xref: /openbmc/linux/fs/reiserfs/fix_node.c (revision 1da177e4c3f41524e886b7f1b8a0c1fc7321cac2)
1 /*
2  * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
3  */
4 
5 /**
6  ** old_item_num
7  ** old_entry_num
8  ** set_entry_sizes
9  ** create_virtual_node
10  ** check_left
11  ** check_right
12  ** directory_part_size
13  ** get_num_ver
14  ** set_parameters
15  ** is_leaf_removable
16  ** are_leaves_removable
17  ** get_empty_nodes
18  ** get_lfree
19  ** get_rfree
20  ** is_left_neighbor_in_cache
21  ** decrement_key
22  ** get_far_parent
23  ** get_parents
24  ** can_node_be_removed
25  ** ip_check_balance
26  ** dc_check_balance_internal
27  ** dc_check_balance_leaf
28  ** dc_check_balance
29  ** check_balance
30  ** get_direct_parent
31  ** get_neighbors
32  ** fix_nodes
33  **
34  **
35  **/
36 
37 
38 #include <linux/config.h>
39 #include <linux/time.h>
40 #include <linux/string.h>
41 #include <linux/reiserfs_fs.h>
42 #include <linux/buffer_head.h>
43 
44 
45 /* To make any changes in the tree we find a node, that contains item
46    to be changed/deleted or position in the node we insert a new item
47    to. We call this node S. To do balancing we need to decide what we
48    will shift to left/right neighbor, or to a new node, where new item
49    will be etc. To make this analysis simpler we build virtual
50    node. Virtual node is an array of items, that will replace items of
51    node S. (For instance if we are going to delete an item, virtual
52    node does not contain it). Virtual node keeps information about
53    item sizes and types, mergeability of first and last items, sizes
54    of all entries in directory item. We use this array of items when
55    calculating what we can shift to neighbors and how many nodes we
56    have to have if we do not any shiftings, if we shift to left/right
57    neighbor or to both. */
58 
59 
60 /* taking item number in virtual node, returns number of item, that it has in source buffer */
61 static inline int old_item_num (int new_num, int affected_item_num, int mode)
62 {
63   if (mode == M_PASTE || mode == M_CUT || new_num < affected_item_num)
64     return new_num;
65 
66   if (mode == M_INSERT) {
67 
68     RFALSE( new_num == 0,
69 	    "vs-8005: for INSERT mode and item number of inserted item");
70 
71     return new_num - 1;
72   }
73 
74   RFALSE( mode != M_DELETE,
75 	  "vs-8010: old_item_num: mode must be M_DELETE (mode = \'%c\'", mode);
76   /* delete mode */
77   return new_num + 1;
78 }
79 
80 static void create_virtual_node (struct tree_balance * tb, int h)
81 {
82     struct item_head * ih;
83     struct virtual_node * vn = tb->tb_vn;
84     int new_num;
85     struct buffer_head * Sh;	/* this comes from tb->S[h] */
86 
87     Sh = PATH_H_PBUFFER (tb->tb_path, h);
88 
89     /* size of changed node */
90     vn->vn_size = MAX_CHILD_SIZE (Sh) - B_FREE_SPACE (Sh) + tb->insert_size[h];
91 
92     /* for internal nodes array if virtual items is not created */
93     if (h) {
94 	vn->vn_nr_item = (vn->vn_size - DC_SIZE) / (DC_SIZE + KEY_SIZE);
95 	return;
96     }
97 
98     /* number of items in virtual node  */
99     vn->vn_nr_item = B_NR_ITEMS (Sh) + ((vn->vn_mode == M_INSERT)? 1 : 0) - ((vn->vn_mode == M_DELETE)? 1 : 0);
100 
101     /* first virtual item */
102     vn->vn_vi = (struct virtual_item *)(tb->tb_vn + 1);
103     memset (vn->vn_vi, 0, vn->vn_nr_item * sizeof (struct virtual_item));
104     vn->vn_free_ptr += vn->vn_nr_item * sizeof (struct virtual_item);
105 
106 
107     /* first item in the node */
108     ih = B_N_PITEM_HEAD (Sh, 0);
109 
110     /* define the mergeability for 0-th item (if it is not being deleted) */
111     if (op_is_left_mergeable (&(ih->ih_key), Sh->b_size) && (vn->vn_mode != M_DELETE || vn->vn_affected_item_num))
112 	    vn->vn_vi[0].vi_type |= VI_TYPE_LEFT_MERGEABLE;
113 
114     /* go through all items those remain in the virtual node (except for the new (inserted) one) */
115     for (new_num = 0; new_num < vn->vn_nr_item; new_num ++) {
116 	int j;
117 	struct virtual_item * vi = vn->vn_vi + new_num;
118 	int is_affected = ((new_num != vn->vn_affected_item_num) ? 0 : 1);
119 
120 
121 	if (is_affected && vn->vn_mode == M_INSERT)
122 	    continue;
123 
124 	/* get item number in source node */
125 	j = old_item_num (new_num, vn->vn_affected_item_num, vn->vn_mode);
126 
127 	vi->vi_item_len += ih_item_len(ih + j) + IH_SIZE;
128 	vi->vi_ih = ih + j;
129 	vi->vi_item = B_I_PITEM (Sh, ih + j);
130 	vi->vi_uarea = vn->vn_free_ptr;
131 
132 	// FIXME: there is no check, that item operation did not
133 	// consume too much memory
134 	vn->vn_free_ptr += op_create_vi (vn, vi, is_affected, tb->insert_size [0]);
135 	if (tb->vn_buf + tb->vn_buf_size < vn->vn_free_ptr)
136 	    reiserfs_panic (tb->tb_sb, "vs-8030: create_virtual_node: "
137 			    "virtual node space consumed");
138 
139 	if (!is_affected)
140 	    /* this is not being changed */
141 	    continue;
142 
143 	if (vn->vn_mode == M_PASTE || vn->vn_mode == M_CUT) {
144 	    vn->vn_vi[new_num].vi_item_len += tb->insert_size[0];
145 	    vi->vi_new_data = vn->vn_data; // pointer to data which is going to be pasted
146 	}
147     }
148 
149 
150     /* virtual inserted item is not defined yet */
151     if (vn->vn_mode == M_INSERT) {
152 	struct virtual_item * vi = vn->vn_vi + vn->vn_affected_item_num;
153 
154 	RFALSE( vn->vn_ins_ih == 0,
155 		"vs-8040: item header of inserted item is not specified");
156 	vi->vi_item_len = tb->insert_size[0];
157 	vi->vi_ih = vn->vn_ins_ih;
158 	vi->vi_item = vn->vn_data;
159 	vi->vi_uarea = vn->vn_free_ptr;
160 
161 	op_create_vi (vn, vi, 0/*not pasted or cut*/, tb->insert_size [0]);
162     }
163 
164     /* set right merge flag we take right delimiting key and check whether it is a mergeable item */
165     if (tb->CFR[0]) {
166 	struct reiserfs_key * key;
167 
168 	key = B_N_PDELIM_KEY (tb->CFR[0], tb->rkey[0]);
169 	if (op_is_left_mergeable (key, Sh->b_size) && (vn->vn_mode != M_DELETE ||
170 						       vn->vn_affected_item_num != B_NR_ITEMS (Sh) - 1))
171 		vn->vn_vi[vn->vn_nr_item-1].vi_type |= VI_TYPE_RIGHT_MERGEABLE;
172 
173 #ifdef CONFIG_REISERFS_CHECK
174 	if (op_is_left_mergeable (key, Sh->b_size) &&
175 	    !(vn->vn_mode != M_DELETE || vn->vn_affected_item_num != B_NR_ITEMS (Sh) - 1) ) {
176 	    /* we delete last item and it could be merged with right neighbor's first item */
177 	    if (!(B_NR_ITEMS (Sh) == 1 && is_direntry_le_ih (B_N_PITEM_HEAD (Sh, 0)) &&
178 		  I_ENTRY_COUNT (B_N_PITEM_HEAD (Sh, 0)) == 1)) {
179 		/* node contains more than 1 item, or item is not directory item, or this item contains more than 1 entry */
180 		print_block (Sh, 0, -1, -1);
181 		reiserfs_panic (tb->tb_sb, "vs-8045: create_virtual_node: rdkey %k, affected item==%d (mode==%c) Must be %c",
182 				key, vn->vn_affected_item_num, vn->vn_mode, M_DELETE);
183 	    } else
184 		/* we can delete directory item, that has only one directory entry in it */
185 		;
186 	}
187 #endif
188 
189     }
190 }
191 
192 
193 /* using virtual node check, how many items can be shifted to left
194    neighbor */
195 static void check_left (struct tree_balance * tb, int h, int cur_free)
196 {
197     int i;
198     struct virtual_node * vn = tb->tb_vn;
199     struct virtual_item * vi;
200     int d_size, ih_size;
201 
202     RFALSE( cur_free < 0, "vs-8050: cur_free (%d) < 0", cur_free);
203 
204     /* internal level */
205     if (h > 0) {
206 	tb->lnum[h] = cur_free / (DC_SIZE + KEY_SIZE);
207 	return;
208     }
209 
210     /* leaf level */
211 
212     if (!cur_free || !vn->vn_nr_item) {
213 	/* no free space or nothing to move */
214 	tb->lnum[h] = 0;
215 	tb->lbytes = -1;
216 	return;
217     }
218 
219     RFALSE( !PATH_H_PPARENT (tb->tb_path, 0),
220 	    "vs-8055: parent does not exist or invalid");
221 
222     vi = vn->vn_vi;
223     if ((unsigned int)cur_free >= (vn->vn_size - ((vi->vi_type & VI_TYPE_LEFT_MERGEABLE) ? IH_SIZE : 0))) {
224 	/* all contents of S[0] fits into L[0] */
225 
226 	RFALSE( vn->vn_mode == M_INSERT || vn->vn_mode == M_PASTE,
227 		"vs-8055: invalid mode or balance condition failed");
228 
229 	tb->lnum[0] = vn->vn_nr_item;
230 	tb->lbytes = -1;
231 	return;
232     }
233 
234 
235     d_size = 0, ih_size = IH_SIZE;
236 
237     /* first item may be merge with last item in left neighbor */
238     if (vi->vi_type & VI_TYPE_LEFT_MERGEABLE)
239 	d_size = -((int)IH_SIZE), ih_size = 0;
240 
241     tb->lnum[0] = 0;
242     for (i = 0; i < vn->vn_nr_item; i ++, ih_size = IH_SIZE, d_size = 0, vi ++) {
243 	d_size += vi->vi_item_len;
244 	if (cur_free >= d_size) {
245 	    /* the item can be shifted entirely */
246 	    cur_free -= d_size;
247 	    tb->lnum[0] ++;
248 	    continue;
249 	}
250 
251 	/* the item cannot be shifted entirely, try to split it */
252 	/* check whether L[0] can hold ih and at least one byte of the item body */
253 	if (cur_free <= ih_size) {
254 	    /* cannot shift even a part of the current item */
255 	    tb->lbytes = -1;
256 	    return;
257 	}
258 	cur_free -= ih_size;
259 
260 	tb->lbytes = op_check_left (vi, cur_free, 0, 0);
261 	if (tb->lbytes != -1)
262 	    /* count partially shifted item */
263 	    tb->lnum[0] ++;
264 
265 	break;
266     }
267 
268     return;
269 }
270 
271 
272 /* using virtual node check, how many items can be shifted to right
273    neighbor */
274 static void check_right (struct tree_balance * tb, int h, int cur_free)
275 {
276     int i;
277     struct virtual_node * vn = tb->tb_vn;
278     struct virtual_item * vi;
279     int d_size, ih_size;
280 
281     RFALSE( cur_free < 0, "vs-8070: cur_free < 0");
282 
283     /* internal level */
284     if (h > 0) {
285 	tb->rnum[h] = cur_free / (DC_SIZE + KEY_SIZE);
286 	return;
287     }
288 
289     /* leaf level */
290 
291     if (!cur_free || !vn->vn_nr_item) {
292 	/* no free space  */
293 	tb->rnum[h] = 0;
294 	tb->rbytes = -1;
295 	return;
296     }
297 
298     RFALSE( !PATH_H_PPARENT (tb->tb_path, 0),
299 	    "vs-8075: parent does not exist or invalid");
300 
301     vi = vn->vn_vi + vn->vn_nr_item - 1;
302     if ((unsigned int)cur_free >= (vn->vn_size - ((vi->vi_type & VI_TYPE_RIGHT_MERGEABLE) ? IH_SIZE : 0))) {
303 	/* all contents of S[0] fits into R[0] */
304 
305 	RFALSE( vn->vn_mode == M_INSERT || vn->vn_mode == M_PASTE,
306 		"vs-8080: invalid mode or balance condition failed");
307 
308 	tb->rnum[h] = vn->vn_nr_item;
309 	tb->rbytes = -1;
310 	return;
311     }
312 
313     d_size = 0, ih_size = IH_SIZE;
314 
315     /* last item may be merge with first item in right neighbor */
316     if (vi->vi_type & VI_TYPE_RIGHT_MERGEABLE)
317 	d_size = -(int)IH_SIZE, ih_size = 0;
318 
319     tb->rnum[0] = 0;
320     for (i = vn->vn_nr_item - 1; i >= 0; i --, d_size = 0, ih_size = IH_SIZE, vi --) {
321 	d_size += vi->vi_item_len;
322 	if (cur_free >= d_size) {
323 	    /* the item can be shifted entirely */
324 	    cur_free -= d_size;
325 	    tb->rnum[0] ++;
326 	    continue;
327 	}
328 
329 	/* check whether R[0] can hold ih and at least one byte of the item body */
330 	if ( cur_free <= ih_size ) {    /* cannot shift even a part of the current item */
331 	    tb->rbytes = -1;
332 	    return;
333 	}
334 
335 	/* R[0] can hold the header of the item and at least one byte of its body */
336 	cur_free -= ih_size;	/* cur_free is still > 0 */
337 
338 	tb->rbytes = op_check_right (vi, cur_free);
339 	if (tb->rbytes != -1)
340 	    /* count partially shifted item */
341 	    tb->rnum[0] ++;
342 
343 	break;
344     }
345 
346   return;
347 }
348 
349 
350 /*
351  * from - number of items, which are shifted to left neighbor entirely
352  * to - number of item, which are shifted to right neighbor entirely
353  * from_bytes - number of bytes of boundary item (or directory entries) which are shifted to left neighbor
354  * to_bytes - number of bytes of boundary item (or directory entries) which are shifted to right neighbor */
355 static int get_num_ver (int mode, struct tree_balance * tb, int h,
356 			int from, int from_bytes,
357 			int to,   int to_bytes,
358 			short * snum012, int flow
359     )
360 {
361     int i;
362     int cur_free;
363     //    int bytes;
364     int units;
365     struct virtual_node * vn = tb->tb_vn;
366     //    struct virtual_item * vi;
367 
368     int total_node_size, max_node_size, current_item_size;
369     int needed_nodes;
370     int start_item, 	/* position of item we start filling node from */
371 	end_item,	/* position of item we finish filling node by */
372 	start_bytes,/* number of first bytes (entries for directory) of start_item-th item
373 		       we do not include into node that is being filled */
374 	end_bytes;	/* number of last bytes (entries for directory) of end_item-th item
375 			   we do node include into node that is being filled */
376     int split_item_positions[2]; /* these are positions in virtual item of
377 				    items, that are split between S[0] and
378 				    S1new and S1new and S2new */
379 
380     split_item_positions[0] = -1;
381     split_item_positions[1] = -1;
382 
383     /* We only create additional nodes if we are in insert or paste mode
384        or we are in replace mode at the internal level. If h is 0 and
385        the mode is M_REPLACE then in fix_nodes we change the mode to
386        paste or insert before we get here in the code.  */
387     RFALSE( tb->insert_size[h] < 0  || (mode != M_INSERT && mode != M_PASTE),
388 	    "vs-8100: insert_size < 0 in overflow");
389 
390     max_node_size = MAX_CHILD_SIZE (PATH_H_PBUFFER (tb->tb_path, h));
391 
392     /* snum012 [0-2] - number of items, that lay
393        to S[0], first new node and second new node */
394     snum012[3] = -1;	/* s1bytes */
395     snum012[4] = -1;	/* s2bytes */
396 
397     /* internal level */
398     if (h > 0) {
399 	i = ((to - from) * (KEY_SIZE + DC_SIZE) + DC_SIZE);
400 	if (i == max_node_size)
401 	    return 1;
402 	return (i / max_node_size + 1);
403     }
404 
405     /* leaf level */
406     needed_nodes = 1;
407     total_node_size = 0;
408     cur_free = max_node_size;
409 
410     // start from 'from'-th item
411     start_item = from;
412     // skip its first 'start_bytes' units
413     start_bytes = ((from_bytes != -1) ? from_bytes : 0);
414 
415     // last included item is the 'end_item'-th one
416     end_item = vn->vn_nr_item - to - 1;
417     // do not count last 'end_bytes' units of 'end_item'-th item
418     end_bytes = (to_bytes != -1) ? to_bytes : 0;
419 
420     /* go through all item beginning from the start_item-th item and ending by
421        the end_item-th item. Do not count first 'start_bytes' units of
422        'start_item'-th item and last 'end_bytes' of 'end_item'-th item */
423 
424     for (i = start_item; i <= end_item; i ++) {
425 	struct virtual_item * vi = vn->vn_vi + i;
426 	int skip_from_end = ((i == end_item) ? end_bytes : 0);
427 
428 	RFALSE( needed_nodes > 3, "vs-8105: too many nodes are needed");
429 
430 	/* get size of current item */
431 	current_item_size = vi->vi_item_len;
432 
433 	/* do not take in calculation head part (from_bytes) of from-th item */
434 	current_item_size -= op_part_size (vi, 0/*from start*/, start_bytes);
435 
436 	/* do not take in calculation tail part of last item */
437 	current_item_size -= op_part_size (vi, 1/*from end*/, skip_from_end);
438 
439 	/* if item fits into current node entierly */
440 	if (total_node_size + current_item_size <= max_node_size) {
441 	    snum012[needed_nodes - 1] ++;
442 	    total_node_size += current_item_size;
443 	    start_bytes = 0;
444 	    continue;
445 	}
446 
447 	if (current_item_size > max_node_size) {
448 	    /* virtual item length is longer, than max size of item in
449                a node. It is impossible for direct item */
450 	    RFALSE( is_direct_le_ih (vi->vi_ih),
451 		    "vs-8110: "
452 		    "direct item length is %d. It can not be longer than %d",
453 		    current_item_size, max_node_size);
454 	    /* we will try to split it */
455 	    flow = 1;
456 	}
457 
458 	if (!flow) {
459 	    /* as we do not split items, take new node and continue */
460 	    needed_nodes ++; i --; total_node_size = 0;
461 	    continue;
462 	}
463 
464 	// calculate number of item units which fit into node being
465 	// filled
466 	{
467 	    int free_space;
468 
469 	    free_space = max_node_size - total_node_size - IH_SIZE;
470 	    units = op_check_left (vi, free_space, start_bytes, skip_from_end);
471 	    if (units == -1) {
472 		/* nothing fits into current node, take new node and continue */
473 		needed_nodes ++, i--, total_node_size = 0;
474 		continue;
475 	    }
476 	}
477 
478 	/* something fits into the current node */
479 	//if (snum012[3] != -1 || needed_nodes != 1)
480 	//  reiserfs_panic (tb->tb_sb, "vs-8115: get_num_ver: too many nodes required");
481 	//snum012[needed_nodes - 1 + 3] = op_unit_num (vi) - start_bytes - units;
482 	start_bytes += units;
483 	snum012[needed_nodes - 1 + 3] = units;
484 
485 	if (needed_nodes > 2)
486 	    reiserfs_warning (tb->tb_sb, "vs-8111: get_num_ver: "
487 			      "split_item_position is out of boundary");
488 	snum012[needed_nodes - 1] ++;
489 	split_item_positions[needed_nodes - 1] = i;
490 	needed_nodes ++;
491 	/* continue from the same item with start_bytes != -1 */
492 	start_item = i;
493 	i --;
494 	total_node_size = 0;
495     }
496 
497     // sum012[4] (if it is not -1) contains number of units of which
498     // are to be in S1new, snum012[3] - to be in S0. They are supposed
499     // to be S1bytes and S2bytes correspondingly, so recalculate
500     if (snum012[4] > 0) {
501 	int split_item_num;
502 	int bytes_to_r, bytes_to_l;
503 	int bytes_to_S1new;
504 
505 	split_item_num = split_item_positions[1];
506 	bytes_to_l = ((from == split_item_num && from_bytes != -1) ? from_bytes : 0);
507 	bytes_to_r = ((end_item == split_item_num && end_bytes != -1) ? end_bytes : 0);
508 	bytes_to_S1new = ((split_item_positions[0] == split_item_positions[1]) ? snum012[3] : 0);
509 
510 	// s2bytes
511 	snum012[4] = op_unit_num (&vn->vn_vi[split_item_num]) - snum012[4] - bytes_to_r - bytes_to_l - bytes_to_S1new;
512 
513 	if (vn->vn_vi[split_item_num].vi_index != TYPE_DIRENTRY &&
514 	    vn->vn_vi[split_item_num].vi_index != TYPE_INDIRECT)
515 	    reiserfs_warning (tb->tb_sb, "vs-8115: get_num_ver: not "
516 			      "directory or indirect item");
517     }
518 
519     /* now we know S2bytes, calculate S1bytes */
520     if (snum012[3] > 0) {
521 	int split_item_num;
522 	int bytes_to_r, bytes_to_l;
523 	int bytes_to_S2new;
524 
525 	split_item_num = split_item_positions[0];
526 	bytes_to_l = ((from == split_item_num && from_bytes != -1) ? from_bytes : 0);
527 	bytes_to_r = ((end_item == split_item_num && end_bytes != -1) ? end_bytes : 0);
528 	bytes_to_S2new = ((split_item_positions[0] == split_item_positions[1] && snum012[4] != -1) ? snum012[4] : 0);
529 
530 	// s1bytes
531 	snum012[3] = op_unit_num (&vn->vn_vi[split_item_num]) - snum012[3] - bytes_to_r - bytes_to_l - bytes_to_S2new;
532     }
533 
534     return needed_nodes;
535 }
536 
537 
538 #ifdef CONFIG_REISERFS_CHECK
539 extern struct tree_balance * cur_tb;
540 #endif
541 
542 
543 /* Set parameters for balancing.
544  * Performs write of results of analysis of balancing into structure tb,
545  * where it will later be used by the functions that actually do the balancing.
546  * Parameters:
547  *	tb	tree_balance structure;
548  *	h	current level of the node;
549  *	lnum	number of items from S[h] that must be shifted to L[h];
550  *	rnum	number of items from S[h] that must be shifted to R[h];
551  *	blk_num	number of blocks that S[h] will be splitted into;
552  *	s012	number of items that fall into splitted nodes.
553  *	lbytes	number of bytes which flow to the left neighbor from the item that is not
554  *		not shifted entirely
555  *	rbytes	number of bytes which flow to the right neighbor from the item that is not
556  *		not shifted entirely
557  *	s1bytes	number of bytes which flow to the first  new node when S[0] splits (this number is contained in s012 array)
558  */
559 
560 static void set_parameters (struct tree_balance * tb, int h, int lnum,
561 			    int rnum, int blk_num, short * s012, int lb, int rb)
562 {
563 
564   tb->lnum[h] = lnum;
565   tb->rnum[h] = rnum;
566   tb->blknum[h] = blk_num;
567 
568   if (h == 0)
569     {  /* only for leaf level */
570       if (s012 != NULL)
571 	{
572 	  tb->s0num = * s012 ++,
573 	  tb->s1num = * s012 ++,
574 	  tb->s2num = * s012 ++;
575 	  tb->s1bytes = * s012 ++;
576 	  tb->s2bytes = * s012;
577 	}
578       tb->lbytes = lb;
579       tb->rbytes = rb;
580     }
581   PROC_INFO_ADD( tb -> tb_sb, lnum[ h ], lnum );
582   PROC_INFO_ADD( tb -> tb_sb, rnum[ h ], rnum );
583 
584   PROC_INFO_ADD( tb -> tb_sb, lbytes[ h ], lb );
585   PROC_INFO_ADD( tb -> tb_sb, rbytes[ h ], rb );
586 }
587 
588 
589 
590 /* check, does node disappear if we shift tb->lnum[0] items to left
591    neighbor and tb->rnum[0] to the right one. */
592 static int is_leaf_removable (struct tree_balance * tb)
593 {
594   struct virtual_node * vn = tb->tb_vn;
595   int to_left, to_right;
596   int size;
597   int remain_items;
598 
599   /* number of items, that will be shifted to left (right) neighbor
600      entirely */
601   to_left = tb->lnum[0] - ((tb->lbytes != -1) ? 1 : 0);
602   to_right = tb->rnum[0] - ((tb->rbytes != -1) ? 1 : 0);
603   remain_items = vn->vn_nr_item;
604 
605   /* how many items remain in S[0] after shiftings to neighbors */
606   remain_items -= (to_left + to_right);
607 
608   if (remain_items < 1) {
609     /* all content of node can be shifted to neighbors */
610     set_parameters (tb, 0, to_left, vn->vn_nr_item - to_left, 0, NULL, -1, -1);
611     return 1;
612   }
613 
614   if (remain_items > 1 || tb->lbytes == -1 || tb->rbytes == -1)
615     /* S[0] is not removable */
616     return 0;
617 
618   /* check, whether we can divide 1 remaining item between neighbors */
619 
620   /* get size of remaining item (in item units) */
621   size = op_unit_num (&(vn->vn_vi[to_left]));
622 
623   if (tb->lbytes + tb->rbytes >= size) {
624     set_parameters (tb, 0, to_left + 1, to_right + 1, 0, NULL, tb->lbytes, -1);
625     return 1;
626   }
627 
628   return 0;
629 }
630 
631 
632 /* check whether L, S, R can be joined in one node */
633 static int are_leaves_removable (struct tree_balance * tb, int lfree, int rfree)
634 {
635   struct virtual_node * vn = tb->tb_vn;
636   int ih_size;
637   struct buffer_head *S0;
638 
639   S0 = PATH_H_PBUFFER (tb->tb_path, 0);
640 
641   ih_size = 0;
642   if (vn->vn_nr_item) {
643     if (vn->vn_vi[0].vi_type & VI_TYPE_LEFT_MERGEABLE)
644       ih_size += IH_SIZE;
645 
646 	if (vn->vn_vi[vn->vn_nr_item-1].vi_type & VI_TYPE_RIGHT_MERGEABLE)
647 	    ih_size += IH_SIZE;
648     } else {
649 	/* there was only one item and it will be deleted */
650 	struct item_head * ih;
651 
652     RFALSE( B_NR_ITEMS (S0) != 1,
653 	    "vs-8125: item number must be 1: it is %d", B_NR_ITEMS(S0));
654 
655     ih = B_N_PITEM_HEAD (S0, 0);
656     if (tb->CFR[0] && !comp_short_le_keys (&(ih->ih_key), B_N_PDELIM_KEY (tb->CFR[0], tb->rkey[0])))
657 	if (is_direntry_le_ih (ih)) {
658 	    /* Directory must be in correct state here: that is
659 	       somewhere at the left side should exist first directory
660 	       item. But the item being deleted can not be that first
661 	       one because its right neighbor is item of the same
662 	       directory. (But first item always gets deleted in last
663 	       turn). So, neighbors of deleted item can be merged, so
664 	       we can save ih_size */
665 	    ih_size = IH_SIZE;
666 
667 	    /* we might check that left neighbor exists and is of the
668 	       same directory */
669 	    RFALSE(le_ih_k_offset (ih) == DOT_OFFSET,
670 		"vs-8130: first directory item can not be removed until directory is not empty");
671       }
672 
673   }
674 
675   if (MAX_CHILD_SIZE (S0) + vn->vn_size <= rfree + lfree + ih_size) {
676     set_parameters (tb, 0, -1, -1, -1, NULL, -1, -1);
677     PROC_INFO_INC( tb -> tb_sb, leaves_removable );
678     return 1;
679   }
680   return 0;
681 
682 }
683 
684 
685 
686 /* when we do not split item, lnum and rnum are numbers of entire items */
687 #define SET_PAR_SHIFT_LEFT \
688 if (h)\
689 {\
690    int to_l;\
691    \
692    to_l = (MAX_NR_KEY(Sh)+1 - lpar + vn->vn_nr_item + 1) / 2 -\
693 	      (MAX_NR_KEY(Sh) + 1 - lpar);\
694 	      \
695 	      set_parameters (tb, h, to_l, 0, lnver, NULL, -1, -1);\
696 }\
697 else \
698 {\
699    if (lset==LEFT_SHIFT_FLOW)\
700      set_parameters (tb, h, lpar, 0, lnver, snum012+lset,\
701 		     tb->lbytes, -1);\
702    else\
703      set_parameters (tb, h, lpar - (tb->lbytes!=-1), 0, lnver, snum012+lset,\
704 		     -1, -1);\
705 }
706 
707 
708 #define SET_PAR_SHIFT_RIGHT \
709 if (h)\
710 {\
711    int to_r;\
712    \
713    to_r = (MAX_NR_KEY(Sh)+1 - rpar + vn->vn_nr_item + 1) / 2 - (MAX_NR_KEY(Sh) + 1 - rpar);\
714    \
715    set_parameters (tb, h, 0, to_r, rnver, NULL, -1, -1);\
716 }\
717 else \
718 {\
719    if (rset==RIGHT_SHIFT_FLOW)\
720      set_parameters (tb, h, 0, rpar, rnver, snum012+rset,\
721 		  -1, tb->rbytes);\
722    else\
723      set_parameters (tb, h, 0, rpar - (tb->rbytes!=-1), rnver, snum012+rset,\
724 		  -1, -1);\
725 }
726 
727 
728 static void free_buffers_in_tb (
729 		       struct tree_balance * p_s_tb
730 		       ) {
731   int n_counter;
732 
733   decrement_counters_in_path(p_s_tb->tb_path);
734 
735   for ( n_counter = 0; n_counter < MAX_HEIGHT; n_counter++ ) {
736     decrement_bcount(p_s_tb->L[n_counter]);
737     p_s_tb->L[n_counter] = NULL;
738     decrement_bcount(p_s_tb->R[n_counter]);
739     p_s_tb->R[n_counter] = NULL;
740     decrement_bcount(p_s_tb->FL[n_counter]);
741     p_s_tb->FL[n_counter] = NULL;
742     decrement_bcount(p_s_tb->FR[n_counter]);
743     p_s_tb->FR[n_counter] = NULL;
744     decrement_bcount(p_s_tb->CFL[n_counter]);
745     p_s_tb->CFL[n_counter] = NULL;
746     decrement_bcount(p_s_tb->CFR[n_counter]);
747     p_s_tb->CFR[n_counter] = NULL;
748   }
749 }
750 
751 
752 /* Get new buffers for storing new nodes that are created while balancing.
753  * Returns:	SCHEDULE_OCCURRED - schedule occurred while the function worked;
754  *	        CARRY_ON - schedule didn't occur while the function worked;
755  *	        NO_DISK_SPACE - no disk space.
756  */
757 /* The function is NOT SCHEDULE-SAFE! */
758 static int  get_empty_nodes(
759               struct tree_balance * p_s_tb,
760               int n_h
761             ) {
762   struct buffer_head  * p_s_new_bh,
763     		      *	p_s_Sh = PATH_H_PBUFFER (p_s_tb->tb_path, n_h);
764   b_blocknr_t	      *	p_n_blocknr,
765     			a_n_blocknrs[MAX_AMOUNT_NEEDED] = {0, };
766   int       		n_counter,
767    			n_number_of_freeblk,
768                 	n_amount_needed,/* number of needed empty blocks */
769 			n_retval = CARRY_ON;
770   struct super_block *	p_s_sb = p_s_tb->tb_sb;
771 
772 
773   /* number_of_freeblk is the number of empty blocks which have been
774      acquired for use by the balancing algorithm minus the number of
775      empty blocks used in the previous levels of the analysis,
776      number_of_freeblk = tb->cur_blknum can be non-zero if a schedule occurs
777      after empty blocks are acquired, and the balancing analysis is
778      then restarted, amount_needed is the number needed by this level
779      (n_h) of the balancing analysis.
780 
781      Note that for systems with many processes writing, it would be
782      more layout optimal to calculate the total number needed by all
783      levels and then to run reiserfs_new_blocks to get all of them at once.  */
784 
785   /* Initiate number_of_freeblk to the amount acquired prior to the restart of
786      the analysis or 0 if not restarted, then subtract the amount needed
787      by all of the levels of the tree below n_h. */
788   /* blknum includes S[n_h], so we subtract 1 in this calculation */
789   for ( n_counter = 0, n_number_of_freeblk = p_s_tb->cur_blknum; n_counter < n_h; n_counter++ )
790     n_number_of_freeblk -= ( p_s_tb->blknum[n_counter] ) ? (p_s_tb->blknum[n_counter] - 1) : 0;
791 
792   /* Allocate missing empty blocks. */
793   /* if p_s_Sh == 0  then we are getting a new root */
794   n_amount_needed = ( p_s_Sh ) ? (p_s_tb->blknum[n_h] - 1) : 1;
795   /*  Amount_needed = the amount that we need more than the amount that we have. */
796   if ( n_amount_needed > n_number_of_freeblk )
797     n_amount_needed -= n_number_of_freeblk;
798   else /* If we have enough already then there is nothing to do. */
799     return CARRY_ON;
800 
801   /* No need to check quota - is not allocated for blocks used for formatted nodes */
802   if (reiserfs_new_form_blocknrs (p_s_tb, a_n_blocknrs,
803                                    n_amount_needed) == NO_DISK_SPACE)
804     return NO_DISK_SPACE;
805 
806   /* for each blocknumber we just got, get a buffer and stick it on FEB */
807   for ( p_n_blocknr = a_n_blocknrs, n_counter = 0; n_counter < n_amount_needed;
808 	p_n_blocknr++, n_counter++ ) {
809 
810     RFALSE( ! *p_n_blocknr,
811 	    "PAP-8135: reiserfs_new_blocknrs failed when got new blocks");
812 
813     p_s_new_bh = sb_getblk(p_s_sb, *p_n_blocknr);
814     RFALSE (buffer_dirty (p_s_new_bh) ||
815 	    buffer_journaled (p_s_new_bh) ||
816 	    buffer_journal_dirty (p_s_new_bh),
817 	    "PAP-8140: journlaled or dirty buffer %b for the new block",
818 	    p_s_new_bh);
819 
820     /* Put empty buffers into the array. */
821     RFALSE (p_s_tb->FEB[p_s_tb->cur_blknum],
822 	    "PAP-8141: busy slot for new buffer");
823 
824     set_buffer_journal_new (p_s_new_bh);
825     p_s_tb->FEB[p_s_tb->cur_blknum++] = p_s_new_bh;
826   }
827 
828   if ( n_retval == CARRY_ON && FILESYSTEM_CHANGED_TB (p_s_tb) )
829     n_retval = REPEAT_SEARCH ;
830 
831   return n_retval;
832 }
833 
834 
835 /* Get free space of the left neighbor, which is stored in the parent
836  * node of the left neighbor.  */
837 static int get_lfree (struct tree_balance * tb, int h)
838 {
839     struct buffer_head * l, * f;
840     int order;
841 
842     if ((f = PATH_H_PPARENT (tb->tb_path, h)) == 0 || (l = tb->FL[h]) == 0)
843 	return 0;
844 
845     if (f == l)
846 	order = PATH_H_B_ITEM_ORDER (tb->tb_path, h) - 1;
847     else {
848 	order = B_NR_ITEMS (l);
849 	f = l;
850     }
851 
852     return (MAX_CHILD_SIZE(f) - dc_size(B_N_CHILD(f,order)));
853 }
854 
855 
856 /* Get free space of the right neighbor,
857  * which is stored in the parent node of the right neighbor.
858  */
859 static int get_rfree (struct tree_balance * tb, int h)
860 {
861   struct buffer_head * r, * f;
862   int order;
863 
864   if ((f = PATH_H_PPARENT (tb->tb_path, h)) == 0 || (r = tb->FR[h]) == 0)
865     return 0;
866 
867   if (f == r)
868       order = PATH_H_B_ITEM_ORDER (tb->tb_path, h) + 1;
869   else {
870       order = 0;
871       f = r;
872   }
873 
874   return (MAX_CHILD_SIZE(f) - dc_size( B_N_CHILD(f,order)));
875 
876 }
877 
878 
879 /* Check whether left neighbor is in memory. */
880 static int  is_left_neighbor_in_cache(
881               struct tree_balance * p_s_tb,
882               int                   n_h
883             ) {
884   struct buffer_head  * p_s_father, * left;
885   struct super_block  * p_s_sb = p_s_tb->tb_sb;
886   b_blocknr_t		n_left_neighbor_blocknr;
887   int                   n_left_neighbor_position;
888 
889   if ( ! p_s_tb->FL[n_h] ) /* Father of the left neighbor does not exist. */
890     return 0;
891 
892   /* Calculate father of the node to be balanced. */
893   p_s_father = PATH_H_PBUFFER(p_s_tb->tb_path, n_h + 1);
894 
895   RFALSE( ! p_s_father ||
896 	  ! B_IS_IN_TREE (p_s_father) ||
897 	  ! B_IS_IN_TREE (p_s_tb->FL[n_h]) ||
898 	  ! buffer_uptodate (p_s_father) ||
899 	  ! buffer_uptodate (p_s_tb->FL[n_h]),
900 	  "vs-8165: F[h] (%b) or FL[h] (%b) is invalid",
901 	  p_s_father, p_s_tb->FL[n_h]);
902 
903 
904   /* Get position of the pointer to the left neighbor into the left father. */
905   n_left_neighbor_position = ( p_s_father == p_s_tb->FL[n_h] ) ?
906                       p_s_tb->lkey[n_h] : B_NR_ITEMS (p_s_tb->FL[n_h]);
907   /* Get left neighbor block number. */
908   n_left_neighbor_blocknr = B_N_CHILD_NUM(p_s_tb->FL[n_h], n_left_neighbor_position);
909   /* Look for the left neighbor in the cache. */
910   if ( (left = sb_find_get_block(p_s_sb, n_left_neighbor_blocknr)) ) {
911 
912     RFALSE( buffer_uptodate (left) && ! B_IS_IN_TREE(left),
913 	    "vs-8170: left neighbor (%b %z) is not in the tree", left, left);
914     put_bh(left) ;
915     return 1;
916   }
917 
918   return 0;
919 }
920 
921 
922 #define LEFT_PARENTS  'l'
923 #define RIGHT_PARENTS 'r'
924 
925 
926 static void decrement_key (struct cpu_key * p_s_key)
927 {
928     // call item specific function for this key
929     item_ops[cpu_key_k_type (p_s_key)]->decrement_key (p_s_key);
930 }
931 
932 
933 
934 
935 /* Calculate far left/right parent of the left/right neighbor of the current node, that
936  * is calculate the left/right (FL[h]/FR[h]) neighbor of the parent F[h].
937  * Calculate left/right common parent of the current node and L[h]/R[h].
938  * Calculate left/right delimiting key position.
939  * Returns:	PATH_INCORRECT   - path in the tree is not correct;
940  		SCHEDULE_OCCURRED - schedule occurred while the function worked;
941  *	        CARRY_ON         - schedule didn't occur while the function worked;
942  */
943 static int  get_far_parent (struct tree_balance *   p_s_tb,
944 			    int                     n_h,
945 			    struct buffer_head  **  pp_s_father,
946 			    struct buffer_head  **  pp_s_com_father,
947 			    char                    c_lr_par)
948 {
949     struct buffer_head  * p_s_parent;
950     INITIALIZE_PATH (s_path_to_neighbor_father);
951     struct path * p_s_path = p_s_tb->tb_path;
952     struct cpu_key	s_lr_father_key;
953     int                   n_counter,
954 	n_position = INT_MAX,
955 	n_first_last_position = 0,
956 	n_path_offset = PATH_H_PATH_OFFSET(p_s_path, n_h);
957 
958     /* Starting from F[n_h] go upwards in the tree, and look for the common
959       ancestor of F[n_h], and its neighbor l/r, that should be obtained. */
960 
961     n_counter = n_path_offset;
962 
963     RFALSE( n_counter < FIRST_PATH_ELEMENT_OFFSET,
964 	    "PAP-8180: invalid path length");
965 
966 
967     for ( ; n_counter > FIRST_PATH_ELEMENT_OFFSET; n_counter--  )  {
968 	/* Check whether parent of the current buffer in the path is really parent in the tree. */
969 	if ( ! B_IS_IN_TREE(p_s_parent = PATH_OFFSET_PBUFFER(p_s_path, n_counter - 1)) )
970 	    return REPEAT_SEARCH;
971 	/* Check whether position in the parent is correct. */
972 	if ( (n_position = PATH_OFFSET_POSITION(p_s_path, n_counter - 1)) > B_NR_ITEMS(p_s_parent) )
973 	    return REPEAT_SEARCH;
974 	/* Check whether parent at the path really points to the child. */
975 	if ( B_N_CHILD_NUM(p_s_parent, n_position) !=
976 	     PATH_OFFSET_PBUFFER(p_s_path, n_counter)->b_blocknr )
977 	    return REPEAT_SEARCH;
978 	/* Return delimiting key if position in the parent is not equal to first/last one. */
979 	if ( c_lr_par == RIGHT_PARENTS )
980 	    n_first_last_position = B_NR_ITEMS (p_s_parent);
981 	if ( n_position != n_first_last_position ) {
982 	    *pp_s_com_father = p_s_parent;
983 	    get_bh(*pp_s_com_father) ;
984 	    /*(*pp_s_com_father = p_s_parent)->b_count++;*/
985 	    break;
986 	}
987     }
988 
989     /* if we are in the root of the tree, then there is no common father */
990     if ( n_counter == FIRST_PATH_ELEMENT_OFFSET ) {
991 	/* Check whether first buffer in the path is the root of the tree. */
992 	if ( PATH_OFFSET_PBUFFER(p_s_tb->tb_path, FIRST_PATH_ELEMENT_OFFSET)->b_blocknr ==
993 	     SB_ROOT_BLOCK (p_s_tb->tb_sb) ) {
994 	    *pp_s_father = *pp_s_com_father = NULL;
995 	    return CARRY_ON;
996 	}
997 	return REPEAT_SEARCH;
998     }
999 
1000     RFALSE( B_LEVEL (*pp_s_com_father) <= DISK_LEAF_NODE_LEVEL,
1001 	    "PAP-8185: (%b %z) level too small",
1002 	    *pp_s_com_father, *pp_s_com_father);
1003 
1004     /* Check whether the common parent is locked. */
1005 
1006     if ( buffer_locked (*pp_s_com_father) ) {
1007 	__wait_on_buffer(*pp_s_com_father);
1008 	if ( FILESYSTEM_CHANGED_TB (p_s_tb) ) {
1009 	    decrement_bcount(*pp_s_com_father);
1010 	    return REPEAT_SEARCH;
1011 	}
1012     }
1013 
1014     /* So, we got common parent of the current node and its left/right neighbor.
1015      Now we are geting the parent of the left/right neighbor. */
1016 
1017     /* Form key to get parent of the left/right neighbor. */
1018     le_key2cpu_key (&s_lr_father_key, B_N_PDELIM_KEY(*pp_s_com_father, ( c_lr_par == LEFT_PARENTS ) ?
1019 						     (p_s_tb->lkey[n_h - 1] = n_position - 1) : (p_s_tb->rkey[n_h - 1] = n_position)));
1020 
1021 
1022     if ( c_lr_par == LEFT_PARENTS )
1023 	decrement_key(&s_lr_father_key);
1024 
1025     if (search_by_key(p_s_tb->tb_sb, &s_lr_father_key, &s_path_to_neighbor_father, n_h + 1) == IO_ERROR)
1026 	// path is released
1027 	return IO_ERROR;
1028 
1029     if ( FILESYSTEM_CHANGED_TB (p_s_tb) ) {
1030 	decrement_counters_in_path(&s_path_to_neighbor_father);
1031 	decrement_bcount(*pp_s_com_father);
1032 	return REPEAT_SEARCH;
1033     }
1034 
1035     *pp_s_father = PATH_PLAST_BUFFER(&s_path_to_neighbor_father);
1036 
1037     RFALSE( B_LEVEL (*pp_s_father) != n_h + 1,
1038 	    "PAP-8190: (%b %z) level too small", *pp_s_father, *pp_s_father);
1039     RFALSE( s_path_to_neighbor_father.path_length < FIRST_PATH_ELEMENT_OFFSET,
1040 	    "PAP-8192: path length is too small");
1041 
1042     s_path_to_neighbor_father.path_length--;
1043     decrement_counters_in_path(&s_path_to_neighbor_father);
1044     return CARRY_ON;
1045 }
1046 
1047 
1048 /* Get parents of neighbors of node in the path(S[n_path_offset]) and common parents of
1049  * S[n_path_offset] and L[n_path_offset]/R[n_path_offset]: F[n_path_offset], FL[n_path_offset],
1050  * FR[n_path_offset], CFL[n_path_offset], CFR[n_path_offset].
1051  * Calculate numbers of left and right delimiting keys position: lkey[n_path_offset], rkey[n_path_offset].
1052  * Returns:	SCHEDULE_OCCURRED - schedule occurred while the function worked;
1053  *	        CARRY_ON - schedule didn't occur while the function worked;
1054  */
1055 static int  get_parents (struct tree_balance * p_s_tb, int n_h)
1056 {
1057     struct path         * p_s_path = p_s_tb->tb_path;
1058     int                   n_position,
1059 	n_ret_value,
1060 	n_path_offset = PATH_H_PATH_OFFSET(p_s_tb->tb_path, n_h);
1061     struct buffer_head  * p_s_curf,
1062 	* p_s_curcf;
1063 
1064     /* Current node is the root of the tree or will be root of the tree */
1065     if ( n_path_offset <= FIRST_PATH_ELEMENT_OFFSET ) {
1066 	/* The root can not have parents.
1067 	   Release nodes which previously were obtained as parents of the current node neighbors. */
1068 	decrement_bcount(p_s_tb->FL[n_h]);
1069 	decrement_bcount(p_s_tb->CFL[n_h]);
1070 	decrement_bcount(p_s_tb->FR[n_h]);
1071 	decrement_bcount(p_s_tb->CFR[n_h]);
1072 	p_s_tb->FL[n_h] = p_s_tb->CFL[n_h] = p_s_tb->FR[n_h] = p_s_tb->CFR[n_h] = NULL;
1073 	return CARRY_ON;
1074     }
1075 
1076     /* Get parent FL[n_path_offset] of L[n_path_offset]. */
1077     if ( (n_position = PATH_OFFSET_POSITION(p_s_path, n_path_offset - 1)) )  {
1078 	/* Current node is not the first child of its parent. */
1079 	/*(p_s_curf = p_s_curcf = PATH_OFFSET_PBUFFER(p_s_path, n_path_offset - 1))->b_count += 2;*/
1080 	p_s_curf = p_s_curcf = PATH_OFFSET_PBUFFER(p_s_path, n_path_offset - 1);
1081 	get_bh(p_s_curf) ;
1082 	get_bh(p_s_curf) ;
1083 	p_s_tb->lkey[n_h] = n_position - 1;
1084     }
1085     else  {
1086 	/* Calculate current parent of L[n_path_offset], which is the left neighbor of the current node.
1087 	   Calculate current common parent of L[n_path_offset] and the current node. Note that
1088 	   CFL[n_path_offset] not equal FL[n_path_offset] and CFL[n_path_offset] not equal F[n_path_offset].
1089 	   Calculate lkey[n_path_offset]. */
1090 	if ( (n_ret_value = get_far_parent(p_s_tb, n_h + 1, &p_s_curf,
1091 					   &p_s_curcf, LEFT_PARENTS)) != CARRY_ON )
1092 	    return n_ret_value;
1093     }
1094 
1095     decrement_bcount(p_s_tb->FL[n_h]);
1096     p_s_tb->FL[n_h] = p_s_curf; /* New initialization of FL[n_h]. */
1097     decrement_bcount(p_s_tb->CFL[n_h]);
1098     p_s_tb->CFL[n_h] = p_s_curcf; /* New initialization of CFL[n_h]. */
1099 
1100     RFALSE( (p_s_curf && !B_IS_IN_TREE (p_s_curf)) ||
1101 	    (p_s_curcf && !B_IS_IN_TREE (p_s_curcf)),
1102 	    "PAP-8195: FL (%b) or CFL (%b) is invalid", p_s_curf, p_s_curcf);
1103 
1104 /* Get parent FR[n_h] of R[n_h]. */
1105 
1106 /* Current node is the last child of F[n_h]. FR[n_h] != F[n_h]. */
1107     if ( n_position == B_NR_ITEMS (PATH_H_PBUFFER(p_s_path, n_h + 1)) ) {
1108 /* Calculate current parent of R[n_h], which is the right neighbor of F[n_h].
1109    Calculate current common parent of R[n_h] and current node. Note that CFR[n_h]
1110    not equal FR[n_path_offset] and CFR[n_h] not equal F[n_h]. */
1111 	if ( (n_ret_value = get_far_parent(p_s_tb, n_h + 1, &p_s_curf,  &p_s_curcf, RIGHT_PARENTS)) != CARRY_ON )
1112 	    return n_ret_value;
1113     }
1114     else {
1115 /* Current node is not the last child of its parent F[n_h]. */
1116 	/*(p_s_curf = p_s_curcf = PATH_OFFSET_PBUFFER(p_s_path, n_path_offset - 1))->b_count += 2;*/
1117 	p_s_curf = p_s_curcf = PATH_OFFSET_PBUFFER(p_s_path, n_path_offset - 1);
1118 	get_bh(p_s_curf) ;
1119 	get_bh(p_s_curf) ;
1120 	p_s_tb->rkey[n_h] = n_position;
1121     }
1122 
1123     decrement_bcount(p_s_tb->FR[n_h]);
1124     p_s_tb->FR[n_h] = p_s_curf; /* New initialization of FR[n_path_offset]. */
1125 
1126     decrement_bcount(p_s_tb->CFR[n_h]);
1127     p_s_tb->CFR[n_h] = p_s_curcf; /* New initialization of CFR[n_path_offset]. */
1128 
1129     RFALSE( (p_s_curf && !B_IS_IN_TREE (p_s_curf)) ||
1130             (p_s_curcf && !B_IS_IN_TREE (p_s_curcf)),
1131 	    "PAP-8205: FR (%b) or CFR (%b) is invalid", p_s_curf, p_s_curcf);
1132 
1133     return CARRY_ON;
1134 }
1135 
1136 
1137 /* it is possible to remove node as result of shiftings to
1138    neighbors even when we insert or paste item. */
1139 static inline int can_node_be_removed (int mode, int lfree, int sfree, int rfree, struct tree_balance * tb, int h)
1140 {
1141     struct buffer_head * Sh = PATH_H_PBUFFER (tb->tb_path, h);
1142     int levbytes = tb->insert_size[h];
1143     struct item_head * ih;
1144     struct reiserfs_key * r_key = NULL;
1145 
1146     ih = B_N_PITEM_HEAD (Sh, 0);
1147     if ( tb->CFR[h] )
1148 	r_key = B_N_PDELIM_KEY(tb->CFR[h],tb->rkey[h]);
1149 
1150     if (
1151 	lfree + rfree + sfree < MAX_CHILD_SIZE(Sh) + levbytes
1152 	/* shifting may merge items which might save space */
1153 	- (( ! h && op_is_left_mergeable (&(ih->ih_key), Sh->b_size) ) ? IH_SIZE : 0)
1154 	- (( ! h && r_key && op_is_left_mergeable (r_key, Sh->b_size) ) ? IH_SIZE : 0)
1155 	+ (( h ) ? KEY_SIZE : 0))
1156     {
1157 	/* node can not be removed */
1158 	if (sfree >= levbytes ) { /* new item fits into node S[h] without any shifting */
1159 	    if ( ! h )
1160 		tb->s0num = B_NR_ITEMS(Sh) + ((mode == M_INSERT ) ? 1 : 0);
1161 	    set_parameters (tb, h, 0, 0, 1, NULL, -1, -1);
1162 	    return NO_BALANCING_NEEDED;
1163 	}
1164     }
1165     PROC_INFO_INC( tb -> tb_sb, can_node_be_removed[ h ] );
1166     return !NO_BALANCING_NEEDED;
1167 }
1168 
1169 
1170 
1171 /* Check whether current node S[h] is balanced when increasing its size by
1172  * Inserting or Pasting.
1173  * Calculate parameters for balancing for current level h.
1174  * Parameters:
1175  *	tb	tree_balance structure;
1176  *	h	current level of the node;
1177  *	inum	item number in S[h];
1178  *	mode	i - insert, p - paste;
1179  * Returns:	1 - schedule occurred;
1180  *	        0 - balancing for higher levels needed;
1181  *	       -1 - no balancing for higher levels needed;
1182  *	       -2 - no disk space.
1183  */
1184 /* ip means Inserting or Pasting */
1185 static int ip_check_balance (struct tree_balance * tb, int h)
1186 {
1187     struct virtual_node * vn = tb->tb_vn;
1188     int levbytes,  /* Number of bytes that must be inserted into (value
1189 		      is negative if bytes are deleted) buffer which
1190 		      contains node being balanced.  The mnemonic is
1191 		      that the attempted change in node space used level
1192 		      is levbytes bytes. */
1193 	n_ret_value;
1194 
1195     int lfree, sfree, rfree /* free space in L, S and R */;
1196 
1197     /* nver is short for number of vertixes, and lnver is the number if
1198        we shift to the left, rnver is the number if we shift to the
1199        right, and lrnver is the number if we shift in both directions.
1200        The goal is to minimize first the number of vertixes, and second,
1201        the number of vertixes whose contents are changed by shifting,
1202        and third the number of uncached vertixes whose contents are
1203        changed by shifting and must be read from disk.  */
1204     int nver, lnver, rnver, lrnver;
1205 
1206     /* used at leaf level only, S0 = S[0] is the node being balanced,
1207        sInum [ I = 0,1,2 ] is the number of items that will
1208        remain in node SI after balancing.  S1 and S2 are new
1209        nodes that might be created. */
1210 
1211     /* we perform 8 calls to get_num_ver().  For each call we calculate five parameters.
1212        where 4th parameter is s1bytes and 5th - s2bytes
1213     */
1214     short snum012[40] = {0,};	/* s0num, s1num, s2num for 8 cases
1215 				   0,1 - do not shift and do not shift but bottle
1216 				   2 - shift only whole item to left
1217 				   3 - shift to left and bottle as much as possible
1218 				   4,5 - shift to right	(whole items and as much as possible
1219 				   6,7 - shift to both directions (whole items and as much as possible)
1220 				*/
1221 
1222     /* Sh is the node whose balance is currently being checked */
1223     struct buffer_head * Sh;
1224 
1225     Sh = PATH_H_PBUFFER (tb->tb_path, h);
1226     levbytes = tb->insert_size[h];
1227 
1228     /* Calculate balance parameters for creating new root. */
1229     if ( ! Sh )  {
1230 	if ( ! h )
1231 	    reiserfs_panic (tb->tb_sb, "vs-8210: ip_check_balance: S[0] can not be 0");
1232 	switch ( n_ret_value = get_empty_nodes (tb, h) )  {
1233 	case CARRY_ON:
1234 	    set_parameters (tb, h, 0, 0, 1, NULL, -1, -1);
1235 	    return NO_BALANCING_NEEDED; /* no balancing for higher levels needed */
1236 
1237 	case NO_DISK_SPACE:
1238 	case REPEAT_SEARCH:
1239 	    return n_ret_value;
1240 	default:
1241 	    reiserfs_panic(tb->tb_sb, "vs-8215: ip_check_balance: incorrect return value of get_empty_nodes");
1242 	}
1243     }
1244 
1245     if ( (n_ret_value = get_parents (tb, h)) != CARRY_ON ) /* get parents of S[h] neighbors. */
1246 	return n_ret_value;
1247 
1248     sfree = B_FREE_SPACE (Sh);
1249 
1250     /* get free space of neighbors */
1251     rfree = get_rfree (tb, h);
1252     lfree = get_lfree (tb, h);
1253 
1254     if (can_node_be_removed (vn->vn_mode, lfree, sfree, rfree, tb, h) == NO_BALANCING_NEEDED)
1255 	/* and new item fits into node S[h] without any shifting */
1256 	return NO_BALANCING_NEEDED;
1257 
1258     create_virtual_node (tb, h);
1259 
1260     /*
1261 	determine maximal number of items we can shift to the left neighbor (in tb structure)
1262 	and the maximal number of bytes that can flow to the left neighbor
1263 	from the left most liquid item that cannot be shifted from S[0] entirely (returned value)
1264     */
1265     check_left (tb, h, lfree);
1266 
1267     /*
1268       determine maximal number of items we can shift to the right neighbor (in tb structure)
1269       and the maximal number of bytes that can flow to the right neighbor
1270       from the right most liquid item that cannot be shifted from S[0] entirely (returned value)
1271     */
1272     check_right (tb, h, rfree);
1273 
1274 
1275     /* all contents of internal node S[h] can be moved into its
1276        neighbors, S[h] will be removed after balancing */
1277     if (h && (tb->rnum[h] + tb->lnum[h] >= vn->vn_nr_item + 1)) {
1278 	int to_r;
1279 
1280 	/* Since we are working on internal nodes, and our internal
1281 	   nodes have fixed size entries, then we can balance by the
1282 	   number of items rather than the space they consume.  In this
1283 	   routine we set the left node equal to the right node,
1284 	   allowing a difference of less than or equal to 1 child
1285 	   pointer. */
1286 	to_r = ((MAX_NR_KEY(Sh)<<1)+2-tb->lnum[h]-tb->rnum[h]+vn->vn_nr_item+1)/2 -
1287 	    (MAX_NR_KEY(Sh) + 1 - tb->rnum[h]);
1288 	set_parameters (tb, h, vn->vn_nr_item + 1 - to_r, to_r, 0, NULL, -1, -1);
1289 	return CARRY_ON;
1290     }
1291 
1292     /* this checks balance condition, that any two neighboring nodes can not fit in one node */
1293     RFALSE( h &&
1294 	    ( tb->lnum[h] >= vn->vn_nr_item + 1 ||
1295 	      tb->rnum[h] >= vn->vn_nr_item + 1),
1296 	    "vs-8220: tree is not balanced on internal level");
1297     RFALSE( ! h && ((tb->lnum[h] >= vn->vn_nr_item && (tb->lbytes == -1)) ||
1298 		    (tb->rnum[h] >= vn->vn_nr_item && (tb->rbytes == -1)) ),
1299 	    "vs-8225: tree is not balanced on leaf level");
1300 
1301     /* all contents of S[0] can be moved into its neighbors
1302        S[0] will be removed after balancing. */
1303     if (!h && is_leaf_removable (tb))
1304 	return CARRY_ON;
1305 
1306 
1307     /* why do we perform this check here rather than earlier??
1308        Answer: we can win 1 node in some cases above. Moreover we
1309        checked it above, when we checked, that S[0] is not removable
1310        in principle */
1311     if (sfree >= levbytes) { /* new item fits into node S[h] without any shifting */
1312 	if ( ! h )
1313 	    tb->s0num = vn->vn_nr_item;
1314 	set_parameters (tb, h, 0, 0, 1, NULL, -1, -1);
1315 	return NO_BALANCING_NEEDED;
1316     }
1317 
1318 
1319     {
1320 	int lpar, rpar, nset, lset, rset, lrset;
1321 	/*
1322 	 * regular overflowing of the node
1323 	 */
1324 
1325 	/* get_num_ver works in 2 modes (FLOW & NO_FLOW)
1326 	   lpar, rpar - number of items we can shift to left/right neighbor (including splitting item)
1327 	   nset, lset, rset, lrset - shows, whether flowing items give better packing
1328 	*/
1329 #define FLOW 1
1330 #define NO_FLOW 0	/* do not any splitting */
1331 
1332 	/* we choose one the following */
1333 #define NOTHING_SHIFT_NO_FLOW	0
1334 #define NOTHING_SHIFT_FLOW	5
1335 #define LEFT_SHIFT_NO_FLOW	10
1336 #define LEFT_SHIFT_FLOW		15
1337 #define RIGHT_SHIFT_NO_FLOW	20
1338 #define RIGHT_SHIFT_FLOW	25
1339 #define LR_SHIFT_NO_FLOW	30
1340 #define LR_SHIFT_FLOW		35
1341 
1342 
1343 	lpar = tb->lnum[h];
1344 	rpar = tb->rnum[h];
1345 
1346 
1347 	/* calculate number of blocks S[h] must be split into when
1348 	   nothing is shifted to the neighbors,
1349 	   as well as number of items in each part of the split node (s012 numbers),
1350 	   and number of bytes (s1bytes) of the shared drop which flow to S1 if any */
1351 	nset = NOTHING_SHIFT_NO_FLOW;
1352 	nver = get_num_ver (vn->vn_mode, tb, h,
1353 			    0, -1, h?vn->vn_nr_item:0, -1,
1354 			    snum012, NO_FLOW);
1355 
1356 	if (!h)
1357 	{
1358 	    int nver1;
1359 
1360 	    /* note, that in this case we try to bottle between S[0] and S1 (S1 - the first new node) */
1361 	    nver1 = get_num_ver (vn->vn_mode, tb, h,
1362 				 0, -1, 0, -1,
1363 				 snum012 + NOTHING_SHIFT_FLOW, FLOW);
1364 	    if (nver > nver1)
1365 		nset = NOTHING_SHIFT_FLOW, nver = nver1;
1366 	}
1367 
1368 
1369 	/* calculate number of blocks S[h] must be split into when
1370 	   l_shift_num first items and l_shift_bytes of the right most
1371 	   liquid item to be shifted are shifted to the left neighbor,
1372 	   as well as number of items in each part of the splitted node (s012 numbers),
1373 	   and number of bytes (s1bytes) of the shared drop which flow to S1 if any
1374 	*/
1375 	lset = LEFT_SHIFT_NO_FLOW;
1376 	lnver = get_num_ver (vn->vn_mode, tb, h,
1377 			     lpar - (( h || tb->lbytes == -1 ) ? 0 : 1), -1, h ? vn->vn_nr_item:0, -1,
1378 			     snum012 + LEFT_SHIFT_NO_FLOW, NO_FLOW);
1379 	if (!h)
1380 	{
1381 	    int lnver1;
1382 
1383 	    lnver1 = get_num_ver (vn->vn_mode, tb, h,
1384 				  lpar - ((tb->lbytes != -1) ? 1 : 0), tb->lbytes, 0, -1,
1385 				  snum012 + LEFT_SHIFT_FLOW, FLOW);
1386 	    if (lnver > lnver1)
1387 		lset = LEFT_SHIFT_FLOW, lnver = lnver1;
1388 	}
1389 
1390 
1391 	/* calculate number of blocks S[h] must be split into when
1392 	   r_shift_num first items and r_shift_bytes of the left most
1393 	   liquid item to be shifted are shifted to the right neighbor,
1394 	   as well as number of items in each part of the splitted node (s012 numbers),
1395 	   and number of bytes (s1bytes) of the shared drop which flow to S1 if any
1396 	*/
1397 	rset = RIGHT_SHIFT_NO_FLOW;
1398 	rnver = get_num_ver (vn->vn_mode, tb, h,
1399 			     0, -1, h ? (vn->vn_nr_item-rpar) : (rpar - (( tb->rbytes != -1 ) ? 1 : 0)), -1,
1400 			     snum012 + RIGHT_SHIFT_NO_FLOW, NO_FLOW);
1401 	if (!h)
1402 	{
1403 	    int rnver1;
1404 
1405 	    rnver1 = get_num_ver (vn->vn_mode, tb, h,
1406 				  0, -1, (rpar - ((tb->rbytes != -1) ? 1 : 0)), tb->rbytes,
1407 				  snum012 + RIGHT_SHIFT_FLOW, FLOW);
1408 
1409 	    if (rnver > rnver1)
1410 		rset = RIGHT_SHIFT_FLOW, rnver = rnver1;
1411 	}
1412 
1413 
1414 	/* calculate number of blocks S[h] must be split into when
1415 	   items are shifted in both directions,
1416 	   as well as number of items in each part of the splitted node (s012 numbers),
1417 	   and number of bytes (s1bytes) of the shared drop which flow to S1 if any
1418 	*/
1419 	lrset = LR_SHIFT_NO_FLOW;
1420 	lrnver = get_num_ver (vn->vn_mode, tb, h,
1421 			      lpar - ((h || tb->lbytes == -1) ? 0 : 1), -1, h ? (vn->vn_nr_item-rpar):(rpar - ((tb->rbytes != -1) ? 1 : 0)), -1,
1422 			      snum012 + LR_SHIFT_NO_FLOW, NO_FLOW);
1423 	if (!h)
1424 	{
1425 	    int lrnver1;
1426 
1427 	    lrnver1 = get_num_ver (vn->vn_mode, tb, h,
1428 				   lpar - ((tb->lbytes != -1) ? 1 : 0), tb->lbytes, (rpar - ((tb->rbytes != -1) ? 1 : 0)), tb->rbytes,
1429 				   snum012 + LR_SHIFT_FLOW, FLOW);
1430 	    if (lrnver > lrnver1)
1431 		lrset = LR_SHIFT_FLOW, lrnver = lrnver1;
1432 	}
1433 
1434 
1435 
1436 	/* Our general shifting strategy is:
1437 	   1) to minimized number of new nodes;
1438 	   2) to minimized number of neighbors involved in shifting;
1439 	   3) to minimized number of disk reads; */
1440 
1441 	/* we can win TWO or ONE nodes by shifting in both directions */
1442 	if (lrnver < lnver && lrnver < rnver)
1443 	{
1444 	    RFALSE( h &&
1445 		    (tb->lnum[h] != 1 ||
1446 		     tb->rnum[h] != 1 ||
1447 		     lrnver != 1 || rnver != 2 || lnver != 2 || h != 1),
1448 		    "vs-8230: bad h");
1449 	    if (lrset == LR_SHIFT_FLOW)
1450 		set_parameters (tb, h, tb->lnum[h], tb->rnum[h], lrnver, snum012 + lrset,
1451 				tb->lbytes, tb->rbytes);
1452 	    else
1453 		set_parameters (tb, h, tb->lnum[h] - ((tb->lbytes == -1) ? 0 : 1),
1454 				tb->rnum[h] - ((tb->rbytes == -1) ? 0 : 1), lrnver, snum012 + lrset, -1, -1);
1455 
1456 	    return CARRY_ON;
1457 	}
1458 
1459 	/* if shifting doesn't lead to better packing then don't shift */
1460 	if (nver == lrnver)
1461 	{
1462 	    set_parameters (tb, h, 0, 0, nver, snum012 + nset, -1, -1);
1463 	    return CARRY_ON;
1464 	}
1465 
1466 
1467 	/* now we know that for better packing shifting in only one
1468 	   direction either to the left or to the right is required */
1469 
1470 	/*  if shifting to the left is better than shifting to the right */
1471 	if (lnver < rnver)
1472 	{
1473 	    SET_PAR_SHIFT_LEFT;
1474 	    return CARRY_ON;
1475 	}
1476 
1477 	/* if shifting to the right is better than shifting to the left */
1478 	if (lnver > rnver)
1479 	{
1480 	    SET_PAR_SHIFT_RIGHT;
1481 	    return CARRY_ON;
1482 	}
1483 
1484 
1485 	/* now shifting in either direction gives the same number
1486 	   of nodes and we can make use of the cached neighbors */
1487 	if (is_left_neighbor_in_cache (tb,h))
1488 	{
1489 	    SET_PAR_SHIFT_LEFT;
1490 	    return CARRY_ON;
1491 	}
1492 
1493 	/* shift to the right independently on whether the right neighbor in cache or not */
1494 	SET_PAR_SHIFT_RIGHT;
1495 	return CARRY_ON;
1496     }
1497 }
1498 
1499 
1500 /* Check whether current node S[h] is balanced when Decreasing its size by
1501  * Deleting or Cutting for INTERNAL node of S+tree.
1502  * Calculate parameters for balancing for current level h.
1503  * Parameters:
1504  *	tb	tree_balance structure;
1505  *	h	current level of the node;
1506  *	inum	item number in S[h];
1507  *	mode	i - insert, p - paste;
1508  * Returns:	1 - schedule occurred;
1509  *	        0 - balancing for higher levels needed;
1510  *	       -1 - no balancing for higher levels needed;
1511  *	       -2 - no disk space.
1512  *
1513  * Note: Items of internal nodes have fixed size, so the balance condition for
1514  * the internal part of S+tree is as for the B-trees.
1515  */
1516 static int dc_check_balance_internal (struct tree_balance * tb, int h)
1517 {
1518   struct virtual_node * vn = tb->tb_vn;
1519 
1520   /* Sh is the node whose balance is currently being checked,
1521      and Fh is its father.  */
1522   struct buffer_head * Sh, * Fh;
1523   int maxsize,
1524       n_ret_value;
1525   int lfree, rfree /* free space in L and R */;
1526 
1527   Sh = PATH_H_PBUFFER (tb->tb_path, h);
1528   Fh = PATH_H_PPARENT (tb->tb_path, h);
1529 
1530   maxsize = MAX_CHILD_SIZE(Sh);
1531 
1532 /*   using tb->insert_size[h], which is negative in this case, create_virtual_node calculates: */
1533 /*   new_nr_item = number of items node would have if operation is */
1534 /* 	performed without balancing (new_nr_item); */
1535   create_virtual_node (tb, h);
1536 
1537   if ( ! Fh )
1538     {   /* S[h] is the root. */
1539       if ( vn->vn_nr_item > 0 )
1540 	{
1541 	  set_parameters (tb, h, 0, 0, 1, NULL, -1, -1);
1542 	  return NO_BALANCING_NEEDED; /* no balancing for higher levels needed */
1543 	}
1544       /* new_nr_item == 0.
1545        * Current root will be deleted resulting in
1546        * decrementing the tree height. */
1547       set_parameters (tb, h, 0, 0, 0, NULL, -1, -1);
1548       return CARRY_ON;
1549     }
1550 
1551   if ( (n_ret_value = get_parents(tb,h)) != CARRY_ON )
1552     return n_ret_value;
1553 
1554 
1555   /* get free space of neighbors */
1556   rfree = get_rfree (tb, h);
1557   lfree = get_lfree (tb, h);
1558 
1559   /* determine maximal number of items we can fit into neighbors */
1560   check_left (tb, h, lfree);
1561   check_right (tb, h, rfree);
1562 
1563 
1564   if ( vn->vn_nr_item >= MIN_NR_KEY(Sh) )
1565     { /* Balance condition for the internal node is valid.
1566        * In this case we balance only if it leads to better packing. */
1567       if ( vn->vn_nr_item == MIN_NR_KEY(Sh) )
1568 	{ /* Here we join S[h] with one of its neighbors,
1569 	   * which is impossible with greater values of new_nr_item. */
1570 	  if ( tb->lnum[h] >= vn->vn_nr_item + 1 )
1571 	    {
1572 	      /* All contents of S[h] can be moved to L[h]. */
1573 	      int n;
1574 	      int order_L;
1575 
1576 	      order_L = ((n=PATH_H_B_ITEM_ORDER(tb->tb_path, h))==0) ? B_NR_ITEMS(tb->FL[h]) : n - 1;
1577 	      n = dc_size(B_N_CHILD(tb->FL[h],order_L)) / (DC_SIZE + KEY_SIZE);
1578 	      set_parameters (tb, h, -n-1, 0, 0, NULL, -1, -1);
1579 	      return CARRY_ON;
1580 	    }
1581 
1582 	  if ( tb->rnum[h] >= vn->vn_nr_item + 1 )
1583 	    {
1584 	      /* All contents of S[h] can be moved to R[h]. */
1585 	      int n;
1586 	      int order_R;
1587 
1588 	      order_R = ((n=PATH_H_B_ITEM_ORDER(tb->tb_path, h))==B_NR_ITEMS(Fh)) ? 0 : n + 1;
1589 	      n = dc_size(B_N_CHILD(tb->FR[h],order_R)) / (DC_SIZE + KEY_SIZE);
1590 	      set_parameters (tb, h, 0, -n-1, 0, NULL, -1, -1);
1591 	      return CARRY_ON;
1592 	    }
1593 	}
1594 
1595       if (tb->rnum[h] + tb->lnum[h] >= vn->vn_nr_item + 1)
1596 	{
1597 	  /* All contents of S[h] can be moved to the neighbors (L[h] & R[h]). */
1598 	  int to_r;
1599 
1600 	  to_r = ((MAX_NR_KEY(Sh)<<1)+2-tb->lnum[h]-tb->rnum[h]+vn->vn_nr_item+1)/2 -
1601 	    (MAX_NR_KEY(Sh) + 1 - tb->rnum[h]);
1602 	  set_parameters (tb, h, vn->vn_nr_item + 1 - to_r, to_r, 0, NULL, -1, -1);
1603 	  return CARRY_ON;
1604 	}
1605 
1606       /* Balancing does not lead to better packing. */
1607       set_parameters (tb, h, 0, 0, 1, NULL, -1, -1);
1608       return NO_BALANCING_NEEDED;
1609     }
1610 
1611   /* Current node contain insufficient number of items. Balancing is required. */
1612   /* Check whether we can merge S[h] with left neighbor. */
1613   if (tb->lnum[h] >= vn->vn_nr_item + 1)
1614     if (is_left_neighbor_in_cache (tb,h) || tb->rnum[h] < vn->vn_nr_item + 1 || !tb->FR[h])
1615       {
1616 	int n;
1617 	int order_L;
1618 
1619 	order_L = ((n=PATH_H_B_ITEM_ORDER(tb->tb_path, h))==0) ? B_NR_ITEMS(tb->FL[h]) : n - 1;
1620 	n = dc_size(B_N_CHILD(tb->FL[h],order_L)) / (DC_SIZE + KEY_SIZE);
1621 	set_parameters (tb, h, -n-1, 0, 0, NULL, -1, -1);
1622 	return CARRY_ON;
1623       }
1624 
1625   /* Check whether we can merge S[h] with right neighbor. */
1626   if (tb->rnum[h] >= vn->vn_nr_item + 1)
1627     {
1628       int n;
1629       int order_R;
1630 
1631       order_R = ((n=PATH_H_B_ITEM_ORDER(tb->tb_path, h))==B_NR_ITEMS(Fh)) ? 0 : (n + 1);
1632       n = dc_size(B_N_CHILD(tb->FR[h],order_R)) / (DC_SIZE + KEY_SIZE);
1633       set_parameters (tb, h, 0, -n-1, 0, NULL, -1, -1);
1634       return CARRY_ON;
1635     }
1636 
1637   /* All contents of S[h] can be moved to the neighbors (L[h] & R[h]). */
1638   if (tb->rnum[h] + tb->lnum[h] >= vn->vn_nr_item + 1)
1639     {
1640       int to_r;
1641 
1642       to_r = ((MAX_NR_KEY(Sh)<<1)+2-tb->lnum[h]-tb->rnum[h]+vn->vn_nr_item+1)/2 -
1643 	(MAX_NR_KEY(Sh) + 1 - tb->rnum[h]);
1644       set_parameters (tb, h, vn->vn_nr_item + 1 - to_r, to_r, 0, NULL, -1, -1);
1645       return CARRY_ON;
1646     }
1647 
1648   /* For internal nodes try to borrow item from a neighbor */
1649   RFALSE( !tb->FL[h] && !tb->FR[h], "vs-8235: trying to borrow for root");
1650 
1651   /* Borrow one or two items from caching neighbor */
1652   if (is_left_neighbor_in_cache (tb,h) || !tb->FR[h])
1653     {
1654       int from_l;
1655 
1656       from_l = (MAX_NR_KEY(Sh) + 1 - tb->lnum[h] + vn->vn_nr_item + 1) / 2 -  (vn->vn_nr_item + 1);
1657       set_parameters (tb, h, -from_l, 0, 1, NULL, -1, -1);
1658       return CARRY_ON;
1659     }
1660 
1661   set_parameters (tb, h, 0, -((MAX_NR_KEY(Sh)+1-tb->rnum[h]+vn->vn_nr_item+1)/2-(vn->vn_nr_item+1)), 1,
1662 		  NULL, -1, -1);
1663   return CARRY_ON;
1664 }
1665 
1666 
1667 /* Check whether current node S[h] is balanced when Decreasing its size by
1668  * Deleting or Truncating for LEAF node of S+tree.
1669  * Calculate parameters for balancing for current level h.
1670  * Parameters:
1671  *	tb	tree_balance structure;
1672  *	h	current level of the node;
1673  *	inum	item number in S[h];
1674  *	mode	i - insert, p - paste;
1675  * Returns:	1 - schedule occurred;
1676  *	        0 - balancing for higher levels needed;
1677  *	       -1 - no balancing for higher levels needed;
1678  *	       -2 - no disk space.
1679  */
1680 static int dc_check_balance_leaf (struct tree_balance * tb, int h)
1681 {
1682   struct virtual_node * vn = tb->tb_vn;
1683 
1684   /* Number of bytes that must be deleted from
1685      (value is negative if bytes are deleted) buffer which
1686      contains node being balanced.  The mnemonic is that the
1687      attempted change in node space used level is levbytes bytes. */
1688   int levbytes;
1689   /* the maximal item size */
1690   int maxsize,
1691       n_ret_value;
1692   /* S0 is the node whose balance is currently being checked,
1693      and F0 is its father.  */
1694   struct buffer_head * S0, * F0;
1695   int lfree, rfree /* free space in L and R */;
1696 
1697   S0 = PATH_H_PBUFFER (tb->tb_path, 0);
1698   F0 = PATH_H_PPARENT (tb->tb_path, 0);
1699 
1700   levbytes = tb->insert_size[h];
1701 
1702   maxsize = MAX_CHILD_SIZE(S0); 	/* maximal possible size of an item */
1703 
1704   if ( ! F0 )
1705     {  /* S[0] is the root now. */
1706 
1707       RFALSE( -levbytes >= maxsize - B_FREE_SPACE (S0),
1708 	      "vs-8240: attempt to create empty buffer tree");
1709 
1710       set_parameters (tb, h, 0, 0, 1, NULL, -1, -1);
1711       return NO_BALANCING_NEEDED;
1712     }
1713 
1714   if ( (n_ret_value = get_parents(tb,h)) != CARRY_ON )
1715     return n_ret_value;
1716 
1717   /* get free space of neighbors */
1718   rfree = get_rfree (tb, h);
1719   lfree = get_lfree (tb, h);
1720 
1721   create_virtual_node (tb, h);
1722 
1723   /* if 3 leaves can be merge to one, set parameters and return */
1724   if (are_leaves_removable (tb, lfree, rfree))
1725     return CARRY_ON;
1726 
1727   /* determine maximal number of items we can shift to the left/right  neighbor
1728      and the maximal number of bytes that can flow to the left/right neighbor
1729      from the left/right most liquid item that cannot be shifted from S[0] entirely
1730      */
1731   check_left (tb, h, lfree);
1732   check_right (tb, h, rfree);
1733 
1734   /* check whether we can merge S with left neighbor. */
1735   if (tb->lnum[0] >= vn->vn_nr_item && tb->lbytes == -1)
1736     if (is_left_neighbor_in_cache (tb,h) ||
1737 	((tb->rnum[0] - ((tb->rbytes == -1) ? 0 : 1)) < vn->vn_nr_item) || /* S can not be merged with R */
1738 	!tb->FR[h]) {
1739 
1740       RFALSE( !tb->FL[h], "vs-8245: dc_check_balance_leaf: FL[h] must exist");
1741 
1742       /* set parameter to merge S[0] with its left neighbor */
1743       set_parameters (tb, h, -1, 0, 0, NULL, -1, -1);
1744       return CARRY_ON;
1745     }
1746 
1747   /* check whether we can merge S[0] with right neighbor. */
1748   if (tb->rnum[0] >= vn->vn_nr_item && tb->rbytes == -1) {
1749     set_parameters (tb, h, 0, -1, 0, NULL, -1, -1);
1750     return CARRY_ON;
1751   }
1752 
1753   /* All contents of S[0] can be moved to the neighbors (L[0] & R[0]). Set parameters and return */
1754   if (is_leaf_removable (tb))
1755     return CARRY_ON;
1756 
1757   /* Balancing is not required. */
1758   tb->s0num = vn->vn_nr_item;
1759   set_parameters (tb, h, 0, 0, 1, NULL, -1, -1);
1760   return NO_BALANCING_NEEDED;
1761 }
1762 
1763 
1764 
1765 /* Check whether current node S[h] is balanced when Decreasing its size by
1766  * Deleting or Cutting.
1767  * Calculate parameters for balancing for current level h.
1768  * Parameters:
1769  *	tb	tree_balance structure;
1770  *	h	current level of the node;
1771  *	inum	item number in S[h];
1772  *	mode	d - delete, c - cut.
1773  * Returns:	1 - schedule occurred;
1774  *	        0 - balancing for higher levels needed;
1775  *	       -1 - no balancing for higher levels needed;
1776  *	       -2 - no disk space.
1777  */
1778 static int dc_check_balance (struct tree_balance * tb, int h)
1779 {
1780  RFALSE( ! (PATH_H_PBUFFER (tb->tb_path, h)), "vs-8250: S is not initialized");
1781 
1782  if ( h )
1783    return dc_check_balance_internal (tb, h);
1784  else
1785    return dc_check_balance_leaf (tb, h);
1786 }
1787 
1788 
1789 
1790 /* Check whether current node S[h] is balanced.
1791  * Calculate parameters for balancing for current level h.
1792  * Parameters:
1793  *
1794  *	tb	tree_balance structure:
1795  *
1796  *              tb is a large structure that must be read about in the header file
1797  *              at the same time as this procedure if the reader is to successfully
1798  *              understand this procedure
1799  *
1800  *	h	current level of the node;
1801  *	inum	item number in S[h];
1802  *	mode	i - insert, p - paste, d - delete, c - cut.
1803  * Returns:	1 - schedule occurred;
1804  *	        0 - balancing for higher levels needed;
1805  *	       -1 - no balancing for higher levels needed;
1806  *	       -2 - no disk space.
1807  */
1808 static int check_balance (int mode,
1809 			  struct tree_balance * tb,
1810 			  int h,
1811 			  int inum,
1812 			  int pos_in_item,
1813 			  struct item_head * ins_ih,
1814 			  const void * data
1815 			  )
1816 {
1817   struct virtual_node * vn;
1818 
1819   vn = tb->tb_vn = (struct virtual_node *)(tb->vn_buf);
1820   vn->vn_free_ptr = (char *)(tb->tb_vn + 1);
1821   vn->vn_mode = mode;
1822   vn->vn_affected_item_num = inum;
1823   vn->vn_pos_in_item = pos_in_item;
1824   vn->vn_ins_ih = ins_ih;
1825   vn->vn_data = data;
1826 
1827   RFALSE( mode == M_INSERT && !vn->vn_ins_ih,
1828 	  "vs-8255: ins_ih can not be 0 in insert mode");
1829 
1830  if ( tb->insert_size[h] > 0 )
1831    /* Calculate balance parameters when size of node is increasing. */
1832    return ip_check_balance (tb, h);
1833 
1834  /* Calculate balance parameters when  size of node is decreasing. */
1835  return dc_check_balance (tb, h);
1836 }
1837 
1838 
1839 
1840 /* Check whether parent at the path is the really parent of the current node.*/
1841 static int  get_direct_parent(
1842               struct tree_balance * p_s_tb,
1843               int                   n_h
1844             ) {
1845     struct buffer_head  * p_s_bh;
1846     struct path         * p_s_path      = p_s_tb->tb_path;
1847     int                   n_position,
1848 	n_path_offset = PATH_H_PATH_OFFSET(p_s_tb->tb_path, n_h);
1849 
1850     /* We are in the root or in the new root. */
1851     if ( n_path_offset <= FIRST_PATH_ELEMENT_OFFSET ) {
1852 
1853 	RFALSE( n_path_offset < FIRST_PATH_ELEMENT_OFFSET - 1,
1854 		"PAP-8260: invalid offset in the path");
1855 
1856 	if ( PATH_OFFSET_PBUFFER(p_s_path, FIRST_PATH_ELEMENT_OFFSET)->b_blocknr ==
1857 	     SB_ROOT_BLOCK (p_s_tb->tb_sb) ) {
1858 	    /* Root is not changed. */
1859 	    PATH_OFFSET_PBUFFER(p_s_path, n_path_offset - 1) = NULL;
1860 	    PATH_OFFSET_POSITION(p_s_path, n_path_offset - 1) = 0;
1861 	    return CARRY_ON;
1862 	}
1863 	return REPEAT_SEARCH; /* Root is changed and we must recalculate the path. */
1864     }
1865 
1866     if ( ! B_IS_IN_TREE(p_s_bh = PATH_OFFSET_PBUFFER(p_s_path, n_path_offset - 1)) )
1867 	return REPEAT_SEARCH; /* Parent in the path is not in the tree. */
1868 
1869     if ( (n_position = PATH_OFFSET_POSITION(p_s_path, n_path_offset - 1)) > B_NR_ITEMS(p_s_bh) )
1870 	return REPEAT_SEARCH;
1871 
1872     if ( B_N_CHILD_NUM(p_s_bh, n_position) != PATH_OFFSET_PBUFFER(p_s_path, n_path_offset)->b_blocknr )
1873 	/* Parent in the path is not parent of the current node in the tree. */
1874 	return REPEAT_SEARCH;
1875 
1876     if ( buffer_locked(p_s_bh) ) {
1877 	__wait_on_buffer(p_s_bh);
1878 	if ( FILESYSTEM_CHANGED_TB (p_s_tb) )
1879 	    return REPEAT_SEARCH;
1880     }
1881 
1882     return CARRY_ON; /* Parent in the path is unlocked and really parent of the current node.  */
1883 }
1884 
1885 
1886 /* Using lnum[n_h] and rnum[n_h] we should determine what neighbors
1887  * of S[n_h] we
1888  * need in order to balance S[n_h], and get them if necessary.
1889  * Returns:	SCHEDULE_OCCURRED - schedule occurred while the function worked;
1890  *	        CARRY_ON - schedule didn't occur while the function worked;
1891  */
1892 static int  get_neighbors(
1893 	            struct tree_balance * p_s_tb,
1894 	            int 		  n_h
1895 	          ) {
1896     int		 	n_child_position,
1897 	n_path_offset = PATH_H_PATH_OFFSET(p_s_tb->tb_path, n_h + 1);
1898     unsigned long		n_son_number;
1899     struct super_block  *	p_s_sb = p_s_tb->tb_sb;
1900     struct buffer_head  * p_s_bh;
1901 
1902 
1903     PROC_INFO_INC( p_s_sb, get_neighbors[ n_h ] );
1904 
1905     if ( p_s_tb->lnum[n_h] ) {
1906 	/* We need left neighbor to balance S[n_h]. */
1907 	PROC_INFO_INC( p_s_sb, need_l_neighbor[ n_h ] );
1908 	p_s_bh = PATH_OFFSET_PBUFFER(p_s_tb->tb_path, n_path_offset);
1909 
1910 	RFALSE( p_s_bh == p_s_tb->FL[n_h] &&
1911 		! PATH_OFFSET_POSITION(p_s_tb->tb_path, n_path_offset),
1912 		"PAP-8270: invalid position in the parent");
1913 
1914 	n_child_position = ( p_s_bh == p_s_tb->FL[n_h] ) ? p_s_tb->lkey[n_h] : B_NR_ITEMS (p_s_tb->FL[n_h]);
1915 	n_son_number = B_N_CHILD_NUM(p_s_tb->FL[n_h], n_child_position);
1916 	p_s_bh = sb_bread(p_s_sb, n_son_number);
1917 	if (!p_s_bh)
1918 	    return IO_ERROR;
1919 	if ( FILESYSTEM_CHANGED_TB (p_s_tb) ) {
1920 	    decrement_bcount(p_s_bh);
1921 	    PROC_INFO_INC( p_s_sb, get_neighbors_restart[ n_h ] );
1922 	    return REPEAT_SEARCH;
1923 	}
1924 
1925 	RFALSE( ! B_IS_IN_TREE(p_s_tb->FL[n_h]) ||
1926                 n_child_position > B_NR_ITEMS(p_s_tb->FL[n_h]) ||
1927 	        B_N_CHILD_NUM(p_s_tb->FL[n_h], n_child_position) !=
1928                 p_s_bh->b_blocknr, "PAP-8275: invalid parent");
1929 	RFALSE( ! B_IS_IN_TREE(p_s_bh), "PAP-8280: invalid child");
1930 	RFALSE( ! n_h &&
1931                 B_FREE_SPACE (p_s_bh) != MAX_CHILD_SIZE (p_s_bh) - dc_size(B_N_CHILD (p_s_tb->FL[0],n_child_position)),
1932                 "PAP-8290: invalid child size of left neighbor");
1933 
1934 	decrement_bcount(p_s_tb->L[n_h]);
1935 	p_s_tb->L[n_h] = p_s_bh;
1936     }
1937 
1938 
1939     if ( p_s_tb->rnum[n_h] ) { /* We need right neighbor to balance S[n_path_offset]. */
1940 	PROC_INFO_INC( p_s_sb, need_r_neighbor[ n_h ] );
1941 	p_s_bh = PATH_OFFSET_PBUFFER(p_s_tb->tb_path, n_path_offset);
1942 
1943 	RFALSE( p_s_bh == p_s_tb->FR[n_h] &&
1944 		PATH_OFFSET_POSITION(p_s_tb->tb_path, n_path_offset) >= B_NR_ITEMS(p_s_bh),
1945 		"PAP-8295: invalid position in the parent");
1946 
1947 	n_child_position = ( p_s_bh == p_s_tb->FR[n_h] ) ? p_s_tb->rkey[n_h] + 1 : 0;
1948 	n_son_number = B_N_CHILD_NUM(p_s_tb->FR[n_h], n_child_position);
1949 	p_s_bh = sb_bread(p_s_sb, n_son_number);
1950 	if (!p_s_bh)
1951 	    return IO_ERROR;
1952 	if ( FILESYSTEM_CHANGED_TB (p_s_tb) ) {
1953 	    decrement_bcount(p_s_bh);
1954 	    PROC_INFO_INC( p_s_sb, get_neighbors_restart[ n_h ] );
1955 	    return REPEAT_SEARCH;
1956 	}
1957 	decrement_bcount(p_s_tb->R[n_h]);
1958 	p_s_tb->R[n_h] = p_s_bh;
1959 
1960 	RFALSE( ! n_h && B_FREE_SPACE (p_s_bh) != MAX_CHILD_SIZE (p_s_bh) - dc_size(B_N_CHILD (p_s_tb->FR[0],n_child_position)),
1961                 "PAP-8300: invalid child size of right neighbor (%d != %d - %d)",
1962                 B_FREE_SPACE (p_s_bh), MAX_CHILD_SIZE (p_s_bh),
1963                 dc_size(B_N_CHILD (p_s_tb->FR[0],n_child_position)));
1964 
1965     }
1966     return CARRY_ON;
1967 }
1968 
1969 #ifdef CONFIG_REISERFS_CHECK
1970 void * reiserfs_kmalloc (size_t size, int flags, struct super_block * s)
1971 {
1972     void * vp;
1973     static size_t malloced;
1974 
1975 
1976     vp = kmalloc (size, flags);
1977     if (vp) {
1978 	REISERFS_SB(s)->s_kmallocs += size;
1979 	if (REISERFS_SB(s)->s_kmallocs > malloced + 200000) {
1980 	    reiserfs_warning (s,
1981 			      "vs-8301: reiserfs_kmalloc: allocated memory %d",
1982 			      REISERFS_SB(s)->s_kmallocs);
1983 	    malloced = REISERFS_SB(s)->s_kmallocs;
1984 	}
1985     }
1986     return vp;
1987 }
1988 
1989 void reiserfs_kfree (const void * vp, size_t size, struct super_block * s)
1990 {
1991     kfree (vp);
1992 
1993     REISERFS_SB(s)->s_kmallocs -= size;
1994     if (REISERFS_SB(s)->s_kmallocs < 0)
1995 	reiserfs_warning (s, "vs-8302: reiserfs_kfree: allocated memory %d",
1996 			  REISERFS_SB(s)->s_kmallocs);
1997 
1998 }
1999 #endif
2000 
2001 
2002 static int get_virtual_node_size (struct super_block * sb, struct buffer_head * bh)
2003 {
2004     int max_num_of_items;
2005     int max_num_of_entries;
2006     unsigned long blocksize = sb->s_blocksize;
2007 
2008 #define MIN_NAME_LEN 1
2009 
2010     max_num_of_items = (blocksize - BLKH_SIZE) / (IH_SIZE + MIN_ITEM_LEN);
2011     max_num_of_entries = (blocksize - BLKH_SIZE - IH_SIZE) /
2012                          (DEH_SIZE + MIN_NAME_LEN);
2013 
2014     return sizeof(struct virtual_node) +
2015            max(max_num_of_items * sizeof (struct virtual_item),
2016 	       sizeof (struct virtual_item) + sizeof(struct direntry_uarea) +
2017                (max_num_of_entries - 1) * sizeof (__u16));
2018 }
2019 
2020 
2021 
2022 /* maybe we should fail balancing we are going to perform when kmalloc
2023    fails several times. But now it will loop until kmalloc gets
2024    required memory */
2025 static int get_mem_for_virtual_node (struct tree_balance * tb)
2026 {
2027     int check_fs = 0;
2028     int size;
2029     char * buf;
2030 
2031     size = get_virtual_node_size (tb->tb_sb, PATH_PLAST_BUFFER (tb->tb_path));
2032 
2033     if (size > tb->vn_buf_size) {
2034 	/* we have to allocate more memory for virtual node */
2035 	if (tb->vn_buf) {
2036 	    /* free memory allocated before */
2037 	    reiserfs_kfree (tb->vn_buf, tb->vn_buf_size, tb->tb_sb);
2038 	    /* this is not needed if kfree is atomic */
2039             check_fs = 1;
2040 	}
2041 
2042 	/* virtual node requires now more memory */
2043 	tb->vn_buf_size = size;
2044 
2045 	/* get memory for virtual item */
2046 	buf = reiserfs_kmalloc(size, GFP_ATOMIC | __GFP_NOWARN, tb->tb_sb);
2047 	if ( ! buf ) {
2048 	    /* getting memory with GFP_KERNEL priority may involve
2049                balancing now (due to indirect_to_direct conversion on
2050                dcache shrinking). So, release path and collected
2051                resources here */
2052 	    free_buffers_in_tb (tb);
2053 	    buf = reiserfs_kmalloc(size, GFP_NOFS, tb->tb_sb);
2054 	    if ( !buf ) {
2055 #ifdef CONFIG_REISERFS_CHECK
2056 		reiserfs_warning (tb->tb_sb,
2057 				  "vs-8345: get_mem_for_virtual_node: "
2058 				  "kmalloc failed. reiserfs kmalloced %d bytes",
2059 				  REISERFS_SB(tb->tb_sb)->s_kmallocs);
2060 #endif
2061 		tb->vn_buf_size = 0;
2062 	    }
2063 	    tb->vn_buf = buf;
2064 	    schedule() ;
2065 	    return REPEAT_SEARCH;
2066 	}
2067 
2068 	tb->vn_buf = buf;
2069     }
2070 
2071     if ( check_fs && FILESYSTEM_CHANGED_TB (tb) )
2072         return REPEAT_SEARCH;
2073 
2074     return CARRY_ON;
2075 }
2076 
2077 
2078 #ifdef CONFIG_REISERFS_CHECK
2079 static void tb_buffer_sanity_check (struct super_block * p_s_sb,
2080 				    struct buffer_head * p_s_bh,
2081 				    const char *descr, int level) {
2082   if (p_s_bh) {
2083     if (atomic_read (&(p_s_bh->b_count)) <= 0) {
2084 
2085       reiserfs_panic (p_s_sb, "jmacd-1: tb_buffer_sanity_check(): negative or zero reference counter for buffer %s[%d] (%b)\n", descr, level, p_s_bh);
2086     }
2087 
2088     if ( ! buffer_uptodate (p_s_bh) ) {
2089       reiserfs_panic (p_s_sb, "jmacd-2: tb_buffer_sanity_check(): buffer is not up to date %s[%d] (%b)\n", descr, level, p_s_bh);
2090     }
2091 
2092     if ( ! B_IS_IN_TREE (p_s_bh) ) {
2093       reiserfs_panic (p_s_sb, "jmacd-3: tb_buffer_sanity_check(): buffer is not in tree %s[%d] (%b)\n", descr, level, p_s_bh);
2094     }
2095 
2096     if (p_s_bh->b_bdev != p_s_sb->s_bdev) {
2097 	reiserfs_panic (p_s_sb, "jmacd-4: tb_buffer_sanity_check(): buffer has wrong device %s[%d] (%b)\n", descr, level, p_s_bh);
2098     }
2099 
2100     if (p_s_bh->b_size != p_s_sb->s_blocksize) {
2101 	reiserfs_panic (p_s_sb, "jmacd-5: tb_buffer_sanity_check(): buffer has wrong blocksize %s[%d] (%b)\n", descr, level, p_s_bh);
2102     }
2103 
2104     if (p_s_bh->b_blocknr > SB_BLOCK_COUNT(p_s_sb)) {
2105 	reiserfs_panic (p_s_sb, "jmacd-6: tb_buffer_sanity_check(): buffer block number too high %s[%d] (%b)\n", descr, level, p_s_bh);
2106     }
2107   }
2108 }
2109 #else
2110 static void tb_buffer_sanity_check (struct super_block * p_s_sb,
2111 				    struct buffer_head * p_s_bh,
2112 				    const char *descr, int level)
2113 {;}
2114 #endif
2115 
2116 static int clear_all_dirty_bits(struct super_block *s,
2117                                  struct buffer_head *bh) {
2118   return reiserfs_prepare_for_journal(s, bh, 0) ;
2119 }
2120 
2121 static int wait_tb_buffers_until_unlocked (struct tree_balance * p_s_tb)
2122 {
2123     struct buffer_head * locked;
2124 #ifdef CONFIG_REISERFS_CHECK
2125     int repeat_counter = 0;
2126 #endif
2127     int i;
2128 
2129     do {
2130 
2131 	locked = NULL;
2132 
2133 	for ( i = p_s_tb->tb_path->path_length; !locked && i > ILLEGAL_PATH_ELEMENT_OFFSET; i-- ) {
2134 	    if ( PATH_OFFSET_PBUFFER (p_s_tb->tb_path, i) ) {
2135 		/* if I understand correctly, we can only be sure the last buffer
2136 		** in the path is in the tree --clm
2137 		*/
2138 #ifdef CONFIG_REISERFS_CHECK
2139 		if (PATH_PLAST_BUFFER(p_s_tb->tb_path) ==
2140 		    PATH_OFFSET_PBUFFER(p_s_tb->tb_path, i)) {
2141 		    tb_buffer_sanity_check (p_s_tb->tb_sb,
2142 					    PATH_OFFSET_PBUFFER (p_s_tb->tb_path, i),
2143 					    "S",
2144 					    p_s_tb->tb_path->path_length - i);
2145 		}
2146 #endif
2147 		if (!clear_all_dirty_bits(p_s_tb->tb_sb,
2148 				     PATH_OFFSET_PBUFFER (p_s_tb->tb_path, i)))
2149 		{
2150 		    locked = PATH_OFFSET_PBUFFER (p_s_tb->tb_path, i);
2151 		}
2152 	    }
2153 	}
2154 
2155 	for ( i = 0; !locked && i < MAX_HEIGHT && p_s_tb->insert_size[i]; i++ ) {
2156 
2157 	    if (p_s_tb->lnum[i] ) {
2158 
2159 		if ( p_s_tb->L[i] ) {
2160 		    tb_buffer_sanity_check (p_s_tb->tb_sb, p_s_tb->L[i], "L", i);
2161 		    if (!clear_all_dirty_bits(p_s_tb->tb_sb, p_s_tb->L[i]))
2162 			locked = p_s_tb->L[i];
2163 		}
2164 
2165 		if ( !locked && p_s_tb->FL[i] ) {
2166 		    tb_buffer_sanity_check (p_s_tb->tb_sb, p_s_tb->FL[i], "FL", i);
2167 		    if (!clear_all_dirty_bits(p_s_tb->tb_sb, p_s_tb->FL[i]))
2168 			locked = p_s_tb->FL[i];
2169 		}
2170 
2171 		if ( !locked && p_s_tb->CFL[i] ) {
2172 		    tb_buffer_sanity_check (p_s_tb->tb_sb, p_s_tb->CFL[i], "CFL", i);
2173 		    if (!clear_all_dirty_bits(p_s_tb->tb_sb, p_s_tb->CFL[i]))
2174 			locked = p_s_tb->CFL[i];
2175 		}
2176 
2177 	    }
2178 
2179 	    if ( !locked && (p_s_tb->rnum[i]) ) {
2180 
2181 		if ( p_s_tb->R[i] ) {
2182 		    tb_buffer_sanity_check (p_s_tb->tb_sb, p_s_tb->R[i], "R", i);
2183 		    if (!clear_all_dirty_bits(p_s_tb->tb_sb, p_s_tb->R[i]))
2184 			locked = p_s_tb->R[i];
2185 		}
2186 
2187 
2188 		if ( !locked && p_s_tb->FR[i] ) {
2189 		    tb_buffer_sanity_check (p_s_tb->tb_sb, p_s_tb->FR[i], "FR", i);
2190 		    if (!clear_all_dirty_bits(p_s_tb->tb_sb, p_s_tb->FR[i]))
2191 			locked = p_s_tb->FR[i];
2192 		}
2193 
2194 		if ( !locked && p_s_tb->CFR[i] ) {
2195 		    tb_buffer_sanity_check (p_s_tb->tb_sb, p_s_tb->CFR[i], "CFR", i);
2196 		    if (!clear_all_dirty_bits(p_s_tb->tb_sb, p_s_tb->CFR[i]))
2197 			locked = p_s_tb->CFR[i];
2198 		}
2199 	    }
2200 	}
2201 	/* as far as I can tell, this is not required.  The FEB list seems
2202 	** to be full of newly allocated nodes, which will never be locked,
2203 	** dirty, or anything else.
2204 	** To be safe, I'm putting in the checks and waits in.  For the moment,
2205 	** they are needed to keep the code in journal.c from complaining
2206 	** about the buffer.  That code is inside CONFIG_REISERFS_CHECK as well.
2207 	** --clm
2208 	*/
2209 	for ( i = 0; !locked && i < MAX_FEB_SIZE; i++ ) {
2210 	    if ( p_s_tb->FEB[i] ) {
2211 		if (!clear_all_dirty_bits(p_s_tb->tb_sb, p_s_tb->FEB[i]))
2212 		    locked = p_s_tb->FEB[i] ;
2213 	    }
2214 	}
2215 
2216 	if (locked) {
2217 #ifdef CONFIG_REISERFS_CHECK
2218 	    repeat_counter++;
2219 	    if ( (repeat_counter % 10000) == 0) {
2220 		reiserfs_warning (p_s_tb->tb_sb,
2221 				  "wait_tb_buffers_until_released(): too many "
2222 				  "iterations waiting for buffer to unlock "
2223 				  "(%b)", locked);
2224 
2225 		/* Don't loop forever.  Try to recover from possible error. */
2226 
2227 		return ( FILESYSTEM_CHANGED_TB (p_s_tb) ) ? REPEAT_SEARCH : CARRY_ON;
2228 	    }
2229 #endif
2230 	    __wait_on_buffer (locked);
2231 	    if ( FILESYSTEM_CHANGED_TB (p_s_tb) ) {
2232 		return REPEAT_SEARCH;
2233 	    }
2234 	}
2235 
2236     } while (locked);
2237 
2238     return CARRY_ON;
2239 }
2240 
2241 
2242 /* Prepare for balancing, that is
2243  *	get all necessary parents, and neighbors;
2244  *	analyze what and where should be moved;
2245  *	get sufficient number of new nodes;
2246  * Balancing will start only after all resources will be collected at a time.
2247  *
2248  * When ported to SMP kernels, only at the last moment after all needed nodes
2249  * are collected in cache, will the resources be locked using the usual
2250  * textbook ordered lock acquisition algorithms.  Note that ensuring that
2251  * this code neither write locks what it does not need to write lock nor locks out of order
2252  * will be a pain in the butt that could have been avoided.  Grumble grumble. -Hans
2253  *
2254  * fix is meant in the sense of render unchanging
2255  *
2256  * Latency might be improved by first gathering a list of what buffers are needed
2257  * and then getting as many of them in parallel as possible? -Hans
2258  *
2259  * Parameters:
2260  *	op_mode	i - insert, d - delete, c - cut (truncate), p - paste (append)
2261  *	tb	tree_balance structure;
2262  *	inum	item number in S[h];
2263  *      pos_in_item - comment this if you can
2264  *      ins_ih & ins_sd are used when inserting
2265  * Returns:	1 - schedule occurred while the function worked;
2266  *	        0 - schedule didn't occur while the function worked;
2267  *             -1 - if no_disk_space
2268  */
2269 
2270 
2271 int fix_nodes (int n_op_mode,
2272 	       struct tree_balance * 	p_s_tb,
2273 	       struct item_head * p_s_ins_ih, // item head of item being inserted
2274 	       const void * data // inserted item or data to be pasted
2275     ) {
2276     int	n_ret_value,
2277     	n_h,
2278     	n_item_num = PATH_LAST_POSITION(p_s_tb->tb_path);
2279     int n_pos_in_item;
2280 
2281     /* we set wait_tb_buffers_run when we have to restore any dirty bits cleared
2282     ** during wait_tb_buffers_run
2283     */
2284     int wait_tb_buffers_run = 0 ;
2285     struct buffer_head  * p_s_tbS0 = PATH_PLAST_BUFFER(p_s_tb->tb_path);
2286 
2287     ++ REISERFS_SB(p_s_tb -> tb_sb) -> s_fix_nodes;
2288 
2289     n_pos_in_item = p_s_tb->tb_path->pos_in_item;
2290 
2291 
2292     p_s_tb->fs_gen = get_generation (p_s_tb->tb_sb);
2293 
2294     /* we prepare and log the super here so it will already be in the
2295     ** transaction when do_balance needs to change it.
2296     ** This way do_balance won't have to schedule when trying to prepare
2297     ** the super for logging
2298     */
2299     reiserfs_prepare_for_journal(p_s_tb->tb_sb,
2300                                  SB_BUFFER_WITH_SB(p_s_tb->tb_sb), 1) ;
2301     journal_mark_dirty(p_s_tb->transaction_handle, p_s_tb->tb_sb,
2302                        SB_BUFFER_WITH_SB(p_s_tb->tb_sb)) ;
2303     if ( FILESYSTEM_CHANGED_TB (p_s_tb) )
2304 	return REPEAT_SEARCH;
2305 
2306     /* if it possible in indirect_to_direct conversion */
2307     if (buffer_locked (p_s_tbS0)) {
2308         __wait_on_buffer (p_s_tbS0);
2309         if ( FILESYSTEM_CHANGED_TB (p_s_tb) )
2310             return REPEAT_SEARCH;
2311     }
2312 
2313 #ifdef CONFIG_REISERFS_CHECK
2314     if ( cur_tb ) {
2315 	print_cur_tb ("fix_nodes");
2316 	reiserfs_panic(p_s_tb->tb_sb,"PAP-8305: fix_nodes:  there is pending do_balance");
2317     }
2318 
2319     if (!buffer_uptodate (p_s_tbS0) || !B_IS_IN_TREE (p_s_tbS0)) {
2320 	reiserfs_panic (p_s_tb->tb_sb, "PAP-8320: fix_nodes: S[0] (%b %z) is not uptodate "
2321 			"at the beginning of fix_nodes or not in tree (mode %c)", p_s_tbS0, p_s_tbS0, n_op_mode);
2322     }
2323 
2324     /* Check parameters. */
2325     switch (n_op_mode) {
2326     case M_INSERT:
2327 	if ( n_item_num <= 0 || n_item_num > B_NR_ITEMS(p_s_tbS0) )
2328 	    reiserfs_panic(p_s_tb->tb_sb,"PAP-8330: fix_nodes: Incorrect item number %d (in S0 - %d) in case of insert",
2329 			   n_item_num, B_NR_ITEMS(p_s_tbS0));
2330 	break;
2331     case M_PASTE:
2332     case M_DELETE:
2333     case M_CUT:
2334 	if ( n_item_num < 0 || n_item_num >= B_NR_ITEMS(p_s_tbS0) ) {
2335 	    print_block (p_s_tbS0, 0, -1, -1);
2336 	    reiserfs_panic(p_s_tb->tb_sb,"PAP-8335: fix_nodes: Incorrect item number(%d); mode = %c insert_size = %d\n", n_item_num, n_op_mode, p_s_tb->insert_size[0]);
2337 	}
2338 	break;
2339     default:
2340 	reiserfs_panic(p_s_tb->tb_sb,"PAP-8340: fix_nodes: Incorrect mode of operation");
2341     }
2342 #endif
2343 
2344     if (get_mem_for_virtual_node (p_s_tb) == REPEAT_SEARCH)
2345 	// FIXME: maybe -ENOMEM when tb->vn_buf == 0? Now just repeat
2346 	return REPEAT_SEARCH;
2347 
2348 
2349     /* Starting from the leaf level; for all levels n_h of the tree. */
2350     for ( n_h = 0; n_h < MAX_HEIGHT && p_s_tb->insert_size[n_h]; n_h++ ) {
2351 	if ( (n_ret_value = get_direct_parent(p_s_tb, n_h)) != CARRY_ON ) {
2352 	    goto repeat;
2353 	}
2354 
2355 	if ( (n_ret_value = check_balance (n_op_mode, p_s_tb, n_h, n_item_num,
2356 					   n_pos_in_item, p_s_ins_ih, data)) != CARRY_ON ) {
2357 	    if ( n_ret_value == NO_BALANCING_NEEDED ) {
2358 		/* No balancing for higher levels needed. */
2359 		if ( (n_ret_value = get_neighbors(p_s_tb, n_h)) != CARRY_ON ) {
2360 		    goto repeat;
2361 		}
2362 		if ( n_h != MAX_HEIGHT - 1 )
2363 		    p_s_tb->insert_size[n_h + 1] = 0;
2364 		/* ok, analysis and resource gathering are complete */
2365 		break;
2366 	    }
2367 	    goto repeat;
2368 	}
2369 
2370 	if ( (n_ret_value = get_neighbors(p_s_tb, n_h)) != CARRY_ON ) {
2371 	    goto repeat;
2372 	}
2373 
2374 	if ( (n_ret_value = get_empty_nodes(p_s_tb, n_h)) != CARRY_ON ) {
2375 	    goto repeat;        /* No disk space, or schedule occurred and
2376 				   analysis may be invalid and needs to be redone. */
2377 	}
2378 
2379 	if ( ! PATH_H_PBUFFER(p_s_tb->tb_path, n_h) ) {
2380 	    /* We have a positive insert size but no nodes exist on this
2381 	       level, this means that we are creating a new root. */
2382 
2383 	    RFALSE( p_s_tb->blknum[n_h] != 1,
2384 		    "PAP-8350: creating new empty root");
2385 
2386 	    if ( n_h < MAX_HEIGHT - 1 )
2387 		p_s_tb->insert_size[n_h + 1] = 0;
2388 	}
2389 	else
2390 	    if ( ! PATH_H_PBUFFER(p_s_tb->tb_path, n_h + 1) ) {
2391 		if ( p_s_tb->blknum[n_h] > 1 ) {
2392 		    /* The tree needs to be grown, so this node S[n_h]
2393 		       which is the root node is split into two nodes,
2394 		       and a new node (S[n_h+1]) will be created to
2395 		       become the root node.  */
2396 
2397 		    RFALSE( n_h == MAX_HEIGHT - 1,
2398 			    "PAP-8355: attempt to create too high of a tree");
2399 
2400 		    p_s_tb->insert_size[n_h + 1] = (DC_SIZE + KEY_SIZE) * (p_s_tb->blknum[n_h] - 1) + DC_SIZE;
2401 		}
2402 		else
2403 		    if ( n_h < MAX_HEIGHT - 1 )
2404 			p_s_tb->insert_size[n_h + 1] = 0;
2405 	    }
2406 	    else
2407 		p_s_tb->insert_size[n_h + 1] = (DC_SIZE + KEY_SIZE) * (p_s_tb->blknum[n_h] - 1);
2408     }
2409 
2410     if ((n_ret_value = wait_tb_buffers_until_unlocked (p_s_tb)) == CARRY_ON) {
2411 	if (FILESYSTEM_CHANGED_TB(p_s_tb)) {
2412 	    wait_tb_buffers_run = 1 ;
2413 	    n_ret_value = REPEAT_SEARCH ;
2414 	    goto repeat;
2415 	} else {
2416 	    return CARRY_ON;
2417 	}
2418     } else {
2419 	wait_tb_buffers_run = 1 ;
2420 	goto repeat;
2421     }
2422 
2423  repeat:
2424     // fix_nodes was unable to perform its calculation due to
2425     // filesystem got changed under us, lack of free disk space or i/o
2426     // failure. If the first is the case - the search will be
2427     // repeated. For now - free all resources acquired so far except
2428     // for the new allocated nodes
2429     {
2430 	int i;
2431 
2432 	/* Release path buffers. */
2433 	if (wait_tb_buffers_run) {
2434 	    pathrelse_and_restore(p_s_tb->tb_sb, p_s_tb->tb_path) ;
2435 	} else {
2436 	    pathrelse (p_s_tb->tb_path);
2437         }
2438 	/* brelse all resources collected for balancing */
2439 	for ( i = 0; i < MAX_HEIGHT; i++ ) {
2440 	    if (wait_tb_buffers_run) {
2441 		reiserfs_restore_prepared_buffer(p_s_tb->tb_sb, p_s_tb->L[i]);
2442 		reiserfs_restore_prepared_buffer(p_s_tb->tb_sb, p_s_tb->R[i]);
2443 		reiserfs_restore_prepared_buffer(p_s_tb->tb_sb, p_s_tb->FL[i]);
2444 		reiserfs_restore_prepared_buffer(p_s_tb->tb_sb, p_s_tb->FR[i]);
2445 		reiserfs_restore_prepared_buffer(p_s_tb->tb_sb, p_s_tb->CFL[i]);
2446 		reiserfs_restore_prepared_buffer(p_s_tb->tb_sb, p_s_tb->CFR[i]);
2447 	    }
2448 
2449 	    brelse (p_s_tb->L[i]);p_s_tb->L[i] = NULL;
2450 	    brelse (p_s_tb->R[i]);p_s_tb->R[i] = NULL;
2451 	    brelse (p_s_tb->FL[i]);p_s_tb->FL[i] = NULL;
2452 	    brelse (p_s_tb->FR[i]);p_s_tb->FR[i] = NULL;
2453 	    brelse (p_s_tb->CFL[i]);p_s_tb->CFL[i] = NULL;
2454 	    brelse (p_s_tb->CFR[i]);p_s_tb->CFR[i] = NULL;
2455 	}
2456 
2457 	if (wait_tb_buffers_run) {
2458 	    for ( i = 0; i < MAX_FEB_SIZE; i++ ) {
2459 		if ( p_s_tb->FEB[i] ) {
2460 		    reiserfs_restore_prepared_buffer(p_s_tb->tb_sb,
2461 						     p_s_tb->FEB[i]) ;
2462 		}
2463 	    }
2464 	}
2465 	return n_ret_value;
2466     }
2467 
2468 }
2469 
2470 
2471 /* Anatoly will probably forgive me renaming p_s_tb to tb. I just
2472    wanted to make lines shorter */
2473 void unfix_nodes (struct tree_balance * tb)
2474 {
2475     int	i;
2476 
2477     /* Release path buffers. */
2478     pathrelse_and_restore (tb->tb_sb, tb->tb_path);
2479 
2480     /* brelse all resources collected for balancing */
2481     for ( i = 0; i < MAX_HEIGHT; i++ ) {
2482 	reiserfs_restore_prepared_buffer (tb->tb_sb, tb->L[i]);
2483 	reiserfs_restore_prepared_buffer (tb->tb_sb, tb->R[i]);
2484 	reiserfs_restore_prepared_buffer (tb->tb_sb, tb->FL[i]);
2485 	reiserfs_restore_prepared_buffer (tb->tb_sb, tb->FR[i]);
2486 	reiserfs_restore_prepared_buffer (tb->tb_sb, tb->CFL[i]);
2487 	reiserfs_restore_prepared_buffer (tb->tb_sb, tb->CFR[i]);
2488 
2489 	brelse (tb->L[i]);
2490 	brelse (tb->R[i]);
2491 	brelse (tb->FL[i]);
2492 	brelse (tb->FR[i]);
2493 	brelse (tb->CFL[i]);
2494 	brelse (tb->CFR[i]);
2495     }
2496 
2497     /* deal with list of allocated (used and unused) nodes */
2498     for ( i = 0; i < MAX_FEB_SIZE; i++ ) {
2499 	if ( tb->FEB[i] ) {
2500 	    b_blocknr_t blocknr  = tb->FEB[i]->b_blocknr ;
2501 	    /* de-allocated block which was not used by balancing and
2502                bforget about buffer for it */
2503 	    brelse (tb->FEB[i]);
2504 	    reiserfs_free_block (tb->transaction_handle, NULL, blocknr, 0);
2505 	}
2506 	if (tb->used[i]) {
2507 	    /* release used as new nodes including a new root */
2508 	    brelse (tb->used[i]);
2509 	}
2510     }
2511 
2512     if (tb->vn_buf)
2513     reiserfs_kfree (tb->vn_buf, tb->vn_buf_size, tb->tb_sb);
2514 
2515 }
2516 
2517 
2518 
2519