1 /* 2 * linux/fs/super.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * 6 * super.c contains code to handle: - mount structures 7 * - super-block tables 8 * - filesystem drivers list 9 * - mount system call 10 * - umount system call 11 * - ustat system call 12 * 13 * GK 2/5/95 - Changed to support mounting the root fs via NFS 14 * 15 * Added kerneld support: Jacques Gelinas and Bjorn Ekwall 16 * Added change_root: Werner Almesberger & Hans Lermen, Feb '96 17 * Added options to /proc/mounts: 18 * Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996. 19 * Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998 20 * Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000 21 */ 22 23 #include <linux/export.h> 24 #include <linux/slab.h> 25 #include <linux/blkdev.h> 26 #include <linux/mount.h> 27 #include <linux/security.h> 28 #include <linux/writeback.h> /* for the emergency remount stuff */ 29 #include <linux/idr.h> 30 #include <linux/mutex.h> 31 #include <linux/backing-dev.h> 32 #include <linux/rculist_bl.h> 33 #include <linux/cleancache.h> 34 #include <linux/fsnotify.h> 35 #include <linux/lockdep.h> 36 #include "internal.h" 37 38 39 LIST_HEAD(super_blocks); 40 DEFINE_SPINLOCK(sb_lock); 41 42 static char *sb_writers_name[SB_FREEZE_LEVELS] = { 43 "sb_writers", 44 "sb_pagefaults", 45 "sb_internal", 46 }; 47 48 /* 49 * One thing we have to be careful of with a per-sb shrinker is that we don't 50 * drop the last active reference to the superblock from within the shrinker. 51 * If that happens we could trigger unregistering the shrinker from within the 52 * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we 53 * take a passive reference to the superblock to avoid this from occurring. 54 */ 55 static unsigned long super_cache_scan(struct shrinker *shrink, 56 struct shrink_control *sc) 57 { 58 struct super_block *sb; 59 long fs_objects = 0; 60 long total_objects; 61 long freed = 0; 62 long dentries; 63 long inodes; 64 65 sb = container_of(shrink, struct super_block, s_shrink); 66 67 /* 68 * Deadlock avoidance. We may hold various FS locks, and we don't want 69 * to recurse into the FS that called us in clear_inode() and friends.. 70 */ 71 if (!(sc->gfp_mask & __GFP_FS)) 72 return SHRINK_STOP; 73 74 if (!grab_super_passive(sb)) 75 return SHRINK_STOP; 76 77 if (sb->s_op->nr_cached_objects) 78 fs_objects = sb->s_op->nr_cached_objects(sb, sc->nid); 79 80 inodes = list_lru_count_node(&sb->s_inode_lru, sc->nid); 81 dentries = list_lru_count_node(&sb->s_dentry_lru, sc->nid); 82 total_objects = dentries + inodes + fs_objects + 1; 83 if (!total_objects) 84 total_objects = 1; 85 86 /* proportion the scan between the caches */ 87 dentries = mult_frac(sc->nr_to_scan, dentries, total_objects); 88 inodes = mult_frac(sc->nr_to_scan, inodes, total_objects); 89 90 /* 91 * prune the dcache first as the icache is pinned by it, then 92 * prune the icache, followed by the filesystem specific caches 93 */ 94 freed = prune_dcache_sb(sb, dentries, sc->nid); 95 freed += prune_icache_sb(sb, inodes, sc->nid); 96 97 if (fs_objects) { 98 fs_objects = mult_frac(sc->nr_to_scan, fs_objects, 99 total_objects); 100 freed += sb->s_op->free_cached_objects(sb, fs_objects, 101 sc->nid); 102 } 103 104 drop_super(sb); 105 return freed; 106 } 107 108 static unsigned long super_cache_count(struct shrinker *shrink, 109 struct shrink_control *sc) 110 { 111 struct super_block *sb; 112 long total_objects = 0; 113 114 sb = container_of(shrink, struct super_block, s_shrink); 115 116 /* 117 * Don't call grab_super_passive as it is a potential 118 * scalability bottleneck. The counts could get updated 119 * between super_cache_count and super_cache_scan anyway. 120 * Call to super_cache_count with shrinker_rwsem held 121 * ensures the safety of call to list_lru_count_node() and 122 * s_op->nr_cached_objects(). 123 */ 124 if (sb->s_op && sb->s_op->nr_cached_objects) 125 total_objects = sb->s_op->nr_cached_objects(sb, 126 sc->nid); 127 128 total_objects += list_lru_count_node(&sb->s_dentry_lru, 129 sc->nid); 130 total_objects += list_lru_count_node(&sb->s_inode_lru, 131 sc->nid); 132 133 total_objects = vfs_pressure_ratio(total_objects); 134 return total_objects; 135 } 136 137 /** 138 * destroy_super - frees a superblock 139 * @s: superblock to free 140 * 141 * Frees a superblock. 142 */ 143 static void destroy_super(struct super_block *s) 144 { 145 int i; 146 list_lru_destroy(&s->s_dentry_lru); 147 list_lru_destroy(&s->s_inode_lru); 148 for (i = 0; i < SB_FREEZE_LEVELS; i++) 149 percpu_counter_destroy(&s->s_writers.counter[i]); 150 security_sb_free(s); 151 WARN_ON(!list_empty(&s->s_mounts)); 152 kfree(s->s_subtype); 153 kfree(s->s_options); 154 kfree_rcu(s, rcu); 155 } 156 157 /** 158 * alloc_super - create new superblock 159 * @type: filesystem type superblock should belong to 160 * @flags: the mount flags 161 * 162 * Allocates and initializes a new &struct super_block. alloc_super() 163 * returns a pointer new superblock or %NULL if allocation had failed. 164 */ 165 static struct super_block *alloc_super(struct file_system_type *type, int flags) 166 { 167 struct super_block *s = kzalloc(sizeof(struct super_block), GFP_USER); 168 static const struct super_operations default_op; 169 int i; 170 171 if (!s) 172 return NULL; 173 174 INIT_LIST_HEAD(&s->s_mounts); 175 176 if (security_sb_alloc(s)) 177 goto fail; 178 179 for (i = 0; i < SB_FREEZE_LEVELS; i++) { 180 if (percpu_counter_init(&s->s_writers.counter[i], 0, 181 GFP_KERNEL) < 0) 182 goto fail; 183 lockdep_init_map(&s->s_writers.lock_map[i], sb_writers_name[i], 184 &type->s_writers_key[i], 0); 185 } 186 init_waitqueue_head(&s->s_writers.wait); 187 init_waitqueue_head(&s->s_writers.wait_unfrozen); 188 s->s_flags = flags; 189 s->s_bdi = &default_backing_dev_info; 190 INIT_HLIST_NODE(&s->s_instances); 191 INIT_HLIST_BL_HEAD(&s->s_anon); 192 INIT_LIST_HEAD(&s->s_inodes); 193 194 if (list_lru_init(&s->s_dentry_lru)) 195 goto fail; 196 if (list_lru_init(&s->s_inode_lru)) 197 goto fail; 198 199 init_rwsem(&s->s_umount); 200 lockdep_set_class(&s->s_umount, &type->s_umount_key); 201 /* 202 * sget() can have s_umount recursion. 203 * 204 * When it cannot find a suitable sb, it allocates a new 205 * one (this one), and tries again to find a suitable old 206 * one. 207 * 208 * In case that succeeds, it will acquire the s_umount 209 * lock of the old one. Since these are clearly distrinct 210 * locks, and this object isn't exposed yet, there's no 211 * risk of deadlocks. 212 * 213 * Annotate this by putting this lock in a different 214 * subclass. 215 */ 216 down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING); 217 s->s_count = 1; 218 atomic_set(&s->s_active, 1); 219 mutex_init(&s->s_vfs_rename_mutex); 220 lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key); 221 /* 222 * For now MAXQUOTAS check in do_quotactl() will limit quota type 223 * appropriately. When each fs sets allowed_types, we can remove the 224 * line below 225 */ 226 s->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ; 227 mutex_init(&s->s_dquot.dqio_mutex); 228 mutex_init(&s->s_dquot.dqonoff_mutex); 229 s->s_maxbytes = MAX_NON_LFS; 230 s->s_op = &default_op; 231 s->s_time_gran = 1000000000; 232 s->cleancache_poolid = -1; 233 234 s->s_shrink.seeks = DEFAULT_SEEKS; 235 s->s_shrink.scan_objects = super_cache_scan; 236 s->s_shrink.count_objects = super_cache_count; 237 s->s_shrink.batch = 1024; 238 s->s_shrink.flags = SHRINKER_NUMA_AWARE; 239 return s; 240 241 fail: 242 destroy_super(s); 243 return NULL; 244 } 245 246 /* Superblock refcounting */ 247 248 /* 249 * Drop a superblock's refcount. The caller must hold sb_lock. 250 */ 251 static void __put_super(struct super_block *sb) 252 { 253 if (!--sb->s_count) { 254 list_del_init(&sb->s_list); 255 destroy_super(sb); 256 } 257 } 258 259 /** 260 * put_super - drop a temporary reference to superblock 261 * @sb: superblock in question 262 * 263 * Drops a temporary reference, frees superblock if there's no 264 * references left. 265 */ 266 static void put_super(struct super_block *sb) 267 { 268 spin_lock(&sb_lock); 269 __put_super(sb); 270 spin_unlock(&sb_lock); 271 } 272 273 274 /** 275 * deactivate_locked_super - drop an active reference to superblock 276 * @s: superblock to deactivate 277 * 278 * Drops an active reference to superblock, converting it into a temprory 279 * one if there is no other active references left. In that case we 280 * tell fs driver to shut it down and drop the temporary reference we 281 * had just acquired. 282 * 283 * Caller holds exclusive lock on superblock; that lock is released. 284 */ 285 void deactivate_locked_super(struct super_block *s) 286 { 287 struct file_system_type *fs = s->s_type; 288 if (atomic_dec_and_test(&s->s_active)) { 289 cleancache_invalidate_fs(s); 290 unregister_shrinker(&s->s_shrink); 291 fs->kill_sb(s); 292 293 put_filesystem(fs); 294 put_super(s); 295 } else { 296 up_write(&s->s_umount); 297 } 298 } 299 300 EXPORT_SYMBOL(deactivate_locked_super); 301 302 /** 303 * deactivate_super - drop an active reference to superblock 304 * @s: superblock to deactivate 305 * 306 * Variant of deactivate_locked_super(), except that superblock is *not* 307 * locked by caller. If we are going to drop the final active reference, 308 * lock will be acquired prior to that. 309 */ 310 void deactivate_super(struct super_block *s) 311 { 312 if (!atomic_add_unless(&s->s_active, -1, 1)) { 313 down_write(&s->s_umount); 314 deactivate_locked_super(s); 315 } 316 } 317 318 EXPORT_SYMBOL(deactivate_super); 319 320 /** 321 * grab_super - acquire an active reference 322 * @s: reference we are trying to make active 323 * 324 * Tries to acquire an active reference. grab_super() is used when we 325 * had just found a superblock in super_blocks or fs_type->fs_supers 326 * and want to turn it into a full-blown active reference. grab_super() 327 * is called with sb_lock held and drops it. Returns 1 in case of 328 * success, 0 if we had failed (superblock contents was already dead or 329 * dying when grab_super() had been called). Note that this is only 330 * called for superblocks not in rundown mode (== ones still on ->fs_supers 331 * of their type), so increment of ->s_count is OK here. 332 */ 333 static int grab_super(struct super_block *s) __releases(sb_lock) 334 { 335 s->s_count++; 336 spin_unlock(&sb_lock); 337 down_write(&s->s_umount); 338 if ((s->s_flags & MS_BORN) && atomic_inc_not_zero(&s->s_active)) { 339 put_super(s); 340 return 1; 341 } 342 up_write(&s->s_umount); 343 put_super(s); 344 return 0; 345 } 346 347 /* 348 * grab_super_passive - acquire a passive reference 349 * @sb: reference we are trying to grab 350 * 351 * Tries to acquire a passive reference. This is used in places where we 352 * cannot take an active reference but we need to ensure that the 353 * superblock does not go away while we are working on it. It returns 354 * false if a reference was not gained, and returns true with the s_umount 355 * lock held in read mode if a reference is gained. On successful return, 356 * the caller must drop the s_umount lock and the passive reference when 357 * done. 358 */ 359 bool grab_super_passive(struct super_block *sb) 360 { 361 spin_lock(&sb_lock); 362 if (hlist_unhashed(&sb->s_instances)) { 363 spin_unlock(&sb_lock); 364 return false; 365 } 366 367 sb->s_count++; 368 spin_unlock(&sb_lock); 369 370 if (down_read_trylock(&sb->s_umount)) { 371 if (sb->s_root && (sb->s_flags & MS_BORN)) 372 return true; 373 up_read(&sb->s_umount); 374 } 375 376 put_super(sb); 377 return false; 378 } 379 380 /** 381 * generic_shutdown_super - common helper for ->kill_sb() 382 * @sb: superblock to kill 383 * 384 * generic_shutdown_super() does all fs-independent work on superblock 385 * shutdown. Typical ->kill_sb() should pick all fs-specific objects 386 * that need destruction out of superblock, call generic_shutdown_super() 387 * and release aforementioned objects. Note: dentries and inodes _are_ 388 * taken care of and do not need specific handling. 389 * 390 * Upon calling this function, the filesystem may no longer alter or 391 * rearrange the set of dentries belonging to this super_block, nor may it 392 * change the attachments of dentries to inodes. 393 */ 394 void generic_shutdown_super(struct super_block *sb) 395 { 396 const struct super_operations *sop = sb->s_op; 397 398 if (sb->s_root) { 399 shrink_dcache_for_umount(sb); 400 sync_filesystem(sb); 401 sb->s_flags &= ~MS_ACTIVE; 402 403 fsnotify_unmount_inodes(&sb->s_inodes); 404 405 evict_inodes(sb); 406 407 if (sb->s_dio_done_wq) { 408 destroy_workqueue(sb->s_dio_done_wq); 409 sb->s_dio_done_wq = NULL; 410 } 411 412 if (sop->put_super) 413 sop->put_super(sb); 414 415 if (!list_empty(&sb->s_inodes)) { 416 printk("VFS: Busy inodes after unmount of %s. " 417 "Self-destruct in 5 seconds. Have a nice day...\n", 418 sb->s_id); 419 } 420 } 421 spin_lock(&sb_lock); 422 /* should be initialized for __put_super_and_need_restart() */ 423 hlist_del_init(&sb->s_instances); 424 spin_unlock(&sb_lock); 425 up_write(&sb->s_umount); 426 } 427 428 EXPORT_SYMBOL(generic_shutdown_super); 429 430 /** 431 * sget - find or create a superblock 432 * @type: filesystem type superblock should belong to 433 * @test: comparison callback 434 * @set: setup callback 435 * @flags: mount flags 436 * @data: argument to each of them 437 */ 438 struct super_block *sget(struct file_system_type *type, 439 int (*test)(struct super_block *,void *), 440 int (*set)(struct super_block *,void *), 441 int flags, 442 void *data) 443 { 444 struct super_block *s = NULL; 445 struct super_block *old; 446 int err; 447 448 retry: 449 spin_lock(&sb_lock); 450 if (test) { 451 hlist_for_each_entry(old, &type->fs_supers, s_instances) { 452 if (!test(old, data)) 453 continue; 454 if (!grab_super(old)) 455 goto retry; 456 if (s) { 457 up_write(&s->s_umount); 458 destroy_super(s); 459 s = NULL; 460 } 461 return old; 462 } 463 } 464 if (!s) { 465 spin_unlock(&sb_lock); 466 s = alloc_super(type, flags); 467 if (!s) 468 return ERR_PTR(-ENOMEM); 469 goto retry; 470 } 471 472 err = set(s, data); 473 if (err) { 474 spin_unlock(&sb_lock); 475 up_write(&s->s_umount); 476 destroy_super(s); 477 return ERR_PTR(err); 478 } 479 s->s_type = type; 480 strlcpy(s->s_id, type->name, sizeof(s->s_id)); 481 list_add_tail(&s->s_list, &super_blocks); 482 hlist_add_head(&s->s_instances, &type->fs_supers); 483 spin_unlock(&sb_lock); 484 get_filesystem(type); 485 register_shrinker(&s->s_shrink); 486 return s; 487 } 488 489 EXPORT_SYMBOL(sget); 490 491 void drop_super(struct super_block *sb) 492 { 493 up_read(&sb->s_umount); 494 put_super(sb); 495 } 496 497 EXPORT_SYMBOL(drop_super); 498 499 /** 500 * iterate_supers - call function for all active superblocks 501 * @f: function to call 502 * @arg: argument to pass to it 503 * 504 * Scans the superblock list and calls given function, passing it 505 * locked superblock and given argument. 506 */ 507 void iterate_supers(void (*f)(struct super_block *, void *), void *arg) 508 { 509 struct super_block *sb, *p = NULL; 510 511 spin_lock(&sb_lock); 512 list_for_each_entry(sb, &super_blocks, s_list) { 513 if (hlist_unhashed(&sb->s_instances)) 514 continue; 515 sb->s_count++; 516 spin_unlock(&sb_lock); 517 518 down_read(&sb->s_umount); 519 if (sb->s_root && (sb->s_flags & MS_BORN)) 520 f(sb, arg); 521 up_read(&sb->s_umount); 522 523 spin_lock(&sb_lock); 524 if (p) 525 __put_super(p); 526 p = sb; 527 } 528 if (p) 529 __put_super(p); 530 spin_unlock(&sb_lock); 531 } 532 533 /** 534 * iterate_supers_type - call function for superblocks of given type 535 * @type: fs type 536 * @f: function to call 537 * @arg: argument to pass to it 538 * 539 * Scans the superblock list and calls given function, passing it 540 * locked superblock and given argument. 541 */ 542 void iterate_supers_type(struct file_system_type *type, 543 void (*f)(struct super_block *, void *), void *arg) 544 { 545 struct super_block *sb, *p = NULL; 546 547 spin_lock(&sb_lock); 548 hlist_for_each_entry(sb, &type->fs_supers, s_instances) { 549 sb->s_count++; 550 spin_unlock(&sb_lock); 551 552 down_read(&sb->s_umount); 553 if (sb->s_root && (sb->s_flags & MS_BORN)) 554 f(sb, arg); 555 up_read(&sb->s_umount); 556 557 spin_lock(&sb_lock); 558 if (p) 559 __put_super(p); 560 p = sb; 561 } 562 if (p) 563 __put_super(p); 564 spin_unlock(&sb_lock); 565 } 566 567 EXPORT_SYMBOL(iterate_supers_type); 568 569 /** 570 * get_super - get the superblock of a device 571 * @bdev: device to get the superblock for 572 * 573 * Scans the superblock list and finds the superblock of the file system 574 * mounted on the device given. %NULL is returned if no match is found. 575 */ 576 577 struct super_block *get_super(struct block_device *bdev) 578 { 579 struct super_block *sb; 580 581 if (!bdev) 582 return NULL; 583 584 spin_lock(&sb_lock); 585 rescan: 586 list_for_each_entry(sb, &super_blocks, s_list) { 587 if (hlist_unhashed(&sb->s_instances)) 588 continue; 589 if (sb->s_bdev == bdev) { 590 sb->s_count++; 591 spin_unlock(&sb_lock); 592 down_read(&sb->s_umount); 593 /* still alive? */ 594 if (sb->s_root && (sb->s_flags & MS_BORN)) 595 return sb; 596 up_read(&sb->s_umount); 597 /* nope, got unmounted */ 598 spin_lock(&sb_lock); 599 __put_super(sb); 600 goto rescan; 601 } 602 } 603 spin_unlock(&sb_lock); 604 return NULL; 605 } 606 607 EXPORT_SYMBOL(get_super); 608 609 /** 610 * get_super_thawed - get thawed superblock of a device 611 * @bdev: device to get the superblock for 612 * 613 * Scans the superblock list and finds the superblock of the file system 614 * mounted on the device. The superblock is returned once it is thawed 615 * (or immediately if it was not frozen). %NULL is returned if no match 616 * is found. 617 */ 618 struct super_block *get_super_thawed(struct block_device *bdev) 619 { 620 while (1) { 621 struct super_block *s = get_super(bdev); 622 if (!s || s->s_writers.frozen == SB_UNFROZEN) 623 return s; 624 up_read(&s->s_umount); 625 wait_event(s->s_writers.wait_unfrozen, 626 s->s_writers.frozen == SB_UNFROZEN); 627 put_super(s); 628 } 629 } 630 EXPORT_SYMBOL(get_super_thawed); 631 632 /** 633 * get_active_super - get an active reference to the superblock of a device 634 * @bdev: device to get the superblock for 635 * 636 * Scans the superblock list and finds the superblock of the file system 637 * mounted on the device given. Returns the superblock with an active 638 * reference or %NULL if none was found. 639 */ 640 struct super_block *get_active_super(struct block_device *bdev) 641 { 642 struct super_block *sb; 643 644 if (!bdev) 645 return NULL; 646 647 restart: 648 spin_lock(&sb_lock); 649 list_for_each_entry(sb, &super_blocks, s_list) { 650 if (hlist_unhashed(&sb->s_instances)) 651 continue; 652 if (sb->s_bdev == bdev) { 653 if (!grab_super(sb)) 654 goto restart; 655 up_write(&sb->s_umount); 656 return sb; 657 } 658 } 659 spin_unlock(&sb_lock); 660 return NULL; 661 } 662 663 struct super_block *user_get_super(dev_t dev) 664 { 665 struct super_block *sb; 666 667 spin_lock(&sb_lock); 668 rescan: 669 list_for_each_entry(sb, &super_blocks, s_list) { 670 if (hlist_unhashed(&sb->s_instances)) 671 continue; 672 if (sb->s_dev == dev) { 673 sb->s_count++; 674 spin_unlock(&sb_lock); 675 down_read(&sb->s_umount); 676 /* still alive? */ 677 if (sb->s_root && (sb->s_flags & MS_BORN)) 678 return sb; 679 up_read(&sb->s_umount); 680 /* nope, got unmounted */ 681 spin_lock(&sb_lock); 682 __put_super(sb); 683 goto rescan; 684 } 685 } 686 spin_unlock(&sb_lock); 687 return NULL; 688 } 689 690 /** 691 * do_remount_sb - asks filesystem to change mount options. 692 * @sb: superblock in question 693 * @flags: numeric part of options 694 * @data: the rest of options 695 * @force: whether or not to force the change 696 * 697 * Alters the mount options of a mounted file system. 698 */ 699 int do_remount_sb(struct super_block *sb, int flags, void *data, int force) 700 { 701 int retval; 702 int remount_ro; 703 704 if (sb->s_writers.frozen != SB_UNFROZEN) 705 return -EBUSY; 706 707 #ifdef CONFIG_BLOCK 708 if (!(flags & MS_RDONLY) && bdev_read_only(sb->s_bdev)) 709 return -EACCES; 710 #endif 711 712 remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY); 713 714 if (remount_ro) { 715 if (sb->s_pins.first) { 716 up_write(&sb->s_umount); 717 sb_pin_kill(sb); 718 down_write(&sb->s_umount); 719 if (!sb->s_root) 720 return 0; 721 if (sb->s_writers.frozen != SB_UNFROZEN) 722 return -EBUSY; 723 remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY); 724 } 725 } 726 shrink_dcache_sb(sb); 727 728 /* If we are remounting RDONLY and current sb is read/write, 729 make sure there are no rw files opened */ 730 if (remount_ro) { 731 if (force) { 732 sb->s_readonly_remount = 1; 733 smp_wmb(); 734 } else { 735 retval = sb_prepare_remount_readonly(sb); 736 if (retval) 737 return retval; 738 } 739 } 740 741 if (sb->s_op->remount_fs) { 742 retval = sb->s_op->remount_fs(sb, &flags, data); 743 if (retval) { 744 if (!force) 745 goto cancel_readonly; 746 /* If forced remount, go ahead despite any errors */ 747 WARN(1, "forced remount of a %s fs returned %i\n", 748 sb->s_type->name, retval); 749 } 750 } 751 sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (flags & MS_RMT_MASK); 752 /* Needs to be ordered wrt mnt_is_readonly() */ 753 smp_wmb(); 754 sb->s_readonly_remount = 0; 755 756 /* 757 * Some filesystems modify their metadata via some other path than the 758 * bdev buffer cache (eg. use a private mapping, or directories in 759 * pagecache, etc). Also file data modifications go via their own 760 * mappings. So If we try to mount readonly then copy the filesystem 761 * from bdev, we could get stale data, so invalidate it to give a best 762 * effort at coherency. 763 */ 764 if (remount_ro && sb->s_bdev) 765 invalidate_bdev(sb->s_bdev); 766 return 0; 767 768 cancel_readonly: 769 sb->s_readonly_remount = 0; 770 return retval; 771 } 772 773 static void do_emergency_remount(struct work_struct *work) 774 { 775 struct super_block *sb, *p = NULL; 776 777 spin_lock(&sb_lock); 778 list_for_each_entry(sb, &super_blocks, s_list) { 779 if (hlist_unhashed(&sb->s_instances)) 780 continue; 781 sb->s_count++; 782 spin_unlock(&sb_lock); 783 down_write(&sb->s_umount); 784 if (sb->s_root && sb->s_bdev && (sb->s_flags & MS_BORN) && 785 !(sb->s_flags & MS_RDONLY)) { 786 /* 787 * What lock protects sb->s_flags?? 788 */ 789 do_remount_sb(sb, MS_RDONLY, NULL, 1); 790 } 791 up_write(&sb->s_umount); 792 spin_lock(&sb_lock); 793 if (p) 794 __put_super(p); 795 p = sb; 796 } 797 if (p) 798 __put_super(p); 799 spin_unlock(&sb_lock); 800 kfree(work); 801 printk("Emergency Remount complete\n"); 802 } 803 804 void emergency_remount(void) 805 { 806 struct work_struct *work; 807 808 work = kmalloc(sizeof(*work), GFP_ATOMIC); 809 if (work) { 810 INIT_WORK(work, do_emergency_remount); 811 schedule_work(work); 812 } 813 } 814 815 /* 816 * Unnamed block devices are dummy devices used by virtual 817 * filesystems which don't use real block-devices. -- jrs 818 */ 819 820 static DEFINE_IDA(unnamed_dev_ida); 821 static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */ 822 /* Many userspace utilities consider an FSID of 0 invalid. 823 * Always return at least 1 from get_anon_bdev. 824 */ 825 static int unnamed_dev_start = 1; 826 827 int get_anon_bdev(dev_t *p) 828 { 829 int dev; 830 int error; 831 832 retry: 833 if (ida_pre_get(&unnamed_dev_ida, GFP_ATOMIC) == 0) 834 return -ENOMEM; 835 spin_lock(&unnamed_dev_lock); 836 error = ida_get_new_above(&unnamed_dev_ida, unnamed_dev_start, &dev); 837 if (!error) 838 unnamed_dev_start = dev + 1; 839 spin_unlock(&unnamed_dev_lock); 840 if (error == -EAGAIN) 841 /* We raced and lost with another CPU. */ 842 goto retry; 843 else if (error) 844 return -EAGAIN; 845 846 if (dev == (1 << MINORBITS)) { 847 spin_lock(&unnamed_dev_lock); 848 ida_remove(&unnamed_dev_ida, dev); 849 if (unnamed_dev_start > dev) 850 unnamed_dev_start = dev; 851 spin_unlock(&unnamed_dev_lock); 852 return -EMFILE; 853 } 854 *p = MKDEV(0, dev & MINORMASK); 855 return 0; 856 } 857 EXPORT_SYMBOL(get_anon_bdev); 858 859 void free_anon_bdev(dev_t dev) 860 { 861 int slot = MINOR(dev); 862 spin_lock(&unnamed_dev_lock); 863 ida_remove(&unnamed_dev_ida, slot); 864 if (slot < unnamed_dev_start) 865 unnamed_dev_start = slot; 866 spin_unlock(&unnamed_dev_lock); 867 } 868 EXPORT_SYMBOL(free_anon_bdev); 869 870 int set_anon_super(struct super_block *s, void *data) 871 { 872 int error = get_anon_bdev(&s->s_dev); 873 if (!error) 874 s->s_bdi = &noop_backing_dev_info; 875 return error; 876 } 877 878 EXPORT_SYMBOL(set_anon_super); 879 880 void kill_anon_super(struct super_block *sb) 881 { 882 dev_t dev = sb->s_dev; 883 generic_shutdown_super(sb); 884 free_anon_bdev(dev); 885 } 886 887 EXPORT_SYMBOL(kill_anon_super); 888 889 void kill_litter_super(struct super_block *sb) 890 { 891 if (sb->s_root) 892 d_genocide(sb->s_root); 893 kill_anon_super(sb); 894 } 895 896 EXPORT_SYMBOL(kill_litter_super); 897 898 static int ns_test_super(struct super_block *sb, void *data) 899 { 900 return sb->s_fs_info == data; 901 } 902 903 static int ns_set_super(struct super_block *sb, void *data) 904 { 905 sb->s_fs_info = data; 906 return set_anon_super(sb, NULL); 907 } 908 909 struct dentry *mount_ns(struct file_system_type *fs_type, int flags, 910 void *data, int (*fill_super)(struct super_block *, void *, int)) 911 { 912 struct super_block *sb; 913 914 sb = sget(fs_type, ns_test_super, ns_set_super, flags, data); 915 if (IS_ERR(sb)) 916 return ERR_CAST(sb); 917 918 if (!sb->s_root) { 919 int err; 920 err = fill_super(sb, data, flags & MS_SILENT ? 1 : 0); 921 if (err) { 922 deactivate_locked_super(sb); 923 return ERR_PTR(err); 924 } 925 926 sb->s_flags |= MS_ACTIVE; 927 } 928 929 return dget(sb->s_root); 930 } 931 932 EXPORT_SYMBOL(mount_ns); 933 934 #ifdef CONFIG_BLOCK 935 static int set_bdev_super(struct super_block *s, void *data) 936 { 937 s->s_bdev = data; 938 s->s_dev = s->s_bdev->bd_dev; 939 940 /* 941 * We set the bdi here to the queue backing, file systems can 942 * overwrite this in ->fill_super() 943 */ 944 s->s_bdi = &bdev_get_queue(s->s_bdev)->backing_dev_info; 945 return 0; 946 } 947 948 static int test_bdev_super(struct super_block *s, void *data) 949 { 950 return (void *)s->s_bdev == data; 951 } 952 953 struct dentry *mount_bdev(struct file_system_type *fs_type, 954 int flags, const char *dev_name, void *data, 955 int (*fill_super)(struct super_block *, void *, int)) 956 { 957 struct block_device *bdev; 958 struct super_block *s; 959 fmode_t mode = FMODE_READ | FMODE_EXCL; 960 int error = 0; 961 962 if (!(flags & MS_RDONLY)) 963 mode |= FMODE_WRITE; 964 965 bdev = blkdev_get_by_path(dev_name, mode, fs_type); 966 if (IS_ERR(bdev)) 967 return ERR_CAST(bdev); 968 969 /* 970 * once the super is inserted into the list by sget, s_umount 971 * will protect the lockfs code from trying to start a snapshot 972 * while we are mounting 973 */ 974 mutex_lock(&bdev->bd_fsfreeze_mutex); 975 if (bdev->bd_fsfreeze_count > 0) { 976 mutex_unlock(&bdev->bd_fsfreeze_mutex); 977 error = -EBUSY; 978 goto error_bdev; 979 } 980 s = sget(fs_type, test_bdev_super, set_bdev_super, flags | MS_NOSEC, 981 bdev); 982 mutex_unlock(&bdev->bd_fsfreeze_mutex); 983 if (IS_ERR(s)) 984 goto error_s; 985 986 if (s->s_root) { 987 if ((flags ^ s->s_flags) & MS_RDONLY) { 988 deactivate_locked_super(s); 989 error = -EBUSY; 990 goto error_bdev; 991 } 992 993 /* 994 * s_umount nests inside bd_mutex during 995 * __invalidate_device(). blkdev_put() acquires 996 * bd_mutex and can't be called under s_umount. Drop 997 * s_umount temporarily. This is safe as we're 998 * holding an active reference. 999 */ 1000 up_write(&s->s_umount); 1001 blkdev_put(bdev, mode); 1002 down_write(&s->s_umount); 1003 } else { 1004 char b[BDEVNAME_SIZE]; 1005 1006 s->s_mode = mode; 1007 strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id)); 1008 sb_set_blocksize(s, block_size(bdev)); 1009 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0); 1010 if (error) { 1011 deactivate_locked_super(s); 1012 goto error; 1013 } 1014 1015 s->s_flags |= MS_ACTIVE; 1016 bdev->bd_super = s; 1017 } 1018 1019 return dget(s->s_root); 1020 1021 error_s: 1022 error = PTR_ERR(s); 1023 error_bdev: 1024 blkdev_put(bdev, mode); 1025 error: 1026 return ERR_PTR(error); 1027 } 1028 EXPORT_SYMBOL(mount_bdev); 1029 1030 void kill_block_super(struct super_block *sb) 1031 { 1032 struct block_device *bdev = sb->s_bdev; 1033 fmode_t mode = sb->s_mode; 1034 1035 bdev->bd_super = NULL; 1036 generic_shutdown_super(sb); 1037 sync_blockdev(bdev); 1038 WARN_ON_ONCE(!(mode & FMODE_EXCL)); 1039 blkdev_put(bdev, mode | FMODE_EXCL); 1040 } 1041 1042 EXPORT_SYMBOL(kill_block_super); 1043 #endif 1044 1045 struct dentry *mount_nodev(struct file_system_type *fs_type, 1046 int flags, void *data, 1047 int (*fill_super)(struct super_block *, void *, int)) 1048 { 1049 int error; 1050 struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL); 1051 1052 if (IS_ERR(s)) 1053 return ERR_CAST(s); 1054 1055 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0); 1056 if (error) { 1057 deactivate_locked_super(s); 1058 return ERR_PTR(error); 1059 } 1060 s->s_flags |= MS_ACTIVE; 1061 return dget(s->s_root); 1062 } 1063 EXPORT_SYMBOL(mount_nodev); 1064 1065 static int compare_single(struct super_block *s, void *p) 1066 { 1067 return 1; 1068 } 1069 1070 struct dentry *mount_single(struct file_system_type *fs_type, 1071 int flags, void *data, 1072 int (*fill_super)(struct super_block *, void *, int)) 1073 { 1074 struct super_block *s; 1075 int error; 1076 1077 s = sget(fs_type, compare_single, set_anon_super, flags, NULL); 1078 if (IS_ERR(s)) 1079 return ERR_CAST(s); 1080 if (!s->s_root) { 1081 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0); 1082 if (error) { 1083 deactivate_locked_super(s); 1084 return ERR_PTR(error); 1085 } 1086 s->s_flags |= MS_ACTIVE; 1087 } else { 1088 do_remount_sb(s, flags, data, 0); 1089 } 1090 return dget(s->s_root); 1091 } 1092 EXPORT_SYMBOL(mount_single); 1093 1094 struct dentry * 1095 mount_fs(struct file_system_type *type, int flags, const char *name, void *data) 1096 { 1097 struct dentry *root; 1098 struct super_block *sb; 1099 char *secdata = NULL; 1100 int error = -ENOMEM; 1101 1102 if (data && !(type->fs_flags & FS_BINARY_MOUNTDATA)) { 1103 secdata = alloc_secdata(); 1104 if (!secdata) 1105 goto out; 1106 1107 error = security_sb_copy_data(data, secdata); 1108 if (error) 1109 goto out_free_secdata; 1110 } 1111 1112 root = type->mount(type, flags, name, data); 1113 if (IS_ERR(root)) { 1114 error = PTR_ERR(root); 1115 goto out_free_secdata; 1116 } 1117 sb = root->d_sb; 1118 BUG_ON(!sb); 1119 WARN_ON(!sb->s_bdi); 1120 WARN_ON(sb->s_bdi == &default_backing_dev_info); 1121 sb->s_flags |= MS_BORN; 1122 1123 error = security_sb_kern_mount(sb, flags, secdata); 1124 if (error) 1125 goto out_sb; 1126 1127 /* 1128 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE 1129 * but s_maxbytes was an unsigned long long for many releases. Throw 1130 * this warning for a little while to try and catch filesystems that 1131 * violate this rule. 1132 */ 1133 WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to " 1134 "negative value (%lld)\n", type->name, sb->s_maxbytes); 1135 1136 up_write(&sb->s_umount); 1137 free_secdata(secdata); 1138 return root; 1139 out_sb: 1140 dput(root); 1141 deactivate_locked_super(sb); 1142 out_free_secdata: 1143 free_secdata(secdata); 1144 out: 1145 return ERR_PTR(error); 1146 } 1147 1148 /* 1149 * This is an internal function, please use sb_end_{write,pagefault,intwrite} 1150 * instead. 1151 */ 1152 void __sb_end_write(struct super_block *sb, int level) 1153 { 1154 percpu_counter_dec(&sb->s_writers.counter[level-1]); 1155 /* 1156 * Make sure s_writers are updated before we wake up waiters in 1157 * freeze_super(). 1158 */ 1159 smp_mb(); 1160 if (waitqueue_active(&sb->s_writers.wait)) 1161 wake_up(&sb->s_writers.wait); 1162 rwsem_release(&sb->s_writers.lock_map[level-1], 1, _RET_IP_); 1163 } 1164 EXPORT_SYMBOL(__sb_end_write); 1165 1166 #ifdef CONFIG_LOCKDEP 1167 /* 1168 * We want lockdep to tell us about possible deadlocks with freezing but 1169 * it's it bit tricky to properly instrument it. Getting a freeze protection 1170 * works as getting a read lock but there are subtle problems. XFS for example 1171 * gets freeze protection on internal level twice in some cases, which is OK 1172 * only because we already hold a freeze protection also on higher level. Due 1173 * to these cases we have to tell lockdep we are doing trylock when we 1174 * already hold a freeze protection for a higher freeze level. 1175 */ 1176 static void acquire_freeze_lock(struct super_block *sb, int level, bool trylock, 1177 unsigned long ip) 1178 { 1179 int i; 1180 1181 if (!trylock) { 1182 for (i = 0; i < level - 1; i++) 1183 if (lock_is_held(&sb->s_writers.lock_map[i])) { 1184 trylock = true; 1185 break; 1186 } 1187 } 1188 rwsem_acquire_read(&sb->s_writers.lock_map[level-1], 0, trylock, ip); 1189 } 1190 #endif 1191 1192 /* 1193 * This is an internal function, please use sb_start_{write,pagefault,intwrite} 1194 * instead. 1195 */ 1196 int __sb_start_write(struct super_block *sb, int level, bool wait) 1197 { 1198 retry: 1199 if (unlikely(sb->s_writers.frozen >= level)) { 1200 if (!wait) 1201 return 0; 1202 wait_event(sb->s_writers.wait_unfrozen, 1203 sb->s_writers.frozen < level); 1204 } 1205 1206 #ifdef CONFIG_LOCKDEP 1207 acquire_freeze_lock(sb, level, !wait, _RET_IP_); 1208 #endif 1209 percpu_counter_inc(&sb->s_writers.counter[level-1]); 1210 /* 1211 * Make sure counter is updated before we check for frozen. 1212 * freeze_super() first sets frozen and then checks the counter. 1213 */ 1214 smp_mb(); 1215 if (unlikely(sb->s_writers.frozen >= level)) { 1216 __sb_end_write(sb, level); 1217 goto retry; 1218 } 1219 return 1; 1220 } 1221 EXPORT_SYMBOL(__sb_start_write); 1222 1223 /** 1224 * sb_wait_write - wait until all writers to given file system finish 1225 * @sb: the super for which we wait 1226 * @level: type of writers we wait for (normal vs page fault) 1227 * 1228 * This function waits until there are no writers of given type to given file 1229 * system. Caller of this function should make sure there can be no new writers 1230 * of type @level before calling this function. Otherwise this function can 1231 * livelock. 1232 */ 1233 static void sb_wait_write(struct super_block *sb, int level) 1234 { 1235 s64 writers; 1236 1237 /* 1238 * We just cycle-through lockdep here so that it does not complain 1239 * about returning with lock to userspace 1240 */ 1241 rwsem_acquire(&sb->s_writers.lock_map[level-1], 0, 0, _THIS_IP_); 1242 rwsem_release(&sb->s_writers.lock_map[level-1], 1, _THIS_IP_); 1243 1244 do { 1245 DEFINE_WAIT(wait); 1246 1247 /* 1248 * We use a barrier in prepare_to_wait() to separate setting 1249 * of frozen and checking of the counter 1250 */ 1251 prepare_to_wait(&sb->s_writers.wait, &wait, 1252 TASK_UNINTERRUPTIBLE); 1253 1254 writers = percpu_counter_sum(&sb->s_writers.counter[level-1]); 1255 if (writers) 1256 schedule(); 1257 1258 finish_wait(&sb->s_writers.wait, &wait); 1259 } while (writers); 1260 } 1261 1262 /** 1263 * freeze_super - lock the filesystem and force it into a consistent state 1264 * @sb: the super to lock 1265 * 1266 * Syncs the super to make sure the filesystem is consistent and calls the fs's 1267 * freeze_fs. Subsequent calls to this without first thawing the fs will return 1268 * -EBUSY. 1269 * 1270 * During this function, sb->s_writers.frozen goes through these values: 1271 * 1272 * SB_UNFROZEN: File system is normal, all writes progress as usual. 1273 * 1274 * SB_FREEZE_WRITE: The file system is in the process of being frozen. New 1275 * writes should be blocked, though page faults are still allowed. We wait for 1276 * all writes to complete and then proceed to the next stage. 1277 * 1278 * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked 1279 * but internal fs threads can still modify the filesystem (although they 1280 * should not dirty new pages or inodes), writeback can run etc. After waiting 1281 * for all running page faults we sync the filesystem which will clean all 1282 * dirty pages and inodes (no new dirty pages or inodes can be created when 1283 * sync is running). 1284 * 1285 * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs 1286 * modification are blocked (e.g. XFS preallocation truncation on inode 1287 * reclaim). This is usually implemented by blocking new transactions for 1288 * filesystems that have them and need this additional guard. After all 1289 * internal writers are finished we call ->freeze_fs() to finish filesystem 1290 * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is 1291 * mostly auxiliary for filesystems to verify they do not modify frozen fs. 1292 * 1293 * sb->s_writers.frozen is protected by sb->s_umount. 1294 */ 1295 int freeze_super(struct super_block *sb) 1296 { 1297 int ret; 1298 1299 atomic_inc(&sb->s_active); 1300 down_write(&sb->s_umount); 1301 if (sb->s_writers.frozen != SB_UNFROZEN) { 1302 deactivate_locked_super(sb); 1303 return -EBUSY; 1304 } 1305 1306 if (!(sb->s_flags & MS_BORN)) { 1307 up_write(&sb->s_umount); 1308 return 0; /* sic - it's "nothing to do" */ 1309 } 1310 1311 if (sb->s_flags & MS_RDONLY) { 1312 /* Nothing to do really... */ 1313 sb->s_writers.frozen = SB_FREEZE_COMPLETE; 1314 up_write(&sb->s_umount); 1315 return 0; 1316 } 1317 1318 /* From now on, no new normal writers can start */ 1319 sb->s_writers.frozen = SB_FREEZE_WRITE; 1320 smp_wmb(); 1321 1322 /* Release s_umount to preserve sb_start_write -> s_umount ordering */ 1323 up_write(&sb->s_umount); 1324 1325 sb_wait_write(sb, SB_FREEZE_WRITE); 1326 1327 /* Now we go and block page faults... */ 1328 down_write(&sb->s_umount); 1329 sb->s_writers.frozen = SB_FREEZE_PAGEFAULT; 1330 smp_wmb(); 1331 1332 sb_wait_write(sb, SB_FREEZE_PAGEFAULT); 1333 1334 /* All writers are done so after syncing there won't be dirty data */ 1335 sync_filesystem(sb); 1336 1337 /* Now wait for internal filesystem counter */ 1338 sb->s_writers.frozen = SB_FREEZE_FS; 1339 smp_wmb(); 1340 sb_wait_write(sb, SB_FREEZE_FS); 1341 1342 if (sb->s_op->freeze_fs) { 1343 ret = sb->s_op->freeze_fs(sb); 1344 if (ret) { 1345 printk(KERN_ERR 1346 "VFS:Filesystem freeze failed\n"); 1347 sb->s_writers.frozen = SB_UNFROZEN; 1348 smp_wmb(); 1349 wake_up(&sb->s_writers.wait_unfrozen); 1350 deactivate_locked_super(sb); 1351 return ret; 1352 } 1353 } 1354 /* 1355 * This is just for debugging purposes so that fs can warn if it 1356 * sees write activity when frozen is set to SB_FREEZE_COMPLETE. 1357 */ 1358 sb->s_writers.frozen = SB_FREEZE_COMPLETE; 1359 up_write(&sb->s_umount); 1360 return 0; 1361 } 1362 EXPORT_SYMBOL(freeze_super); 1363 1364 /** 1365 * thaw_super -- unlock filesystem 1366 * @sb: the super to thaw 1367 * 1368 * Unlocks the filesystem and marks it writeable again after freeze_super(). 1369 */ 1370 int thaw_super(struct super_block *sb) 1371 { 1372 int error; 1373 1374 down_write(&sb->s_umount); 1375 if (sb->s_writers.frozen == SB_UNFROZEN) { 1376 up_write(&sb->s_umount); 1377 return -EINVAL; 1378 } 1379 1380 if (sb->s_flags & MS_RDONLY) 1381 goto out; 1382 1383 if (sb->s_op->unfreeze_fs) { 1384 error = sb->s_op->unfreeze_fs(sb); 1385 if (error) { 1386 printk(KERN_ERR 1387 "VFS:Filesystem thaw failed\n"); 1388 up_write(&sb->s_umount); 1389 return error; 1390 } 1391 } 1392 1393 out: 1394 sb->s_writers.frozen = SB_UNFROZEN; 1395 smp_wmb(); 1396 wake_up(&sb->s_writers.wait_unfrozen); 1397 deactivate_locked_super(sb); 1398 1399 return 0; 1400 } 1401 EXPORT_SYMBOL(thaw_super); 1402