xref: /openbmc/linux/fs/reiserfs/ibalance.c (revision 1da177e4c3f41524e886b7f1b8a0c1fc7321cac2)
1 /*
2  * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
3  */
4 
5 #include <linux/config.h>
6 #include <asm/uaccess.h>
7 #include <linux/string.h>
8 #include <linux/time.h>
9 #include <linux/reiserfs_fs.h>
10 #include <linux/buffer_head.h>
11 
12 /* this is one and only function that is used outside (do_balance.c) */
13 int	balance_internal (
14 			  struct tree_balance * ,
15 			  int,
16 			  int,
17 			  struct item_head * ,
18 			  struct buffer_head **
19 			  );
20 
21 /* modes of internal_shift_left, internal_shift_right and internal_insert_childs */
22 #define INTERNAL_SHIFT_FROM_S_TO_L 0
23 #define INTERNAL_SHIFT_FROM_R_TO_S 1
24 #define INTERNAL_SHIFT_FROM_L_TO_S 2
25 #define INTERNAL_SHIFT_FROM_S_TO_R 3
26 #define INTERNAL_INSERT_TO_S 4
27 #define INTERNAL_INSERT_TO_L 5
28 #define INTERNAL_INSERT_TO_R 6
29 
30 static void	internal_define_dest_src_infos (
31 						int shift_mode,
32 						struct tree_balance * tb,
33 						int h,
34 						struct buffer_info * dest_bi,
35 						struct buffer_info * src_bi,
36 						int * d_key,
37 						struct buffer_head ** cf
38 						)
39 {
40     memset (dest_bi, 0, sizeof (struct buffer_info));
41     memset (src_bi, 0, sizeof (struct buffer_info));
42     /* define dest, src, dest parent, dest position */
43     switch (shift_mode) {
44     case INTERNAL_SHIFT_FROM_S_TO_L:	/* used in internal_shift_left */
45 	src_bi->tb = tb;
46 	src_bi->bi_bh = PATH_H_PBUFFER (tb->tb_path, h);
47 	src_bi->bi_parent = PATH_H_PPARENT (tb->tb_path, h);
48 	src_bi->bi_position = PATH_H_POSITION (tb->tb_path, h + 1);
49 	dest_bi->tb = tb;
50 	dest_bi->bi_bh = tb->L[h];
51 	dest_bi->bi_parent = tb->FL[h];
52 	dest_bi->bi_position = get_left_neighbor_position (tb, h);
53 	*d_key = tb->lkey[h];
54 	*cf = tb->CFL[h];
55 	break;
56     case INTERNAL_SHIFT_FROM_L_TO_S:
57 	src_bi->tb = tb;
58 	src_bi->bi_bh = tb->L[h];
59 	src_bi->bi_parent = tb->FL[h];
60 	src_bi->bi_position = get_left_neighbor_position (tb, h);
61 	dest_bi->tb = tb;
62 	dest_bi->bi_bh = PATH_H_PBUFFER (tb->tb_path, h);
63 	dest_bi->bi_parent = PATH_H_PPARENT (tb->tb_path, h);
64 	dest_bi->bi_position = PATH_H_POSITION (tb->tb_path, h + 1); /* dest position is analog of dest->b_item_order */
65 	*d_key = tb->lkey[h];
66 	*cf = tb->CFL[h];
67 	break;
68 
69     case INTERNAL_SHIFT_FROM_R_TO_S:	/* used in internal_shift_left */
70 	src_bi->tb = tb;
71 	src_bi->bi_bh = tb->R[h];
72 	src_bi->bi_parent = tb->FR[h];
73 	src_bi->bi_position = get_right_neighbor_position (tb, h);
74 	dest_bi->tb = tb;
75 	dest_bi->bi_bh = PATH_H_PBUFFER (tb->tb_path, h);
76 	dest_bi->bi_parent = PATH_H_PPARENT (tb->tb_path, h);
77 	dest_bi->bi_position = PATH_H_POSITION (tb->tb_path, h + 1);
78 	*d_key = tb->rkey[h];
79 	*cf = tb->CFR[h];
80 	break;
81 
82     case INTERNAL_SHIFT_FROM_S_TO_R:
83 	src_bi->tb = tb;
84 	src_bi->bi_bh = PATH_H_PBUFFER (tb->tb_path, h);
85 	src_bi->bi_parent = PATH_H_PPARENT (tb->tb_path, h);
86 	src_bi->bi_position = PATH_H_POSITION (tb->tb_path, h + 1);
87 	dest_bi->tb = tb;
88 	dest_bi->bi_bh = tb->R[h];
89 	dest_bi->bi_parent = tb->FR[h];
90 	dest_bi->bi_position = get_right_neighbor_position (tb, h);
91 	*d_key = tb->rkey[h];
92 	*cf = tb->CFR[h];
93 	break;
94 
95     case INTERNAL_INSERT_TO_L:
96 	dest_bi->tb = tb;
97 	dest_bi->bi_bh = tb->L[h];
98 	dest_bi->bi_parent = tb->FL[h];
99 	dest_bi->bi_position = get_left_neighbor_position (tb, h);
100 	break;
101 
102     case INTERNAL_INSERT_TO_S:
103 	dest_bi->tb = tb;
104 	dest_bi->bi_bh = PATH_H_PBUFFER (tb->tb_path, h);
105 	dest_bi->bi_parent = PATH_H_PPARENT (tb->tb_path, h);
106 	dest_bi->bi_position = PATH_H_POSITION (tb->tb_path, h + 1);
107 	break;
108 
109     case INTERNAL_INSERT_TO_R:
110 	dest_bi->tb = tb;
111 	dest_bi->bi_bh = tb->R[h];
112 	dest_bi->bi_parent = tb->FR[h];
113 	dest_bi->bi_position = get_right_neighbor_position (tb, h);
114 	break;
115 
116     default:
117 	reiserfs_panic (tb->tb_sb, "internal_define_dest_src_infos: shift type is unknown (%d)", shift_mode);
118     }
119 }
120 
121 
122 
123 /* Insert count node pointers into buffer cur before position to + 1.
124  * Insert count items into buffer cur before position to.
125  * Items and node pointers are specified by inserted and bh respectively.
126  */
127 static void internal_insert_childs (struct buffer_info * cur_bi,
128 				    int to, int count,
129 				    struct item_head * inserted,
130 				    struct buffer_head ** bh
131     )
132 {
133     struct buffer_head * cur = cur_bi->bi_bh;
134     struct block_head * blkh;
135     int nr;
136     struct reiserfs_key * ih;
137     struct disk_child new_dc[2];
138     struct disk_child * dc;
139     int i;
140 
141     if (count <= 0)
142 	return;
143 
144     blkh = B_BLK_HEAD(cur);
145     nr = blkh_nr_item(blkh);
146 
147     RFALSE( count > 2,
148 	    "too many children (%d) are to be inserted", count);
149     RFALSE( B_FREE_SPACE (cur) < count * (KEY_SIZE + DC_SIZE),
150 	    "no enough free space (%d), needed %d bytes",
151 	    B_FREE_SPACE (cur), count * (KEY_SIZE + DC_SIZE));
152 
153     /* prepare space for count disk_child */
154     dc = B_N_CHILD(cur,to+1);
155 
156     memmove (dc + count, dc, (nr+1-(to+1)) * DC_SIZE);
157 
158     /* copy to_be_insert disk children */
159     for (i = 0; i < count; i ++) {
160 	put_dc_size( &(new_dc[i]), MAX_CHILD_SIZE(bh[i]) - B_FREE_SPACE(bh[i]));
161 	put_dc_block_number( &(new_dc[i]), bh[i]->b_blocknr );
162     }
163     memcpy (dc, new_dc, DC_SIZE * count);
164 
165 
166     /* prepare space for count items  */
167     ih = B_N_PDELIM_KEY (cur, ((to == -1) ? 0 : to));
168 
169     memmove (ih + count, ih, (nr - to) * KEY_SIZE + (nr + 1 + count) * DC_SIZE);
170 
171     /* copy item headers (keys) */
172     memcpy (ih, inserted, KEY_SIZE);
173     if ( count > 1 )
174 	memcpy (ih + 1, inserted + 1, KEY_SIZE);
175 
176     /* sizes, item number */
177     set_blkh_nr_item( blkh, blkh_nr_item(blkh) + count );
178     set_blkh_free_space( blkh,
179                         blkh_free_space(blkh) - count * (DC_SIZE + KEY_SIZE ) );
180 
181     do_balance_mark_internal_dirty (cur_bi->tb, cur,0);
182 
183     /*&&&&&&&&&&&&&&&&&&&&&&&&*/
184     check_internal (cur);
185     /*&&&&&&&&&&&&&&&&&&&&&&&&*/
186 
187     if (cur_bi->bi_parent) {
188 	struct disk_child *t_dc = B_N_CHILD (cur_bi->bi_parent,cur_bi->bi_position);
189 	put_dc_size( t_dc, dc_size(t_dc) + (count * (DC_SIZE + KEY_SIZE)));
190 	do_balance_mark_internal_dirty(cur_bi->tb, cur_bi->bi_parent, 0);
191 
192 	/*&&&&&&&&&&&&&&&&&&&&&&&&*/
193 	check_internal (cur_bi->bi_parent);
194 	/*&&&&&&&&&&&&&&&&&&&&&&&&*/
195     }
196 
197 }
198 
199 
200 /* Delete del_num items and node pointers from buffer cur starting from *
201  * the first_i'th item and first_p'th pointers respectively.		*/
202 static void	internal_delete_pointers_items (
203 						struct buffer_info * cur_bi,
204 						int first_p,
205 						int first_i,
206 						int del_num
207 						)
208 {
209   struct buffer_head * cur = cur_bi->bi_bh;
210   int nr;
211   struct block_head * blkh;
212   struct reiserfs_key * key;
213   struct disk_child * dc;
214 
215   RFALSE( cur == NULL, "buffer is 0");
216   RFALSE( del_num < 0,
217           "negative number of items (%d) can not be deleted", del_num);
218   RFALSE( first_p < 0 || first_p + del_num > B_NR_ITEMS (cur) + 1 || first_i < 0,
219           "first pointer order (%d) < 0 or "
220           "no so many pointers (%d), only (%d) or "
221           "first key order %d < 0", first_p,
222           first_p + del_num, B_NR_ITEMS (cur) + 1, first_i);
223   if ( del_num == 0 )
224     return;
225 
226   blkh = B_BLK_HEAD(cur);
227   nr = blkh_nr_item(blkh);
228 
229   if ( first_p == 0 && del_num == nr + 1 ) {
230     RFALSE( first_i != 0, "1st deleted key must have order 0, not %d", first_i);
231     make_empty_node (cur_bi);
232     return;
233   }
234 
235   RFALSE( first_i + del_num > B_NR_ITEMS (cur),
236           "first_i = %d del_num = %d "
237           "no so many keys (%d) in the node (%b)(%z)",
238           first_i, del_num, first_i + del_num, cur, cur);
239 
240 
241   /* deleting */
242   dc = B_N_CHILD (cur, first_p);
243 
244   memmove (dc, dc + del_num, (nr + 1 - first_p - del_num) * DC_SIZE);
245   key = B_N_PDELIM_KEY (cur, first_i);
246   memmove (key, key + del_num, (nr - first_i - del_num) * KEY_SIZE + (nr + 1 - del_num) * DC_SIZE);
247 
248 
249   /* sizes, item number */
250   set_blkh_nr_item( blkh, blkh_nr_item(blkh) - del_num );
251   set_blkh_free_space( blkh,
252                     blkh_free_space(blkh) + (del_num * (KEY_SIZE + DC_SIZE) ) );
253 
254   do_balance_mark_internal_dirty (cur_bi->tb, cur, 0);
255   /*&&&&&&&&&&&&&&&&&&&&&&&*/
256   check_internal (cur);
257   /*&&&&&&&&&&&&&&&&&&&&&&&*/
258 
259   if (cur_bi->bi_parent) {
260     struct disk_child *t_dc;
261     t_dc = B_N_CHILD (cur_bi->bi_parent, cur_bi->bi_position);
262     put_dc_size( t_dc, dc_size(t_dc) - (del_num * (KEY_SIZE + DC_SIZE) ) );
263 
264     do_balance_mark_internal_dirty (cur_bi->tb, cur_bi->bi_parent,0);
265     /*&&&&&&&&&&&&&&&&&&&&&&&&*/
266     check_internal (cur_bi->bi_parent);
267     /*&&&&&&&&&&&&&&&&&&&&&&&&*/
268   }
269 }
270 
271 
272 /* delete n node pointers and items starting from given position */
273 static void  internal_delete_childs (struct buffer_info * cur_bi,
274 				     int from, int n)
275 {
276   int i_from;
277 
278   i_from = (from == 0) ? from : from - 1;
279 
280   /* delete n pointers starting from `from' position in CUR;
281      delete n keys starting from 'i_from' position in CUR;
282      */
283   internal_delete_pointers_items (cur_bi, from, i_from, n);
284 }
285 
286 
287 /* copy cpy_num node pointers and cpy_num - 1 items from buffer src to buffer dest
288 * last_first == FIRST_TO_LAST means, that we copy first items from src to tail of dest
289  * last_first == LAST_TO_FIRST means, that we copy last items from src to head of dest
290  */
291 static void internal_copy_pointers_items (
292 					  struct buffer_info * dest_bi,
293 					  struct buffer_head * src,
294 					  int last_first, int cpy_num
295 					  )
296 {
297   /* ATTENTION! Number of node pointers in DEST is equal to number of items in DEST *
298    * as delimiting key have already inserted to buffer dest.*/
299   struct buffer_head * dest = dest_bi->bi_bh;
300   int nr_dest, nr_src;
301   int dest_order, src_order;
302   struct block_head * blkh;
303   struct reiserfs_key * key;
304   struct disk_child * dc;
305 
306   nr_src = B_NR_ITEMS (src);
307 
308   RFALSE( dest == NULL || src == NULL,
309 	  "src (%p) or dest (%p) buffer is 0", src, dest);
310   RFALSE( last_first != FIRST_TO_LAST && last_first != LAST_TO_FIRST,
311 	  "invalid last_first parameter (%d)", last_first);
312   RFALSE( nr_src < cpy_num - 1,
313 	  "no so many items (%d) in src (%d)", cpy_num, nr_src);
314   RFALSE( cpy_num < 0, "cpy_num less than 0 (%d)", cpy_num);
315   RFALSE( cpy_num - 1 + B_NR_ITEMS(dest) > (int)MAX_NR_KEY(dest),
316 	  "cpy_num (%d) + item number in dest (%d) can not be > MAX_NR_KEY(%d)",
317 	  cpy_num, B_NR_ITEMS(dest), MAX_NR_KEY(dest));
318 
319   if ( cpy_num == 0 )
320     return;
321 
322 	/* coping */
323   blkh = B_BLK_HEAD(dest);
324   nr_dest = blkh_nr_item(blkh);
325 
326   /*dest_order = (last_first == LAST_TO_FIRST) ? 0 : nr_dest;*/
327   /*src_order = (last_first == LAST_TO_FIRST) ? (nr_src - cpy_num + 1) : 0;*/
328   (last_first == LAST_TO_FIRST) ?	(dest_order = 0, src_order = nr_src - cpy_num + 1) :
329     (dest_order = nr_dest, src_order = 0);
330 
331   /* prepare space for cpy_num pointers */
332   dc = B_N_CHILD (dest, dest_order);
333 
334   memmove (dc + cpy_num, dc, (nr_dest - dest_order) * DC_SIZE);
335 
336 	/* insert pointers */
337   memcpy (dc, B_N_CHILD (src, src_order), DC_SIZE * cpy_num);
338 
339 
340   /* prepare space for cpy_num - 1 item headers */
341   key = B_N_PDELIM_KEY(dest, dest_order);
342   memmove (key + cpy_num - 1, key,
343 	   KEY_SIZE * (nr_dest - dest_order) + DC_SIZE * (nr_dest + cpy_num));
344 
345 
346   /* insert headers */
347   memcpy (key, B_N_PDELIM_KEY (src, src_order), KEY_SIZE * (cpy_num - 1));
348 
349   /* sizes, item number */
350   set_blkh_nr_item( blkh, blkh_nr_item(blkh) + (cpy_num - 1 ) );
351   set_blkh_free_space( blkh,
352       blkh_free_space(blkh) - (KEY_SIZE * (cpy_num - 1) + DC_SIZE * cpy_num ) );
353 
354   do_balance_mark_internal_dirty (dest_bi->tb, dest, 0);
355 
356   /*&&&&&&&&&&&&&&&&&&&&&&&&*/
357   check_internal (dest);
358   /*&&&&&&&&&&&&&&&&&&&&&&&&*/
359 
360   if (dest_bi->bi_parent) {
361     struct disk_child *t_dc;
362     t_dc = B_N_CHILD(dest_bi->bi_parent,dest_bi->bi_position);
363     put_dc_size( t_dc, dc_size(t_dc) + (KEY_SIZE * (cpy_num - 1) + DC_SIZE * cpy_num) );
364 
365     do_balance_mark_internal_dirty (dest_bi->tb, dest_bi->bi_parent,0);
366     /*&&&&&&&&&&&&&&&&&&&&&&&&*/
367     check_internal (dest_bi->bi_parent);
368     /*&&&&&&&&&&&&&&&&&&&&&&&&*/
369   }
370 
371 }
372 
373 
374 /* Copy cpy_num node pointers and cpy_num - 1 items from buffer src to buffer dest.
375  * Delete cpy_num - del_par items and node pointers from buffer src.
376  * last_first == FIRST_TO_LAST means, that we copy/delete first items from src.
377  * last_first == LAST_TO_FIRST means, that we copy/delete last items from src.
378  */
379 static void internal_move_pointers_items (struct buffer_info * dest_bi,
380 					  struct buffer_info * src_bi,
381 					  int last_first, int cpy_num, int del_par)
382 {
383     int first_pointer;
384     int first_item;
385 
386     internal_copy_pointers_items (dest_bi, src_bi->bi_bh, last_first, cpy_num);
387 
388     if (last_first == FIRST_TO_LAST) {	/* shift_left occurs */
389 	first_pointer = 0;
390 	first_item = 0;
391 	/* delete cpy_num - del_par pointers and keys starting for pointers with first_pointer,
392 	   for key - with first_item */
393 	internal_delete_pointers_items (src_bi, first_pointer, first_item, cpy_num - del_par);
394     } else {			/* shift_right occurs */
395 	int i, j;
396 
397 	i = ( cpy_num - del_par == ( j = B_NR_ITEMS(src_bi->bi_bh)) + 1 ) ? 0 : j - cpy_num + del_par;
398 
399 	internal_delete_pointers_items (src_bi, j + 1 - cpy_num + del_par, i, cpy_num - del_par);
400     }
401 }
402 
403 /* Insert n_src'th key of buffer src before n_dest'th key of buffer dest. */
404 static void internal_insert_key (struct buffer_info * dest_bi,
405 				 int dest_position_before,                 /* insert key before key with n_dest number */
406 				 struct buffer_head * src,
407 				 int src_position)
408 {
409     struct buffer_head * dest = dest_bi->bi_bh;
410     int nr;
411     struct block_head * blkh;
412     struct reiserfs_key * key;
413 
414     RFALSE( dest == NULL || src == NULL,
415 	    "source(%p) or dest(%p) buffer is 0", src, dest);
416     RFALSE( dest_position_before < 0 || src_position < 0,
417 	    "source(%d) or dest(%d) key number less than 0",
418 	    src_position, dest_position_before);
419     RFALSE( dest_position_before > B_NR_ITEMS (dest) ||
420 	    src_position >= B_NR_ITEMS(src),
421 	    "invalid position in dest (%d (key number %d)) or in src (%d (key number %d))",
422 	    dest_position_before, B_NR_ITEMS (dest),
423 	    src_position, B_NR_ITEMS(src));
424     RFALSE( B_FREE_SPACE (dest) < KEY_SIZE,
425 	    "no enough free space (%d) in dest buffer", B_FREE_SPACE (dest));
426 
427     blkh = B_BLK_HEAD(dest);
428     nr = blkh_nr_item(blkh);
429 
430     /* prepare space for inserting key */
431     key = B_N_PDELIM_KEY (dest, dest_position_before);
432     memmove (key + 1, key, (nr - dest_position_before) * KEY_SIZE + (nr + 1) * DC_SIZE);
433 
434     /* insert key */
435     memcpy (key, B_N_PDELIM_KEY(src, src_position), KEY_SIZE);
436 
437     /* Change dirt, free space, item number fields. */
438 
439     set_blkh_nr_item( blkh, blkh_nr_item(blkh) + 1 );
440     set_blkh_free_space( blkh, blkh_free_space(blkh) - KEY_SIZE );
441 
442     do_balance_mark_internal_dirty (dest_bi->tb, dest, 0);
443 
444     if (dest_bi->bi_parent) {
445 	struct disk_child *t_dc;
446 	t_dc = B_N_CHILD(dest_bi->bi_parent,dest_bi->bi_position);
447 	put_dc_size( t_dc, dc_size(t_dc) + KEY_SIZE );
448 
449 	do_balance_mark_internal_dirty (dest_bi->tb, dest_bi->bi_parent,0);
450     }
451 }
452 
453 
454 
455 /* Insert d_key'th (delimiting) key from buffer cfl to tail of dest.
456  * Copy pointer_amount node pointers and pointer_amount - 1 items from buffer src to buffer dest.
457  * Replace  d_key'th key in buffer cfl.
458  * Delete pointer_amount items and node pointers from buffer src.
459  */
460 /* this can be invoked both to shift from S to L and from R to S */
461 static void	internal_shift_left (
462 				     int mode,	/* INTERNAL_FROM_S_TO_L | INTERNAL_FROM_R_TO_S */
463 				     struct tree_balance * tb,
464 				     int h,
465 				     int pointer_amount
466 				     )
467 {
468   struct buffer_info dest_bi, src_bi;
469   struct buffer_head * cf;
470   int d_key_position;
471 
472   internal_define_dest_src_infos (mode, tb, h, &dest_bi, &src_bi, &d_key_position, &cf);
473 
474   /*printk("pointer_amount = %d\n",pointer_amount);*/
475 
476   if (pointer_amount) {
477     /* insert delimiting key from common father of dest and src to node dest into position B_NR_ITEM(dest) */
478     internal_insert_key (&dest_bi, B_NR_ITEMS(dest_bi.bi_bh), cf, d_key_position);
479 
480     if (B_NR_ITEMS(src_bi.bi_bh) == pointer_amount - 1) {
481       if (src_bi.bi_position/*src->b_item_order*/ == 0)
482 	replace_key (tb, cf, d_key_position, src_bi.bi_parent/*src->b_parent*/, 0);
483     } else
484       replace_key (tb, cf, d_key_position, src_bi.bi_bh, pointer_amount - 1);
485   }
486   /* last parameter is del_parameter */
487   internal_move_pointers_items (&dest_bi, &src_bi, FIRST_TO_LAST, pointer_amount, 0);
488 
489 }
490 
491 /* Insert delimiting key to L[h].
492  * Copy n node pointers and n - 1 items from buffer S[h] to L[h].
493  * Delete n - 1 items and node pointers from buffer S[h].
494  */
495 /* it always shifts from S[h] to L[h] */
496 static void	internal_shift1_left (
497 				      struct tree_balance * tb,
498 				      int h,
499 				      int pointer_amount
500 				      )
501 {
502   struct buffer_info dest_bi, src_bi;
503   struct buffer_head * cf;
504   int d_key_position;
505 
506   internal_define_dest_src_infos (INTERNAL_SHIFT_FROM_S_TO_L, tb, h, &dest_bi, &src_bi, &d_key_position, &cf);
507 
508   if ( pointer_amount > 0 ) /* insert lkey[h]-th key  from CFL[h] to left neighbor L[h] */
509     internal_insert_key (&dest_bi, B_NR_ITEMS(dest_bi.bi_bh), cf, d_key_position);
510   /*		internal_insert_key (tb->L[h], B_NR_ITEM(tb->L[h]), tb->CFL[h], tb->lkey[h]);*/
511 
512   /* last parameter is del_parameter */
513   internal_move_pointers_items (&dest_bi, &src_bi, FIRST_TO_LAST, pointer_amount, 1);
514   /*	internal_move_pointers_items (tb->L[h], tb->S[h], FIRST_TO_LAST, pointer_amount, 1);*/
515 }
516 
517 
518 /* Insert d_key'th (delimiting) key from buffer cfr to head of dest.
519  * Copy n node pointers and n - 1 items from buffer src to buffer dest.
520  * Replace  d_key'th key in buffer cfr.
521  * Delete n items and node pointers from buffer src.
522  */
523 static void internal_shift_right (
524 				  int mode,	/* INTERNAL_FROM_S_TO_R | INTERNAL_FROM_L_TO_S */
525 				  struct tree_balance * tb,
526 				  int h,
527 				  int pointer_amount
528 				  )
529 {
530   struct buffer_info dest_bi, src_bi;
531   struct buffer_head * cf;
532   int d_key_position;
533   int nr;
534 
535 
536   internal_define_dest_src_infos (mode, tb, h, &dest_bi, &src_bi, &d_key_position, &cf);
537 
538   nr = B_NR_ITEMS (src_bi.bi_bh);
539 
540   if (pointer_amount > 0) {
541     /* insert delimiting key from common father of dest and src to dest node into position 0 */
542     internal_insert_key (&dest_bi, 0, cf, d_key_position);
543     if (nr == pointer_amount - 1) {
544 	 RFALSE( src_bi.bi_bh != PATH_H_PBUFFER (tb->tb_path, h)/*tb->S[h]*/ ||
545 		 dest_bi.bi_bh != tb->R[h],
546 		 "src (%p) must be == tb->S[h](%p) when it disappears",
547 		 src_bi.bi_bh, PATH_H_PBUFFER (tb->tb_path, h));
548       /* when S[h] disappers replace left delemiting key as well */
549       if (tb->CFL[h])
550 	replace_key (tb, cf, d_key_position, tb->CFL[h], tb->lkey[h]);
551     } else
552       replace_key (tb, cf, d_key_position, src_bi.bi_bh, nr - pointer_amount);
553   }
554 
555   /* last parameter is del_parameter */
556   internal_move_pointers_items (&dest_bi, &src_bi, LAST_TO_FIRST, pointer_amount, 0);
557 }
558 
559 /* Insert delimiting key to R[h].
560  * Copy n node pointers and n - 1 items from buffer S[h] to R[h].
561  * Delete n - 1 items and node pointers from buffer S[h].
562  */
563 /* it always shift from S[h] to R[h] */
564 static void	internal_shift1_right (
565 				       struct tree_balance * tb,
566 				       int h,
567 				       int pointer_amount
568 				       )
569 {
570   struct buffer_info dest_bi, src_bi;
571   struct buffer_head * cf;
572   int d_key_position;
573 
574   internal_define_dest_src_infos (INTERNAL_SHIFT_FROM_S_TO_R, tb, h, &dest_bi, &src_bi, &d_key_position, &cf);
575 
576   if (pointer_amount > 0) /* insert rkey from CFR[h] to right neighbor R[h] */
577     internal_insert_key (&dest_bi, 0, cf, d_key_position);
578   /*		internal_insert_key (tb->R[h], 0, tb->CFR[h], tb->rkey[h]);*/
579 
580   /* last parameter is del_parameter */
581   internal_move_pointers_items (&dest_bi, &src_bi, LAST_TO_FIRST, pointer_amount, 1);
582   /*	internal_move_pointers_items (tb->R[h], tb->S[h], LAST_TO_FIRST, pointer_amount, 1);*/
583 }
584 
585 
586 /* Delete insert_num node pointers together with their left items
587  * and balance current node.*/
588 static void balance_internal_when_delete (struct tree_balance * tb,
589 					  int h, int child_pos)
590 {
591     int insert_num;
592     int n;
593     struct buffer_head * tbSh = PATH_H_PBUFFER (tb->tb_path, h);
594     struct buffer_info bi;
595 
596     insert_num = tb->insert_size[h] / ((int)(DC_SIZE + KEY_SIZE));
597 
598     /* delete child-node-pointer(s) together with their left item(s) */
599     bi.tb = tb;
600     bi.bi_bh = tbSh;
601     bi.bi_parent = PATH_H_PPARENT (tb->tb_path, h);
602     bi.bi_position = PATH_H_POSITION (tb->tb_path, h + 1);
603 
604     internal_delete_childs (&bi, child_pos, -insert_num);
605 
606     RFALSE( tb->blknum[h] > 1,
607 	    "tb->blknum[%d]=%d when insert_size < 0", h, tb->blknum[h]);
608 
609     n = B_NR_ITEMS(tbSh);
610 
611     if ( tb->lnum[h] == 0 && tb->rnum[h] == 0 ) {
612 	if ( tb->blknum[h] == 0 ) {
613 	    /* node S[h] (root of the tree) is empty now */
614 	    struct buffer_head *new_root;
615 
616 	    RFALSE( n || B_FREE_SPACE (tbSh) != MAX_CHILD_SIZE(tbSh) - DC_SIZE,
617 		    "buffer must have only 0 keys (%d)", n);
618 	    RFALSE( bi.bi_parent, "root has parent (%p)", bi.bi_parent);
619 
620 	    /* choose a new root */
621 	    if ( ! tb->L[h-1] || ! B_NR_ITEMS(tb->L[h-1]) )
622 		new_root = tb->R[h-1];
623 	    else
624 		new_root = tb->L[h-1];
625 	    /* switch super block's tree root block number to the new value */
626             PUT_SB_ROOT_BLOCK( tb->tb_sb, new_root->b_blocknr );
627 	    //REISERFS_SB(tb->tb_sb)->s_rs->s_tree_height --;
628             PUT_SB_TREE_HEIGHT( tb->tb_sb, SB_TREE_HEIGHT(tb->tb_sb) - 1 );
629 
630 	    do_balance_mark_sb_dirty (tb, REISERFS_SB(tb->tb_sb)->s_sbh, 1);
631 	    /*&&&&&&&&&&&&&&&&&&&&&&*/
632 	    if (h > 1)
633 		/* use check_internal if new root is an internal node */
634 		check_internal (new_root);
635 	    /*&&&&&&&&&&&&&&&&&&&&&&*/
636 
637 	    /* do what is needed for buffer thrown from tree */
638 	    reiserfs_invalidate_buffer(tb, tbSh);
639 	    return;
640 	}
641 	return;
642     }
643 
644     if ( tb->L[h] && tb->lnum[h] == -B_NR_ITEMS(tb->L[h]) - 1 ) { /* join S[h] with L[h] */
645 
646 	RFALSE( tb->rnum[h] != 0,
647 		"invalid tb->rnum[%d]==%d when joining S[h] with L[h]",
648 		h, tb->rnum[h]);
649 
650 	internal_shift_left (INTERNAL_SHIFT_FROM_S_TO_L, tb, h, n + 1);
651 	reiserfs_invalidate_buffer(tb, tbSh);
652 
653 	return;
654     }
655 
656     if ( tb->R[h] &&  tb->rnum[h] == -B_NR_ITEMS(tb->R[h]) - 1 ) { /* join S[h] with R[h] */
657 	RFALSE( tb->lnum[h] != 0,
658 		"invalid tb->lnum[%d]==%d when joining S[h] with R[h]",
659 		h, tb->lnum[h]);
660 
661 	internal_shift_right (INTERNAL_SHIFT_FROM_S_TO_R, tb, h, n + 1);
662 
663 	reiserfs_invalidate_buffer(tb,tbSh);
664 	return;
665     }
666 
667     if ( tb->lnum[h] < 0 ) { /* borrow from left neighbor L[h] */
668 	RFALSE( tb->rnum[h] != 0,
669 		"wrong tb->rnum[%d]==%d when borrow from L[h]", h, tb->rnum[h]);
670 	/*internal_shift_right (tb, h, tb->L[h], tb->CFL[h], tb->lkey[h], tb->S[h], -tb->lnum[h]);*/
671 	internal_shift_right (INTERNAL_SHIFT_FROM_L_TO_S, tb, h, -tb->lnum[h]);
672 	return;
673     }
674 
675     if ( tb->rnum[h] < 0 ) { /* borrow from right neighbor R[h] */
676 	 RFALSE( tb->lnum[h] != 0,
677 		 "invalid tb->lnum[%d]==%d when borrow from R[h]",
678 		 h, tb->lnum[h]);
679 	internal_shift_left (INTERNAL_SHIFT_FROM_R_TO_S, tb, h, -tb->rnum[h]);/*tb->S[h], tb->CFR[h], tb->rkey[h], tb->R[h], -tb->rnum[h]);*/
680 	return;
681     }
682 
683     if ( tb->lnum[h] > 0 ) { /* split S[h] into two parts and put them into neighbors */
684 	RFALSE( tb->rnum[h] == 0 || tb->lnum[h] + tb->rnum[h] != n + 1,
685 		"invalid tb->lnum[%d]==%d or tb->rnum[%d]==%d when S[h](item number == %d) is split between them",
686 		h, tb->lnum[h], h, tb->rnum[h], n);
687 
688 	internal_shift_left (INTERNAL_SHIFT_FROM_S_TO_L, tb, h, tb->lnum[h]);/*tb->L[h], tb->CFL[h], tb->lkey[h], tb->S[h], tb->lnum[h]);*/
689 	internal_shift_right (INTERNAL_SHIFT_FROM_S_TO_R, tb, h, tb->rnum[h]);
690 
691 	reiserfs_invalidate_buffer (tb, tbSh);
692 
693 	return;
694     }
695     reiserfs_panic (tb->tb_sb, "balance_internal_when_delete: unexpected tb->lnum[%d]==%d or tb->rnum[%d]==%d",
696 		    h, tb->lnum[h], h, tb->rnum[h]);
697 }
698 
699 
700 /* Replace delimiting key of buffers L[h] and S[h] by the given key.*/
701 static void replace_lkey (
702 		      struct tree_balance * tb,
703 		      int h,
704 		      struct item_head * key
705 		      )
706 {
707    RFALSE( tb->L[h] == NULL || tb->CFL[h] == NULL,
708 	   "L[h](%p) and CFL[h](%p) must exist in replace_lkey",
709 	   tb->L[h], tb->CFL[h]);
710 
711   if (B_NR_ITEMS(PATH_H_PBUFFER(tb->tb_path, h)) == 0)
712     return;
713 
714   memcpy (B_N_PDELIM_KEY(tb->CFL[h],tb->lkey[h]), key, KEY_SIZE);
715 
716   do_balance_mark_internal_dirty (tb, tb->CFL[h],0);
717 }
718 
719 
720 /* Replace delimiting key of buffers S[h] and R[h] by the given key.*/
721 static void replace_rkey (
722 		      struct tree_balance * tb,
723 		      int h,
724 		      struct item_head * key
725 		      )
726 {
727   RFALSE( tb->R[h] == NULL || tb->CFR[h] == NULL,
728 	  "R[h](%p) and CFR[h](%p) must exist in replace_rkey",
729 	  tb->R[h], tb->CFR[h]);
730   RFALSE( B_NR_ITEMS(tb->R[h]) == 0,
731 	  "R[h] can not be empty if it exists (item number=%d)",
732 	  B_NR_ITEMS(tb->R[h]));
733 
734   memcpy (B_N_PDELIM_KEY(tb->CFR[h],tb->rkey[h]), key, KEY_SIZE);
735 
736   do_balance_mark_internal_dirty (tb, tb->CFR[h], 0);
737 }
738 
739 
740 int balance_internal (struct tree_balance * tb,			/* tree_balance structure 		*/
741 		      int h,					/* level of the tree 			*/
742 		      int child_pos,
743 		      struct item_head * insert_key,		/* key for insertion on higher level   	*/
744 		      struct buffer_head ** insert_ptr	/* node for insertion on higher level*/
745     )
746     /* if inserting/pasting
747        {
748        child_pos is the position of the node-pointer in S[h] that	 *
749        pointed to S[h-1] before balancing of the h-1 level;		 *
750        this means that new pointers and items must be inserted AFTER *
751        child_pos
752        }
753        else
754        {
755    it is the position of the leftmost pointer that must be deleted (together with
756    its corresponding key to the left of the pointer)
757    as a result of the previous level's balancing.
758    }
759 */
760 {
761     struct buffer_head * tbSh = PATH_H_PBUFFER (tb->tb_path, h);
762     struct buffer_info bi;
763     int order;		/* we return this: it is 0 if there is no S[h], else it is tb->S[h]->b_item_order */
764     int insert_num, n, k;
765     struct buffer_head * S_new;
766     struct item_head new_insert_key;
767     struct buffer_head * new_insert_ptr = NULL;
768     struct item_head * new_insert_key_addr = insert_key;
769 
770     RFALSE( h < 1, "h (%d) can not be < 1 on internal level", h);
771 
772     PROC_INFO_INC( tb -> tb_sb, balance_at[ h ] );
773 
774     order = ( tbSh ) ? PATH_H_POSITION (tb->tb_path, h + 1)/*tb->S[h]->b_item_order*/ : 0;
775 
776   /* Using insert_size[h] calculate the number insert_num of items
777      that must be inserted to or deleted from S[h]. */
778     insert_num = tb->insert_size[h]/((int)(KEY_SIZE + DC_SIZE));
779 
780     /* Check whether insert_num is proper **/
781     RFALSE( insert_num < -2  ||  insert_num > 2,
782 	    "incorrect number of items inserted to the internal node (%d)",
783 	    insert_num);
784     RFALSE( h > 1  && (insert_num > 1 || insert_num < -1),
785 	    "incorrect number of items (%d) inserted to the internal node on a level (h=%d) higher than last internal level",
786 	    insert_num, h);
787 
788     /* Make balance in case insert_num < 0 */
789     if ( insert_num < 0 ) {
790 	balance_internal_when_delete (tb, h, child_pos);
791 	return order;
792     }
793 
794     k = 0;
795     if ( tb->lnum[h] > 0 ) {
796 	/* shift lnum[h] items from S[h] to the left neighbor L[h].
797 	   check how many of new items fall into L[h] or CFL[h] after
798 	   shifting */
799 	n = B_NR_ITEMS (tb->L[h]); /* number of items in L[h] */
800 	if ( tb->lnum[h] <= child_pos ) {
801 	    /* new items don't fall into L[h] or CFL[h] */
802 	    internal_shift_left (INTERNAL_SHIFT_FROM_S_TO_L, tb, h, tb->lnum[h]);
803 	    /*internal_shift_left (tb->L[h],tb->CFL[h],tb->lkey[h],tbSh,tb->lnum[h]);*/
804 	    child_pos -= tb->lnum[h];
805 	} else if ( tb->lnum[h] > child_pos + insert_num ) {
806 	    /* all new items fall into L[h] */
807 	    internal_shift_left (INTERNAL_SHIFT_FROM_S_TO_L, tb, h, tb->lnum[h] - insert_num);
808 	    /*			internal_shift_left(tb->L[h],tb->CFL[h],tb->lkey[h],tbSh,
809 				tb->lnum[h]-insert_num);
810 	    */
811 	    /* insert insert_num keys and node-pointers into L[h] */
812 	    bi.tb = tb;
813 	    bi.bi_bh = tb->L[h];
814 	    bi.bi_parent = tb->FL[h];
815 	    bi.bi_position = get_left_neighbor_position (tb, h);
816 	    internal_insert_childs (&bi,/*tb->L[h], tb->S[h-1]->b_next*/ n + child_pos + 1,
817 				    insert_num,insert_key,insert_ptr);
818 
819 	    insert_num = 0;
820 	} else {
821 	    struct disk_child * dc;
822 
823 	    /* some items fall into L[h] or CFL[h], but some don't fall */
824 	    internal_shift1_left(tb,h,child_pos+1);
825 	    /* calculate number of new items that fall into L[h] */
826 	    k = tb->lnum[h] - child_pos - 1;
827 	    bi.tb = tb;
828 	    bi.bi_bh = tb->L[h];
829 	    bi.bi_parent = tb->FL[h];
830 	    bi.bi_position = get_left_neighbor_position (tb, h);
831 	    internal_insert_childs (&bi,/*tb->L[h], tb->S[h-1]->b_next,*/ n + child_pos + 1,k,
832 				    insert_key,insert_ptr);
833 
834 	    replace_lkey(tb,h,insert_key + k);
835 
836 	    /* replace the first node-ptr in S[h] by node-ptr to insert_ptr[k] */
837 	    dc = B_N_CHILD(tbSh, 0);
838 	    put_dc_size( dc, MAX_CHILD_SIZE(insert_ptr[k]) - B_FREE_SPACE (insert_ptr[k]));
839 	    put_dc_block_number( dc, insert_ptr[k]->b_blocknr );
840 
841 	    do_balance_mark_internal_dirty (tb, tbSh, 0);
842 
843 	    k++;
844 	    insert_key += k;
845 	    insert_ptr += k;
846 	    insert_num -= k;
847 	    child_pos = 0;
848 	}
849     }	/* tb->lnum[h] > 0 */
850 
851     if ( tb->rnum[h] > 0 ) {
852 	/*shift rnum[h] items from S[h] to the right neighbor R[h]*/
853 	/* check how many of new items fall into R or CFR after shifting */
854 	n = B_NR_ITEMS (tbSh); /* number of items in S[h] */
855 	if ( n - tb->rnum[h] >= child_pos )
856 	    /* new items fall into S[h] */
857 	    /*internal_shift_right(tb,h,tbSh,tb->CFR[h],tb->rkey[h],tb->R[h],tb->rnum[h]);*/
858 	    internal_shift_right (INTERNAL_SHIFT_FROM_S_TO_R, tb, h, tb->rnum[h]);
859 	else
860 	    if ( n + insert_num - tb->rnum[h] < child_pos )
861 	    {
862 		/* all new items fall into R[h] */
863 		/*internal_shift_right(tb,h,tbSh,tb->CFR[h],tb->rkey[h],tb->R[h],
864 	    tb->rnum[h] - insert_num);*/
865 		internal_shift_right (INTERNAL_SHIFT_FROM_S_TO_R, tb, h, tb->rnum[h] - insert_num);
866 
867 		/* insert insert_num keys and node-pointers into R[h] */
868 		bi.tb = tb;
869 		bi.bi_bh = tb->R[h];
870 		bi.bi_parent = tb->FR[h];
871 		bi.bi_position = get_right_neighbor_position (tb, h);
872 		internal_insert_childs (&bi, /*tb->R[h],tb->S[h-1]->b_next*/ child_pos - n - insert_num + tb->rnum[h] - 1,
873 					insert_num,insert_key,insert_ptr);
874 		insert_num = 0;
875 	    }
876 	    else
877 	    {
878 		struct disk_child * dc;
879 
880 		/* one of the items falls into CFR[h] */
881 		internal_shift1_right(tb,h,n - child_pos + 1);
882 		/* calculate number of new items that fall into R[h] */
883 		k = tb->rnum[h] - n + child_pos - 1;
884 		bi.tb = tb;
885 		bi.bi_bh = tb->R[h];
886 		bi.bi_parent = tb->FR[h];
887 		bi.bi_position = get_right_neighbor_position (tb, h);
888 		internal_insert_childs (&bi, /*tb->R[h], tb->R[h]->b_child,*/ 0, k, insert_key + 1, insert_ptr + 1);
889 
890 		replace_rkey(tb,h,insert_key + insert_num - k - 1);
891 
892 		/* replace the first node-ptr in R[h] by node-ptr insert_ptr[insert_num-k-1]*/
893 		dc = B_N_CHILD(tb->R[h], 0);
894 		put_dc_size( dc, MAX_CHILD_SIZE(insert_ptr[insert_num-k-1]) -
895     				    B_FREE_SPACE (insert_ptr[insert_num-k-1]));
896 		put_dc_block_number( dc, insert_ptr[insert_num-k-1]->b_blocknr );
897 
898 		do_balance_mark_internal_dirty (tb, tb->R[h],0);
899 
900 		insert_num -= (k + 1);
901 	    }
902     }
903 
904     /** Fill new node that appears instead of S[h] **/
905     RFALSE( tb->blknum[h] > 2, "blknum can not be > 2 for internal level");
906     RFALSE( tb->blknum[h] < 0, "blknum can not be < 0");
907 
908     if ( ! tb->blknum[h] )
909     { /* node S[h] is empty now */
910 	RFALSE( ! tbSh, "S[h] is equal NULL");
911 
912 	/* do what is needed for buffer thrown from tree */
913 	reiserfs_invalidate_buffer(tb,tbSh);
914 	return order;
915     }
916 
917     if ( ! tbSh ) {
918 	/* create new root */
919 	struct disk_child  * dc;
920 	struct buffer_head * tbSh_1 = PATH_H_PBUFFER (tb->tb_path, h - 1);
921         struct block_head *  blkh;
922 
923 
924 	if ( tb->blknum[h] != 1 )
925 	    reiserfs_panic(NULL, "balance_internal: One new node required for creating the new root");
926 	/* S[h] = empty buffer from the list FEB. */
927 	tbSh = get_FEB (tb);
928         blkh = B_BLK_HEAD(tbSh);
929         set_blkh_level( blkh, h + 1 );
930 
931 	/* Put the unique node-pointer to S[h] that points to S[h-1]. */
932 
933 	dc = B_N_CHILD(tbSh, 0);
934 	put_dc_block_number( dc, tbSh_1->b_blocknr );
935 	put_dc_size( dc, (MAX_CHILD_SIZE (tbSh_1) - B_FREE_SPACE (tbSh_1)));
936 
937 	tb->insert_size[h] -= DC_SIZE;
938         set_blkh_free_space( blkh, blkh_free_space(blkh) - DC_SIZE );
939 
940 	do_balance_mark_internal_dirty (tb, tbSh, 0);
941 
942 	/*&&&&&&&&&&&&&&&&&&&&&&&&*/
943 	check_internal (tbSh);
944 	/*&&&&&&&&&&&&&&&&&&&&&&&&*/
945 
946     /* put new root into path structure */
947 	PATH_OFFSET_PBUFFER(tb->tb_path, ILLEGAL_PATH_ELEMENT_OFFSET) = tbSh;
948 
949 	/* Change root in structure super block. */
950         PUT_SB_ROOT_BLOCK( tb->tb_sb, tbSh->b_blocknr );
951         PUT_SB_TREE_HEIGHT( tb->tb_sb, SB_TREE_HEIGHT(tb->tb_sb) + 1 );
952 	do_balance_mark_sb_dirty (tb, REISERFS_SB(tb->tb_sb)->s_sbh, 1);
953     }
954 
955     if ( tb->blknum[h] == 2 ) {
956 	int snum;
957 	struct buffer_info dest_bi, src_bi;
958 
959 
960 	/* S_new = free buffer from list FEB */
961 	S_new = get_FEB(tb);
962 
963         set_blkh_level( B_BLK_HEAD(S_new), h + 1 );
964 
965 	dest_bi.tb = tb;
966 	dest_bi.bi_bh = S_new;
967 	dest_bi.bi_parent = NULL;
968 	dest_bi.bi_position = 0;
969 	src_bi.tb = tb;
970 	src_bi.bi_bh = tbSh;
971 	src_bi.bi_parent = PATH_H_PPARENT (tb->tb_path, h);
972 	src_bi.bi_position = PATH_H_POSITION (tb->tb_path, h + 1);
973 
974 	n = B_NR_ITEMS (tbSh); /* number of items in S[h] */
975 	snum = (insert_num + n + 1)/2;
976 	if ( n - snum >= child_pos ) {
977 	    /* new items don't fall into S_new */
978 	    /*	store the delimiting key for the next level */
979 	    /* new_insert_key = (n - snum)'th key in S[h] */
980 	    memcpy (&new_insert_key,B_N_PDELIM_KEY(tbSh,n - snum),
981 		    KEY_SIZE);
982 	    /* last parameter is del_par */
983 	    internal_move_pointers_items (&dest_bi, &src_bi, LAST_TO_FIRST, snum, 0);
984 	    /*            internal_move_pointers_items(S_new, tbSh, LAST_TO_FIRST, snum, 0);*/
985 	} else if ( n + insert_num - snum < child_pos ) {
986 	    /* all new items fall into S_new */
987 	    /*	store the delimiting key for the next level */
988 	    /* new_insert_key = (n + insert_item - snum)'th key in S[h] */
989 	    memcpy(&new_insert_key,B_N_PDELIM_KEY(tbSh,n + insert_num - snum),
990 		   KEY_SIZE);
991 	    /* last parameter is del_par */
992 	    internal_move_pointers_items (&dest_bi, &src_bi, LAST_TO_FIRST, snum - insert_num, 0);
993 	    /*			internal_move_pointers_items(S_new,tbSh,1,snum - insert_num,0);*/
994 
995 	    /* insert insert_num keys and node-pointers into S_new */
996 	    internal_insert_childs (&dest_bi, /*S_new,tb->S[h-1]->b_next,*/child_pos - n - insert_num + snum - 1,
997 				    insert_num,insert_key,insert_ptr);
998 
999 	    insert_num = 0;
1000 	} else {
1001 	    struct disk_child * dc;
1002 
1003 	    /* some items fall into S_new, but some don't fall */
1004 	    /* last parameter is del_par */
1005 	    internal_move_pointers_items (&dest_bi, &src_bi, LAST_TO_FIRST, n - child_pos + 1, 1);
1006 	    /*			internal_move_pointers_items(S_new,tbSh,1,n - child_pos + 1,1);*/
1007 	    /* calculate number of new items that fall into S_new */
1008 	    k = snum - n + child_pos - 1;
1009 
1010 	    internal_insert_childs (&dest_bi, /*S_new,*/ 0, k, insert_key + 1, insert_ptr+1);
1011 
1012 	    /* new_insert_key = insert_key[insert_num - k - 1] */
1013 	    memcpy(&new_insert_key,insert_key + insert_num - k - 1,
1014 		   KEY_SIZE);
1015 	    /* replace first node-ptr in S_new by node-ptr to insert_ptr[insert_num-k-1] */
1016 
1017 	    dc = B_N_CHILD(S_new,0);
1018 	    put_dc_size( dc, (MAX_CHILD_SIZE(insert_ptr[insert_num-k-1]) -
1019 				B_FREE_SPACE(insert_ptr[insert_num-k-1])) );
1020 	    put_dc_block_number( dc, insert_ptr[insert_num-k-1]->b_blocknr );
1021 
1022 	    do_balance_mark_internal_dirty (tb, S_new,0);
1023 
1024 	    insert_num -= (k + 1);
1025 	}
1026 	/* new_insert_ptr = node_pointer to S_new */
1027 	new_insert_ptr = S_new;
1028 
1029 	RFALSE (!buffer_journaled(S_new) || buffer_journal_dirty(S_new) ||
1030 		buffer_dirty (S_new),
1031 		"cm-00001: bad S_new (%b)", S_new);
1032 
1033 	// S_new is released in unfix_nodes
1034     }
1035 
1036     n = B_NR_ITEMS (tbSh); /*number of items in S[h] */
1037 
1038 	if ( 0 <= child_pos && child_pos <= n && insert_num > 0 ) {
1039 	    bi.tb = tb;
1040 	    bi.bi_bh = tbSh;
1041 	    bi.bi_parent = PATH_H_PPARENT (tb->tb_path, h);
1042 	    bi.bi_position = PATH_H_POSITION (tb->tb_path, h + 1);
1043 		internal_insert_childs (
1044 		    &bi,/*tbSh,*/
1045 		    /*		( tb->S[h-1]->b_parent == tb->S[h] ) ? tb->S[h-1]->b_next :  tb->S[h]->b_child->b_next,*/
1046 		    child_pos,insert_num,insert_key,insert_ptr
1047 		    );
1048 	}
1049 
1050 
1051 	memcpy (new_insert_key_addr,&new_insert_key,KEY_SIZE);
1052 	insert_ptr[0] = new_insert_ptr;
1053 
1054 	return order;
1055     }
1056 
1057 
1058 
1059