1 /* 2 * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README 3 */ 4 5 #include <linux/config.h> 6 #include <asm/uaccess.h> 7 #include <linux/string.h> 8 #include <linux/time.h> 9 #include <linux/reiserfs_fs.h> 10 #include <linux/buffer_head.h> 11 12 /* this is one and only function that is used outside (do_balance.c) */ 13 int balance_internal ( 14 struct tree_balance * , 15 int, 16 int, 17 struct item_head * , 18 struct buffer_head ** 19 ); 20 21 /* modes of internal_shift_left, internal_shift_right and internal_insert_childs */ 22 #define INTERNAL_SHIFT_FROM_S_TO_L 0 23 #define INTERNAL_SHIFT_FROM_R_TO_S 1 24 #define INTERNAL_SHIFT_FROM_L_TO_S 2 25 #define INTERNAL_SHIFT_FROM_S_TO_R 3 26 #define INTERNAL_INSERT_TO_S 4 27 #define INTERNAL_INSERT_TO_L 5 28 #define INTERNAL_INSERT_TO_R 6 29 30 static void internal_define_dest_src_infos ( 31 int shift_mode, 32 struct tree_balance * tb, 33 int h, 34 struct buffer_info * dest_bi, 35 struct buffer_info * src_bi, 36 int * d_key, 37 struct buffer_head ** cf 38 ) 39 { 40 memset (dest_bi, 0, sizeof (struct buffer_info)); 41 memset (src_bi, 0, sizeof (struct buffer_info)); 42 /* define dest, src, dest parent, dest position */ 43 switch (shift_mode) { 44 case INTERNAL_SHIFT_FROM_S_TO_L: /* used in internal_shift_left */ 45 src_bi->tb = tb; 46 src_bi->bi_bh = PATH_H_PBUFFER (tb->tb_path, h); 47 src_bi->bi_parent = PATH_H_PPARENT (tb->tb_path, h); 48 src_bi->bi_position = PATH_H_POSITION (tb->tb_path, h + 1); 49 dest_bi->tb = tb; 50 dest_bi->bi_bh = tb->L[h]; 51 dest_bi->bi_parent = tb->FL[h]; 52 dest_bi->bi_position = get_left_neighbor_position (tb, h); 53 *d_key = tb->lkey[h]; 54 *cf = tb->CFL[h]; 55 break; 56 case INTERNAL_SHIFT_FROM_L_TO_S: 57 src_bi->tb = tb; 58 src_bi->bi_bh = tb->L[h]; 59 src_bi->bi_parent = tb->FL[h]; 60 src_bi->bi_position = get_left_neighbor_position (tb, h); 61 dest_bi->tb = tb; 62 dest_bi->bi_bh = PATH_H_PBUFFER (tb->tb_path, h); 63 dest_bi->bi_parent = PATH_H_PPARENT (tb->tb_path, h); 64 dest_bi->bi_position = PATH_H_POSITION (tb->tb_path, h + 1); /* dest position is analog of dest->b_item_order */ 65 *d_key = tb->lkey[h]; 66 *cf = tb->CFL[h]; 67 break; 68 69 case INTERNAL_SHIFT_FROM_R_TO_S: /* used in internal_shift_left */ 70 src_bi->tb = tb; 71 src_bi->bi_bh = tb->R[h]; 72 src_bi->bi_parent = tb->FR[h]; 73 src_bi->bi_position = get_right_neighbor_position (tb, h); 74 dest_bi->tb = tb; 75 dest_bi->bi_bh = PATH_H_PBUFFER (tb->tb_path, h); 76 dest_bi->bi_parent = PATH_H_PPARENT (tb->tb_path, h); 77 dest_bi->bi_position = PATH_H_POSITION (tb->tb_path, h + 1); 78 *d_key = tb->rkey[h]; 79 *cf = tb->CFR[h]; 80 break; 81 82 case INTERNAL_SHIFT_FROM_S_TO_R: 83 src_bi->tb = tb; 84 src_bi->bi_bh = PATH_H_PBUFFER (tb->tb_path, h); 85 src_bi->bi_parent = PATH_H_PPARENT (tb->tb_path, h); 86 src_bi->bi_position = PATH_H_POSITION (tb->tb_path, h + 1); 87 dest_bi->tb = tb; 88 dest_bi->bi_bh = tb->R[h]; 89 dest_bi->bi_parent = tb->FR[h]; 90 dest_bi->bi_position = get_right_neighbor_position (tb, h); 91 *d_key = tb->rkey[h]; 92 *cf = tb->CFR[h]; 93 break; 94 95 case INTERNAL_INSERT_TO_L: 96 dest_bi->tb = tb; 97 dest_bi->bi_bh = tb->L[h]; 98 dest_bi->bi_parent = tb->FL[h]; 99 dest_bi->bi_position = get_left_neighbor_position (tb, h); 100 break; 101 102 case INTERNAL_INSERT_TO_S: 103 dest_bi->tb = tb; 104 dest_bi->bi_bh = PATH_H_PBUFFER (tb->tb_path, h); 105 dest_bi->bi_parent = PATH_H_PPARENT (tb->tb_path, h); 106 dest_bi->bi_position = PATH_H_POSITION (tb->tb_path, h + 1); 107 break; 108 109 case INTERNAL_INSERT_TO_R: 110 dest_bi->tb = tb; 111 dest_bi->bi_bh = tb->R[h]; 112 dest_bi->bi_parent = tb->FR[h]; 113 dest_bi->bi_position = get_right_neighbor_position (tb, h); 114 break; 115 116 default: 117 reiserfs_panic (tb->tb_sb, "internal_define_dest_src_infos: shift type is unknown (%d)", shift_mode); 118 } 119 } 120 121 122 123 /* Insert count node pointers into buffer cur before position to + 1. 124 * Insert count items into buffer cur before position to. 125 * Items and node pointers are specified by inserted and bh respectively. 126 */ 127 static void internal_insert_childs (struct buffer_info * cur_bi, 128 int to, int count, 129 struct item_head * inserted, 130 struct buffer_head ** bh 131 ) 132 { 133 struct buffer_head * cur = cur_bi->bi_bh; 134 struct block_head * blkh; 135 int nr; 136 struct reiserfs_key * ih; 137 struct disk_child new_dc[2]; 138 struct disk_child * dc; 139 int i; 140 141 if (count <= 0) 142 return; 143 144 blkh = B_BLK_HEAD(cur); 145 nr = blkh_nr_item(blkh); 146 147 RFALSE( count > 2, 148 "too many children (%d) are to be inserted", count); 149 RFALSE( B_FREE_SPACE (cur) < count * (KEY_SIZE + DC_SIZE), 150 "no enough free space (%d), needed %d bytes", 151 B_FREE_SPACE (cur), count * (KEY_SIZE + DC_SIZE)); 152 153 /* prepare space for count disk_child */ 154 dc = B_N_CHILD(cur,to+1); 155 156 memmove (dc + count, dc, (nr+1-(to+1)) * DC_SIZE); 157 158 /* copy to_be_insert disk children */ 159 for (i = 0; i < count; i ++) { 160 put_dc_size( &(new_dc[i]), MAX_CHILD_SIZE(bh[i]) - B_FREE_SPACE(bh[i])); 161 put_dc_block_number( &(new_dc[i]), bh[i]->b_blocknr ); 162 } 163 memcpy (dc, new_dc, DC_SIZE * count); 164 165 166 /* prepare space for count items */ 167 ih = B_N_PDELIM_KEY (cur, ((to == -1) ? 0 : to)); 168 169 memmove (ih + count, ih, (nr - to) * KEY_SIZE + (nr + 1 + count) * DC_SIZE); 170 171 /* copy item headers (keys) */ 172 memcpy (ih, inserted, KEY_SIZE); 173 if ( count > 1 ) 174 memcpy (ih + 1, inserted + 1, KEY_SIZE); 175 176 /* sizes, item number */ 177 set_blkh_nr_item( blkh, blkh_nr_item(blkh) + count ); 178 set_blkh_free_space( blkh, 179 blkh_free_space(blkh) - count * (DC_SIZE + KEY_SIZE ) ); 180 181 do_balance_mark_internal_dirty (cur_bi->tb, cur,0); 182 183 /*&&&&&&&&&&&&&&&&&&&&&&&&*/ 184 check_internal (cur); 185 /*&&&&&&&&&&&&&&&&&&&&&&&&*/ 186 187 if (cur_bi->bi_parent) { 188 struct disk_child *t_dc = B_N_CHILD (cur_bi->bi_parent,cur_bi->bi_position); 189 put_dc_size( t_dc, dc_size(t_dc) + (count * (DC_SIZE + KEY_SIZE))); 190 do_balance_mark_internal_dirty(cur_bi->tb, cur_bi->bi_parent, 0); 191 192 /*&&&&&&&&&&&&&&&&&&&&&&&&*/ 193 check_internal (cur_bi->bi_parent); 194 /*&&&&&&&&&&&&&&&&&&&&&&&&*/ 195 } 196 197 } 198 199 200 /* Delete del_num items and node pointers from buffer cur starting from * 201 * the first_i'th item and first_p'th pointers respectively. */ 202 static void internal_delete_pointers_items ( 203 struct buffer_info * cur_bi, 204 int first_p, 205 int first_i, 206 int del_num 207 ) 208 { 209 struct buffer_head * cur = cur_bi->bi_bh; 210 int nr; 211 struct block_head * blkh; 212 struct reiserfs_key * key; 213 struct disk_child * dc; 214 215 RFALSE( cur == NULL, "buffer is 0"); 216 RFALSE( del_num < 0, 217 "negative number of items (%d) can not be deleted", del_num); 218 RFALSE( first_p < 0 || first_p + del_num > B_NR_ITEMS (cur) + 1 || first_i < 0, 219 "first pointer order (%d) < 0 or " 220 "no so many pointers (%d), only (%d) or " 221 "first key order %d < 0", first_p, 222 first_p + del_num, B_NR_ITEMS (cur) + 1, first_i); 223 if ( del_num == 0 ) 224 return; 225 226 blkh = B_BLK_HEAD(cur); 227 nr = blkh_nr_item(blkh); 228 229 if ( first_p == 0 && del_num == nr + 1 ) { 230 RFALSE( first_i != 0, "1st deleted key must have order 0, not %d", first_i); 231 make_empty_node (cur_bi); 232 return; 233 } 234 235 RFALSE( first_i + del_num > B_NR_ITEMS (cur), 236 "first_i = %d del_num = %d " 237 "no so many keys (%d) in the node (%b)(%z)", 238 first_i, del_num, first_i + del_num, cur, cur); 239 240 241 /* deleting */ 242 dc = B_N_CHILD (cur, first_p); 243 244 memmove (dc, dc + del_num, (nr + 1 - first_p - del_num) * DC_SIZE); 245 key = B_N_PDELIM_KEY (cur, first_i); 246 memmove (key, key + del_num, (nr - first_i - del_num) * KEY_SIZE + (nr + 1 - del_num) * DC_SIZE); 247 248 249 /* sizes, item number */ 250 set_blkh_nr_item( blkh, blkh_nr_item(blkh) - del_num ); 251 set_blkh_free_space( blkh, 252 blkh_free_space(blkh) + (del_num * (KEY_SIZE + DC_SIZE) ) ); 253 254 do_balance_mark_internal_dirty (cur_bi->tb, cur, 0); 255 /*&&&&&&&&&&&&&&&&&&&&&&&*/ 256 check_internal (cur); 257 /*&&&&&&&&&&&&&&&&&&&&&&&*/ 258 259 if (cur_bi->bi_parent) { 260 struct disk_child *t_dc; 261 t_dc = B_N_CHILD (cur_bi->bi_parent, cur_bi->bi_position); 262 put_dc_size( t_dc, dc_size(t_dc) - (del_num * (KEY_SIZE + DC_SIZE) ) ); 263 264 do_balance_mark_internal_dirty (cur_bi->tb, cur_bi->bi_parent,0); 265 /*&&&&&&&&&&&&&&&&&&&&&&&&*/ 266 check_internal (cur_bi->bi_parent); 267 /*&&&&&&&&&&&&&&&&&&&&&&&&*/ 268 } 269 } 270 271 272 /* delete n node pointers and items starting from given position */ 273 static void internal_delete_childs (struct buffer_info * cur_bi, 274 int from, int n) 275 { 276 int i_from; 277 278 i_from = (from == 0) ? from : from - 1; 279 280 /* delete n pointers starting from `from' position in CUR; 281 delete n keys starting from 'i_from' position in CUR; 282 */ 283 internal_delete_pointers_items (cur_bi, from, i_from, n); 284 } 285 286 287 /* copy cpy_num node pointers and cpy_num - 1 items from buffer src to buffer dest 288 * last_first == FIRST_TO_LAST means, that we copy first items from src to tail of dest 289 * last_first == LAST_TO_FIRST means, that we copy last items from src to head of dest 290 */ 291 static void internal_copy_pointers_items ( 292 struct buffer_info * dest_bi, 293 struct buffer_head * src, 294 int last_first, int cpy_num 295 ) 296 { 297 /* ATTENTION! Number of node pointers in DEST is equal to number of items in DEST * 298 * as delimiting key have already inserted to buffer dest.*/ 299 struct buffer_head * dest = dest_bi->bi_bh; 300 int nr_dest, nr_src; 301 int dest_order, src_order; 302 struct block_head * blkh; 303 struct reiserfs_key * key; 304 struct disk_child * dc; 305 306 nr_src = B_NR_ITEMS (src); 307 308 RFALSE( dest == NULL || src == NULL, 309 "src (%p) or dest (%p) buffer is 0", src, dest); 310 RFALSE( last_first != FIRST_TO_LAST && last_first != LAST_TO_FIRST, 311 "invalid last_first parameter (%d)", last_first); 312 RFALSE( nr_src < cpy_num - 1, 313 "no so many items (%d) in src (%d)", cpy_num, nr_src); 314 RFALSE( cpy_num < 0, "cpy_num less than 0 (%d)", cpy_num); 315 RFALSE( cpy_num - 1 + B_NR_ITEMS(dest) > (int)MAX_NR_KEY(dest), 316 "cpy_num (%d) + item number in dest (%d) can not be > MAX_NR_KEY(%d)", 317 cpy_num, B_NR_ITEMS(dest), MAX_NR_KEY(dest)); 318 319 if ( cpy_num == 0 ) 320 return; 321 322 /* coping */ 323 blkh = B_BLK_HEAD(dest); 324 nr_dest = blkh_nr_item(blkh); 325 326 /*dest_order = (last_first == LAST_TO_FIRST) ? 0 : nr_dest;*/ 327 /*src_order = (last_first == LAST_TO_FIRST) ? (nr_src - cpy_num + 1) : 0;*/ 328 (last_first == LAST_TO_FIRST) ? (dest_order = 0, src_order = nr_src - cpy_num + 1) : 329 (dest_order = nr_dest, src_order = 0); 330 331 /* prepare space for cpy_num pointers */ 332 dc = B_N_CHILD (dest, dest_order); 333 334 memmove (dc + cpy_num, dc, (nr_dest - dest_order) * DC_SIZE); 335 336 /* insert pointers */ 337 memcpy (dc, B_N_CHILD (src, src_order), DC_SIZE * cpy_num); 338 339 340 /* prepare space for cpy_num - 1 item headers */ 341 key = B_N_PDELIM_KEY(dest, dest_order); 342 memmove (key + cpy_num - 1, key, 343 KEY_SIZE * (nr_dest - dest_order) + DC_SIZE * (nr_dest + cpy_num)); 344 345 346 /* insert headers */ 347 memcpy (key, B_N_PDELIM_KEY (src, src_order), KEY_SIZE * (cpy_num - 1)); 348 349 /* sizes, item number */ 350 set_blkh_nr_item( blkh, blkh_nr_item(blkh) + (cpy_num - 1 ) ); 351 set_blkh_free_space( blkh, 352 blkh_free_space(blkh) - (KEY_SIZE * (cpy_num - 1) + DC_SIZE * cpy_num ) ); 353 354 do_balance_mark_internal_dirty (dest_bi->tb, dest, 0); 355 356 /*&&&&&&&&&&&&&&&&&&&&&&&&*/ 357 check_internal (dest); 358 /*&&&&&&&&&&&&&&&&&&&&&&&&*/ 359 360 if (dest_bi->bi_parent) { 361 struct disk_child *t_dc; 362 t_dc = B_N_CHILD(dest_bi->bi_parent,dest_bi->bi_position); 363 put_dc_size( t_dc, dc_size(t_dc) + (KEY_SIZE * (cpy_num - 1) + DC_SIZE * cpy_num) ); 364 365 do_balance_mark_internal_dirty (dest_bi->tb, dest_bi->bi_parent,0); 366 /*&&&&&&&&&&&&&&&&&&&&&&&&*/ 367 check_internal (dest_bi->bi_parent); 368 /*&&&&&&&&&&&&&&&&&&&&&&&&*/ 369 } 370 371 } 372 373 374 /* Copy cpy_num node pointers and cpy_num - 1 items from buffer src to buffer dest. 375 * Delete cpy_num - del_par items and node pointers from buffer src. 376 * last_first == FIRST_TO_LAST means, that we copy/delete first items from src. 377 * last_first == LAST_TO_FIRST means, that we copy/delete last items from src. 378 */ 379 static void internal_move_pointers_items (struct buffer_info * dest_bi, 380 struct buffer_info * src_bi, 381 int last_first, int cpy_num, int del_par) 382 { 383 int first_pointer; 384 int first_item; 385 386 internal_copy_pointers_items (dest_bi, src_bi->bi_bh, last_first, cpy_num); 387 388 if (last_first == FIRST_TO_LAST) { /* shift_left occurs */ 389 first_pointer = 0; 390 first_item = 0; 391 /* delete cpy_num - del_par pointers and keys starting for pointers with first_pointer, 392 for key - with first_item */ 393 internal_delete_pointers_items (src_bi, first_pointer, first_item, cpy_num - del_par); 394 } else { /* shift_right occurs */ 395 int i, j; 396 397 i = ( cpy_num - del_par == ( j = B_NR_ITEMS(src_bi->bi_bh)) + 1 ) ? 0 : j - cpy_num + del_par; 398 399 internal_delete_pointers_items (src_bi, j + 1 - cpy_num + del_par, i, cpy_num - del_par); 400 } 401 } 402 403 /* Insert n_src'th key of buffer src before n_dest'th key of buffer dest. */ 404 static void internal_insert_key (struct buffer_info * dest_bi, 405 int dest_position_before, /* insert key before key with n_dest number */ 406 struct buffer_head * src, 407 int src_position) 408 { 409 struct buffer_head * dest = dest_bi->bi_bh; 410 int nr; 411 struct block_head * blkh; 412 struct reiserfs_key * key; 413 414 RFALSE( dest == NULL || src == NULL, 415 "source(%p) or dest(%p) buffer is 0", src, dest); 416 RFALSE( dest_position_before < 0 || src_position < 0, 417 "source(%d) or dest(%d) key number less than 0", 418 src_position, dest_position_before); 419 RFALSE( dest_position_before > B_NR_ITEMS (dest) || 420 src_position >= B_NR_ITEMS(src), 421 "invalid position in dest (%d (key number %d)) or in src (%d (key number %d))", 422 dest_position_before, B_NR_ITEMS (dest), 423 src_position, B_NR_ITEMS(src)); 424 RFALSE( B_FREE_SPACE (dest) < KEY_SIZE, 425 "no enough free space (%d) in dest buffer", B_FREE_SPACE (dest)); 426 427 blkh = B_BLK_HEAD(dest); 428 nr = blkh_nr_item(blkh); 429 430 /* prepare space for inserting key */ 431 key = B_N_PDELIM_KEY (dest, dest_position_before); 432 memmove (key + 1, key, (nr - dest_position_before) * KEY_SIZE + (nr + 1) * DC_SIZE); 433 434 /* insert key */ 435 memcpy (key, B_N_PDELIM_KEY(src, src_position), KEY_SIZE); 436 437 /* Change dirt, free space, item number fields. */ 438 439 set_blkh_nr_item( blkh, blkh_nr_item(blkh) + 1 ); 440 set_blkh_free_space( blkh, blkh_free_space(blkh) - KEY_SIZE ); 441 442 do_balance_mark_internal_dirty (dest_bi->tb, dest, 0); 443 444 if (dest_bi->bi_parent) { 445 struct disk_child *t_dc; 446 t_dc = B_N_CHILD(dest_bi->bi_parent,dest_bi->bi_position); 447 put_dc_size( t_dc, dc_size(t_dc) + KEY_SIZE ); 448 449 do_balance_mark_internal_dirty (dest_bi->tb, dest_bi->bi_parent,0); 450 } 451 } 452 453 454 455 /* Insert d_key'th (delimiting) key from buffer cfl to tail of dest. 456 * Copy pointer_amount node pointers and pointer_amount - 1 items from buffer src to buffer dest. 457 * Replace d_key'th key in buffer cfl. 458 * Delete pointer_amount items and node pointers from buffer src. 459 */ 460 /* this can be invoked both to shift from S to L and from R to S */ 461 static void internal_shift_left ( 462 int mode, /* INTERNAL_FROM_S_TO_L | INTERNAL_FROM_R_TO_S */ 463 struct tree_balance * tb, 464 int h, 465 int pointer_amount 466 ) 467 { 468 struct buffer_info dest_bi, src_bi; 469 struct buffer_head * cf; 470 int d_key_position; 471 472 internal_define_dest_src_infos (mode, tb, h, &dest_bi, &src_bi, &d_key_position, &cf); 473 474 /*printk("pointer_amount = %d\n",pointer_amount);*/ 475 476 if (pointer_amount) { 477 /* insert delimiting key from common father of dest and src to node dest into position B_NR_ITEM(dest) */ 478 internal_insert_key (&dest_bi, B_NR_ITEMS(dest_bi.bi_bh), cf, d_key_position); 479 480 if (B_NR_ITEMS(src_bi.bi_bh) == pointer_amount - 1) { 481 if (src_bi.bi_position/*src->b_item_order*/ == 0) 482 replace_key (tb, cf, d_key_position, src_bi.bi_parent/*src->b_parent*/, 0); 483 } else 484 replace_key (tb, cf, d_key_position, src_bi.bi_bh, pointer_amount - 1); 485 } 486 /* last parameter is del_parameter */ 487 internal_move_pointers_items (&dest_bi, &src_bi, FIRST_TO_LAST, pointer_amount, 0); 488 489 } 490 491 /* Insert delimiting key to L[h]. 492 * Copy n node pointers and n - 1 items from buffer S[h] to L[h]. 493 * Delete n - 1 items and node pointers from buffer S[h]. 494 */ 495 /* it always shifts from S[h] to L[h] */ 496 static void internal_shift1_left ( 497 struct tree_balance * tb, 498 int h, 499 int pointer_amount 500 ) 501 { 502 struct buffer_info dest_bi, src_bi; 503 struct buffer_head * cf; 504 int d_key_position; 505 506 internal_define_dest_src_infos (INTERNAL_SHIFT_FROM_S_TO_L, tb, h, &dest_bi, &src_bi, &d_key_position, &cf); 507 508 if ( pointer_amount > 0 ) /* insert lkey[h]-th key from CFL[h] to left neighbor L[h] */ 509 internal_insert_key (&dest_bi, B_NR_ITEMS(dest_bi.bi_bh), cf, d_key_position); 510 /* internal_insert_key (tb->L[h], B_NR_ITEM(tb->L[h]), tb->CFL[h], tb->lkey[h]);*/ 511 512 /* last parameter is del_parameter */ 513 internal_move_pointers_items (&dest_bi, &src_bi, FIRST_TO_LAST, pointer_amount, 1); 514 /* internal_move_pointers_items (tb->L[h], tb->S[h], FIRST_TO_LAST, pointer_amount, 1);*/ 515 } 516 517 518 /* Insert d_key'th (delimiting) key from buffer cfr to head of dest. 519 * Copy n node pointers and n - 1 items from buffer src to buffer dest. 520 * Replace d_key'th key in buffer cfr. 521 * Delete n items and node pointers from buffer src. 522 */ 523 static void internal_shift_right ( 524 int mode, /* INTERNAL_FROM_S_TO_R | INTERNAL_FROM_L_TO_S */ 525 struct tree_balance * tb, 526 int h, 527 int pointer_amount 528 ) 529 { 530 struct buffer_info dest_bi, src_bi; 531 struct buffer_head * cf; 532 int d_key_position; 533 int nr; 534 535 536 internal_define_dest_src_infos (mode, tb, h, &dest_bi, &src_bi, &d_key_position, &cf); 537 538 nr = B_NR_ITEMS (src_bi.bi_bh); 539 540 if (pointer_amount > 0) { 541 /* insert delimiting key from common father of dest and src to dest node into position 0 */ 542 internal_insert_key (&dest_bi, 0, cf, d_key_position); 543 if (nr == pointer_amount - 1) { 544 RFALSE( src_bi.bi_bh != PATH_H_PBUFFER (tb->tb_path, h)/*tb->S[h]*/ || 545 dest_bi.bi_bh != tb->R[h], 546 "src (%p) must be == tb->S[h](%p) when it disappears", 547 src_bi.bi_bh, PATH_H_PBUFFER (tb->tb_path, h)); 548 /* when S[h] disappers replace left delemiting key as well */ 549 if (tb->CFL[h]) 550 replace_key (tb, cf, d_key_position, tb->CFL[h], tb->lkey[h]); 551 } else 552 replace_key (tb, cf, d_key_position, src_bi.bi_bh, nr - pointer_amount); 553 } 554 555 /* last parameter is del_parameter */ 556 internal_move_pointers_items (&dest_bi, &src_bi, LAST_TO_FIRST, pointer_amount, 0); 557 } 558 559 /* Insert delimiting key to R[h]. 560 * Copy n node pointers and n - 1 items from buffer S[h] to R[h]. 561 * Delete n - 1 items and node pointers from buffer S[h]. 562 */ 563 /* it always shift from S[h] to R[h] */ 564 static void internal_shift1_right ( 565 struct tree_balance * tb, 566 int h, 567 int pointer_amount 568 ) 569 { 570 struct buffer_info dest_bi, src_bi; 571 struct buffer_head * cf; 572 int d_key_position; 573 574 internal_define_dest_src_infos (INTERNAL_SHIFT_FROM_S_TO_R, tb, h, &dest_bi, &src_bi, &d_key_position, &cf); 575 576 if (pointer_amount > 0) /* insert rkey from CFR[h] to right neighbor R[h] */ 577 internal_insert_key (&dest_bi, 0, cf, d_key_position); 578 /* internal_insert_key (tb->R[h], 0, tb->CFR[h], tb->rkey[h]);*/ 579 580 /* last parameter is del_parameter */ 581 internal_move_pointers_items (&dest_bi, &src_bi, LAST_TO_FIRST, pointer_amount, 1); 582 /* internal_move_pointers_items (tb->R[h], tb->S[h], LAST_TO_FIRST, pointer_amount, 1);*/ 583 } 584 585 586 /* Delete insert_num node pointers together with their left items 587 * and balance current node.*/ 588 static void balance_internal_when_delete (struct tree_balance * tb, 589 int h, int child_pos) 590 { 591 int insert_num; 592 int n; 593 struct buffer_head * tbSh = PATH_H_PBUFFER (tb->tb_path, h); 594 struct buffer_info bi; 595 596 insert_num = tb->insert_size[h] / ((int)(DC_SIZE + KEY_SIZE)); 597 598 /* delete child-node-pointer(s) together with their left item(s) */ 599 bi.tb = tb; 600 bi.bi_bh = tbSh; 601 bi.bi_parent = PATH_H_PPARENT (tb->tb_path, h); 602 bi.bi_position = PATH_H_POSITION (tb->tb_path, h + 1); 603 604 internal_delete_childs (&bi, child_pos, -insert_num); 605 606 RFALSE( tb->blknum[h] > 1, 607 "tb->blknum[%d]=%d when insert_size < 0", h, tb->blknum[h]); 608 609 n = B_NR_ITEMS(tbSh); 610 611 if ( tb->lnum[h] == 0 && tb->rnum[h] == 0 ) { 612 if ( tb->blknum[h] == 0 ) { 613 /* node S[h] (root of the tree) is empty now */ 614 struct buffer_head *new_root; 615 616 RFALSE( n || B_FREE_SPACE (tbSh) != MAX_CHILD_SIZE(tbSh) - DC_SIZE, 617 "buffer must have only 0 keys (%d)", n); 618 RFALSE( bi.bi_parent, "root has parent (%p)", bi.bi_parent); 619 620 /* choose a new root */ 621 if ( ! tb->L[h-1] || ! B_NR_ITEMS(tb->L[h-1]) ) 622 new_root = tb->R[h-1]; 623 else 624 new_root = tb->L[h-1]; 625 /* switch super block's tree root block number to the new value */ 626 PUT_SB_ROOT_BLOCK( tb->tb_sb, new_root->b_blocknr ); 627 //REISERFS_SB(tb->tb_sb)->s_rs->s_tree_height --; 628 PUT_SB_TREE_HEIGHT( tb->tb_sb, SB_TREE_HEIGHT(tb->tb_sb) - 1 ); 629 630 do_balance_mark_sb_dirty (tb, REISERFS_SB(tb->tb_sb)->s_sbh, 1); 631 /*&&&&&&&&&&&&&&&&&&&&&&*/ 632 if (h > 1) 633 /* use check_internal if new root is an internal node */ 634 check_internal (new_root); 635 /*&&&&&&&&&&&&&&&&&&&&&&*/ 636 637 /* do what is needed for buffer thrown from tree */ 638 reiserfs_invalidate_buffer(tb, tbSh); 639 return; 640 } 641 return; 642 } 643 644 if ( tb->L[h] && tb->lnum[h] == -B_NR_ITEMS(tb->L[h]) - 1 ) { /* join S[h] with L[h] */ 645 646 RFALSE( tb->rnum[h] != 0, 647 "invalid tb->rnum[%d]==%d when joining S[h] with L[h]", 648 h, tb->rnum[h]); 649 650 internal_shift_left (INTERNAL_SHIFT_FROM_S_TO_L, tb, h, n + 1); 651 reiserfs_invalidate_buffer(tb, tbSh); 652 653 return; 654 } 655 656 if ( tb->R[h] && tb->rnum[h] == -B_NR_ITEMS(tb->R[h]) - 1 ) { /* join S[h] with R[h] */ 657 RFALSE( tb->lnum[h] != 0, 658 "invalid tb->lnum[%d]==%d when joining S[h] with R[h]", 659 h, tb->lnum[h]); 660 661 internal_shift_right (INTERNAL_SHIFT_FROM_S_TO_R, tb, h, n + 1); 662 663 reiserfs_invalidate_buffer(tb,tbSh); 664 return; 665 } 666 667 if ( tb->lnum[h] < 0 ) { /* borrow from left neighbor L[h] */ 668 RFALSE( tb->rnum[h] != 0, 669 "wrong tb->rnum[%d]==%d when borrow from L[h]", h, tb->rnum[h]); 670 /*internal_shift_right (tb, h, tb->L[h], tb->CFL[h], tb->lkey[h], tb->S[h], -tb->lnum[h]);*/ 671 internal_shift_right (INTERNAL_SHIFT_FROM_L_TO_S, tb, h, -tb->lnum[h]); 672 return; 673 } 674 675 if ( tb->rnum[h] < 0 ) { /* borrow from right neighbor R[h] */ 676 RFALSE( tb->lnum[h] != 0, 677 "invalid tb->lnum[%d]==%d when borrow from R[h]", 678 h, tb->lnum[h]); 679 internal_shift_left (INTERNAL_SHIFT_FROM_R_TO_S, tb, h, -tb->rnum[h]);/*tb->S[h], tb->CFR[h], tb->rkey[h], tb->R[h], -tb->rnum[h]);*/ 680 return; 681 } 682 683 if ( tb->lnum[h] > 0 ) { /* split S[h] into two parts and put them into neighbors */ 684 RFALSE( tb->rnum[h] == 0 || tb->lnum[h] + tb->rnum[h] != n + 1, 685 "invalid tb->lnum[%d]==%d or tb->rnum[%d]==%d when S[h](item number == %d) is split between them", 686 h, tb->lnum[h], h, tb->rnum[h], n); 687 688 internal_shift_left (INTERNAL_SHIFT_FROM_S_TO_L, tb, h, tb->lnum[h]);/*tb->L[h], tb->CFL[h], tb->lkey[h], tb->S[h], tb->lnum[h]);*/ 689 internal_shift_right (INTERNAL_SHIFT_FROM_S_TO_R, tb, h, tb->rnum[h]); 690 691 reiserfs_invalidate_buffer (tb, tbSh); 692 693 return; 694 } 695 reiserfs_panic (tb->tb_sb, "balance_internal_when_delete: unexpected tb->lnum[%d]==%d or tb->rnum[%d]==%d", 696 h, tb->lnum[h], h, tb->rnum[h]); 697 } 698 699 700 /* Replace delimiting key of buffers L[h] and S[h] by the given key.*/ 701 static void replace_lkey ( 702 struct tree_balance * tb, 703 int h, 704 struct item_head * key 705 ) 706 { 707 RFALSE( tb->L[h] == NULL || tb->CFL[h] == NULL, 708 "L[h](%p) and CFL[h](%p) must exist in replace_lkey", 709 tb->L[h], tb->CFL[h]); 710 711 if (B_NR_ITEMS(PATH_H_PBUFFER(tb->tb_path, h)) == 0) 712 return; 713 714 memcpy (B_N_PDELIM_KEY(tb->CFL[h],tb->lkey[h]), key, KEY_SIZE); 715 716 do_balance_mark_internal_dirty (tb, tb->CFL[h],0); 717 } 718 719 720 /* Replace delimiting key of buffers S[h] and R[h] by the given key.*/ 721 static void replace_rkey ( 722 struct tree_balance * tb, 723 int h, 724 struct item_head * key 725 ) 726 { 727 RFALSE( tb->R[h] == NULL || tb->CFR[h] == NULL, 728 "R[h](%p) and CFR[h](%p) must exist in replace_rkey", 729 tb->R[h], tb->CFR[h]); 730 RFALSE( B_NR_ITEMS(tb->R[h]) == 0, 731 "R[h] can not be empty if it exists (item number=%d)", 732 B_NR_ITEMS(tb->R[h])); 733 734 memcpy (B_N_PDELIM_KEY(tb->CFR[h],tb->rkey[h]), key, KEY_SIZE); 735 736 do_balance_mark_internal_dirty (tb, tb->CFR[h], 0); 737 } 738 739 740 int balance_internal (struct tree_balance * tb, /* tree_balance structure */ 741 int h, /* level of the tree */ 742 int child_pos, 743 struct item_head * insert_key, /* key for insertion on higher level */ 744 struct buffer_head ** insert_ptr /* node for insertion on higher level*/ 745 ) 746 /* if inserting/pasting 747 { 748 child_pos is the position of the node-pointer in S[h] that * 749 pointed to S[h-1] before balancing of the h-1 level; * 750 this means that new pointers and items must be inserted AFTER * 751 child_pos 752 } 753 else 754 { 755 it is the position of the leftmost pointer that must be deleted (together with 756 its corresponding key to the left of the pointer) 757 as a result of the previous level's balancing. 758 } 759 */ 760 { 761 struct buffer_head * tbSh = PATH_H_PBUFFER (tb->tb_path, h); 762 struct buffer_info bi; 763 int order; /* we return this: it is 0 if there is no S[h], else it is tb->S[h]->b_item_order */ 764 int insert_num, n, k; 765 struct buffer_head * S_new; 766 struct item_head new_insert_key; 767 struct buffer_head * new_insert_ptr = NULL; 768 struct item_head * new_insert_key_addr = insert_key; 769 770 RFALSE( h < 1, "h (%d) can not be < 1 on internal level", h); 771 772 PROC_INFO_INC( tb -> tb_sb, balance_at[ h ] ); 773 774 order = ( tbSh ) ? PATH_H_POSITION (tb->tb_path, h + 1)/*tb->S[h]->b_item_order*/ : 0; 775 776 /* Using insert_size[h] calculate the number insert_num of items 777 that must be inserted to or deleted from S[h]. */ 778 insert_num = tb->insert_size[h]/((int)(KEY_SIZE + DC_SIZE)); 779 780 /* Check whether insert_num is proper **/ 781 RFALSE( insert_num < -2 || insert_num > 2, 782 "incorrect number of items inserted to the internal node (%d)", 783 insert_num); 784 RFALSE( h > 1 && (insert_num > 1 || insert_num < -1), 785 "incorrect number of items (%d) inserted to the internal node on a level (h=%d) higher than last internal level", 786 insert_num, h); 787 788 /* Make balance in case insert_num < 0 */ 789 if ( insert_num < 0 ) { 790 balance_internal_when_delete (tb, h, child_pos); 791 return order; 792 } 793 794 k = 0; 795 if ( tb->lnum[h] > 0 ) { 796 /* shift lnum[h] items from S[h] to the left neighbor L[h]. 797 check how many of new items fall into L[h] or CFL[h] after 798 shifting */ 799 n = B_NR_ITEMS (tb->L[h]); /* number of items in L[h] */ 800 if ( tb->lnum[h] <= child_pos ) { 801 /* new items don't fall into L[h] or CFL[h] */ 802 internal_shift_left (INTERNAL_SHIFT_FROM_S_TO_L, tb, h, tb->lnum[h]); 803 /*internal_shift_left (tb->L[h],tb->CFL[h],tb->lkey[h],tbSh,tb->lnum[h]);*/ 804 child_pos -= tb->lnum[h]; 805 } else if ( tb->lnum[h] > child_pos + insert_num ) { 806 /* all new items fall into L[h] */ 807 internal_shift_left (INTERNAL_SHIFT_FROM_S_TO_L, tb, h, tb->lnum[h] - insert_num); 808 /* internal_shift_left(tb->L[h],tb->CFL[h],tb->lkey[h],tbSh, 809 tb->lnum[h]-insert_num); 810 */ 811 /* insert insert_num keys and node-pointers into L[h] */ 812 bi.tb = tb; 813 bi.bi_bh = tb->L[h]; 814 bi.bi_parent = tb->FL[h]; 815 bi.bi_position = get_left_neighbor_position (tb, h); 816 internal_insert_childs (&bi,/*tb->L[h], tb->S[h-1]->b_next*/ n + child_pos + 1, 817 insert_num,insert_key,insert_ptr); 818 819 insert_num = 0; 820 } else { 821 struct disk_child * dc; 822 823 /* some items fall into L[h] or CFL[h], but some don't fall */ 824 internal_shift1_left(tb,h,child_pos+1); 825 /* calculate number of new items that fall into L[h] */ 826 k = tb->lnum[h] - child_pos - 1; 827 bi.tb = tb; 828 bi.bi_bh = tb->L[h]; 829 bi.bi_parent = tb->FL[h]; 830 bi.bi_position = get_left_neighbor_position (tb, h); 831 internal_insert_childs (&bi,/*tb->L[h], tb->S[h-1]->b_next,*/ n + child_pos + 1,k, 832 insert_key,insert_ptr); 833 834 replace_lkey(tb,h,insert_key + k); 835 836 /* replace the first node-ptr in S[h] by node-ptr to insert_ptr[k] */ 837 dc = B_N_CHILD(tbSh, 0); 838 put_dc_size( dc, MAX_CHILD_SIZE(insert_ptr[k]) - B_FREE_SPACE (insert_ptr[k])); 839 put_dc_block_number( dc, insert_ptr[k]->b_blocknr ); 840 841 do_balance_mark_internal_dirty (tb, tbSh, 0); 842 843 k++; 844 insert_key += k; 845 insert_ptr += k; 846 insert_num -= k; 847 child_pos = 0; 848 } 849 } /* tb->lnum[h] > 0 */ 850 851 if ( tb->rnum[h] > 0 ) { 852 /*shift rnum[h] items from S[h] to the right neighbor R[h]*/ 853 /* check how many of new items fall into R or CFR after shifting */ 854 n = B_NR_ITEMS (tbSh); /* number of items in S[h] */ 855 if ( n - tb->rnum[h] >= child_pos ) 856 /* new items fall into S[h] */ 857 /*internal_shift_right(tb,h,tbSh,tb->CFR[h],tb->rkey[h],tb->R[h],tb->rnum[h]);*/ 858 internal_shift_right (INTERNAL_SHIFT_FROM_S_TO_R, tb, h, tb->rnum[h]); 859 else 860 if ( n + insert_num - tb->rnum[h] < child_pos ) 861 { 862 /* all new items fall into R[h] */ 863 /*internal_shift_right(tb,h,tbSh,tb->CFR[h],tb->rkey[h],tb->R[h], 864 tb->rnum[h] - insert_num);*/ 865 internal_shift_right (INTERNAL_SHIFT_FROM_S_TO_R, tb, h, tb->rnum[h] - insert_num); 866 867 /* insert insert_num keys and node-pointers into R[h] */ 868 bi.tb = tb; 869 bi.bi_bh = tb->R[h]; 870 bi.bi_parent = tb->FR[h]; 871 bi.bi_position = get_right_neighbor_position (tb, h); 872 internal_insert_childs (&bi, /*tb->R[h],tb->S[h-1]->b_next*/ child_pos - n - insert_num + tb->rnum[h] - 1, 873 insert_num,insert_key,insert_ptr); 874 insert_num = 0; 875 } 876 else 877 { 878 struct disk_child * dc; 879 880 /* one of the items falls into CFR[h] */ 881 internal_shift1_right(tb,h,n - child_pos + 1); 882 /* calculate number of new items that fall into R[h] */ 883 k = tb->rnum[h] - n + child_pos - 1; 884 bi.tb = tb; 885 bi.bi_bh = tb->R[h]; 886 bi.bi_parent = tb->FR[h]; 887 bi.bi_position = get_right_neighbor_position (tb, h); 888 internal_insert_childs (&bi, /*tb->R[h], tb->R[h]->b_child,*/ 0, k, insert_key + 1, insert_ptr + 1); 889 890 replace_rkey(tb,h,insert_key + insert_num - k - 1); 891 892 /* replace the first node-ptr in R[h] by node-ptr insert_ptr[insert_num-k-1]*/ 893 dc = B_N_CHILD(tb->R[h], 0); 894 put_dc_size( dc, MAX_CHILD_SIZE(insert_ptr[insert_num-k-1]) - 895 B_FREE_SPACE (insert_ptr[insert_num-k-1])); 896 put_dc_block_number( dc, insert_ptr[insert_num-k-1]->b_blocknr ); 897 898 do_balance_mark_internal_dirty (tb, tb->R[h],0); 899 900 insert_num -= (k + 1); 901 } 902 } 903 904 /** Fill new node that appears instead of S[h] **/ 905 RFALSE( tb->blknum[h] > 2, "blknum can not be > 2 for internal level"); 906 RFALSE( tb->blknum[h] < 0, "blknum can not be < 0"); 907 908 if ( ! tb->blknum[h] ) 909 { /* node S[h] is empty now */ 910 RFALSE( ! tbSh, "S[h] is equal NULL"); 911 912 /* do what is needed for buffer thrown from tree */ 913 reiserfs_invalidate_buffer(tb,tbSh); 914 return order; 915 } 916 917 if ( ! tbSh ) { 918 /* create new root */ 919 struct disk_child * dc; 920 struct buffer_head * tbSh_1 = PATH_H_PBUFFER (tb->tb_path, h - 1); 921 struct block_head * blkh; 922 923 924 if ( tb->blknum[h] != 1 ) 925 reiserfs_panic(NULL, "balance_internal: One new node required for creating the new root"); 926 /* S[h] = empty buffer from the list FEB. */ 927 tbSh = get_FEB (tb); 928 blkh = B_BLK_HEAD(tbSh); 929 set_blkh_level( blkh, h + 1 ); 930 931 /* Put the unique node-pointer to S[h] that points to S[h-1]. */ 932 933 dc = B_N_CHILD(tbSh, 0); 934 put_dc_block_number( dc, tbSh_1->b_blocknr ); 935 put_dc_size( dc, (MAX_CHILD_SIZE (tbSh_1) - B_FREE_SPACE (tbSh_1))); 936 937 tb->insert_size[h] -= DC_SIZE; 938 set_blkh_free_space( blkh, blkh_free_space(blkh) - DC_SIZE ); 939 940 do_balance_mark_internal_dirty (tb, tbSh, 0); 941 942 /*&&&&&&&&&&&&&&&&&&&&&&&&*/ 943 check_internal (tbSh); 944 /*&&&&&&&&&&&&&&&&&&&&&&&&*/ 945 946 /* put new root into path structure */ 947 PATH_OFFSET_PBUFFER(tb->tb_path, ILLEGAL_PATH_ELEMENT_OFFSET) = tbSh; 948 949 /* Change root in structure super block. */ 950 PUT_SB_ROOT_BLOCK( tb->tb_sb, tbSh->b_blocknr ); 951 PUT_SB_TREE_HEIGHT( tb->tb_sb, SB_TREE_HEIGHT(tb->tb_sb) + 1 ); 952 do_balance_mark_sb_dirty (tb, REISERFS_SB(tb->tb_sb)->s_sbh, 1); 953 } 954 955 if ( tb->blknum[h] == 2 ) { 956 int snum; 957 struct buffer_info dest_bi, src_bi; 958 959 960 /* S_new = free buffer from list FEB */ 961 S_new = get_FEB(tb); 962 963 set_blkh_level( B_BLK_HEAD(S_new), h + 1 ); 964 965 dest_bi.tb = tb; 966 dest_bi.bi_bh = S_new; 967 dest_bi.bi_parent = NULL; 968 dest_bi.bi_position = 0; 969 src_bi.tb = tb; 970 src_bi.bi_bh = tbSh; 971 src_bi.bi_parent = PATH_H_PPARENT (tb->tb_path, h); 972 src_bi.bi_position = PATH_H_POSITION (tb->tb_path, h + 1); 973 974 n = B_NR_ITEMS (tbSh); /* number of items in S[h] */ 975 snum = (insert_num + n + 1)/2; 976 if ( n - snum >= child_pos ) { 977 /* new items don't fall into S_new */ 978 /* store the delimiting key for the next level */ 979 /* new_insert_key = (n - snum)'th key in S[h] */ 980 memcpy (&new_insert_key,B_N_PDELIM_KEY(tbSh,n - snum), 981 KEY_SIZE); 982 /* last parameter is del_par */ 983 internal_move_pointers_items (&dest_bi, &src_bi, LAST_TO_FIRST, snum, 0); 984 /* internal_move_pointers_items(S_new, tbSh, LAST_TO_FIRST, snum, 0);*/ 985 } else if ( n + insert_num - snum < child_pos ) { 986 /* all new items fall into S_new */ 987 /* store the delimiting key for the next level */ 988 /* new_insert_key = (n + insert_item - snum)'th key in S[h] */ 989 memcpy(&new_insert_key,B_N_PDELIM_KEY(tbSh,n + insert_num - snum), 990 KEY_SIZE); 991 /* last parameter is del_par */ 992 internal_move_pointers_items (&dest_bi, &src_bi, LAST_TO_FIRST, snum - insert_num, 0); 993 /* internal_move_pointers_items(S_new,tbSh,1,snum - insert_num,0);*/ 994 995 /* insert insert_num keys and node-pointers into S_new */ 996 internal_insert_childs (&dest_bi, /*S_new,tb->S[h-1]->b_next,*/child_pos - n - insert_num + snum - 1, 997 insert_num,insert_key,insert_ptr); 998 999 insert_num = 0; 1000 } else { 1001 struct disk_child * dc; 1002 1003 /* some items fall into S_new, but some don't fall */ 1004 /* last parameter is del_par */ 1005 internal_move_pointers_items (&dest_bi, &src_bi, LAST_TO_FIRST, n - child_pos + 1, 1); 1006 /* internal_move_pointers_items(S_new,tbSh,1,n - child_pos + 1,1);*/ 1007 /* calculate number of new items that fall into S_new */ 1008 k = snum - n + child_pos - 1; 1009 1010 internal_insert_childs (&dest_bi, /*S_new,*/ 0, k, insert_key + 1, insert_ptr+1); 1011 1012 /* new_insert_key = insert_key[insert_num - k - 1] */ 1013 memcpy(&new_insert_key,insert_key + insert_num - k - 1, 1014 KEY_SIZE); 1015 /* replace first node-ptr in S_new by node-ptr to insert_ptr[insert_num-k-1] */ 1016 1017 dc = B_N_CHILD(S_new,0); 1018 put_dc_size( dc, (MAX_CHILD_SIZE(insert_ptr[insert_num-k-1]) - 1019 B_FREE_SPACE(insert_ptr[insert_num-k-1])) ); 1020 put_dc_block_number( dc, insert_ptr[insert_num-k-1]->b_blocknr ); 1021 1022 do_balance_mark_internal_dirty (tb, S_new,0); 1023 1024 insert_num -= (k + 1); 1025 } 1026 /* new_insert_ptr = node_pointer to S_new */ 1027 new_insert_ptr = S_new; 1028 1029 RFALSE (!buffer_journaled(S_new) || buffer_journal_dirty(S_new) || 1030 buffer_dirty (S_new), 1031 "cm-00001: bad S_new (%b)", S_new); 1032 1033 // S_new is released in unfix_nodes 1034 } 1035 1036 n = B_NR_ITEMS (tbSh); /*number of items in S[h] */ 1037 1038 if ( 0 <= child_pos && child_pos <= n && insert_num > 0 ) { 1039 bi.tb = tb; 1040 bi.bi_bh = tbSh; 1041 bi.bi_parent = PATH_H_PPARENT (tb->tb_path, h); 1042 bi.bi_position = PATH_H_POSITION (tb->tb_path, h + 1); 1043 internal_insert_childs ( 1044 &bi,/*tbSh,*/ 1045 /* ( tb->S[h-1]->b_parent == tb->S[h] ) ? tb->S[h-1]->b_next : tb->S[h]->b_child->b_next,*/ 1046 child_pos,insert_num,insert_key,insert_ptr 1047 ); 1048 } 1049 1050 1051 memcpy (new_insert_key_addr,&new_insert_key,KEY_SIZE); 1052 insert_ptr[0] = new_insert_ptr; 1053 1054 return order; 1055 } 1056 1057 1058 1059