xref: /openbmc/linux/fs/proc/base.c (revision 631f9c1868b970197747c80fc5168ad7d9fd5d53)
1 /*
2  *  linux/fs/proc/base.c
3  *
4  *  Copyright (C) 1991, 1992 Linus Torvalds
5  *
6  *  proc base directory handling functions
7  *
8  *  1999, Al Viro. Rewritten. Now it covers the whole per-process part.
9  *  Instead of using magical inumbers to determine the kind of object
10  *  we allocate and fill in-core inodes upon lookup. They don't even
11  *  go into icache. We cache the reference to task_struct upon lookup too.
12  *  Eventually it should become a filesystem in its own. We don't use the
13  *  rest of procfs anymore.
14  *
15  *
16  *  Changelog:
17  *  17-Jan-2005
18  *  Allan Bezerra
19  *  Bruna Moreira <bruna.moreira@indt.org.br>
20  *  Edjard Mota <edjard.mota@indt.org.br>
21  *  Ilias Biris <ilias.biris@indt.org.br>
22  *  Mauricio Lin <mauricio.lin@indt.org.br>
23  *
24  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
25  *
26  *  A new process specific entry (smaps) included in /proc. It shows the
27  *  size of rss for each memory area. The maps entry lacks information
28  *  about physical memory size (rss) for each mapped file, i.e.,
29  *  rss information for executables and library files.
30  *  This additional information is useful for any tools that need to know
31  *  about physical memory consumption for a process specific library.
32  *
33  *  Changelog:
34  *  21-Feb-2005
35  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
36  *  Pud inclusion in the page table walking.
37  *
38  *  ChangeLog:
39  *  10-Mar-2005
40  *  10LE Instituto Nokia de Tecnologia - INdT:
41  *  A better way to walks through the page table as suggested by Hugh Dickins.
42  *
43  *  Simo Piiroinen <simo.piiroinen@nokia.com>:
44  *  Smaps information related to shared, private, clean and dirty pages.
45  *
46  *  Paul Mundt <paul.mundt@nokia.com>:
47  *  Overall revision about smaps.
48  */
49 
50 #include <asm/uaccess.h>
51 
52 #include <linux/errno.h>
53 #include <linux/time.h>
54 #include <linux/proc_fs.h>
55 #include <linux/stat.h>
56 #include <linux/task_io_accounting_ops.h>
57 #include <linux/init.h>
58 #include <linux/capability.h>
59 #include <linux/file.h>
60 #include <linux/fdtable.h>
61 #include <linux/string.h>
62 #include <linux/seq_file.h>
63 #include <linux/namei.h>
64 #include <linux/mnt_namespace.h>
65 #include <linux/mm.h>
66 #include <linux/rcupdate.h>
67 #include <linux/kallsyms.h>
68 #include <linux/resource.h>
69 #include <linux/module.h>
70 #include <linux/mount.h>
71 #include <linux/security.h>
72 #include <linux/ptrace.h>
73 #include <linux/tracehook.h>
74 #include <linux/cgroup.h>
75 #include <linux/cpuset.h>
76 #include <linux/audit.h>
77 #include <linux/poll.h>
78 #include <linux/nsproxy.h>
79 #include <linux/oom.h>
80 #include <linux/elf.h>
81 #include <linux/pid_namespace.h>
82 #include "internal.h"
83 
84 /* NOTE:
85  *	Implementing inode permission operations in /proc is almost
86  *	certainly an error.  Permission checks need to happen during
87  *	each system call not at open time.  The reason is that most of
88  *	what we wish to check for permissions in /proc varies at runtime.
89  *
90  *	The classic example of a problem is opening file descriptors
91  *	in /proc for a task before it execs a suid executable.
92  */
93 
94 struct pid_entry {
95 	char *name;
96 	int len;
97 	mode_t mode;
98 	const struct inode_operations *iop;
99 	const struct file_operations *fop;
100 	union proc_op op;
101 };
102 
103 #define NOD(NAME, MODE, IOP, FOP, OP) {			\
104 	.name = (NAME),					\
105 	.len  = sizeof(NAME) - 1,			\
106 	.mode = MODE,					\
107 	.iop  = IOP,					\
108 	.fop  = FOP,					\
109 	.op   = OP,					\
110 }
111 
112 #define DIR(NAME, MODE, iops, fops)	\
113 	NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
114 #define LNK(NAME, get_link)					\
115 	NOD(NAME, (S_IFLNK|S_IRWXUGO),				\
116 		&proc_pid_link_inode_operations, NULL,		\
117 		{ .proc_get_link = get_link } )
118 #define REG(NAME, MODE, fops)				\
119 	NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
120 #define INF(NAME, MODE, read)				\
121 	NOD(NAME, (S_IFREG|(MODE)), 			\
122 		NULL, &proc_info_file_operations,	\
123 		{ .proc_read = read } )
124 #define ONE(NAME, MODE, show)				\
125 	NOD(NAME, (S_IFREG|(MODE)), 			\
126 		NULL, &proc_single_file_operations,	\
127 		{ .proc_show = show } )
128 
129 /*
130  * Count the number of hardlinks for the pid_entry table, excluding the .
131  * and .. links.
132  */
133 static unsigned int pid_entry_count_dirs(const struct pid_entry *entries,
134 	unsigned int n)
135 {
136 	unsigned int i;
137 	unsigned int count;
138 
139 	count = 0;
140 	for (i = 0; i < n; ++i) {
141 		if (S_ISDIR(entries[i].mode))
142 			++count;
143 	}
144 
145 	return count;
146 }
147 
148 static struct fs_struct *get_fs_struct(struct task_struct *task)
149 {
150 	struct fs_struct *fs;
151 	task_lock(task);
152 	fs = task->fs;
153 	if(fs)
154 		atomic_inc(&fs->count);
155 	task_unlock(task);
156 	return fs;
157 }
158 
159 static int get_nr_threads(struct task_struct *tsk)
160 {
161 	unsigned long flags;
162 	int count = 0;
163 
164 	if (lock_task_sighand(tsk, &flags)) {
165 		count = atomic_read(&tsk->signal->count);
166 		unlock_task_sighand(tsk, &flags);
167 	}
168 	return count;
169 }
170 
171 static int proc_cwd_link(struct inode *inode, struct path *path)
172 {
173 	struct task_struct *task = get_proc_task(inode);
174 	struct fs_struct *fs = NULL;
175 	int result = -ENOENT;
176 
177 	if (task) {
178 		fs = get_fs_struct(task);
179 		put_task_struct(task);
180 	}
181 	if (fs) {
182 		read_lock(&fs->lock);
183 		*path = fs->pwd;
184 		path_get(&fs->pwd);
185 		read_unlock(&fs->lock);
186 		result = 0;
187 		put_fs_struct(fs);
188 	}
189 	return result;
190 }
191 
192 static int proc_root_link(struct inode *inode, struct path *path)
193 {
194 	struct task_struct *task = get_proc_task(inode);
195 	struct fs_struct *fs = NULL;
196 	int result = -ENOENT;
197 
198 	if (task) {
199 		fs = get_fs_struct(task);
200 		put_task_struct(task);
201 	}
202 	if (fs) {
203 		read_lock(&fs->lock);
204 		*path = fs->root;
205 		path_get(&fs->root);
206 		read_unlock(&fs->lock);
207 		result = 0;
208 		put_fs_struct(fs);
209 	}
210 	return result;
211 }
212 
213 /*
214  * Return zero if current may access user memory in @task, -error if not.
215  */
216 static int check_mem_permission(struct task_struct *task)
217 {
218 	/*
219 	 * A task can always look at itself, in case it chooses
220 	 * to use system calls instead of load instructions.
221 	 */
222 	if (task == current)
223 		return 0;
224 
225 	/*
226 	 * If current is actively ptrace'ing, and would also be
227 	 * permitted to freshly attach with ptrace now, permit it.
228 	 */
229 	if (task_is_stopped_or_traced(task)) {
230 		int match;
231 		rcu_read_lock();
232 		match = (tracehook_tracer_task(task) == current);
233 		rcu_read_unlock();
234 		if (match && ptrace_may_access(task, PTRACE_MODE_ATTACH))
235 			return 0;
236 	}
237 
238 	/*
239 	 * Noone else is allowed.
240 	 */
241 	return -EPERM;
242 }
243 
244 struct mm_struct *mm_for_maps(struct task_struct *task)
245 {
246 	struct mm_struct *mm = get_task_mm(task);
247 	if (!mm)
248 		return NULL;
249 	down_read(&mm->mmap_sem);
250 	task_lock(task);
251 	if (task->mm != mm)
252 		goto out;
253 	if (task->mm != current->mm &&
254 	    __ptrace_may_access(task, PTRACE_MODE_READ) < 0)
255 		goto out;
256 	task_unlock(task);
257 	return mm;
258 out:
259 	task_unlock(task);
260 	up_read(&mm->mmap_sem);
261 	mmput(mm);
262 	return NULL;
263 }
264 
265 static int proc_pid_cmdline(struct task_struct *task, char * buffer)
266 {
267 	int res = 0;
268 	unsigned int len;
269 	struct mm_struct *mm = get_task_mm(task);
270 	if (!mm)
271 		goto out;
272 	if (!mm->arg_end)
273 		goto out_mm;	/* Shh! No looking before we're done */
274 
275  	len = mm->arg_end - mm->arg_start;
276 
277 	if (len > PAGE_SIZE)
278 		len = PAGE_SIZE;
279 
280 	res = access_process_vm(task, mm->arg_start, buffer, len, 0);
281 
282 	// If the nul at the end of args has been overwritten, then
283 	// assume application is using setproctitle(3).
284 	if (res > 0 && buffer[res-1] != '\0' && len < PAGE_SIZE) {
285 		len = strnlen(buffer, res);
286 		if (len < res) {
287 		    res = len;
288 		} else {
289 			len = mm->env_end - mm->env_start;
290 			if (len > PAGE_SIZE - res)
291 				len = PAGE_SIZE - res;
292 			res += access_process_vm(task, mm->env_start, buffer+res, len, 0);
293 			res = strnlen(buffer, res);
294 		}
295 	}
296 out_mm:
297 	mmput(mm);
298 out:
299 	return res;
300 }
301 
302 static int proc_pid_auxv(struct task_struct *task, char *buffer)
303 {
304 	int res = 0;
305 	struct mm_struct *mm = get_task_mm(task);
306 	if (mm) {
307 		unsigned int nwords = 0;
308 		do
309 			nwords += 2;
310 		while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
311 		res = nwords * sizeof(mm->saved_auxv[0]);
312 		if (res > PAGE_SIZE)
313 			res = PAGE_SIZE;
314 		memcpy(buffer, mm->saved_auxv, res);
315 		mmput(mm);
316 	}
317 	return res;
318 }
319 
320 
321 #ifdef CONFIG_KALLSYMS
322 /*
323  * Provides a wchan file via kallsyms in a proper one-value-per-file format.
324  * Returns the resolved symbol.  If that fails, simply return the address.
325  */
326 static int proc_pid_wchan(struct task_struct *task, char *buffer)
327 {
328 	unsigned long wchan;
329 	char symname[KSYM_NAME_LEN];
330 
331 	wchan = get_wchan(task);
332 
333 	if (lookup_symbol_name(wchan, symname) < 0)
334 		return sprintf(buffer, "%lu", wchan);
335 	else
336 		return sprintf(buffer, "%s", symname);
337 }
338 #endif /* CONFIG_KALLSYMS */
339 
340 #ifdef CONFIG_SCHEDSTATS
341 /*
342  * Provides /proc/PID/schedstat
343  */
344 static int proc_pid_schedstat(struct task_struct *task, char *buffer)
345 {
346 	return sprintf(buffer, "%llu %llu %lu\n",
347 			(unsigned long long)task->se.sum_exec_runtime,
348 			(unsigned long long)task->sched_info.run_delay,
349 			task->sched_info.pcount);
350 }
351 #endif
352 
353 #ifdef CONFIG_LATENCYTOP
354 static int lstats_show_proc(struct seq_file *m, void *v)
355 {
356 	int i;
357 	struct inode *inode = m->private;
358 	struct task_struct *task = get_proc_task(inode);
359 
360 	if (!task)
361 		return -ESRCH;
362 	seq_puts(m, "Latency Top version : v0.1\n");
363 	for (i = 0; i < 32; i++) {
364 		if (task->latency_record[i].backtrace[0]) {
365 			int q;
366 			seq_printf(m, "%i %li %li ",
367 				task->latency_record[i].count,
368 				task->latency_record[i].time,
369 				task->latency_record[i].max);
370 			for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
371 				char sym[KSYM_SYMBOL_LEN];
372 				char *c;
373 				if (!task->latency_record[i].backtrace[q])
374 					break;
375 				if (task->latency_record[i].backtrace[q] == ULONG_MAX)
376 					break;
377 				sprint_symbol(sym, task->latency_record[i].backtrace[q]);
378 				c = strchr(sym, '+');
379 				if (c)
380 					*c = 0;
381 				seq_printf(m, "%s ", sym);
382 			}
383 			seq_printf(m, "\n");
384 		}
385 
386 	}
387 	put_task_struct(task);
388 	return 0;
389 }
390 
391 static int lstats_open(struct inode *inode, struct file *file)
392 {
393 	return single_open(file, lstats_show_proc, inode);
394 }
395 
396 static ssize_t lstats_write(struct file *file, const char __user *buf,
397 			    size_t count, loff_t *offs)
398 {
399 	struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
400 
401 	if (!task)
402 		return -ESRCH;
403 	clear_all_latency_tracing(task);
404 	put_task_struct(task);
405 
406 	return count;
407 }
408 
409 static const struct file_operations proc_lstats_operations = {
410 	.open		= lstats_open,
411 	.read		= seq_read,
412 	.write		= lstats_write,
413 	.llseek		= seq_lseek,
414 	.release	= single_release,
415 };
416 
417 #endif
418 
419 /* The badness from the OOM killer */
420 unsigned long badness(struct task_struct *p, unsigned long uptime);
421 static int proc_oom_score(struct task_struct *task, char *buffer)
422 {
423 	unsigned long points;
424 	struct timespec uptime;
425 
426 	do_posix_clock_monotonic_gettime(&uptime);
427 	read_lock(&tasklist_lock);
428 	points = badness(task, uptime.tv_sec);
429 	read_unlock(&tasklist_lock);
430 	return sprintf(buffer, "%lu\n", points);
431 }
432 
433 struct limit_names {
434 	char *name;
435 	char *unit;
436 };
437 
438 static const struct limit_names lnames[RLIM_NLIMITS] = {
439 	[RLIMIT_CPU] = {"Max cpu time", "ms"},
440 	[RLIMIT_FSIZE] = {"Max file size", "bytes"},
441 	[RLIMIT_DATA] = {"Max data size", "bytes"},
442 	[RLIMIT_STACK] = {"Max stack size", "bytes"},
443 	[RLIMIT_CORE] = {"Max core file size", "bytes"},
444 	[RLIMIT_RSS] = {"Max resident set", "bytes"},
445 	[RLIMIT_NPROC] = {"Max processes", "processes"},
446 	[RLIMIT_NOFILE] = {"Max open files", "files"},
447 	[RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
448 	[RLIMIT_AS] = {"Max address space", "bytes"},
449 	[RLIMIT_LOCKS] = {"Max file locks", "locks"},
450 	[RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
451 	[RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
452 	[RLIMIT_NICE] = {"Max nice priority", NULL},
453 	[RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
454 	[RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
455 };
456 
457 /* Display limits for a process */
458 static int proc_pid_limits(struct task_struct *task, char *buffer)
459 {
460 	unsigned int i;
461 	int count = 0;
462 	unsigned long flags;
463 	char *bufptr = buffer;
464 
465 	struct rlimit rlim[RLIM_NLIMITS];
466 
467 	if (!lock_task_sighand(task, &flags))
468 		return 0;
469 	memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
470 	unlock_task_sighand(task, &flags);
471 
472 	/*
473 	 * print the file header
474 	 */
475 	count += sprintf(&bufptr[count], "%-25s %-20s %-20s %-10s\n",
476 			"Limit", "Soft Limit", "Hard Limit", "Units");
477 
478 	for (i = 0; i < RLIM_NLIMITS; i++) {
479 		if (rlim[i].rlim_cur == RLIM_INFINITY)
480 			count += sprintf(&bufptr[count], "%-25s %-20s ",
481 					 lnames[i].name, "unlimited");
482 		else
483 			count += sprintf(&bufptr[count], "%-25s %-20lu ",
484 					 lnames[i].name, rlim[i].rlim_cur);
485 
486 		if (rlim[i].rlim_max == RLIM_INFINITY)
487 			count += sprintf(&bufptr[count], "%-20s ", "unlimited");
488 		else
489 			count += sprintf(&bufptr[count], "%-20lu ",
490 					 rlim[i].rlim_max);
491 
492 		if (lnames[i].unit)
493 			count += sprintf(&bufptr[count], "%-10s\n",
494 					 lnames[i].unit);
495 		else
496 			count += sprintf(&bufptr[count], "\n");
497 	}
498 
499 	return count;
500 }
501 
502 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
503 static int proc_pid_syscall(struct task_struct *task, char *buffer)
504 {
505 	long nr;
506 	unsigned long args[6], sp, pc;
507 
508 	if (task_current_syscall(task, &nr, args, 6, &sp, &pc))
509 		return sprintf(buffer, "running\n");
510 
511 	if (nr < 0)
512 		return sprintf(buffer, "%ld 0x%lx 0x%lx\n", nr, sp, pc);
513 
514 	return sprintf(buffer,
515 		       "%ld 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx\n",
516 		       nr,
517 		       args[0], args[1], args[2], args[3], args[4], args[5],
518 		       sp, pc);
519 }
520 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
521 
522 /************************************************************************/
523 /*                       Here the fs part begins                        */
524 /************************************************************************/
525 
526 /* permission checks */
527 static int proc_fd_access_allowed(struct inode *inode)
528 {
529 	struct task_struct *task;
530 	int allowed = 0;
531 	/* Allow access to a task's file descriptors if it is us or we
532 	 * may use ptrace attach to the process and find out that
533 	 * information.
534 	 */
535 	task = get_proc_task(inode);
536 	if (task) {
537 		allowed = ptrace_may_access(task, PTRACE_MODE_READ);
538 		put_task_struct(task);
539 	}
540 	return allowed;
541 }
542 
543 static int proc_setattr(struct dentry *dentry, struct iattr *attr)
544 {
545 	int error;
546 	struct inode *inode = dentry->d_inode;
547 
548 	if (attr->ia_valid & ATTR_MODE)
549 		return -EPERM;
550 
551 	error = inode_change_ok(inode, attr);
552 	if (!error)
553 		error = inode_setattr(inode, attr);
554 	return error;
555 }
556 
557 static const struct inode_operations proc_def_inode_operations = {
558 	.setattr	= proc_setattr,
559 };
560 
561 static int mounts_open_common(struct inode *inode, struct file *file,
562 			      const struct seq_operations *op)
563 {
564 	struct task_struct *task = get_proc_task(inode);
565 	struct nsproxy *nsp;
566 	struct mnt_namespace *ns = NULL;
567 	struct fs_struct *fs = NULL;
568 	struct path root;
569 	struct proc_mounts *p;
570 	int ret = -EINVAL;
571 
572 	if (task) {
573 		rcu_read_lock();
574 		nsp = task_nsproxy(task);
575 		if (nsp) {
576 			ns = nsp->mnt_ns;
577 			if (ns)
578 				get_mnt_ns(ns);
579 		}
580 		rcu_read_unlock();
581 		if (ns)
582 			fs = get_fs_struct(task);
583 		put_task_struct(task);
584 	}
585 
586 	if (!ns)
587 		goto err;
588 	if (!fs)
589 		goto err_put_ns;
590 
591 	read_lock(&fs->lock);
592 	root = fs->root;
593 	path_get(&root);
594 	read_unlock(&fs->lock);
595 	put_fs_struct(fs);
596 
597 	ret = -ENOMEM;
598 	p = kmalloc(sizeof(struct proc_mounts), GFP_KERNEL);
599 	if (!p)
600 		goto err_put_path;
601 
602 	file->private_data = &p->m;
603 	ret = seq_open(file, op);
604 	if (ret)
605 		goto err_free;
606 
607 	p->m.private = p;
608 	p->ns = ns;
609 	p->root = root;
610 	p->event = ns->event;
611 
612 	return 0;
613 
614  err_free:
615 	kfree(p);
616  err_put_path:
617 	path_put(&root);
618  err_put_ns:
619 	put_mnt_ns(ns);
620  err:
621 	return ret;
622 }
623 
624 static int mounts_release(struct inode *inode, struct file *file)
625 {
626 	struct proc_mounts *p = file->private_data;
627 	path_put(&p->root);
628 	put_mnt_ns(p->ns);
629 	return seq_release(inode, file);
630 }
631 
632 static unsigned mounts_poll(struct file *file, poll_table *wait)
633 {
634 	struct proc_mounts *p = file->private_data;
635 	struct mnt_namespace *ns = p->ns;
636 	unsigned res = 0;
637 
638 	poll_wait(file, &ns->poll, wait);
639 
640 	spin_lock(&vfsmount_lock);
641 	if (p->event != ns->event) {
642 		p->event = ns->event;
643 		res = POLLERR;
644 	}
645 	spin_unlock(&vfsmount_lock);
646 
647 	return res;
648 }
649 
650 static int mounts_open(struct inode *inode, struct file *file)
651 {
652 	return mounts_open_common(inode, file, &mounts_op);
653 }
654 
655 static const struct file_operations proc_mounts_operations = {
656 	.open		= mounts_open,
657 	.read		= seq_read,
658 	.llseek		= seq_lseek,
659 	.release	= mounts_release,
660 	.poll		= mounts_poll,
661 };
662 
663 static int mountinfo_open(struct inode *inode, struct file *file)
664 {
665 	return mounts_open_common(inode, file, &mountinfo_op);
666 }
667 
668 static const struct file_operations proc_mountinfo_operations = {
669 	.open		= mountinfo_open,
670 	.read		= seq_read,
671 	.llseek		= seq_lseek,
672 	.release	= mounts_release,
673 	.poll		= mounts_poll,
674 };
675 
676 static int mountstats_open(struct inode *inode, struct file *file)
677 {
678 	return mounts_open_common(inode, file, &mountstats_op);
679 }
680 
681 static const struct file_operations proc_mountstats_operations = {
682 	.open		= mountstats_open,
683 	.read		= seq_read,
684 	.llseek		= seq_lseek,
685 	.release	= mounts_release,
686 };
687 
688 #define PROC_BLOCK_SIZE	(3*1024)		/* 4K page size but our output routines use some slack for overruns */
689 
690 static ssize_t proc_info_read(struct file * file, char __user * buf,
691 			  size_t count, loff_t *ppos)
692 {
693 	struct inode * inode = file->f_path.dentry->d_inode;
694 	unsigned long page;
695 	ssize_t length;
696 	struct task_struct *task = get_proc_task(inode);
697 
698 	length = -ESRCH;
699 	if (!task)
700 		goto out_no_task;
701 
702 	if (count > PROC_BLOCK_SIZE)
703 		count = PROC_BLOCK_SIZE;
704 
705 	length = -ENOMEM;
706 	if (!(page = __get_free_page(GFP_TEMPORARY)))
707 		goto out;
708 
709 	length = PROC_I(inode)->op.proc_read(task, (char*)page);
710 
711 	if (length >= 0)
712 		length = simple_read_from_buffer(buf, count, ppos, (char *)page, length);
713 	free_page(page);
714 out:
715 	put_task_struct(task);
716 out_no_task:
717 	return length;
718 }
719 
720 static const struct file_operations proc_info_file_operations = {
721 	.read		= proc_info_read,
722 };
723 
724 static int proc_single_show(struct seq_file *m, void *v)
725 {
726 	struct inode *inode = m->private;
727 	struct pid_namespace *ns;
728 	struct pid *pid;
729 	struct task_struct *task;
730 	int ret;
731 
732 	ns = inode->i_sb->s_fs_info;
733 	pid = proc_pid(inode);
734 	task = get_pid_task(pid, PIDTYPE_PID);
735 	if (!task)
736 		return -ESRCH;
737 
738 	ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
739 
740 	put_task_struct(task);
741 	return ret;
742 }
743 
744 static int proc_single_open(struct inode *inode, struct file *filp)
745 {
746 	int ret;
747 	ret = single_open(filp, proc_single_show, NULL);
748 	if (!ret) {
749 		struct seq_file *m = filp->private_data;
750 
751 		m->private = inode;
752 	}
753 	return ret;
754 }
755 
756 static const struct file_operations proc_single_file_operations = {
757 	.open		= proc_single_open,
758 	.read		= seq_read,
759 	.llseek		= seq_lseek,
760 	.release	= single_release,
761 };
762 
763 static int mem_open(struct inode* inode, struct file* file)
764 {
765 	file->private_data = (void*)((long)current->self_exec_id);
766 	return 0;
767 }
768 
769 static ssize_t mem_read(struct file * file, char __user * buf,
770 			size_t count, loff_t *ppos)
771 {
772 	struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
773 	char *page;
774 	unsigned long src = *ppos;
775 	int ret = -ESRCH;
776 	struct mm_struct *mm;
777 
778 	if (!task)
779 		goto out_no_task;
780 
781 	if (check_mem_permission(task))
782 		goto out;
783 
784 	ret = -ENOMEM;
785 	page = (char *)__get_free_page(GFP_TEMPORARY);
786 	if (!page)
787 		goto out;
788 
789 	ret = 0;
790 
791 	mm = get_task_mm(task);
792 	if (!mm)
793 		goto out_free;
794 
795 	ret = -EIO;
796 
797 	if (file->private_data != (void*)((long)current->self_exec_id))
798 		goto out_put;
799 
800 	ret = 0;
801 
802 	while (count > 0) {
803 		int this_len, retval;
804 
805 		this_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
806 		retval = access_process_vm(task, src, page, this_len, 0);
807 		if (!retval || check_mem_permission(task)) {
808 			if (!ret)
809 				ret = -EIO;
810 			break;
811 		}
812 
813 		if (copy_to_user(buf, page, retval)) {
814 			ret = -EFAULT;
815 			break;
816 		}
817 
818 		ret += retval;
819 		src += retval;
820 		buf += retval;
821 		count -= retval;
822 	}
823 	*ppos = src;
824 
825 out_put:
826 	mmput(mm);
827 out_free:
828 	free_page((unsigned long) page);
829 out:
830 	put_task_struct(task);
831 out_no_task:
832 	return ret;
833 }
834 
835 #define mem_write NULL
836 
837 #ifndef mem_write
838 /* This is a security hazard */
839 static ssize_t mem_write(struct file * file, const char __user *buf,
840 			 size_t count, loff_t *ppos)
841 {
842 	int copied;
843 	char *page;
844 	struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
845 	unsigned long dst = *ppos;
846 
847 	copied = -ESRCH;
848 	if (!task)
849 		goto out_no_task;
850 
851 	if (check_mem_permission(task))
852 		goto out;
853 
854 	copied = -ENOMEM;
855 	page = (char *)__get_free_page(GFP_TEMPORARY);
856 	if (!page)
857 		goto out;
858 
859 	copied = 0;
860 	while (count > 0) {
861 		int this_len, retval;
862 
863 		this_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
864 		if (copy_from_user(page, buf, this_len)) {
865 			copied = -EFAULT;
866 			break;
867 		}
868 		retval = access_process_vm(task, dst, page, this_len, 1);
869 		if (!retval) {
870 			if (!copied)
871 				copied = -EIO;
872 			break;
873 		}
874 		copied += retval;
875 		buf += retval;
876 		dst += retval;
877 		count -= retval;
878 	}
879 	*ppos = dst;
880 	free_page((unsigned long) page);
881 out:
882 	put_task_struct(task);
883 out_no_task:
884 	return copied;
885 }
886 #endif
887 
888 loff_t mem_lseek(struct file *file, loff_t offset, int orig)
889 {
890 	switch (orig) {
891 	case 0:
892 		file->f_pos = offset;
893 		break;
894 	case 1:
895 		file->f_pos += offset;
896 		break;
897 	default:
898 		return -EINVAL;
899 	}
900 	force_successful_syscall_return();
901 	return file->f_pos;
902 }
903 
904 static const struct file_operations proc_mem_operations = {
905 	.llseek		= mem_lseek,
906 	.read		= mem_read,
907 	.write		= mem_write,
908 	.open		= mem_open,
909 };
910 
911 static ssize_t environ_read(struct file *file, char __user *buf,
912 			size_t count, loff_t *ppos)
913 {
914 	struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
915 	char *page;
916 	unsigned long src = *ppos;
917 	int ret = -ESRCH;
918 	struct mm_struct *mm;
919 
920 	if (!task)
921 		goto out_no_task;
922 
923 	if (!ptrace_may_access(task, PTRACE_MODE_READ))
924 		goto out;
925 
926 	ret = -ENOMEM;
927 	page = (char *)__get_free_page(GFP_TEMPORARY);
928 	if (!page)
929 		goto out;
930 
931 	ret = 0;
932 
933 	mm = get_task_mm(task);
934 	if (!mm)
935 		goto out_free;
936 
937 	while (count > 0) {
938 		int this_len, retval, max_len;
939 
940 		this_len = mm->env_end - (mm->env_start + src);
941 
942 		if (this_len <= 0)
943 			break;
944 
945 		max_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
946 		this_len = (this_len > max_len) ? max_len : this_len;
947 
948 		retval = access_process_vm(task, (mm->env_start + src),
949 			page, this_len, 0);
950 
951 		if (retval <= 0) {
952 			ret = retval;
953 			break;
954 		}
955 
956 		if (copy_to_user(buf, page, retval)) {
957 			ret = -EFAULT;
958 			break;
959 		}
960 
961 		ret += retval;
962 		src += retval;
963 		buf += retval;
964 		count -= retval;
965 	}
966 	*ppos = src;
967 
968 	mmput(mm);
969 out_free:
970 	free_page((unsigned long) page);
971 out:
972 	put_task_struct(task);
973 out_no_task:
974 	return ret;
975 }
976 
977 static const struct file_operations proc_environ_operations = {
978 	.read		= environ_read,
979 };
980 
981 static ssize_t oom_adjust_read(struct file *file, char __user *buf,
982 				size_t count, loff_t *ppos)
983 {
984 	struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
985 	char buffer[PROC_NUMBUF];
986 	size_t len;
987 	int oom_adjust;
988 
989 	if (!task)
990 		return -ESRCH;
991 	oom_adjust = task->oomkilladj;
992 	put_task_struct(task);
993 
994 	len = snprintf(buffer, sizeof(buffer), "%i\n", oom_adjust);
995 
996 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
997 }
998 
999 static ssize_t oom_adjust_write(struct file *file, const char __user *buf,
1000 				size_t count, loff_t *ppos)
1001 {
1002 	struct task_struct *task;
1003 	char buffer[PROC_NUMBUF], *end;
1004 	int oom_adjust;
1005 
1006 	memset(buffer, 0, sizeof(buffer));
1007 	if (count > sizeof(buffer) - 1)
1008 		count = sizeof(buffer) - 1;
1009 	if (copy_from_user(buffer, buf, count))
1010 		return -EFAULT;
1011 	oom_adjust = simple_strtol(buffer, &end, 0);
1012 	if ((oom_adjust < OOM_ADJUST_MIN || oom_adjust > OOM_ADJUST_MAX) &&
1013 	     oom_adjust != OOM_DISABLE)
1014 		return -EINVAL;
1015 	if (*end == '\n')
1016 		end++;
1017 	task = get_proc_task(file->f_path.dentry->d_inode);
1018 	if (!task)
1019 		return -ESRCH;
1020 	if (oom_adjust < task->oomkilladj && !capable(CAP_SYS_RESOURCE)) {
1021 		put_task_struct(task);
1022 		return -EACCES;
1023 	}
1024 	task->oomkilladj = oom_adjust;
1025 	put_task_struct(task);
1026 	if (end - buffer == 0)
1027 		return -EIO;
1028 	return end - buffer;
1029 }
1030 
1031 static const struct file_operations proc_oom_adjust_operations = {
1032 	.read		= oom_adjust_read,
1033 	.write		= oom_adjust_write,
1034 };
1035 
1036 #ifdef CONFIG_AUDITSYSCALL
1037 #define TMPBUFLEN 21
1038 static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1039 				  size_t count, loff_t *ppos)
1040 {
1041 	struct inode * inode = file->f_path.dentry->d_inode;
1042 	struct task_struct *task = get_proc_task(inode);
1043 	ssize_t length;
1044 	char tmpbuf[TMPBUFLEN];
1045 
1046 	if (!task)
1047 		return -ESRCH;
1048 	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1049 				audit_get_loginuid(task));
1050 	put_task_struct(task);
1051 	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1052 }
1053 
1054 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1055 				   size_t count, loff_t *ppos)
1056 {
1057 	struct inode * inode = file->f_path.dentry->d_inode;
1058 	char *page, *tmp;
1059 	ssize_t length;
1060 	uid_t loginuid;
1061 
1062 	if (!capable(CAP_AUDIT_CONTROL))
1063 		return -EPERM;
1064 
1065 	if (current != pid_task(proc_pid(inode), PIDTYPE_PID))
1066 		return -EPERM;
1067 
1068 	if (count >= PAGE_SIZE)
1069 		count = PAGE_SIZE - 1;
1070 
1071 	if (*ppos != 0) {
1072 		/* No partial writes. */
1073 		return -EINVAL;
1074 	}
1075 	page = (char*)__get_free_page(GFP_TEMPORARY);
1076 	if (!page)
1077 		return -ENOMEM;
1078 	length = -EFAULT;
1079 	if (copy_from_user(page, buf, count))
1080 		goto out_free_page;
1081 
1082 	page[count] = '\0';
1083 	loginuid = simple_strtoul(page, &tmp, 10);
1084 	if (tmp == page) {
1085 		length = -EINVAL;
1086 		goto out_free_page;
1087 
1088 	}
1089 	length = audit_set_loginuid(current, loginuid);
1090 	if (likely(length == 0))
1091 		length = count;
1092 
1093 out_free_page:
1094 	free_page((unsigned long) page);
1095 	return length;
1096 }
1097 
1098 static const struct file_operations proc_loginuid_operations = {
1099 	.read		= proc_loginuid_read,
1100 	.write		= proc_loginuid_write,
1101 };
1102 
1103 static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1104 				  size_t count, loff_t *ppos)
1105 {
1106 	struct inode * inode = file->f_path.dentry->d_inode;
1107 	struct task_struct *task = get_proc_task(inode);
1108 	ssize_t length;
1109 	char tmpbuf[TMPBUFLEN];
1110 
1111 	if (!task)
1112 		return -ESRCH;
1113 	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1114 				audit_get_sessionid(task));
1115 	put_task_struct(task);
1116 	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1117 }
1118 
1119 static const struct file_operations proc_sessionid_operations = {
1120 	.read		= proc_sessionid_read,
1121 };
1122 #endif
1123 
1124 #ifdef CONFIG_FAULT_INJECTION
1125 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1126 				      size_t count, loff_t *ppos)
1127 {
1128 	struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
1129 	char buffer[PROC_NUMBUF];
1130 	size_t len;
1131 	int make_it_fail;
1132 
1133 	if (!task)
1134 		return -ESRCH;
1135 	make_it_fail = task->make_it_fail;
1136 	put_task_struct(task);
1137 
1138 	len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1139 
1140 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1141 }
1142 
1143 static ssize_t proc_fault_inject_write(struct file * file,
1144 			const char __user * buf, size_t count, loff_t *ppos)
1145 {
1146 	struct task_struct *task;
1147 	char buffer[PROC_NUMBUF], *end;
1148 	int make_it_fail;
1149 
1150 	if (!capable(CAP_SYS_RESOURCE))
1151 		return -EPERM;
1152 	memset(buffer, 0, sizeof(buffer));
1153 	if (count > sizeof(buffer) - 1)
1154 		count = sizeof(buffer) - 1;
1155 	if (copy_from_user(buffer, buf, count))
1156 		return -EFAULT;
1157 	make_it_fail = simple_strtol(buffer, &end, 0);
1158 	if (*end == '\n')
1159 		end++;
1160 	task = get_proc_task(file->f_dentry->d_inode);
1161 	if (!task)
1162 		return -ESRCH;
1163 	task->make_it_fail = make_it_fail;
1164 	put_task_struct(task);
1165 	if (end - buffer == 0)
1166 		return -EIO;
1167 	return end - buffer;
1168 }
1169 
1170 static const struct file_operations proc_fault_inject_operations = {
1171 	.read		= proc_fault_inject_read,
1172 	.write		= proc_fault_inject_write,
1173 };
1174 #endif
1175 
1176 
1177 #ifdef CONFIG_SCHED_DEBUG
1178 /*
1179  * Print out various scheduling related per-task fields:
1180  */
1181 static int sched_show(struct seq_file *m, void *v)
1182 {
1183 	struct inode *inode = m->private;
1184 	struct task_struct *p;
1185 
1186 	p = get_proc_task(inode);
1187 	if (!p)
1188 		return -ESRCH;
1189 	proc_sched_show_task(p, m);
1190 
1191 	put_task_struct(p);
1192 
1193 	return 0;
1194 }
1195 
1196 static ssize_t
1197 sched_write(struct file *file, const char __user *buf,
1198 	    size_t count, loff_t *offset)
1199 {
1200 	struct inode *inode = file->f_path.dentry->d_inode;
1201 	struct task_struct *p;
1202 
1203 	p = get_proc_task(inode);
1204 	if (!p)
1205 		return -ESRCH;
1206 	proc_sched_set_task(p);
1207 
1208 	put_task_struct(p);
1209 
1210 	return count;
1211 }
1212 
1213 static int sched_open(struct inode *inode, struct file *filp)
1214 {
1215 	int ret;
1216 
1217 	ret = single_open(filp, sched_show, NULL);
1218 	if (!ret) {
1219 		struct seq_file *m = filp->private_data;
1220 
1221 		m->private = inode;
1222 	}
1223 	return ret;
1224 }
1225 
1226 static const struct file_operations proc_pid_sched_operations = {
1227 	.open		= sched_open,
1228 	.read		= seq_read,
1229 	.write		= sched_write,
1230 	.llseek		= seq_lseek,
1231 	.release	= single_release,
1232 };
1233 
1234 #endif
1235 
1236 /*
1237  * We added or removed a vma mapping the executable. The vmas are only mapped
1238  * during exec and are not mapped with the mmap system call.
1239  * Callers must hold down_write() on the mm's mmap_sem for these
1240  */
1241 void added_exe_file_vma(struct mm_struct *mm)
1242 {
1243 	mm->num_exe_file_vmas++;
1244 }
1245 
1246 void removed_exe_file_vma(struct mm_struct *mm)
1247 {
1248 	mm->num_exe_file_vmas--;
1249 	if ((mm->num_exe_file_vmas == 0) && mm->exe_file){
1250 		fput(mm->exe_file);
1251 		mm->exe_file = NULL;
1252 	}
1253 
1254 }
1255 
1256 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1257 {
1258 	if (new_exe_file)
1259 		get_file(new_exe_file);
1260 	if (mm->exe_file)
1261 		fput(mm->exe_file);
1262 	mm->exe_file = new_exe_file;
1263 	mm->num_exe_file_vmas = 0;
1264 }
1265 
1266 struct file *get_mm_exe_file(struct mm_struct *mm)
1267 {
1268 	struct file *exe_file;
1269 
1270 	/* We need mmap_sem to protect against races with removal of
1271 	 * VM_EXECUTABLE vmas */
1272 	down_read(&mm->mmap_sem);
1273 	exe_file = mm->exe_file;
1274 	if (exe_file)
1275 		get_file(exe_file);
1276 	up_read(&mm->mmap_sem);
1277 	return exe_file;
1278 }
1279 
1280 void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm)
1281 {
1282 	/* It's safe to write the exe_file pointer without exe_file_lock because
1283 	 * this is called during fork when the task is not yet in /proc */
1284 	newmm->exe_file = get_mm_exe_file(oldmm);
1285 }
1286 
1287 static int proc_exe_link(struct inode *inode, struct path *exe_path)
1288 {
1289 	struct task_struct *task;
1290 	struct mm_struct *mm;
1291 	struct file *exe_file;
1292 
1293 	task = get_proc_task(inode);
1294 	if (!task)
1295 		return -ENOENT;
1296 	mm = get_task_mm(task);
1297 	put_task_struct(task);
1298 	if (!mm)
1299 		return -ENOENT;
1300 	exe_file = get_mm_exe_file(mm);
1301 	mmput(mm);
1302 	if (exe_file) {
1303 		*exe_path = exe_file->f_path;
1304 		path_get(&exe_file->f_path);
1305 		fput(exe_file);
1306 		return 0;
1307 	} else
1308 		return -ENOENT;
1309 }
1310 
1311 static void *proc_pid_follow_link(struct dentry *dentry, struct nameidata *nd)
1312 {
1313 	struct inode *inode = dentry->d_inode;
1314 	int error = -EACCES;
1315 
1316 	/* We don't need a base pointer in the /proc filesystem */
1317 	path_put(&nd->path);
1318 
1319 	/* Are we allowed to snoop on the tasks file descriptors? */
1320 	if (!proc_fd_access_allowed(inode))
1321 		goto out;
1322 
1323 	error = PROC_I(inode)->op.proc_get_link(inode, &nd->path);
1324 	nd->last_type = LAST_BIND;
1325 out:
1326 	return ERR_PTR(error);
1327 }
1328 
1329 static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1330 {
1331 	char *tmp = (char*)__get_free_page(GFP_TEMPORARY);
1332 	char *pathname;
1333 	int len;
1334 
1335 	if (!tmp)
1336 		return -ENOMEM;
1337 
1338 	pathname = d_path(path, tmp, PAGE_SIZE);
1339 	len = PTR_ERR(pathname);
1340 	if (IS_ERR(pathname))
1341 		goto out;
1342 	len = tmp + PAGE_SIZE - 1 - pathname;
1343 
1344 	if (len > buflen)
1345 		len = buflen;
1346 	if (copy_to_user(buffer, pathname, len))
1347 		len = -EFAULT;
1348  out:
1349 	free_page((unsigned long)tmp);
1350 	return len;
1351 }
1352 
1353 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1354 {
1355 	int error = -EACCES;
1356 	struct inode *inode = dentry->d_inode;
1357 	struct path path;
1358 
1359 	/* Are we allowed to snoop on the tasks file descriptors? */
1360 	if (!proc_fd_access_allowed(inode))
1361 		goto out;
1362 
1363 	error = PROC_I(inode)->op.proc_get_link(inode, &path);
1364 	if (error)
1365 		goto out;
1366 
1367 	error = do_proc_readlink(&path, buffer, buflen);
1368 	path_put(&path);
1369 out:
1370 	return error;
1371 }
1372 
1373 static const struct inode_operations proc_pid_link_inode_operations = {
1374 	.readlink	= proc_pid_readlink,
1375 	.follow_link	= proc_pid_follow_link,
1376 	.setattr	= proc_setattr,
1377 };
1378 
1379 
1380 /* building an inode */
1381 
1382 static int task_dumpable(struct task_struct *task)
1383 {
1384 	int dumpable = 0;
1385 	struct mm_struct *mm;
1386 
1387 	task_lock(task);
1388 	mm = task->mm;
1389 	if (mm)
1390 		dumpable = get_dumpable(mm);
1391 	task_unlock(task);
1392 	if(dumpable == 1)
1393 		return 1;
1394 	return 0;
1395 }
1396 
1397 
1398 static struct inode *proc_pid_make_inode(struct super_block * sb, struct task_struct *task)
1399 {
1400 	struct inode * inode;
1401 	struct proc_inode *ei;
1402 	const struct cred *cred;
1403 
1404 	/* We need a new inode */
1405 
1406 	inode = new_inode(sb);
1407 	if (!inode)
1408 		goto out;
1409 
1410 	/* Common stuff */
1411 	ei = PROC_I(inode);
1412 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
1413 	inode->i_op = &proc_def_inode_operations;
1414 
1415 	/*
1416 	 * grab the reference to task.
1417 	 */
1418 	ei->pid = get_task_pid(task, PIDTYPE_PID);
1419 	if (!ei->pid)
1420 		goto out_unlock;
1421 
1422 	inode->i_uid = 0;
1423 	inode->i_gid = 0;
1424 	if (task_dumpable(task)) {
1425 		rcu_read_lock();
1426 		cred = __task_cred(task);
1427 		inode->i_uid = cred->euid;
1428 		inode->i_gid = cred->egid;
1429 		rcu_read_unlock();
1430 	}
1431 	security_task_to_inode(task, inode);
1432 
1433 out:
1434 	return inode;
1435 
1436 out_unlock:
1437 	iput(inode);
1438 	return NULL;
1439 }
1440 
1441 static int pid_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
1442 {
1443 	struct inode *inode = dentry->d_inode;
1444 	struct task_struct *task;
1445 	const struct cred *cred;
1446 
1447 	generic_fillattr(inode, stat);
1448 
1449 	rcu_read_lock();
1450 	stat->uid = 0;
1451 	stat->gid = 0;
1452 	task = pid_task(proc_pid(inode), PIDTYPE_PID);
1453 	if (task) {
1454 		if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1455 		    task_dumpable(task)) {
1456 			cred = __task_cred(task);
1457 			stat->uid = cred->euid;
1458 			stat->gid = cred->egid;
1459 		}
1460 	}
1461 	rcu_read_unlock();
1462 	return 0;
1463 }
1464 
1465 /* dentry stuff */
1466 
1467 /*
1468  *	Exceptional case: normally we are not allowed to unhash a busy
1469  * directory. In this case, however, we can do it - no aliasing problems
1470  * due to the way we treat inodes.
1471  *
1472  * Rewrite the inode's ownerships here because the owning task may have
1473  * performed a setuid(), etc.
1474  *
1475  * Before the /proc/pid/status file was created the only way to read
1476  * the effective uid of a /process was to stat /proc/pid.  Reading
1477  * /proc/pid/status is slow enough that procps and other packages
1478  * kept stating /proc/pid.  To keep the rules in /proc simple I have
1479  * made this apply to all per process world readable and executable
1480  * directories.
1481  */
1482 static int pid_revalidate(struct dentry *dentry, struct nameidata *nd)
1483 {
1484 	struct inode *inode = dentry->d_inode;
1485 	struct task_struct *task = get_proc_task(inode);
1486 	const struct cred *cred;
1487 
1488 	if (task) {
1489 		if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1490 		    task_dumpable(task)) {
1491 			rcu_read_lock();
1492 			cred = __task_cred(task);
1493 			inode->i_uid = cred->euid;
1494 			inode->i_gid = cred->egid;
1495 			rcu_read_unlock();
1496 		} else {
1497 			inode->i_uid = 0;
1498 			inode->i_gid = 0;
1499 		}
1500 		inode->i_mode &= ~(S_ISUID | S_ISGID);
1501 		security_task_to_inode(task, inode);
1502 		put_task_struct(task);
1503 		return 1;
1504 	}
1505 	d_drop(dentry);
1506 	return 0;
1507 }
1508 
1509 static int pid_delete_dentry(struct dentry * dentry)
1510 {
1511 	/* Is the task we represent dead?
1512 	 * If so, then don't put the dentry on the lru list,
1513 	 * kill it immediately.
1514 	 */
1515 	return !proc_pid(dentry->d_inode)->tasks[PIDTYPE_PID].first;
1516 }
1517 
1518 static struct dentry_operations pid_dentry_operations =
1519 {
1520 	.d_revalidate	= pid_revalidate,
1521 	.d_delete	= pid_delete_dentry,
1522 };
1523 
1524 /* Lookups */
1525 
1526 typedef struct dentry *instantiate_t(struct inode *, struct dentry *,
1527 				struct task_struct *, const void *);
1528 
1529 /*
1530  * Fill a directory entry.
1531  *
1532  * If possible create the dcache entry and derive our inode number and
1533  * file type from dcache entry.
1534  *
1535  * Since all of the proc inode numbers are dynamically generated, the inode
1536  * numbers do not exist until the inode is cache.  This means creating the
1537  * the dcache entry in readdir is necessary to keep the inode numbers
1538  * reported by readdir in sync with the inode numbers reported
1539  * by stat.
1540  */
1541 static int proc_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
1542 	char *name, int len,
1543 	instantiate_t instantiate, struct task_struct *task, const void *ptr)
1544 {
1545 	struct dentry *child, *dir = filp->f_path.dentry;
1546 	struct inode *inode;
1547 	struct qstr qname;
1548 	ino_t ino = 0;
1549 	unsigned type = DT_UNKNOWN;
1550 
1551 	qname.name = name;
1552 	qname.len  = len;
1553 	qname.hash = full_name_hash(name, len);
1554 
1555 	child = d_lookup(dir, &qname);
1556 	if (!child) {
1557 		struct dentry *new;
1558 		new = d_alloc(dir, &qname);
1559 		if (new) {
1560 			child = instantiate(dir->d_inode, new, task, ptr);
1561 			if (child)
1562 				dput(new);
1563 			else
1564 				child = new;
1565 		}
1566 	}
1567 	if (!child || IS_ERR(child) || !child->d_inode)
1568 		goto end_instantiate;
1569 	inode = child->d_inode;
1570 	if (inode) {
1571 		ino = inode->i_ino;
1572 		type = inode->i_mode >> 12;
1573 	}
1574 	dput(child);
1575 end_instantiate:
1576 	if (!ino)
1577 		ino = find_inode_number(dir, &qname);
1578 	if (!ino)
1579 		ino = 1;
1580 	return filldir(dirent, name, len, filp->f_pos, ino, type);
1581 }
1582 
1583 static unsigned name_to_int(struct dentry *dentry)
1584 {
1585 	const char *name = dentry->d_name.name;
1586 	int len = dentry->d_name.len;
1587 	unsigned n = 0;
1588 
1589 	if (len > 1 && *name == '0')
1590 		goto out;
1591 	while (len-- > 0) {
1592 		unsigned c = *name++ - '0';
1593 		if (c > 9)
1594 			goto out;
1595 		if (n >= (~0U-9)/10)
1596 			goto out;
1597 		n *= 10;
1598 		n += c;
1599 	}
1600 	return n;
1601 out:
1602 	return ~0U;
1603 }
1604 
1605 #define PROC_FDINFO_MAX 64
1606 
1607 static int proc_fd_info(struct inode *inode, struct path *path, char *info)
1608 {
1609 	struct task_struct *task = get_proc_task(inode);
1610 	struct files_struct *files = NULL;
1611 	struct file *file;
1612 	int fd = proc_fd(inode);
1613 
1614 	if (task) {
1615 		files = get_files_struct(task);
1616 		put_task_struct(task);
1617 	}
1618 	if (files) {
1619 		/*
1620 		 * We are not taking a ref to the file structure, so we must
1621 		 * hold ->file_lock.
1622 		 */
1623 		spin_lock(&files->file_lock);
1624 		file = fcheck_files(files, fd);
1625 		if (file) {
1626 			if (path) {
1627 				*path = file->f_path;
1628 				path_get(&file->f_path);
1629 			}
1630 			if (info)
1631 				snprintf(info, PROC_FDINFO_MAX,
1632 					 "pos:\t%lli\n"
1633 					 "flags:\t0%o\n",
1634 					 (long long) file->f_pos,
1635 					 file->f_flags);
1636 			spin_unlock(&files->file_lock);
1637 			put_files_struct(files);
1638 			return 0;
1639 		}
1640 		spin_unlock(&files->file_lock);
1641 		put_files_struct(files);
1642 	}
1643 	return -ENOENT;
1644 }
1645 
1646 static int proc_fd_link(struct inode *inode, struct path *path)
1647 {
1648 	return proc_fd_info(inode, path, NULL);
1649 }
1650 
1651 static int tid_fd_revalidate(struct dentry *dentry, struct nameidata *nd)
1652 {
1653 	struct inode *inode = dentry->d_inode;
1654 	struct task_struct *task = get_proc_task(inode);
1655 	int fd = proc_fd(inode);
1656 	struct files_struct *files;
1657 	const struct cred *cred;
1658 
1659 	if (task) {
1660 		files = get_files_struct(task);
1661 		if (files) {
1662 			rcu_read_lock();
1663 			if (fcheck_files(files, fd)) {
1664 				rcu_read_unlock();
1665 				put_files_struct(files);
1666 				if (task_dumpable(task)) {
1667 					rcu_read_lock();
1668 					cred = __task_cred(task);
1669 					inode->i_uid = cred->euid;
1670 					inode->i_gid = cred->egid;
1671 					rcu_read_unlock();
1672 				} else {
1673 					inode->i_uid = 0;
1674 					inode->i_gid = 0;
1675 				}
1676 				inode->i_mode &= ~(S_ISUID | S_ISGID);
1677 				security_task_to_inode(task, inode);
1678 				put_task_struct(task);
1679 				return 1;
1680 			}
1681 			rcu_read_unlock();
1682 			put_files_struct(files);
1683 		}
1684 		put_task_struct(task);
1685 	}
1686 	d_drop(dentry);
1687 	return 0;
1688 }
1689 
1690 static struct dentry_operations tid_fd_dentry_operations =
1691 {
1692 	.d_revalidate	= tid_fd_revalidate,
1693 	.d_delete	= pid_delete_dentry,
1694 };
1695 
1696 static struct dentry *proc_fd_instantiate(struct inode *dir,
1697 	struct dentry *dentry, struct task_struct *task, const void *ptr)
1698 {
1699 	unsigned fd = *(const unsigned *)ptr;
1700 	struct file *file;
1701 	struct files_struct *files;
1702  	struct inode *inode;
1703  	struct proc_inode *ei;
1704 	struct dentry *error = ERR_PTR(-ENOENT);
1705 
1706 	inode = proc_pid_make_inode(dir->i_sb, task);
1707 	if (!inode)
1708 		goto out;
1709 	ei = PROC_I(inode);
1710 	ei->fd = fd;
1711 	files = get_files_struct(task);
1712 	if (!files)
1713 		goto out_iput;
1714 	inode->i_mode = S_IFLNK;
1715 
1716 	/*
1717 	 * We are not taking a ref to the file structure, so we must
1718 	 * hold ->file_lock.
1719 	 */
1720 	spin_lock(&files->file_lock);
1721 	file = fcheck_files(files, fd);
1722 	if (!file)
1723 		goto out_unlock;
1724 	if (file->f_mode & FMODE_READ)
1725 		inode->i_mode |= S_IRUSR | S_IXUSR;
1726 	if (file->f_mode & FMODE_WRITE)
1727 		inode->i_mode |= S_IWUSR | S_IXUSR;
1728 	spin_unlock(&files->file_lock);
1729 	put_files_struct(files);
1730 
1731 	inode->i_op = &proc_pid_link_inode_operations;
1732 	inode->i_size = 64;
1733 	ei->op.proc_get_link = proc_fd_link;
1734 	dentry->d_op = &tid_fd_dentry_operations;
1735 	d_add(dentry, inode);
1736 	/* Close the race of the process dying before we return the dentry */
1737 	if (tid_fd_revalidate(dentry, NULL))
1738 		error = NULL;
1739 
1740  out:
1741 	return error;
1742 out_unlock:
1743 	spin_unlock(&files->file_lock);
1744 	put_files_struct(files);
1745 out_iput:
1746 	iput(inode);
1747 	goto out;
1748 }
1749 
1750 static struct dentry *proc_lookupfd_common(struct inode *dir,
1751 					   struct dentry *dentry,
1752 					   instantiate_t instantiate)
1753 {
1754 	struct task_struct *task = get_proc_task(dir);
1755 	unsigned fd = name_to_int(dentry);
1756 	struct dentry *result = ERR_PTR(-ENOENT);
1757 
1758 	if (!task)
1759 		goto out_no_task;
1760 	if (fd == ~0U)
1761 		goto out;
1762 
1763 	result = instantiate(dir, dentry, task, &fd);
1764 out:
1765 	put_task_struct(task);
1766 out_no_task:
1767 	return result;
1768 }
1769 
1770 static int proc_readfd_common(struct file * filp, void * dirent,
1771 			      filldir_t filldir, instantiate_t instantiate)
1772 {
1773 	struct dentry *dentry = filp->f_path.dentry;
1774 	struct inode *inode = dentry->d_inode;
1775 	struct task_struct *p = get_proc_task(inode);
1776 	unsigned int fd, ino;
1777 	int retval;
1778 	struct files_struct * files;
1779 
1780 	retval = -ENOENT;
1781 	if (!p)
1782 		goto out_no_task;
1783 	retval = 0;
1784 
1785 	fd = filp->f_pos;
1786 	switch (fd) {
1787 		case 0:
1788 			if (filldir(dirent, ".", 1, 0, inode->i_ino, DT_DIR) < 0)
1789 				goto out;
1790 			filp->f_pos++;
1791 		case 1:
1792 			ino = parent_ino(dentry);
1793 			if (filldir(dirent, "..", 2, 1, ino, DT_DIR) < 0)
1794 				goto out;
1795 			filp->f_pos++;
1796 		default:
1797 			files = get_files_struct(p);
1798 			if (!files)
1799 				goto out;
1800 			rcu_read_lock();
1801 			for (fd = filp->f_pos-2;
1802 			     fd < files_fdtable(files)->max_fds;
1803 			     fd++, filp->f_pos++) {
1804 				char name[PROC_NUMBUF];
1805 				int len;
1806 
1807 				if (!fcheck_files(files, fd))
1808 					continue;
1809 				rcu_read_unlock();
1810 
1811 				len = snprintf(name, sizeof(name), "%d", fd);
1812 				if (proc_fill_cache(filp, dirent, filldir,
1813 						    name, len, instantiate,
1814 						    p, &fd) < 0) {
1815 					rcu_read_lock();
1816 					break;
1817 				}
1818 				rcu_read_lock();
1819 			}
1820 			rcu_read_unlock();
1821 			put_files_struct(files);
1822 	}
1823 out:
1824 	put_task_struct(p);
1825 out_no_task:
1826 	return retval;
1827 }
1828 
1829 static struct dentry *proc_lookupfd(struct inode *dir, struct dentry *dentry,
1830 				    struct nameidata *nd)
1831 {
1832 	return proc_lookupfd_common(dir, dentry, proc_fd_instantiate);
1833 }
1834 
1835 static int proc_readfd(struct file *filp, void *dirent, filldir_t filldir)
1836 {
1837 	return proc_readfd_common(filp, dirent, filldir, proc_fd_instantiate);
1838 }
1839 
1840 static ssize_t proc_fdinfo_read(struct file *file, char __user *buf,
1841 				      size_t len, loff_t *ppos)
1842 {
1843 	char tmp[PROC_FDINFO_MAX];
1844 	int err = proc_fd_info(file->f_path.dentry->d_inode, NULL, tmp);
1845 	if (!err)
1846 		err = simple_read_from_buffer(buf, len, ppos, tmp, strlen(tmp));
1847 	return err;
1848 }
1849 
1850 static const struct file_operations proc_fdinfo_file_operations = {
1851 	.open		= nonseekable_open,
1852 	.read		= proc_fdinfo_read,
1853 };
1854 
1855 static const struct file_operations proc_fd_operations = {
1856 	.read		= generic_read_dir,
1857 	.readdir	= proc_readfd,
1858 };
1859 
1860 /*
1861  * /proc/pid/fd needs a special permission handler so that a process can still
1862  * access /proc/self/fd after it has executed a setuid().
1863  */
1864 static int proc_fd_permission(struct inode *inode, int mask)
1865 {
1866 	int rv;
1867 
1868 	rv = generic_permission(inode, mask, NULL);
1869 	if (rv == 0)
1870 		return 0;
1871 	if (task_pid(current) == proc_pid(inode))
1872 		rv = 0;
1873 	return rv;
1874 }
1875 
1876 /*
1877  * proc directories can do almost nothing..
1878  */
1879 static const struct inode_operations proc_fd_inode_operations = {
1880 	.lookup		= proc_lookupfd,
1881 	.permission	= proc_fd_permission,
1882 	.setattr	= proc_setattr,
1883 };
1884 
1885 static struct dentry *proc_fdinfo_instantiate(struct inode *dir,
1886 	struct dentry *dentry, struct task_struct *task, const void *ptr)
1887 {
1888 	unsigned fd = *(unsigned *)ptr;
1889  	struct inode *inode;
1890  	struct proc_inode *ei;
1891 	struct dentry *error = ERR_PTR(-ENOENT);
1892 
1893 	inode = proc_pid_make_inode(dir->i_sb, task);
1894 	if (!inode)
1895 		goto out;
1896 	ei = PROC_I(inode);
1897 	ei->fd = fd;
1898 	inode->i_mode = S_IFREG | S_IRUSR;
1899 	inode->i_fop = &proc_fdinfo_file_operations;
1900 	dentry->d_op = &tid_fd_dentry_operations;
1901 	d_add(dentry, inode);
1902 	/* Close the race of the process dying before we return the dentry */
1903 	if (tid_fd_revalidate(dentry, NULL))
1904 		error = NULL;
1905 
1906  out:
1907 	return error;
1908 }
1909 
1910 static struct dentry *proc_lookupfdinfo(struct inode *dir,
1911 					struct dentry *dentry,
1912 					struct nameidata *nd)
1913 {
1914 	return proc_lookupfd_common(dir, dentry, proc_fdinfo_instantiate);
1915 }
1916 
1917 static int proc_readfdinfo(struct file *filp, void *dirent, filldir_t filldir)
1918 {
1919 	return proc_readfd_common(filp, dirent, filldir,
1920 				  proc_fdinfo_instantiate);
1921 }
1922 
1923 static const struct file_operations proc_fdinfo_operations = {
1924 	.read		= generic_read_dir,
1925 	.readdir	= proc_readfdinfo,
1926 };
1927 
1928 /*
1929  * proc directories can do almost nothing..
1930  */
1931 static const struct inode_operations proc_fdinfo_inode_operations = {
1932 	.lookup		= proc_lookupfdinfo,
1933 	.setattr	= proc_setattr,
1934 };
1935 
1936 
1937 static struct dentry *proc_pident_instantiate(struct inode *dir,
1938 	struct dentry *dentry, struct task_struct *task, const void *ptr)
1939 {
1940 	const struct pid_entry *p = ptr;
1941 	struct inode *inode;
1942 	struct proc_inode *ei;
1943 	struct dentry *error = ERR_PTR(-EINVAL);
1944 
1945 	inode = proc_pid_make_inode(dir->i_sb, task);
1946 	if (!inode)
1947 		goto out;
1948 
1949 	ei = PROC_I(inode);
1950 	inode->i_mode = p->mode;
1951 	if (S_ISDIR(inode->i_mode))
1952 		inode->i_nlink = 2;	/* Use getattr to fix if necessary */
1953 	if (p->iop)
1954 		inode->i_op = p->iop;
1955 	if (p->fop)
1956 		inode->i_fop = p->fop;
1957 	ei->op = p->op;
1958 	dentry->d_op = &pid_dentry_operations;
1959 	d_add(dentry, inode);
1960 	/* Close the race of the process dying before we return the dentry */
1961 	if (pid_revalidate(dentry, NULL))
1962 		error = NULL;
1963 out:
1964 	return error;
1965 }
1966 
1967 static struct dentry *proc_pident_lookup(struct inode *dir,
1968 					 struct dentry *dentry,
1969 					 const struct pid_entry *ents,
1970 					 unsigned int nents)
1971 {
1972 	struct inode *inode;
1973 	struct dentry *error;
1974 	struct task_struct *task = get_proc_task(dir);
1975 	const struct pid_entry *p, *last;
1976 
1977 	error = ERR_PTR(-ENOENT);
1978 	inode = NULL;
1979 
1980 	if (!task)
1981 		goto out_no_task;
1982 
1983 	/*
1984 	 * Yes, it does not scale. And it should not. Don't add
1985 	 * new entries into /proc/<tgid>/ without very good reasons.
1986 	 */
1987 	last = &ents[nents - 1];
1988 	for (p = ents; p <= last; p++) {
1989 		if (p->len != dentry->d_name.len)
1990 			continue;
1991 		if (!memcmp(dentry->d_name.name, p->name, p->len))
1992 			break;
1993 	}
1994 	if (p > last)
1995 		goto out;
1996 
1997 	error = proc_pident_instantiate(dir, dentry, task, p);
1998 out:
1999 	put_task_struct(task);
2000 out_no_task:
2001 	return error;
2002 }
2003 
2004 static int proc_pident_fill_cache(struct file *filp, void *dirent,
2005 	filldir_t filldir, struct task_struct *task, const struct pid_entry *p)
2006 {
2007 	return proc_fill_cache(filp, dirent, filldir, p->name, p->len,
2008 				proc_pident_instantiate, task, p);
2009 }
2010 
2011 static int proc_pident_readdir(struct file *filp,
2012 		void *dirent, filldir_t filldir,
2013 		const struct pid_entry *ents, unsigned int nents)
2014 {
2015 	int i;
2016 	struct dentry *dentry = filp->f_path.dentry;
2017 	struct inode *inode = dentry->d_inode;
2018 	struct task_struct *task = get_proc_task(inode);
2019 	const struct pid_entry *p, *last;
2020 	ino_t ino;
2021 	int ret;
2022 
2023 	ret = -ENOENT;
2024 	if (!task)
2025 		goto out_no_task;
2026 
2027 	ret = 0;
2028 	i = filp->f_pos;
2029 	switch (i) {
2030 	case 0:
2031 		ino = inode->i_ino;
2032 		if (filldir(dirent, ".", 1, i, ino, DT_DIR) < 0)
2033 			goto out;
2034 		i++;
2035 		filp->f_pos++;
2036 		/* fall through */
2037 	case 1:
2038 		ino = parent_ino(dentry);
2039 		if (filldir(dirent, "..", 2, i, ino, DT_DIR) < 0)
2040 			goto out;
2041 		i++;
2042 		filp->f_pos++;
2043 		/* fall through */
2044 	default:
2045 		i -= 2;
2046 		if (i >= nents) {
2047 			ret = 1;
2048 			goto out;
2049 		}
2050 		p = ents + i;
2051 		last = &ents[nents - 1];
2052 		while (p <= last) {
2053 			if (proc_pident_fill_cache(filp, dirent, filldir, task, p) < 0)
2054 				goto out;
2055 			filp->f_pos++;
2056 			p++;
2057 		}
2058 	}
2059 
2060 	ret = 1;
2061 out:
2062 	put_task_struct(task);
2063 out_no_task:
2064 	return ret;
2065 }
2066 
2067 #ifdef CONFIG_SECURITY
2068 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2069 				  size_t count, loff_t *ppos)
2070 {
2071 	struct inode * inode = file->f_path.dentry->d_inode;
2072 	char *p = NULL;
2073 	ssize_t length;
2074 	struct task_struct *task = get_proc_task(inode);
2075 
2076 	if (!task)
2077 		return -ESRCH;
2078 
2079 	length = security_getprocattr(task,
2080 				      (char*)file->f_path.dentry->d_name.name,
2081 				      &p);
2082 	put_task_struct(task);
2083 	if (length > 0)
2084 		length = simple_read_from_buffer(buf, count, ppos, p, length);
2085 	kfree(p);
2086 	return length;
2087 }
2088 
2089 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2090 				   size_t count, loff_t *ppos)
2091 {
2092 	struct inode * inode = file->f_path.dentry->d_inode;
2093 	char *page;
2094 	ssize_t length;
2095 	struct task_struct *task = get_proc_task(inode);
2096 
2097 	length = -ESRCH;
2098 	if (!task)
2099 		goto out_no_task;
2100 	if (count > PAGE_SIZE)
2101 		count = PAGE_SIZE;
2102 
2103 	/* No partial writes. */
2104 	length = -EINVAL;
2105 	if (*ppos != 0)
2106 		goto out;
2107 
2108 	length = -ENOMEM;
2109 	page = (char*)__get_free_page(GFP_TEMPORARY);
2110 	if (!page)
2111 		goto out;
2112 
2113 	length = -EFAULT;
2114 	if (copy_from_user(page, buf, count))
2115 		goto out_free;
2116 
2117 	length = security_setprocattr(task,
2118 				      (char*)file->f_path.dentry->d_name.name,
2119 				      (void*)page, count);
2120 out_free:
2121 	free_page((unsigned long) page);
2122 out:
2123 	put_task_struct(task);
2124 out_no_task:
2125 	return length;
2126 }
2127 
2128 static const struct file_operations proc_pid_attr_operations = {
2129 	.read		= proc_pid_attr_read,
2130 	.write		= proc_pid_attr_write,
2131 };
2132 
2133 static const struct pid_entry attr_dir_stuff[] = {
2134 	REG("current",    S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2135 	REG("prev",       S_IRUGO,	   proc_pid_attr_operations),
2136 	REG("exec",       S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2137 	REG("fscreate",   S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2138 	REG("keycreate",  S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2139 	REG("sockcreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2140 };
2141 
2142 static int proc_attr_dir_readdir(struct file * filp,
2143 			     void * dirent, filldir_t filldir)
2144 {
2145 	return proc_pident_readdir(filp,dirent,filldir,
2146 				   attr_dir_stuff,ARRAY_SIZE(attr_dir_stuff));
2147 }
2148 
2149 static const struct file_operations proc_attr_dir_operations = {
2150 	.read		= generic_read_dir,
2151 	.readdir	= proc_attr_dir_readdir,
2152 };
2153 
2154 static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2155 				struct dentry *dentry, struct nameidata *nd)
2156 {
2157 	return proc_pident_lookup(dir, dentry,
2158 				  attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2159 }
2160 
2161 static const struct inode_operations proc_attr_dir_inode_operations = {
2162 	.lookup		= proc_attr_dir_lookup,
2163 	.getattr	= pid_getattr,
2164 	.setattr	= proc_setattr,
2165 };
2166 
2167 #endif
2168 
2169 #if defined(USE_ELF_CORE_DUMP) && defined(CONFIG_ELF_CORE)
2170 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2171 					 size_t count, loff_t *ppos)
2172 {
2173 	struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
2174 	struct mm_struct *mm;
2175 	char buffer[PROC_NUMBUF];
2176 	size_t len;
2177 	int ret;
2178 
2179 	if (!task)
2180 		return -ESRCH;
2181 
2182 	ret = 0;
2183 	mm = get_task_mm(task);
2184 	if (mm) {
2185 		len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2186 			       ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2187 				MMF_DUMP_FILTER_SHIFT));
2188 		mmput(mm);
2189 		ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2190 	}
2191 
2192 	put_task_struct(task);
2193 
2194 	return ret;
2195 }
2196 
2197 static ssize_t proc_coredump_filter_write(struct file *file,
2198 					  const char __user *buf,
2199 					  size_t count,
2200 					  loff_t *ppos)
2201 {
2202 	struct task_struct *task;
2203 	struct mm_struct *mm;
2204 	char buffer[PROC_NUMBUF], *end;
2205 	unsigned int val;
2206 	int ret;
2207 	int i;
2208 	unsigned long mask;
2209 
2210 	ret = -EFAULT;
2211 	memset(buffer, 0, sizeof(buffer));
2212 	if (count > sizeof(buffer) - 1)
2213 		count = sizeof(buffer) - 1;
2214 	if (copy_from_user(buffer, buf, count))
2215 		goto out_no_task;
2216 
2217 	ret = -EINVAL;
2218 	val = (unsigned int)simple_strtoul(buffer, &end, 0);
2219 	if (*end == '\n')
2220 		end++;
2221 	if (end - buffer == 0)
2222 		goto out_no_task;
2223 
2224 	ret = -ESRCH;
2225 	task = get_proc_task(file->f_dentry->d_inode);
2226 	if (!task)
2227 		goto out_no_task;
2228 
2229 	ret = end - buffer;
2230 	mm = get_task_mm(task);
2231 	if (!mm)
2232 		goto out_no_mm;
2233 
2234 	for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2235 		if (val & mask)
2236 			set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2237 		else
2238 			clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2239 	}
2240 
2241 	mmput(mm);
2242  out_no_mm:
2243 	put_task_struct(task);
2244  out_no_task:
2245 	return ret;
2246 }
2247 
2248 static const struct file_operations proc_coredump_filter_operations = {
2249 	.read		= proc_coredump_filter_read,
2250 	.write		= proc_coredump_filter_write,
2251 };
2252 #endif
2253 
2254 /*
2255  * /proc/self:
2256  */
2257 static int proc_self_readlink(struct dentry *dentry, char __user *buffer,
2258 			      int buflen)
2259 {
2260 	struct pid_namespace *ns = dentry->d_sb->s_fs_info;
2261 	pid_t tgid = task_tgid_nr_ns(current, ns);
2262 	char tmp[PROC_NUMBUF];
2263 	if (!tgid)
2264 		return -ENOENT;
2265 	sprintf(tmp, "%d", tgid);
2266 	return vfs_readlink(dentry,buffer,buflen,tmp);
2267 }
2268 
2269 static void *proc_self_follow_link(struct dentry *dentry, struct nameidata *nd)
2270 {
2271 	struct pid_namespace *ns = dentry->d_sb->s_fs_info;
2272 	pid_t tgid = task_tgid_nr_ns(current, ns);
2273 	char tmp[PROC_NUMBUF];
2274 	if (!tgid)
2275 		return ERR_PTR(-ENOENT);
2276 	sprintf(tmp, "%d", task_tgid_nr_ns(current, ns));
2277 	return ERR_PTR(vfs_follow_link(nd,tmp));
2278 }
2279 
2280 static const struct inode_operations proc_self_inode_operations = {
2281 	.readlink	= proc_self_readlink,
2282 	.follow_link	= proc_self_follow_link,
2283 };
2284 
2285 /*
2286  * proc base
2287  *
2288  * These are the directory entries in the root directory of /proc
2289  * that properly belong to the /proc filesystem, as they describe
2290  * describe something that is process related.
2291  */
2292 static const struct pid_entry proc_base_stuff[] = {
2293 	NOD("self", S_IFLNK|S_IRWXUGO,
2294 		&proc_self_inode_operations, NULL, {}),
2295 };
2296 
2297 /*
2298  *	Exceptional case: normally we are not allowed to unhash a busy
2299  * directory. In this case, however, we can do it - no aliasing problems
2300  * due to the way we treat inodes.
2301  */
2302 static int proc_base_revalidate(struct dentry *dentry, struct nameidata *nd)
2303 {
2304 	struct inode *inode = dentry->d_inode;
2305 	struct task_struct *task = get_proc_task(inode);
2306 	if (task) {
2307 		put_task_struct(task);
2308 		return 1;
2309 	}
2310 	d_drop(dentry);
2311 	return 0;
2312 }
2313 
2314 static struct dentry_operations proc_base_dentry_operations =
2315 {
2316 	.d_revalidate	= proc_base_revalidate,
2317 	.d_delete	= pid_delete_dentry,
2318 };
2319 
2320 static struct dentry *proc_base_instantiate(struct inode *dir,
2321 	struct dentry *dentry, struct task_struct *task, const void *ptr)
2322 {
2323 	const struct pid_entry *p = ptr;
2324 	struct inode *inode;
2325 	struct proc_inode *ei;
2326 	struct dentry *error = ERR_PTR(-EINVAL);
2327 
2328 	/* Allocate the inode */
2329 	error = ERR_PTR(-ENOMEM);
2330 	inode = new_inode(dir->i_sb);
2331 	if (!inode)
2332 		goto out;
2333 
2334 	/* Initialize the inode */
2335 	ei = PROC_I(inode);
2336 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
2337 
2338 	/*
2339 	 * grab the reference to the task.
2340 	 */
2341 	ei->pid = get_task_pid(task, PIDTYPE_PID);
2342 	if (!ei->pid)
2343 		goto out_iput;
2344 
2345 	inode->i_uid = 0;
2346 	inode->i_gid = 0;
2347 	inode->i_mode = p->mode;
2348 	if (S_ISDIR(inode->i_mode))
2349 		inode->i_nlink = 2;
2350 	if (S_ISLNK(inode->i_mode))
2351 		inode->i_size = 64;
2352 	if (p->iop)
2353 		inode->i_op = p->iop;
2354 	if (p->fop)
2355 		inode->i_fop = p->fop;
2356 	ei->op = p->op;
2357 	dentry->d_op = &proc_base_dentry_operations;
2358 	d_add(dentry, inode);
2359 	error = NULL;
2360 out:
2361 	return error;
2362 out_iput:
2363 	iput(inode);
2364 	goto out;
2365 }
2366 
2367 static struct dentry *proc_base_lookup(struct inode *dir, struct dentry *dentry)
2368 {
2369 	struct dentry *error;
2370 	struct task_struct *task = get_proc_task(dir);
2371 	const struct pid_entry *p, *last;
2372 
2373 	error = ERR_PTR(-ENOENT);
2374 
2375 	if (!task)
2376 		goto out_no_task;
2377 
2378 	/* Lookup the directory entry */
2379 	last = &proc_base_stuff[ARRAY_SIZE(proc_base_stuff) - 1];
2380 	for (p = proc_base_stuff; p <= last; p++) {
2381 		if (p->len != dentry->d_name.len)
2382 			continue;
2383 		if (!memcmp(dentry->d_name.name, p->name, p->len))
2384 			break;
2385 	}
2386 	if (p > last)
2387 		goto out;
2388 
2389 	error = proc_base_instantiate(dir, dentry, task, p);
2390 
2391 out:
2392 	put_task_struct(task);
2393 out_no_task:
2394 	return error;
2395 }
2396 
2397 static int proc_base_fill_cache(struct file *filp, void *dirent,
2398 	filldir_t filldir, struct task_struct *task, const struct pid_entry *p)
2399 {
2400 	return proc_fill_cache(filp, dirent, filldir, p->name, p->len,
2401 				proc_base_instantiate, task, p);
2402 }
2403 
2404 #ifdef CONFIG_TASK_IO_ACCOUNTING
2405 static int do_io_accounting(struct task_struct *task, char *buffer, int whole)
2406 {
2407 	struct task_io_accounting acct = task->ioac;
2408 	unsigned long flags;
2409 
2410 	if (whole && lock_task_sighand(task, &flags)) {
2411 		struct task_struct *t = task;
2412 
2413 		task_io_accounting_add(&acct, &task->signal->ioac);
2414 		while_each_thread(task, t)
2415 			task_io_accounting_add(&acct, &t->ioac);
2416 
2417 		unlock_task_sighand(task, &flags);
2418 	}
2419 	return sprintf(buffer,
2420 			"rchar: %llu\n"
2421 			"wchar: %llu\n"
2422 			"syscr: %llu\n"
2423 			"syscw: %llu\n"
2424 			"read_bytes: %llu\n"
2425 			"write_bytes: %llu\n"
2426 			"cancelled_write_bytes: %llu\n",
2427 			(unsigned long long)acct.rchar,
2428 			(unsigned long long)acct.wchar,
2429 			(unsigned long long)acct.syscr,
2430 			(unsigned long long)acct.syscw,
2431 			(unsigned long long)acct.read_bytes,
2432 			(unsigned long long)acct.write_bytes,
2433 			(unsigned long long)acct.cancelled_write_bytes);
2434 }
2435 
2436 static int proc_tid_io_accounting(struct task_struct *task, char *buffer)
2437 {
2438 	return do_io_accounting(task, buffer, 0);
2439 }
2440 
2441 static int proc_tgid_io_accounting(struct task_struct *task, char *buffer)
2442 {
2443 	return do_io_accounting(task, buffer, 1);
2444 }
2445 #endif /* CONFIG_TASK_IO_ACCOUNTING */
2446 
2447 static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
2448 				struct pid *pid, struct task_struct *task)
2449 {
2450 	seq_printf(m, "%08x\n", task->personality);
2451 	return 0;
2452 }
2453 
2454 /*
2455  * Thread groups
2456  */
2457 static const struct file_operations proc_task_operations;
2458 static const struct inode_operations proc_task_inode_operations;
2459 
2460 static const struct pid_entry tgid_base_stuff[] = {
2461 	DIR("task",       S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
2462 	DIR("fd",         S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
2463 	DIR("fdinfo",     S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
2464 #ifdef CONFIG_NET
2465 	DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
2466 #endif
2467 	REG("environ",    S_IRUSR, proc_environ_operations),
2468 	INF("auxv",       S_IRUSR, proc_pid_auxv),
2469 	ONE("status",     S_IRUGO, proc_pid_status),
2470 	ONE("personality", S_IRUSR, proc_pid_personality),
2471 	INF("limits",	  S_IRUSR, proc_pid_limits),
2472 #ifdef CONFIG_SCHED_DEBUG
2473 	REG("sched",      S_IRUGO|S_IWUSR, proc_pid_sched_operations),
2474 #endif
2475 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2476 	INF("syscall",    S_IRUSR, proc_pid_syscall),
2477 #endif
2478 	INF("cmdline",    S_IRUGO, proc_pid_cmdline),
2479 	ONE("stat",       S_IRUGO, proc_tgid_stat),
2480 	ONE("statm",      S_IRUGO, proc_pid_statm),
2481 	REG("maps",       S_IRUGO, proc_maps_operations),
2482 #ifdef CONFIG_NUMA
2483 	REG("numa_maps",  S_IRUGO, proc_numa_maps_operations),
2484 #endif
2485 	REG("mem",        S_IRUSR|S_IWUSR, proc_mem_operations),
2486 	LNK("cwd",        proc_cwd_link),
2487 	LNK("root",       proc_root_link),
2488 	LNK("exe",        proc_exe_link),
2489 	REG("mounts",     S_IRUGO, proc_mounts_operations),
2490 	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
2491 	REG("mountstats", S_IRUSR, proc_mountstats_operations),
2492 #ifdef CONFIG_PROC_PAGE_MONITOR
2493 	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
2494 	REG("smaps",      S_IRUGO, proc_smaps_operations),
2495 	REG("pagemap",    S_IRUSR, proc_pagemap_operations),
2496 #endif
2497 #ifdef CONFIG_SECURITY
2498 	DIR("attr",       S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
2499 #endif
2500 #ifdef CONFIG_KALLSYMS
2501 	INF("wchan",      S_IRUGO, proc_pid_wchan),
2502 #endif
2503 #ifdef CONFIG_SCHEDSTATS
2504 	INF("schedstat",  S_IRUGO, proc_pid_schedstat),
2505 #endif
2506 #ifdef CONFIG_LATENCYTOP
2507 	REG("latency",  S_IRUGO, proc_lstats_operations),
2508 #endif
2509 #ifdef CONFIG_PROC_PID_CPUSET
2510 	REG("cpuset",     S_IRUGO, proc_cpuset_operations),
2511 #endif
2512 #ifdef CONFIG_CGROUPS
2513 	REG("cgroup",  S_IRUGO, proc_cgroup_operations),
2514 #endif
2515 	INF("oom_score",  S_IRUGO, proc_oom_score),
2516 	REG("oom_adj",    S_IRUGO|S_IWUSR, proc_oom_adjust_operations),
2517 #ifdef CONFIG_AUDITSYSCALL
2518 	REG("loginuid",   S_IWUSR|S_IRUGO, proc_loginuid_operations),
2519 	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
2520 #endif
2521 #ifdef CONFIG_FAULT_INJECTION
2522 	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
2523 #endif
2524 #if defined(USE_ELF_CORE_DUMP) && defined(CONFIG_ELF_CORE)
2525 	REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
2526 #endif
2527 #ifdef CONFIG_TASK_IO_ACCOUNTING
2528 	INF("io",	S_IRUGO, proc_tgid_io_accounting),
2529 #endif
2530 };
2531 
2532 static int proc_tgid_base_readdir(struct file * filp,
2533 			     void * dirent, filldir_t filldir)
2534 {
2535 	return proc_pident_readdir(filp,dirent,filldir,
2536 				   tgid_base_stuff,ARRAY_SIZE(tgid_base_stuff));
2537 }
2538 
2539 static const struct file_operations proc_tgid_base_operations = {
2540 	.read		= generic_read_dir,
2541 	.readdir	= proc_tgid_base_readdir,
2542 };
2543 
2544 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){
2545 	return proc_pident_lookup(dir, dentry,
2546 				  tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
2547 }
2548 
2549 static const struct inode_operations proc_tgid_base_inode_operations = {
2550 	.lookup		= proc_tgid_base_lookup,
2551 	.getattr	= pid_getattr,
2552 	.setattr	= proc_setattr,
2553 };
2554 
2555 static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid)
2556 {
2557 	struct dentry *dentry, *leader, *dir;
2558 	char buf[PROC_NUMBUF];
2559 	struct qstr name;
2560 
2561 	name.name = buf;
2562 	name.len = snprintf(buf, sizeof(buf), "%d", pid);
2563 	dentry = d_hash_and_lookup(mnt->mnt_root, &name);
2564 	if (dentry) {
2565 		if (!(current->flags & PF_EXITING))
2566 			shrink_dcache_parent(dentry);
2567 		d_drop(dentry);
2568 		dput(dentry);
2569 	}
2570 
2571 	if (tgid == 0)
2572 		goto out;
2573 
2574 	name.name = buf;
2575 	name.len = snprintf(buf, sizeof(buf), "%d", tgid);
2576 	leader = d_hash_and_lookup(mnt->mnt_root, &name);
2577 	if (!leader)
2578 		goto out;
2579 
2580 	name.name = "task";
2581 	name.len = strlen(name.name);
2582 	dir = d_hash_and_lookup(leader, &name);
2583 	if (!dir)
2584 		goto out_put_leader;
2585 
2586 	name.name = buf;
2587 	name.len = snprintf(buf, sizeof(buf), "%d", pid);
2588 	dentry = d_hash_and_lookup(dir, &name);
2589 	if (dentry) {
2590 		shrink_dcache_parent(dentry);
2591 		d_drop(dentry);
2592 		dput(dentry);
2593 	}
2594 
2595 	dput(dir);
2596 out_put_leader:
2597 	dput(leader);
2598 out:
2599 	return;
2600 }
2601 
2602 /**
2603  * proc_flush_task -  Remove dcache entries for @task from the /proc dcache.
2604  * @task: task that should be flushed.
2605  *
2606  * When flushing dentries from proc, one needs to flush them from global
2607  * proc (proc_mnt) and from all the namespaces' procs this task was seen
2608  * in. This call is supposed to do all of this job.
2609  *
2610  * Looks in the dcache for
2611  * /proc/@pid
2612  * /proc/@tgid/task/@pid
2613  * if either directory is present flushes it and all of it'ts children
2614  * from the dcache.
2615  *
2616  * It is safe and reasonable to cache /proc entries for a task until
2617  * that task exits.  After that they just clog up the dcache with
2618  * useless entries, possibly causing useful dcache entries to be
2619  * flushed instead.  This routine is proved to flush those useless
2620  * dcache entries at process exit time.
2621  *
2622  * NOTE: This routine is just an optimization so it does not guarantee
2623  *       that no dcache entries will exist at process exit time it
2624  *       just makes it very unlikely that any will persist.
2625  */
2626 
2627 void proc_flush_task(struct task_struct *task)
2628 {
2629 	int i;
2630 	struct pid *pid, *tgid = NULL;
2631 	struct upid *upid;
2632 
2633 	pid = task_pid(task);
2634 	if (thread_group_leader(task))
2635 		tgid = task_tgid(task);
2636 
2637 	for (i = 0; i <= pid->level; i++) {
2638 		upid = &pid->numbers[i];
2639 		proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr,
2640 			tgid ? tgid->numbers[i].nr : 0);
2641 	}
2642 
2643 	upid = &pid->numbers[pid->level];
2644 	if (upid->nr == 1)
2645 		pid_ns_release_proc(upid->ns);
2646 }
2647 
2648 static struct dentry *proc_pid_instantiate(struct inode *dir,
2649 					   struct dentry * dentry,
2650 					   struct task_struct *task, const void *ptr)
2651 {
2652 	struct dentry *error = ERR_PTR(-ENOENT);
2653 	struct inode *inode;
2654 
2655 	inode = proc_pid_make_inode(dir->i_sb, task);
2656 	if (!inode)
2657 		goto out;
2658 
2659 	inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
2660 	inode->i_op = &proc_tgid_base_inode_operations;
2661 	inode->i_fop = &proc_tgid_base_operations;
2662 	inode->i_flags|=S_IMMUTABLE;
2663 
2664 	inode->i_nlink = 2 + pid_entry_count_dirs(tgid_base_stuff,
2665 		ARRAY_SIZE(tgid_base_stuff));
2666 
2667 	dentry->d_op = &pid_dentry_operations;
2668 
2669 	d_add(dentry, inode);
2670 	/* Close the race of the process dying before we return the dentry */
2671 	if (pid_revalidate(dentry, NULL))
2672 		error = NULL;
2673 out:
2674 	return error;
2675 }
2676 
2677 struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
2678 {
2679 	struct dentry *result = ERR_PTR(-ENOENT);
2680 	struct task_struct *task;
2681 	unsigned tgid;
2682 	struct pid_namespace *ns;
2683 
2684 	result = proc_base_lookup(dir, dentry);
2685 	if (!IS_ERR(result) || PTR_ERR(result) != -ENOENT)
2686 		goto out;
2687 
2688 	tgid = name_to_int(dentry);
2689 	if (tgid == ~0U)
2690 		goto out;
2691 
2692 	ns = dentry->d_sb->s_fs_info;
2693 	rcu_read_lock();
2694 	task = find_task_by_pid_ns(tgid, ns);
2695 	if (task)
2696 		get_task_struct(task);
2697 	rcu_read_unlock();
2698 	if (!task)
2699 		goto out;
2700 
2701 	result = proc_pid_instantiate(dir, dentry, task, NULL);
2702 	put_task_struct(task);
2703 out:
2704 	return result;
2705 }
2706 
2707 /*
2708  * Find the first task with tgid >= tgid
2709  *
2710  */
2711 struct tgid_iter {
2712 	unsigned int tgid;
2713 	struct task_struct *task;
2714 };
2715 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
2716 {
2717 	struct pid *pid;
2718 
2719 	if (iter.task)
2720 		put_task_struct(iter.task);
2721 	rcu_read_lock();
2722 retry:
2723 	iter.task = NULL;
2724 	pid = find_ge_pid(iter.tgid, ns);
2725 	if (pid) {
2726 		iter.tgid = pid_nr_ns(pid, ns);
2727 		iter.task = pid_task(pid, PIDTYPE_PID);
2728 		/* What we to know is if the pid we have find is the
2729 		 * pid of a thread_group_leader.  Testing for task
2730 		 * being a thread_group_leader is the obvious thing
2731 		 * todo but there is a window when it fails, due to
2732 		 * the pid transfer logic in de_thread.
2733 		 *
2734 		 * So we perform the straight forward test of seeing
2735 		 * if the pid we have found is the pid of a thread
2736 		 * group leader, and don't worry if the task we have
2737 		 * found doesn't happen to be a thread group leader.
2738 		 * As we don't care in the case of readdir.
2739 		 */
2740 		if (!iter.task || !has_group_leader_pid(iter.task)) {
2741 			iter.tgid += 1;
2742 			goto retry;
2743 		}
2744 		get_task_struct(iter.task);
2745 	}
2746 	rcu_read_unlock();
2747 	return iter;
2748 }
2749 
2750 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + ARRAY_SIZE(proc_base_stuff))
2751 
2752 static int proc_pid_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
2753 	struct tgid_iter iter)
2754 {
2755 	char name[PROC_NUMBUF];
2756 	int len = snprintf(name, sizeof(name), "%d", iter.tgid);
2757 	return proc_fill_cache(filp, dirent, filldir, name, len,
2758 				proc_pid_instantiate, iter.task, NULL);
2759 }
2760 
2761 /* for the /proc/ directory itself, after non-process stuff has been done */
2762 int proc_pid_readdir(struct file * filp, void * dirent, filldir_t filldir)
2763 {
2764 	unsigned int nr = filp->f_pos - FIRST_PROCESS_ENTRY;
2765 	struct task_struct *reaper = get_proc_task(filp->f_path.dentry->d_inode);
2766 	struct tgid_iter iter;
2767 	struct pid_namespace *ns;
2768 
2769 	if (!reaper)
2770 		goto out_no_task;
2771 
2772 	for (; nr < ARRAY_SIZE(proc_base_stuff); filp->f_pos++, nr++) {
2773 		const struct pid_entry *p = &proc_base_stuff[nr];
2774 		if (proc_base_fill_cache(filp, dirent, filldir, reaper, p) < 0)
2775 			goto out;
2776 	}
2777 
2778 	ns = filp->f_dentry->d_sb->s_fs_info;
2779 	iter.task = NULL;
2780 	iter.tgid = filp->f_pos - TGID_OFFSET;
2781 	for (iter = next_tgid(ns, iter);
2782 	     iter.task;
2783 	     iter.tgid += 1, iter = next_tgid(ns, iter)) {
2784 		filp->f_pos = iter.tgid + TGID_OFFSET;
2785 		if (proc_pid_fill_cache(filp, dirent, filldir, iter) < 0) {
2786 			put_task_struct(iter.task);
2787 			goto out;
2788 		}
2789 	}
2790 	filp->f_pos = PID_MAX_LIMIT + TGID_OFFSET;
2791 out:
2792 	put_task_struct(reaper);
2793 out_no_task:
2794 	return 0;
2795 }
2796 
2797 /*
2798  * Tasks
2799  */
2800 static const struct pid_entry tid_base_stuff[] = {
2801 	DIR("fd",        S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
2802 	DIR("fdinfo",    S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fd_operations),
2803 	REG("environ",   S_IRUSR, proc_environ_operations),
2804 	INF("auxv",      S_IRUSR, proc_pid_auxv),
2805 	ONE("status",    S_IRUGO, proc_pid_status),
2806 	ONE("personality", S_IRUSR, proc_pid_personality),
2807 	INF("limits",	 S_IRUSR, proc_pid_limits),
2808 #ifdef CONFIG_SCHED_DEBUG
2809 	REG("sched",     S_IRUGO|S_IWUSR, proc_pid_sched_operations),
2810 #endif
2811 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2812 	INF("syscall",   S_IRUSR, proc_pid_syscall),
2813 #endif
2814 	INF("cmdline",   S_IRUGO, proc_pid_cmdline),
2815 	ONE("stat",      S_IRUGO, proc_tid_stat),
2816 	ONE("statm",     S_IRUGO, proc_pid_statm),
2817 	REG("maps",      S_IRUGO, proc_maps_operations),
2818 #ifdef CONFIG_NUMA
2819 	REG("numa_maps", S_IRUGO, proc_numa_maps_operations),
2820 #endif
2821 	REG("mem",       S_IRUSR|S_IWUSR, proc_mem_operations),
2822 	LNK("cwd",       proc_cwd_link),
2823 	LNK("root",      proc_root_link),
2824 	LNK("exe",       proc_exe_link),
2825 	REG("mounts",    S_IRUGO, proc_mounts_operations),
2826 	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
2827 #ifdef CONFIG_PROC_PAGE_MONITOR
2828 	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
2829 	REG("smaps",     S_IRUGO, proc_smaps_operations),
2830 	REG("pagemap",    S_IRUSR, proc_pagemap_operations),
2831 #endif
2832 #ifdef CONFIG_SECURITY
2833 	DIR("attr",      S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
2834 #endif
2835 #ifdef CONFIG_KALLSYMS
2836 	INF("wchan",     S_IRUGO, proc_pid_wchan),
2837 #endif
2838 #ifdef CONFIG_SCHEDSTATS
2839 	INF("schedstat", S_IRUGO, proc_pid_schedstat),
2840 #endif
2841 #ifdef CONFIG_LATENCYTOP
2842 	REG("latency",  S_IRUGO, proc_lstats_operations),
2843 #endif
2844 #ifdef CONFIG_PROC_PID_CPUSET
2845 	REG("cpuset",    S_IRUGO, proc_cpuset_operations),
2846 #endif
2847 #ifdef CONFIG_CGROUPS
2848 	REG("cgroup",  S_IRUGO, proc_cgroup_operations),
2849 #endif
2850 	INF("oom_score", S_IRUGO, proc_oom_score),
2851 	REG("oom_adj",   S_IRUGO|S_IWUSR, proc_oom_adjust_operations),
2852 #ifdef CONFIG_AUDITSYSCALL
2853 	REG("loginuid",  S_IWUSR|S_IRUGO, proc_loginuid_operations),
2854 	REG("sessionid",  S_IRUSR, proc_sessionid_operations),
2855 #endif
2856 #ifdef CONFIG_FAULT_INJECTION
2857 	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
2858 #endif
2859 #ifdef CONFIG_TASK_IO_ACCOUNTING
2860 	INF("io",	S_IRUGO, proc_tid_io_accounting),
2861 #endif
2862 };
2863 
2864 static int proc_tid_base_readdir(struct file * filp,
2865 			     void * dirent, filldir_t filldir)
2866 {
2867 	return proc_pident_readdir(filp,dirent,filldir,
2868 				   tid_base_stuff,ARRAY_SIZE(tid_base_stuff));
2869 }
2870 
2871 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){
2872 	return proc_pident_lookup(dir, dentry,
2873 				  tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
2874 }
2875 
2876 static const struct file_operations proc_tid_base_operations = {
2877 	.read		= generic_read_dir,
2878 	.readdir	= proc_tid_base_readdir,
2879 };
2880 
2881 static const struct inode_operations proc_tid_base_inode_operations = {
2882 	.lookup		= proc_tid_base_lookup,
2883 	.getattr	= pid_getattr,
2884 	.setattr	= proc_setattr,
2885 };
2886 
2887 static struct dentry *proc_task_instantiate(struct inode *dir,
2888 	struct dentry *dentry, struct task_struct *task, const void *ptr)
2889 {
2890 	struct dentry *error = ERR_PTR(-ENOENT);
2891 	struct inode *inode;
2892 	inode = proc_pid_make_inode(dir->i_sb, task);
2893 
2894 	if (!inode)
2895 		goto out;
2896 	inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
2897 	inode->i_op = &proc_tid_base_inode_operations;
2898 	inode->i_fop = &proc_tid_base_operations;
2899 	inode->i_flags|=S_IMMUTABLE;
2900 
2901 	inode->i_nlink = 2 + pid_entry_count_dirs(tid_base_stuff,
2902 		ARRAY_SIZE(tid_base_stuff));
2903 
2904 	dentry->d_op = &pid_dentry_operations;
2905 
2906 	d_add(dentry, inode);
2907 	/* Close the race of the process dying before we return the dentry */
2908 	if (pid_revalidate(dentry, NULL))
2909 		error = NULL;
2910 out:
2911 	return error;
2912 }
2913 
2914 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
2915 {
2916 	struct dentry *result = ERR_PTR(-ENOENT);
2917 	struct task_struct *task;
2918 	struct task_struct *leader = get_proc_task(dir);
2919 	unsigned tid;
2920 	struct pid_namespace *ns;
2921 
2922 	if (!leader)
2923 		goto out_no_task;
2924 
2925 	tid = name_to_int(dentry);
2926 	if (tid == ~0U)
2927 		goto out;
2928 
2929 	ns = dentry->d_sb->s_fs_info;
2930 	rcu_read_lock();
2931 	task = find_task_by_pid_ns(tid, ns);
2932 	if (task)
2933 		get_task_struct(task);
2934 	rcu_read_unlock();
2935 	if (!task)
2936 		goto out;
2937 	if (!same_thread_group(leader, task))
2938 		goto out_drop_task;
2939 
2940 	result = proc_task_instantiate(dir, dentry, task, NULL);
2941 out_drop_task:
2942 	put_task_struct(task);
2943 out:
2944 	put_task_struct(leader);
2945 out_no_task:
2946 	return result;
2947 }
2948 
2949 /*
2950  * Find the first tid of a thread group to return to user space.
2951  *
2952  * Usually this is just the thread group leader, but if the users
2953  * buffer was too small or there was a seek into the middle of the
2954  * directory we have more work todo.
2955  *
2956  * In the case of a short read we start with find_task_by_pid.
2957  *
2958  * In the case of a seek we start with the leader and walk nr
2959  * threads past it.
2960  */
2961 static struct task_struct *first_tid(struct task_struct *leader,
2962 		int tid, int nr, struct pid_namespace *ns)
2963 {
2964 	struct task_struct *pos;
2965 
2966 	rcu_read_lock();
2967 	/* Attempt to start with the pid of a thread */
2968 	if (tid && (nr > 0)) {
2969 		pos = find_task_by_pid_ns(tid, ns);
2970 		if (pos && (pos->group_leader == leader))
2971 			goto found;
2972 	}
2973 
2974 	/* If nr exceeds the number of threads there is nothing todo */
2975 	pos = NULL;
2976 	if (nr && nr >= get_nr_threads(leader))
2977 		goto out;
2978 
2979 	/* If we haven't found our starting place yet start
2980 	 * with the leader and walk nr threads forward.
2981 	 */
2982 	for (pos = leader; nr > 0; --nr) {
2983 		pos = next_thread(pos);
2984 		if (pos == leader) {
2985 			pos = NULL;
2986 			goto out;
2987 		}
2988 	}
2989 found:
2990 	get_task_struct(pos);
2991 out:
2992 	rcu_read_unlock();
2993 	return pos;
2994 }
2995 
2996 /*
2997  * Find the next thread in the thread list.
2998  * Return NULL if there is an error or no next thread.
2999  *
3000  * The reference to the input task_struct is released.
3001  */
3002 static struct task_struct *next_tid(struct task_struct *start)
3003 {
3004 	struct task_struct *pos = NULL;
3005 	rcu_read_lock();
3006 	if (pid_alive(start)) {
3007 		pos = next_thread(start);
3008 		if (thread_group_leader(pos))
3009 			pos = NULL;
3010 		else
3011 			get_task_struct(pos);
3012 	}
3013 	rcu_read_unlock();
3014 	put_task_struct(start);
3015 	return pos;
3016 }
3017 
3018 static int proc_task_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
3019 	struct task_struct *task, int tid)
3020 {
3021 	char name[PROC_NUMBUF];
3022 	int len = snprintf(name, sizeof(name), "%d", tid);
3023 	return proc_fill_cache(filp, dirent, filldir, name, len,
3024 				proc_task_instantiate, task, NULL);
3025 }
3026 
3027 /* for the /proc/TGID/task/ directories */
3028 static int proc_task_readdir(struct file * filp, void * dirent, filldir_t filldir)
3029 {
3030 	struct dentry *dentry = filp->f_path.dentry;
3031 	struct inode *inode = dentry->d_inode;
3032 	struct task_struct *leader = NULL;
3033 	struct task_struct *task;
3034 	int retval = -ENOENT;
3035 	ino_t ino;
3036 	int tid;
3037 	unsigned long pos = filp->f_pos;  /* avoiding "long long" filp->f_pos */
3038 	struct pid_namespace *ns;
3039 
3040 	task = get_proc_task(inode);
3041 	if (!task)
3042 		goto out_no_task;
3043 	rcu_read_lock();
3044 	if (pid_alive(task)) {
3045 		leader = task->group_leader;
3046 		get_task_struct(leader);
3047 	}
3048 	rcu_read_unlock();
3049 	put_task_struct(task);
3050 	if (!leader)
3051 		goto out_no_task;
3052 	retval = 0;
3053 
3054 	switch (pos) {
3055 	case 0:
3056 		ino = inode->i_ino;
3057 		if (filldir(dirent, ".", 1, pos, ino, DT_DIR) < 0)
3058 			goto out;
3059 		pos++;
3060 		/* fall through */
3061 	case 1:
3062 		ino = parent_ino(dentry);
3063 		if (filldir(dirent, "..", 2, pos, ino, DT_DIR) < 0)
3064 			goto out;
3065 		pos++;
3066 		/* fall through */
3067 	}
3068 
3069 	/* f_version caches the tgid value that the last readdir call couldn't
3070 	 * return. lseek aka telldir automagically resets f_version to 0.
3071 	 */
3072 	ns = filp->f_dentry->d_sb->s_fs_info;
3073 	tid = (int)filp->f_version;
3074 	filp->f_version = 0;
3075 	for (task = first_tid(leader, tid, pos - 2, ns);
3076 	     task;
3077 	     task = next_tid(task), pos++) {
3078 		tid = task_pid_nr_ns(task, ns);
3079 		if (proc_task_fill_cache(filp, dirent, filldir, task, tid) < 0) {
3080 			/* returning this tgid failed, save it as the first
3081 			 * pid for the next readir call */
3082 			filp->f_version = (u64)tid;
3083 			put_task_struct(task);
3084 			break;
3085 		}
3086 	}
3087 out:
3088 	filp->f_pos = pos;
3089 	put_task_struct(leader);
3090 out_no_task:
3091 	return retval;
3092 }
3093 
3094 static int proc_task_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
3095 {
3096 	struct inode *inode = dentry->d_inode;
3097 	struct task_struct *p = get_proc_task(inode);
3098 	generic_fillattr(inode, stat);
3099 
3100 	if (p) {
3101 		stat->nlink += get_nr_threads(p);
3102 		put_task_struct(p);
3103 	}
3104 
3105 	return 0;
3106 }
3107 
3108 static const struct inode_operations proc_task_inode_operations = {
3109 	.lookup		= proc_task_lookup,
3110 	.getattr	= proc_task_getattr,
3111 	.setattr	= proc_setattr,
3112 };
3113 
3114 static const struct file_operations proc_task_operations = {
3115 	.read		= generic_read_dir,
3116 	.readdir	= proc_task_readdir,
3117 };
3118