xref: /openbmc/linux/fs/super.c (revision 2c5f648aa24a7c8f0668d8ce5722d69da5bef739)
1 /*
2  *  linux/fs/super.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *
6  *  super.c contains code to handle: - mount structures
7  *                                   - super-block tables
8  *                                   - filesystem drivers list
9  *                                   - mount system call
10  *                                   - umount system call
11  *                                   - ustat system call
12  *
13  * GK 2/5/95  -  Changed to support mounting the root fs via NFS
14  *
15  *  Added kerneld support: Jacques Gelinas and Bjorn Ekwall
16  *  Added change_root: Werner Almesberger & Hans Lermen, Feb '96
17  *  Added options to /proc/mounts:
18  *    Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
19  *  Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
20  *  Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
21  */
22 
23 #include <linux/export.h>
24 #include <linux/slab.h>
25 #include <linux/blkdev.h>
26 #include <linux/mount.h>
27 #include <linux/security.h>
28 #include <linux/writeback.h>		/* for the emergency remount stuff */
29 #include <linux/idr.h>
30 #include <linux/mutex.h>
31 #include <linux/backing-dev.h>
32 #include <linux/rculist_bl.h>
33 #include <linux/cleancache.h>
34 #include <linux/fsnotify.h>
35 #include <linux/lockdep.h>
36 #include "internal.h"
37 
38 
39 LIST_HEAD(super_blocks);
40 DEFINE_SPINLOCK(sb_lock);
41 
42 static char *sb_writers_name[SB_FREEZE_LEVELS] = {
43 	"sb_writers",
44 	"sb_pagefaults",
45 	"sb_internal",
46 };
47 
48 /*
49  * One thing we have to be careful of with a per-sb shrinker is that we don't
50  * drop the last active reference to the superblock from within the shrinker.
51  * If that happens we could trigger unregistering the shrinker from within the
52  * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we
53  * take a passive reference to the superblock to avoid this from occurring.
54  */
55 static unsigned long super_cache_scan(struct shrinker *shrink,
56 				      struct shrink_control *sc)
57 {
58 	struct super_block *sb;
59 	long	fs_objects = 0;
60 	long	total_objects;
61 	long	freed = 0;
62 	long	dentries;
63 	long	inodes;
64 
65 	sb = container_of(shrink, struct super_block, s_shrink);
66 
67 	/*
68 	 * Deadlock avoidance.  We may hold various FS locks, and we don't want
69 	 * to recurse into the FS that called us in clear_inode() and friends..
70 	 */
71 	if (!(sc->gfp_mask & __GFP_FS))
72 		return SHRINK_STOP;
73 
74 	if (!grab_super_passive(sb))
75 		return SHRINK_STOP;
76 
77 	if (sb->s_op->nr_cached_objects)
78 		fs_objects = sb->s_op->nr_cached_objects(sb, sc->nid);
79 
80 	inodes = list_lru_count_node(&sb->s_inode_lru, sc->nid);
81 	dentries = list_lru_count_node(&sb->s_dentry_lru, sc->nid);
82 	total_objects = dentries + inodes + fs_objects + 1;
83 	if (!total_objects)
84 		total_objects = 1;
85 
86 	/* proportion the scan between the caches */
87 	dentries = mult_frac(sc->nr_to_scan, dentries, total_objects);
88 	inodes = mult_frac(sc->nr_to_scan, inodes, total_objects);
89 
90 	/*
91 	 * prune the dcache first as the icache is pinned by it, then
92 	 * prune the icache, followed by the filesystem specific caches
93 	 */
94 	freed = prune_dcache_sb(sb, dentries, sc->nid);
95 	freed += prune_icache_sb(sb, inodes, sc->nid);
96 
97 	if (fs_objects) {
98 		fs_objects = mult_frac(sc->nr_to_scan, fs_objects,
99 								total_objects);
100 		freed += sb->s_op->free_cached_objects(sb, fs_objects,
101 						       sc->nid);
102 	}
103 
104 	drop_super(sb);
105 	return freed;
106 }
107 
108 static unsigned long super_cache_count(struct shrinker *shrink,
109 				       struct shrink_control *sc)
110 {
111 	struct super_block *sb;
112 	long	total_objects = 0;
113 
114 	sb = container_of(shrink, struct super_block, s_shrink);
115 
116 	/*
117 	 * Don't call grab_super_passive as it is a potential
118 	 * scalability bottleneck. The counts could get updated
119 	 * between super_cache_count and super_cache_scan anyway.
120 	 * Call to super_cache_count with shrinker_rwsem held
121 	 * ensures the safety of call to list_lru_count_node() and
122 	 * s_op->nr_cached_objects().
123 	 */
124 	if (sb->s_op && sb->s_op->nr_cached_objects)
125 		total_objects = sb->s_op->nr_cached_objects(sb,
126 						 sc->nid);
127 
128 	total_objects += list_lru_count_node(&sb->s_dentry_lru,
129 						 sc->nid);
130 	total_objects += list_lru_count_node(&sb->s_inode_lru,
131 						 sc->nid);
132 
133 	total_objects = vfs_pressure_ratio(total_objects);
134 	return total_objects;
135 }
136 
137 /**
138  *	destroy_super	-	frees a superblock
139  *	@s: superblock to free
140  *
141  *	Frees a superblock.
142  */
143 static void destroy_super(struct super_block *s)
144 {
145 	int i;
146 	list_lru_destroy(&s->s_dentry_lru);
147 	list_lru_destroy(&s->s_inode_lru);
148 	for (i = 0; i < SB_FREEZE_LEVELS; i++)
149 		percpu_counter_destroy(&s->s_writers.counter[i]);
150 	security_sb_free(s);
151 	WARN_ON(!list_empty(&s->s_mounts));
152 	kfree(s->s_subtype);
153 	kfree(s->s_options);
154 	kfree_rcu(s, rcu);
155 }
156 
157 /**
158  *	alloc_super	-	create new superblock
159  *	@type:	filesystem type superblock should belong to
160  *	@flags: the mount flags
161  *
162  *	Allocates and initializes a new &struct super_block.  alloc_super()
163  *	returns a pointer new superblock or %NULL if allocation had failed.
164  */
165 static struct super_block *alloc_super(struct file_system_type *type, int flags)
166 {
167 	struct super_block *s = kzalloc(sizeof(struct super_block),  GFP_USER);
168 	static const struct super_operations default_op;
169 	int i;
170 
171 	if (!s)
172 		return NULL;
173 
174 	INIT_LIST_HEAD(&s->s_mounts);
175 
176 	if (security_sb_alloc(s))
177 		goto fail;
178 
179 	for (i = 0; i < SB_FREEZE_LEVELS; i++) {
180 		if (percpu_counter_init(&s->s_writers.counter[i], 0,
181 					GFP_KERNEL) < 0)
182 			goto fail;
183 		lockdep_init_map(&s->s_writers.lock_map[i], sb_writers_name[i],
184 				 &type->s_writers_key[i], 0);
185 	}
186 	init_waitqueue_head(&s->s_writers.wait);
187 	init_waitqueue_head(&s->s_writers.wait_unfrozen);
188 	s->s_flags = flags;
189 	s->s_bdi = &default_backing_dev_info;
190 	INIT_HLIST_NODE(&s->s_instances);
191 	INIT_HLIST_BL_HEAD(&s->s_anon);
192 	INIT_LIST_HEAD(&s->s_inodes);
193 
194 	if (list_lru_init(&s->s_dentry_lru))
195 		goto fail;
196 	if (list_lru_init(&s->s_inode_lru))
197 		goto fail;
198 
199 	init_rwsem(&s->s_umount);
200 	lockdep_set_class(&s->s_umount, &type->s_umount_key);
201 	/*
202 	 * sget() can have s_umount recursion.
203 	 *
204 	 * When it cannot find a suitable sb, it allocates a new
205 	 * one (this one), and tries again to find a suitable old
206 	 * one.
207 	 *
208 	 * In case that succeeds, it will acquire the s_umount
209 	 * lock of the old one. Since these are clearly distrinct
210 	 * locks, and this object isn't exposed yet, there's no
211 	 * risk of deadlocks.
212 	 *
213 	 * Annotate this by putting this lock in a different
214 	 * subclass.
215 	 */
216 	down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
217 	s->s_count = 1;
218 	atomic_set(&s->s_active, 1);
219 	mutex_init(&s->s_vfs_rename_mutex);
220 	lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
221 	/*
222 	 * For now MAXQUOTAS check in do_quotactl() will limit quota type
223 	 * appropriately. When each fs sets allowed_types, we can remove the
224 	 * line below
225 	 */
226 	s->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
227 	mutex_init(&s->s_dquot.dqio_mutex);
228 	mutex_init(&s->s_dquot.dqonoff_mutex);
229 	s->s_maxbytes = MAX_NON_LFS;
230 	s->s_op = &default_op;
231 	s->s_time_gran = 1000000000;
232 	s->cleancache_poolid = -1;
233 
234 	s->s_shrink.seeks = DEFAULT_SEEKS;
235 	s->s_shrink.scan_objects = super_cache_scan;
236 	s->s_shrink.count_objects = super_cache_count;
237 	s->s_shrink.batch = 1024;
238 	s->s_shrink.flags = SHRINKER_NUMA_AWARE;
239 	return s;
240 
241 fail:
242 	destroy_super(s);
243 	return NULL;
244 }
245 
246 /* Superblock refcounting  */
247 
248 /*
249  * Drop a superblock's refcount.  The caller must hold sb_lock.
250  */
251 static void __put_super(struct super_block *sb)
252 {
253 	if (!--sb->s_count) {
254 		list_del_init(&sb->s_list);
255 		destroy_super(sb);
256 	}
257 }
258 
259 /**
260  *	put_super	-	drop a temporary reference to superblock
261  *	@sb: superblock in question
262  *
263  *	Drops a temporary reference, frees superblock if there's no
264  *	references left.
265  */
266 static void put_super(struct super_block *sb)
267 {
268 	spin_lock(&sb_lock);
269 	__put_super(sb);
270 	spin_unlock(&sb_lock);
271 }
272 
273 
274 /**
275  *	deactivate_locked_super	-	drop an active reference to superblock
276  *	@s: superblock to deactivate
277  *
278  *	Drops an active reference to superblock, converting it into a temprory
279  *	one if there is no other active references left.  In that case we
280  *	tell fs driver to shut it down and drop the temporary reference we
281  *	had just acquired.
282  *
283  *	Caller holds exclusive lock on superblock; that lock is released.
284  */
285 void deactivate_locked_super(struct super_block *s)
286 {
287 	struct file_system_type *fs = s->s_type;
288 	if (atomic_dec_and_test(&s->s_active)) {
289 		cleancache_invalidate_fs(s);
290 		unregister_shrinker(&s->s_shrink);
291 		fs->kill_sb(s);
292 
293 		put_filesystem(fs);
294 		put_super(s);
295 	} else {
296 		up_write(&s->s_umount);
297 	}
298 }
299 
300 EXPORT_SYMBOL(deactivate_locked_super);
301 
302 /**
303  *	deactivate_super	-	drop an active reference to superblock
304  *	@s: superblock to deactivate
305  *
306  *	Variant of deactivate_locked_super(), except that superblock is *not*
307  *	locked by caller.  If we are going to drop the final active reference,
308  *	lock will be acquired prior to that.
309  */
310 void deactivate_super(struct super_block *s)
311 {
312         if (!atomic_add_unless(&s->s_active, -1, 1)) {
313 		down_write(&s->s_umount);
314 		deactivate_locked_super(s);
315 	}
316 }
317 
318 EXPORT_SYMBOL(deactivate_super);
319 
320 /**
321  *	grab_super - acquire an active reference
322  *	@s: reference we are trying to make active
323  *
324  *	Tries to acquire an active reference.  grab_super() is used when we
325  * 	had just found a superblock in super_blocks or fs_type->fs_supers
326  *	and want to turn it into a full-blown active reference.  grab_super()
327  *	is called with sb_lock held and drops it.  Returns 1 in case of
328  *	success, 0 if we had failed (superblock contents was already dead or
329  *	dying when grab_super() had been called).  Note that this is only
330  *	called for superblocks not in rundown mode (== ones still on ->fs_supers
331  *	of their type), so increment of ->s_count is OK here.
332  */
333 static int grab_super(struct super_block *s) __releases(sb_lock)
334 {
335 	s->s_count++;
336 	spin_unlock(&sb_lock);
337 	down_write(&s->s_umount);
338 	if ((s->s_flags & MS_BORN) && atomic_inc_not_zero(&s->s_active)) {
339 		put_super(s);
340 		return 1;
341 	}
342 	up_write(&s->s_umount);
343 	put_super(s);
344 	return 0;
345 }
346 
347 /*
348  *	grab_super_passive - acquire a passive reference
349  *	@sb: reference we are trying to grab
350  *
351  *	Tries to acquire a passive reference. This is used in places where we
352  *	cannot take an active reference but we need to ensure that the
353  *	superblock does not go away while we are working on it. It returns
354  *	false if a reference was not gained, and returns true with the s_umount
355  *	lock held in read mode if a reference is gained. On successful return,
356  *	the caller must drop the s_umount lock and the passive reference when
357  *	done.
358  */
359 bool grab_super_passive(struct super_block *sb)
360 {
361 	spin_lock(&sb_lock);
362 	if (hlist_unhashed(&sb->s_instances)) {
363 		spin_unlock(&sb_lock);
364 		return false;
365 	}
366 
367 	sb->s_count++;
368 	spin_unlock(&sb_lock);
369 
370 	if (down_read_trylock(&sb->s_umount)) {
371 		if (sb->s_root && (sb->s_flags & MS_BORN))
372 			return true;
373 		up_read(&sb->s_umount);
374 	}
375 
376 	put_super(sb);
377 	return false;
378 }
379 
380 /**
381  *	generic_shutdown_super	-	common helper for ->kill_sb()
382  *	@sb: superblock to kill
383  *
384  *	generic_shutdown_super() does all fs-independent work on superblock
385  *	shutdown.  Typical ->kill_sb() should pick all fs-specific objects
386  *	that need destruction out of superblock, call generic_shutdown_super()
387  *	and release aforementioned objects.  Note: dentries and inodes _are_
388  *	taken care of and do not need specific handling.
389  *
390  *	Upon calling this function, the filesystem may no longer alter or
391  *	rearrange the set of dentries belonging to this super_block, nor may it
392  *	change the attachments of dentries to inodes.
393  */
394 void generic_shutdown_super(struct super_block *sb)
395 {
396 	const struct super_operations *sop = sb->s_op;
397 
398 	if (sb->s_root) {
399 		shrink_dcache_for_umount(sb);
400 		sync_filesystem(sb);
401 		sb->s_flags &= ~MS_ACTIVE;
402 
403 		fsnotify_unmount_inodes(&sb->s_inodes);
404 
405 		evict_inodes(sb);
406 
407 		if (sb->s_dio_done_wq) {
408 			destroy_workqueue(sb->s_dio_done_wq);
409 			sb->s_dio_done_wq = NULL;
410 		}
411 
412 		if (sop->put_super)
413 			sop->put_super(sb);
414 
415 		if (!list_empty(&sb->s_inodes)) {
416 			printk("VFS: Busy inodes after unmount of %s. "
417 			   "Self-destruct in 5 seconds.  Have a nice day...\n",
418 			   sb->s_id);
419 		}
420 	}
421 	spin_lock(&sb_lock);
422 	/* should be initialized for __put_super_and_need_restart() */
423 	hlist_del_init(&sb->s_instances);
424 	spin_unlock(&sb_lock);
425 	up_write(&sb->s_umount);
426 }
427 
428 EXPORT_SYMBOL(generic_shutdown_super);
429 
430 /**
431  *	sget	-	find or create a superblock
432  *	@type:	filesystem type superblock should belong to
433  *	@test:	comparison callback
434  *	@set:	setup callback
435  *	@flags:	mount flags
436  *	@data:	argument to each of them
437  */
438 struct super_block *sget(struct file_system_type *type,
439 			int (*test)(struct super_block *,void *),
440 			int (*set)(struct super_block *,void *),
441 			int flags,
442 			void *data)
443 {
444 	struct super_block *s = NULL;
445 	struct super_block *old;
446 	int err;
447 
448 retry:
449 	spin_lock(&sb_lock);
450 	if (test) {
451 		hlist_for_each_entry(old, &type->fs_supers, s_instances) {
452 			if (!test(old, data))
453 				continue;
454 			if (!grab_super(old))
455 				goto retry;
456 			if (s) {
457 				up_write(&s->s_umount);
458 				destroy_super(s);
459 				s = NULL;
460 			}
461 			return old;
462 		}
463 	}
464 	if (!s) {
465 		spin_unlock(&sb_lock);
466 		s = alloc_super(type, flags);
467 		if (!s)
468 			return ERR_PTR(-ENOMEM);
469 		goto retry;
470 	}
471 
472 	err = set(s, data);
473 	if (err) {
474 		spin_unlock(&sb_lock);
475 		up_write(&s->s_umount);
476 		destroy_super(s);
477 		return ERR_PTR(err);
478 	}
479 	s->s_type = type;
480 	strlcpy(s->s_id, type->name, sizeof(s->s_id));
481 	list_add_tail(&s->s_list, &super_blocks);
482 	hlist_add_head(&s->s_instances, &type->fs_supers);
483 	spin_unlock(&sb_lock);
484 	get_filesystem(type);
485 	register_shrinker(&s->s_shrink);
486 	return s;
487 }
488 
489 EXPORT_SYMBOL(sget);
490 
491 void drop_super(struct super_block *sb)
492 {
493 	up_read(&sb->s_umount);
494 	put_super(sb);
495 }
496 
497 EXPORT_SYMBOL(drop_super);
498 
499 /**
500  *	iterate_supers - call function for all active superblocks
501  *	@f: function to call
502  *	@arg: argument to pass to it
503  *
504  *	Scans the superblock list and calls given function, passing it
505  *	locked superblock and given argument.
506  */
507 void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
508 {
509 	struct super_block *sb, *p = NULL;
510 
511 	spin_lock(&sb_lock);
512 	list_for_each_entry(sb, &super_blocks, s_list) {
513 		if (hlist_unhashed(&sb->s_instances))
514 			continue;
515 		sb->s_count++;
516 		spin_unlock(&sb_lock);
517 
518 		down_read(&sb->s_umount);
519 		if (sb->s_root && (sb->s_flags & MS_BORN))
520 			f(sb, arg);
521 		up_read(&sb->s_umount);
522 
523 		spin_lock(&sb_lock);
524 		if (p)
525 			__put_super(p);
526 		p = sb;
527 	}
528 	if (p)
529 		__put_super(p);
530 	spin_unlock(&sb_lock);
531 }
532 
533 /**
534  *	iterate_supers_type - call function for superblocks of given type
535  *	@type: fs type
536  *	@f: function to call
537  *	@arg: argument to pass to it
538  *
539  *	Scans the superblock list and calls given function, passing it
540  *	locked superblock and given argument.
541  */
542 void iterate_supers_type(struct file_system_type *type,
543 	void (*f)(struct super_block *, void *), void *arg)
544 {
545 	struct super_block *sb, *p = NULL;
546 
547 	spin_lock(&sb_lock);
548 	hlist_for_each_entry(sb, &type->fs_supers, s_instances) {
549 		sb->s_count++;
550 		spin_unlock(&sb_lock);
551 
552 		down_read(&sb->s_umount);
553 		if (sb->s_root && (sb->s_flags & MS_BORN))
554 			f(sb, arg);
555 		up_read(&sb->s_umount);
556 
557 		spin_lock(&sb_lock);
558 		if (p)
559 			__put_super(p);
560 		p = sb;
561 	}
562 	if (p)
563 		__put_super(p);
564 	spin_unlock(&sb_lock);
565 }
566 
567 EXPORT_SYMBOL(iterate_supers_type);
568 
569 /**
570  *	get_super - get the superblock of a device
571  *	@bdev: device to get the superblock for
572  *
573  *	Scans the superblock list and finds the superblock of the file system
574  *	mounted on the device given. %NULL is returned if no match is found.
575  */
576 
577 struct super_block *get_super(struct block_device *bdev)
578 {
579 	struct super_block *sb;
580 
581 	if (!bdev)
582 		return NULL;
583 
584 	spin_lock(&sb_lock);
585 rescan:
586 	list_for_each_entry(sb, &super_blocks, s_list) {
587 		if (hlist_unhashed(&sb->s_instances))
588 			continue;
589 		if (sb->s_bdev == bdev) {
590 			sb->s_count++;
591 			spin_unlock(&sb_lock);
592 			down_read(&sb->s_umount);
593 			/* still alive? */
594 			if (sb->s_root && (sb->s_flags & MS_BORN))
595 				return sb;
596 			up_read(&sb->s_umount);
597 			/* nope, got unmounted */
598 			spin_lock(&sb_lock);
599 			__put_super(sb);
600 			goto rescan;
601 		}
602 	}
603 	spin_unlock(&sb_lock);
604 	return NULL;
605 }
606 
607 EXPORT_SYMBOL(get_super);
608 
609 /**
610  *	get_super_thawed - get thawed superblock of a device
611  *	@bdev: device to get the superblock for
612  *
613  *	Scans the superblock list and finds the superblock of the file system
614  *	mounted on the device. The superblock is returned once it is thawed
615  *	(or immediately if it was not frozen). %NULL is returned if no match
616  *	is found.
617  */
618 struct super_block *get_super_thawed(struct block_device *bdev)
619 {
620 	while (1) {
621 		struct super_block *s = get_super(bdev);
622 		if (!s || s->s_writers.frozen == SB_UNFROZEN)
623 			return s;
624 		up_read(&s->s_umount);
625 		wait_event(s->s_writers.wait_unfrozen,
626 			   s->s_writers.frozen == SB_UNFROZEN);
627 		put_super(s);
628 	}
629 }
630 EXPORT_SYMBOL(get_super_thawed);
631 
632 /**
633  * get_active_super - get an active reference to the superblock of a device
634  * @bdev: device to get the superblock for
635  *
636  * Scans the superblock list and finds the superblock of the file system
637  * mounted on the device given.  Returns the superblock with an active
638  * reference or %NULL if none was found.
639  */
640 struct super_block *get_active_super(struct block_device *bdev)
641 {
642 	struct super_block *sb;
643 
644 	if (!bdev)
645 		return NULL;
646 
647 restart:
648 	spin_lock(&sb_lock);
649 	list_for_each_entry(sb, &super_blocks, s_list) {
650 		if (hlist_unhashed(&sb->s_instances))
651 			continue;
652 		if (sb->s_bdev == bdev) {
653 			if (!grab_super(sb))
654 				goto restart;
655 			up_write(&sb->s_umount);
656 			return sb;
657 		}
658 	}
659 	spin_unlock(&sb_lock);
660 	return NULL;
661 }
662 
663 struct super_block *user_get_super(dev_t dev)
664 {
665 	struct super_block *sb;
666 
667 	spin_lock(&sb_lock);
668 rescan:
669 	list_for_each_entry(sb, &super_blocks, s_list) {
670 		if (hlist_unhashed(&sb->s_instances))
671 			continue;
672 		if (sb->s_dev ==  dev) {
673 			sb->s_count++;
674 			spin_unlock(&sb_lock);
675 			down_read(&sb->s_umount);
676 			/* still alive? */
677 			if (sb->s_root && (sb->s_flags & MS_BORN))
678 				return sb;
679 			up_read(&sb->s_umount);
680 			/* nope, got unmounted */
681 			spin_lock(&sb_lock);
682 			__put_super(sb);
683 			goto rescan;
684 		}
685 	}
686 	spin_unlock(&sb_lock);
687 	return NULL;
688 }
689 
690 /**
691  *	do_remount_sb - asks filesystem to change mount options.
692  *	@sb:	superblock in question
693  *	@flags:	numeric part of options
694  *	@data:	the rest of options
695  *      @force: whether or not to force the change
696  *
697  *	Alters the mount options of a mounted file system.
698  */
699 int do_remount_sb(struct super_block *sb, int flags, void *data, int force)
700 {
701 	int retval;
702 	int remount_ro;
703 
704 	if (sb->s_writers.frozen != SB_UNFROZEN)
705 		return -EBUSY;
706 
707 #ifdef CONFIG_BLOCK
708 	if (!(flags & MS_RDONLY) && bdev_read_only(sb->s_bdev))
709 		return -EACCES;
710 #endif
711 
712 	remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY);
713 
714 	if (remount_ro) {
715 		if (sb->s_pins.first) {
716 			up_write(&sb->s_umount);
717 			sb_pin_kill(sb);
718 			down_write(&sb->s_umount);
719 			if (!sb->s_root)
720 				return 0;
721 			if (sb->s_writers.frozen != SB_UNFROZEN)
722 				return -EBUSY;
723 			remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY);
724 		}
725 	}
726 	shrink_dcache_sb(sb);
727 
728 	/* If we are remounting RDONLY and current sb is read/write,
729 	   make sure there are no rw files opened */
730 	if (remount_ro) {
731 		if (force) {
732 			sb->s_readonly_remount = 1;
733 			smp_wmb();
734 		} else {
735 			retval = sb_prepare_remount_readonly(sb);
736 			if (retval)
737 				return retval;
738 		}
739 	}
740 
741 	if (sb->s_op->remount_fs) {
742 		retval = sb->s_op->remount_fs(sb, &flags, data);
743 		if (retval) {
744 			if (!force)
745 				goto cancel_readonly;
746 			/* If forced remount, go ahead despite any errors */
747 			WARN(1, "forced remount of a %s fs returned %i\n",
748 			     sb->s_type->name, retval);
749 		}
750 	}
751 	sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (flags & MS_RMT_MASK);
752 	/* Needs to be ordered wrt mnt_is_readonly() */
753 	smp_wmb();
754 	sb->s_readonly_remount = 0;
755 
756 	/*
757 	 * Some filesystems modify their metadata via some other path than the
758 	 * bdev buffer cache (eg. use a private mapping, or directories in
759 	 * pagecache, etc). Also file data modifications go via their own
760 	 * mappings. So If we try to mount readonly then copy the filesystem
761 	 * from bdev, we could get stale data, so invalidate it to give a best
762 	 * effort at coherency.
763 	 */
764 	if (remount_ro && sb->s_bdev)
765 		invalidate_bdev(sb->s_bdev);
766 	return 0;
767 
768 cancel_readonly:
769 	sb->s_readonly_remount = 0;
770 	return retval;
771 }
772 
773 static void do_emergency_remount(struct work_struct *work)
774 {
775 	struct super_block *sb, *p = NULL;
776 
777 	spin_lock(&sb_lock);
778 	list_for_each_entry(sb, &super_blocks, s_list) {
779 		if (hlist_unhashed(&sb->s_instances))
780 			continue;
781 		sb->s_count++;
782 		spin_unlock(&sb_lock);
783 		down_write(&sb->s_umount);
784 		if (sb->s_root && sb->s_bdev && (sb->s_flags & MS_BORN) &&
785 		    !(sb->s_flags & MS_RDONLY)) {
786 			/*
787 			 * What lock protects sb->s_flags??
788 			 */
789 			do_remount_sb(sb, MS_RDONLY, NULL, 1);
790 		}
791 		up_write(&sb->s_umount);
792 		spin_lock(&sb_lock);
793 		if (p)
794 			__put_super(p);
795 		p = sb;
796 	}
797 	if (p)
798 		__put_super(p);
799 	spin_unlock(&sb_lock);
800 	kfree(work);
801 	printk("Emergency Remount complete\n");
802 }
803 
804 void emergency_remount(void)
805 {
806 	struct work_struct *work;
807 
808 	work = kmalloc(sizeof(*work), GFP_ATOMIC);
809 	if (work) {
810 		INIT_WORK(work, do_emergency_remount);
811 		schedule_work(work);
812 	}
813 }
814 
815 /*
816  * Unnamed block devices are dummy devices used by virtual
817  * filesystems which don't use real block-devices.  -- jrs
818  */
819 
820 static DEFINE_IDA(unnamed_dev_ida);
821 static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */
822 /* Many userspace utilities consider an FSID of 0 invalid.
823  * Always return at least 1 from get_anon_bdev.
824  */
825 static int unnamed_dev_start = 1;
826 
827 int get_anon_bdev(dev_t *p)
828 {
829 	int dev;
830 	int error;
831 
832  retry:
833 	if (ida_pre_get(&unnamed_dev_ida, GFP_ATOMIC) == 0)
834 		return -ENOMEM;
835 	spin_lock(&unnamed_dev_lock);
836 	error = ida_get_new_above(&unnamed_dev_ida, unnamed_dev_start, &dev);
837 	if (!error)
838 		unnamed_dev_start = dev + 1;
839 	spin_unlock(&unnamed_dev_lock);
840 	if (error == -EAGAIN)
841 		/* We raced and lost with another CPU. */
842 		goto retry;
843 	else if (error)
844 		return -EAGAIN;
845 
846 	if (dev == (1 << MINORBITS)) {
847 		spin_lock(&unnamed_dev_lock);
848 		ida_remove(&unnamed_dev_ida, dev);
849 		if (unnamed_dev_start > dev)
850 			unnamed_dev_start = dev;
851 		spin_unlock(&unnamed_dev_lock);
852 		return -EMFILE;
853 	}
854 	*p = MKDEV(0, dev & MINORMASK);
855 	return 0;
856 }
857 EXPORT_SYMBOL(get_anon_bdev);
858 
859 void free_anon_bdev(dev_t dev)
860 {
861 	int slot = MINOR(dev);
862 	spin_lock(&unnamed_dev_lock);
863 	ida_remove(&unnamed_dev_ida, slot);
864 	if (slot < unnamed_dev_start)
865 		unnamed_dev_start = slot;
866 	spin_unlock(&unnamed_dev_lock);
867 }
868 EXPORT_SYMBOL(free_anon_bdev);
869 
870 int set_anon_super(struct super_block *s, void *data)
871 {
872 	int error = get_anon_bdev(&s->s_dev);
873 	if (!error)
874 		s->s_bdi = &noop_backing_dev_info;
875 	return error;
876 }
877 
878 EXPORT_SYMBOL(set_anon_super);
879 
880 void kill_anon_super(struct super_block *sb)
881 {
882 	dev_t dev = sb->s_dev;
883 	generic_shutdown_super(sb);
884 	free_anon_bdev(dev);
885 }
886 
887 EXPORT_SYMBOL(kill_anon_super);
888 
889 void kill_litter_super(struct super_block *sb)
890 {
891 	if (sb->s_root)
892 		d_genocide(sb->s_root);
893 	kill_anon_super(sb);
894 }
895 
896 EXPORT_SYMBOL(kill_litter_super);
897 
898 static int ns_test_super(struct super_block *sb, void *data)
899 {
900 	return sb->s_fs_info == data;
901 }
902 
903 static int ns_set_super(struct super_block *sb, void *data)
904 {
905 	sb->s_fs_info = data;
906 	return set_anon_super(sb, NULL);
907 }
908 
909 struct dentry *mount_ns(struct file_system_type *fs_type, int flags,
910 	void *data, int (*fill_super)(struct super_block *, void *, int))
911 {
912 	struct super_block *sb;
913 
914 	sb = sget(fs_type, ns_test_super, ns_set_super, flags, data);
915 	if (IS_ERR(sb))
916 		return ERR_CAST(sb);
917 
918 	if (!sb->s_root) {
919 		int err;
920 		err = fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
921 		if (err) {
922 			deactivate_locked_super(sb);
923 			return ERR_PTR(err);
924 		}
925 
926 		sb->s_flags |= MS_ACTIVE;
927 	}
928 
929 	return dget(sb->s_root);
930 }
931 
932 EXPORT_SYMBOL(mount_ns);
933 
934 #ifdef CONFIG_BLOCK
935 static int set_bdev_super(struct super_block *s, void *data)
936 {
937 	s->s_bdev = data;
938 	s->s_dev = s->s_bdev->bd_dev;
939 
940 	/*
941 	 * We set the bdi here to the queue backing, file systems can
942 	 * overwrite this in ->fill_super()
943 	 */
944 	s->s_bdi = &bdev_get_queue(s->s_bdev)->backing_dev_info;
945 	return 0;
946 }
947 
948 static int test_bdev_super(struct super_block *s, void *data)
949 {
950 	return (void *)s->s_bdev == data;
951 }
952 
953 struct dentry *mount_bdev(struct file_system_type *fs_type,
954 	int flags, const char *dev_name, void *data,
955 	int (*fill_super)(struct super_block *, void *, int))
956 {
957 	struct block_device *bdev;
958 	struct super_block *s;
959 	fmode_t mode = FMODE_READ | FMODE_EXCL;
960 	int error = 0;
961 
962 	if (!(flags & MS_RDONLY))
963 		mode |= FMODE_WRITE;
964 
965 	bdev = blkdev_get_by_path(dev_name, mode, fs_type);
966 	if (IS_ERR(bdev))
967 		return ERR_CAST(bdev);
968 
969 	/*
970 	 * once the super is inserted into the list by sget, s_umount
971 	 * will protect the lockfs code from trying to start a snapshot
972 	 * while we are mounting
973 	 */
974 	mutex_lock(&bdev->bd_fsfreeze_mutex);
975 	if (bdev->bd_fsfreeze_count > 0) {
976 		mutex_unlock(&bdev->bd_fsfreeze_mutex);
977 		error = -EBUSY;
978 		goto error_bdev;
979 	}
980 	s = sget(fs_type, test_bdev_super, set_bdev_super, flags | MS_NOSEC,
981 		 bdev);
982 	mutex_unlock(&bdev->bd_fsfreeze_mutex);
983 	if (IS_ERR(s))
984 		goto error_s;
985 
986 	if (s->s_root) {
987 		if ((flags ^ s->s_flags) & MS_RDONLY) {
988 			deactivate_locked_super(s);
989 			error = -EBUSY;
990 			goto error_bdev;
991 		}
992 
993 		/*
994 		 * s_umount nests inside bd_mutex during
995 		 * __invalidate_device().  blkdev_put() acquires
996 		 * bd_mutex and can't be called under s_umount.  Drop
997 		 * s_umount temporarily.  This is safe as we're
998 		 * holding an active reference.
999 		 */
1000 		up_write(&s->s_umount);
1001 		blkdev_put(bdev, mode);
1002 		down_write(&s->s_umount);
1003 	} else {
1004 		char b[BDEVNAME_SIZE];
1005 
1006 		s->s_mode = mode;
1007 		strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
1008 		sb_set_blocksize(s, block_size(bdev));
1009 		error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1010 		if (error) {
1011 			deactivate_locked_super(s);
1012 			goto error;
1013 		}
1014 
1015 		s->s_flags |= MS_ACTIVE;
1016 		bdev->bd_super = s;
1017 	}
1018 
1019 	return dget(s->s_root);
1020 
1021 error_s:
1022 	error = PTR_ERR(s);
1023 error_bdev:
1024 	blkdev_put(bdev, mode);
1025 error:
1026 	return ERR_PTR(error);
1027 }
1028 EXPORT_SYMBOL(mount_bdev);
1029 
1030 void kill_block_super(struct super_block *sb)
1031 {
1032 	struct block_device *bdev = sb->s_bdev;
1033 	fmode_t mode = sb->s_mode;
1034 
1035 	bdev->bd_super = NULL;
1036 	generic_shutdown_super(sb);
1037 	sync_blockdev(bdev);
1038 	WARN_ON_ONCE(!(mode & FMODE_EXCL));
1039 	blkdev_put(bdev, mode | FMODE_EXCL);
1040 }
1041 
1042 EXPORT_SYMBOL(kill_block_super);
1043 #endif
1044 
1045 struct dentry *mount_nodev(struct file_system_type *fs_type,
1046 	int flags, void *data,
1047 	int (*fill_super)(struct super_block *, void *, int))
1048 {
1049 	int error;
1050 	struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL);
1051 
1052 	if (IS_ERR(s))
1053 		return ERR_CAST(s);
1054 
1055 	error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1056 	if (error) {
1057 		deactivate_locked_super(s);
1058 		return ERR_PTR(error);
1059 	}
1060 	s->s_flags |= MS_ACTIVE;
1061 	return dget(s->s_root);
1062 }
1063 EXPORT_SYMBOL(mount_nodev);
1064 
1065 static int compare_single(struct super_block *s, void *p)
1066 {
1067 	return 1;
1068 }
1069 
1070 struct dentry *mount_single(struct file_system_type *fs_type,
1071 	int flags, void *data,
1072 	int (*fill_super)(struct super_block *, void *, int))
1073 {
1074 	struct super_block *s;
1075 	int error;
1076 
1077 	s = sget(fs_type, compare_single, set_anon_super, flags, NULL);
1078 	if (IS_ERR(s))
1079 		return ERR_CAST(s);
1080 	if (!s->s_root) {
1081 		error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1082 		if (error) {
1083 			deactivate_locked_super(s);
1084 			return ERR_PTR(error);
1085 		}
1086 		s->s_flags |= MS_ACTIVE;
1087 	} else {
1088 		do_remount_sb(s, flags, data, 0);
1089 	}
1090 	return dget(s->s_root);
1091 }
1092 EXPORT_SYMBOL(mount_single);
1093 
1094 struct dentry *
1095 mount_fs(struct file_system_type *type, int flags, const char *name, void *data)
1096 {
1097 	struct dentry *root;
1098 	struct super_block *sb;
1099 	char *secdata = NULL;
1100 	int error = -ENOMEM;
1101 
1102 	if (data && !(type->fs_flags & FS_BINARY_MOUNTDATA)) {
1103 		secdata = alloc_secdata();
1104 		if (!secdata)
1105 			goto out;
1106 
1107 		error = security_sb_copy_data(data, secdata);
1108 		if (error)
1109 			goto out_free_secdata;
1110 	}
1111 
1112 	root = type->mount(type, flags, name, data);
1113 	if (IS_ERR(root)) {
1114 		error = PTR_ERR(root);
1115 		goto out_free_secdata;
1116 	}
1117 	sb = root->d_sb;
1118 	BUG_ON(!sb);
1119 	WARN_ON(!sb->s_bdi);
1120 	WARN_ON(sb->s_bdi == &default_backing_dev_info);
1121 	sb->s_flags |= MS_BORN;
1122 
1123 	error = security_sb_kern_mount(sb, flags, secdata);
1124 	if (error)
1125 		goto out_sb;
1126 
1127 	/*
1128 	 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1129 	 * but s_maxbytes was an unsigned long long for many releases. Throw
1130 	 * this warning for a little while to try and catch filesystems that
1131 	 * violate this rule.
1132 	 */
1133 	WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
1134 		"negative value (%lld)\n", type->name, sb->s_maxbytes);
1135 
1136 	up_write(&sb->s_umount);
1137 	free_secdata(secdata);
1138 	return root;
1139 out_sb:
1140 	dput(root);
1141 	deactivate_locked_super(sb);
1142 out_free_secdata:
1143 	free_secdata(secdata);
1144 out:
1145 	return ERR_PTR(error);
1146 }
1147 
1148 /*
1149  * This is an internal function, please use sb_end_{write,pagefault,intwrite}
1150  * instead.
1151  */
1152 void __sb_end_write(struct super_block *sb, int level)
1153 {
1154 	percpu_counter_dec(&sb->s_writers.counter[level-1]);
1155 	/*
1156 	 * Make sure s_writers are updated before we wake up waiters in
1157 	 * freeze_super().
1158 	 */
1159 	smp_mb();
1160 	if (waitqueue_active(&sb->s_writers.wait))
1161 		wake_up(&sb->s_writers.wait);
1162 	rwsem_release(&sb->s_writers.lock_map[level-1], 1, _RET_IP_);
1163 }
1164 EXPORT_SYMBOL(__sb_end_write);
1165 
1166 #ifdef CONFIG_LOCKDEP
1167 /*
1168  * We want lockdep to tell us about possible deadlocks with freezing but
1169  * it's it bit tricky to properly instrument it. Getting a freeze protection
1170  * works as getting a read lock but there are subtle problems. XFS for example
1171  * gets freeze protection on internal level twice in some cases, which is OK
1172  * only because we already hold a freeze protection also on higher level. Due
1173  * to these cases we have to tell lockdep we are doing trylock when we
1174  * already hold a freeze protection for a higher freeze level.
1175  */
1176 static void acquire_freeze_lock(struct super_block *sb, int level, bool trylock,
1177 				unsigned long ip)
1178 {
1179 	int i;
1180 
1181 	if (!trylock) {
1182 		for (i = 0; i < level - 1; i++)
1183 			if (lock_is_held(&sb->s_writers.lock_map[i])) {
1184 				trylock = true;
1185 				break;
1186 			}
1187 	}
1188 	rwsem_acquire_read(&sb->s_writers.lock_map[level-1], 0, trylock, ip);
1189 }
1190 #endif
1191 
1192 /*
1193  * This is an internal function, please use sb_start_{write,pagefault,intwrite}
1194  * instead.
1195  */
1196 int __sb_start_write(struct super_block *sb, int level, bool wait)
1197 {
1198 retry:
1199 	if (unlikely(sb->s_writers.frozen >= level)) {
1200 		if (!wait)
1201 			return 0;
1202 		wait_event(sb->s_writers.wait_unfrozen,
1203 			   sb->s_writers.frozen < level);
1204 	}
1205 
1206 #ifdef CONFIG_LOCKDEP
1207 	acquire_freeze_lock(sb, level, !wait, _RET_IP_);
1208 #endif
1209 	percpu_counter_inc(&sb->s_writers.counter[level-1]);
1210 	/*
1211 	 * Make sure counter is updated before we check for frozen.
1212 	 * freeze_super() first sets frozen and then checks the counter.
1213 	 */
1214 	smp_mb();
1215 	if (unlikely(sb->s_writers.frozen >= level)) {
1216 		__sb_end_write(sb, level);
1217 		goto retry;
1218 	}
1219 	return 1;
1220 }
1221 EXPORT_SYMBOL(__sb_start_write);
1222 
1223 /**
1224  * sb_wait_write - wait until all writers to given file system finish
1225  * @sb: the super for which we wait
1226  * @level: type of writers we wait for (normal vs page fault)
1227  *
1228  * This function waits until there are no writers of given type to given file
1229  * system. Caller of this function should make sure there can be no new writers
1230  * of type @level before calling this function. Otherwise this function can
1231  * livelock.
1232  */
1233 static void sb_wait_write(struct super_block *sb, int level)
1234 {
1235 	s64 writers;
1236 
1237 	/*
1238 	 * We just cycle-through lockdep here so that it does not complain
1239 	 * about returning with lock to userspace
1240 	 */
1241 	rwsem_acquire(&sb->s_writers.lock_map[level-1], 0, 0, _THIS_IP_);
1242 	rwsem_release(&sb->s_writers.lock_map[level-1], 1, _THIS_IP_);
1243 
1244 	do {
1245 		DEFINE_WAIT(wait);
1246 
1247 		/*
1248 		 * We use a barrier in prepare_to_wait() to separate setting
1249 		 * of frozen and checking of the counter
1250 		 */
1251 		prepare_to_wait(&sb->s_writers.wait, &wait,
1252 				TASK_UNINTERRUPTIBLE);
1253 
1254 		writers = percpu_counter_sum(&sb->s_writers.counter[level-1]);
1255 		if (writers)
1256 			schedule();
1257 
1258 		finish_wait(&sb->s_writers.wait, &wait);
1259 	} while (writers);
1260 }
1261 
1262 /**
1263  * freeze_super - lock the filesystem and force it into a consistent state
1264  * @sb: the super to lock
1265  *
1266  * Syncs the super to make sure the filesystem is consistent and calls the fs's
1267  * freeze_fs.  Subsequent calls to this without first thawing the fs will return
1268  * -EBUSY.
1269  *
1270  * During this function, sb->s_writers.frozen goes through these values:
1271  *
1272  * SB_UNFROZEN: File system is normal, all writes progress as usual.
1273  *
1274  * SB_FREEZE_WRITE: The file system is in the process of being frozen.  New
1275  * writes should be blocked, though page faults are still allowed. We wait for
1276  * all writes to complete and then proceed to the next stage.
1277  *
1278  * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked
1279  * but internal fs threads can still modify the filesystem (although they
1280  * should not dirty new pages or inodes), writeback can run etc. After waiting
1281  * for all running page faults we sync the filesystem which will clean all
1282  * dirty pages and inodes (no new dirty pages or inodes can be created when
1283  * sync is running).
1284  *
1285  * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs
1286  * modification are blocked (e.g. XFS preallocation truncation on inode
1287  * reclaim). This is usually implemented by blocking new transactions for
1288  * filesystems that have them and need this additional guard. After all
1289  * internal writers are finished we call ->freeze_fs() to finish filesystem
1290  * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is
1291  * mostly auxiliary for filesystems to verify they do not modify frozen fs.
1292  *
1293  * sb->s_writers.frozen is protected by sb->s_umount.
1294  */
1295 int freeze_super(struct super_block *sb)
1296 {
1297 	int ret;
1298 
1299 	atomic_inc(&sb->s_active);
1300 	down_write(&sb->s_umount);
1301 	if (sb->s_writers.frozen != SB_UNFROZEN) {
1302 		deactivate_locked_super(sb);
1303 		return -EBUSY;
1304 	}
1305 
1306 	if (!(sb->s_flags & MS_BORN)) {
1307 		up_write(&sb->s_umount);
1308 		return 0;	/* sic - it's "nothing to do" */
1309 	}
1310 
1311 	if (sb->s_flags & MS_RDONLY) {
1312 		/* Nothing to do really... */
1313 		sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1314 		up_write(&sb->s_umount);
1315 		return 0;
1316 	}
1317 
1318 	/* From now on, no new normal writers can start */
1319 	sb->s_writers.frozen = SB_FREEZE_WRITE;
1320 	smp_wmb();
1321 
1322 	/* Release s_umount to preserve sb_start_write -> s_umount ordering */
1323 	up_write(&sb->s_umount);
1324 
1325 	sb_wait_write(sb, SB_FREEZE_WRITE);
1326 
1327 	/* Now we go and block page faults... */
1328 	down_write(&sb->s_umount);
1329 	sb->s_writers.frozen = SB_FREEZE_PAGEFAULT;
1330 	smp_wmb();
1331 
1332 	sb_wait_write(sb, SB_FREEZE_PAGEFAULT);
1333 
1334 	/* All writers are done so after syncing there won't be dirty data */
1335 	sync_filesystem(sb);
1336 
1337 	/* Now wait for internal filesystem counter */
1338 	sb->s_writers.frozen = SB_FREEZE_FS;
1339 	smp_wmb();
1340 	sb_wait_write(sb, SB_FREEZE_FS);
1341 
1342 	if (sb->s_op->freeze_fs) {
1343 		ret = sb->s_op->freeze_fs(sb);
1344 		if (ret) {
1345 			printk(KERN_ERR
1346 				"VFS:Filesystem freeze failed\n");
1347 			sb->s_writers.frozen = SB_UNFROZEN;
1348 			smp_wmb();
1349 			wake_up(&sb->s_writers.wait_unfrozen);
1350 			deactivate_locked_super(sb);
1351 			return ret;
1352 		}
1353 	}
1354 	/*
1355 	 * This is just for debugging purposes so that fs can warn if it
1356 	 * sees write activity when frozen is set to SB_FREEZE_COMPLETE.
1357 	 */
1358 	sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1359 	up_write(&sb->s_umount);
1360 	return 0;
1361 }
1362 EXPORT_SYMBOL(freeze_super);
1363 
1364 /**
1365  * thaw_super -- unlock filesystem
1366  * @sb: the super to thaw
1367  *
1368  * Unlocks the filesystem and marks it writeable again after freeze_super().
1369  */
1370 int thaw_super(struct super_block *sb)
1371 {
1372 	int error;
1373 
1374 	down_write(&sb->s_umount);
1375 	if (sb->s_writers.frozen == SB_UNFROZEN) {
1376 		up_write(&sb->s_umount);
1377 		return -EINVAL;
1378 	}
1379 
1380 	if (sb->s_flags & MS_RDONLY)
1381 		goto out;
1382 
1383 	if (sb->s_op->unfreeze_fs) {
1384 		error = sb->s_op->unfreeze_fs(sb);
1385 		if (error) {
1386 			printk(KERN_ERR
1387 				"VFS:Filesystem thaw failed\n");
1388 			up_write(&sb->s_umount);
1389 			return error;
1390 		}
1391 	}
1392 
1393 out:
1394 	sb->s_writers.frozen = SB_UNFROZEN;
1395 	smp_wmb();
1396 	wake_up(&sb->s_writers.wait_unfrozen);
1397 	deactivate_locked_super(sb);
1398 
1399 	return 0;
1400 }
1401 EXPORT_SYMBOL(thaw_super);
1402