lp_stats(c, &lst); 1069 dbg_dump_lstats(&lst); 1070 ubifs_msg("current budgeting info dump"); 1071 dbg_dump_budg(c, &c->bi); 1072 dump_stack(); 1073 return -EINVAL; 1074 } 1075 1076 /** 1077 * dbg_check_synced_i_size - check synchronized inode size. 1078 * @inode: inode to check 1079 * 1080 * If inode is clean, synchronized inode size has to be equivalent to current 1081 * inode size. This function has to be called only for locked inodes (@i_mutex 1082 * has to be locked). Returns %0 if synchronized inode size if correct, and 1083 * %-EINVAL if not. 1084 */ 1085 int dbg_check_synced_i_size(struct inode *inode) 1086 { 1087 int err = 0; 1088 struct ubifs_inode *ui = ubifs_inode(inode); 1089 1090 if (!(ubifs_chk_flags & UBIFS_CHK_GEN)) 1091 return 0; 1092 if (!S_ISREG(inode->i_mode)) 1093 return 0; 1094 1095 mutex_lock(&ui->ui_mutex); 1096 spin_lock(&ui->ui_lock); 1097 if (ui->ui_size != ui->synced_i_size && !ui->dirty) { 1098 ubifs_err("ui_size is %lld, synced_i_size is %lld, but inode " 1099 "is clean", ui->ui_size, ui->synced_i_size); 1100 ubifs_err("i_ino %lu, i_mode %#x, i_size %lld", inode->i_ino, 1101 inode->i_mode, i_size_read(inode)); 1102 dbg_dump_stack(); 1103 err = -EINVAL; 1104 } 1105 spin_unlock(&ui->ui_lock); 1106 mutex_unlock(&ui->ui_mutex); 1107 return err; 1108 } 1109 1110 /* 1111 * dbg_check_dir - check directory inode size and link count. 1112 * @c: UBIFS file-system description object 1113 * @dir: the directory to calculate size for 1114 * @size: the result is returned here 1115 * 1116 * This function makes sure that directory size and link count are correct. 1117 * Returns zero in case of success and a negative error code in case of 1118 * failure. 1119 * 1120 * Note, it is good idea to make sure the @dir->i_mutex is locked before 1121 * calling this function. 1122 */ 1123 int dbg_check_dir_size(struct ubifs_info *c, const struct inode *dir) 1124 { 1125 unsigned int nlink = 2; 1126 union ubifs_key key; 1127 struct ubifs_dent_node *dent, *pdent = NULL; 1128 struct qstr nm = { .name = NULL }; 1129 loff_t size = UBIFS_INO_NODE_SZ; 1130 1131 if (!(ubifs_chk_flags & UBIFS_CHK_GEN)) 1132 return 0; 1133 1134 if (!S_ISDIR(dir->i_mode)) 1135 return 0; 1136 1137 lowest_dent_key(c, &key, dir->i_ino); 1138 while (1) { 1139 int err; 1140 1141 dent = ubifs_tnc_next_ent(c, &key, &nm); 1142 if (IS_ERR(dent)) { 1143 err = PTR_ERR(dent); 1144 if (err == -ENOENT) 1145 break; 1146 return err; 1147 } 1148 1149 nm.name = dent->name; 1150 nm.len = le16_to_cpu(dent->nlen); 1151 size += CALC_DENT_SIZE(nm.len); 1152 if (dent->type == UBIFS_ITYPE_DIR) 1153 nlink += 1; 1154 kfree(pdent); 1155 pdent = dent; 1156 key_read(c, &dent->key, &key); 1157 } 1158 kfree(pdent); 1159 1160 if (i_size_read(dir) != size) { 1161 ubifs_err("directory inode %lu has size %llu, " 1162 "but calculated size is %llu", dir->i_ino, 1163 (unsigned long long)i_size_read(dir), 1164 (unsigned long long)size); 1165 dump_stack(); 1166 return -EINVAL; 1167 } 1168 if (dir->i_nlink != nlink) { 1169 ubifs_err("directory inode %lu has nlink %u, but calculated " 1170 "nlink is %u", dir->i_ino, dir->i_nlink, nlink); 1171 dump_stack(); 1172 return -EINVAL; 1173 } 1174 1175 return 0; 1176 } 1177 1178 /** 1179 * dbg_check_key_order - make sure that colliding keys are properly ordered. 1180 * @c: UBIFS file-system description object 1181 * @zbr1: first zbranch 1182 * @zbr2: following zbranch 1183 * 1184 * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of 1185 * names of the direntries/xentries which are referred by the keys. This 1186 * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes 1187 * sure the name of direntry/xentry referred by @zbr1 is less than 1188 * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not, 1189 * and a negative error code in case of failure. 1190 */ 1191 static int dbg_check_key_order(struct ubifs_info *c, struct ubifs_zbranch *zbr1, 1192 struct ubifs_zbranch *zbr2) 1193 { 1194 int err, nlen1, nlen2, cmp; 1195 struct ubifs_dent_node *dent1, *dent2; 1196 union ubifs_key key; 1197 1198 ubifs_assert(!keys_cmp(c, &zbr1->key, &zbr2->key)); 1199 dent1 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS); 1200 if (!dent1) 1201 return -ENOMEM; 1202 dent2 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS); 1203 if (!dent2) { 1204 err = -ENOMEM; 1205 goto out_free; 1206 } 1207 1208 err = ubifs_tnc_read_node(c, zbr1, dent1); 1209 if (err) 1210 goto out_free; 1211 err = ubifs_validate_entry(c, dent1); 1212 if (err) 1213 goto out_free; 1214 1215 err = ubifs_tnc_read_node(c, zbr2, dent2); 1216 if (err) 1217 goto out_free; 1218 err = ubifs_validate_entry(c, dent2); 1219 if (err) 1220 goto out_free; 1221 1222 /* Make sure node keys are the same as in zbranch */ 1223 err = 1; 1224 key_read(c, &dent1->key, &key); 1225 if (keys_cmp(c, &zbr1->key, &key)) { 1226 dbg_err("1st entry at %d:%d has key %s", zbr1->lnum, 1227 zbr1->offs, DBGKEY(&key)); 1228 dbg_err("but it should have key %s according to tnc", 1229 DBGKEY(&zbr1->key)); 1230 dbg_dump_node(c, dent1); 1231 goto out_free; 1232 } 1233 1234 key_read(c, &dent2->key, &key); 1235 if (keys_cmp(c, &zbr2->key, &key)) { 1236 dbg_err("2nd entry at %d:%d has key %s", zbr1->lnum, 1237 zbr1->offs, DBGKEY(&key)); 1238 dbg_err("but it should have key %s according to tnc", 1239 DBGKEY(&zbr2->key)); 1240 dbg_dump_node(c, dent2); 1241 goto out_free; 1242 } 1243 1244 nlen1 = le16_to_cpu(dent1->nlen); 1245 nlen2 = le16_to_cpu(dent2->nlen); 1246 1247 cmp = memcmp(dent1->name, dent2->name, min_t(int, nlen1, nlen2)); 1248 if (cmp < 0 || (cmp == 0 && nlen1 < nlen2)) { 1249 err = 0; 1250 goto out_free; 1251 } 1252 if (cmp == 0 && nlen1 == nlen2) 1253 dbg_err("2 xent/dent nodes with the same name"); 1254 else 1255 dbg_err("bad order of colliding key %s", 1256 DBGKEY(&key)); 1257 1258 ubifs_msg("first node at %d:%d\n", zbr1->lnum, zbr1->offs); 1259 dbg_dump_node(c, dent1); 1260 ubifs_msg("second node at %d:%d\n", zbr2->lnum, zbr2->offs); 1261 dbg_dump_node(c, dent2); 1262 1263 out_free: 1264 kfree(dent2); 1265 kfree(dent1); 1266 return err; 1267 } 1268 1269 /** 1270 * dbg_check_znode - check if znode is all right. 1271 * @c: UBIFS file-system description object 1272 * @zbr: zbranch which points to this znode 1273 * 1274 * This function makes sure that znode referred to by @zbr is all right. 1275 * Returns zero if it is, and %-EINVAL if it is not. 1276 */ 1277 static int dbg_check_znode(struct ubifs_info *c, struct ubifs_zbranch *zbr) 1278 { 1279 struct ubifs_znode *znode = zbr->znode; 1280 struct ubifs_znode *zp = znode->parent; 1281 int n, err, cmp; 1282 1283 if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) { 1284 err = 1; 1285 goto out; 1286 } 1287 if (znode->level < 0) { 1288 err = 2; 1289 goto out; 1290 } 1291 if (znode->iip < 0 || znode->iip >= c->fanout) { 1292 err = 3; 1293 goto out; 1294 } 1295 1296 if (zbr->len == 0) 1297 /* Only dirty zbranch may have no on-flash nodes */ 1298 if (!ubifs_zn_dirty(znode)) { 1299 err = 4; 1300 goto out; 1301 } 1302 1303 if (ubifs_zn_dirty(znode)) { 1304 /* 1305 * If znode is dirty, its parent has to be dirty as well. The 1306 * order of the operation is important, so we have to have 1307 * memory barriers. 1308 */ 1309 smp_mb(); 1310 if (zp && !ubifs_zn_dirty(zp)) { 1311 /* 1312 * The dirty flag is atomic and is cleared outside the 1313 * TNC mutex, so znode's dirty flag may now have 1314 * been cleared. The child is always cleared before the 1315 * parent, so we just need to check again. 1316 */ 1317 smp_mb(); 1318 if (ubifs_zn_dirty(znode)) { 1319 err = 5; 1320 goto out; 1321 } 1322 } 1323 } 1324 1325 if (zp) { 1326 const union ubifs_key *min, *max; 1327 1328 if (znode->level != zp->level - 1) { 1329 err = 6; 1330 goto out; 1331 } 1332 1333 /* Make sure the 'parent' pointer in our znode is correct */ 1334 err = ubifs_search_zbranch(c, zp, &zbr->key, &n); 1335 if (!err) { 1336 /* This zbranch does not exist in the parent */ 1337 err = 7; 1338 goto out; 1339 } 1340 1341 if (znode->iip >= zp->child_cnt) { 1342 err = 8; 1343 goto out; 1344 } 1345 1346 if (znode->iip != n) { 1347 /* This may happen only in case of collisions */ 1348 if (keys_cmp(c, &zp->zbranch[n].key, 1349 &zp->zbranch[znode->iip].key)) { 1350 err = 9; 1351 goto out; 1352 } 1353 n = znode->iip; 1354 } 1355 1356 /* 1357 * Make sure that the first key in our znode is greater than or 1358 * equal to the key in the pointing zbranch. 1359 */ 1360 min = &zbr->key; 1361 cmp = keys_cmp(c, min, &znode->zbranch[0].key); 1362 if (cmp == 1) { 1363 err = 10; 1364 goto out; 1365 } 1366 1367 if (n + 1 < zp->child_cnt) { 1368 max = &zp->zbranch[n + 1].key; 1369 1370 /* 1371 * Make sure the last key in our znode is less or 1372 * equivalent than the key in the zbranch which goes 1373 * after our pointing zbranch. 1374 */ 1375 cmp = keys_cmp(c, max, 1376 &znode->zbranch[znode->child_cnt - 1].key); 1377 if (cmp == -1) { 1378 err = 11; 1379 goto out; 1380 } 1381 } 1382 } else { 1383 /* This may only be root znode */ 1384 if (zbr != &c->zroot) { 1385 err = 12; 1386 goto out; 1387 } 1388 } 1389 1390 /* 1391 * Make sure that next key is greater or equivalent then the previous 1392 * one. 1393 */ 1394 for (n = 1; n < znode->child_cnt; n++) { 1395 cmp = keys_cmp(c, &znode->zbranch[n - 1].key, 1396 &znode->zbranch[n].key); 1397 if (cmp > 0) { 1398 err = 13; 1399 goto out; 1400 } 1401 if (cmp == 0) { 1402 /* This can only be keys with colliding hash */ 1403 if (!is_hash_key(c, &znode->zbranch[n].key)) { 1404 err = 14; 1405 goto out; 1406 } 1407 1408 if (znode->level != 0 || c->replaying) 1409 continue; 1410 1411 /* 1412 * Colliding keys should follow binary order of 1413 * corresponding xentry/dentry names. 1414 */ 1415 err = dbg_check_key_order(c, &znode->zbranch[n - 1], 1416 &znode->zbranch[n]); 1417 if (err < 0) 1418 return err; 1419 if (err) { 1420 err = 15; 1421 goto out; 1422 } 1423 } 1424 } 1425 1426 for (n = 0; n < znode->child_cnt; n++) { 1427 if (!znode->zbranch[n].znode && 1428 (znode->zbranch[n].lnum == 0 || 1429 znode->zbranch[n].len == 0)) { 1430 err = 16; 1431 goto out; 1432 } 1433 1434 if (znode->zbranch[n].lnum != 0 && 1435 znode->zbranch[n].len == 0) { 1436 err = 17; 1437 goto out; 1438 } 1439 1440 if (znode->zbranch[n].lnum == 0 && 1441 znode->zbranch[n].len != 0) { 1442 err = 18; 1443 goto out; 1444 } 1445 1446 if (znode->zbranch[n].lnum == 0 && 1447 znode->zbranch[n].offs != 0) { 1448 err = 19; 1449 goto out; 1450 } 1451 1452 if (znode->level != 0 && znode->zbranch[n].znode) 1453 if (znode->zbranch[n].znode->parent != znode) { 1454 err = 20; 1455 goto out; 1456 } 1457 } 1458 1459 return 0; 1460 1461 out: 1462 ubifs_err("failed, error %d", err); 1463 ubifs_msg("dump of the znode"); 1464 dbg_dump_znode(c, znode); 1465 if (zp) { 1466 ubifs_msg("dump of the parent znode"); 1467 dbg_dump_znode(c, zp); 1468 } 1469 dump_stack(); 1470 return -EINVAL; 1471 } 1472 1473 /** 1474 * dbg_check_tnc - check TNC tree. 1475 * @c: UBIFS file-system description object 1476 * @extra: do extra checks that are possible at start commit 1477 * 1478 * This function traverses whole TNC tree and checks every znode. Returns zero 1479 * if everything is all right and %-EINVAL if something is wrong with TNC. 1480 */ 1481 int dbg_check_tnc(struct ubifs_info *c, int extra) 1482 { 1483 struct ubifs_znode *znode; 1484 long clean_cnt = 0, dirty_cnt = 0; 1485 int err, last; 1486 1487 if (!(ubifs_chk_flags & UBIFS_CHK_TNC)) 1488 return 0; 1489 1490 ubifs_assert(mutex_is_locked(&c->tnc_mutex)); 1491 if (!c->zroot.znode) 1492 return 0; 1493 1494 znode = ubifs_tnc_postorder_first(c->zroot.znode); 1495 while (1) { 1496 struct ubifs_znode *prev; 1497 struct ubifs_zbranch *zbr; 1498 1499 if (!znode->parent) 1500 zbr = &c->zroot; 1501 else 1502 zbr = &znode->parent->zbranch[znode->iip]; 1503 1504 err = dbg_check_znode(c, zbr); 1505 if (err) 1506 return err; 1507 1508 if (extra) { 1509 if (ubifs_zn_dirty(znode)) 1510 dirty_cnt += 1; 1511 else 1512 clean_cnt += 1; 1513 } 1514 1515 prev = znode; 1516 znode = ubifs_tnc_postorder_next(znode); 1517 if (!znode) 1518 break; 1519 1520 /* 1521 * If the last key of this znode is equivalent to the first key 1522 * of the next znode (collision), then check order of the keys. 1523 */ 1524 last = prev->child_cnt - 1; 1525 if (prev->level == 0 && znode->level == 0 && !c->replaying && 1526 !keys_cmp(c, &prev->zbranch[last].key, 1527 &znode->zbranch[0].key)) { 1528 err = dbg_check_key_order(c, &prev->zbranch[last], 1529 &znode->zbranch[0]); 1530 if (err < 0) 1531 return err; 1532 if (err) { 1533 ubifs_msg("first znode"); 1534 dbg_dump_znode(c, prev); 1535 ubifs_msg("second znode"); 1536 dbg_dump_znode(c, znode); 1537 return -EINVAL; 1538 } 1539 } 1540 } 1541 1542 if (extra) { 1543 if (clean_cnt != atomic_long_read(&c->clean_zn_cnt)) { 1544 ubifs_err("incorrect clean_zn_cnt %ld, calculated %ld", 1545 atomic_long_read(&c->clean_zn_cnt), 1546 clean_cnt); 1547 return -EINVAL; 1548 } 1549 if (dirty_cnt != atomic_long_read(&c->dirty_zn_cnt)) { 1550 ubifs_err("incorrect dirty_zn_cnt %ld, calculated %ld", 1551 atomic_long_read(&c->dirty_zn_cnt), 1552 dirty_cnt); 1553 return -EINVAL; 1554 } 1555 } 1556 1557 return 0; 1558 } 1559 1560 /** 1561 * dbg_walk_index - walk the on-flash index. 1562 * @c: UBIFS file-system description object 1563 * @leaf_cb: called for each leaf node 1564 * @znode_cb: called for each indexing node 1565 * @priv: private data which is passed to callbacks 1566 * 1567 * This function walks the UBIFS index and calls the @leaf_cb for each leaf 1568 * node and @znode_cb for each indexing node. Returns zero in case of success 1569 * and a negative error code in case of failure. 1570 * 1571 * It would be better if this function removed every znode it pulled to into 1572 * the TNC, so that the behavior more closely matched the non-debugging 1573 * behavior. 1574 */ 1575 int dbg_walk_index(struct ubifs_info *c, dbg_leaf_callback leaf_cb, 1576 dbg_znode_callback znode_cb, void *priv) 1577 { 1578 int err; 1579 struct ubifs_zbranch *zbr; 1580 struct ubifs_znode *znode, *child; 1581 1582 mutex_lock(&c->tnc_mutex); 1583 /* If the root indexing node is not in TNC - pull it */ 1584 if (!c->zroot.znode) { 1585 c->zroot.znode = ubifs_load_znode(c, &c->zroot, NULL, 0); 1586 if (IS_ERR(c->zroot.znode)) { 1587 err = PTR_ERR(c->zroot.znode); 1588 c->zroot.znode = NULL; 1589 goto out_unlock; 1590 } 1591 } 1592 1593 /* 1594 * We are going to traverse the indexing tree in the postorder manner. 1595 * Go down and find the leftmost indexing node where we are going to 1596 * start from. 1597 */ 1598 znode = c->zroot.znode; 1599 while (znode->level > 0) { 1600 zbr = &znode->zbranch[0]; 1601 child = zbr->znode; 1602 if (!child) { 1603 child = ubifs_load_znode(c, zbr, znode, 0); 1604 if (IS_ERR(child)) { 1605 err = PTR_ERR(child); 1606 goto out_unlock; 1607 } 1608 zbr->znode = child; 1609 } 1610 1611 znode = child; 1612 } 1613 1614 /* Iterate over all indexing nodes */ 1615 while (1) { 1616 int idx; 1617 1618 cond_resched(); 1619 1620 if (znode_cb) { 1621 err = znode_cb(c, znode, priv); 1622 if (err) { 1623 ubifs_err("znode checking function returned " 1624 "error %d", err); 1625 dbg_dump_znode(c, znode); 1626 goto out_dump; 1627 } 1628 } 1629 if (leaf_cb && znode->level == 0) { 1630 for (idx = 0; idx < znode->child_cnt; idx++) { 1631 zbr = &znode->zbranch[idx]; 1632 err = leaf_cb(c, zbr, priv); 1633 if (err) { 1634 ubifs_err("leaf checking function " 1635 "returned error %d, for leaf " 1636 "at LEB %d:%d", 1637 err, zbr->lnum, zbr->offs); 1638 goto out_dump; 1639 } 1640 } 1641 } 1642 1643 if (!znode->parent) 1644 break; 1645 1646 idx = znode->iip + 1; 1647 znode = znode->parent; 1648 if (idx < znode->child_cnt) { 1649 /* Switch to the next index in the parent */ 1650 zbr = &znode->zbranch[idx]; 1651 child = zbr->znode; 1652 if (!child) { 1653 child = ubifs_load_znode(c, zbr, znode, idx); 1654 if (IS_ERR(child)) { 1655 err = PTR_ERR(child); 1656 goto out_unlock; 1657 } 1658 zbr->znode = child; 1659 } 1660 znode = child; 1661 } else 1662 /* 1663 * This is the last child, switch to the parent and 1664 * continue. 1665 */ 1666 continue; 1667 1668 /* Go to the lowest leftmost znode in the new sub-tree */ 1669 while (znode->level > 0) { 1670 zbr = &znode->zbranch[0]; 1671 child = zbr->znode; 1672 if (!child) { 1673 child = ubifs_load_znode(c, zbr, znode, 0); 1674 if (IS_ERR(child)) { 1675 err = PTR_ERR(child); 1676 goto out_unlock; 1677 } 1678 zbr->znode = child; 1679 } 1680 znode = child; 1681 } 1682 } 1683 1684 mutex_unlock(&c->tnc_mutex); 1685 return 0; 1686 1687 out_dump: 1688 if (znode->parent) 1689 zbr = &znode->parent->zbranch[znode->iip]; 1690 else 1691 zbr = &c->zroot; 1692 ubifs_msg("dump of znode at LEB %d:%d", zbr->lnum, zbr->offs); 1693 dbg_dump_znode(c, znode); 1694 out_unlock: 1695 mutex_unlock(&c->tnc_mutex); 1696 return err; 1697 } 1698 1699 /** 1700 * add_size - add znode size to partially calculated index size. 1701 * @c: UBIFS file-system description object 1702 * @znode: znode to add size for 1703 * @priv: partially calculated index size 1704 * 1705 * This is a helper function for 'dbg_check_idx_size()' which is called for 1706 * every indexing node and adds its size to the 'long long' variable pointed to 1707 * by @priv. 1708 */ 1709 static int add_size(struct ubifs_info *c, struct ubifs_znode *znode, void *priv) 1710 { 1711 long long *idx_size = priv; 1712 int add; 1713 1714 add = ubifs_idx_node_sz(c, znode->child_cnt); 1715 add = ALIGN(add, 8); 1716 *idx_size += add; 1717 return 0; 1718 } 1719 1720 /** 1721 * dbg_check_idx_size - check index size. 1722 * @c: UBIFS file-system description object 1723 * @idx_size: size to check 1724 * 1725 * This function walks the UBIFS index, calculates its size and checks that the 1726 * size is equivalent to @idx_size. Returns zero in case of success and a 1727 * negative error code in case of failure. 1728 */ 1729 int dbg_check_idx_size(struct ubifs_info *c, long long idx_size) 1730 { 1731 int err; 1732 long long calc = 0; 1733 1734 if (!(ubifs_chk_flags & UBIFS_CHK_IDX_SZ)) 1735 return 0; 1736 1737 err = dbg_walk_index(c, NULL, add_size, &calc); 1738 if (err) { 1739 ubifs_err("error %d while walking the index", err); 1740 return err; 1741 } 1742 1743 if (calc != idx_size) { 1744 ubifs_err("index size check failed: calculated size is %lld, " 1745 "should be %lld", calc, idx_size); 1746 dump_stack(); 1747 return -EINVAL; 1748 } 1749 1750 return 0; 1751 } 1752 1753 /** 1754 * struct fsck_inode - information about an inode used when checking the file-system. 1755 * @rb: link in the RB-tree of inodes 1756 * @inum: inode number 1757 * @mode: inode type, permissions, etc 1758 * @nlink: inode link count 1759 * @xattr_cnt: count of extended attributes 1760 * @references: how many directory/xattr entries refer this inode (calculated 1761 * while walking the index) 1762 * @calc_cnt: for directory inode count of child directories 1763 * @size: inode size (read from on-flash inode) 1764 * @xattr_sz: summary size of all extended attributes (read from on-flash 1765 * inode) 1766 * @calc_sz: for directories calculated directory size 1767 * @calc_xcnt: count of extended attributes 1768 * @calc_xsz: calculated summary size of all extended attributes 1769 * @xattr_nms: sum of lengths of all extended attribute names belonging to this 1770 * inode (read from on-flash inode) 1771 * @calc_xnms: calculated sum of lengths of all extended attribute names 1772 */ 1773 struct fsck_inode { 1774 struct rb_node rb; 1775 ino_t inum; 1776 umode_t mode; 1777 unsigned int nlink; 1778 unsigned int xattr_cnt; 1779 int references; 1780 int calc_cnt; 1781 long long size; 1782 unsigned int xattr_sz; 1783 long long calc_sz; 1784 long long calc_xcnt; 1785 long long calc_xsz; 1786 unsigned int xattr_nms; 1787 long long calc_xnms; 1788 }; 1789 1790 /** 1791 * struct fsck_data - private FS checking information. 1792 * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects) 1793 */ 1794 struct fsck_data { 1795 struct rb_root inodes; 1796 }; 1797 1798 /** 1799 * add_inode - add inode information to RB-tree of inodes. 1800 * @c: UBIFS file-system description object 1801 * @fsckd: FS checking information 1802 * @ino: raw UBIFS inode to add 1803 * 1804 * This is a helper function for 'check_leaf()' which adds information about 1805 * inode @ino to the RB-tree of inodes. Returns inode information pointer in 1806 * case of success and a negative error code in case of failure. 1807 */ 1808 static struct fsck_inode *add_inode(struct ubifs_info *c, 1809 struct fsck_data *fsckd, 1810 struct ubifs_ino_node *ino) 1811 { 1812 struct rb_node **p, *parent = NULL; 1813 struct fsck_inode *fscki; 1814 ino_t inum = key_inum_flash(c, &ino->key); 1815 1816 p = &fsckd->inodes.rb_node; 1817 while (*p) { 1818 parent = *p; 1819 fscki = rb_entry(parent, struct fsck_inode, rb); 1820 if (inum < fscki->inum) 1821 p = &(*p)->rb_left; 1822 else if (inum > fscki->inum) 1823 p = &(*p)->rb_right; 1824 else 1825 return fscki; 1826 } 1827 1828 if (inum > c->highest_inum) { 1829 ubifs_err("too high inode number, max. is %lu", 1830 (unsigned long)c->highest_inum); 1831 return ERR_PTR(-EINVAL); 1832 } 1833 1834 fscki = kzalloc(sizeof(struct fsck_inode), GFP_NOFS); 1835 if (!fscki) 1836 return ERR_PTR(-ENOMEM); 1837 1838 fscki->inum = inum; 1839 fscki->nlink = le32_to_cpu(ino->nlink); 1840 fscki->size = le64_to_cpu(ino->size); 1841 fscki->xattr_cnt = le32_to_cpu(ino->xattr_cnt); 1842 fscki->xattr_sz = le32_to_cpu(ino->xattr_size); 1843 fscki->xattr_nms = le32_to_cpu(ino->xattr_names); 1844 fscki->mode = le32_to_cpu(ino->mode); 1845 if (S_ISDIR(fscki->mode)) { 1846 fscki->calc_sz = UBIFS_INO_NODE_SZ; 1847 fscki->calc_cnt = 2; 1848 } 1849 rb_link_node(&fscki->rb, parent, p); 1850 rb_insert_color(&fscki->rb, &fsckd->inodes); 1851 return fscki; 1852 } 1853 1854 /** 1855 * search_inode - search inode in the RB-tree of inodes. 1856 * @fsckd: FS checking information 1857 * @inum: inode number to search 1858 * 1859 * This is a helper function for 'check_leaf()' which searches inode @inum in 1860 * the RB-tree of inodes and returns an inode information pointer or %NULL if 1861 * the inode was not found. 1862 */ 1863 static struct fsck_inode *search_inode(struct fsck_data *fsckd, ino_t inum) 1864 { 1865 struct rb_node *p; 1866 struct fsck_inode *fscki; 1867 1868 p = fsckd->inodes.rb_node; 1869 while (p) { 1870 fscki = rb_entry(p, struct fsck_inode, rb); 1871 if (inum < fscki->inum) 1872 p = p->rb_left; 1873 else if (inum > fscki->inum) 1874 p = p->rb_right; 1875 else 1876 return fscki; 1877 } 1878 return NULL; 1879 } 1880 1881 /** 1882 * read_add_inode - read inode node and add it to RB-tree of inodes. 1883 * @c: UBIFS file-system description object 1884 * @fsckd: FS checking information 1885 * @inum: inode number to read 1886 * 1887 * This is a helper function for 'check_leaf()' which finds inode node @inum in 1888 * the index, reads it, and adds it to the RB-tree of inodes. Returns inode 1889 * information pointer in case of success and a negative error code in case of 1890 * failure. 1891 */ 1892 static struct fsck_inode *read_add_inode(struct ubifs_info *c, 1893 struct fsck_data *fsckd, ino_t inum) 1894 { 1895 int n, err; 1896 union ubifs_key key; 1897 struct ubifs_znode *znode; 1898 struct ubifs_zbranch *zbr; 1899 struct ubifs_ino_node *ino; 1900 struct fsck_inode *fscki; 1901 1902 fscki = search_inode(fsckd, inum); 1903 if (fscki) 1904 return fscki; 1905 1906 ino_key_init(c, &key, inum); 1907 err = ubifs_lookup_level0(c, &key, &znode, &n); 1908 if (!err) { 1909 ubifs_err("inode %lu not found in index", (unsigned long)inum); 1910 return ERR_PTR(-ENOENT); 1911 } else if (err < 0) { 1912 ubifs_err("error %d while looking up inode %lu", 1913 err, (unsigned long)inum); 1914 return ERR_PTR(err); 1915 } 1916 1917 zbr = &znode->zbranch[n]; 1918 if (zbr->len < UBIFS_INO_NODE_SZ) { 1919 ubifs_err("bad node %lu node length %d", 1920 (unsigned long)inum, zbr->len); 1921 return ERR_PTR(-EINVAL); 1922 } 1923 1924 ino = kmalloc(zbr->len, GFP_NOFS); 1925 if (!ino) 1926 return ERR_PTR(-ENOMEM); 1927 1928 err = ubifs_tnc_read_node(c, zbr, ino); 1929 if (err) { 1930 ubifs_err("cannot read inode node at LEB %d:%d, error %d", 1931 zbr->lnum, zbr->offs, err); 1932 kfree(ino); 1933 return ERR_PTR(err); 1934 } 1935 1936 fscki = add_inode(c, fsckd, ino); 1937 kfree(ino); 1938 if (IS_ERR(fscki)) { 1939 ubifs_err("error %ld while adding inode %lu node", 1940 PTR_ERR(fscki), (unsigned long)inum); 1941 return fscki; 1942 } 1943 1944 return fscki; 1945 } 1946 1947 /** 1948 * check_leaf - check leaf node. 1949 * @c: UBIFS file-system description object 1950 * @zbr: zbranch of the leaf node to check 1951 * @priv: FS checking information 1952 * 1953 * This is a helper function for 'dbg_check_filesystem()' which is called for 1954 * every single leaf node while walking the indexing tree. It checks that the 1955 * leaf node referred from the indexing tree exists, has correct CRC, and does 1956 * some other basic validation. This function is also responsible for building 1957 * an RB-tree of inodes - it adds all inodes into the RB-tree. It also 1958 * calculates reference count, size, etc for each inode in order to later 1959 * compare them to the information stored inside the inodes and detect possible 1960 * inconsistencies. Returns zero in case of success and a negative error code 1961 * in case of failure. 1962 */ 1963 static int check_leaf(struct ubifs_info *c, struct ubifs_zbranch *zbr, 1964 void *priv) 1965 { 1966 ino_t inum; 1967 void *node; 1968 struct ubifs_ch *ch; 1969 int err, type = key_type(c, &zbr->key); 1970 struct fsck_inode *fscki; 1971 1972 if (zbr->len < UBIFS_CH_SZ) { 1973 ubifs_err("bad leaf length %d (LEB %d:%d)", 1974 zbr->len, zbr->lnum, zbr->offs); 1975 return -EINVAL; 1976 } 1977 1978 node = kmalloc(zbr->len, GFP_NOFS); 1979 if (!node) 1980 return -ENOMEM; 1981 1982 err = ubifs_tnc_read_node(c, zbr, node); 1983 if (err) { 1984 ubifs_err("cannot read leaf node at LEB %d:%d, error %d", 1985 zbr->lnum, zbr->offs, err); 1986 goto out_free; 1987 } 1988 1989 /* If this is an inode node, add it to RB-tree of inodes */ 1990 if (type == UBIFS_INO_KEY) { 1991 fscki = add_inode(c, priv, node); 1992 if (IS_ERR(fscki)) { 1993 err = PTR_ERR(fscki); 1994 ubifs_err("error %d while adding inode node", err); 1995 goto out_dump; 1996 } 1997 goto out; 1998 } 1999 2000 if (type != UBIFS_DENT_KEY && type != UBIFS_XENT_KEY && 2001 type != UBIFS_DATA_KEY) { 2002 ubifs_err("unexpected node type %d at LEB %d:%d", 2003 type, zbr->lnum, zbr->offs); 2004 err = -EINVAL; 2005 goto out_free; 2006 } 2007 2008 ch = node; 2009 if (le64_to_cpu(ch->sqnum) > c->max_sqnum) { 2010 ubifs_err("too high sequence number, max. is %llu", 2011 c->max_sqnum); 2012 err = -EINVAL; 2013 goto out_dump; 2014 } 2015 2016 if (type == UBIFS_DATA_KEY) { 2017 long long blk_offs; 2018 struct ubifs_data_node *dn = node; 2019 2020 /* 2021 * Search the inode node this data node belongs to and insert 2022 * it to the RB-tree of inodes. 2023 */ 2024 inum = key_inum_flash(c, &dn->key); 2025 fscki = read_add_inode(c, priv, inum); 2026 if (IS_ERR(fscki)) { 2027 err = PTR_ERR(fscki); 2028 ubifs_err("error %d while processing data node and " 2029 "trying to find inode node %lu", 2030 err, (unsigned long)inum); 2031 goto out_dump; 2032 } 2033 2034 /* Make sure the data node is within inode size */ 2035 blk_offs = key_block_flash(c, &dn->key); 2036 blk_offs <<= UBIFS_BLOCK_SHIFT; 2037 blk_offs += le32_to_cpu(dn->size); 2038 if (blk_offs > fscki->size) { 2039 ubifs_err("data node at LEB %d:%d is not within inode " 2040 "size %lld", zbr->lnum, zbr->offs, 2041 fscki->size); 2042 err = -EINVAL; 2043 goto out_dump; 2044 } 2045 } else { 2046 int nlen; 2047 struct ubifs_dent_node *dent = node; 2048 struct fsck_inode *fscki1; 2049 2050 err = ubifs_validate_entry(c, dent); 2051 if (err) 2052 goto out_dump; 2053 2054 /* 2055 * Search the inode node this entry refers to and the parent 2056 * inode node and insert them to the RB-tree of inodes. 2057 */ 2058 inum = le64_to_cpu(dent->inum); 2059 fscki = read_add_inode(c, priv, inum); 2060 if (IS_ERR(fscki)) { 2061 err = PTR_ERR(fscki); 2062 ubifs_err("error %d while processing entry node and " 2063 "trying to find inode node %lu", 2064 err, (unsigned long)inum); 2065 goto out_dump; 2066 } 2067 2068 /* Count how many direntries or xentries refers this inode */ 2069 fscki->references += 1; 2070 2071 inum = key_inum_flash(c, &dent->key); 2072 fscki1 = read_add_inode(c, priv, inum); 2073 if (IS_ERR(fscki1)) { 2074 err = PTR_ERR(fscki1); 2075 ubifs_err("error %d while processing entry node and " 2076 "trying to find parent inode node %lu", 2077 err, (unsigned long)inum); 2078 goto out_dump; 2079 } 2080 2081 nlen = le16_to_cpu(dent->nlen); 2082 if (type == UBIFS_XENT_KEY) { 2083 fscki1->calc_xcnt += 1; 2084 fscki1->calc_xsz += CALC_DENT_SIZE(nlen); 2085 fscki1->calc_xsz += CALC_XATTR_BYTES(fscki->size); 2086 fscki1->calc_xnms += nlen; 2087 } else { 2088 fscki1->calc_sz += CALC_DENT_SIZE(nlen); 2089 if (dent->type == UBIFS_ITYPE_DIR) 2090 fscki1->calc_cnt += 1; 2091 } 2092 } 2093 2094 out: 2095 kfree(node); 2096 return 0; 2097 2098 out_dump: 2099 ubifs_msg("dump of node at LEB %d:%d", zbr->lnum, zbr->offs); 2100 dbg_dump_node(c, node); 2101 out_free: 2102 kfree(node); 2103 return err; 2104 } 2105 2106 /** 2107 * free_inodes - free RB-tree of inodes. 2108 * @fsckd: FS checking information 2109 */ 2110 static void free_inodes(struct fsck_data *fsckd) 2111 { 2112 struct rb_node *this = fsckd->inodes.rb_node; 2113 struct fsck_inode *fscki; 2114 2115 while (this) { 2116 if (this->rb_left) 2117 this = this->rb_left; 2118 else if (this->rb_right) 2119 this = this->rb_right; 2120 else { 2121 fscki = rb_entry(this, struct fsck_inode, rb); 2122 this = rb_parent(this); 2123 if (this) { 2124 if (this->rb_left == &fscki->rb) 2125 this->rb_left = NULL; 2126 else 2127 this->rb_right = NULL; 2128 } 2129 kfree(fscki); 2130 } 2131 } 2132 } 2133 2134 /** 2135 * check_inodes - checks all inodes. 2136 * @c: UBIFS file-system description object 2137 * @fsckd: FS checking information 2138 * 2139 * This is a helper function for 'dbg_check_filesystem()' which walks the 2140 * RB-tree of inodes after the index scan has been finished, and checks that 2141 * inode nlink, size, etc are correct. Returns zero if inodes are fine, 2142 * %-EINVAL if not, and a negative error code in case of failure. 2143 */ 2144 static int check_inodes(struct ubifs_info *c, struct fsck_data *fsckd) 2145 { 2146 int n, err; 2147 union ubifs_key key; 2148 struct ubifs_znode *znode; 2149 struct ubifs_zbranch *zbr; 2150 struct ubifs_ino_node *ino; 2151 struct fsck_inode *fscki; 2152 struct rb_node *this = rb_first(&fsckd->inodes); 2153 2154 while (this) { 2155 fscki = rb_entry(this, struct fsck_inode, rb); 2156 this = rb_next(this); 2157 2158 if (S_ISDIR(fscki->mode)) { 2159 /* 2160 * Directories have to have exactly one reference (they 2161 * cannot have hardlinks), although root inode is an 2162 * exception. 2163 */ 2164 if (fscki->inum != UBIFS_ROOT_INO && 2165 fscki->references != 1) { 2166 ubifs_err("directory inode %lu has %d " 2167 "direntries which refer it, but " 2168 "should be 1", 2169 (unsigned long)fscki->inum, 2170 fscki->references); 2171 goto out_dump; 2172 } 2173 if (fscki->inum == UBIFS_ROOT_INO && 2174 fscki->references != 0) { 2175 ubifs_err("root inode %lu has non-zero (%d) " 2176 "direntries which refer it", 2177 (unsigned long)fscki->inum, 2178 fscki->references); 2179 goto out_dump; 2180 } 2181 if (fscki->calc_sz != fscki->size) { 2182 ubifs_err("directory inode %lu size is %lld, " 2183 "but calculated size is %lld", 2184 (unsigned long)fscki->inum, 2185 fscki->size, fscki->calc_sz); 2186 goto out_dump; 2187 } 2188 if (fscki->calc_cnt != fscki->nlink) { 2189 ubifs_err("directory inode %lu nlink is %d, " 2190 "but calculated nlink is %d", 2191 (unsigned long)fscki->inum, 2192 fscki->nlink, fscki->calc_cnt); 2193 goto out_dump; 2194 } 2195 } else { 2196 if (fscki->references != fscki->nlink) { 2197 ubifs_err("inode %lu nlink is %d, but " 2198 "calculated nlink is %d", 2199 (unsigned long)fscki->inum, 2200 fscki->nlink, fscki->references); 2201 goto out_dump; 2202 } 2203 } 2204 if (fscki->xattr_sz != fscki->calc_xsz) { 2205 ubifs_err("inode %lu has xattr size %u, but " 2206 "calculated size is %lld", 2207 (unsigned long)fscki->inum, fscki->xattr_sz, 2208 fscki->calc_xsz); 2209 goto out_dump; 2210 } 2211 if (fscki->xattr_cnt != fscki->calc_xcnt) { 2212 ubifs_err("inode %lu has %u xattrs, but " 2213 "calculated count is %lld", 2214 (unsigned long)fscki->inum, 2215 fscki->xattr_cnt, fscki->calc_xcnt); 2216 goto out_dump; 2217 } 2218 if (fscki->xattr_nms != fscki->calc_xnms) { 2219 ubifs_err("inode %lu has xattr names' size %u, but " 2220 "calculated names' size is %lld", 2221 (unsigned long)fscki->inum, fscki->xattr_nms, 2222 fscki->calc_xnms); 2223 goto out_dump; 2224 } 2225 } 2226 2227 return 0; 2228 2229 out_dump: 2230 /* Read the bad inode and dump it */ 2231 ino_key_init(c, &key, fscki->inum); 2232 err = ubifs_lookup_level0(c, &key, &znode, &n); 2233 if (!err) { 2234 ubifs_err("inode %lu not found in index", 2235 (unsigned long)fscki->inum); 2236 return -ENOENT; 2237 } else if (err < 0) { 2238 ubifs_err("error %d while looking up inode %lu", 2239 err, (unsigned long)fscki->inum); 2240 return err; 2241 } 2242 2243 zbr = &znode->zbranch[n]; 2244 ino = kmalloc(zbr->len, GFP_NOFS); 2245 if (!ino) 2246 return -ENOMEM; 2247 2248 err = ubifs_tnc_read_node(c, zbr, ino); 2249 if (err) { 2250 ubifs_err("cannot read inode node at LEB %d:%d, error %d", 2251 zbr->lnum, zbr->offs, err); 2252 kfree(ino); 2253 return err; 2254 } 2255 2256 ubifs_msg("dump of the inode %lu sitting in LEB %d:%d", 2257 (unsigned long)fscki->inum, zbr->lnum, zbr->offs); 2258 dbg_dump_node(c, ino); 2259 kfree(ino); 2260 return -EINVAL; 2261 } 2262 2263 /** 2264 * dbg_check_filesystem - check the file-system. 2265 * @c: UBIFS file-system description object 2266 * 2267 * This function checks the file system, namely: 2268 * o makes sure that all leaf nodes exist and their CRCs are correct; 2269 * o makes sure inode nlink, size, xattr size/count are correct (for all 2270 * inodes). 2271 * 2272 * The function reads whole indexing tree and all nodes, so it is pretty 2273 * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if 2274 * not, and a negative error code in case of failure. 2275 */ 2276 int dbg_check_filesystem(struct ubifs_info *c) 2277 { 2278 int err; 2279 struct fsck_data fsckd; 2280 2281 if (!(ubifs_chk_flags & UBIFS_CHK_FS)) 2282 return 0; 2283 2284 fsckd.inodes = RB_ROOT; 2285 err = dbg_walk_index(c, check_leaf, NULL, &fsckd); 2286 if (err) 2287 goto out_free; 2288 2289 err = check_inodes(c, &fsckd); 2290 if (err) 2291 goto out_free; 2292 2293 free_inodes(&fsckd); 2294 return 0; 2295 2296 out_free: 2297 ubifs_err("file-system check failed with error %d", err); 2298 dump_stack(); 2299 free_inodes(&fsckd); 2300 return err; 2301 } 2302 2303 /** 2304 * dbg_check_data_nodes_order - check that list of data nodes is sorted. 2305 * @c: UBIFS file-system description object 2306 * @head: the list of nodes ('struct ubifs_scan_node' objects) 2307 * 2308 * This function returns zero if the list of data nodes is sorted correctly, 2309 * and %-EINVAL if not. 2310 */ 2311 int dbg_check_data_nodes_order(struct ubifs_info *c, struct list_head *head) 2312 { 2313 struct list_head *cur; 2314 struct ubifs_scan_node *sa, *sb; 2315 2316 if (!(ubifs_chk_flags & UBIFS_CHK_GEN)) 2317 return 0; 2318 2319 for (cur = head->next; cur->next != head; cur = cur->next) { 2320 ino_t inuma, inumb; 2321 uint32_t blka, blkb; 2322 2323 cond_resched(); 2324 sa = container_of(cur, struct ubifs_scan_node, list); 2325 sb = container_of(cur->next, struct ubifs_scan_node, list); 2326 2327 if (sa->type != UBIFS_DATA_NODE) { 2328 ubifs_err("bad node type %d", sa->type); 2329 dbg_dump_node(c, sa->node); 2330 return -EINVAL; 2331 } 2332 if (sb->type != UBIFS_DATA_NODE) { 2333 ubifs_err("bad node type %d", sb->type); 2334 dbg_dump_node(c, sb->node); 2335 return -EINVAL; 2336 } 2337 2338 inuma = key_inum(c, &sa->key); 2339 inumb = key_inum(c, &sb->key); 2340 2341 if (inuma < inumb) 2342 continue; 2343 if (inuma > inumb) { 2344 ubifs_err("larger inum %lu goes before inum %lu", 2345 (unsigned long)inuma, (unsigned long)inumb); 2346 goto error_dump; 2347 } 2348 2349 blka = key_block(c, &sa->key); 2350 blkb = key_block(c, &sb->key); 2351 2352 if (blka > blkb) { 2353 ubifs_err("larger block %u goes before %u", blka, blkb); 2354 goto error_dump; 2355 } 2356 if (blka == blkb) { 2357 ubifs_err("two data nodes for the same block"); 2358 goto error_dump; 2359 } 2360 } 2361 2362 return 0; 2363 2364 error_dump: 2365 dbg_dump_node(c, sa->node); 2366 dbg_dump_node(c, sb->node); 2367 return -EINVAL; 2368 } 2369 2370 /** 2371 * dbg_check_nondata_nodes_order - check that list of data nodes is sorted. 2372 * @c: UBIFS file-system description object 2373 * @head: the list of nodes ('struct ubifs_scan_node' objects) 2374 * 2375 * This function returns zero if the list of non-data nodes is sorted correctly, 2376 * and %-EINVAL if not. 2377 */ 2378 int dbg_check_nondata_nodes_order(struct ubifs_info *c, struct list_head *head) 2379 { 2380 struct list_head *cur; 2381 struct ubifs_scan_node *sa, *sb; 2382 2383 if (!(ubifs_chk_flags & UBIFS_CHK_GEN)) 2384 return 0; 2385 2386 for (cur = head->next; cur->next != head; cur = cur->next) { 2387 ino_t inuma, inumb; 2388 uint32_t hasha, hashb; 2389 2390 cond_resched(); 2391 sa = container_of(cur, struct ubifs_scan_node, list); 2392 sb = container_of(cur->next, struct ubifs_scan_node, list); 2393 2394 if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE && 2395 sa->type != UBIFS_XENT_NODE) { 2396 ubifs_err("bad node type %d", sa->type); 2397 dbg_dump_node(c, sa->node); 2398 return -EINVAL; 2399 } 2400 if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE && 2401 sa->type != UBIFS_XENT_NODE) { 2402 ubifs_err("bad node type %d", sb->type); 2403 dbg_dump_node(c, sb->node); 2404 return -EINVAL; 2405 } 2406 2407 if (sa->type != UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) { 2408 ubifs_err("non-inode node goes before inode node"); 2409 goto error_dump; 2410 } 2411 2412 if (sa->type == UBIFS_INO_NODE && sb->type != UBIFS_INO_NODE) 2413 continue; 2414 2415 if (sa->type == UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) { 2416 /* Inode nodes are sorted in descending size order */ 2417 if (sa->len < sb->len) { 2418 ubifs_err("smaller inode node goes first"); 2419 goto error_dump; 2420 } 2421 continue; 2422 } 2423 2424 /* 2425 * This is either a dentry or xentry, which should be sorted in 2426 * ascending (parent ino, hash) order. 2427 */ 2428 inuma = key_inum(c, &sa->key); 2429 inumb = key_inum(c, &sb->key); 2430 2431 if (inuma < inumb) 2432 continue; 2433 if (inuma > inumb) { 2434 ubifs_err("larger inum %lu goes before inum %lu", 2435 (unsigned long)inuma, (unsigned long)inumb); 2436 goto error_dump; 2437 } 2438 2439 hasha = key_block(c, &sa->key); 2440 hashb = key_block(c, &sb->key); 2441 2442 if (hasha > hashb) { 2443 ubifs_err("larger hash %u goes before %u", 2444 hasha, hashb); 2445 goto error_dump; 2446 } 2447 } 2448 2449 return 0; 2450 2451 error_dump: 2452 ubifs_msg("dumping first node"); 2453 dbg_dump_node(c, sa->node); 2454 ubifs_msg("dumping second node"); 2455 dbg_dump_node(c, sb->node); 2456 return -EINVAL; 2457 return 0; 2458 } 2459 2460 int dbg_force_in_the_gaps(void) 2461 { 2462 if (!(ubifs_chk_flags & UBIFS_CHK_GEN)) 2463 return 0; 2464 2465 return !(random32() & 7); 2466 } 2467 2468 /* Failure mode for recovery testing */ 2469 2470 #define chance(n, d) (simple_rand() <= (n) * 32768LL / (d)) 2471 2472 struct failure_mode_info { 2473 struct list_head list; 2474 struct ubifs_info *c; 2475 }; 2476 2477 static LIST_HEAD(fmi_list); 2478 static DEFINE_SPINLOCK(fmi_lock); 2479 2480 static unsigned int next; 2481 2482 static int simple_rand(void) 2483 { 2484 if (next == 0) 2485 next = current->pid; 2486 next = next * 1103515245 + 12345; 2487 return (next >> 16) & 32767; 2488 } 2489 2490 static void failure_mode_init(struct ubifs_info *c) 2491 { 2492 struct failure_mode_info *fmi; 2493 2494 fmi = kmalloc(sizeof(struct failure_mode_info), GFP_NOFS); 2495 if (!fmi) { 2496 ubifs_err("Failed to register failure mode - no memory"); 2497 return; 2498 } 2499 fmi->c = c; 2500 spin_lock(&fmi_lock); 2501 list_add_tail(&fmi->list, &fmi_list); 2502 spin_unlock(&fmi_lock); 2503 } 2504 2505 static void failure_mode_exit(struct ubifs_info *c) 2506 { 2507 struct failure_mode_info *fmi, *tmp; 2508 2509 spin_lock(&fmi_lock); 2510 list_for_each_entry_safe(fmi, tmp, &fmi_list, list) 2511 if (fmi->c == c) { 2512 list_del(&fmi->list); 2513 kfree(fmi); 2514 } 2515 spin_unlock(&fmi_lock); 2516 } 2517 2518 static struct ubifs_info *dbg_find_info(struct ubi_volume_desc *desc) 2519 { 2520 struct failure_mode_info *fmi; 2521 2522 spin_lock(&fmi_lock); 2523 list_for_each_entry(fmi, &fmi_list, list) 2524 if (fmi->c->ubi == desc) { 2525 struct ubifs_info *c = fmi->c; 2526 2527 spin_unlock(&fmi_lock); 2528 return c; 2529 } 2530 spin_unlock(&fmi_lock); 2531 return NULL; 2532 } 2533 2534 static int in_failure_mode(struct ubi_volume_desc *desc) 2535 { 2536 struct ubifs_info *c = dbg_find_info(desc); 2537 2538 if (c && dbg_failure_mode) 2539 return c->dbg->failure_mode; 2540 return 0; 2541 } 2542 2543 static int do_fail(struct ubi_volume_desc *desc, int lnum, int write) 2544 { 2545 struct ubifs_info *c = dbg_find_info(desc); 2546 struct ubifs_debug_info *d; 2547 2548 if (!c || !dbg_failure_mode) 2549 return 0; 2550 d = c->dbg; 2551 if (d->failure_mode) 2552 return 1; 2553 if (!d->fail_cnt) { 2554 /* First call - decide delay to failure */ 2555 if (chance(1, 2)) { 2556 unsigned int delay = 1 << (simple_rand() >> 11); 2557 2558 if (chance(1, 2)) { 2559 d->fail_delay = 1; 2560 d->fail_timeout = jiffies + 2561 msecs_to_jiffies(delay); 2562 dbg_rcvry("failing after %ums", delay); 2563 } else { 2564 d->fail_delay = 2; 2565 d->fail_cnt_max = delay; 2566 dbg_rcvry("failing after %u calls", delay); 2567 } 2568 } 2569 d->fail_cnt += 1; 2570 } 2571 /* Determine if failure delay has expired */ 2572 if (d->fail_delay == 1) { 2573 if (time_before(jiffies, d->fail_timeout)) 2574 return 0; 2575 } else if (d->fail_delay == 2) 2576 if (d->fail_cnt++ < d->fail_cnt_max) 2577 return 0; 2578 if (lnum == UBIFS_SB_LNUM) { 2579 if (write) { 2580 if (chance(1, 2)) 2581 return 0; 2582 } else if (chance(19, 20)) 2583 return 0; 2584 dbg_rcvry("failing in super block LEB %d", lnum); 2585 } else if (lnum == UBIFS_MST_LNUM || lnum == UBIFS_MST_LNUM + 1) { 2586 if (chance(19, 20)) 2587 return 0; 2588 dbg_rcvry("failing in master LEB %d", lnum); 2589 } else if (lnum >= UBIFS_LOG_LNUM && lnum <= c->log_last) { 2590 if (write) { 2591 if (chance(99, 100)) 2592 return 0; 2593 } else if (chance(399, 400)) 2594 return 0; 2595 dbg_rcvry("failing in log LEB %d", lnum); 2596 } else if (lnum >= c->lpt_first && lnum <= c->lpt_last) { 2597 if (write) { 2598 if (chance(7, 8)) 2599 return 0; 2600 } else if (chance(19, 20)) 2601 return 0; 2602 dbg_rcvry("failing in LPT LEB %d", lnum); 2603 } else if (lnum >= c->orph_first && lnum <= c->orph_last) { 2604 if (write) { 2605 if (chance(1, 2)) 2606 return 0; 2607 } else if (chance(9, 10)) 2608 return 0; 2609 dbg_rcvry("failing in orphan LEB %d", lnum); 2610 } else if (lnum == c->ihead_lnum) { 2611 if (chance(99, 100)) 2612 return 0; 2613 dbg_rcvry("failing in index head LEB %d", lnum); 2614 } else if (c->jheads && lnum == c->jheads[GCHD].wbuf.lnum) { 2615 if (chance(9, 10)) 2616 return 0; 2617 dbg_rcvry("failing in GC head LEB %d", lnum); 2618 } else if (write && !RB_EMPTY_ROOT(&c->buds) && 2619 !ubifs_search_bud(c, lnum)) { 2620 if (chance(19, 20)) 2621 return 0; 2622 dbg_rcvry("failing in non-bud LEB %d", lnum); 2623 } else if (c->cmt_state == COMMIT_RUNNING_BACKGROUND || 2624 c->cmt_state == COMMIT_RUNNING_REQUIRED) { 2625 if (chance(999, 1000)) 2626 return 0; 2627 dbg_rcvry("failing in bud LEB %d commit running", lnum); 2628 } else { 2629 if (chance(9999, 10000)) 2630 return 0; 2631 dbg_rcvry("failing in bud LEB %d commit not running", lnum); 2632 } 2633 ubifs_err("*** SETTING FAILURE MODE ON (LEB %d) ***", lnum); 2634 d->failure_mode = 1; 2635 dump_stack(); 2636 return 1; 2637 } 2638 2639 static void cut_data(const void *buf, int len) 2640 { 2641 int flen, i; 2642 unsigned char *p = (void *)buf; 2643 2644 flen = (len * (long long)simple_rand()) >> 15; 2645 for (i = flen; i < len; i++) 2646 p[i] = 0xff; 2647 } 2648 2649 int dbg_leb_read(struct ubi_volume_desc *desc, int lnum, char *buf, int offset, 2650 int len, int check) 2651 { 2652 if (in_failure_mode(desc)) 2653 return -EROFS; 2654 return ubi_leb_read(desc, lnum, buf, offset, len, check); 2655 } 2656 2657 int dbg_leb_write(struct ubi_volume_desc *desc, int lnum, const void *buf, 2658 int offset, int len, int dtype) 2659 { 2660 int err, failing; 2661 2662 if (in_failure_mode(desc)) 2663 return -EROFS; 2664 failing = do_fail(desc, lnum, 1); 2665 if (failing) 2666 cut_data(buf, len); 2667 err = ubi_leb_write(desc, lnum, buf, offset, len, dtype); 2668 if (err) 2669 return err; 2670 if (failing) 2671 return -EROFS; 2672 return 0; 2673 } 2674 2675 int dbg_leb_change(struct ubi_volume_desc *desc, int lnum, const void *buf, 2676 int len, int dtype) 2677 { 2678 int err; 2679 2680 if (do_fail(desc, lnum, 1)) 2681 return -EROFS; 2682 err = ubi_leb_change(desc, lnum, buf, len, dtype); 2683 if (err) 2684 return err; 2685 if (do_fail(desc, lnum, 1)) 2686 return -EROFS; 2687 return 0; 2688 } 2689 2690 int dbg_leb_erase(struct ubi_volume_desc *desc, int lnum) 2691 { 2692 int err; 2693 2694 if (do_fail(desc, lnum, 0)) 2695 return -EROFS; 2696 err = ubi_leb_erase(desc, lnum); 2697 if (err) 2698 return err; 2699 if (do_fail(desc, lnum, 0)) 2700 return -EROFS; 2701 return 0; 2702 } 2703 2704 int dbg_leb_unmap(struct ubi_volume_desc *desc, int lnum) 2705 { 2706 int err; 2707 2708 if (do_fail(desc, lnum, 0)) 2709 return -EROFS; 2710 err = ubi_leb_unmap(desc, lnum); 2711 if (err) 2712 return err; 2713 if (do_fail(desc, lnum, 0)) 2714 return -EROFS; 2715 return 0; 2716 } 2717 2718 int dbg_is_mapped(struct ubi_volume_desc *desc, int lnum) 2719 { 2720 if (in_failure_mode(desc)) 2721 return -EROFS; 2722 return ubi_is_mapped(desc, lnum); 2723 } 2724 2725 int dbg_leb_map(struct ubi_volume_desc *desc, int lnum, int dtype) 2726 { 2727 int err; 2728 2729 if (do_fail(desc, lnum, 0)) 2730 return -EROFS; 2731 err = ubi_leb_map(desc, lnum, dtype); 2732 if (err) 2733 return err; 2734 if (do_fail(desc, lnum, 0)) 2735 return -EROFS; 2736 return 0; 2737 } 2738 2739 /** 2740 * ubifs_debugging_init - initialize UBIFS debugging. 2741 * @c: UBIFS file-system description object 2742 * 2743 * This function initializes debugging-related data for the file system. 2744 * Returns zero in case of success and a negative error code in case of 2745 * failure. 2746 */ 2747 int ubifs_debugging_init(struct ubifs_info *c) 2748 { 2749 c->dbg = kzalloc(sizeof(struct ubifs_debug_info), GFP_KERNEL); 2750 if (!c->dbg) 2751 return -ENOMEM; 2752 2753 failure_mode_init(c); 2754 return 0; 2755 } 2756 2757 /** 2758 * ubifs_debugging_exit - free debugging data. 2759 * @c: UBIFS file-system description object 2760 */ 2761 void ubifs_debugging_exit(struct ubifs_info *c) 2762 { 2763 failure_mode_exit(c); 2764 kfree(c->dbg); 2765 } 2766 2767 /* 2768 * Root directory for UBIFS stuff in debugfs. Contains sub-directories which 2769 * contain the stuff specific to particular file-system mounts. 2770 */ 2771 static struct dentry *dfs_rootdir; 2772 2773 /** 2774 * dbg_debugfs_init - initialize debugfs file-system. 2775 * 2776 * UBIFS uses debugfs file-system to expose various debugging knobs to 2777 * user-space. This function creates "ubifs" directory in the debugfs 2778 * file-system. Returns zero in case of success and a negative error code in 2779 * case of failure. 2780 */ 2781 int dbg_debugfs_init(void) 2782 { 2783 dfs_rootdir = debugfs_create_dir("ubifs", NULL); 2784 if (IS_ERR(dfs_rootdir)) { 2785 int err = PTR_ERR(dfs_rootdir); 2786 ubifs_err("cannot create \"ubifs\" debugfs directory, " 2787 "error %d\n", err); 2788 return err; 2789 } 2790 2791 return 0; 2792 } 2793 2794 /** 2795 * dbg_debugfs_exit - remove the "ubifs" directory from debugfs file-system. 2796 */ 2797 void dbg_debugfs_exit(void) 2798 { 2799 debugfs_remove(dfs_rootdir); 2800 } 2801 2802 static int open_debugfs_file(struct inode *inode, struct file *file) 2803 { 2804 file->private_data = inode->i_private; 2805 return nonseekable_open(inode, file); 2806 } 2807 2808 static ssize_t write_debugfs_file(struct file *file, const char __user *buf, 2809 size_t count, loff_t *ppos) 2810 { 2811 struct ubifs_info *c = file->private_data; 2812 struct ubifs_debug_info *d = c->dbg; 2813 2814 if (file->f_path.dentry == d->dfs_dump_lprops) 2815 dbg_dump_lprops(c); 2816 else if (file->f_path.dentry == d->dfs_dump_budg) 2817 dbg_dump_budg(c, &c->bi); 2818 else if (file->f_path.dentry == d->dfs_dump_tnc) { 2819 mutex_lock(&c->tnc_mutex); 2820 dbg_dump_tnc(c); 2821 mutex_unlock(&c->tnc_mutex); 2822 } else 2823 return -EINVAL; 2824 2825 *ppos += count; 2826 return count; 2827 } 2828 2829 static const struct file_operations dfs_fops = { 2830 .open = open_debugfs_file, 2831 .write = write_debugfs_file, 2832 .owner = THIS_MODULE, 2833 .llseek = no_llseek, 2834 }; 2835 2836 /** 2837 * dbg_debugfs_init_fs - initialize debugfs for UBIFS instance. 2838 * @c: UBIFS file-system description object 2839 * 2840 * This function creates all debugfs files for this instance of UBIFS. Returns 2841 * zero in case of success and a negative error code in case of failure. 2842 * 2843 * Note, the only reason we have not merged this function with the 2844 * 'ubifs_debugging_init()' function is because it is better to initialize 2845 * debugfs interfaces at the very end of the mount process, and remove them at 2846 * the very beginning of the mount process. 2847 */ 2848 int dbg_debugfs_init_fs(struct ubifs_info *c) 2849 { 2850 int err; 2851 const char *fname; 2852 struct dentry *dent; 2853 struct ubifs_debug_info *d = c->dbg; 2854 2855 sprintf(d->dfs_dir_name, "ubi%d_%d", c->vi.ubi_num, c->vi.vol_id); 2856 fname = d->dfs_dir_name; 2857 dent = debugfs_create_dir(fname, dfs_rootdir); 2858 if (IS_ERR_OR_NULL(dent)) 2859 goto out; 2860 d->dfs_dir = dent; 2861 2862 fname = "dump_lprops"; 2863 dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops); 2864 if (IS_ERR_OR_NULL(dent)) 2865 goto out_remove; 2866 d->dfs_dump_lprops = dent; 2867 2868 fname = "dump_budg"; 2869 dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops); 2870 if (IS_ERR_OR_NULL(dent)) 2871 goto out_remove; 2872 d->dfs_dump_budg = dent; 2873 2874 fname = "dump_tnc"; 2875 dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops); 2876 if (IS_ERR_OR_NULL(dent)) 2877 goto out_remove; 2878 d->dfs_dump_tnc = dent; 2879 2880 return 0; 2881 2882 out_remove: 2883 debugfs_remove_recursive(d->dfs_dir); 2884 out: 2885 err = dent ? PTR_ERR(dent) : -ENODEV; 2886 ubifs_err("cannot create \"%s\" debugfs directory, error %d\n", 2887 fname, err); 2888 return err; 2889 } 2890 2891 /** 2892 * dbg_debugfs_exit_fs - remove all debugfs files. 2893 * @c: UBIFS file-system description object 2894 */ 2895 void dbg_debugfs_exit_fs(struct ubifs_info *c) 2896 { 2897 debugfs_remove_recursive(c->dbg->dfs_dir); 2898 } 2899 2900 #endif /* CONFIG_UBIFS_FS_DEBUG */ 2901