xref: /openbmc/linux/fs/splice.c (revision afddba49d18f346e5cc2938b6ed7c512db18ca68)
1 /*
2  * "splice": joining two ropes together by interweaving their strands.
3  *
4  * This is the "extended pipe" functionality, where a pipe is used as
5  * an arbitrary in-memory buffer. Think of a pipe as a small kernel
6  * buffer that you can use to transfer data from one end to the other.
7  *
8  * The traditional unix read/write is extended with a "splice()" operation
9  * that transfers data buffers to or from a pipe buffer.
10  *
11  * Named by Larry McVoy, original implementation from Linus, extended by
12  * Jens to support splicing to files, network, direct splicing, etc and
13  * fixing lots of bugs.
14  *
15  * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
16  * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
17  * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
18  *
19  */
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/pagemap.h>
23 #include <linux/splice.h>
24 #include <linux/mm_inline.h>
25 #include <linux/swap.h>
26 #include <linux/writeback.h>
27 #include <linux/buffer_head.h>
28 #include <linux/module.h>
29 #include <linux/syscalls.h>
30 #include <linux/uio.h>
31 #include <linux/security.h>
32 
33 /*
34  * Attempt to steal a page from a pipe buffer. This should perhaps go into
35  * a vm helper function, it's already simplified quite a bit by the
36  * addition of remove_mapping(). If success is returned, the caller may
37  * attempt to reuse this page for another destination.
38  */
39 static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe,
40 				     struct pipe_buffer *buf)
41 {
42 	struct page *page = buf->page;
43 	struct address_space *mapping;
44 
45 	lock_page(page);
46 
47 	mapping = page_mapping(page);
48 	if (mapping) {
49 		WARN_ON(!PageUptodate(page));
50 
51 		/*
52 		 * At least for ext2 with nobh option, we need to wait on
53 		 * writeback completing on this page, since we'll remove it
54 		 * from the pagecache.  Otherwise truncate wont wait on the
55 		 * page, allowing the disk blocks to be reused by someone else
56 		 * before we actually wrote our data to them. fs corruption
57 		 * ensues.
58 		 */
59 		wait_on_page_writeback(page);
60 
61 		if (PagePrivate(page))
62 			try_to_release_page(page, GFP_KERNEL);
63 
64 		/*
65 		 * If we succeeded in removing the mapping, set LRU flag
66 		 * and return good.
67 		 */
68 		if (remove_mapping(mapping, page)) {
69 			buf->flags |= PIPE_BUF_FLAG_LRU;
70 			return 0;
71 		}
72 	}
73 
74 	/*
75 	 * Raced with truncate or failed to remove page from current
76 	 * address space, unlock and return failure.
77 	 */
78 	unlock_page(page);
79 	return 1;
80 }
81 
82 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
83 					struct pipe_buffer *buf)
84 {
85 	page_cache_release(buf->page);
86 	buf->flags &= ~PIPE_BUF_FLAG_LRU;
87 }
88 
89 /*
90  * Check whether the contents of buf is OK to access. Since the content
91  * is a page cache page, IO may be in flight.
92  */
93 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
94 				       struct pipe_buffer *buf)
95 {
96 	struct page *page = buf->page;
97 	int err;
98 
99 	if (!PageUptodate(page)) {
100 		lock_page(page);
101 
102 		/*
103 		 * Page got truncated/unhashed. This will cause a 0-byte
104 		 * splice, if this is the first page.
105 		 */
106 		if (!page->mapping) {
107 			err = -ENODATA;
108 			goto error;
109 		}
110 
111 		/*
112 		 * Uh oh, read-error from disk.
113 		 */
114 		if (!PageUptodate(page)) {
115 			err = -EIO;
116 			goto error;
117 		}
118 
119 		/*
120 		 * Page is ok afterall, we are done.
121 		 */
122 		unlock_page(page);
123 	}
124 
125 	return 0;
126 error:
127 	unlock_page(page);
128 	return err;
129 }
130 
131 static const struct pipe_buf_operations page_cache_pipe_buf_ops = {
132 	.can_merge = 0,
133 	.map = generic_pipe_buf_map,
134 	.unmap = generic_pipe_buf_unmap,
135 	.confirm = page_cache_pipe_buf_confirm,
136 	.release = page_cache_pipe_buf_release,
137 	.steal = page_cache_pipe_buf_steal,
138 	.get = generic_pipe_buf_get,
139 };
140 
141 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe,
142 				    struct pipe_buffer *buf)
143 {
144 	if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
145 		return 1;
146 
147 	buf->flags |= PIPE_BUF_FLAG_LRU;
148 	return generic_pipe_buf_steal(pipe, buf);
149 }
150 
151 static const struct pipe_buf_operations user_page_pipe_buf_ops = {
152 	.can_merge = 0,
153 	.map = generic_pipe_buf_map,
154 	.unmap = generic_pipe_buf_unmap,
155 	.confirm = generic_pipe_buf_confirm,
156 	.release = page_cache_pipe_buf_release,
157 	.steal = user_page_pipe_buf_steal,
158 	.get = generic_pipe_buf_get,
159 };
160 
161 /**
162  * splice_to_pipe - fill passed data into a pipe
163  * @pipe:	pipe to fill
164  * @spd:	data to fill
165  *
166  * Description:
167  *    @spd contains a map of pages and len/offset tuples, along with
168  *    the struct pipe_buf_operations associated with these pages. This
169  *    function will link that data to the pipe.
170  *
171  */
172 ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
173 		       struct splice_pipe_desc *spd)
174 {
175 	unsigned int spd_pages = spd->nr_pages;
176 	int ret, do_wakeup, page_nr;
177 
178 	ret = 0;
179 	do_wakeup = 0;
180 	page_nr = 0;
181 
182 	if (pipe->inode)
183 		mutex_lock(&pipe->inode->i_mutex);
184 
185 	for (;;) {
186 		if (!pipe->readers) {
187 			send_sig(SIGPIPE, current, 0);
188 			if (!ret)
189 				ret = -EPIPE;
190 			break;
191 		}
192 
193 		if (pipe->nrbufs < PIPE_BUFFERS) {
194 			int newbuf = (pipe->curbuf + pipe->nrbufs) & (PIPE_BUFFERS - 1);
195 			struct pipe_buffer *buf = pipe->bufs + newbuf;
196 
197 			buf->page = spd->pages[page_nr];
198 			buf->offset = spd->partial[page_nr].offset;
199 			buf->len = spd->partial[page_nr].len;
200 			buf->private = spd->partial[page_nr].private;
201 			buf->ops = spd->ops;
202 			if (spd->flags & SPLICE_F_GIFT)
203 				buf->flags |= PIPE_BUF_FLAG_GIFT;
204 
205 			pipe->nrbufs++;
206 			page_nr++;
207 			ret += buf->len;
208 
209 			if (pipe->inode)
210 				do_wakeup = 1;
211 
212 			if (!--spd->nr_pages)
213 				break;
214 			if (pipe->nrbufs < PIPE_BUFFERS)
215 				continue;
216 
217 			break;
218 		}
219 
220 		if (spd->flags & SPLICE_F_NONBLOCK) {
221 			if (!ret)
222 				ret = -EAGAIN;
223 			break;
224 		}
225 
226 		if (signal_pending(current)) {
227 			if (!ret)
228 				ret = -ERESTARTSYS;
229 			break;
230 		}
231 
232 		if (do_wakeup) {
233 			smp_mb();
234 			if (waitqueue_active(&pipe->wait))
235 				wake_up_interruptible_sync(&pipe->wait);
236 			kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
237 			do_wakeup = 0;
238 		}
239 
240 		pipe->waiting_writers++;
241 		pipe_wait(pipe);
242 		pipe->waiting_writers--;
243 	}
244 
245 	if (pipe->inode) {
246 		mutex_unlock(&pipe->inode->i_mutex);
247 
248 		if (do_wakeup) {
249 			smp_mb();
250 			if (waitqueue_active(&pipe->wait))
251 				wake_up_interruptible(&pipe->wait);
252 			kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
253 		}
254 	}
255 
256 	while (page_nr < spd_pages)
257 		page_cache_release(spd->pages[page_nr++]);
258 
259 	return ret;
260 }
261 
262 static int
263 __generic_file_splice_read(struct file *in, loff_t *ppos,
264 			   struct pipe_inode_info *pipe, size_t len,
265 			   unsigned int flags)
266 {
267 	struct address_space *mapping = in->f_mapping;
268 	unsigned int loff, nr_pages, req_pages;
269 	struct page *pages[PIPE_BUFFERS];
270 	struct partial_page partial[PIPE_BUFFERS];
271 	struct page *page;
272 	pgoff_t index, end_index;
273 	loff_t isize;
274 	int error, page_nr;
275 	struct splice_pipe_desc spd = {
276 		.pages = pages,
277 		.partial = partial,
278 		.flags = flags,
279 		.ops = &page_cache_pipe_buf_ops,
280 	};
281 
282 	index = *ppos >> PAGE_CACHE_SHIFT;
283 	loff = *ppos & ~PAGE_CACHE_MASK;
284 	req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
285 	nr_pages = min(req_pages, (unsigned)PIPE_BUFFERS);
286 
287 	/*
288 	 * Lookup the (hopefully) full range of pages we need.
289 	 */
290 	spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, pages);
291 	index += spd.nr_pages;
292 
293 	/*
294 	 * If find_get_pages_contig() returned fewer pages than we needed,
295 	 * readahead/allocate the rest and fill in the holes.
296 	 */
297 	if (spd.nr_pages < nr_pages)
298 		page_cache_sync_readahead(mapping, &in->f_ra, in,
299 				index, req_pages - spd.nr_pages);
300 
301 	error = 0;
302 	while (spd.nr_pages < nr_pages) {
303 		/*
304 		 * Page could be there, find_get_pages_contig() breaks on
305 		 * the first hole.
306 		 */
307 		page = find_get_page(mapping, index);
308 		if (!page) {
309 			/*
310 			 * page didn't exist, allocate one.
311 			 */
312 			page = page_cache_alloc_cold(mapping);
313 			if (!page)
314 				break;
315 
316 			error = add_to_page_cache_lru(page, mapping, index,
317 					      GFP_KERNEL);
318 			if (unlikely(error)) {
319 				page_cache_release(page);
320 				if (error == -EEXIST)
321 					continue;
322 				break;
323 			}
324 			/*
325 			 * add_to_page_cache() locks the page, unlock it
326 			 * to avoid convoluting the logic below even more.
327 			 */
328 			unlock_page(page);
329 		}
330 
331 		pages[spd.nr_pages++] = page;
332 		index++;
333 	}
334 
335 	/*
336 	 * Now loop over the map and see if we need to start IO on any
337 	 * pages, fill in the partial map, etc.
338 	 */
339 	index = *ppos >> PAGE_CACHE_SHIFT;
340 	nr_pages = spd.nr_pages;
341 	spd.nr_pages = 0;
342 	for (page_nr = 0; page_nr < nr_pages; page_nr++) {
343 		unsigned int this_len;
344 
345 		if (!len)
346 			break;
347 
348 		/*
349 		 * this_len is the max we'll use from this page
350 		 */
351 		this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
352 		page = pages[page_nr];
353 
354 		if (PageReadahead(page))
355 			page_cache_async_readahead(mapping, &in->f_ra, in,
356 					page, index, req_pages - page_nr);
357 
358 		/*
359 		 * If the page isn't uptodate, we may need to start io on it
360 		 */
361 		if (!PageUptodate(page)) {
362 			/*
363 			 * If in nonblock mode then dont block on waiting
364 			 * for an in-flight io page
365 			 */
366 			if (flags & SPLICE_F_NONBLOCK) {
367 				if (TestSetPageLocked(page))
368 					break;
369 			} else
370 				lock_page(page);
371 
372 			/*
373 			 * page was truncated, stop here. if this isn't the
374 			 * first page, we'll just complete what we already
375 			 * added
376 			 */
377 			if (!page->mapping) {
378 				unlock_page(page);
379 				break;
380 			}
381 			/*
382 			 * page was already under io and is now done, great
383 			 */
384 			if (PageUptodate(page)) {
385 				unlock_page(page);
386 				goto fill_it;
387 			}
388 
389 			/*
390 			 * need to read in the page
391 			 */
392 			error = mapping->a_ops->readpage(in, page);
393 			if (unlikely(error)) {
394 				/*
395 				 * We really should re-lookup the page here,
396 				 * but it complicates things a lot. Instead
397 				 * lets just do what we already stored, and
398 				 * we'll get it the next time we are called.
399 				 */
400 				if (error == AOP_TRUNCATED_PAGE)
401 					error = 0;
402 
403 				break;
404 			}
405 		}
406 fill_it:
407 		/*
408 		 * i_size must be checked after PageUptodate.
409 		 */
410 		isize = i_size_read(mapping->host);
411 		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
412 		if (unlikely(!isize || index > end_index))
413 			break;
414 
415 		/*
416 		 * if this is the last page, see if we need to shrink
417 		 * the length and stop
418 		 */
419 		if (end_index == index) {
420 			unsigned int plen;
421 
422 			/*
423 			 * max good bytes in this page
424 			 */
425 			plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
426 			if (plen <= loff)
427 				break;
428 
429 			/*
430 			 * force quit after adding this page
431 			 */
432 			this_len = min(this_len, plen - loff);
433 			len = this_len;
434 		}
435 
436 		partial[page_nr].offset = loff;
437 		partial[page_nr].len = this_len;
438 		len -= this_len;
439 		loff = 0;
440 		spd.nr_pages++;
441 		index++;
442 	}
443 
444 	/*
445 	 * Release any pages at the end, if we quit early. 'page_nr' is how far
446 	 * we got, 'nr_pages' is how many pages are in the map.
447 	 */
448 	while (page_nr < nr_pages)
449 		page_cache_release(pages[page_nr++]);
450 	in->f_ra.prev_pos = (loff_t)index << PAGE_CACHE_SHIFT;
451 
452 	if (spd.nr_pages)
453 		return splice_to_pipe(pipe, &spd);
454 
455 	return error;
456 }
457 
458 /**
459  * generic_file_splice_read - splice data from file to a pipe
460  * @in:		file to splice from
461  * @ppos:	position in @in
462  * @pipe:	pipe to splice to
463  * @len:	number of bytes to splice
464  * @flags:	splice modifier flags
465  *
466  * Description:
467  *    Will read pages from given file and fill them into a pipe. Can be
468  *    used as long as the address_space operations for the source implements
469  *    a readpage() hook.
470  *
471  */
472 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
473 				 struct pipe_inode_info *pipe, size_t len,
474 				 unsigned int flags)
475 {
476 	ssize_t spliced;
477 	int ret;
478 	loff_t isize, left;
479 
480 	isize = i_size_read(in->f_mapping->host);
481 	if (unlikely(*ppos >= isize))
482 		return 0;
483 
484 	left = isize - *ppos;
485 	if (unlikely(left < len))
486 		len = left;
487 
488 	ret = 0;
489 	spliced = 0;
490 	while (len && !spliced) {
491 		ret = __generic_file_splice_read(in, ppos, pipe, len, flags);
492 
493 		if (ret < 0)
494 			break;
495 		else if (!ret) {
496 			if (spliced)
497 				break;
498 			if (flags & SPLICE_F_NONBLOCK) {
499 				ret = -EAGAIN;
500 				break;
501 			}
502 		}
503 
504 		*ppos += ret;
505 		len -= ret;
506 		spliced += ret;
507 	}
508 
509 	if (spliced)
510 		return spliced;
511 
512 	return ret;
513 }
514 
515 EXPORT_SYMBOL(generic_file_splice_read);
516 
517 /*
518  * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
519  * using sendpage(). Return the number of bytes sent.
520  */
521 static int pipe_to_sendpage(struct pipe_inode_info *pipe,
522 			    struct pipe_buffer *buf, struct splice_desc *sd)
523 {
524 	struct file *file = sd->u.file;
525 	loff_t pos = sd->pos;
526 	int ret, more;
527 
528 	ret = buf->ops->confirm(pipe, buf);
529 	if (!ret) {
530 		more = (sd->flags & SPLICE_F_MORE) || sd->len < sd->total_len;
531 
532 		ret = file->f_op->sendpage(file, buf->page, buf->offset,
533 					   sd->len, &pos, more);
534 	}
535 
536 	return ret;
537 }
538 
539 /*
540  * This is a little more tricky than the file -> pipe splicing. There are
541  * basically three cases:
542  *
543  *	- Destination page already exists in the address space and there
544  *	  are users of it. For that case we have no other option that
545  *	  copying the data. Tough luck.
546  *	- Destination page already exists in the address space, but there
547  *	  are no users of it. Make sure it's uptodate, then drop it. Fall
548  *	  through to last case.
549  *	- Destination page does not exist, we can add the pipe page to
550  *	  the page cache and avoid the copy.
551  *
552  * If asked to move pages to the output file (SPLICE_F_MOVE is set in
553  * sd->flags), we attempt to migrate pages from the pipe to the output
554  * file address space page cache. This is possible if no one else has
555  * the pipe page referenced outside of the pipe and page cache. If
556  * SPLICE_F_MOVE isn't set, or we cannot move the page, we simply create
557  * a new page in the output file page cache and fill/dirty that.
558  */
559 static int pipe_to_file(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
560 			struct splice_desc *sd)
561 {
562 	struct file *file = sd->u.file;
563 	struct address_space *mapping = file->f_mapping;
564 	unsigned int offset, this_len;
565 	struct page *page;
566 	void *fsdata;
567 	int ret;
568 
569 	/*
570 	 * make sure the data in this buffer is uptodate
571 	 */
572 	ret = buf->ops->confirm(pipe, buf);
573 	if (unlikely(ret))
574 		return ret;
575 
576 	offset = sd->pos & ~PAGE_CACHE_MASK;
577 
578 	this_len = sd->len;
579 	if (this_len + offset > PAGE_CACHE_SIZE)
580 		this_len = PAGE_CACHE_SIZE - offset;
581 
582 	ret = pagecache_write_begin(file, mapping, sd->pos, this_len,
583 				AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
584 	if (unlikely(ret))
585 		goto out;
586 
587 	if (buf->page != page) {
588 		/*
589 		 * Careful, ->map() uses KM_USER0!
590 		 */
591 		char *src = buf->ops->map(pipe, buf, 1);
592 		char *dst = kmap_atomic(page, KM_USER1);
593 
594 		memcpy(dst + offset, src + buf->offset, this_len);
595 		flush_dcache_page(page);
596 		kunmap_atomic(dst, KM_USER1);
597 		buf->ops->unmap(pipe, buf, src);
598 	}
599 	ret = pagecache_write_end(file, mapping, sd->pos, this_len, this_len,
600 				page, fsdata);
601 out:
602 	return ret;
603 }
604 
605 /**
606  * __splice_from_pipe - splice data from a pipe to given actor
607  * @pipe:	pipe to splice from
608  * @sd:		information to @actor
609  * @actor:	handler that splices the data
610  *
611  * Description:
612  *    This function does little more than loop over the pipe and call
613  *    @actor to do the actual moving of a single struct pipe_buffer to
614  *    the desired destination. See pipe_to_file, pipe_to_sendpage, or
615  *    pipe_to_user.
616  *
617  */
618 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
619 			   splice_actor *actor)
620 {
621 	int ret, do_wakeup, err;
622 
623 	ret = 0;
624 	do_wakeup = 0;
625 
626 	for (;;) {
627 		if (pipe->nrbufs) {
628 			struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
629 			const struct pipe_buf_operations *ops = buf->ops;
630 
631 			sd->len = buf->len;
632 			if (sd->len > sd->total_len)
633 				sd->len = sd->total_len;
634 
635 			err = actor(pipe, buf, sd);
636 			if (err <= 0) {
637 				if (!ret && err != -ENODATA)
638 					ret = err;
639 
640 				break;
641 			}
642 
643 			ret += err;
644 			buf->offset += err;
645 			buf->len -= err;
646 
647 			sd->len -= err;
648 			sd->pos += err;
649 			sd->total_len -= err;
650 			if (sd->len)
651 				continue;
652 
653 			if (!buf->len) {
654 				buf->ops = NULL;
655 				ops->release(pipe, buf);
656 				pipe->curbuf = (pipe->curbuf + 1) & (PIPE_BUFFERS - 1);
657 				pipe->nrbufs--;
658 				if (pipe->inode)
659 					do_wakeup = 1;
660 			}
661 
662 			if (!sd->total_len)
663 				break;
664 		}
665 
666 		if (pipe->nrbufs)
667 			continue;
668 		if (!pipe->writers)
669 			break;
670 		if (!pipe->waiting_writers) {
671 			if (ret)
672 				break;
673 		}
674 
675 		if (sd->flags & SPLICE_F_NONBLOCK) {
676 			if (!ret)
677 				ret = -EAGAIN;
678 			break;
679 		}
680 
681 		if (signal_pending(current)) {
682 			if (!ret)
683 				ret = -ERESTARTSYS;
684 			break;
685 		}
686 
687 		if (do_wakeup) {
688 			smp_mb();
689 			if (waitqueue_active(&pipe->wait))
690 				wake_up_interruptible_sync(&pipe->wait);
691 			kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
692 			do_wakeup = 0;
693 		}
694 
695 		pipe_wait(pipe);
696 	}
697 
698 	if (do_wakeup) {
699 		smp_mb();
700 		if (waitqueue_active(&pipe->wait))
701 			wake_up_interruptible(&pipe->wait);
702 		kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
703 	}
704 
705 	return ret;
706 }
707 EXPORT_SYMBOL(__splice_from_pipe);
708 
709 /**
710  * splice_from_pipe - splice data from a pipe to a file
711  * @pipe:	pipe to splice from
712  * @out:	file to splice to
713  * @ppos:	position in @out
714  * @len:	how many bytes to splice
715  * @flags:	splice modifier flags
716  * @actor:	handler that splices the data
717  *
718  * Description:
719  *    See __splice_from_pipe. This function locks the input and output inodes,
720  *    otherwise it's identical to __splice_from_pipe().
721  *
722  */
723 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
724 			 loff_t *ppos, size_t len, unsigned int flags,
725 			 splice_actor *actor)
726 {
727 	ssize_t ret;
728 	struct inode *inode = out->f_mapping->host;
729 	struct splice_desc sd = {
730 		.total_len = len,
731 		.flags = flags,
732 		.pos = *ppos,
733 		.u.file = out,
734 	};
735 
736 	/*
737 	 * The actor worker might be calling ->prepare_write and
738 	 * ->commit_write. Most of the time, these expect i_mutex to
739 	 * be held. Since this may result in an ABBA deadlock with
740 	 * pipe->inode, we have to order lock acquiry here.
741 	 */
742 	inode_double_lock(inode, pipe->inode);
743 	ret = __splice_from_pipe(pipe, &sd, actor);
744 	inode_double_unlock(inode, pipe->inode);
745 
746 	return ret;
747 }
748 
749 /**
750  * generic_file_splice_write_nolock - generic_file_splice_write without mutexes
751  * @pipe:	pipe info
752  * @out:	file to write to
753  * @ppos:	position in @out
754  * @len:	number of bytes to splice
755  * @flags:	splice modifier flags
756  *
757  * Description:
758  *    Will either move or copy pages (determined by @flags options) from
759  *    the given pipe inode to the given file. The caller is responsible
760  *    for acquiring i_mutex on both inodes.
761  *
762  */
763 ssize_t
764 generic_file_splice_write_nolock(struct pipe_inode_info *pipe, struct file *out,
765 				 loff_t *ppos, size_t len, unsigned int flags)
766 {
767 	struct address_space *mapping = out->f_mapping;
768 	struct inode *inode = mapping->host;
769 	struct splice_desc sd = {
770 		.total_len = len,
771 		.flags = flags,
772 		.pos = *ppos,
773 		.u.file = out,
774 	};
775 	ssize_t ret;
776 	int err;
777 
778 	err = remove_suid(out->f_path.dentry);
779 	if (unlikely(err))
780 		return err;
781 
782 	ret = __splice_from_pipe(pipe, &sd, pipe_to_file);
783 	if (ret > 0) {
784 		unsigned long nr_pages;
785 
786 		*ppos += ret;
787 		nr_pages = (ret + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
788 
789 		/*
790 		 * If file or inode is SYNC and we actually wrote some data,
791 		 * sync it.
792 		 */
793 		if (unlikely((out->f_flags & O_SYNC) || IS_SYNC(inode))) {
794 			err = generic_osync_inode(inode, mapping,
795 						  OSYNC_METADATA|OSYNC_DATA);
796 
797 			if (err)
798 				ret = err;
799 		}
800 		balance_dirty_pages_ratelimited_nr(mapping, nr_pages);
801 	}
802 
803 	return ret;
804 }
805 
806 EXPORT_SYMBOL(generic_file_splice_write_nolock);
807 
808 /**
809  * generic_file_splice_write - splice data from a pipe to a file
810  * @pipe:	pipe info
811  * @out:	file to write to
812  * @ppos:	position in @out
813  * @len:	number of bytes to splice
814  * @flags:	splice modifier flags
815  *
816  * Description:
817  *    Will either move or copy pages (determined by @flags options) from
818  *    the given pipe inode to the given file.
819  *
820  */
821 ssize_t
822 generic_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
823 			  loff_t *ppos, size_t len, unsigned int flags)
824 {
825 	struct address_space *mapping = out->f_mapping;
826 	struct inode *inode = mapping->host;
827 	ssize_t ret;
828 	int err;
829 
830 	err = should_remove_suid(out->f_path.dentry);
831 	if (unlikely(err)) {
832 		mutex_lock(&inode->i_mutex);
833 		err = __remove_suid(out->f_path.dentry, err);
834 		mutex_unlock(&inode->i_mutex);
835 		if (err)
836 			return err;
837 	}
838 
839 	ret = splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_file);
840 	if (ret > 0) {
841 		unsigned long nr_pages;
842 
843 		*ppos += ret;
844 		nr_pages = (ret + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
845 
846 		/*
847 		 * If file or inode is SYNC and we actually wrote some data,
848 		 * sync it.
849 		 */
850 		if (unlikely((out->f_flags & O_SYNC) || IS_SYNC(inode))) {
851 			mutex_lock(&inode->i_mutex);
852 			err = generic_osync_inode(inode, mapping,
853 						  OSYNC_METADATA|OSYNC_DATA);
854 			mutex_unlock(&inode->i_mutex);
855 
856 			if (err)
857 				ret = err;
858 		}
859 		balance_dirty_pages_ratelimited_nr(mapping, nr_pages);
860 	}
861 
862 	return ret;
863 }
864 
865 EXPORT_SYMBOL(generic_file_splice_write);
866 
867 /**
868  * generic_splice_sendpage - splice data from a pipe to a socket
869  * @pipe:	pipe to splice from
870  * @out:	socket to write to
871  * @ppos:	position in @out
872  * @len:	number of bytes to splice
873  * @flags:	splice modifier flags
874  *
875  * Description:
876  *    Will send @len bytes from the pipe to a network socket. No data copying
877  *    is involved.
878  *
879  */
880 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
881 				loff_t *ppos, size_t len, unsigned int flags)
882 {
883 	return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
884 }
885 
886 EXPORT_SYMBOL(generic_splice_sendpage);
887 
888 /*
889  * Attempt to initiate a splice from pipe to file.
890  */
891 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
892 			   loff_t *ppos, size_t len, unsigned int flags)
893 {
894 	int ret;
895 
896 	if (unlikely(!out->f_op || !out->f_op->splice_write))
897 		return -EINVAL;
898 
899 	if (unlikely(!(out->f_mode & FMODE_WRITE)))
900 		return -EBADF;
901 
902 	ret = rw_verify_area(WRITE, out, ppos, len);
903 	if (unlikely(ret < 0))
904 		return ret;
905 
906 	ret = security_file_permission(out, MAY_WRITE);
907 	if (unlikely(ret < 0))
908 		return ret;
909 
910 	return out->f_op->splice_write(pipe, out, ppos, len, flags);
911 }
912 
913 /*
914  * Attempt to initiate a splice from a file to a pipe.
915  */
916 static long do_splice_to(struct file *in, loff_t *ppos,
917 			 struct pipe_inode_info *pipe, size_t len,
918 			 unsigned int flags)
919 {
920 	int ret;
921 
922 	if (unlikely(!in->f_op || !in->f_op->splice_read))
923 		return -EINVAL;
924 
925 	if (unlikely(!(in->f_mode & FMODE_READ)))
926 		return -EBADF;
927 
928 	ret = rw_verify_area(READ, in, ppos, len);
929 	if (unlikely(ret < 0))
930 		return ret;
931 
932 	ret = security_file_permission(in, MAY_READ);
933 	if (unlikely(ret < 0))
934 		return ret;
935 
936 	return in->f_op->splice_read(in, ppos, pipe, len, flags);
937 }
938 
939 /**
940  * splice_direct_to_actor - splices data directly between two non-pipes
941  * @in:		file to splice from
942  * @sd:		actor information on where to splice to
943  * @actor:	handles the data splicing
944  *
945  * Description:
946  *    This is a special case helper to splice directly between two
947  *    points, without requiring an explicit pipe. Internally an allocated
948  *    pipe is cached in the process, and reused during the lifetime of
949  *    that process.
950  *
951  */
952 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
953 			       splice_direct_actor *actor)
954 {
955 	struct pipe_inode_info *pipe;
956 	long ret, bytes;
957 	umode_t i_mode;
958 	size_t len;
959 	int i, flags;
960 
961 	/*
962 	 * We require the input being a regular file, as we don't want to
963 	 * randomly drop data for eg socket -> socket splicing. Use the
964 	 * piped splicing for that!
965 	 */
966 	i_mode = in->f_path.dentry->d_inode->i_mode;
967 	if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
968 		return -EINVAL;
969 
970 	/*
971 	 * neither in nor out is a pipe, setup an internal pipe attached to
972 	 * 'out' and transfer the wanted data from 'in' to 'out' through that
973 	 */
974 	pipe = current->splice_pipe;
975 	if (unlikely(!pipe)) {
976 		pipe = alloc_pipe_info(NULL);
977 		if (!pipe)
978 			return -ENOMEM;
979 
980 		/*
981 		 * We don't have an immediate reader, but we'll read the stuff
982 		 * out of the pipe right after the splice_to_pipe(). So set
983 		 * PIPE_READERS appropriately.
984 		 */
985 		pipe->readers = 1;
986 
987 		current->splice_pipe = pipe;
988 	}
989 
990 	/*
991 	 * Do the splice.
992 	 */
993 	ret = 0;
994 	bytes = 0;
995 	len = sd->total_len;
996 	flags = sd->flags;
997 
998 	/*
999 	 * Don't block on output, we have to drain the direct pipe.
1000 	 */
1001 	sd->flags &= ~SPLICE_F_NONBLOCK;
1002 
1003 	while (len) {
1004 		size_t read_len;
1005 		loff_t pos = sd->pos;
1006 
1007 		ret = do_splice_to(in, &pos, pipe, len, flags);
1008 		if (unlikely(ret <= 0))
1009 			goto out_release;
1010 
1011 		read_len = ret;
1012 		sd->total_len = read_len;
1013 
1014 		/*
1015 		 * NOTE: nonblocking mode only applies to the input. We
1016 		 * must not do the output in nonblocking mode as then we
1017 		 * could get stuck data in the internal pipe:
1018 		 */
1019 		ret = actor(pipe, sd);
1020 		if (unlikely(ret <= 0))
1021 			goto out_release;
1022 
1023 		bytes += ret;
1024 		len -= ret;
1025 		sd->pos = pos;
1026 
1027 		if (ret < read_len)
1028 			goto out_release;
1029 	}
1030 
1031 	pipe->nrbufs = pipe->curbuf = 0;
1032 	return bytes;
1033 
1034 out_release:
1035 	/*
1036 	 * If we did an incomplete transfer we must release
1037 	 * the pipe buffers in question:
1038 	 */
1039 	for (i = 0; i < PIPE_BUFFERS; i++) {
1040 		struct pipe_buffer *buf = pipe->bufs + i;
1041 
1042 		if (buf->ops) {
1043 			buf->ops->release(pipe, buf);
1044 			buf->ops = NULL;
1045 		}
1046 	}
1047 	pipe->nrbufs = pipe->curbuf = 0;
1048 
1049 	/*
1050 	 * If we transferred some data, return the number of bytes:
1051 	 */
1052 	if (bytes > 0)
1053 		return bytes;
1054 
1055 	return ret;
1056 
1057 }
1058 EXPORT_SYMBOL(splice_direct_to_actor);
1059 
1060 static int direct_splice_actor(struct pipe_inode_info *pipe,
1061 			       struct splice_desc *sd)
1062 {
1063 	struct file *file = sd->u.file;
1064 
1065 	return do_splice_from(pipe, file, &sd->pos, sd->total_len, sd->flags);
1066 }
1067 
1068 /**
1069  * do_splice_direct - splices data directly between two files
1070  * @in:		file to splice from
1071  * @ppos:	input file offset
1072  * @out:	file to splice to
1073  * @len:	number of bytes to splice
1074  * @flags:	splice modifier flags
1075  *
1076  * Description:
1077  *    For use by do_sendfile(). splice can easily emulate sendfile, but
1078  *    doing it in the application would incur an extra system call
1079  *    (splice in + splice out, as compared to just sendfile()). So this helper
1080  *    can splice directly through a process-private pipe.
1081  *
1082  */
1083 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
1084 		      size_t len, unsigned int flags)
1085 {
1086 	struct splice_desc sd = {
1087 		.len		= len,
1088 		.total_len	= len,
1089 		.flags		= flags,
1090 		.pos		= *ppos,
1091 		.u.file		= out,
1092 	};
1093 	long ret;
1094 
1095 	ret = splice_direct_to_actor(in, &sd, direct_splice_actor);
1096 	if (ret > 0)
1097 		*ppos += ret;
1098 
1099 	return ret;
1100 }
1101 
1102 /*
1103  * After the inode slimming patch, i_pipe/i_bdev/i_cdev share the same
1104  * location, so checking ->i_pipe is not enough to verify that this is a
1105  * pipe.
1106  */
1107 static inline struct pipe_inode_info *pipe_info(struct inode *inode)
1108 {
1109 	if (S_ISFIFO(inode->i_mode))
1110 		return inode->i_pipe;
1111 
1112 	return NULL;
1113 }
1114 
1115 /*
1116  * Determine where to splice to/from.
1117  */
1118 static long do_splice(struct file *in, loff_t __user *off_in,
1119 		      struct file *out, loff_t __user *off_out,
1120 		      size_t len, unsigned int flags)
1121 {
1122 	struct pipe_inode_info *pipe;
1123 	loff_t offset, *off;
1124 	long ret;
1125 
1126 	pipe = pipe_info(in->f_path.dentry->d_inode);
1127 	if (pipe) {
1128 		if (off_in)
1129 			return -ESPIPE;
1130 		if (off_out) {
1131 			if (out->f_op->llseek == no_llseek)
1132 				return -EINVAL;
1133 			if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1134 				return -EFAULT;
1135 			off = &offset;
1136 		} else
1137 			off = &out->f_pos;
1138 
1139 		ret = do_splice_from(pipe, out, off, len, flags);
1140 
1141 		if (off_out && copy_to_user(off_out, off, sizeof(loff_t)))
1142 			ret = -EFAULT;
1143 
1144 		return ret;
1145 	}
1146 
1147 	pipe = pipe_info(out->f_path.dentry->d_inode);
1148 	if (pipe) {
1149 		if (off_out)
1150 			return -ESPIPE;
1151 		if (off_in) {
1152 			if (in->f_op->llseek == no_llseek)
1153 				return -EINVAL;
1154 			if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1155 				return -EFAULT;
1156 			off = &offset;
1157 		} else
1158 			off = &in->f_pos;
1159 
1160 		ret = do_splice_to(in, off, pipe, len, flags);
1161 
1162 		if (off_in && copy_to_user(off_in, off, sizeof(loff_t)))
1163 			ret = -EFAULT;
1164 
1165 		return ret;
1166 	}
1167 
1168 	return -EINVAL;
1169 }
1170 
1171 /*
1172  * Do a copy-from-user while holding the mmap_semaphore for reading, in a
1173  * manner safe from deadlocking with simultaneous mmap() (grabbing mmap_sem
1174  * for writing) and page faulting on the user memory pointed to by src.
1175  * This assumes that we will very rarely hit the partial != 0 path, or this
1176  * will not be a win.
1177  */
1178 static int copy_from_user_mmap_sem(void *dst, const void __user *src, size_t n)
1179 {
1180 	int partial;
1181 
1182 	pagefault_disable();
1183 	partial = __copy_from_user_inatomic(dst, src, n);
1184 	pagefault_enable();
1185 
1186 	/*
1187 	 * Didn't copy everything, drop the mmap_sem and do a faulting copy
1188 	 */
1189 	if (unlikely(partial)) {
1190 		up_read(&current->mm->mmap_sem);
1191 		partial = copy_from_user(dst, src, n);
1192 		down_read(&current->mm->mmap_sem);
1193 	}
1194 
1195 	return partial;
1196 }
1197 
1198 /*
1199  * Map an iov into an array of pages and offset/length tupples. With the
1200  * partial_page structure, we can map several non-contiguous ranges into
1201  * our ones pages[] map instead of splitting that operation into pieces.
1202  * Could easily be exported as a generic helper for other users, in which
1203  * case one would probably want to add a 'max_nr_pages' parameter as well.
1204  */
1205 static int get_iovec_page_array(const struct iovec __user *iov,
1206 				unsigned int nr_vecs, struct page **pages,
1207 				struct partial_page *partial, int aligned)
1208 {
1209 	int buffers = 0, error = 0;
1210 
1211 	down_read(&current->mm->mmap_sem);
1212 
1213 	while (nr_vecs) {
1214 		unsigned long off, npages;
1215 		struct iovec entry;
1216 		void __user *base;
1217 		size_t len;
1218 		int i;
1219 
1220 		error = -EFAULT;
1221 		if (copy_from_user_mmap_sem(&entry, iov, sizeof(entry)))
1222 			break;
1223 
1224 		base = entry.iov_base;
1225 		len = entry.iov_len;
1226 
1227 		/*
1228 		 * Sanity check this iovec. 0 read succeeds.
1229 		 */
1230 		error = 0;
1231 		if (unlikely(!len))
1232 			break;
1233 		error = -EFAULT;
1234 		if (unlikely(!base))
1235 			break;
1236 
1237 		/*
1238 		 * Get this base offset and number of pages, then map
1239 		 * in the user pages.
1240 		 */
1241 		off = (unsigned long) base & ~PAGE_MASK;
1242 
1243 		/*
1244 		 * If asked for alignment, the offset must be zero and the
1245 		 * length a multiple of the PAGE_SIZE.
1246 		 */
1247 		error = -EINVAL;
1248 		if (aligned && (off || len & ~PAGE_MASK))
1249 			break;
1250 
1251 		npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1252 		if (npages > PIPE_BUFFERS - buffers)
1253 			npages = PIPE_BUFFERS - buffers;
1254 
1255 		error = get_user_pages(current, current->mm,
1256 				       (unsigned long) base, npages, 0, 0,
1257 				       &pages[buffers], NULL);
1258 
1259 		if (unlikely(error <= 0))
1260 			break;
1261 
1262 		/*
1263 		 * Fill this contiguous range into the partial page map.
1264 		 */
1265 		for (i = 0; i < error; i++) {
1266 			const int plen = min_t(size_t, len, PAGE_SIZE - off);
1267 
1268 			partial[buffers].offset = off;
1269 			partial[buffers].len = plen;
1270 
1271 			off = 0;
1272 			len -= plen;
1273 			buffers++;
1274 		}
1275 
1276 		/*
1277 		 * We didn't complete this iov, stop here since it probably
1278 		 * means we have to move some of this into a pipe to
1279 		 * be able to continue.
1280 		 */
1281 		if (len)
1282 			break;
1283 
1284 		/*
1285 		 * Don't continue if we mapped fewer pages than we asked for,
1286 		 * or if we mapped the max number of pages that we have
1287 		 * room for.
1288 		 */
1289 		if (error < npages || buffers == PIPE_BUFFERS)
1290 			break;
1291 
1292 		nr_vecs--;
1293 		iov++;
1294 	}
1295 
1296 	up_read(&current->mm->mmap_sem);
1297 
1298 	if (buffers)
1299 		return buffers;
1300 
1301 	return error;
1302 }
1303 
1304 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1305 			struct splice_desc *sd)
1306 {
1307 	char *src;
1308 	int ret;
1309 
1310 	ret = buf->ops->confirm(pipe, buf);
1311 	if (unlikely(ret))
1312 		return ret;
1313 
1314 	/*
1315 	 * See if we can use the atomic maps, by prefaulting in the
1316 	 * pages and doing an atomic copy
1317 	 */
1318 	if (!fault_in_pages_writeable(sd->u.userptr, sd->len)) {
1319 		src = buf->ops->map(pipe, buf, 1);
1320 		ret = __copy_to_user_inatomic(sd->u.userptr, src + buf->offset,
1321 							sd->len);
1322 		buf->ops->unmap(pipe, buf, src);
1323 		if (!ret) {
1324 			ret = sd->len;
1325 			goto out;
1326 		}
1327 	}
1328 
1329 	/*
1330 	 * No dice, use slow non-atomic map and copy
1331  	 */
1332 	src = buf->ops->map(pipe, buf, 0);
1333 
1334 	ret = sd->len;
1335 	if (copy_to_user(sd->u.userptr, src + buf->offset, sd->len))
1336 		ret = -EFAULT;
1337 
1338 out:
1339 	if (ret > 0)
1340 		sd->u.userptr += ret;
1341 	buf->ops->unmap(pipe, buf, src);
1342 	return ret;
1343 }
1344 
1345 /*
1346  * For lack of a better implementation, implement vmsplice() to userspace
1347  * as a simple copy of the pipes pages to the user iov.
1348  */
1349 static long vmsplice_to_user(struct file *file, const struct iovec __user *iov,
1350 			     unsigned long nr_segs, unsigned int flags)
1351 {
1352 	struct pipe_inode_info *pipe;
1353 	struct splice_desc sd;
1354 	ssize_t size;
1355 	int error;
1356 	long ret;
1357 
1358 	pipe = pipe_info(file->f_path.dentry->d_inode);
1359 	if (!pipe)
1360 		return -EBADF;
1361 
1362 	if (pipe->inode)
1363 		mutex_lock(&pipe->inode->i_mutex);
1364 
1365 	error = ret = 0;
1366 	while (nr_segs) {
1367 		void __user *base;
1368 		size_t len;
1369 
1370 		/*
1371 		 * Get user address base and length for this iovec.
1372 		 */
1373 		error = get_user(base, &iov->iov_base);
1374 		if (unlikely(error))
1375 			break;
1376 		error = get_user(len, &iov->iov_len);
1377 		if (unlikely(error))
1378 			break;
1379 
1380 		/*
1381 		 * Sanity check this iovec. 0 read succeeds.
1382 		 */
1383 		if (unlikely(!len))
1384 			break;
1385 		if (unlikely(!base)) {
1386 			error = -EFAULT;
1387 			break;
1388 		}
1389 
1390 		sd.len = 0;
1391 		sd.total_len = len;
1392 		sd.flags = flags;
1393 		sd.u.userptr = base;
1394 		sd.pos = 0;
1395 
1396 		size = __splice_from_pipe(pipe, &sd, pipe_to_user);
1397 		if (size < 0) {
1398 			if (!ret)
1399 				ret = size;
1400 
1401 			break;
1402 		}
1403 
1404 		ret += size;
1405 
1406 		if (size < len)
1407 			break;
1408 
1409 		nr_segs--;
1410 		iov++;
1411 	}
1412 
1413 	if (pipe->inode)
1414 		mutex_unlock(&pipe->inode->i_mutex);
1415 
1416 	if (!ret)
1417 		ret = error;
1418 
1419 	return ret;
1420 }
1421 
1422 /*
1423  * vmsplice splices a user address range into a pipe. It can be thought of
1424  * as splice-from-memory, where the regular splice is splice-from-file (or
1425  * to file). In both cases the output is a pipe, naturally.
1426  */
1427 static long vmsplice_to_pipe(struct file *file, const struct iovec __user *iov,
1428 			     unsigned long nr_segs, unsigned int flags)
1429 {
1430 	struct pipe_inode_info *pipe;
1431 	struct page *pages[PIPE_BUFFERS];
1432 	struct partial_page partial[PIPE_BUFFERS];
1433 	struct splice_pipe_desc spd = {
1434 		.pages = pages,
1435 		.partial = partial,
1436 		.flags = flags,
1437 		.ops = &user_page_pipe_buf_ops,
1438 	};
1439 
1440 	pipe = pipe_info(file->f_path.dentry->d_inode);
1441 	if (!pipe)
1442 		return -EBADF;
1443 
1444 	spd.nr_pages = get_iovec_page_array(iov, nr_segs, pages, partial,
1445 					    flags & SPLICE_F_GIFT);
1446 	if (spd.nr_pages <= 0)
1447 		return spd.nr_pages;
1448 
1449 	return splice_to_pipe(pipe, &spd);
1450 }
1451 
1452 /*
1453  * Note that vmsplice only really supports true splicing _from_ user memory
1454  * to a pipe, not the other way around. Splicing from user memory is a simple
1455  * operation that can be supported without any funky alignment restrictions
1456  * or nasty vm tricks. We simply map in the user memory and fill them into
1457  * a pipe. The reverse isn't quite as easy, though. There are two possible
1458  * solutions for that:
1459  *
1460  *	- memcpy() the data internally, at which point we might as well just
1461  *	  do a regular read() on the buffer anyway.
1462  *	- Lots of nasty vm tricks, that are neither fast nor flexible (it
1463  *	  has restriction limitations on both ends of the pipe).
1464  *
1465  * Currently we punt and implement it as a normal copy, see pipe_to_user().
1466  *
1467  */
1468 asmlinkage long sys_vmsplice(int fd, const struct iovec __user *iov,
1469 			     unsigned long nr_segs, unsigned int flags)
1470 {
1471 	struct file *file;
1472 	long error;
1473 	int fput;
1474 
1475 	if (unlikely(nr_segs > UIO_MAXIOV))
1476 		return -EINVAL;
1477 	else if (unlikely(!nr_segs))
1478 		return 0;
1479 
1480 	error = -EBADF;
1481 	file = fget_light(fd, &fput);
1482 	if (file) {
1483 		if (file->f_mode & FMODE_WRITE)
1484 			error = vmsplice_to_pipe(file, iov, nr_segs, flags);
1485 		else if (file->f_mode & FMODE_READ)
1486 			error = vmsplice_to_user(file, iov, nr_segs, flags);
1487 
1488 		fput_light(file, fput);
1489 	}
1490 
1491 	return error;
1492 }
1493 
1494 asmlinkage long sys_splice(int fd_in, loff_t __user *off_in,
1495 			   int fd_out, loff_t __user *off_out,
1496 			   size_t len, unsigned int flags)
1497 {
1498 	long error;
1499 	struct file *in, *out;
1500 	int fput_in, fput_out;
1501 
1502 	if (unlikely(!len))
1503 		return 0;
1504 
1505 	error = -EBADF;
1506 	in = fget_light(fd_in, &fput_in);
1507 	if (in) {
1508 		if (in->f_mode & FMODE_READ) {
1509 			out = fget_light(fd_out, &fput_out);
1510 			if (out) {
1511 				if (out->f_mode & FMODE_WRITE)
1512 					error = do_splice(in, off_in,
1513 							  out, off_out,
1514 							  len, flags);
1515 				fput_light(out, fput_out);
1516 			}
1517 		}
1518 
1519 		fput_light(in, fput_in);
1520 	}
1521 
1522 	return error;
1523 }
1524 
1525 /*
1526  * Make sure there's data to read. Wait for input if we can, otherwise
1527  * return an appropriate error.
1528  */
1529 static int link_ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1530 {
1531 	int ret;
1532 
1533 	/*
1534 	 * Check ->nrbufs without the inode lock first. This function
1535 	 * is speculative anyways, so missing one is ok.
1536 	 */
1537 	if (pipe->nrbufs)
1538 		return 0;
1539 
1540 	ret = 0;
1541 	mutex_lock(&pipe->inode->i_mutex);
1542 
1543 	while (!pipe->nrbufs) {
1544 		if (signal_pending(current)) {
1545 			ret = -ERESTARTSYS;
1546 			break;
1547 		}
1548 		if (!pipe->writers)
1549 			break;
1550 		if (!pipe->waiting_writers) {
1551 			if (flags & SPLICE_F_NONBLOCK) {
1552 				ret = -EAGAIN;
1553 				break;
1554 			}
1555 		}
1556 		pipe_wait(pipe);
1557 	}
1558 
1559 	mutex_unlock(&pipe->inode->i_mutex);
1560 	return ret;
1561 }
1562 
1563 /*
1564  * Make sure there's writeable room. Wait for room if we can, otherwise
1565  * return an appropriate error.
1566  */
1567 static int link_opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1568 {
1569 	int ret;
1570 
1571 	/*
1572 	 * Check ->nrbufs without the inode lock first. This function
1573 	 * is speculative anyways, so missing one is ok.
1574 	 */
1575 	if (pipe->nrbufs < PIPE_BUFFERS)
1576 		return 0;
1577 
1578 	ret = 0;
1579 	mutex_lock(&pipe->inode->i_mutex);
1580 
1581 	while (pipe->nrbufs >= PIPE_BUFFERS) {
1582 		if (!pipe->readers) {
1583 			send_sig(SIGPIPE, current, 0);
1584 			ret = -EPIPE;
1585 			break;
1586 		}
1587 		if (flags & SPLICE_F_NONBLOCK) {
1588 			ret = -EAGAIN;
1589 			break;
1590 		}
1591 		if (signal_pending(current)) {
1592 			ret = -ERESTARTSYS;
1593 			break;
1594 		}
1595 		pipe->waiting_writers++;
1596 		pipe_wait(pipe);
1597 		pipe->waiting_writers--;
1598 	}
1599 
1600 	mutex_unlock(&pipe->inode->i_mutex);
1601 	return ret;
1602 }
1603 
1604 /*
1605  * Link contents of ipipe to opipe.
1606  */
1607 static int link_pipe(struct pipe_inode_info *ipipe,
1608 		     struct pipe_inode_info *opipe,
1609 		     size_t len, unsigned int flags)
1610 {
1611 	struct pipe_buffer *ibuf, *obuf;
1612 	int ret = 0, i = 0, nbuf;
1613 
1614 	/*
1615 	 * Potential ABBA deadlock, work around it by ordering lock
1616 	 * grabbing by inode address. Otherwise two different processes
1617 	 * could deadlock (one doing tee from A -> B, the other from B -> A).
1618 	 */
1619 	inode_double_lock(ipipe->inode, opipe->inode);
1620 
1621 	do {
1622 		if (!opipe->readers) {
1623 			send_sig(SIGPIPE, current, 0);
1624 			if (!ret)
1625 				ret = -EPIPE;
1626 			break;
1627 		}
1628 
1629 		/*
1630 		 * If we have iterated all input buffers or ran out of
1631 		 * output room, break.
1632 		 */
1633 		if (i >= ipipe->nrbufs || opipe->nrbufs >= PIPE_BUFFERS)
1634 			break;
1635 
1636 		ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (PIPE_BUFFERS - 1));
1637 		nbuf = (opipe->curbuf + opipe->nrbufs) & (PIPE_BUFFERS - 1);
1638 
1639 		/*
1640 		 * Get a reference to this pipe buffer,
1641 		 * so we can copy the contents over.
1642 		 */
1643 		ibuf->ops->get(ipipe, ibuf);
1644 
1645 		obuf = opipe->bufs + nbuf;
1646 		*obuf = *ibuf;
1647 
1648 		/*
1649 		 * Don't inherit the gift flag, we need to
1650 		 * prevent multiple steals of this page.
1651 		 */
1652 		obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1653 
1654 		if (obuf->len > len)
1655 			obuf->len = len;
1656 
1657 		opipe->nrbufs++;
1658 		ret += obuf->len;
1659 		len -= obuf->len;
1660 		i++;
1661 	} while (len);
1662 
1663 	inode_double_unlock(ipipe->inode, opipe->inode);
1664 
1665 	/*
1666 	 * If we put data in the output pipe, wakeup any potential readers.
1667 	 */
1668 	if (ret > 0) {
1669 		smp_mb();
1670 		if (waitqueue_active(&opipe->wait))
1671 			wake_up_interruptible(&opipe->wait);
1672 		kill_fasync(&opipe->fasync_readers, SIGIO, POLL_IN);
1673 	}
1674 
1675 	return ret;
1676 }
1677 
1678 /*
1679  * This is a tee(1) implementation that works on pipes. It doesn't copy
1680  * any data, it simply references the 'in' pages on the 'out' pipe.
1681  * The 'flags' used are the SPLICE_F_* variants, currently the only
1682  * applicable one is SPLICE_F_NONBLOCK.
1683  */
1684 static long do_tee(struct file *in, struct file *out, size_t len,
1685 		   unsigned int flags)
1686 {
1687 	struct pipe_inode_info *ipipe = pipe_info(in->f_path.dentry->d_inode);
1688 	struct pipe_inode_info *opipe = pipe_info(out->f_path.dentry->d_inode);
1689 	int ret = -EINVAL;
1690 
1691 	/*
1692 	 * Duplicate the contents of ipipe to opipe without actually
1693 	 * copying the data.
1694 	 */
1695 	if (ipipe && opipe && ipipe != opipe) {
1696 		/*
1697 		 * Keep going, unless we encounter an error. The ipipe/opipe
1698 		 * ordering doesn't really matter.
1699 		 */
1700 		ret = link_ipipe_prep(ipipe, flags);
1701 		if (!ret) {
1702 			ret = link_opipe_prep(opipe, flags);
1703 			if (!ret) {
1704 				ret = link_pipe(ipipe, opipe, len, flags);
1705 				if (!ret && (flags & SPLICE_F_NONBLOCK))
1706 					ret = -EAGAIN;
1707 			}
1708 		}
1709 	}
1710 
1711 	return ret;
1712 }
1713 
1714 asmlinkage long sys_tee(int fdin, int fdout, size_t len, unsigned int flags)
1715 {
1716 	struct file *in;
1717 	int error, fput_in;
1718 
1719 	if (unlikely(!len))
1720 		return 0;
1721 
1722 	error = -EBADF;
1723 	in = fget_light(fdin, &fput_in);
1724 	if (in) {
1725 		if (in->f_mode & FMODE_READ) {
1726 			int fput_out;
1727 			struct file *out = fget_light(fdout, &fput_out);
1728 
1729 			if (out) {
1730 				if (out->f_mode & FMODE_WRITE)
1731 					error = do_tee(in, out, len, flags);
1732 				fput_light(out, fput_out);
1733 			}
1734 		}
1735  		fput_light(in, fput_in);
1736  	}
1737 
1738 	return error;
1739 }
1740