xref: /openbmc/linux/fs/proc/base.c (revision 96de0e252cedffad61b3cb5e05662c591898e69a)
1 /*
2  *  linux/fs/proc/base.c
3  *
4  *  Copyright (C) 1991, 1992 Linus Torvalds
5  *
6  *  proc base directory handling functions
7  *
8  *  1999, Al Viro. Rewritten. Now it covers the whole per-process part.
9  *  Instead of using magical inumbers to determine the kind of object
10  *  we allocate and fill in-core inodes upon lookup. They don't even
11  *  go into icache. We cache the reference to task_struct upon lookup too.
12  *  Eventually it should become a filesystem in its own. We don't use the
13  *  rest of procfs anymore.
14  *
15  *
16  *  Changelog:
17  *  17-Jan-2005
18  *  Allan Bezerra
19  *  Bruna Moreira <bruna.moreira@indt.org.br>
20  *  Edjard Mota <edjard.mota@indt.org.br>
21  *  Ilias Biris <ilias.biris@indt.org.br>
22  *  Mauricio Lin <mauricio.lin@indt.org.br>
23  *
24  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
25  *
26  *  A new process specific entry (smaps) included in /proc. It shows the
27  *  size of rss for each memory area. The maps entry lacks information
28  *  about physical memory size (rss) for each mapped file, i.e.,
29  *  rss information for executables and library files.
30  *  This additional information is useful for any tools that need to know
31  *  about physical memory consumption for a process specific library.
32  *
33  *  Changelog:
34  *  21-Feb-2005
35  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
36  *  Pud inclusion in the page table walking.
37  *
38  *  ChangeLog:
39  *  10-Mar-2005
40  *  10LE Instituto Nokia de Tecnologia - INdT:
41  *  A better way to walks through the page table as suggested by Hugh Dickins.
42  *
43  *  Simo Piiroinen <simo.piiroinen@nokia.com>:
44  *  Smaps information related to shared, private, clean and dirty pages.
45  *
46  *  Paul Mundt <paul.mundt@nokia.com>:
47  *  Overall revision about smaps.
48  */
49 
50 #include <asm/uaccess.h>
51 
52 #include <linux/errno.h>
53 #include <linux/time.h>
54 #include <linux/proc_fs.h>
55 #include <linux/stat.h>
56 #include <linux/init.h>
57 #include <linux/capability.h>
58 #include <linux/file.h>
59 #include <linux/string.h>
60 #include <linux/seq_file.h>
61 #include <linux/namei.h>
62 #include <linux/mnt_namespace.h>
63 #include <linux/mm.h>
64 #include <linux/rcupdate.h>
65 #include <linux/kallsyms.h>
66 #include <linux/resource.h>
67 #include <linux/module.h>
68 #include <linux/mount.h>
69 #include <linux/security.h>
70 #include <linux/ptrace.h>
71 #include <linux/cgroup.h>
72 #include <linux/cpuset.h>
73 #include <linux/audit.h>
74 #include <linux/poll.h>
75 #include <linux/nsproxy.h>
76 #include <linux/oom.h>
77 #include <linux/elf.h>
78 #include <linux/pid_namespace.h>
79 #include "internal.h"
80 
81 /* NOTE:
82  *	Implementing inode permission operations in /proc is almost
83  *	certainly an error.  Permission checks need to happen during
84  *	each system call not at open time.  The reason is that most of
85  *	what we wish to check for permissions in /proc varies at runtime.
86  *
87  *	The classic example of a problem is opening file descriptors
88  *	in /proc for a task before it execs a suid executable.
89  */
90 
91 
92 /* Worst case buffer size needed for holding an integer. */
93 #define PROC_NUMBUF 13
94 
95 struct pid_entry {
96 	char *name;
97 	int len;
98 	mode_t mode;
99 	const struct inode_operations *iop;
100 	const struct file_operations *fop;
101 	union proc_op op;
102 };
103 
104 #define NOD(NAME, MODE, IOP, FOP, OP) {			\
105 	.name = (NAME),					\
106 	.len  = sizeof(NAME) - 1,			\
107 	.mode = MODE,					\
108 	.iop  = IOP,					\
109 	.fop  = FOP,					\
110 	.op   = OP,					\
111 }
112 
113 #define DIR(NAME, MODE, OTYPE)							\
114 	NOD(NAME, (S_IFDIR|(MODE)),						\
115 		&proc_##OTYPE##_inode_operations, &proc_##OTYPE##_operations,	\
116 		{} )
117 #define LNK(NAME, OTYPE)					\
118 	NOD(NAME, (S_IFLNK|S_IRWXUGO),				\
119 		&proc_pid_link_inode_operations, NULL,		\
120 		{ .proc_get_link = &proc_##OTYPE##_link } )
121 #define REG(NAME, MODE, OTYPE)				\
122 	NOD(NAME, (S_IFREG|(MODE)), NULL,		\
123 		&proc_##OTYPE##_operations, {})
124 #define INF(NAME, MODE, OTYPE)				\
125 	NOD(NAME, (S_IFREG|(MODE)), 			\
126 		NULL, &proc_info_file_operations,	\
127 		{ .proc_read = &proc_##OTYPE } )
128 
129 int maps_protect;
130 EXPORT_SYMBOL(maps_protect);
131 
132 static struct fs_struct *get_fs_struct(struct task_struct *task)
133 {
134 	struct fs_struct *fs;
135 	task_lock(task);
136 	fs = task->fs;
137 	if(fs)
138 		atomic_inc(&fs->count);
139 	task_unlock(task);
140 	return fs;
141 }
142 
143 static int get_nr_threads(struct task_struct *tsk)
144 {
145 	/* Must be called with the rcu_read_lock held */
146 	unsigned long flags;
147 	int count = 0;
148 
149 	if (lock_task_sighand(tsk, &flags)) {
150 		count = atomic_read(&tsk->signal->count);
151 		unlock_task_sighand(tsk, &flags);
152 	}
153 	return count;
154 }
155 
156 static int proc_cwd_link(struct inode *inode, struct dentry **dentry, struct vfsmount **mnt)
157 {
158 	struct task_struct *task = get_proc_task(inode);
159 	struct fs_struct *fs = NULL;
160 	int result = -ENOENT;
161 
162 	if (task) {
163 		fs = get_fs_struct(task);
164 		put_task_struct(task);
165 	}
166 	if (fs) {
167 		read_lock(&fs->lock);
168 		*mnt = mntget(fs->pwdmnt);
169 		*dentry = dget(fs->pwd);
170 		read_unlock(&fs->lock);
171 		result = 0;
172 		put_fs_struct(fs);
173 	}
174 	return result;
175 }
176 
177 static int proc_root_link(struct inode *inode, struct dentry **dentry, struct vfsmount **mnt)
178 {
179 	struct task_struct *task = get_proc_task(inode);
180 	struct fs_struct *fs = NULL;
181 	int result = -ENOENT;
182 
183 	if (task) {
184 		fs = get_fs_struct(task);
185 		put_task_struct(task);
186 	}
187 	if (fs) {
188 		read_lock(&fs->lock);
189 		*mnt = mntget(fs->rootmnt);
190 		*dentry = dget(fs->root);
191 		read_unlock(&fs->lock);
192 		result = 0;
193 		put_fs_struct(fs);
194 	}
195 	return result;
196 }
197 
198 #define MAY_PTRACE(task) \
199 	(task == current || \
200 	(task->parent == current && \
201 	(task->ptrace & PT_PTRACED) && \
202 	 (task->state == TASK_STOPPED || task->state == TASK_TRACED) && \
203 	 security_ptrace(current,task) == 0))
204 
205 static int proc_pid_cmdline(struct task_struct *task, char * buffer)
206 {
207 	int res = 0;
208 	unsigned int len;
209 	struct mm_struct *mm = get_task_mm(task);
210 	if (!mm)
211 		goto out;
212 	if (!mm->arg_end)
213 		goto out_mm;	/* Shh! No looking before we're done */
214 
215  	len = mm->arg_end - mm->arg_start;
216 
217 	if (len > PAGE_SIZE)
218 		len = PAGE_SIZE;
219 
220 	res = access_process_vm(task, mm->arg_start, buffer, len, 0);
221 
222 	// If the nul at the end of args has been overwritten, then
223 	// assume application is using setproctitle(3).
224 	if (res > 0 && buffer[res-1] != '\0' && len < PAGE_SIZE) {
225 		len = strnlen(buffer, res);
226 		if (len < res) {
227 		    res = len;
228 		} else {
229 			len = mm->env_end - mm->env_start;
230 			if (len > PAGE_SIZE - res)
231 				len = PAGE_SIZE - res;
232 			res += access_process_vm(task, mm->env_start, buffer+res, len, 0);
233 			res = strnlen(buffer, res);
234 		}
235 	}
236 out_mm:
237 	mmput(mm);
238 out:
239 	return res;
240 }
241 
242 static int proc_pid_auxv(struct task_struct *task, char *buffer)
243 {
244 	int res = 0;
245 	struct mm_struct *mm = get_task_mm(task);
246 	if (mm) {
247 		unsigned int nwords = 0;
248 		do
249 			nwords += 2;
250 		while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
251 		res = nwords * sizeof(mm->saved_auxv[0]);
252 		if (res > PAGE_SIZE)
253 			res = PAGE_SIZE;
254 		memcpy(buffer, mm->saved_auxv, res);
255 		mmput(mm);
256 	}
257 	return res;
258 }
259 
260 
261 #ifdef CONFIG_KALLSYMS
262 /*
263  * Provides a wchan file via kallsyms in a proper one-value-per-file format.
264  * Returns the resolved symbol.  If that fails, simply return the address.
265  */
266 static int proc_pid_wchan(struct task_struct *task, char *buffer)
267 {
268 	unsigned long wchan;
269 	char symname[KSYM_NAME_LEN];
270 
271 	wchan = get_wchan(task);
272 
273 	if (lookup_symbol_name(wchan, symname) < 0)
274 		return sprintf(buffer, "%lu", wchan);
275 	else
276 		return sprintf(buffer, "%s", symname);
277 }
278 #endif /* CONFIG_KALLSYMS */
279 
280 #ifdef CONFIG_SCHEDSTATS
281 /*
282  * Provides /proc/PID/schedstat
283  */
284 static int proc_pid_schedstat(struct task_struct *task, char *buffer)
285 {
286 	return sprintf(buffer, "%llu %llu %lu\n",
287 			task->sched_info.cpu_time,
288 			task->sched_info.run_delay,
289 			task->sched_info.pcount);
290 }
291 #endif
292 
293 /* The badness from the OOM killer */
294 unsigned long badness(struct task_struct *p, unsigned long uptime);
295 static int proc_oom_score(struct task_struct *task, char *buffer)
296 {
297 	unsigned long points;
298 	struct timespec uptime;
299 
300 	do_posix_clock_monotonic_gettime(&uptime);
301 	read_lock(&tasklist_lock);
302 	points = badness(task, uptime.tv_sec);
303 	read_unlock(&tasklist_lock);
304 	return sprintf(buffer, "%lu\n", points);
305 }
306 
307 struct limit_names {
308 	char *name;
309 	char *unit;
310 };
311 
312 static const struct limit_names lnames[RLIM_NLIMITS] = {
313 	[RLIMIT_CPU] = {"Max cpu time", "ms"},
314 	[RLIMIT_FSIZE] = {"Max file size", "bytes"},
315 	[RLIMIT_DATA] = {"Max data size", "bytes"},
316 	[RLIMIT_STACK] = {"Max stack size", "bytes"},
317 	[RLIMIT_CORE] = {"Max core file size", "bytes"},
318 	[RLIMIT_RSS] = {"Max resident set", "bytes"},
319 	[RLIMIT_NPROC] = {"Max processes", "processes"},
320 	[RLIMIT_NOFILE] = {"Max open files", "files"},
321 	[RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
322 	[RLIMIT_AS] = {"Max address space", "bytes"},
323 	[RLIMIT_LOCKS] = {"Max file locks", "locks"},
324 	[RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
325 	[RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
326 	[RLIMIT_NICE] = {"Max nice priority", NULL},
327 	[RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
328 };
329 
330 /* Display limits for a process */
331 static int proc_pid_limits(struct task_struct *task, char *buffer)
332 {
333 	unsigned int i;
334 	int count = 0;
335 	unsigned long flags;
336 	char *bufptr = buffer;
337 
338 	struct rlimit rlim[RLIM_NLIMITS];
339 
340 	rcu_read_lock();
341 	if (!lock_task_sighand(task,&flags)) {
342 		rcu_read_unlock();
343 		return 0;
344 	}
345 	memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
346 	unlock_task_sighand(task, &flags);
347 	rcu_read_unlock();
348 
349 	/*
350 	 * print the file header
351 	 */
352 	count += sprintf(&bufptr[count], "%-25s %-20s %-20s %-10s\n",
353 			"Limit", "Soft Limit", "Hard Limit", "Units");
354 
355 	for (i = 0; i < RLIM_NLIMITS; i++) {
356 		if (rlim[i].rlim_cur == RLIM_INFINITY)
357 			count += sprintf(&bufptr[count], "%-25s %-20s ",
358 					 lnames[i].name, "unlimited");
359 		else
360 			count += sprintf(&bufptr[count], "%-25s %-20lu ",
361 					 lnames[i].name, rlim[i].rlim_cur);
362 
363 		if (rlim[i].rlim_max == RLIM_INFINITY)
364 			count += sprintf(&bufptr[count], "%-20s ", "unlimited");
365 		else
366 			count += sprintf(&bufptr[count], "%-20lu ",
367 					 rlim[i].rlim_max);
368 
369 		if (lnames[i].unit)
370 			count += sprintf(&bufptr[count], "%-10s\n",
371 					 lnames[i].unit);
372 		else
373 			count += sprintf(&bufptr[count], "\n");
374 	}
375 
376 	return count;
377 }
378 
379 /************************************************************************/
380 /*                       Here the fs part begins                        */
381 /************************************************************************/
382 
383 /* permission checks */
384 static int proc_fd_access_allowed(struct inode *inode)
385 {
386 	struct task_struct *task;
387 	int allowed = 0;
388 	/* Allow access to a task's file descriptors if it is us or we
389 	 * may use ptrace attach to the process and find out that
390 	 * information.
391 	 */
392 	task = get_proc_task(inode);
393 	if (task) {
394 		allowed = ptrace_may_attach(task);
395 		put_task_struct(task);
396 	}
397 	return allowed;
398 }
399 
400 static int proc_setattr(struct dentry *dentry, struct iattr *attr)
401 {
402 	int error;
403 	struct inode *inode = dentry->d_inode;
404 
405 	if (attr->ia_valid & ATTR_MODE)
406 		return -EPERM;
407 
408 	error = inode_change_ok(inode, attr);
409 	if (!error)
410 		error = inode_setattr(inode, attr);
411 	return error;
412 }
413 
414 static const struct inode_operations proc_def_inode_operations = {
415 	.setattr	= proc_setattr,
416 };
417 
418 extern struct seq_operations mounts_op;
419 struct proc_mounts {
420 	struct seq_file m;
421 	int event;
422 };
423 
424 static int mounts_open(struct inode *inode, struct file *file)
425 {
426 	struct task_struct *task = get_proc_task(inode);
427 	struct nsproxy *nsp;
428 	struct mnt_namespace *ns = NULL;
429 	struct proc_mounts *p;
430 	int ret = -EINVAL;
431 
432 	if (task) {
433 		rcu_read_lock();
434 		nsp = task_nsproxy(task);
435 		if (nsp) {
436 			ns = nsp->mnt_ns;
437 			if (ns)
438 				get_mnt_ns(ns);
439 		}
440 		rcu_read_unlock();
441 
442 		put_task_struct(task);
443 	}
444 
445 	if (ns) {
446 		ret = -ENOMEM;
447 		p = kmalloc(sizeof(struct proc_mounts), GFP_KERNEL);
448 		if (p) {
449 			file->private_data = &p->m;
450 			ret = seq_open(file, &mounts_op);
451 			if (!ret) {
452 				p->m.private = ns;
453 				p->event = ns->event;
454 				return 0;
455 			}
456 			kfree(p);
457 		}
458 		put_mnt_ns(ns);
459 	}
460 	return ret;
461 }
462 
463 static int mounts_release(struct inode *inode, struct file *file)
464 {
465 	struct seq_file *m = file->private_data;
466 	struct mnt_namespace *ns = m->private;
467 	put_mnt_ns(ns);
468 	return seq_release(inode, file);
469 }
470 
471 static unsigned mounts_poll(struct file *file, poll_table *wait)
472 {
473 	struct proc_mounts *p = file->private_data;
474 	struct mnt_namespace *ns = p->m.private;
475 	unsigned res = 0;
476 
477 	poll_wait(file, &ns->poll, wait);
478 
479 	spin_lock(&vfsmount_lock);
480 	if (p->event != ns->event) {
481 		p->event = ns->event;
482 		res = POLLERR;
483 	}
484 	spin_unlock(&vfsmount_lock);
485 
486 	return res;
487 }
488 
489 static const struct file_operations proc_mounts_operations = {
490 	.open		= mounts_open,
491 	.read		= seq_read,
492 	.llseek		= seq_lseek,
493 	.release	= mounts_release,
494 	.poll		= mounts_poll,
495 };
496 
497 extern struct seq_operations mountstats_op;
498 static int mountstats_open(struct inode *inode, struct file *file)
499 {
500 	int ret = seq_open(file, &mountstats_op);
501 
502 	if (!ret) {
503 		struct seq_file *m = file->private_data;
504 		struct nsproxy *nsp;
505 		struct mnt_namespace *mnt_ns = NULL;
506 		struct task_struct *task = get_proc_task(inode);
507 
508 		if (task) {
509 			rcu_read_lock();
510 			nsp = task_nsproxy(task);
511 			if (nsp) {
512 				mnt_ns = nsp->mnt_ns;
513 				if (mnt_ns)
514 					get_mnt_ns(mnt_ns);
515 			}
516 			rcu_read_unlock();
517 
518 			put_task_struct(task);
519 		}
520 
521 		if (mnt_ns)
522 			m->private = mnt_ns;
523 		else {
524 			seq_release(inode, file);
525 			ret = -EINVAL;
526 		}
527 	}
528 	return ret;
529 }
530 
531 static const struct file_operations proc_mountstats_operations = {
532 	.open		= mountstats_open,
533 	.read		= seq_read,
534 	.llseek		= seq_lseek,
535 	.release	= mounts_release,
536 };
537 
538 #define PROC_BLOCK_SIZE	(3*1024)		/* 4K page size but our output routines use some slack for overruns */
539 
540 static ssize_t proc_info_read(struct file * file, char __user * buf,
541 			  size_t count, loff_t *ppos)
542 {
543 	struct inode * inode = file->f_path.dentry->d_inode;
544 	unsigned long page;
545 	ssize_t length;
546 	struct task_struct *task = get_proc_task(inode);
547 
548 	length = -ESRCH;
549 	if (!task)
550 		goto out_no_task;
551 
552 	if (count > PROC_BLOCK_SIZE)
553 		count = PROC_BLOCK_SIZE;
554 
555 	length = -ENOMEM;
556 	if (!(page = __get_free_page(GFP_TEMPORARY)))
557 		goto out;
558 
559 	length = PROC_I(inode)->op.proc_read(task, (char*)page);
560 
561 	if (length >= 0)
562 		length = simple_read_from_buffer(buf, count, ppos, (char *)page, length);
563 	free_page(page);
564 out:
565 	put_task_struct(task);
566 out_no_task:
567 	return length;
568 }
569 
570 static const struct file_operations proc_info_file_operations = {
571 	.read		= proc_info_read,
572 };
573 
574 static int mem_open(struct inode* inode, struct file* file)
575 {
576 	file->private_data = (void*)((long)current->self_exec_id);
577 	return 0;
578 }
579 
580 static ssize_t mem_read(struct file * file, char __user * buf,
581 			size_t count, loff_t *ppos)
582 {
583 	struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
584 	char *page;
585 	unsigned long src = *ppos;
586 	int ret = -ESRCH;
587 	struct mm_struct *mm;
588 
589 	if (!task)
590 		goto out_no_task;
591 
592 	if (!MAY_PTRACE(task) || !ptrace_may_attach(task))
593 		goto out;
594 
595 	ret = -ENOMEM;
596 	page = (char *)__get_free_page(GFP_TEMPORARY);
597 	if (!page)
598 		goto out;
599 
600 	ret = 0;
601 
602 	mm = get_task_mm(task);
603 	if (!mm)
604 		goto out_free;
605 
606 	ret = -EIO;
607 
608 	if (file->private_data != (void*)((long)current->self_exec_id))
609 		goto out_put;
610 
611 	ret = 0;
612 
613 	while (count > 0) {
614 		int this_len, retval;
615 
616 		this_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
617 		retval = access_process_vm(task, src, page, this_len, 0);
618 		if (!retval || !MAY_PTRACE(task) || !ptrace_may_attach(task)) {
619 			if (!ret)
620 				ret = -EIO;
621 			break;
622 		}
623 
624 		if (copy_to_user(buf, page, retval)) {
625 			ret = -EFAULT;
626 			break;
627 		}
628 
629 		ret += retval;
630 		src += retval;
631 		buf += retval;
632 		count -= retval;
633 	}
634 	*ppos = src;
635 
636 out_put:
637 	mmput(mm);
638 out_free:
639 	free_page((unsigned long) page);
640 out:
641 	put_task_struct(task);
642 out_no_task:
643 	return ret;
644 }
645 
646 #define mem_write NULL
647 
648 #ifndef mem_write
649 /* This is a security hazard */
650 static ssize_t mem_write(struct file * file, const char __user *buf,
651 			 size_t count, loff_t *ppos)
652 {
653 	int copied;
654 	char *page;
655 	struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
656 	unsigned long dst = *ppos;
657 
658 	copied = -ESRCH;
659 	if (!task)
660 		goto out_no_task;
661 
662 	if (!MAY_PTRACE(task) || !ptrace_may_attach(task))
663 		goto out;
664 
665 	copied = -ENOMEM;
666 	page = (char *)__get_free_page(GFP_TEMPORARY);
667 	if (!page)
668 		goto out;
669 
670 	copied = 0;
671 	while (count > 0) {
672 		int this_len, retval;
673 
674 		this_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
675 		if (copy_from_user(page, buf, this_len)) {
676 			copied = -EFAULT;
677 			break;
678 		}
679 		retval = access_process_vm(task, dst, page, this_len, 1);
680 		if (!retval) {
681 			if (!copied)
682 				copied = -EIO;
683 			break;
684 		}
685 		copied += retval;
686 		buf += retval;
687 		dst += retval;
688 		count -= retval;
689 	}
690 	*ppos = dst;
691 	free_page((unsigned long) page);
692 out:
693 	put_task_struct(task);
694 out_no_task:
695 	return copied;
696 }
697 #endif
698 
699 static loff_t mem_lseek(struct file * file, loff_t offset, int orig)
700 {
701 	switch (orig) {
702 	case 0:
703 		file->f_pos = offset;
704 		break;
705 	case 1:
706 		file->f_pos += offset;
707 		break;
708 	default:
709 		return -EINVAL;
710 	}
711 	force_successful_syscall_return();
712 	return file->f_pos;
713 }
714 
715 static const struct file_operations proc_mem_operations = {
716 	.llseek		= mem_lseek,
717 	.read		= mem_read,
718 	.write		= mem_write,
719 	.open		= mem_open,
720 };
721 
722 static ssize_t environ_read(struct file *file, char __user *buf,
723 			size_t count, loff_t *ppos)
724 {
725 	struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
726 	char *page;
727 	unsigned long src = *ppos;
728 	int ret = -ESRCH;
729 	struct mm_struct *mm;
730 
731 	if (!task)
732 		goto out_no_task;
733 
734 	if (!ptrace_may_attach(task))
735 		goto out;
736 
737 	ret = -ENOMEM;
738 	page = (char *)__get_free_page(GFP_TEMPORARY);
739 	if (!page)
740 		goto out;
741 
742 	ret = 0;
743 
744 	mm = get_task_mm(task);
745 	if (!mm)
746 		goto out_free;
747 
748 	while (count > 0) {
749 		int this_len, retval, max_len;
750 
751 		this_len = mm->env_end - (mm->env_start + src);
752 
753 		if (this_len <= 0)
754 			break;
755 
756 		max_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
757 		this_len = (this_len > max_len) ? max_len : this_len;
758 
759 		retval = access_process_vm(task, (mm->env_start + src),
760 			page, this_len, 0);
761 
762 		if (retval <= 0) {
763 			ret = retval;
764 			break;
765 		}
766 
767 		if (copy_to_user(buf, page, retval)) {
768 			ret = -EFAULT;
769 			break;
770 		}
771 
772 		ret += retval;
773 		src += retval;
774 		buf += retval;
775 		count -= retval;
776 	}
777 	*ppos = src;
778 
779 	mmput(mm);
780 out_free:
781 	free_page((unsigned long) page);
782 out:
783 	put_task_struct(task);
784 out_no_task:
785 	return ret;
786 }
787 
788 static const struct file_operations proc_environ_operations = {
789 	.read		= environ_read,
790 };
791 
792 static ssize_t oom_adjust_read(struct file *file, char __user *buf,
793 				size_t count, loff_t *ppos)
794 {
795 	struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
796 	char buffer[PROC_NUMBUF];
797 	size_t len;
798 	int oom_adjust;
799 
800 	if (!task)
801 		return -ESRCH;
802 	oom_adjust = task->oomkilladj;
803 	put_task_struct(task);
804 
805 	len = snprintf(buffer, sizeof(buffer), "%i\n", oom_adjust);
806 
807 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
808 }
809 
810 static ssize_t oom_adjust_write(struct file *file, const char __user *buf,
811 				size_t count, loff_t *ppos)
812 {
813 	struct task_struct *task;
814 	char buffer[PROC_NUMBUF], *end;
815 	int oom_adjust;
816 
817 	memset(buffer, 0, sizeof(buffer));
818 	if (count > sizeof(buffer) - 1)
819 		count = sizeof(buffer) - 1;
820 	if (copy_from_user(buffer, buf, count))
821 		return -EFAULT;
822 	oom_adjust = simple_strtol(buffer, &end, 0);
823 	if ((oom_adjust < OOM_ADJUST_MIN || oom_adjust > OOM_ADJUST_MAX) &&
824 	     oom_adjust != OOM_DISABLE)
825 		return -EINVAL;
826 	if (*end == '\n')
827 		end++;
828 	task = get_proc_task(file->f_path.dentry->d_inode);
829 	if (!task)
830 		return -ESRCH;
831 	if (oom_adjust < task->oomkilladj && !capable(CAP_SYS_RESOURCE)) {
832 		put_task_struct(task);
833 		return -EACCES;
834 	}
835 	task->oomkilladj = oom_adjust;
836 	put_task_struct(task);
837 	if (end - buffer == 0)
838 		return -EIO;
839 	return end - buffer;
840 }
841 
842 static const struct file_operations proc_oom_adjust_operations = {
843 	.read		= oom_adjust_read,
844 	.write		= oom_adjust_write,
845 };
846 
847 #ifdef CONFIG_MMU
848 static ssize_t clear_refs_write(struct file *file, const char __user *buf,
849 				size_t count, loff_t *ppos)
850 {
851 	struct task_struct *task;
852 	char buffer[PROC_NUMBUF], *end;
853 	struct mm_struct *mm;
854 
855 	memset(buffer, 0, sizeof(buffer));
856 	if (count > sizeof(buffer) - 1)
857 		count = sizeof(buffer) - 1;
858 	if (copy_from_user(buffer, buf, count))
859 		return -EFAULT;
860 	if (!simple_strtol(buffer, &end, 0))
861 		return -EINVAL;
862 	if (*end == '\n')
863 		end++;
864 	task = get_proc_task(file->f_path.dentry->d_inode);
865 	if (!task)
866 		return -ESRCH;
867 	mm = get_task_mm(task);
868 	if (mm) {
869 		clear_refs_smap(mm);
870 		mmput(mm);
871 	}
872 	put_task_struct(task);
873 	if (end - buffer == 0)
874 		return -EIO;
875 	return end - buffer;
876 }
877 
878 static struct file_operations proc_clear_refs_operations = {
879 	.write		= clear_refs_write,
880 };
881 #endif
882 
883 #ifdef CONFIG_AUDITSYSCALL
884 #define TMPBUFLEN 21
885 static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
886 				  size_t count, loff_t *ppos)
887 {
888 	struct inode * inode = file->f_path.dentry->d_inode;
889 	struct task_struct *task = get_proc_task(inode);
890 	ssize_t length;
891 	char tmpbuf[TMPBUFLEN];
892 
893 	if (!task)
894 		return -ESRCH;
895 	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
896 				audit_get_loginuid(task->audit_context));
897 	put_task_struct(task);
898 	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
899 }
900 
901 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
902 				   size_t count, loff_t *ppos)
903 {
904 	struct inode * inode = file->f_path.dentry->d_inode;
905 	char *page, *tmp;
906 	ssize_t length;
907 	uid_t loginuid;
908 
909 	if (!capable(CAP_AUDIT_CONTROL))
910 		return -EPERM;
911 
912 	if (current != pid_task(proc_pid(inode), PIDTYPE_PID))
913 		return -EPERM;
914 
915 	if (count >= PAGE_SIZE)
916 		count = PAGE_SIZE - 1;
917 
918 	if (*ppos != 0) {
919 		/* No partial writes. */
920 		return -EINVAL;
921 	}
922 	page = (char*)__get_free_page(GFP_TEMPORARY);
923 	if (!page)
924 		return -ENOMEM;
925 	length = -EFAULT;
926 	if (copy_from_user(page, buf, count))
927 		goto out_free_page;
928 
929 	page[count] = '\0';
930 	loginuid = simple_strtoul(page, &tmp, 10);
931 	if (tmp == page) {
932 		length = -EINVAL;
933 		goto out_free_page;
934 
935 	}
936 	length = audit_set_loginuid(current, loginuid);
937 	if (likely(length == 0))
938 		length = count;
939 
940 out_free_page:
941 	free_page((unsigned long) page);
942 	return length;
943 }
944 
945 static const struct file_operations proc_loginuid_operations = {
946 	.read		= proc_loginuid_read,
947 	.write		= proc_loginuid_write,
948 };
949 #endif
950 
951 #ifdef CONFIG_FAULT_INJECTION
952 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
953 				      size_t count, loff_t *ppos)
954 {
955 	struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
956 	char buffer[PROC_NUMBUF];
957 	size_t len;
958 	int make_it_fail;
959 
960 	if (!task)
961 		return -ESRCH;
962 	make_it_fail = task->make_it_fail;
963 	put_task_struct(task);
964 
965 	len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
966 
967 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
968 }
969 
970 static ssize_t proc_fault_inject_write(struct file * file,
971 			const char __user * buf, size_t count, loff_t *ppos)
972 {
973 	struct task_struct *task;
974 	char buffer[PROC_NUMBUF], *end;
975 	int make_it_fail;
976 
977 	if (!capable(CAP_SYS_RESOURCE))
978 		return -EPERM;
979 	memset(buffer, 0, sizeof(buffer));
980 	if (count > sizeof(buffer) - 1)
981 		count = sizeof(buffer) - 1;
982 	if (copy_from_user(buffer, buf, count))
983 		return -EFAULT;
984 	make_it_fail = simple_strtol(buffer, &end, 0);
985 	if (*end == '\n')
986 		end++;
987 	task = get_proc_task(file->f_dentry->d_inode);
988 	if (!task)
989 		return -ESRCH;
990 	task->make_it_fail = make_it_fail;
991 	put_task_struct(task);
992 	if (end - buffer == 0)
993 		return -EIO;
994 	return end - buffer;
995 }
996 
997 static const struct file_operations proc_fault_inject_operations = {
998 	.read		= proc_fault_inject_read,
999 	.write		= proc_fault_inject_write,
1000 };
1001 #endif
1002 
1003 #ifdef CONFIG_SCHED_DEBUG
1004 /*
1005  * Print out various scheduling related per-task fields:
1006  */
1007 static int sched_show(struct seq_file *m, void *v)
1008 {
1009 	struct inode *inode = m->private;
1010 	struct task_struct *p;
1011 
1012 	WARN_ON(!inode);
1013 
1014 	p = get_proc_task(inode);
1015 	if (!p)
1016 		return -ESRCH;
1017 	proc_sched_show_task(p, m);
1018 
1019 	put_task_struct(p);
1020 
1021 	return 0;
1022 }
1023 
1024 static ssize_t
1025 sched_write(struct file *file, const char __user *buf,
1026 	    size_t count, loff_t *offset)
1027 {
1028 	struct inode *inode = file->f_path.dentry->d_inode;
1029 	struct task_struct *p;
1030 
1031 	WARN_ON(!inode);
1032 
1033 	p = get_proc_task(inode);
1034 	if (!p)
1035 		return -ESRCH;
1036 	proc_sched_set_task(p);
1037 
1038 	put_task_struct(p);
1039 
1040 	return count;
1041 }
1042 
1043 static int sched_open(struct inode *inode, struct file *filp)
1044 {
1045 	int ret;
1046 
1047 	ret = single_open(filp, sched_show, NULL);
1048 	if (!ret) {
1049 		struct seq_file *m = filp->private_data;
1050 
1051 		m->private = inode;
1052 	}
1053 	return ret;
1054 }
1055 
1056 static const struct file_operations proc_pid_sched_operations = {
1057 	.open		= sched_open,
1058 	.read		= seq_read,
1059 	.write		= sched_write,
1060 	.llseek		= seq_lseek,
1061 	.release	= single_release,
1062 };
1063 
1064 #endif
1065 
1066 static void *proc_pid_follow_link(struct dentry *dentry, struct nameidata *nd)
1067 {
1068 	struct inode *inode = dentry->d_inode;
1069 	int error = -EACCES;
1070 
1071 	/* We don't need a base pointer in the /proc filesystem */
1072 	path_release(nd);
1073 
1074 	/* Are we allowed to snoop on the tasks file descriptors? */
1075 	if (!proc_fd_access_allowed(inode))
1076 		goto out;
1077 
1078 	error = PROC_I(inode)->op.proc_get_link(inode, &nd->dentry, &nd->mnt);
1079 	nd->last_type = LAST_BIND;
1080 out:
1081 	return ERR_PTR(error);
1082 }
1083 
1084 static int do_proc_readlink(struct dentry *dentry, struct vfsmount *mnt,
1085 			    char __user *buffer, int buflen)
1086 {
1087 	struct inode * inode;
1088 	char *tmp = (char*)__get_free_page(GFP_TEMPORARY);
1089 	char *path;
1090 	int len;
1091 
1092 	if (!tmp)
1093 		return -ENOMEM;
1094 
1095 	inode = dentry->d_inode;
1096 	path = d_path(dentry, mnt, tmp, PAGE_SIZE);
1097 	len = PTR_ERR(path);
1098 	if (IS_ERR(path))
1099 		goto out;
1100 	len = tmp + PAGE_SIZE - 1 - path;
1101 
1102 	if (len > buflen)
1103 		len = buflen;
1104 	if (copy_to_user(buffer, path, len))
1105 		len = -EFAULT;
1106  out:
1107 	free_page((unsigned long)tmp);
1108 	return len;
1109 }
1110 
1111 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1112 {
1113 	int error = -EACCES;
1114 	struct inode *inode = dentry->d_inode;
1115 	struct dentry *de;
1116 	struct vfsmount *mnt = NULL;
1117 
1118 	/* Are we allowed to snoop on the tasks file descriptors? */
1119 	if (!proc_fd_access_allowed(inode))
1120 		goto out;
1121 
1122 	error = PROC_I(inode)->op.proc_get_link(inode, &de, &mnt);
1123 	if (error)
1124 		goto out;
1125 
1126 	error = do_proc_readlink(de, mnt, buffer, buflen);
1127 	dput(de);
1128 	mntput(mnt);
1129 out:
1130 	return error;
1131 }
1132 
1133 static const struct inode_operations proc_pid_link_inode_operations = {
1134 	.readlink	= proc_pid_readlink,
1135 	.follow_link	= proc_pid_follow_link,
1136 	.setattr	= proc_setattr,
1137 };
1138 
1139 
1140 /* building an inode */
1141 
1142 static int task_dumpable(struct task_struct *task)
1143 {
1144 	int dumpable = 0;
1145 	struct mm_struct *mm;
1146 
1147 	task_lock(task);
1148 	mm = task->mm;
1149 	if (mm)
1150 		dumpable = get_dumpable(mm);
1151 	task_unlock(task);
1152 	if(dumpable == 1)
1153 		return 1;
1154 	return 0;
1155 }
1156 
1157 
1158 static struct inode *proc_pid_make_inode(struct super_block * sb, struct task_struct *task)
1159 {
1160 	struct inode * inode;
1161 	struct proc_inode *ei;
1162 
1163 	/* We need a new inode */
1164 
1165 	inode = new_inode(sb);
1166 	if (!inode)
1167 		goto out;
1168 
1169 	/* Common stuff */
1170 	ei = PROC_I(inode);
1171 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
1172 	inode->i_op = &proc_def_inode_operations;
1173 
1174 	/*
1175 	 * grab the reference to task.
1176 	 */
1177 	ei->pid = get_task_pid(task, PIDTYPE_PID);
1178 	if (!ei->pid)
1179 		goto out_unlock;
1180 
1181 	inode->i_uid = 0;
1182 	inode->i_gid = 0;
1183 	if (task_dumpable(task)) {
1184 		inode->i_uid = task->euid;
1185 		inode->i_gid = task->egid;
1186 	}
1187 	security_task_to_inode(task, inode);
1188 
1189 out:
1190 	return inode;
1191 
1192 out_unlock:
1193 	iput(inode);
1194 	return NULL;
1195 }
1196 
1197 static int pid_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
1198 {
1199 	struct inode *inode = dentry->d_inode;
1200 	struct task_struct *task;
1201 	generic_fillattr(inode, stat);
1202 
1203 	rcu_read_lock();
1204 	stat->uid = 0;
1205 	stat->gid = 0;
1206 	task = pid_task(proc_pid(inode), PIDTYPE_PID);
1207 	if (task) {
1208 		if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1209 		    task_dumpable(task)) {
1210 			stat->uid = task->euid;
1211 			stat->gid = task->egid;
1212 		}
1213 	}
1214 	rcu_read_unlock();
1215 	return 0;
1216 }
1217 
1218 /* dentry stuff */
1219 
1220 /*
1221  *	Exceptional case: normally we are not allowed to unhash a busy
1222  * directory. In this case, however, we can do it - no aliasing problems
1223  * due to the way we treat inodes.
1224  *
1225  * Rewrite the inode's ownerships here because the owning task may have
1226  * performed a setuid(), etc.
1227  *
1228  * Before the /proc/pid/status file was created the only way to read
1229  * the effective uid of a /process was to stat /proc/pid.  Reading
1230  * /proc/pid/status is slow enough that procps and other packages
1231  * kept stating /proc/pid.  To keep the rules in /proc simple I have
1232  * made this apply to all per process world readable and executable
1233  * directories.
1234  */
1235 static int pid_revalidate(struct dentry *dentry, struct nameidata *nd)
1236 {
1237 	struct inode *inode = dentry->d_inode;
1238 	struct task_struct *task = get_proc_task(inode);
1239 	if (task) {
1240 		if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1241 		    task_dumpable(task)) {
1242 			inode->i_uid = task->euid;
1243 			inode->i_gid = task->egid;
1244 		} else {
1245 			inode->i_uid = 0;
1246 			inode->i_gid = 0;
1247 		}
1248 		inode->i_mode &= ~(S_ISUID | S_ISGID);
1249 		security_task_to_inode(task, inode);
1250 		put_task_struct(task);
1251 		return 1;
1252 	}
1253 	d_drop(dentry);
1254 	return 0;
1255 }
1256 
1257 static int pid_delete_dentry(struct dentry * dentry)
1258 {
1259 	/* Is the task we represent dead?
1260 	 * If so, then don't put the dentry on the lru list,
1261 	 * kill it immediately.
1262 	 */
1263 	return !proc_pid(dentry->d_inode)->tasks[PIDTYPE_PID].first;
1264 }
1265 
1266 static struct dentry_operations pid_dentry_operations =
1267 {
1268 	.d_revalidate	= pid_revalidate,
1269 	.d_delete	= pid_delete_dentry,
1270 };
1271 
1272 /* Lookups */
1273 
1274 typedef struct dentry *instantiate_t(struct inode *, struct dentry *,
1275 				struct task_struct *, const void *);
1276 
1277 /*
1278  * Fill a directory entry.
1279  *
1280  * If possible create the dcache entry and derive our inode number and
1281  * file type from dcache entry.
1282  *
1283  * Since all of the proc inode numbers are dynamically generated, the inode
1284  * numbers do not exist until the inode is cache.  This means creating the
1285  * the dcache entry in readdir is necessary to keep the inode numbers
1286  * reported by readdir in sync with the inode numbers reported
1287  * by stat.
1288  */
1289 static int proc_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
1290 	char *name, int len,
1291 	instantiate_t instantiate, struct task_struct *task, const void *ptr)
1292 {
1293 	struct dentry *child, *dir = filp->f_path.dentry;
1294 	struct inode *inode;
1295 	struct qstr qname;
1296 	ino_t ino = 0;
1297 	unsigned type = DT_UNKNOWN;
1298 
1299 	qname.name = name;
1300 	qname.len  = len;
1301 	qname.hash = full_name_hash(name, len);
1302 
1303 	child = d_lookup(dir, &qname);
1304 	if (!child) {
1305 		struct dentry *new;
1306 		new = d_alloc(dir, &qname);
1307 		if (new) {
1308 			child = instantiate(dir->d_inode, new, task, ptr);
1309 			if (child)
1310 				dput(new);
1311 			else
1312 				child = new;
1313 		}
1314 	}
1315 	if (!child || IS_ERR(child) || !child->d_inode)
1316 		goto end_instantiate;
1317 	inode = child->d_inode;
1318 	if (inode) {
1319 		ino = inode->i_ino;
1320 		type = inode->i_mode >> 12;
1321 	}
1322 	dput(child);
1323 end_instantiate:
1324 	if (!ino)
1325 		ino = find_inode_number(dir, &qname);
1326 	if (!ino)
1327 		ino = 1;
1328 	return filldir(dirent, name, len, filp->f_pos, ino, type);
1329 }
1330 
1331 static unsigned name_to_int(struct dentry *dentry)
1332 {
1333 	const char *name = dentry->d_name.name;
1334 	int len = dentry->d_name.len;
1335 	unsigned n = 0;
1336 
1337 	if (len > 1 && *name == '0')
1338 		goto out;
1339 	while (len-- > 0) {
1340 		unsigned c = *name++ - '0';
1341 		if (c > 9)
1342 			goto out;
1343 		if (n >= (~0U-9)/10)
1344 			goto out;
1345 		n *= 10;
1346 		n += c;
1347 	}
1348 	return n;
1349 out:
1350 	return ~0U;
1351 }
1352 
1353 #define PROC_FDINFO_MAX 64
1354 
1355 static int proc_fd_info(struct inode *inode, struct dentry **dentry,
1356 			struct vfsmount **mnt, char *info)
1357 {
1358 	struct task_struct *task = get_proc_task(inode);
1359 	struct files_struct *files = NULL;
1360 	struct file *file;
1361 	int fd = proc_fd(inode);
1362 
1363 	if (task) {
1364 		files = get_files_struct(task);
1365 		put_task_struct(task);
1366 	}
1367 	if (files) {
1368 		/*
1369 		 * We are not taking a ref to the file structure, so we must
1370 		 * hold ->file_lock.
1371 		 */
1372 		spin_lock(&files->file_lock);
1373 		file = fcheck_files(files, fd);
1374 		if (file) {
1375 			if (mnt)
1376 				*mnt = mntget(file->f_path.mnt);
1377 			if (dentry)
1378 				*dentry = dget(file->f_path.dentry);
1379 			if (info)
1380 				snprintf(info, PROC_FDINFO_MAX,
1381 					 "pos:\t%lli\n"
1382 					 "flags:\t0%o\n",
1383 					 (long long) file->f_pos,
1384 					 file->f_flags);
1385 			spin_unlock(&files->file_lock);
1386 			put_files_struct(files);
1387 			return 0;
1388 		}
1389 		spin_unlock(&files->file_lock);
1390 		put_files_struct(files);
1391 	}
1392 	return -ENOENT;
1393 }
1394 
1395 static int proc_fd_link(struct inode *inode, struct dentry **dentry,
1396 			struct vfsmount **mnt)
1397 {
1398 	return proc_fd_info(inode, dentry, mnt, NULL);
1399 }
1400 
1401 static int tid_fd_revalidate(struct dentry *dentry, struct nameidata *nd)
1402 {
1403 	struct inode *inode = dentry->d_inode;
1404 	struct task_struct *task = get_proc_task(inode);
1405 	int fd = proc_fd(inode);
1406 	struct files_struct *files;
1407 
1408 	if (task) {
1409 		files = get_files_struct(task);
1410 		if (files) {
1411 			rcu_read_lock();
1412 			if (fcheck_files(files, fd)) {
1413 				rcu_read_unlock();
1414 				put_files_struct(files);
1415 				if (task_dumpable(task)) {
1416 					inode->i_uid = task->euid;
1417 					inode->i_gid = task->egid;
1418 				} else {
1419 					inode->i_uid = 0;
1420 					inode->i_gid = 0;
1421 				}
1422 				inode->i_mode &= ~(S_ISUID | S_ISGID);
1423 				security_task_to_inode(task, inode);
1424 				put_task_struct(task);
1425 				return 1;
1426 			}
1427 			rcu_read_unlock();
1428 			put_files_struct(files);
1429 		}
1430 		put_task_struct(task);
1431 	}
1432 	d_drop(dentry);
1433 	return 0;
1434 }
1435 
1436 static struct dentry_operations tid_fd_dentry_operations =
1437 {
1438 	.d_revalidate	= tid_fd_revalidate,
1439 	.d_delete	= pid_delete_dentry,
1440 };
1441 
1442 static struct dentry *proc_fd_instantiate(struct inode *dir,
1443 	struct dentry *dentry, struct task_struct *task, const void *ptr)
1444 {
1445 	unsigned fd = *(const unsigned *)ptr;
1446 	struct file *file;
1447 	struct files_struct *files;
1448  	struct inode *inode;
1449  	struct proc_inode *ei;
1450 	struct dentry *error = ERR_PTR(-ENOENT);
1451 
1452 	inode = proc_pid_make_inode(dir->i_sb, task);
1453 	if (!inode)
1454 		goto out;
1455 	ei = PROC_I(inode);
1456 	ei->fd = fd;
1457 	files = get_files_struct(task);
1458 	if (!files)
1459 		goto out_iput;
1460 	inode->i_mode = S_IFLNK;
1461 
1462 	/*
1463 	 * We are not taking a ref to the file structure, so we must
1464 	 * hold ->file_lock.
1465 	 */
1466 	spin_lock(&files->file_lock);
1467 	file = fcheck_files(files, fd);
1468 	if (!file)
1469 		goto out_unlock;
1470 	if (file->f_mode & 1)
1471 		inode->i_mode |= S_IRUSR | S_IXUSR;
1472 	if (file->f_mode & 2)
1473 		inode->i_mode |= S_IWUSR | S_IXUSR;
1474 	spin_unlock(&files->file_lock);
1475 	put_files_struct(files);
1476 
1477 	inode->i_op = &proc_pid_link_inode_operations;
1478 	inode->i_size = 64;
1479 	ei->op.proc_get_link = proc_fd_link;
1480 	dentry->d_op = &tid_fd_dentry_operations;
1481 	d_add(dentry, inode);
1482 	/* Close the race of the process dying before we return the dentry */
1483 	if (tid_fd_revalidate(dentry, NULL))
1484 		error = NULL;
1485 
1486  out:
1487 	return error;
1488 out_unlock:
1489 	spin_unlock(&files->file_lock);
1490 	put_files_struct(files);
1491 out_iput:
1492 	iput(inode);
1493 	goto out;
1494 }
1495 
1496 static struct dentry *proc_lookupfd_common(struct inode *dir,
1497 					   struct dentry *dentry,
1498 					   instantiate_t instantiate)
1499 {
1500 	struct task_struct *task = get_proc_task(dir);
1501 	unsigned fd = name_to_int(dentry);
1502 	struct dentry *result = ERR_PTR(-ENOENT);
1503 
1504 	if (!task)
1505 		goto out_no_task;
1506 	if (fd == ~0U)
1507 		goto out;
1508 
1509 	result = instantiate(dir, dentry, task, &fd);
1510 out:
1511 	put_task_struct(task);
1512 out_no_task:
1513 	return result;
1514 }
1515 
1516 static int proc_readfd_common(struct file * filp, void * dirent,
1517 			      filldir_t filldir, instantiate_t instantiate)
1518 {
1519 	struct dentry *dentry = filp->f_path.dentry;
1520 	struct inode *inode = dentry->d_inode;
1521 	struct task_struct *p = get_proc_task(inode);
1522 	unsigned int fd, ino;
1523 	int retval;
1524 	struct files_struct * files;
1525 	struct fdtable *fdt;
1526 
1527 	retval = -ENOENT;
1528 	if (!p)
1529 		goto out_no_task;
1530 	retval = 0;
1531 
1532 	fd = filp->f_pos;
1533 	switch (fd) {
1534 		case 0:
1535 			if (filldir(dirent, ".", 1, 0, inode->i_ino, DT_DIR) < 0)
1536 				goto out;
1537 			filp->f_pos++;
1538 		case 1:
1539 			ino = parent_ino(dentry);
1540 			if (filldir(dirent, "..", 2, 1, ino, DT_DIR) < 0)
1541 				goto out;
1542 			filp->f_pos++;
1543 		default:
1544 			files = get_files_struct(p);
1545 			if (!files)
1546 				goto out;
1547 			rcu_read_lock();
1548 			fdt = files_fdtable(files);
1549 			for (fd = filp->f_pos-2;
1550 			     fd < fdt->max_fds;
1551 			     fd++, filp->f_pos++) {
1552 				char name[PROC_NUMBUF];
1553 				int len;
1554 
1555 				if (!fcheck_files(files, fd))
1556 					continue;
1557 				rcu_read_unlock();
1558 
1559 				len = snprintf(name, sizeof(name), "%d", fd);
1560 				if (proc_fill_cache(filp, dirent, filldir,
1561 						    name, len, instantiate,
1562 						    p, &fd) < 0) {
1563 					rcu_read_lock();
1564 					break;
1565 				}
1566 				rcu_read_lock();
1567 			}
1568 			rcu_read_unlock();
1569 			put_files_struct(files);
1570 	}
1571 out:
1572 	put_task_struct(p);
1573 out_no_task:
1574 	return retval;
1575 }
1576 
1577 static struct dentry *proc_lookupfd(struct inode *dir, struct dentry *dentry,
1578 				    struct nameidata *nd)
1579 {
1580 	return proc_lookupfd_common(dir, dentry, proc_fd_instantiate);
1581 }
1582 
1583 static int proc_readfd(struct file *filp, void *dirent, filldir_t filldir)
1584 {
1585 	return proc_readfd_common(filp, dirent, filldir, proc_fd_instantiate);
1586 }
1587 
1588 static ssize_t proc_fdinfo_read(struct file *file, char __user *buf,
1589 				      size_t len, loff_t *ppos)
1590 {
1591 	char tmp[PROC_FDINFO_MAX];
1592 	int err = proc_fd_info(file->f_path.dentry->d_inode, NULL, NULL, tmp);
1593 	if (!err)
1594 		err = simple_read_from_buffer(buf, len, ppos, tmp, strlen(tmp));
1595 	return err;
1596 }
1597 
1598 static const struct file_operations proc_fdinfo_file_operations = {
1599 	.open		= nonseekable_open,
1600 	.read		= proc_fdinfo_read,
1601 };
1602 
1603 static const struct file_operations proc_fd_operations = {
1604 	.read		= generic_read_dir,
1605 	.readdir	= proc_readfd,
1606 };
1607 
1608 /*
1609  * /proc/pid/fd needs a special permission handler so that a process can still
1610  * access /proc/self/fd after it has executed a setuid().
1611  */
1612 static int proc_fd_permission(struct inode *inode, int mask,
1613 				struct nameidata *nd)
1614 {
1615 	int rv;
1616 
1617 	rv = generic_permission(inode, mask, NULL);
1618 	if (rv == 0)
1619 		return 0;
1620 	if (task_pid(current) == proc_pid(inode))
1621 		rv = 0;
1622 	return rv;
1623 }
1624 
1625 /*
1626  * proc directories can do almost nothing..
1627  */
1628 static const struct inode_operations proc_fd_inode_operations = {
1629 	.lookup		= proc_lookupfd,
1630 	.permission	= proc_fd_permission,
1631 	.setattr	= proc_setattr,
1632 };
1633 
1634 static struct dentry *proc_fdinfo_instantiate(struct inode *dir,
1635 	struct dentry *dentry, struct task_struct *task, const void *ptr)
1636 {
1637 	unsigned fd = *(unsigned *)ptr;
1638  	struct inode *inode;
1639  	struct proc_inode *ei;
1640 	struct dentry *error = ERR_PTR(-ENOENT);
1641 
1642 	inode = proc_pid_make_inode(dir->i_sb, task);
1643 	if (!inode)
1644 		goto out;
1645 	ei = PROC_I(inode);
1646 	ei->fd = fd;
1647 	inode->i_mode = S_IFREG | S_IRUSR;
1648 	inode->i_fop = &proc_fdinfo_file_operations;
1649 	dentry->d_op = &tid_fd_dentry_operations;
1650 	d_add(dentry, inode);
1651 	/* Close the race of the process dying before we return the dentry */
1652 	if (tid_fd_revalidate(dentry, NULL))
1653 		error = NULL;
1654 
1655  out:
1656 	return error;
1657 }
1658 
1659 static struct dentry *proc_lookupfdinfo(struct inode *dir,
1660 					struct dentry *dentry,
1661 					struct nameidata *nd)
1662 {
1663 	return proc_lookupfd_common(dir, dentry, proc_fdinfo_instantiate);
1664 }
1665 
1666 static int proc_readfdinfo(struct file *filp, void *dirent, filldir_t filldir)
1667 {
1668 	return proc_readfd_common(filp, dirent, filldir,
1669 				  proc_fdinfo_instantiate);
1670 }
1671 
1672 static const struct file_operations proc_fdinfo_operations = {
1673 	.read		= generic_read_dir,
1674 	.readdir	= proc_readfdinfo,
1675 };
1676 
1677 /*
1678  * proc directories can do almost nothing..
1679  */
1680 static const struct inode_operations proc_fdinfo_inode_operations = {
1681 	.lookup		= proc_lookupfdinfo,
1682 	.setattr	= proc_setattr,
1683 };
1684 
1685 
1686 static struct dentry *proc_pident_instantiate(struct inode *dir,
1687 	struct dentry *dentry, struct task_struct *task, const void *ptr)
1688 {
1689 	const struct pid_entry *p = ptr;
1690 	struct inode *inode;
1691 	struct proc_inode *ei;
1692 	struct dentry *error = ERR_PTR(-EINVAL);
1693 
1694 	inode = proc_pid_make_inode(dir->i_sb, task);
1695 	if (!inode)
1696 		goto out;
1697 
1698 	ei = PROC_I(inode);
1699 	inode->i_mode = p->mode;
1700 	if (S_ISDIR(inode->i_mode))
1701 		inode->i_nlink = 2;	/* Use getattr to fix if necessary */
1702 	if (p->iop)
1703 		inode->i_op = p->iop;
1704 	if (p->fop)
1705 		inode->i_fop = p->fop;
1706 	ei->op = p->op;
1707 	dentry->d_op = &pid_dentry_operations;
1708 	d_add(dentry, inode);
1709 	/* Close the race of the process dying before we return the dentry */
1710 	if (pid_revalidate(dentry, NULL))
1711 		error = NULL;
1712 out:
1713 	return error;
1714 }
1715 
1716 static struct dentry *proc_pident_lookup(struct inode *dir,
1717 					 struct dentry *dentry,
1718 					 const struct pid_entry *ents,
1719 					 unsigned int nents)
1720 {
1721 	struct inode *inode;
1722 	struct dentry *error;
1723 	struct task_struct *task = get_proc_task(dir);
1724 	const struct pid_entry *p, *last;
1725 
1726 	error = ERR_PTR(-ENOENT);
1727 	inode = NULL;
1728 
1729 	if (!task)
1730 		goto out_no_task;
1731 
1732 	/*
1733 	 * Yes, it does not scale. And it should not. Don't add
1734 	 * new entries into /proc/<tgid>/ without very good reasons.
1735 	 */
1736 	last = &ents[nents - 1];
1737 	for (p = ents; p <= last; p++) {
1738 		if (p->len != dentry->d_name.len)
1739 			continue;
1740 		if (!memcmp(dentry->d_name.name, p->name, p->len))
1741 			break;
1742 	}
1743 	if (p > last)
1744 		goto out;
1745 
1746 	error = proc_pident_instantiate(dir, dentry, task, p);
1747 out:
1748 	put_task_struct(task);
1749 out_no_task:
1750 	return error;
1751 }
1752 
1753 static int proc_pident_fill_cache(struct file *filp, void *dirent,
1754 	filldir_t filldir, struct task_struct *task, const struct pid_entry *p)
1755 {
1756 	return proc_fill_cache(filp, dirent, filldir, p->name, p->len,
1757 				proc_pident_instantiate, task, p);
1758 }
1759 
1760 static int proc_pident_readdir(struct file *filp,
1761 		void *dirent, filldir_t filldir,
1762 		const struct pid_entry *ents, unsigned int nents)
1763 {
1764 	int i;
1765 	struct dentry *dentry = filp->f_path.dentry;
1766 	struct inode *inode = dentry->d_inode;
1767 	struct task_struct *task = get_proc_task(inode);
1768 	const struct pid_entry *p, *last;
1769 	ino_t ino;
1770 	int ret;
1771 
1772 	ret = -ENOENT;
1773 	if (!task)
1774 		goto out_no_task;
1775 
1776 	ret = 0;
1777 	i = filp->f_pos;
1778 	switch (i) {
1779 	case 0:
1780 		ino = inode->i_ino;
1781 		if (filldir(dirent, ".", 1, i, ino, DT_DIR) < 0)
1782 			goto out;
1783 		i++;
1784 		filp->f_pos++;
1785 		/* fall through */
1786 	case 1:
1787 		ino = parent_ino(dentry);
1788 		if (filldir(dirent, "..", 2, i, ino, DT_DIR) < 0)
1789 			goto out;
1790 		i++;
1791 		filp->f_pos++;
1792 		/* fall through */
1793 	default:
1794 		i -= 2;
1795 		if (i >= nents) {
1796 			ret = 1;
1797 			goto out;
1798 		}
1799 		p = ents + i;
1800 		last = &ents[nents - 1];
1801 		while (p <= last) {
1802 			if (proc_pident_fill_cache(filp, dirent, filldir, task, p) < 0)
1803 				goto out;
1804 			filp->f_pos++;
1805 			p++;
1806 		}
1807 	}
1808 
1809 	ret = 1;
1810 out:
1811 	put_task_struct(task);
1812 out_no_task:
1813 	return ret;
1814 }
1815 
1816 #ifdef CONFIG_SECURITY
1817 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
1818 				  size_t count, loff_t *ppos)
1819 {
1820 	struct inode * inode = file->f_path.dentry->d_inode;
1821 	char *p = NULL;
1822 	ssize_t length;
1823 	struct task_struct *task = get_proc_task(inode);
1824 
1825 	if (!task)
1826 		return -ESRCH;
1827 
1828 	length = security_getprocattr(task,
1829 				      (char*)file->f_path.dentry->d_name.name,
1830 				      &p);
1831 	put_task_struct(task);
1832 	if (length > 0)
1833 		length = simple_read_from_buffer(buf, count, ppos, p, length);
1834 	kfree(p);
1835 	return length;
1836 }
1837 
1838 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
1839 				   size_t count, loff_t *ppos)
1840 {
1841 	struct inode * inode = file->f_path.dentry->d_inode;
1842 	char *page;
1843 	ssize_t length;
1844 	struct task_struct *task = get_proc_task(inode);
1845 
1846 	length = -ESRCH;
1847 	if (!task)
1848 		goto out_no_task;
1849 	if (count > PAGE_SIZE)
1850 		count = PAGE_SIZE;
1851 
1852 	/* No partial writes. */
1853 	length = -EINVAL;
1854 	if (*ppos != 0)
1855 		goto out;
1856 
1857 	length = -ENOMEM;
1858 	page = (char*)__get_free_page(GFP_TEMPORARY);
1859 	if (!page)
1860 		goto out;
1861 
1862 	length = -EFAULT;
1863 	if (copy_from_user(page, buf, count))
1864 		goto out_free;
1865 
1866 	length = security_setprocattr(task,
1867 				      (char*)file->f_path.dentry->d_name.name,
1868 				      (void*)page, count);
1869 out_free:
1870 	free_page((unsigned long) page);
1871 out:
1872 	put_task_struct(task);
1873 out_no_task:
1874 	return length;
1875 }
1876 
1877 static const struct file_operations proc_pid_attr_operations = {
1878 	.read		= proc_pid_attr_read,
1879 	.write		= proc_pid_attr_write,
1880 };
1881 
1882 static const struct pid_entry attr_dir_stuff[] = {
1883 	REG("current",    S_IRUGO|S_IWUGO, pid_attr),
1884 	REG("prev",       S_IRUGO,	   pid_attr),
1885 	REG("exec",       S_IRUGO|S_IWUGO, pid_attr),
1886 	REG("fscreate",   S_IRUGO|S_IWUGO, pid_attr),
1887 	REG("keycreate",  S_IRUGO|S_IWUGO, pid_attr),
1888 	REG("sockcreate", S_IRUGO|S_IWUGO, pid_attr),
1889 };
1890 
1891 static int proc_attr_dir_readdir(struct file * filp,
1892 			     void * dirent, filldir_t filldir)
1893 {
1894 	return proc_pident_readdir(filp,dirent,filldir,
1895 				   attr_dir_stuff,ARRAY_SIZE(attr_dir_stuff));
1896 }
1897 
1898 static const struct file_operations proc_attr_dir_operations = {
1899 	.read		= generic_read_dir,
1900 	.readdir	= proc_attr_dir_readdir,
1901 };
1902 
1903 static struct dentry *proc_attr_dir_lookup(struct inode *dir,
1904 				struct dentry *dentry, struct nameidata *nd)
1905 {
1906 	return proc_pident_lookup(dir, dentry,
1907 				  attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
1908 }
1909 
1910 static const struct inode_operations proc_attr_dir_inode_operations = {
1911 	.lookup		= proc_attr_dir_lookup,
1912 	.getattr	= pid_getattr,
1913 	.setattr	= proc_setattr,
1914 };
1915 
1916 #endif
1917 
1918 #if defined(USE_ELF_CORE_DUMP) && defined(CONFIG_ELF_CORE)
1919 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
1920 					 size_t count, loff_t *ppos)
1921 {
1922 	struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
1923 	struct mm_struct *mm;
1924 	char buffer[PROC_NUMBUF];
1925 	size_t len;
1926 	int ret;
1927 
1928 	if (!task)
1929 		return -ESRCH;
1930 
1931 	ret = 0;
1932 	mm = get_task_mm(task);
1933 	if (mm) {
1934 		len = snprintf(buffer, sizeof(buffer), "%08lx\n",
1935 			       ((mm->flags & MMF_DUMP_FILTER_MASK) >>
1936 				MMF_DUMP_FILTER_SHIFT));
1937 		mmput(mm);
1938 		ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
1939 	}
1940 
1941 	put_task_struct(task);
1942 
1943 	return ret;
1944 }
1945 
1946 static ssize_t proc_coredump_filter_write(struct file *file,
1947 					  const char __user *buf,
1948 					  size_t count,
1949 					  loff_t *ppos)
1950 {
1951 	struct task_struct *task;
1952 	struct mm_struct *mm;
1953 	char buffer[PROC_NUMBUF], *end;
1954 	unsigned int val;
1955 	int ret;
1956 	int i;
1957 	unsigned long mask;
1958 
1959 	ret = -EFAULT;
1960 	memset(buffer, 0, sizeof(buffer));
1961 	if (count > sizeof(buffer) - 1)
1962 		count = sizeof(buffer) - 1;
1963 	if (copy_from_user(buffer, buf, count))
1964 		goto out_no_task;
1965 
1966 	ret = -EINVAL;
1967 	val = (unsigned int)simple_strtoul(buffer, &end, 0);
1968 	if (*end == '\n')
1969 		end++;
1970 	if (end - buffer == 0)
1971 		goto out_no_task;
1972 
1973 	ret = -ESRCH;
1974 	task = get_proc_task(file->f_dentry->d_inode);
1975 	if (!task)
1976 		goto out_no_task;
1977 
1978 	ret = end - buffer;
1979 	mm = get_task_mm(task);
1980 	if (!mm)
1981 		goto out_no_mm;
1982 
1983 	for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
1984 		if (val & mask)
1985 			set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
1986 		else
1987 			clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
1988 	}
1989 
1990 	mmput(mm);
1991  out_no_mm:
1992 	put_task_struct(task);
1993  out_no_task:
1994 	return ret;
1995 }
1996 
1997 static const struct file_operations proc_coredump_filter_operations = {
1998 	.read		= proc_coredump_filter_read,
1999 	.write		= proc_coredump_filter_write,
2000 };
2001 #endif
2002 
2003 /*
2004  * /proc/self:
2005  */
2006 static int proc_self_readlink(struct dentry *dentry, char __user *buffer,
2007 			      int buflen)
2008 {
2009 	char tmp[PROC_NUMBUF];
2010 	sprintf(tmp, "%d", task_tgid_vnr(current));
2011 	return vfs_readlink(dentry,buffer,buflen,tmp);
2012 }
2013 
2014 static void *proc_self_follow_link(struct dentry *dentry, struct nameidata *nd)
2015 {
2016 	char tmp[PROC_NUMBUF];
2017 	sprintf(tmp, "%d", task_tgid_vnr(current));
2018 	return ERR_PTR(vfs_follow_link(nd,tmp));
2019 }
2020 
2021 static const struct inode_operations proc_self_inode_operations = {
2022 	.readlink	= proc_self_readlink,
2023 	.follow_link	= proc_self_follow_link,
2024 };
2025 
2026 /*
2027  * proc base
2028  *
2029  * These are the directory entries in the root directory of /proc
2030  * that properly belong to the /proc filesystem, as they describe
2031  * describe something that is process related.
2032  */
2033 static const struct pid_entry proc_base_stuff[] = {
2034 	NOD("self", S_IFLNK|S_IRWXUGO,
2035 		&proc_self_inode_operations, NULL, {}),
2036 };
2037 
2038 /*
2039  *	Exceptional case: normally we are not allowed to unhash a busy
2040  * directory. In this case, however, we can do it - no aliasing problems
2041  * due to the way we treat inodes.
2042  */
2043 static int proc_base_revalidate(struct dentry *dentry, struct nameidata *nd)
2044 {
2045 	struct inode *inode = dentry->d_inode;
2046 	struct task_struct *task = get_proc_task(inode);
2047 	if (task) {
2048 		put_task_struct(task);
2049 		return 1;
2050 	}
2051 	d_drop(dentry);
2052 	return 0;
2053 }
2054 
2055 static struct dentry_operations proc_base_dentry_operations =
2056 {
2057 	.d_revalidate	= proc_base_revalidate,
2058 	.d_delete	= pid_delete_dentry,
2059 };
2060 
2061 static struct dentry *proc_base_instantiate(struct inode *dir,
2062 	struct dentry *dentry, struct task_struct *task, const void *ptr)
2063 {
2064 	const struct pid_entry *p = ptr;
2065 	struct inode *inode;
2066 	struct proc_inode *ei;
2067 	struct dentry *error = ERR_PTR(-EINVAL);
2068 
2069 	/* Allocate the inode */
2070 	error = ERR_PTR(-ENOMEM);
2071 	inode = new_inode(dir->i_sb);
2072 	if (!inode)
2073 		goto out;
2074 
2075 	/* Initialize the inode */
2076 	ei = PROC_I(inode);
2077 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
2078 
2079 	/*
2080 	 * grab the reference to the task.
2081 	 */
2082 	ei->pid = get_task_pid(task, PIDTYPE_PID);
2083 	if (!ei->pid)
2084 		goto out_iput;
2085 
2086 	inode->i_uid = 0;
2087 	inode->i_gid = 0;
2088 	inode->i_mode = p->mode;
2089 	if (S_ISDIR(inode->i_mode))
2090 		inode->i_nlink = 2;
2091 	if (S_ISLNK(inode->i_mode))
2092 		inode->i_size = 64;
2093 	if (p->iop)
2094 		inode->i_op = p->iop;
2095 	if (p->fop)
2096 		inode->i_fop = p->fop;
2097 	ei->op = p->op;
2098 	dentry->d_op = &proc_base_dentry_operations;
2099 	d_add(dentry, inode);
2100 	error = NULL;
2101 out:
2102 	return error;
2103 out_iput:
2104 	iput(inode);
2105 	goto out;
2106 }
2107 
2108 static struct dentry *proc_base_lookup(struct inode *dir, struct dentry *dentry)
2109 {
2110 	struct dentry *error;
2111 	struct task_struct *task = get_proc_task(dir);
2112 	const struct pid_entry *p, *last;
2113 
2114 	error = ERR_PTR(-ENOENT);
2115 
2116 	if (!task)
2117 		goto out_no_task;
2118 
2119 	/* Lookup the directory entry */
2120 	last = &proc_base_stuff[ARRAY_SIZE(proc_base_stuff) - 1];
2121 	for (p = proc_base_stuff; p <= last; p++) {
2122 		if (p->len != dentry->d_name.len)
2123 			continue;
2124 		if (!memcmp(dentry->d_name.name, p->name, p->len))
2125 			break;
2126 	}
2127 	if (p > last)
2128 		goto out;
2129 
2130 	error = proc_base_instantiate(dir, dentry, task, p);
2131 
2132 out:
2133 	put_task_struct(task);
2134 out_no_task:
2135 	return error;
2136 }
2137 
2138 static int proc_base_fill_cache(struct file *filp, void *dirent,
2139 	filldir_t filldir, struct task_struct *task, const struct pid_entry *p)
2140 {
2141 	return proc_fill_cache(filp, dirent, filldir, p->name, p->len,
2142 				proc_base_instantiate, task, p);
2143 }
2144 
2145 #ifdef CONFIG_TASK_IO_ACCOUNTING
2146 static int proc_pid_io_accounting(struct task_struct *task, char *buffer)
2147 {
2148 	return sprintf(buffer,
2149 #ifdef CONFIG_TASK_XACCT
2150 			"rchar: %llu\n"
2151 			"wchar: %llu\n"
2152 			"syscr: %llu\n"
2153 			"syscw: %llu\n"
2154 #endif
2155 			"read_bytes: %llu\n"
2156 			"write_bytes: %llu\n"
2157 			"cancelled_write_bytes: %llu\n",
2158 #ifdef CONFIG_TASK_XACCT
2159 			(unsigned long long)task->rchar,
2160 			(unsigned long long)task->wchar,
2161 			(unsigned long long)task->syscr,
2162 			(unsigned long long)task->syscw,
2163 #endif
2164 			(unsigned long long)task->ioac.read_bytes,
2165 			(unsigned long long)task->ioac.write_bytes,
2166 			(unsigned long long)task->ioac.cancelled_write_bytes);
2167 }
2168 #endif
2169 
2170 /*
2171  * Thread groups
2172  */
2173 static const struct file_operations proc_task_operations;
2174 static const struct inode_operations proc_task_inode_operations;
2175 
2176 static const struct pid_entry tgid_base_stuff[] = {
2177 	DIR("task",       S_IRUGO|S_IXUGO, task),
2178 	DIR("fd",         S_IRUSR|S_IXUSR, fd),
2179 	DIR("fdinfo",     S_IRUSR|S_IXUSR, fdinfo),
2180 	REG("environ",    S_IRUSR, environ),
2181 	INF("auxv",       S_IRUSR, pid_auxv),
2182 	INF("status",     S_IRUGO, pid_status),
2183 	INF("limits",	  S_IRUSR, pid_limits),
2184 #ifdef CONFIG_SCHED_DEBUG
2185 	REG("sched",      S_IRUGO|S_IWUSR, pid_sched),
2186 #endif
2187 	INF("cmdline",    S_IRUGO, pid_cmdline),
2188 	INF("stat",       S_IRUGO, tgid_stat),
2189 	INF("statm",      S_IRUGO, pid_statm),
2190 	REG("maps",       S_IRUGO, maps),
2191 #ifdef CONFIG_NUMA
2192 	REG("numa_maps",  S_IRUGO, numa_maps),
2193 #endif
2194 	REG("mem",        S_IRUSR|S_IWUSR, mem),
2195 	LNK("cwd",        cwd),
2196 	LNK("root",       root),
2197 	LNK("exe",        exe),
2198 	REG("mounts",     S_IRUGO, mounts),
2199 	REG("mountstats", S_IRUSR, mountstats),
2200 #ifdef CONFIG_MMU
2201 	REG("clear_refs", S_IWUSR, clear_refs),
2202 	REG("smaps",      S_IRUGO, smaps),
2203 #endif
2204 #ifdef CONFIG_SECURITY
2205 	DIR("attr",       S_IRUGO|S_IXUGO, attr_dir),
2206 #endif
2207 #ifdef CONFIG_KALLSYMS
2208 	INF("wchan",      S_IRUGO, pid_wchan),
2209 #endif
2210 #ifdef CONFIG_SCHEDSTATS
2211 	INF("schedstat",  S_IRUGO, pid_schedstat),
2212 #endif
2213 #ifdef CONFIG_PROC_PID_CPUSET
2214 	REG("cpuset",     S_IRUGO, cpuset),
2215 #endif
2216 #ifdef CONFIG_CGROUPS
2217 	REG("cgroup",  S_IRUGO, cgroup),
2218 #endif
2219 	INF("oom_score",  S_IRUGO, oom_score),
2220 	REG("oom_adj",    S_IRUGO|S_IWUSR, oom_adjust),
2221 #ifdef CONFIG_AUDITSYSCALL
2222 	REG("loginuid",   S_IWUSR|S_IRUGO, loginuid),
2223 #endif
2224 #ifdef CONFIG_FAULT_INJECTION
2225 	REG("make-it-fail", S_IRUGO|S_IWUSR, fault_inject),
2226 #endif
2227 #if defined(USE_ELF_CORE_DUMP) && defined(CONFIG_ELF_CORE)
2228 	REG("coredump_filter", S_IRUGO|S_IWUSR, coredump_filter),
2229 #endif
2230 #ifdef CONFIG_TASK_IO_ACCOUNTING
2231 	INF("io",	S_IRUGO, pid_io_accounting),
2232 #endif
2233 };
2234 
2235 static int proc_tgid_base_readdir(struct file * filp,
2236 			     void * dirent, filldir_t filldir)
2237 {
2238 	return proc_pident_readdir(filp,dirent,filldir,
2239 				   tgid_base_stuff,ARRAY_SIZE(tgid_base_stuff));
2240 }
2241 
2242 static const struct file_operations proc_tgid_base_operations = {
2243 	.read		= generic_read_dir,
2244 	.readdir	= proc_tgid_base_readdir,
2245 };
2246 
2247 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){
2248 	return proc_pident_lookup(dir, dentry,
2249 				  tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
2250 }
2251 
2252 static const struct inode_operations proc_tgid_base_inode_operations = {
2253 	.lookup		= proc_tgid_base_lookup,
2254 	.getattr	= pid_getattr,
2255 	.setattr	= proc_setattr,
2256 };
2257 
2258 /**
2259  * proc_flush_task -  Remove dcache entries for @task from the /proc dcache.
2260  *
2261  * @task: task that should be flushed.
2262  *
2263  * Looks in the dcache for
2264  * /proc/@pid
2265  * /proc/@tgid/task/@pid
2266  * if either directory is present flushes it and all of it'ts children
2267  * from the dcache.
2268  *
2269  * It is safe and reasonable to cache /proc entries for a task until
2270  * that task exits.  After that they just clog up the dcache with
2271  * useless entries, possibly causing useful dcache entries to be
2272  * flushed instead.  This routine is proved to flush those useless
2273  * dcache entries at process exit time.
2274  *
2275  * NOTE: This routine is just an optimization so it does not guarantee
2276  *       that no dcache entries will exist at process exit time it
2277  *       just makes it very unlikely that any will persist.
2278  */
2279 static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid)
2280 {
2281 	struct dentry *dentry, *leader, *dir;
2282 	char buf[PROC_NUMBUF];
2283 	struct qstr name;
2284 
2285 	name.name = buf;
2286 	name.len = snprintf(buf, sizeof(buf), "%d", pid);
2287 	dentry = d_hash_and_lookup(mnt->mnt_root, &name);
2288 	if (dentry) {
2289 		shrink_dcache_parent(dentry);
2290 		d_drop(dentry);
2291 		dput(dentry);
2292 	}
2293 
2294 	if (tgid == 0)
2295 		goto out;
2296 
2297 	name.name = buf;
2298 	name.len = snprintf(buf, sizeof(buf), "%d", tgid);
2299 	leader = d_hash_and_lookup(mnt->mnt_root, &name);
2300 	if (!leader)
2301 		goto out;
2302 
2303 	name.name = "task";
2304 	name.len = strlen(name.name);
2305 	dir = d_hash_and_lookup(leader, &name);
2306 	if (!dir)
2307 		goto out_put_leader;
2308 
2309 	name.name = buf;
2310 	name.len = snprintf(buf, sizeof(buf), "%d", pid);
2311 	dentry = d_hash_and_lookup(dir, &name);
2312 	if (dentry) {
2313 		shrink_dcache_parent(dentry);
2314 		d_drop(dentry);
2315 		dput(dentry);
2316 	}
2317 
2318 	dput(dir);
2319 out_put_leader:
2320 	dput(leader);
2321 out:
2322 	return;
2323 }
2324 
2325 /*
2326  * when flushing dentries from proc one need to flush them from global
2327  * proc (proc_mnt) and from all the namespaces' procs this task was seen
2328  * in. this call is supposed to make all this job.
2329  */
2330 
2331 void proc_flush_task(struct task_struct *task)
2332 {
2333 	int i, leader;
2334 	struct pid *pid, *tgid;
2335 	struct upid *upid;
2336 
2337 	leader = thread_group_leader(task);
2338 	proc_flush_task_mnt(proc_mnt, task->pid, leader ? task->tgid : 0);
2339 	pid = task_pid(task);
2340 	if (pid->level == 0)
2341 		return;
2342 
2343 	tgid = task_tgid(task);
2344 	for (i = 1; i <= pid->level; i++) {
2345 		upid = &pid->numbers[i];
2346 		proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr,
2347 				leader ? 0 : tgid->numbers[i].nr);
2348 	}
2349 
2350 	upid = &pid->numbers[pid->level];
2351 	if (upid->nr == 1)
2352 		pid_ns_release_proc(upid->ns);
2353 }
2354 
2355 static struct dentry *proc_pid_instantiate(struct inode *dir,
2356 					   struct dentry * dentry,
2357 					   struct task_struct *task, const void *ptr)
2358 {
2359 	struct dentry *error = ERR_PTR(-ENOENT);
2360 	struct inode *inode;
2361 
2362 	inode = proc_pid_make_inode(dir->i_sb, task);
2363 	if (!inode)
2364 		goto out;
2365 
2366 	inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
2367 	inode->i_op = &proc_tgid_base_inode_operations;
2368 	inode->i_fop = &proc_tgid_base_operations;
2369 	inode->i_flags|=S_IMMUTABLE;
2370 	inode->i_nlink = 5;
2371 #ifdef CONFIG_SECURITY
2372 	inode->i_nlink += 1;
2373 #endif
2374 
2375 	dentry->d_op = &pid_dentry_operations;
2376 
2377 	d_add(dentry, inode);
2378 	/* Close the race of the process dying before we return the dentry */
2379 	if (pid_revalidate(dentry, NULL))
2380 		error = NULL;
2381 out:
2382 	return error;
2383 }
2384 
2385 struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
2386 {
2387 	struct dentry *result = ERR_PTR(-ENOENT);
2388 	struct task_struct *task;
2389 	unsigned tgid;
2390 	struct pid_namespace *ns;
2391 
2392 	result = proc_base_lookup(dir, dentry);
2393 	if (!IS_ERR(result) || PTR_ERR(result) != -ENOENT)
2394 		goto out;
2395 
2396 	tgid = name_to_int(dentry);
2397 	if (tgid == ~0U)
2398 		goto out;
2399 
2400 	ns = dentry->d_sb->s_fs_info;
2401 	rcu_read_lock();
2402 	task = find_task_by_pid_ns(tgid, ns);
2403 	if (task)
2404 		get_task_struct(task);
2405 	rcu_read_unlock();
2406 	if (!task)
2407 		goto out;
2408 
2409 	result = proc_pid_instantiate(dir, dentry, task, NULL);
2410 	put_task_struct(task);
2411 out:
2412 	return result;
2413 }
2414 
2415 /*
2416  * Find the first task with tgid >= tgid
2417  *
2418  */
2419 static struct task_struct *next_tgid(unsigned int tgid,
2420 		struct pid_namespace *ns)
2421 {
2422 	struct task_struct *task;
2423 	struct pid *pid;
2424 
2425 	rcu_read_lock();
2426 retry:
2427 	task = NULL;
2428 	pid = find_ge_pid(tgid, ns);
2429 	if (pid) {
2430 		tgid = pid_nr_ns(pid, ns) + 1;
2431 		task = pid_task(pid, PIDTYPE_PID);
2432 		/* What we to know is if the pid we have find is the
2433 		 * pid of a thread_group_leader.  Testing for task
2434 		 * being a thread_group_leader is the obvious thing
2435 		 * todo but there is a window when it fails, due to
2436 		 * the pid transfer logic in de_thread.
2437 		 *
2438 		 * So we perform the straight forward test of seeing
2439 		 * if the pid we have found is the pid of a thread
2440 		 * group leader, and don't worry if the task we have
2441 		 * found doesn't happen to be a thread group leader.
2442 		 * As we don't care in the case of readdir.
2443 		 */
2444 		if (!task || !has_group_leader_pid(task))
2445 			goto retry;
2446 		get_task_struct(task);
2447 	}
2448 	rcu_read_unlock();
2449 	return task;
2450 }
2451 
2452 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + ARRAY_SIZE(proc_base_stuff))
2453 
2454 static int proc_pid_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
2455 	struct task_struct *task, int tgid)
2456 {
2457 	char name[PROC_NUMBUF];
2458 	int len = snprintf(name, sizeof(name), "%d", tgid);
2459 	return proc_fill_cache(filp, dirent, filldir, name, len,
2460 				proc_pid_instantiate, task, NULL);
2461 }
2462 
2463 /* for the /proc/ directory itself, after non-process stuff has been done */
2464 int proc_pid_readdir(struct file * filp, void * dirent, filldir_t filldir)
2465 {
2466 	unsigned int nr = filp->f_pos - FIRST_PROCESS_ENTRY;
2467 	struct task_struct *reaper = get_proc_task(filp->f_path.dentry->d_inode);
2468 	struct task_struct *task;
2469 	int tgid;
2470 	struct pid_namespace *ns;
2471 
2472 	if (!reaper)
2473 		goto out_no_task;
2474 
2475 	for (; nr < ARRAY_SIZE(proc_base_stuff); filp->f_pos++, nr++) {
2476 		const struct pid_entry *p = &proc_base_stuff[nr];
2477 		if (proc_base_fill_cache(filp, dirent, filldir, reaper, p) < 0)
2478 			goto out;
2479 	}
2480 
2481 	ns = filp->f_dentry->d_sb->s_fs_info;
2482 	tgid = filp->f_pos - TGID_OFFSET;
2483 	for (task = next_tgid(tgid, ns);
2484 	     task;
2485 	     put_task_struct(task), task = next_tgid(tgid + 1, ns)) {
2486 		tgid = task_pid_nr_ns(task, ns);
2487 		filp->f_pos = tgid + TGID_OFFSET;
2488 		if (proc_pid_fill_cache(filp, dirent, filldir, task, tgid) < 0) {
2489 			put_task_struct(task);
2490 			goto out;
2491 		}
2492 	}
2493 	filp->f_pos = PID_MAX_LIMIT + TGID_OFFSET;
2494 out:
2495 	put_task_struct(reaper);
2496 out_no_task:
2497 	return 0;
2498 }
2499 
2500 /*
2501  * Tasks
2502  */
2503 static const struct pid_entry tid_base_stuff[] = {
2504 	DIR("fd",        S_IRUSR|S_IXUSR, fd),
2505 	DIR("fdinfo",    S_IRUSR|S_IXUSR, fdinfo),
2506 	REG("environ",   S_IRUSR, environ),
2507 	INF("auxv",      S_IRUSR, pid_auxv),
2508 	INF("status",    S_IRUGO, pid_status),
2509 	INF("limits",	 S_IRUSR, pid_limits),
2510 #ifdef CONFIG_SCHED_DEBUG
2511 	REG("sched",     S_IRUGO|S_IWUSR, pid_sched),
2512 #endif
2513 	INF("cmdline",   S_IRUGO, pid_cmdline),
2514 	INF("stat",      S_IRUGO, tid_stat),
2515 	INF("statm",     S_IRUGO, pid_statm),
2516 	REG("maps",      S_IRUGO, maps),
2517 #ifdef CONFIG_NUMA
2518 	REG("numa_maps", S_IRUGO, numa_maps),
2519 #endif
2520 	REG("mem",       S_IRUSR|S_IWUSR, mem),
2521 	LNK("cwd",       cwd),
2522 	LNK("root",      root),
2523 	LNK("exe",       exe),
2524 	REG("mounts",    S_IRUGO, mounts),
2525 #ifdef CONFIG_MMU
2526 	REG("clear_refs", S_IWUSR, clear_refs),
2527 	REG("smaps",     S_IRUGO, smaps),
2528 #endif
2529 #ifdef CONFIG_SECURITY
2530 	DIR("attr",      S_IRUGO|S_IXUGO, attr_dir),
2531 #endif
2532 #ifdef CONFIG_KALLSYMS
2533 	INF("wchan",     S_IRUGO, pid_wchan),
2534 #endif
2535 #ifdef CONFIG_SCHEDSTATS
2536 	INF("schedstat", S_IRUGO, pid_schedstat),
2537 #endif
2538 #ifdef CONFIG_PROC_PID_CPUSET
2539 	REG("cpuset",    S_IRUGO, cpuset),
2540 #endif
2541 #ifdef CONFIG_CGROUPS
2542 	REG("cgroup",  S_IRUGO, cgroup),
2543 #endif
2544 	INF("oom_score", S_IRUGO, oom_score),
2545 	REG("oom_adj",   S_IRUGO|S_IWUSR, oom_adjust),
2546 #ifdef CONFIG_AUDITSYSCALL
2547 	REG("loginuid",  S_IWUSR|S_IRUGO, loginuid),
2548 #endif
2549 #ifdef CONFIG_FAULT_INJECTION
2550 	REG("make-it-fail", S_IRUGO|S_IWUSR, fault_inject),
2551 #endif
2552 };
2553 
2554 static int proc_tid_base_readdir(struct file * filp,
2555 			     void * dirent, filldir_t filldir)
2556 {
2557 	return proc_pident_readdir(filp,dirent,filldir,
2558 				   tid_base_stuff,ARRAY_SIZE(tid_base_stuff));
2559 }
2560 
2561 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){
2562 	return proc_pident_lookup(dir, dentry,
2563 				  tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
2564 }
2565 
2566 static const struct file_operations proc_tid_base_operations = {
2567 	.read		= generic_read_dir,
2568 	.readdir	= proc_tid_base_readdir,
2569 };
2570 
2571 static const struct inode_operations proc_tid_base_inode_operations = {
2572 	.lookup		= proc_tid_base_lookup,
2573 	.getattr	= pid_getattr,
2574 	.setattr	= proc_setattr,
2575 };
2576 
2577 static struct dentry *proc_task_instantiate(struct inode *dir,
2578 	struct dentry *dentry, struct task_struct *task, const void *ptr)
2579 {
2580 	struct dentry *error = ERR_PTR(-ENOENT);
2581 	struct inode *inode;
2582 	inode = proc_pid_make_inode(dir->i_sb, task);
2583 
2584 	if (!inode)
2585 		goto out;
2586 	inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
2587 	inode->i_op = &proc_tid_base_inode_operations;
2588 	inode->i_fop = &proc_tid_base_operations;
2589 	inode->i_flags|=S_IMMUTABLE;
2590 	inode->i_nlink = 4;
2591 #ifdef CONFIG_SECURITY
2592 	inode->i_nlink += 1;
2593 #endif
2594 
2595 	dentry->d_op = &pid_dentry_operations;
2596 
2597 	d_add(dentry, inode);
2598 	/* Close the race of the process dying before we return the dentry */
2599 	if (pid_revalidate(dentry, NULL))
2600 		error = NULL;
2601 out:
2602 	return error;
2603 }
2604 
2605 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
2606 {
2607 	struct dentry *result = ERR_PTR(-ENOENT);
2608 	struct task_struct *task;
2609 	struct task_struct *leader = get_proc_task(dir);
2610 	unsigned tid;
2611 	struct pid_namespace *ns;
2612 
2613 	if (!leader)
2614 		goto out_no_task;
2615 
2616 	tid = name_to_int(dentry);
2617 	if (tid == ~0U)
2618 		goto out;
2619 
2620 	ns = dentry->d_sb->s_fs_info;
2621 	rcu_read_lock();
2622 	task = find_task_by_pid_ns(tid, ns);
2623 	if (task)
2624 		get_task_struct(task);
2625 	rcu_read_unlock();
2626 	if (!task)
2627 		goto out;
2628 	if (!same_thread_group(leader, task))
2629 		goto out_drop_task;
2630 
2631 	result = proc_task_instantiate(dir, dentry, task, NULL);
2632 out_drop_task:
2633 	put_task_struct(task);
2634 out:
2635 	put_task_struct(leader);
2636 out_no_task:
2637 	return result;
2638 }
2639 
2640 /*
2641  * Find the first tid of a thread group to return to user space.
2642  *
2643  * Usually this is just the thread group leader, but if the users
2644  * buffer was too small or there was a seek into the middle of the
2645  * directory we have more work todo.
2646  *
2647  * In the case of a short read we start with find_task_by_pid.
2648  *
2649  * In the case of a seek we start with the leader and walk nr
2650  * threads past it.
2651  */
2652 static struct task_struct *first_tid(struct task_struct *leader,
2653 		int tid, int nr, struct pid_namespace *ns)
2654 {
2655 	struct task_struct *pos;
2656 
2657 	rcu_read_lock();
2658 	/* Attempt to start with the pid of a thread */
2659 	if (tid && (nr > 0)) {
2660 		pos = find_task_by_pid_ns(tid, ns);
2661 		if (pos && (pos->group_leader == leader))
2662 			goto found;
2663 	}
2664 
2665 	/* If nr exceeds the number of threads there is nothing todo */
2666 	pos = NULL;
2667 	if (nr && nr >= get_nr_threads(leader))
2668 		goto out;
2669 
2670 	/* If we haven't found our starting place yet start
2671 	 * with the leader and walk nr threads forward.
2672 	 */
2673 	for (pos = leader; nr > 0; --nr) {
2674 		pos = next_thread(pos);
2675 		if (pos == leader) {
2676 			pos = NULL;
2677 			goto out;
2678 		}
2679 	}
2680 found:
2681 	get_task_struct(pos);
2682 out:
2683 	rcu_read_unlock();
2684 	return pos;
2685 }
2686 
2687 /*
2688  * Find the next thread in the thread list.
2689  * Return NULL if there is an error or no next thread.
2690  *
2691  * The reference to the input task_struct is released.
2692  */
2693 static struct task_struct *next_tid(struct task_struct *start)
2694 {
2695 	struct task_struct *pos = NULL;
2696 	rcu_read_lock();
2697 	if (pid_alive(start)) {
2698 		pos = next_thread(start);
2699 		if (thread_group_leader(pos))
2700 			pos = NULL;
2701 		else
2702 			get_task_struct(pos);
2703 	}
2704 	rcu_read_unlock();
2705 	put_task_struct(start);
2706 	return pos;
2707 }
2708 
2709 static int proc_task_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
2710 	struct task_struct *task, int tid)
2711 {
2712 	char name[PROC_NUMBUF];
2713 	int len = snprintf(name, sizeof(name), "%d", tid);
2714 	return proc_fill_cache(filp, dirent, filldir, name, len,
2715 				proc_task_instantiate, task, NULL);
2716 }
2717 
2718 /* for the /proc/TGID/task/ directories */
2719 static int proc_task_readdir(struct file * filp, void * dirent, filldir_t filldir)
2720 {
2721 	struct dentry *dentry = filp->f_path.dentry;
2722 	struct inode *inode = dentry->d_inode;
2723 	struct task_struct *leader = NULL;
2724 	struct task_struct *task;
2725 	int retval = -ENOENT;
2726 	ino_t ino;
2727 	int tid;
2728 	unsigned long pos = filp->f_pos;  /* avoiding "long long" filp->f_pos */
2729 	struct pid_namespace *ns;
2730 
2731 	task = get_proc_task(inode);
2732 	if (!task)
2733 		goto out_no_task;
2734 	rcu_read_lock();
2735 	if (pid_alive(task)) {
2736 		leader = task->group_leader;
2737 		get_task_struct(leader);
2738 	}
2739 	rcu_read_unlock();
2740 	put_task_struct(task);
2741 	if (!leader)
2742 		goto out_no_task;
2743 	retval = 0;
2744 
2745 	switch (pos) {
2746 	case 0:
2747 		ino = inode->i_ino;
2748 		if (filldir(dirent, ".", 1, pos, ino, DT_DIR) < 0)
2749 			goto out;
2750 		pos++;
2751 		/* fall through */
2752 	case 1:
2753 		ino = parent_ino(dentry);
2754 		if (filldir(dirent, "..", 2, pos, ino, DT_DIR) < 0)
2755 			goto out;
2756 		pos++;
2757 		/* fall through */
2758 	}
2759 
2760 	/* f_version caches the tgid value that the last readdir call couldn't
2761 	 * return. lseek aka telldir automagically resets f_version to 0.
2762 	 */
2763 	ns = filp->f_dentry->d_sb->s_fs_info;
2764 	tid = (int)filp->f_version;
2765 	filp->f_version = 0;
2766 	for (task = first_tid(leader, tid, pos - 2, ns);
2767 	     task;
2768 	     task = next_tid(task), pos++) {
2769 		tid = task_pid_nr_ns(task, ns);
2770 		if (proc_task_fill_cache(filp, dirent, filldir, task, tid) < 0) {
2771 			/* returning this tgid failed, save it as the first
2772 			 * pid for the next readir call */
2773 			filp->f_version = (u64)tid;
2774 			put_task_struct(task);
2775 			break;
2776 		}
2777 	}
2778 out:
2779 	filp->f_pos = pos;
2780 	put_task_struct(leader);
2781 out_no_task:
2782 	return retval;
2783 }
2784 
2785 static int proc_task_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
2786 {
2787 	struct inode *inode = dentry->d_inode;
2788 	struct task_struct *p = get_proc_task(inode);
2789 	generic_fillattr(inode, stat);
2790 
2791 	if (p) {
2792 		rcu_read_lock();
2793 		stat->nlink += get_nr_threads(p);
2794 		rcu_read_unlock();
2795 		put_task_struct(p);
2796 	}
2797 
2798 	return 0;
2799 }
2800 
2801 static const struct inode_operations proc_task_inode_operations = {
2802 	.lookup		= proc_task_lookup,
2803 	.getattr	= proc_task_getattr,
2804 	.setattr	= proc_setattr,
2805 };
2806 
2807 static const struct file_operations proc_task_operations = {
2808 	.read		= generic_read_dir,
2809 	.readdir	= proc_task_readdir,
2810 };
2811