1 /* 2 * "splice": joining two ropes together by interweaving their strands. 3 * 4 * This is the "extended pipe" functionality, where a pipe is used as 5 * an arbitrary in-memory buffer. Think of a pipe as a small kernel 6 * buffer that you can use to transfer data from one end to the other. 7 * 8 * The traditional unix read/write is extended with a "splice()" operation 9 * that transfers data buffers to or from a pipe buffer. 10 * 11 * Named by Larry McVoy, original implementation from Linus, extended by 12 * Jens to support splicing to files, network, direct splicing, etc and 13 * fixing lots of bugs. 14 * 15 * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk> 16 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org> 17 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu> 18 * 19 */ 20 #include <linux/fs.h> 21 #include <linux/file.h> 22 #include <linux/pagemap.h> 23 #include <linux/splice.h> 24 #include <linux/mm_inline.h> 25 #include <linux/swap.h> 26 #include <linux/writeback.h> 27 #include <linux/buffer_head.h> 28 #include <linux/module.h> 29 #include <linux/syscalls.h> 30 #include <linux/uio.h> 31 #include <linux/security.h> 32 33 /* 34 * Attempt to steal a page from a pipe buffer. This should perhaps go into 35 * a vm helper function, it's already simplified quite a bit by the 36 * addition of remove_mapping(). If success is returned, the caller may 37 * attempt to reuse this page for another destination. 38 */ 39 static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe, 40 struct pipe_buffer *buf) 41 { 42 struct page *page = buf->page; 43 struct address_space *mapping; 44 45 lock_page(page); 46 47 mapping = page_mapping(page); 48 if (mapping) { 49 WARN_ON(!PageUptodate(page)); 50 51 /* 52 * At least for ext2 with nobh option, we need to wait on 53 * writeback completing on this page, since we'll remove it 54 * from the pagecache. Otherwise truncate wont wait on the 55 * page, allowing the disk blocks to be reused by someone else 56 * before we actually wrote our data to them. fs corruption 57 * ensues. 58 */ 59 wait_on_page_writeback(page); 60 61 if (PagePrivate(page)) 62 try_to_release_page(page, GFP_KERNEL); 63 64 /* 65 * If we succeeded in removing the mapping, set LRU flag 66 * and return good. 67 */ 68 if (remove_mapping(mapping, page)) { 69 buf->flags |= PIPE_BUF_FLAG_LRU; 70 return 0; 71 } 72 } 73 74 /* 75 * Raced with truncate or failed to remove page from current 76 * address space, unlock and return failure. 77 */ 78 unlock_page(page); 79 return 1; 80 } 81 82 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe, 83 struct pipe_buffer *buf) 84 { 85 page_cache_release(buf->page); 86 buf->flags &= ~PIPE_BUF_FLAG_LRU; 87 } 88 89 /* 90 * Check whether the contents of buf is OK to access. Since the content 91 * is a page cache page, IO may be in flight. 92 */ 93 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe, 94 struct pipe_buffer *buf) 95 { 96 struct page *page = buf->page; 97 int err; 98 99 if (!PageUptodate(page)) { 100 lock_page(page); 101 102 /* 103 * Page got truncated/unhashed. This will cause a 0-byte 104 * splice, if this is the first page. 105 */ 106 if (!page->mapping) { 107 err = -ENODATA; 108 goto error; 109 } 110 111 /* 112 * Uh oh, read-error from disk. 113 */ 114 if (!PageUptodate(page)) { 115 err = -EIO; 116 goto error; 117 } 118 119 /* 120 * Page is ok afterall, we are done. 121 */ 122 unlock_page(page); 123 } 124 125 return 0; 126 error: 127 unlock_page(page); 128 return err; 129 } 130 131 static const struct pipe_buf_operations page_cache_pipe_buf_ops = { 132 .can_merge = 0, 133 .map = generic_pipe_buf_map, 134 .unmap = generic_pipe_buf_unmap, 135 .confirm = page_cache_pipe_buf_confirm, 136 .release = page_cache_pipe_buf_release, 137 .steal = page_cache_pipe_buf_steal, 138 .get = generic_pipe_buf_get, 139 }; 140 141 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe, 142 struct pipe_buffer *buf) 143 { 144 if (!(buf->flags & PIPE_BUF_FLAG_GIFT)) 145 return 1; 146 147 buf->flags |= PIPE_BUF_FLAG_LRU; 148 return generic_pipe_buf_steal(pipe, buf); 149 } 150 151 static const struct pipe_buf_operations user_page_pipe_buf_ops = { 152 .can_merge = 0, 153 .map = generic_pipe_buf_map, 154 .unmap = generic_pipe_buf_unmap, 155 .confirm = generic_pipe_buf_confirm, 156 .release = page_cache_pipe_buf_release, 157 .steal = user_page_pipe_buf_steal, 158 .get = generic_pipe_buf_get, 159 }; 160 161 /** 162 * splice_to_pipe - fill passed data into a pipe 163 * @pipe: pipe to fill 164 * @spd: data to fill 165 * 166 * Description: 167 * @spd contains a map of pages and len/offset tuples, along with 168 * the struct pipe_buf_operations associated with these pages. This 169 * function will link that data to the pipe. 170 * 171 */ 172 ssize_t splice_to_pipe(struct pipe_inode_info *pipe, 173 struct splice_pipe_desc *spd) 174 { 175 unsigned int spd_pages = spd->nr_pages; 176 int ret, do_wakeup, page_nr; 177 178 ret = 0; 179 do_wakeup = 0; 180 page_nr = 0; 181 182 if (pipe->inode) 183 mutex_lock(&pipe->inode->i_mutex); 184 185 for (;;) { 186 if (!pipe->readers) { 187 send_sig(SIGPIPE, current, 0); 188 if (!ret) 189 ret = -EPIPE; 190 break; 191 } 192 193 if (pipe->nrbufs < PIPE_BUFFERS) { 194 int newbuf = (pipe->curbuf + pipe->nrbufs) & (PIPE_BUFFERS - 1); 195 struct pipe_buffer *buf = pipe->bufs + newbuf; 196 197 buf->page = spd->pages[page_nr]; 198 buf->offset = spd->partial[page_nr].offset; 199 buf->len = spd->partial[page_nr].len; 200 buf->private = spd->partial[page_nr].private; 201 buf->ops = spd->ops; 202 if (spd->flags & SPLICE_F_GIFT) 203 buf->flags |= PIPE_BUF_FLAG_GIFT; 204 205 pipe->nrbufs++; 206 page_nr++; 207 ret += buf->len; 208 209 if (pipe->inode) 210 do_wakeup = 1; 211 212 if (!--spd->nr_pages) 213 break; 214 if (pipe->nrbufs < PIPE_BUFFERS) 215 continue; 216 217 break; 218 } 219 220 if (spd->flags & SPLICE_F_NONBLOCK) { 221 if (!ret) 222 ret = -EAGAIN; 223 break; 224 } 225 226 if (signal_pending(current)) { 227 if (!ret) 228 ret = -ERESTARTSYS; 229 break; 230 } 231 232 if (do_wakeup) { 233 smp_mb(); 234 if (waitqueue_active(&pipe->wait)) 235 wake_up_interruptible_sync(&pipe->wait); 236 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); 237 do_wakeup = 0; 238 } 239 240 pipe->waiting_writers++; 241 pipe_wait(pipe); 242 pipe->waiting_writers--; 243 } 244 245 if (pipe->inode) { 246 mutex_unlock(&pipe->inode->i_mutex); 247 248 if (do_wakeup) { 249 smp_mb(); 250 if (waitqueue_active(&pipe->wait)) 251 wake_up_interruptible(&pipe->wait); 252 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); 253 } 254 } 255 256 while (page_nr < spd_pages) 257 page_cache_release(spd->pages[page_nr++]); 258 259 return ret; 260 } 261 262 static int 263 __generic_file_splice_read(struct file *in, loff_t *ppos, 264 struct pipe_inode_info *pipe, size_t len, 265 unsigned int flags) 266 { 267 struct address_space *mapping = in->f_mapping; 268 unsigned int loff, nr_pages, req_pages; 269 struct page *pages[PIPE_BUFFERS]; 270 struct partial_page partial[PIPE_BUFFERS]; 271 struct page *page; 272 pgoff_t index, end_index; 273 loff_t isize; 274 int error, page_nr; 275 struct splice_pipe_desc spd = { 276 .pages = pages, 277 .partial = partial, 278 .flags = flags, 279 .ops = &page_cache_pipe_buf_ops, 280 }; 281 282 index = *ppos >> PAGE_CACHE_SHIFT; 283 loff = *ppos & ~PAGE_CACHE_MASK; 284 req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 285 nr_pages = min(req_pages, (unsigned)PIPE_BUFFERS); 286 287 /* 288 * Lookup the (hopefully) full range of pages we need. 289 */ 290 spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, pages); 291 index += spd.nr_pages; 292 293 /* 294 * If find_get_pages_contig() returned fewer pages than we needed, 295 * readahead/allocate the rest and fill in the holes. 296 */ 297 if (spd.nr_pages < nr_pages) 298 page_cache_sync_readahead(mapping, &in->f_ra, in, 299 index, req_pages - spd.nr_pages); 300 301 error = 0; 302 while (spd.nr_pages < nr_pages) { 303 /* 304 * Page could be there, find_get_pages_contig() breaks on 305 * the first hole. 306 */ 307 page = find_get_page(mapping, index); 308 if (!page) { 309 /* 310 * page didn't exist, allocate one. 311 */ 312 page = page_cache_alloc_cold(mapping); 313 if (!page) 314 break; 315 316 error = add_to_page_cache_lru(page, mapping, index, 317 GFP_KERNEL); 318 if (unlikely(error)) { 319 page_cache_release(page); 320 if (error == -EEXIST) 321 continue; 322 break; 323 } 324 /* 325 * add_to_page_cache() locks the page, unlock it 326 * to avoid convoluting the logic below even more. 327 */ 328 unlock_page(page); 329 } 330 331 pages[spd.nr_pages++] = page; 332 index++; 333 } 334 335 /* 336 * Now loop over the map and see if we need to start IO on any 337 * pages, fill in the partial map, etc. 338 */ 339 index = *ppos >> PAGE_CACHE_SHIFT; 340 nr_pages = spd.nr_pages; 341 spd.nr_pages = 0; 342 for (page_nr = 0; page_nr < nr_pages; page_nr++) { 343 unsigned int this_len; 344 345 if (!len) 346 break; 347 348 /* 349 * this_len is the max we'll use from this page 350 */ 351 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff); 352 page = pages[page_nr]; 353 354 if (PageReadahead(page)) 355 page_cache_async_readahead(mapping, &in->f_ra, in, 356 page, index, req_pages - page_nr); 357 358 /* 359 * If the page isn't uptodate, we may need to start io on it 360 */ 361 if (!PageUptodate(page)) { 362 /* 363 * If in nonblock mode then dont block on waiting 364 * for an in-flight io page 365 */ 366 if (flags & SPLICE_F_NONBLOCK) { 367 if (TestSetPageLocked(page)) 368 break; 369 } else 370 lock_page(page); 371 372 /* 373 * page was truncated, stop here. if this isn't the 374 * first page, we'll just complete what we already 375 * added 376 */ 377 if (!page->mapping) { 378 unlock_page(page); 379 break; 380 } 381 /* 382 * page was already under io and is now done, great 383 */ 384 if (PageUptodate(page)) { 385 unlock_page(page); 386 goto fill_it; 387 } 388 389 /* 390 * need to read in the page 391 */ 392 error = mapping->a_ops->readpage(in, page); 393 if (unlikely(error)) { 394 /* 395 * We really should re-lookup the page here, 396 * but it complicates things a lot. Instead 397 * lets just do what we already stored, and 398 * we'll get it the next time we are called. 399 */ 400 if (error == AOP_TRUNCATED_PAGE) 401 error = 0; 402 403 break; 404 } 405 } 406 fill_it: 407 /* 408 * i_size must be checked after PageUptodate. 409 */ 410 isize = i_size_read(mapping->host); 411 end_index = (isize - 1) >> PAGE_CACHE_SHIFT; 412 if (unlikely(!isize || index > end_index)) 413 break; 414 415 /* 416 * if this is the last page, see if we need to shrink 417 * the length and stop 418 */ 419 if (end_index == index) { 420 unsigned int plen; 421 422 /* 423 * max good bytes in this page 424 */ 425 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1; 426 if (plen <= loff) 427 break; 428 429 /* 430 * force quit after adding this page 431 */ 432 this_len = min(this_len, plen - loff); 433 len = this_len; 434 } 435 436 partial[page_nr].offset = loff; 437 partial[page_nr].len = this_len; 438 len -= this_len; 439 loff = 0; 440 spd.nr_pages++; 441 index++; 442 } 443 444 /* 445 * Release any pages at the end, if we quit early. 'page_nr' is how far 446 * we got, 'nr_pages' is how many pages are in the map. 447 */ 448 while (page_nr < nr_pages) 449 page_cache_release(pages[page_nr++]); 450 in->f_ra.prev_pos = (loff_t)index << PAGE_CACHE_SHIFT; 451 452 if (spd.nr_pages) 453 return splice_to_pipe(pipe, &spd); 454 455 return error; 456 } 457 458 /** 459 * generic_file_splice_read - splice data from file to a pipe 460 * @in: file to splice from 461 * @ppos: position in @in 462 * @pipe: pipe to splice to 463 * @len: number of bytes to splice 464 * @flags: splice modifier flags 465 * 466 * Description: 467 * Will read pages from given file and fill them into a pipe. Can be 468 * used as long as the address_space operations for the source implements 469 * a readpage() hook. 470 * 471 */ 472 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos, 473 struct pipe_inode_info *pipe, size_t len, 474 unsigned int flags) 475 { 476 ssize_t spliced; 477 int ret; 478 loff_t isize, left; 479 480 isize = i_size_read(in->f_mapping->host); 481 if (unlikely(*ppos >= isize)) 482 return 0; 483 484 left = isize - *ppos; 485 if (unlikely(left < len)) 486 len = left; 487 488 ret = 0; 489 spliced = 0; 490 while (len && !spliced) { 491 ret = __generic_file_splice_read(in, ppos, pipe, len, flags); 492 493 if (ret < 0) 494 break; 495 else if (!ret) { 496 if (spliced) 497 break; 498 if (flags & SPLICE_F_NONBLOCK) { 499 ret = -EAGAIN; 500 break; 501 } 502 } 503 504 *ppos += ret; 505 len -= ret; 506 spliced += ret; 507 } 508 509 if (spliced) 510 return spliced; 511 512 return ret; 513 } 514 515 EXPORT_SYMBOL(generic_file_splice_read); 516 517 /* 518 * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos' 519 * using sendpage(). Return the number of bytes sent. 520 */ 521 static int pipe_to_sendpage(struct pipe_inode_info *pipe, 522 struct pipe_buffer *buf, struct splice_desc *sd) 523 { 524 struct file *file = sd->u.file; 525 loff_t pos = sd->pos; 526 int ret, more; 527 528 ret = buf->ops->confirm(pipe, buf); 529 if (!ret) { 530 more = (sd->flags & SPLICE_F_MORE) || sd->len < sd->total_len; 531 532 ret = file->f_op->sendpage(file, buf->page, buf->offset, 533 sd->len, &pos, more); 534 } 535 536 return ret; 537 } 538 539 /* 540 * This is a little more tricky than the file -> pipe splicing. There are 541 * basically three cases: 542 * 543 * - Destination page already exists in the address space and there 544 * are users of it. For that case we have no other option that 545 * copying the data. Tough luck. 546 * - Destination page already exists in the address space, but there 547 * are no users of it. Make sure it's uptodate, then drop it. Fall 548 * through to last case. 549 * - Destination page does not exist, we can add the pipe page to 550 * the page cache and avoid the copy. 551 * 552 * If asked to move pages to the output file (SPLICE_F_MOVE is set in 553 * sd->flags), we attempt to migrate pages from the pipe to the output 554 * file address space page cache. This is possible if no one else has 555 * the pipe page referenced outside of the pipe and page cache. If 556 * SPLICE_F_MOVE isn't set, or we cannot move the page, we simply create 557 * a new page in the output file page cache and fill/dirty that. 558 */ 559 static int pipe_to_file(struct pipe_inode_info *pipe, struct pipe_buffer *buf, 560 struct splice_desc *sd) 561 { 562 struct file *file = sd->u.file; 563 struct address_space *mapping = file->f_mapping; 564 unsigned int offset, this_len; 565 struct page *page; 566 void *fsdata; 567 int ret; 568 569 /* 570 * make sure the data in this buffer is uptodate 571 */ 572 ret = buf->ops->confirm(pipe, buf); 573 if (unlikely(ret)) 574 return ret; 575 576 offset = sd->pos & ~PAGE_CACHE_MASK; 577 578 this_len = sd->len; 579 if (this_len + offset > PAGE_CACHE_SIZE) 580 this_len = PAGE_CACHE_SIZE - offset; 581 582 ret = pagecache_write_begin(file, mapping, sd->pos, this_len, 583 AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata); 584 if (unlikely(ret)) 585 goto out; 586 587 if (buf->page != page) { 588 /* 589 * Careful, ->map() uses KM_USER0! 590 */ 591 char *src = buf->ops->map(pipe, buf, 1); 592 char *dst = kmap_atomic(page, KM_USER1); 593 594 memcpy(dst + offset, src + buf->offset, this_len); 595 flush_dcache_page(page); 596 kunmap_atomic(dst, KM_USER1); 597 buf->ops->unmap(pipe, buf, src); 598 } 599 ret = pagecache_write_end(file, mapping, sd->pos, this_len, this_len, 600 page, fsdata); 601 out: 602 return ret; 603 } 604 605 /** 606 * __splice_from_pipe - splice data from a pipe to given actor 607 * @pipe: pipe to splice from 608 * @sd: information to @actor 609 * @actor: handler that splices the data 610 * 611 * Description: 612 * This function does little more than loop over the pipe and call 613 * @actor to do the actual moving of a single struct pipe_buffer to 614 * the desired destination. See pipe_to_file, pipe_to_sendpage, or 615 * pipe_to_user. 616 * 617 */ 618 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd, 619 splice_actor *actor) 620 { 621 int ret, do_wakeup, err; 622 623 ret = 0; 624 do_wakeup = 0; 625 626 for (;;) { 627 if (pipe->nrbufs) { 628 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf; 629 const struct pipe_buf_operations *ops = buf->ops; 630 631 sd->len = buf->len; 632 if (sd->len > sd->total_len) 633 sd->len = sd->total_len; 634 635 err = actor(pipe, buf, sd); 636 if (err <= 0) { 637 if (!ret && err != -ENODATA) 638 ret = err; 639 640 break; 641 } 642 643 ret += err; 644 buf->offset += err; 645 buf->len -= err; 646 647 sd->len -= err; 648 sd->pos += err; 649 sd->total_len -= err; 650 if (sd->len) 651 continue; 652 653 if (!buf->len) { 654 buf->ops = NULL; 655 ops->release(pipe, buf); 656 pipe->curbuf = (pipe->curbuf + 1) & (PIPE_BUFFERS - 1); 657 pipe->nrbufs--; 658 if (pipe->inode) 659 do_wakeup = 1; 660 } 661 662 if (!sd->total_len) 663 break; 664 } 665 666 if (pipe->nrbufs) 667 continue; 668 if (!pipe->writers) 669 break; 670 if (!pipe->waiting_writers) { 671 if (ret) 672 break; 673 } 674 675 if (sd->flags & SPLICE_F_NONBLOCK) { 676 if (!ret) 677 ret = -EAGAIN; 678 break; 679 } 680 681 if (signal_pending(current)) { 682 if (!ret) 683 ret = -ERESTARTSYS; 684 break; 685 } 686 687 if (do_wakeup) { 688 smp_mb(); 689 if (waitqueue_active(&pipe->wait)) 690 wake_up_interruptible_sync(&pipe->wait); 691 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT); 692 do_wakeup = 0; 693 } 694 695 pipe_wait(pipe); 696 } 697 698 if (do_wakeup) { 699 smp_mb(); 700 if (waitqueue_active(&pipe->wait)) 701 wake_up_interruptible(&pipe->wait); 702 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT); 703 } 704 705 return ret; 706 } 707 EXPORT_SYMBOL(__splice_from_pipe); 708 709 /** 710 * splice_from_pipe - splice data from a pipe to a file 711 * @pipe: pipe to splice from 712 * @out: file to splice to 713 * @ppos: position in @out 714 * @len: how many bytes to splice 715 * @flags: splice modifier flags 716 * @actor: handler that splices the data 717 * 718 * Description: 719 * See __splice_from_pipe. This function locks the input and output inodes, 720 * otherwise it's identical to __splice_from_pipe(). 721 * 722 */ 723 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out, 724 loff_t *ppos, size_t len, unsigned int flags, 725 splice_actor *actor) 726 { 727 ssize_t ret; 728 struct inode *inode = out->f_mapping->host; 729 struct splice_desc sd = { 730 .total_len = len, 731 .flags = flags, 732 .pos = *ppos, 733 .u.file = out, 734 }; 735 736 /* 737 * The actor worker might be calling ->prepare_write and 738 * ->commit_write. Most of the time, these expect i_mutex to 739 * be held. Since this may result in an ABBA deadlock with 740 * pipe->inode, we have to order lock acquiry here. 741 */ 742 inode_double_lock(inode, pipe->inode); 743 ret = __splice_from_pipe(pipe, &sd, actor); 744 inode_double_unlock(inode, pipe->inode); 745 746 return ret; 747 } 748 749 /** 750 * generic_file_splice_write_nolock - generic_file_splice_write without mutexes 751 * @pipe: pipe info 752 * @out: file to write to 753 * @ppos: position in @out 754 * @len: number of bytes to splice 755 * @flags: splice modifier flags 756 * 757 * Description: 758 * Will either move or copy pages (determined by @flags options) from 759 * the given pipe inode to the given file. The caller is responsible 760 * for acquiring i_mutex on both inodes. 761 * 762 */ 763 ssize_t 764 generic_file_splice_write_nolock(struct pipe_inode_info *pipe, struct file *out, 765 loff_t *ppos, size_t len, unsigned int flags) 766 { 767 struct address_space *mapping = out->f_mapping; 768 struct inode *inode = mapping->host; 769 struct splice_desc sd = { 770 .total_len = len, 771 .flags = flags, 772 .pos = *ppos, 773 .u.file = out, 774 }; 775 ssize_t ret; 776 int err; 777 778 err = remove_suid(out->f_path.dentry); 779 if (unlikely(err)) 780 return err; 781 782 ret = __splice_from_pipe(pipe, &sd, pipe_to_file); 783 if (ret > 0) { 784 unsigned long nr_pages; 785 786 *ppos += ret; 787 nr_pages = (ret + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 788 789 /* 790 * If file or inode is SYNC and we actually wrote some data, 791 * sync it. 792 */ 793 if (unlikely((out->f_flags & O_SYNC) || IS_SYNC(inode))) { 794 err = generic_osync_inode(inode, mapping, 795 OSYNC_METADATA|OSYNC_DATA); 796 797 if (err) 798 ret = err; 799 } 800 balance_dirty_pages_ratelimited_nr(mapping, nr_pages); 801 } 802 803 return ret; 804 } 805 806 EXPORT_SYMBOL(generic_file_splice_write_nolock); 807 808 /** 809 * generic_file_splice_write - splice data from a pipe to a file 810 * @pipe: pipe info 811 * @out: file to write to 812 * @ppos: position in @out 813 * @len: number of bytes to splice 814 * @flags: splice modifier flags 815 * 816 * Description: 817 * Will either move or copy pages (determined by @flags options) from 818 * the given pipe inode to the given file. 819 * 820 */ 821 ssize_t 822 generic_file_splice_write(struct pipe_inode_info *pipe, struct file *out, 823 loff_t *ppos, size_t len, unsigned int flags) 824 { 825 struct address_space *mapping = out->f_mapping; 826 struct inode *inode = mapping->host; 827 ssize_t ret; 828 int err; 829 830 err = should_remove_suid(out->f_path.dentry); 831 if (unlikely(err)) { 832 mutex_lock(&inode->i_mutex); 833 err = __remove_suid(out->f_path.dentry, err); 834 mutex_unlock(&inode->i_mutex); 835 if (err) 836 return err; 837 } 838 839 ret = splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_file); 840 if (ret > 0) { 841 unsigned long nr_pages; 842 843 *ppos += ret; 844 nr_pages = (ret + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 845 846 /* 847 * If file or inode is SYNC and we actually wrote some data, 848 * sync it. 849 */ 850 if (unlikely((out->f_flags & O_SYNC) || IS_SYNC(inode))) { 851 mutex_lock(&inode->i_mutex); 852 err = generic_osync_inode(inode, mapping, 853 OSYNC_METADATA|OSYNC_DATA); 854 mutex_unlock(&inode->i_mutex); 855 856 if (err) 857 ret = err; 858 } 859 balance_dirty_pages_ratelimited_nr(mapping, nr_pages); 860 } 861 862 return ret; 863 } 864 865 EXPORT_SYMBOL(generic_file_splice_write); 866 867 /** 868 * generic_splice_sendpage - splice data from a pipe to a socket 869 * @pipe: pipe to splice from 870 * @out: socket to write to 871 * @ppos: position in @out 872 * @len: number of bytes to splice 873 * @flags: splice modifier flags 874 * 875 * Description: 876 * Will send @len bytes from the pipe to a network socket. No data copying 877 * is involved. 878 * 879 */ 880 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out, 881 loff_t *ppos, size_t len, unsigned int flags) 882 { 883 return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage); 884 } 885 886 EXPORT_SYMBOL(generic_splice_sendpage); 887 888 /* 889 * Attempt to initiate a splice from pipe to file. 890 */ 891 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out, 892 loff_t *ppos, size_t len, unsigned int flags) 893 { 894 int ret; 895 896 if (unlikely(!out->f_op || !out->f_op->splice_write)) 897 return -EINVAL; 898 899 if (unlikely(!(out->f_mode & FMODE_WRITE))) 900 return -EBADF; 901 902 ret = rw_verify_area(WRITE, out, ppos, len); 903 if (unlikely(ret < 0)) 904 return ret; 905 906 ret = security_file_permission(out, MAY_WRITE); 907 if (unlikely(ret < 0)) 908 return ret; 909 910 return out->f_op->splice_write(pipe, out, ppos, len, flags); 911 } 912 913 /* 914 * Attempt to initiate a splice from a file to a pipe. 915 */ 916 static long do_splice_to(struct file *in, loff_t *ppos, 917 struct pipe_inode_info *pipe, size_t len, 918 unsigned int flags) 919 { 920 int ret; 921 922 if (unlikely(!in->f_op || !in->f_op->splice_read)) 923 return -EINVAL; 924 925 if (unlikely(!(in->f_mode & FMODE_READ))) 926 return -EBADF; 927 928 ret = rw_verify_area(READ, in, ppos, len); 929 if (unlikely(ret < 0)) 930 return ret; 931 932 ret = security_file_permission(in, MAY_READ); 933 if (unlikely(ret < 0)) 934 return ret; 935 936 return in->f_op->splice_read(in, ppos, pipe, len, flags); 937 } 938 939 /** 940 * splice_direct_to_actor - splices data directly between two non-pipes 941 * @in: file to splice from 942 * @sd: actor information on where to splice to 943 * @actor: handles the data splicing 944 * 945 * Description: 946 * This is a special case helper to splice directly between two 947 * points, without requiring an explicit pipe. Internally an allocated 948 * pipe is cached in the process, and reused during the lifetime of 949 * that process. 950 * 951 */ 952 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd, 953 splice_direct_actor *actor) 954 { 955 struct pipe_inode_info *pipe; 956 long ret, bytes; 957 umode_t i_mode; 958 size_t len; 959 int i, flags; 960 961 /* 962 * We require the input being a regular file, as we don't want to 963 * randomly drop data for eg socket -> socket splicing. Use the 964 * piped splicing for that! 965 */ 966 i_mode = in->f_path.dentry->d_inode->i_mode; 967 if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode))) 968 return -EINVAL; 969 970 /* 971 * neither in nor out is a pipe, setup an internal pipe attached to 972 * 'out' and transfer the wanted data from 'in' to 'out' through that 973 */ 974 pipe = current->splice_pipe; 975 if (unlikely(!pipe)) { 976 pipe = alloc_pipe_info(NULL); 977 if (!pipe) 978 return -ENOMEM; 979 980 /* 981 * We don't have an immediate reader, but we'll read the stuff 982 * out of the pipe right after the splice_to_pipe(). So set 983 * PIPE_READERS appropriately. 984 */ 985 pipe->readers = 1; 986 987 current->splice_pipe = pipe; 988 } 989 990 /* 991 * Do the splice. 992 */ 993 ret = 0; 994 bytes = 0; 995 len = sd->total_len; 996 flags = sd->flags; 997 998 /* 999 * Don't block on output, we have to drain the direct pipe. 1000 */ 1001 sd->flags &= ~SPLICE_F_NONBLOCK; 1002 1003 while (len) { 1004 size_t read_len; 1005 loff_t pos = sd->pos; 1006 1007 ret = do_splice_to(in, &pos, pipe, len, flags); 1008 if (unlikely(ret <= 0)) 1009 goto out_release; 1010 1011 read_len = ret; 1012 sd->total_len = read_len; 1013 1014 /* 1015 * NOTE: nonblocking mode only applies to the input. We 1016 * must not do the output in nonblocking mode as then we 1017 * could get stuck data in the internal pipe: 1018 */ 1019 ret = actor(pipe, sd); 1020 if (unlikely(ret <= 0)) 1021 goto out_release; 1022 1023 bytes += ret; 1024 len -= ret; 1025 sd->pos = pos; 1026 1027 if (ret < read_len) 1028 goto out_release; 1029 } 1030 1031 pipe->nrbufs = pipe->curbuf = 0; 1032 return bytes; 1033 1034 out_release: 1035 /* 1036 * If we did an incomplete transfer we must release 1037 * the pipe buffers in question: 1038 */ 1039 for (i = 0; i < PIPE_BUFFERS; i++) { 1040 struct pipe_buffer *buf = pipe->bufs + i; 1041 1042 if (buf->ops) { 1043 buf->ops->release(pipe, buf); 1044 buf->ops = NULL; 1045 } 1046 } 1047 pipe->nrbufs = pipe->curbuf = 0; 1048 1049 /* 1050 * If we transferred some data, return the number of bytes: 1051 */ 1052 if (bytes > 0) 1053 return bytes; 1054 1055 return ret; 1056 1057 } 1058 EXPORT_SYMBOL(splice_direct_to_actor); 1059 1060 static int direct_splice_actor(struct pipe_inode_info *pipe, 1061 struct splice_desc *sd) 1062 { 1063 struct file *file = sd->u.file; 1064 1065 return do_splice_from(pipe, file, &sd->pos, sd->total_len, sd->flags); 1066 } 1067 1068 /** 1069 * do_splice_direct - splices data directly between two files 1070 * @in: file to splice from 1071 * @ppos: input file offset 1072 * @out: file to splice to 1073 * @len: number of bytes to splice 1074 * @flags: splice modifier flags 1075 * 1076 * Description: 1077 * For use by do_sendfile(). splice can easily emulate sendfile, but 1078 * doing it in the application would incur an extra system call 1079 * (splice in + splice out, as compared to just sendfile()). So this helper 1080 * can splice directly through a process-private pipe. 1081 * 1082 */ 1083 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out, 1084 size_t len, unsigned int flags) 1085 { 1086 struct splice_desc sd = { 1087 .len = len, 1088 .total_len = len, 1089 .flags = flags, 1090 .pos = *ppos, 1091 .u.file = out, 1092 }; 1093 long ret; 1094 1095 ret = splice_direct_to_actor(in, &sd, direct_splice_actor); 1096 if (ret > 0) 1097 *ppos += ret; 1098 1099 return ret; 1100 } 1101 1102 /* 1103 * After the inode slimming patch, i_pipe/i_bdev/i_cdev share the same 1104 * location, so checking ->i_pipe is not enough to verify that this is a 1105 * pipe. 1106 */ 1107 static inline struct pipe_inode_info *pipe_info(struct inode *inode) 1108 { 1109 if (S_ISFIFO(inode->i_mode)) 1110 return inode->i_pipe; 1111 1112 return NULL; 1113 } 1114 1115 /* 1116 * Determine where to splice to/from. 1117 */ 1118 static long do_splice(struct file *in, loff_t __user *off_in, 1119 struct file *out, loff_t __user *off_out, 1120 size_t len, unsigned int flags) 1121 { 1122 struct pipe_inode_info *pipe; 1123 loff_t offset, *off; 1124 long ret; 1125 1126 pipe = pipe_info(in->f_path.dentry->d_inode); 1127 if (pipe) { 1128 if (off_in) 1129 return -ESPIPE; 1130 if (off_out) { 1131 if (out->f_op->llseek == no_llseek) 1132 return -EINVAL; 1133 if (copy_from_user(&offset, off_out, sizeof(loff_t))) 1134 return -EFAULT; 1135 off = &offset; 1136 } else 1137 off = &out->f_pos; 1138 1139 ret = do_splice_from(pipe, out, off, len, flags); 1140 1141 if (off_out && copy_to_user(off_out, off, sizeof(loff_t))) 1142 ret = -EFAULT; 1143 1144 return ret; 1145 } 1146 1147 pipe = pipe_info(out->f_path.dentry->d_inode); 1148 if (pipe) { 1149 if (off_out) 1150 return -ESPIPE; 1151 if (off_in) { 1152 if (in->f_op->llseek == no_llseek) 1153 return -EINVAL; 1154 if (copy_from_user(&offset, off_in, sizeof(loff_t))) 1155 return -EFAULT; 1156 off = &offset; 1157 } else 1158 off = &in->f_pos; 1159 1160 ret = do_splice_to(in, off, pipe, len, flags); 1161 1162 if (off_in && copy_to_user(off_in, off, sizeof(loff_t))) 1163 ret = -EFAULT; 1164 1165 return ret; 1166 } 1167 1168 return -EINVAL; 1169 } 1170 1171 /* 1172 * Do a copy-from-user while holding the mmap_semaphore for reading, in a 1173 * manner safe from deadlocking with simultaneous mmap() (grabbing mmap_sem 1174 * for writing) and page faulting on the user memory pointed to by src. 1175 * This assumes that we will very rarely hit the partial != 0 path, or this 1176 * will not be a win. 1177 */ 1178 static int copy_from_user_mmap_sem(void *dst, const void __user *src, size_t n) 1179 { 1180 int partial; 1181 1182 pagefault_disable(); 1183 partial = __copy_from_user_inatomic(dst, src, n); 1184 pagefault_enable(); 1185 1186 /* 1187 * Didn't copy everything, drop the mmap_sem and do a faulting copy 1188 */ 1189 if (unlikely(partial)) { 1190 up_read(¤t->mm->mmap_sem); 1191 partial = copy_from_user(dst, src, n); 1192 down_read(¤t->mm->mmap_sem); 1193 } 1194 1195 return partial; 1196 } 1197 1198 /* 1199 * Map an iov into an array of pages and offset/length tupples. With the 1200 * partial_page structure, we can map several non-contiguous ranges into 1201 * our ones pages[] map instead of splitting that operation into pieces. 1202 * Could easily be exported as a generic helper for other users, in which 1203 * case one would probably want to add a 'max_nr_pages' parameter as well. 1204 */ 1205 static int get_iovec_page_array(const struct iovec __user *iov, 1206 unsigned int nr_vecs, struct page **pages, 1207 struct partial_page *partial, int aligned) 1208 { 1209 int buffers = 0, error = 0; 1210 1211 down_read(¤t->mm->mmap_sem); 1212 1213 while (nr_vecs) { 1214 unsigned long off, npages; 1215 struct iovec entry; 1216 void __user *base; 1217 size_t len; 1218 int i; 1219 1220 error = -EFAULT; 1221 if (copy_from_user_mmap_sem(&entry, iov, sizeof(entry))) 1222 break; 1223 1224 base = entry.iov_base; 1225 len = entry.iov_len; 1226 1227 /* 1228 * Sanity check this iovec. 0 read succeeds. 1229 */ 1230 error = 0; 1231 if (unlikely(!len)) 1232 break; 1233 error = -EFAULT; 1234 if (unlikely(!base)) 1235 break; 1236 1237 /* 1238 * Get this base offset and number of pages, then map 1239 * in the user pages. 1240 */ 1241 off = (unsigned long) base & ~PAGE_MASK; 1242 1243 /* 1244 * If asked for alignment, the offset must be zero and the 1245 * length a multiple of the PAGE_SIZE. 1246 */ 1247 error = -EINVAL; 1248 if (aligned && (off || len & ~PAGE_MASK)) 1249 break; 1250 1251 npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 1252 if (npages > PIPE_BUFFERS - buffers) 1253 npages = PIPE_BUFFERS - buffers; 1254 1255 error = get_user_pages(current, current->mm, 1256 (unsigned long) base, npages, 0, 0, 1257 &pages[buffers], NULL); 1258 1259 if (unlikely(error <= 0)) 1260 break; 1261 1262 /* 1263 * Fill this contiguous range into the partial page map. 1264 */ 1265 for (i = 0; i < error; i++) { 1266 const int plen = min_t(size_t, len, PAGE_SIZE - off); 1267 1268 partial[buffers].offset = off; 1269 partial[buffers].len = plen; 1270 1271 off = 0; 1272 len -= plen; 1273 buffers++; 1274 } 1275 1276 /* 1277 * We didn't complete this iov, stop here since it probably 1278 * means we have to move some of this into a pipe to 1279 * be able to continue. 1280 */ 1281 if (len) 1282 break; 1283 1284 /* 1285 * Don't continue if we mapped fewer pages than we asked for, 1286 * or if we mapped the max number of pages that we have 1287 * room for. 1288 */ 1289 if (error < npages || buffers == PIPE_BUFFERS) 1290 break; 1291 1292 nr_vecs--; 1293 iov++; 1294 } 1295 1296 up_read(¤t->mm->mmap_sem); 1297 1298 if (buffers) 1299 return buffers; 1300 1301 return error; 1302 } 1303 1304 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf, 1305 struct splice_desc *sd) 1306 { 1307 char *src; 1308 int ret; 1309 1310 ret = buf->ops->confirm(pipe, buf); 1311 if (unlikely(ret)) 1312 return ret; 1313 1314 /* 1315 * See if we can use the atomic maps, by prefaulting in the 1316 * pages and doing an atomic copy 1317 */ 1318 if (!fault_in_pages_writeable(sd->u.userptr, sd->len)) { 1319 src = buf->ops->map(pipe, buf, 1); 1320 ret = __copy_to_user_inatomic(sd->u.userptr, src + buf->offset, 1321 sd->len); 1322 buf->ops->unmap(pipe, buf, src); 1323 if (!ret) { 1324 ret = sd->len; 1325 goto out; 1326 } 1327 } 1328 1329 /* 1330 * No dice, use slow non-atomic map and copy 1331 */ 1332 src = buf->ops->map(pipe, buf, 0); 1333 1334 ret = sd->len; 1335 if (copy_to_user(sd->u.userptr, src + buf->offset, sd->len)) 1336 ret = -EFAULT; 1337 1338 out: 1339 if (ret > 0) 1340 sd->u.userptr += ret; 1341 buf->ops->unmap(pipe, buf, src); 1342 return ret; 1343 } 1344 1345 /* 1346 * For lack of a better implementation, implement vmsplice() to userspace 1347 * as a simple copy of the pipes pages to the user iov. 1348 */ 1349 static long vmsplice_to_user(struct file *file, const struct iovec __user *iov, 1350 unsigned long nr_segs, unsigned int flags) 1351 { 1352 struct pipe_inode_info *pipe; 1353 struct splice_desc sd; 1354 ssize_t size; 1355 int error; 1356 long ret; 1357 1358 pipe = pipe_info(file->f_path.dentry->d_inode); 1359 if (!pipe) 1360 return -EBADF; 1361 1362 if (pipe->inode) 1363 mutex_lock(&pipe->inode->i_mutex); 1364 1365 error = ret = 0; 1366 while (nr_segs) { 1367 void __user *base; 1368 size_t len; 1369 1370 /* 1371 * Get user address base and length for this iovec. 1372 */ 1373 error = get_user(base, &iov->iov_base); 1374 if (unlikely(error)) 1375 break; 1376 error = get_user(len, &iov->iov_len); 1377 if (unlikely(error)) 1378 break; 1379 1380 /* 1381 * Sanity check this iovec. 0 read succeeds. 1382 */ 1383 if (unlikely(!len)) 1384 break; 1385 if (unlikely(!base)) { 1386 error = -EFAULT; 1387 break; 1388 } 1389 1390 sd.len = 0; 1391 sd.total_len = len; 1392 sd.flags = flags; 1393 sd.u.userptr = base; 1394 sd.pos = 0; 1395 1396 size = __splice_from_pipe(pipe, &sd, pipe_to_user); 1397 if (size < 0) { 1398 if (!ret) 1399 ret = size; 1400 1401 break; 1402 } 1403 1404 ret += size; 1405 1406 if (size < len) 1407 break; 1408 1409 nr_segs--; 1410 iov++; 1411 } 1412 1413 if (pipe->inode) 1414 mutex_unlock(&pipe->inode->i_mutex); 1415 1416 if (!ret) 1417 ret = error; 1418 1419 return ret; 1420 } 1421 1422 /* 1423 * vmsplice splices a user address range into a pipe. It can be thought of 1424 * as splice-from-memory, where the regular splice is splice-from-file (or 1425 * to file). In both cases the output is a pipe, naturally. 1426 */ 1427 static long vmsplice_to_pipe(struct file *file, const struct iovec __user *iov, 1428 unsigned long nr_segs, unsigned int flags) 1429 { 1430 struct pipe_inode_info *pipe; 1431 struct page *pages[PIPE_BUFFERS]; 1432 struct partial_page partial[PIPE_BUFFERS]; 1433 struct splice_pipe_desc spd = { 1434 .pages = pages, 1435 .partial = partial, 1436 .flags = flags, 1437 .ops = &user_page_pipe_buf_ops, 1438 }; 1439 1440 pipe = pipe_info(file->f_path.dentry->d_inode); 1441 if (!pipe) 1442 return -EBADF; 1443 1444 spd.nr_pages = get_iovec_page_array(iov, nr_segs, pages, partial, 1445 flags & SPLICE_F_GIFT); 1446 if (spd.nr_pages <= 0) 1447 return spd.nr_pages; 1448 1449 return splice_to_pipe(pipe, &spd); 1450 } 1451 1452 /* 1453 * Note that vmsplice only really supports true splicing _from_ user memory 1454 * to a pipe, not the other way around. Splicing from user memory is a simple 1455 * operation that can be supported without any funky alignment restrictions 1456 * or nasty vm tricks. We simply map in the user memory and fill them into 1457 * a pipe. The reverse isn't quite as easy, though. There are two possible 1458 * solutions for that: 1459 * 1460 * - memcpy() the data internally, at which point we might as well just 1461 * do a regular read() on the buffer anyway. 1462 * - Lots of nasty vm tricks, that are neither fast nor flexible (it 1463 * has restriction limitations on both ends of the pipe). 1464 * 1465 * Currently we punt and implement it as a normal copy, see pipe_to_user(). 1466 * 1467 */ 1468 asmlinkage long sys_vmsplice(int fd, const struct iovec __user *iov, 1469 unsigned long nr_segs, unsigned int flags) 1470 { 1471 struct file *file; 1472 long error; 1473 int fput; 1474 1475 if (unlikely(nr_segs > UIO_MAXIOV)) 1476 return -EINVAL; 1477 else if (unlikely(!nr_segs)) 1478 return 0; 1479 1480 error = -EBADF; 1481 file = fget_light(fd, &fput); 1482 if (file) { 1483 if (file->f_mode & FMODE_WRITE) 1484 error = vmsplice_to_pipe(file, iov, nr_segs, flags); 1485 else if (file->f_mode & FMODE_READ) 1486 error = vmsplice_to_user(file, iov, nr_segs, flags); 1487 1488 fput_light(file, fput); 1489 } 1490 1491 return error; 1492 } 1493 1494 asmlinkage long sys_splice(int fd_in, loff_t __user *off_in, 1495 int fd_out, loff_t __user *off_out, 1496 size_t len, unsigned int flags) 1497 { 1498 long error; 1499 struct file *in, *out; 1500 int fput_in, fput_out; 1501 1502 if (unlikely(!len)) 1503 return 0; 1504 1505 error = -EBADF; 1506 in = fget_light(fd_in, &fput_in); 1507 if (in) { 1508 if (in->f_mode & FMODE_READ) { 1509 out = fget_light(fd_out, &fput_out); 1510 if (out) { 1511 if (out->f_mode & FMODE_WRITE) 1512 error = do_splice(in, off_in, 1513 out, off_out, 1514 len, flags); 1515 fput_light(out, fput_out); 1516 } 1517 } 1518 1519 fput_light(in, fput_in); 1520 } 1521 1522 return error; 1523 } 1524 1525 /* 1526 * Make sure there's data to read. Wait for input if we can, otherwise 1527 * return an appropriate error. 1528 */ 1529 static int link_ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags) 1530 { 1531 int ret; 1532 1533 /* 1534 * Check ->nrbufs without the inode lock first. This function 1535 * is speculative anyways, so missing one is ok. 1536 */ 1537 if (pipe->nrbufs) 1538 return 0; 1539 1540 ret = 0; 1541 mutex_lock(&pipe->inode->i_mutex); 1542 1543 while (!pipe->nrbufs) { 1544 if (signal_pending(current)) { 1545 ret = -ERESTARTSYS; 1546 break; 1547 } 1548 if (!pipe->writers) 1549 break; 1550 if (!pipe->waiting_writers) { 1551 if (flags & SPLICE_F_NONBLOCK) { 1552 ret = -EAGAIN; 1553 break; 1554 } 1555 } 1556 pipe_wait(pipe); 1557 } 1558 1559 mutex_unlock(&pipe->inode->i_mutex); 1560 return ret; 1561 } 1562 1563 /* 1564 * Make sure there's writeable room. Wait for room if we can, otherwise 1565 * return an appropriate error. 1566 */ 1567 static int link_opipe_prep(struct pipe_inode_info *pipe, unsigned int flags) 1568 { 1569 int ret; 1570 1571 /* 1572 * Check ->nrbufs without the inode lock first. This function 1573 * is speculative anyways, so missing one is ok. 1574 */ 1575 if (pipe->nrbufs < PIPE_BUFFERS) 1576 return 0; 1577 1578 ret = 0; 1579 mutex_lock(&pipe->inode->i_mutex); 1580 1581 while (pipe->nrbufs >= PIPE_BUFFERS) { 1582 if (!pipe->readers) { 1583 send_sig(SIGPIPE, current, 0); 1584 ret = -EPIPE; 1585 break; 1586 } 1587 if (flags & SPLICE_F_NONBLOCK) { 1588 ret = -EAGAIN; 1589 break; 1590 } 1591 if (signal_pending(current)) { 1592 ret = -ERESTARTSYS; 1593 break; 1594 } 1595 pipe->waiting_writers++; 1596 pipe_wait(pipe); 1597 pipe->waiting_writers--; 1598 } 1599 1600 mutex_unlock(&pipe->inode->i_mutex); 1601 return ret; 1602 } 1603 1604 /* 1605 * Link contents of ipipe to opipe. 1606 */ 1607 static int link_pipe(struct pipe_inode_info *ipipe, 1608 struct pipe_inode_info *opipe, 1609 size_t len, unsigned int flags) 1610 { 1611 struct pipe_buffer *ibuf, *obuf; 1612 int ret = 0, i = 0, nbuf; 1613 1614 /* 1615 * Potential ABBA deadlock, work around it by ordering lock 1616 * grabbing by inode address. Otherwise two different processes 1617 * could deadlock (one doing tee from A -> B, the other from B -> A). 1618 */ 1619 inode_double_lock(ipipe->inode, opipe->inode); 1620 1621 do { 1622 if (!opipe->readers) { 1623 send_sig(SIGPIPE, current, 0); 1624 if (!ret) 1625 ret = -EPIPE; 1626 break; 1627 } 1628 1629 /* 1630 * If we have iterated all input buffers or ran out of 1631 * output room, break. 1632 */ 1633 if (i >= ipipe->nrbufs || opipe->nrbufs >= PIPE_BUFFERS) 1634 break; 1635 1636 ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (PIPE_BUFFERS - 1)); 1637 nbuf = (opipe->curbuf + opipe->nrbufs) & (PIPE_BUFFERS - 1); 1638 1639 /* 1640 * Get a reference to this pipe buffer, 1641 * so we can copy the contents over. 1642 */ 1643 ibuf->ops->get(ipipe, ibuf); 1644 1645 obuf = opipe->bufs + nbuf; 1646 *obuf = *ibuf; 1647 1648 /* 1649 * Don't inherit the gift flag, we need to 1650 * prevent multiple steals of this page. 1651 */ 1652 obuf->flags &= ~PIPE_BUF_FLAG_GIFT; 1653 1654 if (obuf->len > len) 1655 obuf->len = len; 1656 1657 opipe->nrbufs++; 1658 ret += obuf->len; 1659 len -= obuf->len; 1660 i++; 1661 } while (len); 1662 1663 inode_double_unlock(ipipe->inode, opipe->inode); 1664 1665 /* 1666 * If we put data in the output pipe, wakeup any potential readers. 1667 */ 1668 if (ret > 0) { 1669 smp_mb(); 1670 if (waitqueue_active(&opipe->wait)) 1671 wake_up_interruptible(&opipe->wait); 1672 kill_fasync(&opipe->fasync_readers, SIGIO, POLL_IN); 1673 } 1674 1675 return ret; 1676 } 1677 1678 /* 1679 * This is a tee(1) implementation that works on pipes. It doesn't copy 1680 * any data, it simply references the 'in' pages on the 'out' pipe. 1681 * The 'flags' used are the SPLICE_F_* variants, currently the only 1682 * applicable one is SPLICE_F_NONBLOCK. 1683 */ 1684 static long do_tee(struct file *in, struct file *out, size_t len, 1685 unsigned int flags) 1686 { 1687 struct pipe_inode_info *ipipe = pipe_info(in->f_path.dentry->d_inode); 1688 struct pipe_inode_info *opipe = pipe_info(out->f_path.dentry->d_inode); 1689 int ret = -EINVAL; 1690 1691 /* 1692 * Duplicate the contents of ipipe to opipe without actually 1693 * copying the data. 1694 */ 1695 if (ipipe && opipe && ipipe != opipe) { 1696 /* 1697 * Keep going, unless we encounter an error. The ipipe/opipe 1698 * ordering doesn't really matter. 1699 */ 1700 ret = link_ipipe_prep(ipipe, flags); 1701 if (!ret) { 1702 ret = link_opipe_prep(opipe, flags); 1703 if (!ret) { 1704 ret = link_pipe(ipipe, opipe, len, flags); 1705 if (!ret && (flags & SPLICE_F_NONBLOCK)) 1706 ret = -EAGAIN; 1707 } 1708 } 1709 } 1710 1711 return ret; 1712 } 1713 1714 asmlinkage long sys_tee(int fdin, int fdout, size_t len, unsigned int flags) 1715 { 1716 struct file *in; 1717 int error, fput_in; 1718 1719 if (unlikely(!len)) 1720 return 0; 1721 1722 error = -EBADF; 1723 in = fget_light(fdin, &fput_in); 1724 if (in) { 1725 if (in->f_mode & FMODE_READ) { 1726 int fput_out; 1727 struct file *out = fget_light(fdout, &fput_out); 1728 1729 if (out) { 1730 if (out->f_mode & FMODE_WRITE) 1731 error = do_tee(in, out, len, flags); 1732 fput_light(out, fput_out); 1733 } 1734 } 1735 fput_light(in, fput_in); 1736 } 1737 1738 return error; 1739 } 1740