xref: /openbmc/linux/fs/proc/base.c (revision 47a469421d792dcb91a1e73319d26134241953d2)
1 /*
2  *  linux/fs/proc/base.c
3  *
4  *  Copyright (C) 1991, 1992 Linus Torvalds
5  *
6  *  proc base directory handling functions
7  *
8  *  1999, Al Viro. Rewritten. Now it covers the whole per-process part.
9  *  Instead of using magical inumbers to determine the kind of object
10  *  we allocate and fill in-core inodes upon lookup. They don't even
11  *  go into icache. We cache the reference to task_struct upon lookup too.
12  *  Eventually it should become a filesystem in its own. We don't use the
13  *  rest of procfs anymore.
14  *
15  *
16  *  Changelog:
17  *  17-Jan-2005
18  *  Allan Bezerra
19  *  Bruna Moreira <bruna.moreira@indt.org.br>
20  *  Edjard Mota <edjard.mota@indt.org.br>
21  *  Ilias Biris <ilias.biris@indt.org.br>
22  *  Mauricio Lin <mauricio.lin@indt.org.br>
23  *
24  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
25  *
26  *  A new process specific entry (smaps) included in /proc. It shows the
27  *  size of rss for each memory area. The maps entry lacks information
28  *  about physical memory size (rss) for each mapped file, i.e.,
29  *  rss information for executables and library files.
30  *  This additional information is useful for any tools that need to know
31  *  about physical memory consumption for a process specific library.
32  *
33  *  Changelog:
34  *  21-Feb-2005
35  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
36  *  Pud inclusion in the page table walking.
37  *
38  *  ChangeLog:
39  *  10-Mar-2005
40  *  10LE Instituto Nokia de Tecnologia - INdT:
41  *  A better way to walks through the page table as suggested by Hugh Dickins.
42  *
43  *  Simo Piiroinen <simo.piiroinen@nokia.com>:
44  *  Smaps information related to shared, private, clean and dirty pages.
45  *
46  *  Paul Mundt <paul.mundt@nokia.com>:
47  *  Overall revision about smaps.
48  */
49 
50 #include <asm/uaccess.h>
51 
52 #include <linux/errno.h>
53 #include <linux/time.h>
54 #include <linux/proc_fs.h>
55 #include <linux/stat.h>
56 #include <linux/task_io_accounting_ops.h>
57 #include <linux/init.h>
58 #include <linux/capability.h>
59 #include <linux/file.h>
60 #include <linux/fdtable.h>
61 #include <linux/string.h>
62 #include <linux/seq_file.h>
63 #include <linux/namei.h>
64 #include <linux/mnt_namespace.h>
65 #include <linux/mm.h>
66 #include <linux/swap.h>
67 #include <linux/rcupdate.h>
68 #include <linux/kallsyms.h>
69 #include <linux/stacktrace.h>
70 #include <linux/resource.h>
71 #include <linux/module.h>
72 #include <linux/mount.h>
73 #include <linux/security.h>
74 #include <linux/ptrace.h>
75 #include <linux/tracehook.h>
76 #include <linux/printk.h>
77 #include <linux/cgroup.h>
78 #include <linux/cpuset.h>
79 #include <linux/audit.h>
80 #include <linux/poll.h>
81 #include <linux/nsproxy.h>
82 #include <linux/oom.h>
83 #include <linux/elf.h>
84 #include <linux/pid_namespace.h>
85 #include <linux/user_namespace.h>
86 #include <linux/fs_struct.h>
87 #include <linux/slab.h>
88 #include <linux/flex_array.h>
89 #include <linux/posix-timers.h>
90 #ifdef CONFIG_HARDWALL
91 #include <asm/hardwall.h>
92 #endif
93 #include <trace/events/oom.h>
94 #include "internal.h"
95 #include "fd.h"
96 
97 /* NOTE:
98  *	Implementing inode permission operations in /proc is almost
99  *	certainly an error.  Permission checks need to happen during
100  *	each system call not at open time.  The reason is that most of
101  *	what we wish to check for permissions in /proc varies at runtime.
102  *
103  *	The classic example of a problem is opening file descriptors
104  *	in /proc for a task before it execs a suid executable.
105  */
106 
107 struct pid_entry {
108 	const char *name;
109 	int len;
110 	umode_t mode;
111 	const struct inode_operations *iop;
112 	const struct file_operations *fop;
113 	union proc_op op;
114 };
115 
116 #define NOD(NAME, MODE, IOP, FOP, OP) {			\
117 	.name = (NAME),					\
118 	.len  = sizeof(NAME) - 1,			\
119 	.mode = MODE,					\
120 	.iop  = IOP,					\
121 	.fop  = FOP,					\
122 	.op   = OP,					\
123 }
124 
125 #define DIR(NAME, MODE, iops, fops)	\
126 	NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
127 #define LNK(NAME, get_link)					\
128 	NOD(NAME, (S_IFLNK|S_IRWXUGO),				\
129 		&proc_pid_link_inode_operations, NULL,		\
130 		{ .proc_get_link = get_link } )
131 #define REG(NAME, MODE, fops)				\
132 	NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
133 #define ONE(NAME, MODE, show)				\
134 	NOD(NAME, (S_IFREG|(MODE)), 			\
135 		NULL, &proc_single_file_operations,	\
136 		{ .proc_show = show } )
137 
138 /*
139  * Count the number of hardlinks for the pid_entry table, excluding the .
140  * and .. links.
141  */
142 static unsigned int pid_entry_count_dirs(const struct pid_entry *entries,
143 	unsigned int n)
144 {
145 	unsigned int i;
146 	unsigned int count;
147 
148 	count = 0;
149 	for (i = 0; i < n; ++i) {
150 		if (S_ISDIR(entries[i].mode))
151 			++count;
152 	}
153 
154 	return count;
155 }
156 
157 static int get_task_root(struct task_struct *task, struct path *root)
158 {
159 	int result = -ENOENT;
160 
161 	task_lock(task);
162 	if (task->fs) {
163 		get_fs_root(task->fs, root);
164 		result = 0;
165 	}
166 	task_unlock(task);
167 	return result;
168 }
169 
170 static int proc_cwd_link(struct dentry *dentry, struct path *path)
171 {
172 	struct task_struct *task = get_proc_task(d_inode(dentry));
173 	int result = -ENOENT;
174 
175 	if (task) {
176 		task_lock(task);
177 		if (task->fs) {
178 			get_fs_pwd(task->fs, path);
179 			result = 0;
180 		}
181 		task_unlock(task);
182 		put_task_struct(task);
183 	}
184 	return result;
185 }
186 
187 static int proc_root_link(struct dentry *dentry, struct path *path)
188 {
189 	struct task_struct *task = get_proc_task(d_inode(dentry));
190 	int result = -ENOENT;
191 
192 	if (task) {
193 		result = get_task_root(task, path);
194 		put_task_struct(task);
195 	}
196 	return result;
197 }
198 
199 static ssize_t proc_pid_cmdline_read(struct file *file, char __user *buf,
200 				     size_t _count, loff_t *pos)
201 {
202 	struct task_struct *tsk;
203 	struct mm_struct *mm;
204 	char *page;
205 	unsigned long count = _count;
206 	unsigned long arg_start, arg_end, env_start, env_end;
207 	unsigned long len1, len2, len;
208 	unsigned long p;
209 	char c;
210 	ssize_t rv;
211 
212 	BUG_ON(*pos < 0);
213 
214 	tsk = get_proc_task(file_inode(file));
215 	if (!tsk)
216 		return -ESRCH;
217 	mm = get_task_mm(tsk);
218 	put_task_struct(tsk);
219 	if (!mm)
220 		return 0;
221 	/* Check if process spawned far enough to have cmdline. */
222 	if (!mm->env_end) {
223 		rv = 0;
224 		goto out_mmput;
225 	}
226 
227 	page = (char *)__get_free_page(GFP_TEMPORARY);
228 	if (!page) {
229 		rv = -ENOMEM;
230 		goto out_mmput;
231 	}
232 
233 	down_read(&mm->mmap_sem);
234 	arg_start = mm->arg_start;
235 	arg_end = mm->arg_end;
236 	env_start = mm->env_start;
237 	env_end = mm->env_end;
238 	up_read(&mm->mmap_sem);
239 
240 	BUG_ON(arg_start > arg_end);
241 	BUG_ON(env_start > env_end);
242 
243 	len1 = arg_end - arg_start;
244 	len2 = env_end - env_start;
245 
246 	/*
247 	 * Inherently racy -- command line shares address space
248 	 * with code and data.
249 	 */
250 	rv = access_remote_vm(mm, arg_end - 1, &c, 1, 0);
251 	if (rv <= 0)
252 		goto out_free_page;
253 
254 	rv = 0;
255 
256 	if (c == '\0') {
257 		/* Command line (set of strings) occupies whole ARGV. */
258 		if (len1 <= *pos)
259 			goto out_free_page;
260 
261 		p = arg_start + *pos;
262 		len = len1 - *pos;
263 		while (count > 0 && len > 0) {
264 			unsigned int _count;
265 			int nr_read;
266 
267 			_count = min3(count, len, PAGE_SIZE);
268 			nr_read = access_remote_vm(mm, p, page, _count, 0);
269 			if (nr_read < 0)
270 				rv = nr_read;
271 			if (nr_read <= 0)
272 				goto out_free_page;
273 
274 			if (copy_to_user(buf, page, nr_read)) {
275 				rv = -EFAULT;
276 				goto out_free_page;
277 			}
278 
279 			p	+= nr_read;
280 			len	-= nr_read;
281 			buf	+= nr_read;
282 			count	-= nr_read;
283 			rv	+= nr_read;
284 		}
285 	} else {
286 		/*
287 		 * Command line (1 string) occupies ARGV and maybe
288 		 * extends into ENVP.
289 		 */
290 		if (len1 + len2 <= *pos)
291 			goto skip_argv_envp;
292 		if (len1 <= *pos)
293 			goto skip_argv;
294 
295 		p = arg_start + *pos;
296 		len = len1 - *pos;
297 		while (count > 0 && len > 0) {
298 			unsigned int _count, l;
299 			int nr_read;
300 			bool final;
301 
302 			_count = min3(count, len, PAGE_SIZE);
303 			nr_read = access_remote_vm(mm, p, page, _count, 0);
304 			if (nr_read < 0)
305 				rv = nr_read;
306 			if (nr_read <= 0)
307 				goto out_free_page;
308 
309 			/*
310 			 * Command line can be shorter than whole ARGV
311 			 * even if last "marker" byte says it is not.
312 			 */
313 			final = false;
314 			l = strnlen(page, nr_read);
315 			if (l < nr_read) {
316 				nr_read = l;
317 				final = true;
318 			}
319 
320 			if (copy_to_user(buf, page, nr_read)) {
321 				rv = -EFAULT;
322 				goto out_free_page;
323 			}
324 
325 			p	+= nr_read;
326 			len	-= nr_read;
327 			buf	+= nr_read;
328 			count	-= nr_read;
329 			rv	+= nr_read;
330 
331 			if (final)
332 				goto out_free_page;
333 		}
334 skip_argv:
335 		/*
336 		 * Command line (1 string) occupies ARGV and
337 		 * extends into ENVP.
338 		 */
339 		if (len1 <= *pos) {
340 			p = env_start + *pos - len1;
341 			len = len1 + len2 - *pos;
342 		} else {
343 			p = env_start;
344 			len = len2;
345 		}
346 		while (count > 0 && len > 0) {
347 			unsigned int _count, l;
348 			int nr_read;
349 			bool final;
350 
351 			_count = min3(count, len, PAGE_SIZE);
352 			nr_read = access_remote_vm(mm, p, page, _count, 0);
353 			if (nr_read < 0)
354 				rv = nr_read;
355 			if (nr_read <= 0)
356 				goto out_free_page;
357 
358 			/* Find EOS. */
359 			final = false;
360 			l = strnlen(page, nr_read);
361 			if (l < nr_read) {
362 				nr_read = l;
363 				final = true;
364 			}
365 
366 			if (copy_to_user(buf, page, nr_read)) {
367 				rv = -EFAULT;
368 				goto out_free_page;
369 			}
370 
371 			p	+= nr_read;
372 			len	-= nr_read;
373 			buf	+= nr_read;
374 			count	-= nr_read;
375 			rv	+= nr_read;
376 
377 			if (final)
378 				goto out_free_page;
379 		}
380 skip_argv_envp:
381 		;
382 	}
383 
384 out_free_page:
385 	free_page((unsigned long)page);
386 out_mmput:
387 	mmput(mm);
388 	if (rv > 0)
389 		*pos += rv;
390 	return rv;
391 }
392 
393 static const struct file_operations proc_pid_cmdline_ops = {
394 	.read	= proc_pid_cmdline_read,
395 	.llseek	= generic_file_llseek,
396 };
397 
398 static int proc_pid_auxv(struct seq_file *m, struct pid_namespace *ns,
399 			 struct pid *pid, struct task_struct *task)
400 {
401 	struct mm_struct *mm = mm_access(task, PTRACE_MODE_READ);
402 	if (mm && !IS_ERR(mm)) {
403 		unsigned int nwords = 0;
404 		do {
405 			nwords += 2;
406 		} while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
407 		seq_write(m, mm->saved_auxv, nwords * sizeof(mm->saved_auxv[0]));
408 		mmput(mm);
409 		return 0;
410 	} else
411 		return PTR_ERR(mm);
412 }
413 
414 
415 #ifdef CONFIG_KALLSYMS
416 /*
417  * Provides a wchan file via kallsyms in a proper one-value-per-file format.
418  * Returns the resolved symbol.  If that fails, simply return the address.
419  */
420 static int proc_pid_wchan(struct seq_file *m, struct pid_namespace *ns,
421 			  struct pid *pid, struct task_struct *task)
422 {
423 	unsigned long wchan;
424 	char symname[KSYM_NAME_LEN];
425 
426 	wchan = get_wchan(task);
427 
428 	if (lookup_symbol_name(wchan, symname) < 0) {
429 		if (!ptrace_may_access(task, PTRACE_MODE_READ))
430 			return 0;
431 		seq_printf(m, "%lu", wchan);
432 	} else {
433 		seq_printf(m, "%s", symname);
434 	}
435 
436 	return 0;
437 }
438 #endif /* CONFIG_KALLSYMS */
439 
440 static int lock_trace(struct task_struct *task)
441 {
442 	int err = mutex_lock_killable(&task->signal->cred_guard_mutex);
443 	if (err)
444 		return err;
445 	if (!ptrace_may_access(task, PTRACE_MODE_ATTACH)) {
446 		mutex_unlock(&task->signal->cred_guard_mutex);
447 		return -EPERM;
448 	}
449 	return 0;
450 }
451 
452 static void unlock_trace(struct task_struct *task)
453 {
454 	mutex_unlock(&task->signal->cred_guard_mutex);
455 }
456 
457 #ifdef CONFIG_STACKTRACE
458 
459 #define MAX_STACK_TRACE_DEPTH	64
460 
461 static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
462 			  struct pid *pid, struct task_struct *task)
463 {
464 	struct stack_trace trace;
465 	unsigned long *entries;
466 	int err;
467 	int i;
468 
469 	entries = kmalloc(MAX_STACK_TRACE_DEPTH * sizeof(*entries), GFP_KERNEL);
470 	if (!entries)
471 		return -ENOMEM;
472 
473 	trace.nr_entries	= 0;
474 	trace.max_entries	= MAX_STACK_TRACE_DEPTH;
475 	trace.entries		= entries;
476 	trace.skip		= 0;
477 
478 	err = lock_trace(task);
479 	if (!err) {
480 		save_stack_trace_tsk(task, &trace);
481 
482 		for (i = 0; i < trace.nr_entries; i++) {
483 			seq_printf(m, "[<%pK>] %pS\n",
484 				   (void *)entries[i], (void *)entries[i]);
485 		}
486 		unlock_trace(task);
487 	}
488 	kfree(entries);
489 
490 	return err;
491 }
492 #endif
493 
494 #ifdef CONFIG_SCHEDSTATS
495 /*
496  * Provides /proc/PID/schedstat
497  */
498 static int proc_pid_schedstat(struct seq_file *m, struct pid_namespace *ns,
499 			      struct pid *pid, struct task_struct *task)
500 {
501 	seq_printf(m, "%llu %llu %lu\n",
502 		   (unsigned long long)task->se.sum_exec_runtime,
503 		   (unsigned long long)task->sched_info.run_delay,
504 		   task->sched_info.pcount);
505 
506 	return 0;
507 }
508 #endif
509 
510 #ifdef CONFIG_LATENCYTOP
511 static int lstats_show_proc(struct seq_file *m, void *v)
512 {
513 	int i;
514 	struct inode *inode = m->private;
515 	struct task_struct *task = get_proc_task(inode);
516 
517 	if (!task)
518 		return -ESRCH;
519 	seq_puts(m, "Latency Top version : v0.1\n");
520 	for (i = 0; i < 32; i++) {
521 		struct latency_record *lr = &task->latency_record[i];
522 		if (lr->backtrace[0]) {
523 			int q;
524 			seq_printf(m, "%i %li %li",
525 				   lr->count, lr->time, lr->max);
526 			for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
527 				unsigned long bt = lr->backtrace[q];
528 				if (!bt)
529 					break;
530 				if (bt == ULONG_MAX)
531 					break;
532 				seq_printf(m, " %ps", (void *)bt);
533 			}
534 			seq_putc(m, '\n');
535 		}
536 
537 	}
538 	put_task_struct(task);
539 	return 0;
540 }
541 
542 static int lstats_open(struct inode *inode, struct file *file)
543 {
544 	return single_open(file, lstats_show_proc, inode);
545 }
546 
547 static ssize_t lstats_write(struct file *file, const char __user *buf,
548 			    size_t count, loff_t *offs)
549 {
550 	struct task_struct *task = get_proc_task(file_inode(file));
551 
552 	if (!task)
553 		return -ESRCH;
554 	clear_all_latency_tracing(task);
555 	put_task_struct(task);
556 
557 	return count;
558 }
559 
560 static const struct file_operations proc_lstats_operations = {
561 	.open		= lstats_open,
562 	.read		= seq_read,
563 	.write		= lstats_write,
564 	.llseek		= seq_lseek,
565 	.release	= single_release,
566 };
567 
568 #endif
569 
570 static int proc_oom_score(struct seq_file *m, struct pid_namespace *ns,
571 			  struct pid *pid, struct task_struct *task)
572 {
573 	unsigned long totalpages = totalram_pages + total_swap_pages;
574 	unsigned long points = 0;
575 
576 	read_lock(&tasklist_lock);
577 	if (pid_alive(task))
578 		points = oom_badness(task, NULL, NULL, totalpages) *
579 						1000 / totalpages;
580 	read_unlock(&tasklist_lock);
581 	seq_printf(m, "%lu\n", points);
582 
583 	return 0;
584 }
585 
586 struct limit_names {
587 	const char *name;
588 	const char *unit;
589 };
590 
591 static const struct limit_names lnames[RLIM_NLIMITS] = {
592 	[RLIMIT_CPU] = {"Max cpu time", "seconds"},
593 	[RLIMIT_FSIZE] = {"Max file size", "bytes"},
594 	[RLIMIT_DATA] = {"Max data size", "bytes"},
595 	[RLIMIT_STACK] = {"Max stack size", "bytes"},
596 	[RLIMIT_CORE] = {"Max core file size", "bytes"},
597 	[RLIMIT_RSS] = {"Max resident set", "bytes"},
598 	[RLIMIT_NPROC] = {"Max processes", "processes"},
599 	[RLIMIT_NOFILE] = {"Max open files", "files"},
600 	[RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
601 	[RLIMIT_AS] = {"Max address space", "bytes"},
602 	[RLIMIT_LOCKS] = {"Max file locks", "locks"},
603 	[RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
604 	[RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
605 	[RLIMIT_NICE] = {"Max nice priority", NULL},
606 	[RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
607 	[RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
608 };
609 
610 /* Display limits for a process */
611 static int proc_pid_limits(struct seq_file *m, struct pid_namespace *ns,
612 			   struct pid *pid, struct task_struct *task)
613 {
614 	unsigned int i;
615 	unsigned long flags;
616 
617 	struct rlimit rlim[RLIM_NLIMITS];
618 
619 	if (!lock_task_sighand(task, &flags))
620 		return 0;
621 	memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
622 	unlock_task_sighand(task, &flags);
623 
624 	/*
625 	 * print the file header
626 	 */
627        seq_printf(m, "%-25s %-20s %-20s %-10s\n",
628 		  "Limit", "Soft Limit", "Hard Limit", "Units");
629 
630 	for (i = 0; i < RLIM_NLIMITS; i++) {
631 		if (rlim[i].rlim_cur == RLIM_INFINITY)
632 			seq_printf(m, "%-25s %-20s ",
633 				   lnames[i].name, "unlimited");
634 		else
635 			seq_printf(m, "%-25s %-20lu ",
636 				   lnames[i].name, rlim[i].rlim_cur);
637 
638 		if (rlim[i].rlim_max == RLIM_INFINITY)
639 			seq_printf(m, "%-20s ", "unlimited");
640 		else
641 			seq_printf(m, "%-20lu ", rlim[i].rlim_max);
642 
643 		if (lnames[i].unit)
644 			seq_printf(m, "%-10s\n", lnames[i].unit);
645 		else
646 			seq_putc(m, '\n');
647 	}
648 
649 	return 0;
650 }
651 
652 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
653 static int proc_pid_syscall(struct seq_file *m, struct pid_namespace *ns,
654 			    struct pid *pid, struct task_struct *task)
655 {
656 	long nr;
657 	unsigned long args[6], sp, pc;
658 	int res;
659 
660 	res = lock_trace(task);
661 	if (res)
662 		return res;
663 
664 	if (task_current_syscall(task, &nr, args, 6, &sp, &pc))
665 		seq_puts(m, "running\n");
666 	else if (nr < 0)
667 		seq_printf(m, "%ld 0x%lx 0x%lx\n", nr, sp, pc);
668 	else
669 		seq_printf(m,
670 		       "%ld 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx\n",
671 		       nr,
672 		       args[0], args[1], args[2], args[3], args[4], args[5],
673 		       sp, pc);
674 	unlock_trace(task);
675 
676 	return 0;
677 }
678 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
679 
680 /************************************************************************/
681 /*                       Here the fs part begins                        */
682 /************************************************************************/
683 
684 /* permission checks */
685 static int proc_fd_access_allowed(struct inode *inode)
686 {
687 	struct task_struct *task;
688 	int allowed = 0;
689 	/* Allow access to a task's file descriptors if it is us or we
690 	 * may use ptrace attach to the process and find out that
691 	 * information.
692 	 */
693 	task = get_proc_task(inode);
694 	if (task) {
695 		allowed = ptrace_may_access(task, PTRACE_MODE_READ);
696 		put_task_struct(task);
697 	}
698 	return allowed;
699 }
700 
701 int proc_setattr(struct dentry *dentry, struct iattr *attr)
702 {
703 	int error;
704 	struct inode *inode = d_inode(dentry);
705 
706 	if (attr->ia_valid & ATTR_MODE)
707 		return -EPERM;
708 
709 	error = inode_change_ok(inode, attr);
710 	if (error)
711 		return error;
712 
713 	setattr_copy(inode, attr);
714 	mark_inode_dirty(inode);
715 	return 0;
716 }
717 
718 /*
719  * May current process learn task's sched/cmdline info (for hide_pid_min=1)
720  * or euid/egid (for hide_pid_min=2)?
721  */
722 static bool has_pid_permissions(struct pid_namespace *pid,
723 				 struct task_struct *task,
724 				 int hide_pid_min)
725 {
726 	if (pid->hide_pid < hide_pid_min)
727 		return true;
728 	if (in_group_p(pid->pid_gid))
729 		return true;
730 	return ptrace_may_access(task, PTRACE_MODE_READ);
731 }
732 
733 
734 static int proc_pid_permission(struct inode *inode, int mask)
735 {
736 	struct pid_namespace *pid = inode->i_sb->s_fs_info;
737 	struct task_struct *task;
738 	bool has_perms;
739 
740 	task = get_proc_task(inode);
741 	if (!task)
742 		return -ESRCH;
743 	has_perms = has_pid_permissions(pid, task, 1);
744 	put_task_struct(task);
745 
746 	if (!has_perms) {
747 		if (pid->hide_pid == 2) {
748 			/*
749 			 * Let's make getdents(), stat(), and open()
750 			 * consistent with each other.  If a process
751 			 * may not stat() a file, it shouldn't be seen
752 			 * in procfs at all.
753 			 */
754 			return -ENOENT;
755 		}
756 
757 		return -EPERM;
758 	}
759 	return generic_permission(inode, mask);
760 }
761 
762 
763 
764 static const struct inode_operations proc_def_inode_operations = {
765 	.setattr	= proc_setattr,
766 };
767 
768 static int proc_single_show(struct seq_file *m, void *v)
769 {
770 	struct inode *inode = m->private;
771 	struct pid_namespace *ns;
772 	struct pid *pid;
773 	struct task_struct *task;
774 	int ret;
775 
776 	ns = inode->i_sb->s_fs_info;
777 	pid = proc_pid(inode);
778 	task = get_pid_task(pid, PIDTYPE_PID);
779 	if (!task)
780 		return -ESRCH;
781 
782 	ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
783 
784 	put_task_struct(task);
785 	return ret;
786 }
787 
788 static int proc_single_open(struct inode *inode, struct file *filp)
789 {
790 	return single_open(filp, proc_single_show, inode);
791 }
792 
793 static const struct file_operations proc_single_file_operations = {
794 	.open		= proc_single_open,
795 	.read		= seq_read,
796 	.llseek		= seq_lseek,
797 	.release	= single_release,
798 };
799 
800 
801 struct mm_struct *proc_mem_open(struct inode *inode, unsigned int mode)
802 {
803 	struct task_struct *task = get_proc_task(inode);
804 	struct mm_struct *mm = ERR_PTR(-ESRCH);
805 
806 	if (task) {
807 		mm = mm_access(task, mode);
808 		put_task_struct(task);
809 
810 		if (!IS_ERR_OR_NULL(mm)) {
811 			/* ensure this mm_struct can't be freed */
812 			atomic_inc(&mm->mm_count);
813 			/* but do not pin its memory */
814 			mmput(mm);
815 		}
816 	}
817 
818 	return mm;
819 }
820 
821 static int __mem_open(struct inode *inode, struct file *file, unsigned int mode)
822 {
823 	struct mm_struct *mm = proc_mem_open(inode, mode);
824 
825 	if (IS_ERR(mm))
826 		return PTR_ERR(mm);
827 
828 	file->private_data = mm;
829 	return 0;
830 }
831 
832 static int mem_open(struct inode *inode, struct file *file)
833 {
834 	int ret = __mem_open(inode, file, PTRACE_MODE_ATTACH);
835 
836 	/* OK to pass negative loff_t, we can catch out-of-range */
837 	file->f_mode |= FMODE_UNSIGNED_OFFSET;
838 
839 	return ret;
840 }
841 
842 static ssize_t mem_rw(struct file *file, char __user *buf,
843 			size_t count, loff_t *ppos, int write)
844 {
845 	struct mm_struct *mm = file->private_data;
846 	unsigned long addr = *ppos;
847 	ssize_t copied;
848 	char *page;
849 
850 	if (!mm)
851 		return 0;
852 
853 	page = (char *)__get_free_page(GFP_TEMPORARY);
854 	if (!page)
855 		return -ENOMEM;
856 
857 	copied = 0;
858 	if (!atomic_inc_not_zero(&mm->mm_users))
859 		goto free;
860 
861 	while (count > 0) {
862 		int this_len = min_t(int, count, PAGE_SIZE);
863 
864 		if (write && copy_from_user(page, buf, this_len)) {
865 			copied = -EFAULT;
866 			break;
867 		}
868 
869 		this_len = access_remote_vm(mm, addr, page, this_len, write);
870 		if (!this_len) {
871 			if (!copied)
872 				copied = -EIO;
873 			break;
874 		}
875 
876 		if (!write && copy_to_user(buf, page, this_len)) {
877 			copied = -EFAULT;
878 			break;
879 		}
880 
881 		buf += this_len;
882 		addr += this_len;
883 		copied += this_len;
884 		count -= this_len;
885 	}
886 	*ppos = addr;
887 
888 	mmput(mm);
889 free:
890 	free_page((unsigned long) page);
891 	return copied;
892 }
893 
894 static ssize_t mem_read(struct file *file, char __user *buf,
895 			size_t count, loff_t *ppos)
896 {
897 	return mem_rw(file, buf, count, ppos, 0);
898 }
899 
900 static ssize_t mem_write(struct file *file, const char __user *buf,
901 			 size_t count, loff_t *ppos)
902 {
903 	return mem_rw(file, (char __user*)buf, count, ppos, 1);
904 }
905 
906 loff_t mem_lseek(struct file *file, loff_t offset, int orig)
907 {
908 	switch (orig) {
909 	case 0:
910 		file->f_pos = offset;
911 		break;
912 	case 1:
913 		file->f_pos += offset;
914 		break;
915 	default:
916 		return -EINVAL;
917 	}
918 	force_successful_syscall_return();
919 	return file->f_pos;
920 }
921 
922 static int mem_release(struct inode *inode, struct file *file)
923 {
924 	struct mm_struct *mm = file->private_data;
925 	if (mm)
926 		mmdrop(mm);
927 	return 0;
928 }
929 
930 static const struct file_operations proc_mem_operations = {
931 	.llseek		= mem_lseek,
932 	.read		= mem_read,
933 	.write		= mem_write,
934 	.open		= mem_open,
935 	.release	= mem_release,
936 };
937 
938 static int environ_open(struct inode *inode, struct file *file)
939 {
940 	return __mem_open(inode, file, PTRACE_MODE_READ);
941 }
942 
943 static ssize_t environ_read(struct file *file, char __user *buf,
944 			size_t count, loff_t *ppos)
945 {
946 	char *page;
947 	unsigned long src = *ppos;
948 	int ret = 0;
949 	struct mm_struct *mm = file->private_data;
950 
951 	if (!mm)
952 		return 0;
953 
954 	page = (char *)__get_free_page(GFP_TEMPORARY);
955 	if (!page)
956 		return -ENOMEM;
957 
958 	ret = 0;
959 	if (!atomic_inc_not_zero(&mm->mm_users))
960 		goto free;
961 	while (count > 0) {
962 		size_t this_len, max_len;
963 		int retval;
964 
965 		if (src >= (mm->env_end - mm->env_start))
966 			break;
967 
968 		this_len = mm->env_end - (mm->env_start + src);
969 
970 		max_len = min_t(size_t, PAGE_SIZE, count);
971 		this_len = min(max_len, this_len);
972 
973 		retval = access_remote_vm(mm, (mm->env_start + src),
974 			page, this_len, 0);
975 
976 		if (retval <= 0) {
977 			ret = retval;
978 			break;
979 		}
980 
981 		if (copy_to_user(buf, page, retval)) {
982 			ret = -EFAULT;
983 			break;
984 		}
985 
986 		ret += retval;
987 		src += retval;
988 		buf += retval;
989 		count -= retval;
990 	}
991 	*ppos = src;
992 	mmput(mm);
993 
994 free:
995 	free_page((unsigned long) page);
996 	return ret;
997 }
998 
999 static const struct file_operations proc_environ_operations = {
1000 	.open		= environ_open,
1001 	.read		= environ_read,
1002 	.llseek		= generic_file_llseek,
1003 	.release	= mem_release,
1004 };
1005 
1006 static ssize_t oom_adj_read(struct file *file, char __user *buf, size_t count,
1007 			    loff_t *ppos)
1008 {
1009 	struct task_struct *task = get_proc_task(file_inode(file));
1010 	char buffer[PROC_NUMBUF];
1011 	int oom_adj = OOM_ADJUST_MIN;
1012 	size_t len;
1013 	unsigned long flags;
1014 
1015 	if (!task)
1016 		return -ESRCH;
1017 	if (lock_task_sighand(task, &flags)) {
1018 		if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MAX)
1019 			oom_adj = OOM_ADJUST_MAX;
1020 		else
1021 			oom_adj = (task->signal->oom_score_adj * -OOM_DISABLE) /
1022 				  OOM_SCORE_ADJ_MAX;
1023 		unlock_task_sighand(task, &flags);
1024 	}
1025 	put_task_struct(task);
1026 	len = snprintf(buffer, sizeof(buffer), "%d\n", oom_adj);
1027 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1028 }
1029 
1030 static ssize_t oom_adj_write(struct file *file, const char __user *buf,
1031 			     size_t count, loff_t *ppos)
1032 {
1033 	struct task_struct *task;
1034 	char buffer[PROC_NUMBUF];
1035 	int oom_adj;
1036 	unsigned long flags;
1037 	int err;
1038 
1039 	memset(buffer, 0, sizeof(buffer));
1040 	if (count > sizeof(buffer) - 1)
1041 		count = sizeof(buffer) - 1;
1042 	if (copy_from_user(buffer, buf, count)) {
1043 		err = -EFAULT;
1044 		goto out;
1045 	}
1046 
1047 	err = kstrtoint(strstrip(buffer), 0, &oom_adj);
1048 	if (err)
1049 		goto out;
1050 	if ((oom_adj < OOM_ADJUST_MIN || oom_adj > OOM_ADJUST_MAX) &&
1051 	     oom_adj != OOM_DISABLE) {
1052 		err = -EINVAL;
1053 		goto out;
1054 	}
1055 
1056 	task = get_proc_task(file_inode(file));
1057 	if (!task) {
1058 		err = -ESRCH;
1059 		goto out;
1060 	}
1061 
1062 	task_lock(task);
1063 	if (!task->mm) {
1064 		err = -EINVAL;
1065 		goto err_task_lock;
1066 	}
1067 
1068 	if (!lock_task_sighand(task, &flags)) {
1069 		err = -ESRCH;
1070 		goto err_task_lock;
1071 	}
1072 
1073 	/*
1074 	 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum
1075 	 * value is always attainable.
1076 	 */
1077 	if (oom_adj == OOM_ADJUST_MAX)
1078 		oom_adj = OOM_SCORE_ADJ_MAX;
1079 	else
1080 		oom_adj = (oom_adj * OOM_SCORE_ADJ_MAX) / -OOM_DISABLE;
1081 
1082 	if (oom_adj < task->signal->oom_score_adj &&
1083 	    !capable(CAP_SYS_RESOURCE)) {
1084 		err = -EACCES;
1085 		goto err_sighand;
1086 	}
1087 
1088 	/*
1089 	 * /proc/pid/oom_adj is provided for legacy purposes, ask users to use
1090 	 * /proc/pid/oom_score_adj instead.
1091 	 */
1092 	pr_warn_once("%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n",
1093 		  current->comm, task_pid_nr(current), task_pid_nr(task),
1094 		  task_pid_nr(task));
1095 
1096 	task->signal->oom_score_adj = oom_adj;
1097 	trace_oom_score_adj_update(task);
1098 err_sighand:
1099 	unlock_task_sighand(task, &flags);
1100 err_task_lock:
1101 	task_unlock(task);
1102 	put_task_struct(task);
1103 out:
1104 	return err < 0 ? err : count;
1105 }
1106 
1107 static const struct file_operations proc_oom_adj_operations = {
1108 	.read		= oom_adj_read,
1109 	.write		= oom_adj_write,
1110 	.llseek		= generic_file_llseek,
1111 };
1112 
1113 static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
1114 					size_t count, loff_t *ppos)
1115 {
1116 	struct task_struct *task = get_proc_task(file_inode(file));
1117 	char buffer[PROC_NUMBUF];
1118 	short oom_score_adj = OOM_SCORE_ADJ_MIN;
1119 	unsigned long flags;
1120 	size_t len;
1121 
1122 	if (!task)
1123 		return -ESRCH;
1124 	if (lock_task_sighand(task, &flags)) {
1125 		oom_score_adj = task->signal->oom_score_adj;
1126 		unlock_task_sighand(task, &flags);
1127 	}
1128 	put_task_struct(task);
1129 	len = snprintf(buffer, sizeof(buffer), "%hd\n", oom_score_adj);
1130 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1131 }
1132 
1133 static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
1134 					size_t count, loff_t *ppos)
1135 {
1136 	struct task_struct *task;
1137 	char buffer[PROC_NUMBUF];
1138 	unsigned long flags;
1139 	int oom_score_adj;
1140 	int err;
1141 
1142 	memset(buffer, 0, sizeof(buffer));
1143 	if (count > sizeof(buffer) - 1)
1144 		count = sizeof(buffer) - 1;
1145 	if (copy_from_user(buffer, buf, count)) {
1146 		err = -EFAULT;
1147 		goto out;
1148 	}
1149 
1150 	err = kstrtoint(strstrip(buffer), 0, &oom_score_adj);
1151 	if (err)
1152 		goto out;
1153 	if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
1154 			oom_score_adj > OOM_SCORE_ADJ_MAX) {
1155 		err = -EINVAL;
1156 		goto out;
1157 	}
1158 
1159 	task = get_proc_task(file_inode(file));
1160 	if (!task) {
1161 		err = -ESRCH;
1162 		goto out;
1163 	}
1164 
1165 	task_lock(task);
1166 	if (!task->mm) {
1167 		err = -EINVAL;
1168 		goto err_task_lock;
1169 	}
1170 
1171 	if (!lock_task_sighand(task, &flags)) {
1172 		err = -ESRCH;
1173 		goto err_task_lock;
1174 	}
1175 
1176 	if ((short)oom_score_adj < task->signal->oom_score_adj_min &&
1177 			!capable(CAP_SYS_RESOURCE)) {
1178 		err = -EACCES;
1179 		goto err_sighand;
1180 	}
1181 
1182 	task->signal->oom_score_adj = (short)oom_score_adj;
1183 	if (has_capability_noaudit(current, CAP_SYS_RESOURCE))
1184 		task->signal->oom_score_adj_min = (short)oom_score_adj;
1185 	trace_oom_score_adj_update(task);
1186 
1187 err_sighand:
1188 	unlock_task_sighand(task, &flags);
1189 err_task_lock:
1190 	task_unlock(task);
1191 	put_task_struct(task);
1192 out:
1193 	return err < 0 ? err : count;
1194 }
1195 
1196 static const struct file_operations proc_oom_score_adj_operations = {
1197 	.read		= oom_score_adj_read,
1198 	.write		= oom_score_adj_write,
1199 	.llseek		= default_llseek,
1200 };
1201 
1202 #ifdef CONFIG_AUDITSYSCALL
1203 #define TMPBUFLEN 21
1204 static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1205 				  size_t count, loff_t *ppos)
1206 {
1207 	struct inode * inode = file_inode(file);
1208 	struct task_struct *task = get_proc_task(inode);
1209 	ssize_t length;
1210 	char tmpbuf[TMPBUFLEN];
1211 
1212 	if (!task)
1213 		return -ESRCH;
1214 	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1215 			   from_kuid(file->f_cred->user_ns,
1216 				     audit_get_loginuid(task)));
1217 	put_task_struct(task);
1218 	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1219 }
1220 
1221 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1222 				   size_t count, loff_t *ppos)
1223 {
1224 	struct inode * inode = file_inode(file);
1225 	char *page, *tmp;
1226 	ssize_t length;
1227 	uid_t loginuid;
1228 	kuid_t kloginuid;
1229 
1230 	rcu_read_lock();
1231 	if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1232 		rcu_read_unlock();
1233 		return -EPERM;
1234 	}
1235 	rcu_read_unlock();
1236 
1237 	if (count >= PAGE_SIZE)
1238 		count = PAGE_SIZE - 1;
1239 
1240 	if (*ppos != 0) {
1241 		/* No partial writes. */
1242 		return -EINVAL;
1243 	}
1244 	page = (char*)__get_free_page(GFP_TEMPORARY);
1245 	if (!page)
1246 		return -ENOMEM;
1247 	length = -EFAULT;
1248 	if (copy_from_user(page, buf, count))
1249 		goto out_free_page;
1250 
1251 	page[count] = '\0';
1252 	loginuid = simple_strtoul(page, &tmp, 10);
1253 	if (tmp == page) {
1254 		length = -EINVAL;
1255 		goto out_free_page;
1256 
1257 	}
1258 
1259 	/* is userspace tring to explicitly UNSET the loginuid? */
1260 	if (loginuid == AUDIT_UID_UNSET) {
1261 		kloginuid = INVALID_UID;
1262 	} else {
1263 		kloginuid = make_kuid(file->f_cred->user_ns, loginuid);
1264 		if (!uid_valid(kloginuid)) {
1265 			length = -EINVAL;
1266 			goto out_free_page;
1267 		}
1268 	}
1269 
1270 	length = audit_set_loginuid(kloginuid);
1271 	if (likely(length == 0))
1272 		length = count;
1273 
1274 out_free_page:
1275 	free_page((unsigned long) page);
1276 	return length;
1277 }
1278 
1279 static const struct file_operations proc_loginuid_operations = {
1280 	.read		= proc_loginuid_read,
1281 	.write		= proc_loginuid_write,
1282 	.llseek		= generic_file_llseek,
1283 };
1284 
1285 static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1286 				  size_t count, loff_t *ppos)
1287 {
1288 	struct inode * inode = file_inode(file);
1289 	struct task_struct *task = get_proc_task(inode);
1290 	ssize_t length;
1291 	char tmpbuf[TMPBUFLEN];
1292 
1293 	if (!task)
1294 		return -ESRCH;
1295 	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1296 				audit_get_sessionid(task));
1297 	put_task_struct(task);
1298 	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1299 }
1300 
1301 static const struct file_operations proc_sessionid_operations = {
1302 	.read		= proc_sessionid_read,
1303 	.llseek		= generic_file_llseek,
1304 };
1305 #endif
1306 
1307 #ifdef CONFIG_FAULT_INJECTION
1308 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1309 				      size_t count, loff_t *ppos)
1310 {
1311 	struct task_struct *task = get_proc_task(file_inode(file));
1312 	char buffer[PROC_NUMBUF];
1313 	size_t len;
1314 	int make_it_fail;
1315 
1316 	if (!task)
1317 		return -ESRCH;
1318 	make_it_fail = task->make_it_fail;
1319 	put_task_struct(task);
1320 
1321 	len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1322 
1323 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1324 }
1325 
1326 static ssize_t proc_fault_inject_write(struct file * file,
1327 			const char __user * buf, size_t count, loff_t *ppos)
1328 {
1329 	struct task_struct *task;
1330 	char buffer[PROC_NUMBUF], *end;
1331 	int make_it_fail;
1332 
1333 	if (!capable(CAP_SYS_RESOURCE))
1334 		return -EPERM;
1335 	memset(buffer, 0, sizeof(buffer));
1336 	if (count > sizeof(buffer) - 1)
1337 		count = sizeof(buffer) - 1;
1338 	if (copy_from_user(buffer, buf, count))
1339 		return -EFAULT;
1340 	make_it_fail = simple_strtol(strstrip(buffer), &end, 0);
1341 	if (*end)
1342 		return -EINVAL;
1343 	if (make_it_fail < 0 || make_it_fail > 1)
1344 		return -EINVAL;
1345 
1346 	task = get_proc_task(file_inode(file));
1347 	if (!task)
1348 		return -ESRCH;
1349 	task->make_it_fail = make_it_fail;
1350 	put_task_struct(task);
1351 
1352 	return count;
1353 }
1354 
1355 static const struct file_operations proc_fault_inject_operations = {
1356 	.read		= proc_fault_inject_read,
1357 	.write		= proc_fault_inject_write,
1358 	.llseek		= generic_file_llseek,
1359 };
1360 #endif
1361 
1362 
1363 #ifdef CONFIG_SCHED_DEBUG
1364 /*
1365  * Print out various scheduling related per-task fields:
1366  */
1367 static int sched_show(struct seq_file *m, void *v)
1368 {
1369 	struct inode *inode = m->private;
1370 	struct task_struct *p;
1371 
1372 	p = get_proc_task(inode);
1373 	if (!p)
1374 		return -ESRCH;
1375 	proc_sched_show_task(p, m);
1376 
1377 	put_task_struct(p);
1378 
1379 	return 0;
1380 }
1381 
1382 static ssize_t
1383 sched_write(struct file *file, const char __user *buf,
1384 	    size_t count, loff_t *offset)
1385 {
1386 	struct inode *inode = file_inode(file);
1387 	struct task_struct *p;
1388 
1389 	p = get_proc_task(inode);
1390 	if (!p)
1391 		return -ESRCH;
1392 	proc_sched_set_task(p);
1393 
1394 	put_task_struct(p);
1395 
1396 	return count;
1397 }
1398 
1399 static int sched_open(struct inode *inode, struct file *filp)
1400 {
1401 	return single_open(filp, sched_show, inode);
1402 }
1403 
1404 static const struct file_operations proc_pid_sched_operations = {
1405 	.open		= sched_open,
1406 	.read		= seq_read,
1407 	.write		= sched_write,
1408 	.llseek		= seq_lseek,
1409 	.release	= single_release,
1410 };
1411 
1412 #endif
1413 
1414 #ifdef CONFIG_SCHED_AUTOGROUP
1415 /*
1416  * Print out autogroup related information:
1417  */
1418 static int sched_autogroup_show(struct seq_file *m, void *v)
1419 {
1420 	struct inode *inode = m->private;
1421 	struct task_struct *p;
1422 
1423 	p = get_proc_task(inode);
1424 	if (!p)
1425 		return -ESRCH;
1426 	proc_sched_autogroup_show_task(p, m);
1427 
1428 	put_task_struct(p);
1429 
1430 	return 0;
1431 }
1432 
1433 static ssize_t
1434 sched_autogroup_write(struct file *file, const char __user *buf,
1435 	    size_t count, loff_t *offset)
1436 {
1437 	struct inode *inode = file_inode(file);
1438 	struct task_struct *p;
1439 	char buffer[PROC_NUMBUF];
1440 	int nice;
1441 	int err;
1442 
1443 	memset(buffer, 0, sizeof(buffer));
1444 	if (count > sizeof(buffer) - 1)
1445 		count = sizeof(buffer) - 1;
1446 	if (copy_from_user(buffer, buf, count))
1447 		return -EFAULT;
1448 
1449 	err = kstrtoint(strstrip(buffer), 0, &nice);
1450 	if (err < 0)
1451 		return err;
1452 
1453 	p = get_proc_task(inode);
1454 	if (!p)
1455 		return -ESRCH;
1456 
1457 	err = proc_sched_autogroup_set_nice(p, nice);
1458 	if (err)
1459 		count = err;
1460 
1461 	put_task_struct(p);
1462 
1463 	return count;
1464 }
1465 
1466 static int sched_autogroup_open(struct inode *inode, struct file *filp)
1467 {
1468 	int ret;
1469 
1470 	ret = single_open(filp, sched_autogroup_show, NULL);
1471 	if (!ret) {
1472 		struct seq_file *m = filp->private_data;
1473 
1474 		m->private = inode;
1475 	}
1476 	return ret;
1477 }
1478 
1479 static const struct file_operations proc_pid_sched_autogroup_operations = {
1480 	.open		= sched_autogroup_open,
1481 	.read		= seq_read,
1482 	.write		= sched_autogroup_write,
1483 	.llseek		= seq_lseek,
1484 	.release	= single_release,
1485 };
1486 
1487 #endif /* CONFIG_SCHED_AUTOGROUP */
1488 
1489 static ssize_t comm_write(struct file *file, const char __user *buf,
1490 				size_t count, loff_t *offset)
1491 {
1492 	struct inode *inode = file_inode(file);
1493 	struct task_struct *p;
1494 	char buffer[TASK_COMM_LEN];
1495 	const size_t maxlen = sizeof(buffer) - 1;
1496 
1497 	memset(buffer, 0, sizeof(buffer));
1498 	if (copy_from_user(buffer, buf, count > maxlen ? maxlen : count))
1499 		return -EFAULT;
1500 
1501 	p = get_proc_task(inode);
1502 	if (!p)
1503 		return -ESRCH;
1504 
1505 	if (same_thread_group(current, p))
1506 		set_task_comm(p, buffer);
1507 	else
1508 		count = -EINVAL;
1509 
1510 	put_task_struct(p);
1511 
1512 	return count;
1513 }
1514 
1515 static int comm_show(struct seq_file *m, void *v)
1516 {
1517 	struct inode *inode = m->private;
1518 	struct task_struct *p;
1519 
1520 	p = get_proc_task(inode);
1521 	if (!p)
1522 		return -ESRCH;
1523 
1524 	task_lock(p);
1525 	seq_printf(m, "%s\n", p->comm);
1526 	task_unlock(p);
1527 
1528 	put_task_struct(p);
1529 
1530 	return 0;
1531 }
1532 
1533 static int comm_open(struct inode *inode, struct file *filp)
1534 {
1535 	return single_open(filp, comm_show, inode);
1536 }
1537 
1538 static const struct file_operations proc_pid_set_comm_operations = {
1539 	.open		= comm_open,
1540 	.read		= seq_read,
1541 	.write		= comm_write,
1542 	.llseek		= seq_lseek,
1543 	.release	= single_release,
1544 };
1545 
1546 static int proc_exe_link(struct dentry *dentry, struct path *exe_path)
1547 {
1548 	struct task_struct *task;
1549 	struct mm_struct *mm;
1550 	struct file *exe_file;
1551 
1552 	task = get_proc_task(d_inode(dentry));
1553 	if (!task)
1554 		return -ENOENT;
1555 	mm = get_task_mm(task);
1556 	put_task_struct(task);
1557 	if (!mm)
1558 		return -ENOENT;
1559 	exe_file = get_mm_exe_file(mm);
1560 	mmput(mm);
1561 	if (exe_file) {
1562 		*exe_path = exe_file->f_path;
1563 		path_get(&exe_file->f_path);
1564 		fput(exe_file);
1565 		return 0;
1566 	} else
1567 		return -ENOENT;
1568 }
1569 
1570 static const char *proc_pid_follow_link(struct dentry *dentry, void **cookie)
1571 {
1572 	struct inode *inode = d_inode(dentry);
1573 	struct path path;
1574 	int error = -EACCES;
1575 
1576 	/* Are we allowed to snoop on the tasks file descriptors? */
1577 	if (!proc_fd_access_allowed(inode))
1578 		goto out;
1579 
1580 	error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1581 	if (error)
1582 		goto out;
1583 
1584 	nd_jump_link(&path);
1585 	return NULL;
1586 out:
1587 	return ERR_PTR(error);
1588 }
1589 
1590 static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1591 {
1592 	char *tmp = (char*)__get_free_page(GFP_TEMPORARY);
1593 	char *pathname;
1594 	int len;
1595 
1596 	if (!tmp)
1597 		return -ENOMEM;
1598 
1599 	pathname = d_path(path, tmp, PAGE_SIZE);
1600 	len = PTR_ERR(pathname);
1601 	if (IS_ERR(pathname))
1602 		goto out;
1603 	len = tmp + PAGE_SIZE - 1 - pathname;
1604 
1605 	if (len > buflen)
1606 		len = buflen;
1607 	if (copy_to_user(buffer, pathname, len))
1608 		len = -EFAULT;
1609  out:
1610 	free_page((unsigned long)tmp);
1611 	return len;
1612 }
1613 
1614 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1615 {
1616 	int error = -EACCES;
1617 	struct inode *inode = d_inode(dentry);
1618 	struct path path;
1619 
1620 	/* Are we allowed to snoop on the tasks file descriptors? */
1621 	if (!proc_fd_access_allowed(inode))
1622 		goto out;
1623 
1624 	error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1625 	if (error)
1626 		goto out;
1627 
1628 	error = do_proc_readlink(&path, buffer, buflen);
1629 	path_put(&path);
1630 out:
1631 	return error;
1632 }
1633 
1634 const struct inode_operations proc_pid_link_inode_operations = {
1635 	.readlink	= proc_pid_readlink,
1636 	.follow_link	= proc_pid_follow_link,
1637 	.setattr	= proc_setattr,
1638 };
1639 
1640 
1641 /* building an inode */
1642 
1643 struct inode *proc_pid_make_inode(struct super_block * sb, struct task_struct *task)
1644 {
1645 	struct inode * inode;
1646 	struct proc_inode *ei;
1647 	const struct cred *cred;
1648 
1649 	/* We need a new inode */
1650 
1651 	inode = new_inode(sb);
1652 	if (!inode)
1653 		goto out;
1654 
1655 	/* Common stuff */
1656 	ei = PROC_I(inode);
1657 	inode->i_ino = get_next_ino();
1658 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
1659 	inode->i_op = &proc_def_inode_operations;
1660 
1661 	/*
1662 	 * grab the reference to task.
1663 	 */
1664 	ei->pid = get_task_pid(task, PIDTYPE_PID);
1665 	if (!ei->pid)
1666 		goto out_unlock;
1667 
1668 	if (task_dumpable(task)) {
1669 		rcu_read_lock();
1670 		cred = __task_cred(task);
1671 		inode->i_uid = cred->euid;
1672 		inode->i_gid = cred->egid;
1673 		rcu_read_unlock();
1674 	}
1675 	security_task_to_inode(task, inode);
1676 
1677 out:
1678 	return inode;
1679 
1680 out_unlock:
1681 	iput(inode);
1682 	return NULL;
1683 }
1684 
1685 int pid_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
1686 {
1687 	struct inode *inode = d_inode(dentry);
1688 	struct task_struct *task;
1689 	const struct cred *cred;
1690 	struct pid_namespace *pid = dentry->d_sb->s_fs_info;
1691 
1692 	generic_fillattr(inode, stat);
1693 
1694 	rcu_read_lock();
1695 	stat->uid = GLOBAL_ROOT_UID;
1696 	stat->gid = GLOBAL_ROOT_GID;
1697 	task = pid_task(proc_pid(inode), PIDTYPE_PID);
1698 	if (task) {
1699 		if (!has_pid_permissions(pid, task, 2)) {
1700 			rcu_read_unlock();
1701 			/*
1702 			 * This doesn't prevent learning whether PID exists,
1703 			 * it only makes getattr() consistent with readdir().
1704 			 */
1705 			return -ENOENT;
1706 		}
1707 		if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1708 		    task_dumpable(task)) {
1709 			cred = __task_cred(task);
1710 			stat->uid = cred->euid;
1711 			stat->gid = cred->egid;
1712 		}
1713 	}
1714 	rcu_read_unlock();
1715 	return 0;
1716 }
1717 
1718 /* dentry stuff */
1719 
1720 /*
1721  *	Exceptional case: normally we are not allowed to unhash a busy
1722  * directory. In this case, however, we can do it - no aliasing problems
1723  * due to the way we treat inodes.
1724  *
1725  * Rewrite the inode's ownerships here because the owning task may have
1726  * performed a setuid(), etc.
1727  *
1728  * Before the /proc/pid/status file was created the only way to read
1729  * the effective uid of a /process was to stat /proc/pid.  Reading
1730  * /proc/pid/status is slow enough that procps and other packages
1731  * kept stating /proc/pid.  To keep the rules in /proc simple I have
1732  * made this apply to all per process world readable and executable
1733  * directories.
1734  */
1735 int pid_revalidate(struct dentry *dentry, unsigned int flags)
1736 {
1737 	struct inode *inode;
1738 	struct task_struct *task;
1739 	const struct cred *cred;
1740 
1741 	if (flags & LOOKUP_RCU)
1742 		return -ECHILD;
1743 
1744 	inode = d_inode(dentry);
1745 	task = get_proc_task(inode);
1746 
1747 	if (task) {
1748 		if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1749 		    task_dumpable(task)) {
1750 			rcu_read_lock();
1751 			cred = __task_cred(task);
1752 			inode->i_uid = cred->euid;
1753 			inode->i_gid = cred->egid;
1754 			rcu_read_unlock();
1755 		} else {
1756 			inode->i_uid = GLOBAL_ROOT_UID;
1757 			inode->i_gid = GLOBAL_ROOT_GID;
1758 		}
1759 		inode->i_mode &= ~(S_ISUID | S_ISGID);
1760 		security_task_to_inode(task, inode);
1761 		put_task_struct(task);
1762 		return 1;
1763 	}
1764 	return 0;
1765 }
1766 
1767 static inline bool proc_inode_is_dead(struct inode *inode)
1768 {
1769 	return !proc_pid(inode)->tasks[PIDTYPE_PID].first;
1770 }
1771 
1772 int pid_delete_dentry(const struct dentry *dentry)
1773 {
1774 	/* Is the task we represent dead?
1775 	 * If so, then don't put the dentry on the lru list,
1776 	 * kill it immediately.
1777 	 */
1778 	return proc_inode_is_dead(d_inode(dentry));
1779 }
1780 
1781 const struct dentry_operations pid_dentry_operations =
1782 {
1783 	.d_revalidate	= pid_revalidate,
1784 	.d_delete	= pid_delete_dentry,
1785 };
1786 
1787 /* Lookups */
1788 
1789 /*
1790  * Fill a directory entry.
1791  *
1792  * If possible create the dcache entry and derive our inode number and
1793  * file type from dcache entry.
1794  *
1795  * Since all of the proc inode numbers are dynamically generated, the inode
1796  * numbers do not exist until the inode is cache.  This means creating the
1797  * the dcache entry in readdir is necessary to keep the inode numbers
1798  * reported by readdir in sync with the inode numbers reported
1799  * by stat.
1800  */
1801 bool proc_fill_cache(struct file *file, struct dir_context *ctx,
1802 	const char *name, int len,
1803 	instantiate_t instantiate, struct task_struct *task, const void *ptr)
1804 {
1805 	struct dentry *child, *dir = file->f_path.dentry;
1806 	struct qstr qname = QSTR_INIT(name, len);
1807 	struct inode *inode;
1808 	unsigned type;
1809 	ino_t ino;
1810 
1811 	child = d_hash_and_lookup(dir, &qname);
1812 	if (!child) {
1813 		child = d_alloc(dir, &qname);
1814 		if (!child)
1815 			goto end_instantiate;
1816 		if (instantiate(d_inode(dir), child, task, ptr) < 0) {
1817 			dput(child);
1818 			goto end_instantiate;
1819 		}
1820 	}
1821 	inode = d_inode(child);
1822 	ino = inode->i_ino;
1823 	type = inode->i_mode >> 12;
1824 	dput(child);
1825 	return dir_emit(ctx, name, len, ino, type);
1826 
1827 end_instantiate:
1828 	return dir_emit(ctx, name, len, 1, DT_UNKNOWN);
1829 }
1830 
1831 #ifdef CONFIG_CHECKPOINT_RESTORE
1832 
1833 /*
1834  * dname_to_vma_addr - maps a dentry name into two unsigned longs
1835  * which represent vma start and end addresses.
1836  */
1837 static int dname_to_vma_addr(struct dentry *dentry,
1838 			     unsigned long *start, unsigned long *end)
1839 {
1840 	if (sscanf(dentry->d_name.name, "%lx-%lx", start, end) != 2)
1841 		return -EINVAL;
1842 
1843 	return 0;
1844 }
1845 
1846 static int map_files_d_revalidate(struct dentry *dentry, unsigned int flags)
1847 {
1848 	unsigned long vm_start, vm_end;
1849 	bool exact_vma_exists = false;
1850 	struct mm_struct *mm = NULL;
1851 	struct task_struct *task;
1852 	const struct cred *cred;
1853 	struct inode *inode;
1854 	int status = 0;
1855 
1856 	if (flags & LOOKUP_RCU)
1857 		return -ECHILD;
1858 
1859 	if (!capable(CAP_SYS_ADMIN)) {
1860 		status = -EPERM;
1861 		goto out_notask;
1862 	}
1863 
1864 	inode = d_inode(dentry);
1865 	task = get_proc_task(inode);
1866 	if (!task)
1867 		goto out_notask;
1868 
1869 	mm = mm_access(task, PTRACE_MODE_READ);
1870 	if (IS_ERR_OR_NULL(mm))
1871 		goto out;
1872 
1873 	if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) {
1874 		down_read(&mm->mmap_sem);
1875 		exact_vma_exists = !!find_exact_vma(mm, vm_start, vm_end);
1876 		up_read(&mm->mmap_sem);
1877 	}
1878 
1879 	mmput(mm);
1880 
1881 	if (exact_vma_exists) {
1882 		if (task_dumpable(task)) {
1883 			rcu_read_lock();
1884 			cred = __task_cred(task);
1885 			inode->i_uid = cred->euid;
1886 			inode->i_gid = cred->egid;
1887 			rcu_read_unlock();
1888 		} else {
1889 			inode->i_uid = GLOBAL_ROOT_UID;
1890 			inode->i_gid = GLOBAL_ROOT_GID;
1891 		}
1892 		security_task_to_inode(task, inode);
1893 		status = 1;
1894 	}
1895 
1896 out:
1897 	put_task_struct(task);
1898 
1899 out_notask:
1900 	return status;
1901 }
1902 
1903 static const struct dentry_operations tid_map_files_dentry_operations = {
1904 	.d_revalidate	= map_files_d_revalidate,
1905 	.d_delete	= pid_delete_dentry,
1906 };
1907 
1908 static int proc_map_files_get_link(struct dentry *dentry, struct path *path)
1909 {
1910 	unsigned long vm_start, vm_end;
1911 	struct vm_area_struct *vma;
1912 	struct task_struct *task;
1913 	struct mm_struct *mm;
1914 	int rc;
1915 
1916 	rc = -ENOENT;
1917 	task = get_proc_task(d_inode(dentry));
1918 	if (!task)
1919 		goto out;
1920 
1921 	mm = get_task_mm(task);
1922 	put_task_struct(task);
1923 	if (!mm)
1924 		goto out;
1925 
1926 	rc = dname_to_vma_addr(dentry, &vm_start, &vm_end);
1927 	if (rc)
1928 		goto out_mmput;
1929 
1930 	rc = -ENOENT;
1931 	down_read(&mm->mmap_sem);
1932 	vma = find_exact_vma(mm, vm_start, vm_end);
1933 	if (vma && vma->vm_file) {
1934 		*path = vma->vm_file->f_path;
1935 		path_get(path);
1936 		rc = 0;
1937 	}
1938 	up_read(&mm->mmap_sem);
1939 
1940 out_mmput:
1941 	mmput(mm);
1942 out:
1943 	return rc;
1944 }
1945 
1946 struct map_files_info {
1947 	fmode_t		mode;
1948 	unsigned long	len;
1949 	unsigned char	name[4*sizeof(long)+2]; /* max: %lx-%lx\0 */
1950 };
1951 
1952 static int
1953 proc_map_files_instantiate(struct inode *dir, struct dentry *dentry,
1954 			   struct task_struct *task, const void *ptr)
1955 {
1956 	fmode_t mode = (fmode_t)(unsigned long)ptr;
1957 	struct proc_inode *ei;
1958 	struct inode *inode;
1959 
1960 	inode = proc_pid_make_inode(dir->i_sb, task);
1961 	if (!inode)
1962 		return -ENOENT;
1963 
1964 	ei = PROC_I(inode);
1965 	ei->op.proc_get_link = proc_map_files_get_link;
1966 
1967 	inode->i_op = &proc_pid_link_inode_operations;
1968 	inode->i_size = 64;
1969 	inode->i_mode = S_IFLNK;
1970 
1971 	if (mode & FMODE_READ)
1972 		inode->i_mode |= S_IRUSR;
1973 	if (mode & FMODE_WRITE)
1974 		inode->i_mode |= S_IWUSR;
1975 
1976 	d_set_d_op(dentry, &tid_map_files_dentry_operations);
1977 	d_add(dentry, inode);
1978 
1979 	return 0;
1980 }
1981 
1982 static struct dentry *proc_map_files_lookup(struct inode *dir,
1983 		struct dentry *dentry, unsigned int flags)
1984 {
1985 	unsigned long vm_start, vm_end;
1986 	struct vm_area_struct *vma;
1987 	struct task_struct *task;
1988 	int result;
1989 	struct mm_struct *mm;
1990 
1991 	result = -EPERM;
1992 	if (!capable(CAP_SYS_ADMIN))
1993 		goto out;
1994 
1995 	result = -ENOENT;
1996 	task = get_proc_task(dir);
1997 	if (!task)
1998 		goto out;
1999 
2000 	result = -EACCES;
2001 	if (!ptrace_may_access(task, PTRACE_MODE_READ))
2002 		goto out_put_task;
2003 
2004 	result = -ENOENT;
2005 	if (dname_to_vma_addr(dentry, &vm_start, &vm_end))
2006 		goto out_put_task;
2007 
2008 	mm = get_task_mm(task);
2009 	if (!mm)
2010 		goto out_put_task;
2011 
2012 	down_read(&mm->mmap_sem);
2013 	vma = find_exact_vma(mm, vm_start, vm_end);
2014 	if (!vma)
2015 		goto out_no_vma;
2016 
2017 	if (vma->vm_file)
2018 		result = proc_map_files_instantiate(dir, dentry, task,
2019 				(void *)(unsigned long)vma->vm_file->f_mode);
2020 
2021 out_no_vma:
2022 	up_read(&mm->mmap_sem);
2023 	mmput(mm);
2024 out_put_task:
2025 	put_task_struct(task);
2026 out:
2027 	return ERR_PTR(result);
2028 }
2029 
2030 static const struct inode_operations proc_map_files_inode_operations = {
2031 	.lookup		= proc_map_files_lookup,
2032 	.permission	= proc_fd_permission,
2033 	.setattr	= proc_setattr,
2034 };
2035 
2036 static int
2037 proc_map_files_readdir(struct file *file, struct dir_context *ctx)
2038 {
2039 	struct vm_area_struct *vma;
2040 	struct task_struct *task;
2041 	struct mm_struct *mm;
2042 	unsigned long nr_files, pos, i;
2043 	struct flex_array *fa = NULL;
2044 	struct map_files_info info;
2045 	struct map_files_info *p;
2046 	int ret;
2047 
2048 	ret = -EPERM;
2049 	if (!capable(CAP_SYS_ADMIN))
2050 		goto out;
2051 
2052 	ret = -ENOENT;
2053 	task = get_proc_task(file_inode(file));
2054 	if (!task)
2055 		goto out;
2056 
2057 	ret = -EACCES;
2058 	if (!ptrace_may_access(task, PTRACE_MODE_READ))
2059 		goto out_put_task;
2060 
2061 	ret = 0;
2062 	if (!dir_emit_dots(file, ctx))
2063 		goto out_put_task;
2064 
2065 	mm = get_task_mm(task);
2066 	if (!mm)
2067 		goto out_put_task;
2068 	down_read(&mm->mmap_sem);
2069 
2070 	nr_files = 0;
2071 
2072 	/*
2073 	 * We need two passes here:
2074 	 *
2075 	 *  1) Collect vmas of mapped files with mmap_sem taken
2076 	 *  2) Release mmap_sem and instantiate entries
2077 	 *
2078 	 * otherwise we get lockdep complained, since filldir()
2079 	 * routine might require mmap_sem taken in might_fault().
2080 	 */
2081 
2082 	for (vma = mm->mmap, pos = 2; vma; vma = vma->vm_next) {
2083 		if (vma->vm_file && ++pos > ctx->pos)
2084 			nr_files++;
2085 	}
2086 
2087 	if (nr_files) {
2088 		fa = flex_array_alloc(sizeof(info), nr_files,
2089 					GFP_KERNEL);
2090 		if (!fa || flex_array_prealloc(fa, 0, nr_files,
2091 						GFP_KERNEL)) {
2092 			ret = -ENOMEM;
2093 			if (fa)
2094 				flex_array_free(fa);
2095 			up_read(&mm->mmap_sem);
2096 			mmput(mm);
2097 			goto out_put_task;
2098 		}
2099 		for (i = 0, vma = mm->mmap, pos = 2; vma;
2100 				vma = vma->vm_next) {
2101 			if (!vma->vm_file)
2102 				continue;
2103 			if (++pos <= ctx->pos)
2104 				continue;
2105 
2106 			info.mode = vma->vm_file->f_mode;
2107 			info.len = snprintf(info.name,
2108 					sizeof(info.name), "%lx-%lx",
2109 					vma->vm_start, vma->vm_end);
2110 			if (flex_array_put(fa, i++, &info, GFP_KERNEL))
2111 				BUG();
2112 		}
2113 	}
2114 	up_read(&mm->mmap_sem);
2115 
2116 	for (i = 0; i < nr_files; i++) {
2117 		p = flex_array_get(fa, i);
2118 		if (!proc_fill_cache(file, ctx,
2119 				      p->name, p->len,
2120 				      proc_map_files_instantiate,
2121 				      task,
2122 				      (void *)(unsigned long)p->mode))
2123 			break;
2124 		ctx->pos++;
2125 	}
2126 	if (fa)
2127 		flex_array_free(fa);
2128 	mmput(mm);
2129 
2130 out_put_task:
2131 	put_task_struct(task);
2132 out:
2133 	return ret;
2134 }
2135 
2136 static const struct file_operations proc_map_files_operations = {
2137 	.read		= generic_read_dir,
2138 	.iterate	= proc_map_files_readdir,
2139 	.llseek		= default_llseek,
2140 };
2141 
2142 struct timers_private {
2143 	struct pid *pid;
2144 	struct task_struct *task;
2145 	struct sighand_struct *sighand;
2146 	struct pid_namespace *ns;
2147 	unsigned long flags;
2148 };
2149 
2150 static void *timers_start(struct seq_file *m, loff_t *pos)
2151 {
2152 	struct timers_private *tp = m->private;
2153 
2154 	tp->task = get_pid_task(tp->pid, PIDTYPE_PID);
2155 	if (!tp->task)
2156 		return ERR_PTR(-ESRCH);
2157 
2158 	tp->sighand = lock_task_sighand(tp->task, &tp->flags);
2159 	if (!tp->sighand)
2160 		return ERR_PTR(-ESRCH);
2161 
2162 	return seq_list_start(&tp->task->signal->posix_timers, *pos);
2163 }
2164 
2165 static void *timers_next(struct seq_file *m, void *v, loff_t *pos)
2166 {
2167 	struct timers_private *tp = m->private;
2168 	return seq_list_next(v, &tp->task->signal->posix_timers, pos);
2169 }
2170 
2171 static void timers_stop(struct seq_file *m, void *v)
2172 {
2173 	struct timers_private *tp = m->private;
2174 
2175 	if (tp->sighand) {
2176 		unlock_task_sighand(tp->task, &tp->flags);
2177 		tp->sighand = NULL;
2178 	}
2179 
2180 	if (tp->task) {
2181 		put_task_struct(tp->task);
2182 		tp->task = NULL;
2183 	}
2184 }
2185 
2186 static int show_timer(struct seq_file *m, void *v)
2187 {
2188 	struct k_itimer *timer;
2189 	struct timers_private *tp = m->private;
2190 	int notify;
2191 	static const char * const nstr[] = {
2192 		[SIGEV_SIGNAL] = "signal",
2193 		[SIGEV_NONE] = "none",
2194 		[SIGEV_THREAD] = "thread",
2195 	};
2196 
2197 	timer = list_entry((struct list_head *)v, struct k_itimer, list);
2198 	notify = timer->it_sigev_notify;
2199 
2200 	seq_printf(m, "ID: %d\n", timer->it_id);
2201 	seq_printf(m, "signal: %d/%p\n",
2202 		   timer->sigq->info.si_signo,
2203 		   timer->sigq->info.si_value.sival_ptr);
2204 	seq_printf(m, "notify: %s/%s.%d\n",
2205 		   nstr[notify & ~SIGEV_THREAD_ID],
2206 		   (notify & SIGEV_THREAD_ID) ? "tid" : "pid",
2207 		   pid_nr_ns(timer->it_pid, tp->ns));
2208 	seq_printf(m, "ClockID: %d\n", timer->it_clock);
2209 
2210 	return 0;
2211 }
2212 
2213 static const struct seq_operations proc_timers_seq_ops = {
2214 	.start	= timers_start,
2215 	.next	= timers_next,
2216 	.stop	= timers_stop,
2217 	.show	= show_timer,
2218 };
2219 
2220 static int proc_timers_open(struct inode *inode, struct file *file)
2221 {
2222 	struct timers_private *tp;
2223 
2224 	tp = __seq_open_private(file, &proc_timers_seq_ops,
2225 			sizeof(struct timers_private));
2226 	if (!tp)
2227 		return -ENOMEM;
2228 
2229 	tp->pid = proc_pid(inode);
2230 	tp->ns = inode->i_sb->s_fs_info;
2231 	return 0;
2232 }
2233 
2234 static const struct file_operations proc_timers_operations = {
2235 	.open		= proc_timers_open,
2236 	.read		= seq_read,
2237 	.llseek		= seq_lseek,
2238 	.release	= seq_release_private,
2239 };
2240 #endif /* CONFIG_CHECKPOINT_RESTORE */
2241 
2242 static int proc_pident_instantiate(struct inode *dir,
2243 	struct dentry *dentry, struct task_struct *task, const void *ptr)
2244 {
2245 	const struct pid_entry *p = ptr;
2246 	struct inode *inode;
2247 	struct proc_inode *ei;
2248 
2249 	inode = proc_pid_make_inode(dir->i_sb, task);
2250 	if (!inode)
2251 		goto out;
2252 
2253 	ei = PROC_I(inode);
2254 	inode->i_mode = p->mode;
2255 	if (S_ISDIR(inode->i_mode))
2256 		set_nlink(inode, 2);	/* Use getattr to fix if necessary */
2257 	if (p->iop)
2258 		inode->i_op = p->iop;
2259 	if (p->fop)
2260 		inode->i_fop = p->fop;
2261 	ei->op = p->op;
2262 	d_set_d_op(dentry, &pid_dentry_operations);
2263 	d_add(dentry, inode);
2264 	/* Close the race of the process dying before we return the dentry */
2265 	if (pid_revalidate(dentry, 0))
2266 		return 0;
2267 out:
2268 	return -ENOENT;
2269 }
2270 
2271 static struct dentry *proc_pident_lookup(struct inode *dir,
2272 					 struct dentry *dentry,
2273 					 const struct pid_entry *ents,
2274 					 unsigned int nents)
2275 {
2276 	int error;
2277 	struct task_struct *task = get_proc_task(dir);
2278 	const struct pid_entry *p, *last;
2279 
2280 	error = -ENOENT;
2281 
2282 	if (!task)
2283 		goto out_no_task;
2284 
2285 	/*
2286 	 * Yes, it does not scale. And it should not. Don't add
2287 	 * new entries into /proc/<tgid>/ without very good reasons.
2288 	 */
2289 	last = &ents[nents - 1];
2290 	for (p = ents; p <= last; p++) {
2291 		if (p->len != dentry->d_name.len)
2292 			continue;
2293 		if (!memcmp(dentry->d_name.name, p->name, p->len))
2294 			break;
2295 	}
2296 	if (p > last)
2297 		goto out;
2298 
2299 	error = proc_pident_instantiate(dir, dentry, task, p);
2300 out:
2301 	put_task_struct(task);
2302 out_no_task:
2303 	return ERR_PTR(error);
2304 }
2305 
2306 static int proc_pident_readdir(struct file *file, struct dir_context *ctx,
2307 		const struct pid_entry *ents, unsigned int nents)
2308 {
2309 	struct task_struct *task = get_proc_task(file_inode(file));
2310 	const struct pid_entry *p;
2311 
2312 	if (!task)
2313 		return -ENOENT;
2314 
2315 	if (!dir_emit_dots(file, ctx))
2316 		goto out;
2317 
2318 	if (ctx->pos >= nents + 2)
2319 		goto out;
2320 
2321 	for (p = ents + (ctx->pos - 2); p <= ents + nents - 1; p++) {
2322 		if (!proc_fill_cache(file, ctx, p->name, p->len,
2323 				proc_pident_instantiate, task, p))
2324 			break;
2325 		ctx->pos++;
2326 	}
2327 out:
2328 	put_task_struct(task);
2329 	return 0;
2330 }
2331 
2332 #ifdef CONFIG_SECURITY
2333 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2334 				  size_t count, loff_t *ppos)
2335 {
2336 	struct inode * inode = file_inode(file);
2337 	char *p = NULL;
2338 	ssize_t length;
2339 	struct task_struct *task = get_proc_task(inode);
2340 
2341 	if (!task)
2342 		return -ESRCH;
2343 
2344 	length = security_getprocattr(task,
2345 				      (char*)file->f_path.dentry->d_name.name,
2346 				      &p);
2347 	put_task_struct(task);
2348 	if (length > 0)
2349 		length = simple_read_from_buffer(buf, count, ppos, p, length);
2350 	kfree(p);
2351 	return length;
2352 }
2353 
2354 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2355 				   size_t count, loff_t *ppos)
2356 {
2357 	struct inode * inode = file_inode(file);
2358 	char *page;
2359 	ssize_t length;
2360 	struct task_struct *task = get_proc_task(inode);
2361 
2362 	length = -ESRCH;
2363 	if (!task)
2364 		goto out_no_task;
2365 	if (count > PAGE_SIZE)
2366 		count = PAGE_SIZE;
2367 
2368 	/* No partial writes. */
2369 	length = -EINVAL;
2370 	if (*ppos != 0)
2371 		goto out;
2372 
2373 	length = -ENOMEM;
2374 	page = (char*)__get_free_page(GFP_TEMPORARY);
2375 	if (!page)
2376 		goto out;
2377 
2378 	length = -EFAULT;
2379 	if (copy_from_user(page, buf, count))
2380 		goto out_free;
2381 
2382 	/* Guard against adverse ptrace interaction */
2383 	length = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
2384 	if (length < 0)
2385 		goto out_free;
2386 
2387 	length = security_setprocattr(task,
2388 				      (char*)file->f_path.dentry->d_name.name,
2389 				      (void*)page, count);
2390 	mutex_unlock(&task->signal->cred_guard_mutex);
2391 out_free:
2392 	free_page((unsigned long) page);
2393 out:
2394 	put_task_struct(task);
2395 out_no_task:
2396 	return length;
2397 }
2398 
2399 static const struct file_operations proc_pid_attr_operations = {
2400 	.read		= proc_pid_attr_read,
2401 	.write		= proc_pid_attr_write,
2402 	.llseek		= generic_file_llseek,
2403 };
2404 
2405 static const struct pid_entry attr_dir_stuff[] = {
2406 	REG("current",    S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2407 	REG("prev",       S_IRUGO,	   proc_pid_attr_operations),
2408 	REG("exec",       S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2409 	REG("fscreate",   S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2410 	REG("keycreate",  S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2411 	REG("sockcreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2412 };
2413 
2414 static int proc_attr_dir_readdir(struct file *file, struct dir_context *ctx)
2415 {
2416 	return proc_pident_readdir(file, ctx,
2417 				   attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2418 }
2419 
2420 static const struct file_operations proc_attr_dir_operations = {
2421 	.read		= generic_read_dir,
2422 	.iterate	= proc_attr_dir_readdir,
2423 	.llseek		= default_llseek,
2424 };
2425 
2426 static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2427 				struct dentry *dentry, unsigned int flags)
2428 {
2429 	return proc_pident_lookup(dir, dentry,
2430 				  attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2431 }
2432 
2433 static const struct inode_operations proc_attr_dir_inode_operations = {
2434 	.lookup		= proc_attr_dir_lookup,
2435 	.getattr	= pid_getattr,
2436 	.setattr	= proc_setattr,
2437 };
2438 
2439 #endif
2440 
2441 #ifdef CONFIG_ELF_CORE
2442 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2443 					 size_t count, loff_t *ppos)
2444 {
2445 	struct task_struct *task = get_proc_task(file_inode(file));
2446 	struct mm_struct *mm;
2447 	char buffer[PROC_NUMBUF];
2448 	size_t len;
2449 	int ret;
2450 
2451 	if (!task)
2452 		return -ESRCH;
2453 
2454 	ret = 0;
2455 	mm = get_task_mm(task);
2456 	if (mm) {
2457 		len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2458 			       ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2459 				MMF_DUMP_FILTER_SHIFT));
2460 		mmput(mm);
2461 		ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2462 	}
2463 
2464 	put_task_struct(task);
2465 
2466 	return ret;
2467 }
2468 
2469 static ssize_t proc_coredump_filter_write(struct file *file,
2470 					  const char __user *buf,
2471 					  size_t count,
2472 					  loff_t *ppos)
2473 {
2474 	struct task_struct *task;
2475 	struct mm_struct *mm;
2476 	char buffer[PROC_NUMBUF], *end;
2477 	unsigned int val;
2478 	int ret;
2479 	int i;
2480 	unsigned long mask;
2481 
2482 	ret = -EFAULT;
2483 	memset(buffer, 0, sizeof(buffer));
2484 	if (count > sizeof(buffer) - 1)
2485 		count = sizeof(buffer) - 1;
2486 	if (copy_from_user(buffer, buf, count))
2487 		goto out_no_task;
2488 
2489 	ret = -EINVAL;
2490 	val = (unsigned int)simple_strtoul(buffer, &end, 0);
2491 	if (*end == '\n')
2492 		end++;
2493 	if (end - buffer == 0)
2494 		goto out_no_task;
2495 
2496 	ret = -ESRCH;
2497 	task = get_proc_task(file_inode(file));
2498 	if (!task)
2499 		goto out_no_task;
2500 
2501 	ret = end - buffer;
2502 	mm = get_task_mm(task);
2503 	if (!mm)
2504 		goto out_no_mm;
2505 
2506 	for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2507 		if (val & mask)
2508 			set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2509 		else
2510 			clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2511 	}
2512 
2513 	mmput(mm);
2514  out_no_mm:
2515 	put_task_struct(task);
2516  out_no_task:
2517 	return ret;
2518 }
2519 
2520 static const struct file_operations proc_coredump_filter_operations = {
2521 	.read		= proc_coredump_filter_read,
2522 	.write		= proc_coredump_filter_write,
2523 	.llseek		= generic_file_llseek,
2524 };
2525 #endif
2526 
2527 #ifdef CONFIG_TASK_IO_ACCOUNTING
2528 static int do_io_accounting(struct task_struct *task, struct seq_file *m, int whole)
2529 {
2530 	struct task_io_accounting acct = task->ioac;
2531 	unsigned long flags;
2532 	int result;
2533 
2534 	result = mutex_lock_killable(&task->signal->cred_guard_mutex);
2535 	if (result)
2536 		return result;
2537 
2538 	if (!ptrace_may_access(task, PTRACE_MODE_READ)) {
2539 		result = -EACCES;
2540 		goto out_unlock;
2541 	}
2542 
2543 	if (whole && lock_task_sighand(task, &flags)) {
2544 		struct task_struct *t = task;
2545 
2546 		task_io_accounting_add(&acct, &task->signal->ioac);
2547 		while_each_thread(task, t)
2548 			task_io_accounting_add(&acct, &t->ioac);
2549 
2550 		unlock_task_sighand(task, &flags);
2551 	}
2552 	seq_printf(m,
2553 		   "rchar: %llu\n"
2554 		   "wchar: %llu\n"
2555 		   "syscr: %llu\n"
2556 		   "syscw: %llu\n"
2557 		   "read_bytes: %llu\n"
2558 		   "write_bytes: %llu\n"
2559 		   "cancelled_write_bytes: %llu\n",
2560 		   (unsigned long long)acct.rchar,
2561 		   (unsigned long long)acct.wchar,
2562 		   (unsigned long long)acct.syscr,
2563 		   (unsigned long long)acct.syscw,
2564 		   (unsigned long long)acct.read_bytes,
2565 		   (unsigned long long)acct.write_bytes,
2566 		   (unsigned long long)acct.cancelled_write_bytes);
2567 	result = 0;
2568 
2569 out_unlock:
2570 	mutex_unlock(&task->signal->cred_guard_mutex);
2571 	return result;
2572 }
2573 
2574 static int proc_tid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2575 				  struct pid *pid, struct task_struct *task)
2576 {
2577 	return do_io_accounting(task, m, 0);
2578 }
2579 
2580 static int proc_tgid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2581 				   struct pid *pid, struct task_struct *task)
2582 {
2583 	return do_io_accounting(task, m, 1);
2584 }
2585 #endif /* CONFIG_TASK_IO_ACCOUNTING */
2586 
2587 #ifdef CONFIG_USER_NS
2588 static int proc_id_map_open(struct inode *inode, struct file *file,
2589 	const struct seq_operations *seq_ops)
2590 {
2591 	struct user_namespace *ns = NULL;
2592 	struct task_struct *task;
2593 	struct seq_file *seq;
2594 	int ret = -EINVAL;
2595 
2596 	task = get_proc_task(inode);
2597 	if (task) {
2598 		rcu_read_lock();
2599 		ns = get_user_ns(task_cred_xxx(task, user_ns));
2600 		rcu_read_unlock();
2601 		put_task_struct(task);
2602 	}
2603 	if (!ns)
2604 		goto err;
2605 
2606 	ret = seq_open(file, seq_ops);
2607 	if (ret)
2608 		goto err_put_ns;
2609 
2610 	seq = file->private_data;
2611 	seq->private = ns;
2612 
2613 	return 0;
2614 err_put_ns:
2615 	put_user_ns(ns);
2616 err:
2617 	return ret;
2618 }
2619 
2620 static int proc_id_map_release(struct inode *inode, struct file *file)
2621 {
2622 	struct seq_file *seq = file->private_data;
2623 	struct user_namespace *ns = seq->private;
2624 	put_user_ns(ns);
2625 	return seq_release(inode, file);
2626 }
2627 
2628 static int proc_uid_map_open(struct inode *inode, struct file *file)
2629 {
2630 	return proc_id_map_open(inode, file, &proc_uid_seq_operations);
2631 }
2632 
2633 static int proc_gid_map_open(struct inode *inode, struct file *file)
2634 {
2635 	return proc_id_map_open(inode, file, &proc_gid_seq_operations);
2636 }
2637 
2638 static int proc_projid_map_open(struct inode *inode, struct file *file)
2639 {
2640 	return proc_id_map_open(inode, file, &proc_projid_seq_operations);
2641 }
2642 
2643 static const struct file_operations proc_uid_map_operations = {
2644 	.open		= proc_uid_map_open,
2645 	.write		= proc_uid_map_write,
2646 	.read		= seq_read,
2647 	.llseek		= seq_lseek,
2648 	.release	= proc_id_map_release,
2649 };
2650 
2651 static const struct file_operations proc_gid_map_operations = {
2652 	.open		= proc_gid_map_open,
2653 	.write		= proc_gid_map_write,
2654 	.read		= seq_read,
2655 	.llseek		= seq_lseek,
2656 	.release	= proc_id_map_release,
2657 };
2658 
2659 static const struct file_operations proc_projid_map_operations = {
2660 	.open		= proc_projid_map_open,
2661 	.write		= proc_projid_map_write,
2662 	.read		= seq_read,
2663 	.llseek		= seq_lseek,
2664 	.release	= proc_id_map_release,
2665 };
2666 
2667 static int proc_setgroups_open(struct inode *inode, struct file *file)
2668 {
2669 	struct user_namespace *ns = NULL;
2670 	struct task_struct *task;
2671 	int ret;
2672 
2673 	ret = -ESRCH;
2674 	task = get_proc_task(inode);
2675 	if (task) {
2676 		rcu_read_lock();
2677 		ns = get_user_ns(task_cred_xxx(task, user_ns));
2678 		rcu_read_unlock();
2679 		put_task_struct(task);
2680 	}
2681 	if (!ns)
2682 		goto err;
2683 
2684 	if (file->f_mode & FMODE_WRITE) {
2685 		ret = -EACCES;
2686 		if (!ns_capable(ns, CAP_SYS_ADMIN))
2687 			goto err_put_ns;
2688 	}
2689 
2690 	ret = single_open(file, &proc_setgroups_show, ns);
2691 	if (ret)
2692 		goto err_put_ns;
2693 
2694 	return 0;
2695 err_put_ns:
2696 	put_user_ns(ns);
2697 err:
2698 	return ret;
2699 }
2700 
2701 static int proc_setgroups_release(struct inode *inode, struct file *file)
2702 {
2703 	struct seq_file *seq = file->private_data;
2704 	struct user_namespace *ns = seq->private;
2705 	int ret = single_release(inode, file);
2706 	put_user_ns(ns);
2707 	return ret;
2708 }
2709 
2710 static const struct file_operations proc_setgroups_operations = {
2711 	.open		= proc_setgroups_open,
2712 	.write		= proc_setgroups_write,
2713 	.read		= seq_read,
2714 	.llseek		= seq_lseek,
2715 	.release	= proc_setgroups_release,
2716 };
2717 #endif /* CONFIG_USER_NS */
2718 
2719 static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
2720 				struct pid *pid, struct task_struct *task)
2721 {
2722 	int err = lock_trace(task);
2723 	if (!err) {
2724 		seq_printf(m, "%08x\n", task->personality);
2725 		unlock_trace(task);
2726 	}
2727 	return err;
2728 }
2729 
2730 /*
2731  * Thread groups
2732  */
2733 static const struct file_operations proc_task_operations;
2734 static const struct inode_operations proc_task_inode_operations;
2735 
2736 static const struct pid_entry tgid_base_stuff[] = {
2737 	DIR("task",       S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
2738 	DIR("fd",         S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
2739 #ifdef CONFIG_CHECKPOINT_RESTORE
2740 	DIR("map_files",  S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations),
2741 #endif
2742 	DIR("fdinfo",     S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
2743 	DIR("ns",	  S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
2744 #ifdef CONFIG_NET
2745 	DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
2746 #endif
2747 	REG("environ",    S_IRUSR, proc_environ_operations),
2748 	ONE("auxv",       S_IRUSR, proc_pid_auxv),
2749 	ONE("status",     S_IRUGO, proc_pid_status),
2750 	ONE("personality", S_IRUSR, proc_pid_personality),
2751 	ONE("limits",	  S_IRUGO, proc_pid_limits),
2752 #ifdef CONFIG_SCHED_DEBUG
2753 	REG("sched",      S_IRUGO|S_IWUSR, proc_pid_sched_operations),
2754 #endif
2755 #ifdef CONFIG_SCHED_AUTOGROUP
2756 	REG("autogroup",  S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations),
2757 #endif
2758 	REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
2759 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2760 	ONE("syscall",    S_IRUSR, proc_pid_syscall),
2761 #endif
2762 	REG("cmdline",    S_IRUGO, proc_pid_cmdline_ops),
2763 	ONE("stat",       S_IRUGO, proc_tgid_stat),
2764 	ONE("statm",      S_IRUGO, proc_pid_statm),
2765 	REG("maps",       S_IRUGO, proc_pid_maps_operations),
2766 #ifdef CONFIG_NUMA
2767 	REG("numa_maps",  S_IRUGO, proc_pid_numa_maps_operations),
2768 #endif
2769 	REG("mem",        S_IRUSR|S_IWUSR, proc_mem_operations),
2770 	LNK("cwd",        proc_cwd_link),
2771 	LNK("root",       proc_root_link),
2772 	LNK("exe",        proc_exe_link),
2773 	REG("mounts",     S_IRUGO, proc_mounts_operations),
2774 	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
2775 	REG("mountstats", S_IRUSR, proc_mountstats_operations),
2776 #ifdef CONFIG_PROC_PAGE_MONITOR
2777 	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
2778 	REG("smaps",      S_IRUGO, proc_pid_smaps_operations),
2779 	REG("pagemap",    S_IRUSR, proc_pagemap_operations),
2780 #endif
2781 #ifdef CONFIG_SECURITY
2782 	DIR("attr",       S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
2783 #endif
2784 #ifdef CONFIG_KALLSYMS
2785 	ONE("wchan",      S_IRUGO, proc_pid_wchan),
2786 #endif
2787 #ifdef CONFIG_STACKTRACE
2788 	ONE("stack",      S_IRUSR, proc_pid_stack),
2789 #endif
2790 #ifdef CONFIG_SCHEDSTATS
2791 	ONE("schedstat",  S_IRUGO, proc_pid_schedstat),
2792 #endif
2793 #ifdef CONFIG_LATENCYTOP
2794 	REG("latency",  S_IRUGO, proc_lstats_operations),
2795 #endif
2796 #ifdef CONFIG_PROC_PID_CPUSET
2797 	ONE("cpuset",     S_IRUGO, proc_cpuset_show),
2798 #endif
2799 #ifdef CONFIG_CGROUPS
2800 	ONE("cgroup",  S_IRUGO, proc_cgroup_show),
2801 #endif
2802 	ONE("oom_score",  S_IRUGO, proc_oom_score),
2803 	REG("oom_adj",    S_IRUGO|S_IWUSR, proc_oom_adj_operations),
2804 	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
2805 #ifdef CONFIG_AUDITSYSCALL
2806 	REG("loginuid",   S_IWUSR|S_IRUGO, proc_loginuid_operations),
2807 	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
2808 #endif
2809 #ifdef CONFIG_FAULT_INJECTION
2810 	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
2811 #endif
2812 #ifdef CONFIG_ELF_CORE
2813 	REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
2814 #endif
2815 #ifdef CONFIG_TASK_IO_ACCOUNTING
2816 	ONE("io",	S_IRUSR, proc_tgid_io_accounting),
2817 #endif
2818 #ifdef CONFIG_HARDWALL
2819 	ONE("hardwall",   S_IRUGO, proc_pid_hardwall),
2820 #endif
2821 #ifdef CONFIG_USER_NS
2822 	REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
2823 	REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
2824 	REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
2825 	REG("setgroups",  S_IRUGO|S_IWUSR, proc_setgroups_operations),
2826 #endif
2827 #ifdef CONFIG_CHECKPOINT_RESTORE
2828 	REG("timers",	  S_IRUGO, proc_timers_operations),
2829 #endif
2830 };
2831 
2832 static int proc_tgid_base_readdir(struct file *file, struct dir_context *ctx)
2833 {
2834 	return proc_pident_readdir(file, ctx,
2835 				   tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
2836 }
2837 
2838 static const struct file_operations proc_tgid_base_operations = {
2839 	.read		= generic_read_dir,
2840 	.iterate	= proc_tgid_base_readdir,
2841 	.llseek		= default_llseek,
2842 };
2843 
2844 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
2845 {
2846 	return proc_pident_lookup(dir, dentry,
2847 				  tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
2848 }
2849 
2850 static const struct inode_operations proc_tgid_base_inode_operations = {
2851 	.lookup		= proc_tgid_base_lookup,
2852 	.getattr	= pid_getattr,
2853 	.setattr	= proc_setattr,
2854 	.permission	= proc_pid_permission,
2855 };
2856 
2857 static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid)
2858 {
2859 	struct dentry *dentry, *leader, *dir;
2860 	char buf[PROC_NUMBUF];
2861 	struct qstr name;
2862 
2863 	name.name = buf;
2864 	name.len = snprintf(buf, sizeof(buf), "%d", pid);
2865 	/* no ->d_hash() rejects on procfs */
2866 	dentry = d_hash_and_lookup(mnt->mnt_root, &name);
2867 	if (dentry) {
2868 		d_invalidate(dentry);
2869 		dput(dentry);
2870 	}
2871 
2872 	if (pid == tgid)
2873 		return;
2874 
2875 	name.name = buf;
2876 	name.len = snprintf(buf, sizeof(buf), "%d", tgid);
2877 	leader = d_hash_and_lookup(mnt->mnt_root, &name);
2878 	if (!leader)
2879 		goto out;
2880 
2881 	name.name = "task";
2882 	name.len = strlen(name.name);
2883 	dir = d_hash_and_lookup(leader, &name);
2884 	if (!dir)
2885 		goto out_put_leader;
2886 
2887 	name.name = buf;
2888 	name.len = snprintf(buf, sizeof(buf), "%d", pid);
2889 	dentry = d_hash_and_lookup(dir, &name);
2890 	if (dentry) {
2891 		d_invalidate(dentry);
2892 		dput(dentry);
2893 	}
2894 
2895 	dput(dir);
2896 out_put_leader:
2897 	dput(leader);
2898 out:
2899 	return;
2900 }
2901 
2902 /**
2903  * proc_flush_task -  Remove dcache entries for @task from the /proc dcache.
2904  * @task: task that should be flushed.
2905  *
2906  * When flushing dentries from proc, one needs to flush them from global
2907  * proc (proc_mnt) and from all the namespaces' procs this task was seen
2908  * in. This call is supposed to do all of this job.
2909  *
2910  * Looks in the dcache for
2911  * /proc/@pid
2912  * /proc/@tgid/task/@pid
2913  * if either directory is present flushes it and all of it'ts children
2914  * from the dcache.
2915  *
2916  * It is safe and reasonable to cache /proc entries for a task until
2917  * that task exits.  After that they just clog up the dcache with
2918  * useless entries, possibly causing useful dcache entries to be
2919  * flushed instead.  This routine is proved to flush those useless
2920  * dcache entries at process exit time.
2921  *
2922  * NOTE: This routine is just an optimization so it does not guarantee
2923  *       that no dcache entries will exist at process exit time it
2924  *       just makes it very unlikely that any will persist.
2925  */
2926 
2927 void proc_flush_task(struct task_struct *task)
2928 {
2929 	int i;
2930 	struct pid *pid, *tgid;
2931 	struct upid *upid;
2932 
2933 	pid = task_pid(task);
2934 	tgid = task_tgid(task);
2935 
2936 	for (i = 0; i <= pid->level; i++) {
2937 		upid = &pid->numbers[i];
2938 		proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr,
2939 					tgid->numbers[i].nr);
2940 	}
2941 }
2942 
2943 static int proc_pid_instantiate(struct inode *dir,
2944 				   struct dentry * dentry,
2945 				   struct task_struct *task, const void *ptr)
2946 {
2947 	struct inode *inode;
2948 
2949 	inode = proc_pid_make_inode(dir->i_sb, task);
2950 	if (!inode)
2951 		goto out;
2952 
2953 	inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
2954 	inode->i_op = &proc_tgid_base_inode_operations;
2955 	inode->i_fop = &proc_tgid_base_operations;
2956 	inode->i_flags|=S_IMMUTABLE;
2957 
2958 	set_nlink(inode, 2 + pid_entry_count_dirs(tgid_base_stuff,
2959 						  ARRAY_SIZE(tgid_base_stuff)));
2960 
2961 	d_set_d_op(dentry, &pid_dentry_operations);
2962 
2963 	d_add(dentry, inode);
2964 	/* Close the race of the process dying before we return the dentry */
2965 	if (pid_revalidate(dentry, 0))
2966 		return 0;
2967 out:
2968 	return -ENOENT;
2969 }
2970 
2971 struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
2972 {
2973 	int result = -ENOENT;
2974 	struct task_struct *task;
2975 	unsigned tgid;
2976 	struct pid_namespace *ns;
2977 
2978 	tgid = name_to_int(&dentry->d_name);
2979 	if (tgid == ~0U)
2980 		goto out;
2981 
2982 	ns = dentry->d_sb->s_fs_info;
2983 	rcu_read_lock();
2984 	task = find_task_by_pid_ns(tgid, ns);
2985 	if (task)
2986 		get_task_struct(task);
2987 	rcu_read_unlock();
2988 	if (!task)
2989 		goto out;
2990 
2991 	result = proc_pid_instantiate(dir, dentry, task, NULL);
2992 	put_task_struct(task);
2993 out:
2994 	return ERR_PTR(result);
2995 }
2996 
2997 /*
2998  * Find the first task with tgid >= tgid
2999  *
3000  */
3001 struct tgid_iter {
3002 	unsigned int tgid;
3003 	struct task_struct *task;
3004 };
3005 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
3006 {
3007 	struct pid *pid;
3008 
3009 	if (iter.task)
3010 		put_task_struct(iter.task);
3011 	rcu_read_lock();
3012 retry:
3013 	iter.task = NULL;
3014 	pid = find_ge_pid(iter.tgid, ns);
3015 	if (pid) {
3016 		iter.tgid = pid_nr_ns(pid, ns);
3017 		iter.task = pid_task(pid, PIDTYPE_PID);
3018 		/* What we to know is if the pid we have find is the
3019 		 * pid of a thread_group_leader.  Testing for task
3020 		 * being a thread_group_leader is the obvious thing
3021 		 * todo but there is a window when it fails, due to
3022 		 * the pid transfer logic in de_thread.
3023 		 *
3024 		 * So we perform the straight forward test of seeing
3025 		 * if the pid we have found is the pid of a thread
3026 		 * group leader, and don't worry if the task we have
3027 		 * found doesn't happen to be a thread group leader.
3028 		 * As we don't care in the case of readdir.
3029 		 */
3030 		if (!iter.task || !has_group_leader_pid(iter.task)) {
3031 			iter.tgid += 1;
3032 			goto retry;
3033 		}
3034 		get_task_struct(iter.task);
3035 	}
3036 	rcu_read_unlock();
3037 	return iter;
3038 }
3039 
3040 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + 2)
3041 
3042 /* for the /proc/ directory itself, after non-process stuff has been done */
3043 int proc_pid_readdir(struct file *file, struct dir_context *ctx)
3044 {
3045 	struct tgid_iter iter;
3046 	struct pid_namespace *ns = file_inode(file)->i_sb->s_fs_info;
3047 	loff_t pos = ctx->pos;
3048 
3049 	if (pos >= PID_MAX_LIMIT + TGID_OFFSET)
3050 		return 0;
3051 
3052 	if (pos == TGID_OFFSET - 2) {
3053 		struct inode *inode = d_inode(ns->proc_self);
3054 		if (!dir_emit(ctx, "self", 4, inode->i_ino, DT_LNK))
3055 			return 0;
3056 		ctx->pos = pos = pos + 1;
3057 	}
3058 	if (pos == TGID_OFFSET - 1) {
3059 		struct inode *inode = d_inode(ns->proc_thread_self);
3060 		if (!dir_emit(ctx, "thread-self", 11, inode->i_ino, DT_LNK))
3061 			return 0;
3062 		ctx->pos = pos = pos + 1;
3063 	}
3064 	iter.tgid = pos - TGID_OFFSET;
3065 	iter.task = NULL;
3066 	for (iter = next_tgid(ns, iter);
3067 	     iter.task;
3068 	     iter.tgid += 1, iter = next_tgid(ns, iter)) {
3069 		char name[PROC_NUMBUF];
3070 		int len;
3071 		if (!has_pid_permissions(ns, iter.task, 2))
3072 			continue;
3073 
3074 		len = snprintf(name, sizeof(name), "%d", iter.tgid);
3075 		ctx->pos = iter.tgid + TGID_OFFSET;
3076 		if (!proc_fill_cache(file, ctx, name, len,
3077 				     proc_pid_instantiate, iter.task, NULL)) {
3078 			put_task_struct(iter.task);
3079 			return 0;
3080 		}
3081 	}
3082 	ctx->pos = PID_MAX_LIMIT + TGID_OFFSET;
3083 	return 0;
3084 }
3085 
3086 /*
3087  * Tasks
3088  */
3089 static const struct pid_entry tid_base_stuff[] = {
3090 	DIR("fd",        S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3091 	DIR("fdinfo",    S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3092 	DIR("ns",	 S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3093 #ifdef CONFIG_NET
3094 	DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
3095 #endif
3096 	REG("environ",   S_IRUSR, proc_environ_operations),
3097 	ONE("auxv",      S_IRUSR, proc_pid_auxv),
3098 	ONE("status",    S_IRUGO, proc_pid_status),
3099 	ONE("personality", S_IRUSR, proc_pid_personality),
3100 	ONE("limits",	 S_IRUGO, proc_pid_limits),
3101 #ifdef CONFIG_SCHED_DEBUG
3102 	REG("sched",     S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3103 #endif
3104 	REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
3105 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3106 	ONE("syscall",   S_IRUSR, proc_pid_syscall),
3107 #endif
3108 	REG("cmdline",   S_IRUGO, proc_pid_cmdline_ops),
3109 	ONE("stat",      S_IRUGO, proc_tid_stat),
3110 	ONE("statm",     S_IRUGO, proc_pid_statm),
3111 	REG("maps",      S_IRUGO, proc_tid_maps_operations),
3112 #ifdef CONFIG_PROC_CHILDREN
3113 	REG("children",  S_IRUGO, proc_tid_children_operations),
3114 #endif
3115 #ifdef CONFIG_NUMA
3116 	REG("numa_maps", S_IRUGO, proc_tid_numa_maps_operations),
3117 #endif
3118 	REG("mem",       S_IRUSR|S_IWUSR, proc_mem_operations),
3119 	LNK("cwd",       proc_cwd_link),
3120 	LNK("root",      proc_root_link),
3121 	LNK("exe",       proc_exe_link),
3122 	REG("mounts",    S_IRUGO, proc_mounts_operations),
3123 	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
3124 #ifdef CONFIG_PROC_PAGE_MONITOR
3125 	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3126 	REG("smaps",     S_IRUGO, proc_tid_smaps_operations),
3127 	REG("pagemap",    S_IRUSR, proc_pagemap_operations),
3128 #endif
3129 #ifdef CONFIG_SECURITY
3130 	DIR("attr",      S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3131 #endif
3132 #ifdef CONFIG_KALLSYMS
3133 	ONE("wchan",     S_IRUGO, proc_pid_wchan),
3134 #endif
3135 #ifdef CONFIG_STACKTRACE
3136 	ONE("stack",      S_IRUSR, proc_pid_stack),
3137 #endif
3138 #ifdef CONFIG_SCHEDSTATS
3139 	ONE("schedstat", S_IRUGO, proc_pid_schedstat),
3140 #endif
3141 #ifdef CONFIG_LATENCYTOP
3142 	REG("latency",  S_IRUGO, proc_lstats_operations),
3143 #endif
3144 #ifdef CONFIG_PROC_PID_CPUSET
3145 	ONE("cpuset",    S_IRUGO, proc_cpuset_show),
3146 #endif
3147 #ifdef CONFIG_CGROUPS
3148 	ONE("cgroup",  S_IRUGO, proc_cgroup_show),
3149 #endif
3150 	ONE("oom_score", S_IRUGO, proc_oom_score),
3151 	REG("oom_adj",   S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3152 	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3153 #ifdef CONFIG_AUDITSYSCALL
3154 	REG("loginuid",  S_IWUSR|S_IRUGO, proc_loginuid_operations),
3155 	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
3156 #endif
3157 #ifdef CONFIG_FAULT_INJECTION
3158 	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3159 #endif
3160 #ifdef CONFIG_TASK_IO_ACCOUNTING
3161 	ONE("io",	S_IRUSR, proc_tid_io_accounting),
3162 #endif
3163 #ifdef CONFIG_HARDWALL
3164 	ONE("hardwall",   S_IRUGO, proc_pid_hardwall),
3165 #endif
3166 #ifdef CONFIG_USER_NS
3167 	REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
3168 	REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
3169 	REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3170 	REG("setgroups",  S_IRUGO|S_IWUSR, proc_setgroups_operations),
3171 #endif
3172 };
3173 
3174 static int proc_tid_base_readdir(struct file *file, struct dir_context *ctx)
3175 {
3176 	return proc_pident_readdir(file, ctx,
3177 				   tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3178 }
3179 
3180 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3181 {
3182 	return proc_pident_lookup(dir, dentry,
3183 				  tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3184 }
3185 
3186 static const struct file_operations proc_tid_base_operations = {
3187 	.read		= generic_read_dir,
3188 	.iterate	= proc_tid_base_readdir,
3189 	.llseek		= default_llseek,
3190 };
3191 
3192 static const struct inode_operations proc_tid_base_inode_operations = {
3193 	.lookup		= proc_tid_base_lookup,
3194 	.getattr	= pid_getattr,
3195 	.setattr	= proc_setattr,
3196 };
3197 
3198 static int proc_task_instantiate(struct inode *dir,
3199 	struct dentry *dentry, struct task_struct *task, const void *ptr)
3200 {
3201 	struct inode *inode;
3202 	inode = proc_pid_make_inode(dir->i_sb, task);
3203 
3204 	if (!inode)
3205 		goto out;
3206 	inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
3207 	inode->i_op = &proc_tid_base_inode_operations;
3208 	inode->i_fop = &proc_tid_base_operations;
3209 	inode->i_flags|=S_IMMUTABLE;
3210 
3211 	set_nlink(inode, 2 + pid_entry_count_dirs(tid_base_stuff,
3212 						  ARRAY_SIZE(tid_base_stuff)));
3213 
3214 	d_set_d_op(dentry, &pid_dentry_operations);
3215 
3216 	d_add(dentry, inode);
3217 	/* Close the race of the process dying before we return the dentry */
3218 	if (pid_revalidate(dentry, 0))
3219 		return 0;
3220 out:
3221 	return -ENOENT;
3222 }
3223 
3224 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3225 {
3226 	int result = -ENOENT;
3227 	struct task_struct *task;
3228 	struct task_struct *leader = get_proc_task(dir);
3229 	unsigned tid;
3230 	struct pid_namespace *ns;
3231 
3232 	if (!leader)
3233 		goto out_no_task;
3234 
3235 	tid = name_to_int(&dentry->d_name);
3236 	if (tid == ~0U)
3237 		goto out;
3238 
3239 	ns = dentry->d_sb->s_fs_info;
3240 	rcu_read_lock();
3241 	task = find_task_by_pid_ns(tid, ns);
3242 	if (task)
3243 		get_task_struct(task);
3244 	rcu_read_unlock();
3245 	if (!task)
3246 		goto out;
3247 	if (!same_thread_group(leader, task))
3248 		goto out_drop_task;
3249 
3250 	result = proc_task_instantiate(dir, dentry, task, NULL);
3251 out_drop_task:
3252 	put_task_struct(task);
3253 out:
3254 	put_task_struct(leader);
3255 out_no_task:
3256 	return ERR_PTR(result);
3257 }
3258 
3259 /*
3260  * Find the first tid of a thread group to return to user space.
3261  *
3262  * Usually this is just the thread group leader, but if the users
3263  * buffer was too small or there was a seek into the middle of the
3264  * directory we have more work todo.
3265  *
3266  * In the case of a short read we start with find_task_by_pid.
3267  *
3268  * In the case of a seek we start with the leader and walk nr
3269  * threads past it.
3270  */
3271 static struct task_struct *first_tid(struct pid *pid, int tid, loff_t f_pos,
3272 					struct pid_namespace *ns)
3273 {
3274 	struct task_struct *pos, *task;
3275 	unsigned long nr = f_pos;
3276 
3277 	if (nr != f_pos)	/* 32bit overflow? */
3278 		return NULL;
3279 
3280 	rcu_read_lock();
3281 	task = pid_task(pid, PIDTYPE_PID);
3282 	if (!task)
3283 		goto fail;
3284 
3285 	/* Attempt to start with the tid of a thread */
3286 	if (tid && nr) {
3287 		pos = find_task_by_pid_ns(tid, ns);
3288 		if (pos && same_thread_group(pos, task))
3289 			goto found;
3290 	}
3291 
3292 	/* If nr exceeds the number of threads there is nothing todo */
3293 	if (nr >= get_nr_threads(task))
3294 		goto fail;
3295 
3296 	/* If we haven't found our starting place yet start
3297 	 * with the leader and walk nr threads forward.
3298 	 */
3299 	pos = task = task->group_leader;
3300 	do {
3301 		if (!nr--)
3302 			goto found;
3303 	} while_each_thread(task, pos);
3304 fail:
3305 	pos = NULL;
3306 	goto out;
3307 found:
3308 	get_task_struct(pos);
3309 out:
3310 	rcu_read_unlock();
3311 	return pos;
3312 }
3313 
3314 /*
3315  * Find the next thread in the thread list.
3316  * Return NULL if there is an error or no next thread.
3317  *
3318  * The reference to the input task_struct is released.
3319  */
3320 static struct task_struct *next_tid(struct task_struct *start)
3321 {
3322 	struct task_struct *pos = NULL;
3323 	rcu_read_lock();
3324 	if (pid_alive(start)) {
3325 		pos = next_thread(start);
3326 		if (thread_group_leader(pos))
3327 			pos = NULL;
3328 		else
3329 			get_task_struct(pos);
3330 	}
3331 	rcu_read_unlock();
3332 	put_task_struct(start);
3333 	return pos;
3334 }
3335 
3336 /* for the /proc/TGID/task/ directories */
3337 static int proc_task_readdir(struct file *file, struct dir_context *ctx)
3338 {
3339 	struct inode *inode = file_inode(file);
3340 	struct task_struct *task;
3341 	struct pid_namespace *ns;
3342 	int tid;
3343 
3344 	if (proc_inode_is_dead(inode))
3345 		return -ENOENT;
3346 
3347 	if (!dir_emit_dots(file, ctx))
3348 		return 0;
3349 
3350 	/* f_version caches the tgid value that the last readdir call couldn't
3351 	 * return. lseek aka telldir automagically resets f_version to 0.
3352 	 */
3353 	ns = inode->i_sb->s_fs_info;
3354 	tid = (int)file->f_version;
3355 	file->f_version = 0;
3356 	for (task = first_tid(proc_pid(inode), tid, ctx->pos - 2, ns);
3357 	     task;
3358 	     task = next_tid(task), ctx->pos++) {
3359 		char name[PROC_NUMBUF];
3360 		int len;
3361 		tid = task_pid_nr_ns(task, ns);
3362 		len = snprintf(name, sizeof(name), "%d", tid);
3363 		if (!proc_fill_cache(file, ctx, name, len,
3364 				proc_task_instantiate, task, NULL)) {
3365 			/* returning this tgid failed, save it as the first
3366 			 * pid for the next readir call */
3367 			file->f_version = (u64)tid;
3368 			put_task_struct(task);
3369 			break;
3370 		}
3371 	}
3372 
3373 	return 0;
3374 }
3375 
3376 static int proc_task_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
3377 {
3378 	struct inode *inode = d_inode(dentry);
3379 	struct task_struct *p = get_proc_task(inode);
3380 	generic_fillattr(inode, stat);
3381 
3382 	if (p) {
3383 		stat->nlink += get_nr_threads(p);
3384 		put_task_struct(p);
3385 	}
3386 
3387 	return 0;
3388 }
3389 
3390 static const struct inode_operations proc_task_inode_operations = {
3391 	.lookup		= proc_task_lookup,
3392 	.getattr	= proc_task_getattr,
3393 	.setattr	= proc_setattr,
3394 	.permission	= proc_pid_permission,
3395 };
3396 
3397 static const struct file_operations proc_task_operations = {
3398 	.read		= generic_read_dir,
3399 	.iterate	= proc_task_readdir,
3400 	.llseek		= default_llseek,
3401 };
3402