xref: /openbmc/linux/fs/proc/base.c (revision 16ccca11088c1bdd9311a2c630b453541305c48a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/proc/base.c
4  *
5  *  Copyright (C) 1991, 1992 Linus Torvalds
6  *
7  *  proc base directory handling functions
8  *
9  *  1999, Al Viro. Rewritten. Now it covers the whole per-process part.
10  *  Instead of using magical inumbers to determine the kind of object
11  *  we allocate and fill in-core inodes upon lookup. They don't even
12  *  go into icache. We cache the reference to task_struct upon lookup too.
13  *  Eventually it should become a filesystem in its own. We don't use the
14  *  rest of procfs anymore.
15  *
16  *
17  *  Changelog:
18  *  17-Jan-2005
19  *  Allan Bezerra
20  *  Bruna Moreira <bruna.moreira@indt.org.br>
21  *  Edjard Mota <edjard.mota@indt.org.br>
22  *  Ilias Biris <ilias.biris@indt.org.br>
23  *  Mauricio Lin <mauricio.lin@indt.org.br>
24  *
25  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
26  *
27  *  A new process specific entry (smaps) included in /proc. It shows the
28  *  size of rss for each memory area. The maps entry lacks information
29  *  about physical memory size (rss) for each mapped file, i.e.,
30  *  rss information for executables and library files.
31  *  This additional information is useful for any tools that need to know
32  *  about physical memory consumption for a process specific library.
33  *
34  *  Changelog:
35  *  21-Feb-2005
36  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
37  *  Pud inclusion in the page table walking.
38  *
39  *  ChangeLog:
40  *  10-Mar-2005
41  *  10LE Instituto Nokia de Tecnologia - INdT:
42  *  A better way to walks through the page table as suggested by Hugh Dickins.
43  *
44  *  Simo Piiroinen <simo.piiroinen@nokia.com>:
45  *  Smaps information related to shared, private, clean and dirty pages.
46  *
47  *  Paul Mundt <paul.mundt@nokia.com>:
48  *  Overall revision about smaps.
49  */
50 
51 #include <linux/uaccess.h>
52 
53 #include <linux/errno.h>
54 #include <linux/time.h>
55 #include <linux/proc_fs.h>
56 #include <linux/stat.h>
57 #include <linux/task_io_accounting_ops.h>
58 #include <linux/init.h>
59 #include <linux/capability.h>
60 #include <linux/file.h>
61 #include <linux/fdtable.h>
62 #include <linux/generic-radix-tree.h>
63 #include <linux/string.h>
64 #include <linux/seq_file.h>
65 #include <linux/namei.h>
66 #include <linux/mnt_namespace.h>
67 #include <linux/mm.h>
68 #include <linux/swap.h>
69 #include <linux/rcupdate.h>
70 #include <linux/kallsyms.h>
71 #include <linux/stacktrace.h>
72 #include <linux/resource.h>
73 #include <linux/module.h>
74 #include <linux/mount.h>
75 #include <linux/security.h>
76 #include <linux/ptrace.h>
77 #include <linux/tracehook.h>
78 #include <linux/printk.h>
79 #include <linux/cache.h>
80 #include <linux/cgroup.h>
81 #include <linux/cpuset.h>
82 #include <linux/audit.h>
83 #include <linux/poll.h>
84 #include <linux/nsproxy.h>
85 #include <linux/oom.h>
86 #include <linux/elf.h>
87 #include <linux/pid_namespace.h>
88 #include <linux/user_namespace.h>
89 #include <linux/fs_struct.h>
90 #include <linux/slab.h>
91 #include <linux/sched/autogroup.h>
92 #include <linux/sched/mm.h>
93 #include <linux/sched/coredump.h>
94 #include <linux/sched/debug.h>
95 #include <linux/sched/stat.h>
96 #include <linux/posix-timers.h>
97 #include <trace/events/oom.h>
98 #include "internal.h"
99 #include "fd.h"
100 
101 #include "../../lib/kstrtox.h"
102 
103 /* NOTE:
104  *	Implementing inode permission operations in /proc is almost
105  *	certainly an error.  Permission checks need to happen during
106  *	each system call not at open time.  The reason is that most of
107  *	what we wish to check for permissions in /proc varies at runtime.
108  *
109  *	The classic example of a problem is opening file descriptors
110  *	in /proc for a task before it execs a suid executable.
111  */
112 
113 static u8 nlink_tid __ro_after_init;
114 static u8 nlink_tgid __ro_after_init;
115 
116 struct pid_entry {
117 	const char *name;
118 	unsigned int len;
119 	umode_t mode;
120 	const struct inode_operations *iop;
121 	const struct file_operations *fop;
122 	union proc_op op;
123 };
124 
125 #define NOD(NAME, MODE, IOP, FOP, OP) {			\
126 	.name = (NAME),					\
127 	.len  = sizeof(NAME) - 1,			\
128 	.mode = MODE,					\
129 	.iop  = IOP,					\
130 	.fop  = FOP,					\
131 	.op   = OP,					\
132 }
133 
134 #define DIR(NAME, MODE, iops, fops)	\
135 	NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
136 #define LNK(NAME, get_link)					\
137 	NOD(NAME, (S_IFLNK|S_IRWXUGO),				\
138 		&proc_pid_link_inode_operations, NULL,		\
139 		{ .proc_get_link = get_link } )
140 #define REG(NAME, MODE, fops)				\
141 	NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
142 #define ONE(NAME, MODE, show)				\
143 	NOD(NAME, (S_IFREG|(MODE)),			\
144 		NULL, &proc_single_file_operations,	\
145 		{ .proc_show = show } )
146 #define ATTR(LSM, NAME, MODE)				\
147 	NOD(NAME, (S_IFREG|(MODE)),			\
148 		NULL, &proc_pid_attr_operations,	\
149 		{ .lsm = LSM })
150 
151 /*
152  * Count the number of hardlinks for the pid_entry table, excluding the .
153  * and .. links.
154  */
155 static unsigned int __init pid_entry_nlink(const struct pid_entry *entries,
156 	unsigned int n)
157 {
158 	unsigned int i;
159 	unsigned int count;
160 
161 	count = 2;
162 	for (i = 0; i < n; ++i) {
163 		if (S_ISDIR(entries[i].mode))
164 			++count;
165 	}
166 
167 	return count;
168 }
169 
170 static int get_task_root(struct task_struct *task, struct path *root)
171 {
172 	int result = -ENOENT;
173 
174 	task_lock(task);
175 	if (task->fs) {
176 		get_fs_root(task->fs, root);
177 		result = 0;
178 	}
179 	task_unlock(task);
180 	return result;
181 }
182 
183 static int proc_cwd_link(struct dentry *dentry, struct path *path)
184 {
185 	struct task_struct *task = get_proc_task(d_inode(dentry));
186 	int result = -ENOENT;
187 
188 	if (task) {
189 		task_lock(task);
190 		if (task->fs) {
191 			get_fs_pwd(task->fs, path);
192 			result = 0;
193 		}
194 		task_unlock(task);
195 		put_task_struct(task);
196 	}
197 	return result;
198 }
199 
200 static int proc_root_link(struct dentry *dentry, struct path *path)
201 {
202 	struct task_struct *task = get_proc_task(d_inode(dentry));
203 	int result = -ENOENT;
204 
205 	if (task) {
206 		result = get_task_root(task, path);
207 		put_task_struct(task);
208 	}
209 	return result;
210 }
211 
212 /*
213  * If the user used setproctitle(), we just get the string from
214  * user space at arg_start, and limit it to a maximum of one page.
215  */
216 static ssize_t get_mm_proctitle(struct mm_struct *mm, char __user *buf,
217 				size_t count, unsigned long pos,
218 				unsigned long arg_start)
219 {
220 	char *page;
221 	int ret, got;
222 
223 	if (pos >= PAGE_SIZE)
224 		return 0;
225 
226 	page = (char *)__get_free_page(GFP_KERNEL);
227 	if (!page)
228 		return -ENOMEM;
229 
230 	ret = 0;
231 	got = access_remote_vm(mm, arg_start, page, PAGE_SIZE, FOLL_ANON);
232 	if (got > 0) {
233 		int len = strnlen(page, got);
234 
235 		/* Include the NUL character if it was found */
236 		if (len < got)
237 			len++;
238 
239 		if (len > pos) {
240 			len -= pos;
241 			if (len > count)
242 				len = count;
243 			len -= copy_to_user(buf, page+pos, len);
244 			if (!len)
245 				len = -EFAULT;
246 			ret = len;
247 		}
248 	}
249 	free_page((unsigned long)page);
250 	return ret;
251 }
252 
253 static ssize_t get_mm_cmdline(struct mm_struct *mm, char __user *buf,
254 			      size_t count, loff_t *ppos)
255 {
256 	unsigned long arg_start, arg_end, env_start, env_end;
257 	unsigned long pos, len;
258 	char *page, c;
259 
260 	/* Check if process spawned far enough to have cmdline. */
261 	if (!mm->env_end)
262 		return 0;
263 
264 	spin_lock(&mm->arg_lock);
265 	arg_start = mm->arg_start;
266 	arg_end = mm->arg_end;
267 	env_start = mm->env_start;
268 	env_end = mm->env_end;
269 	spin_unlock(&mm->arg_lock);
270 
271 	if (arg_start >= arg_end)
272 		return 0;
273 
274 	/*
275 	 * We allow setproctitle() to overwrite the argument
276 	 * strings, and overflow past the original end. But
277 	 * only when it overflows into the environment area.
278 	 */
279 	if (env_start != arg_end || env_end < env_start)
280 		env_start = env_end = arg_end;
281 	len = env_end - arg_start;
282 
283 	/* We're not going to care if "*ppos" has high bits set */
284 	pos = *ppos;
285 	if (pos >= len)
286 		return 0;
287 	if (count > len - pos)
288 		count = len - pos;
289 	if (!count)
290 		return 0;
291 
292 	/*
293 	 * Magical special case: if the argv[] end byte is not
294 	 * zero, the user has overwritten it with setproctitle(3).
295 	 *
296 	 * Possible future enhancement: do this only once when
297 	 * pos is 0, and set a flag in the 'struct file'.
298 	 */
299 	if (access_remote_vm(mm, arg_end-1, &c, 1, FOLL_ANON) == 1 && c)
300 		return get_mm_proctitle(mm, buf, count, pos, arg_start);
301 
302 	/*
303 	 * For the non-setproctitle() case we limit things strictly
304 	 * to the [arg_start, arg_end[ range.
305 	 */
306 	pos += arg_start;
307 	if (pos < arg_start || pos >= arg_end)
308 		return 0;
309 	if (count > arg_end - pos)
310 		count = arg_end - pos;
311 
312 	page = (char *)__get_free_page(GFP_KERNEL);
313 	if (!page)
314 		return -ENOMEM;
315 
316 	len = 0;
317 	while (count) {
318 		int got;
319 		size_t size = min_t(size_t, PAGE_SIZE, count);
320 
321 		got = access_remote_vm(mm, pos, page, size, FOLL_ANON);
322 		if (got <= 0)
323 			break;
324 		got -= copy_to_user(buf, page, got);
325 		if (unlikely(!got)) {
326 			if (!len)
327 				len = -EFAULT;
328 			break;
329 		}
330 		pos += got;
331 		buf += got;
332 		len += got;
333 		count -= got;
334 	}
335 
336 	free_page((unsigned long)page);
337 	return len;
338 }
339 
340 static ssize_t get_task_cmdline(struct task_struct *tsk, char __user *buf,
341 				size_t count, loff_t *pos)
342 {
343 	struct mm_struct *mm;
344 	ssize_t ret;
345 
346 	mm = get_task_mm(tsk);
347 	if (!mm)
348 		return 0;
349 
350 	ret = get_mm_cmdline(mm, buf, count, pos);
351 	mmput(mm);
352 	return ret;
353 }
354 
355 static ssize_t proc_pid_cmdline_read(struct file *file, char __user *buf,
356 				     size_t count, loff_t *pos)
357 {
358 	struct task_struct *tsk;
359 	ssize_t ret;
360 
361 	BUG_ON(*pos < 0);
362 
363 	tsk = get_proc_task(file_inode(file));
364 	if (!tsk)
365 		return -ESRCH;
366 	ret = get_task_cmdline(tsk, buf, count, pos);
367 	put_task_struct(tsk);
368 	if (ret > 0)
369 		*pos += ret;
370 	return ret;
371 }
372 
373 static const struct file_operations proc_pid_cmdline_ops = {
374 	.read	= proc_pid_cmdline_read,
375 	.llseek	= generic_file_llseek,
376 };
377 
378 #ifdef CONFIG_KALLSYMS
379 /*
380  * Provides a wchan file via kallsyms in a proper one-value-per-file format.
381  * Returns the resolved symbol.  If that fails, simply return the address.
382  */
383 static int proc_pid_wchan(struct seq_file *m, struct pid_namespace *ns,
384 			  struct pid *pid, struct task_struct *task)
385 {
386 	unsigned long wchan;
387 	char symname[KSYM_NAME_LEN];
388 
389 	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
390 		goto print0;
391 
392 	wchan = get_wchan(task);
393 	if (wchan && !lookup_symbol_name(wchan, symname)) {
394 		seq_puts(m, symname);
395 		return 0;
396 	}
397 
398 print0:
399 	seq_putc(m, '0');
400 	return 0;
401 }
402 #endif /* CONFIG_KALLSYMS */
403 
404 static int lock_trace(struct task_struct *task)
405 {
406 	int err = mutex_lock_killable(&task->signal->cred_guard_mutex);
407 	if (err)
408 		return err;
409 	if (!ptrace_may_access(task, PTRACE_MODE_ATTACH_FSCREDS)) {
410 		mutex_unlock(&task->signal->cred_guard_mutex);
411 		return -EPERM;
412 	}
413 	return 0;
414 }
415 
416 static void unlock_trace(struct task_struct *task)
417 {
418 	mutex_unlock(&task->signal->cred_guard_mutex);
419 }
420 
421 #ifdef CONFIG_STACKTRACE
422 
423 #define MAX_STACK_TRACE_DEPTH	64
424 
425 static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
426 			  struct pid *pid, struct task_struct *task)
427 {
428 	unsigned long *entries;
429 	int err;
430 
431 	/*
432 	 * The ability to racily run the kernel stack unwinder on a running task
433 	 * and then observe the unwinder output is scary; while it is useful for
434 	 * debugging kernel issues, it can also allow an attacker to leak kernel
435 	 * stack contents.
436 	 * Doing this in a manner that is at least safe from races would require
437 	 * some work to ensure that the remote task can not be scheduled; and
438 	 * even then, this would still expose the unwinder as local attack
439 	 * surface.
440 	 * Therefore, this interface is restricted to root.
441 	 */
442 	if (!file_ns_capable(m->file, &init_user_ns, CAP_SYS_ADMIN))
443 		return -EACCES;
444 
445 	entries = kmalloc_array(MAX_STACK_TRACE_DEPTH, sizeof(*entries),
446 				GFP_KERNEL);
447 	if (!entries)
448 		return -ENOMEM;
449 
450 	err = lock_trace(task);
451 	if (!err) {
452 		unsigned int i, nr_entries;
453 
454 		nr_entries = stack_trace_save_tsk(task, entries,
455 						  MAX_STACK_TRACE_DEPTH, 0);
456 
457 		for (i = 0; i < nr_entries; i++) {
458 			seq_printf(m, "[<0>] %pB\n", (void *)entries[i]);
459 		}
460 
461 		unlock_trace(task);
462 	}
463 	kfree(entries);
464 
465 	return err;
466 }
467 #endif
468 
469 #ifdef CONFIG_SCHED_INFO
470 /*
471  * Provides /proc/PID/schedstat
472  */
473 static int proc_pid_schedstat(struct seq_file *m, struct pid_namespace *ns,
474 			      struct pid *pid, struct task_struct *task)
475 {
476 	if (unlikely(!sched_info_on()))
477 		seq_puts(m, "0 0 0\n");
478 	else
479 		seq_printf(m, "%llu %llu %lu\n",
480 		   (unsigned long long)task->se.sum_exec_runtime,
481 		   (unsigned long long)task->sched_info.run_delay,
482 		   task->sched_info.pcount);
483 
484 	return 0;
485 }
486 #endif
487 
488 #ifdef CONFIG_LATENCYTOP
489 static int lstats_show_proc(struct seq_file *m, void *v)
490 {
491 	int i;
492 	struct inode *inode = m->private;
493 	struct task_struct *task = get_proc_task(inode);
494 
495 	if (!task)
496 		return -ESRCH;
497 	seq_puts(m, "Latency Top version : v0.1\n");
498 	for (i = 0; i < LT_SAVECOUNT; i++) {
499 		struct latency_record *lr = &task->latency_record[i];
500 		if (lr->backtrace[0]) {
501 			int q;
502 			seq_printf(m, "%i %li %li",
503 				   lr->count, lr->time, lr->max);
504 			for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
505 				unsigned long bt = lr->backtrace[q];
506 
507 				if (!bt)
508 					break;
509 				seq_printf(m, " %ps", (void *)bt);
510 			}
511 			seq_putc(m, '\n');
512 		}
513 
514 	}
515 	put_task_struct(task);
516 	return 0;
517 }
518 
519 static int lstats_open(struct inode *inode, struct file *file)
520 {
521 	return single_open(file, lstats_show_proc, inode);
522 }
523 
524 static ssize_t lstats_write(struct file *file, const char __user *buf,
525 			    size_t count, loff_t *offs)
526 {
527 	struct task_struct *task = get_proc_task(file_inode(file));
528 
529 	if (!task)
530 		return -ESRCH;
531 	clear_tsk_latency_tracing(task);
532 	put_task_struct(task);
533 
534 	return count;
535 }
536 
537 static const struct file_operations proc_lstats_operations = {
538 	.open		= lstats_open,
539 	.read		= seq_read,
540 	.write		= lstats_write,
541 	.llseek		= seq_lseek,
542 	.release	= single_release,
543 };
544 
545 #endif
546 
547 static int proc_oom_score(struct seq_file *m, struct pid_namespace *ns,
548 			  struct pid *pid, struct task_struct *task)
549 {
550 	unsigned long totalpages = totalram_pages() + total_swap_pages;
551 	unsigned long points = 0;
552 
553 	points = oom_badness(task, totalpages) * 1000 / totalpages;
554 	seq_printf(m, "%lu\n", points);
555 
556 	return 0;
557 }
558 
559 struct limit_names {
560 	const char *name;
561 	const char *unit;
562 };
563 
564 static const struct limit_names lnames[RLIM_NLIMITS] = {
565 	[RLIMIT_CPU] = {"Max cpu time", "seconds"},
566 	[RLIMIT_FSIZE] = {"Max file size", "bytes"},
567 	[RLIMIT_DATA] = {"Max data size", "bytes"},
568 	[RLIMIT_STACK] = {"Max stack size", "bytes"},
569 	[RLIMIT_CORE] = {"Max core file size", "bytes"},
570 	[RLIMIT_RSS] = {"Max resident set", "bytes"},
571 	[RLIMIT_NPROC] = {"Max processes", "processes"},
572 	[RLIMIT_NOFILE] = {"Max open files", "files"},
573 	[RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
574 	[RLIMIT_AS] = {"Max address space", "bytes"},
575 	[RLIMIT_LOCKS] = {"Max file locks", "locks"},
576 	[RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
577 	[RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
578 	[RLIMIT_NICE] = {"Max nice priority", NULL},
579 	[RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
580 	[RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
581 };
582 
583 /* Display limits for a process */
584 static int proc_pid_limits(struct seq_file *m, struct pid_namespace *ns,
585 			   struct pid *pid, struct task_struct *task)
586 {
587 	unsigned int i;
588 	unsigned long flags;
589 
590 	struct rlimit rlim[RLIM_NLIMITS];
591 
592 	if (!lock_task_sighand(task, &flags))
593 		return 0;
594 	memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
595 	unlock_task_sighand(task, &flags);
596 
597 	/*
598 	 * print the file header
599 	 */
600 	seq_puts(m, "Limit                     "
601 		"Soft Limit           "
602 		"Hard Limit           "
603 		"Units     \n");
604 
605 	for (i = 0; i < RLIM_NLIMITS; i++) {
606 		if (rlim[i].rlim_cur == RLIM_INFINITY)
607 			seq_printf(m, "%-25s %-20s ",
608 				   lnames[i].name, "unlimited");
609 		else
610 			seq_printf(m, "%-25s %-20lu ",
611 				   lnames[i].name, rlim[i].rlim_cur);
612 
613 		if (rlim[i].rlim_max == RLIM_INFINITY)
614 			seq_printf(m, "%-20s ", "unlimited");
615 		else
616 			seq_printf(m, "%-20lu ", rlim[i].rlim_max);
617 
618 		if (lnames[i].unit)
619 			seq_printf(m, "%-10s\n", lnames[i].unit);
620 		else
621 			seq_putc(m, '\n');
622 	}
623 
624 	return 0;
625 }
626 
627 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
628 static int proc_pid_syscall(struct seq_file *m, struct pid_namespace *ns,
629 			    struct pid *pid, struct task_struct *task)
630 {
631 	struct syscall_info info;
632 	u64 *args = &info.data.args[0];
633 	int res;
634 
635 	res = lock_trace(task);
636 	if (res)
637 		return res;
638 
639 	if (task_current_syscall(task, &info))
640 		seq_puts(m, "running\n");
641 	else if (info.data.nr < 0)
642 		seq_printf(m, "%d 0x%llx 0x%llx\n",
643 			   info.data.nr, info.sp, info.data.instruction_pointer);
644 	else
645 		seq_printf(m,
646 		       "%d 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx\n",
647 		       info.data.nr,
648 		       args[0], args[1], args[2], args[3], args[4], args[5],
649 		       info.sp, info.data.instruction_pointer);
650 	unlock_trace(task);
651 
652 	return 0;
653 }
654 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
655 
656 /************************************************************************/
657 /*                       Here the fs part begins                        */
658 /************************************************************************/
659 
660 /* permission checks */
661 static int proc_fd_access_allowed(struct inode *inode)
662 {
663 	struct task_struct *task;
664 	int allowed = 0;
665 	/* Allow access to a task's file descriptors if it is us or we
666 	 * may use ptrace attach to the process and find out that
667 	 * information.
668 	 */
669 	task = get_proc_task(inode);
670 	if (task) {
671 		allowed = ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
672 		put_task_struct(task);
673 	}
674 	return allowed;
675 }
676 
677 int proc_setattr(struct dentry *dentry, struct iattr *attr)
678 {
679 	int error;
680 	struct inode *inode = d_inode(dentry);
681 
682 	if (attr->ia_valid & ATTR_MODE)
683 		return -EPERM;
684 
685 	error = setattr_prepare(dentry, attr);
686 	if (error)
687 		return error;
688 
689 	setattr_copy(inode, attr);
690 	mark_inode_dirty(inode);
691 	return 0;
692 }
693 
694 /*
695  * May current process learn task's sched/cmdline info (for hide_pid_min=1)
696  * or euid/egid (for hide_pid_min=2)?
697  */
698 static bool has_pid_permissions(struct pid_namespace *pid,
699 				 struct task_struct *task,
700 				 int hide_pid_min)
701 {
702 	if (pid->hide_pid < hide_pid_min)
703 		return true;
704 	if (in_group_p(pid->pid_gid))
705 		return true;
706 	return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
707 }
708 
709 
710 static int proc_pid_permission(struct inode *inode, int mask)
711 {
712 	struct pid_namespace *pid = proc_pid_ns(inode);
713 	struct task_struct *task;
714 	bool has_perms;
715 
716 	task = get_proc_task(inode);
717 	if (!task)
718 		return -ESRCH;
719 	has_perms = has_pid_permissions(pid, task, HIDEPID_NO_ACCESS);
720 	put_task_struct(task);
721 
722 	if (!has_perms) {
723 		if (pid->hide_pid == HIDEPID_INVISIBLE) {
724 			/*
725 			 * Let's make getdents(), stat(), and open()
726 			 * consistent with each other.  If a process
727 			 * may not stat() a file, it shouldn't be seen
728 			 * in procfs at all.
729 			 */
730 			return -ENOENT;
731 		}
732 
733 		return -EPERM;
734 	}
735 	return generic_permission(inode, mask);
736 }
737 
738 
739 
740 static const struct inode_operations proc_def_inode_operations = {
741 	.setattr	= proc_setattr,
742 };
743 
744 static int proc_single_show(struct seq_file *m, void *v)
745 {
746 	struct inode *inode = m->private;
747 	struct pid_namespace *ns = proc_pid_ns(inode);
748 	struct pid *pid = proc_pid(inode);
749 	struct task_struct *task;
750 	int ret;
751 
752 	task = get_pid_task(pid, PIDTYPE_PID);
753 	if (!task)
754 		return -ESRCH;
755 
756 	ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
757 
758 	put_task_struct(task);
759 	return ret;
760 }
761 
762 static int proc_single_open(struct inode *inode, struct file *filp)
763 {
764 	return single_open(filp, proc_single_show, inode);
765 }
766 
767 static const struct file_operations proc_single_file_operations = {
768 	.open		= proc_single_open,
769 	.read		= seq_read,
770 	.llseek		= seq_lseek,
771 	.release	= single_release,
772 };
773 
774 
775 struct mm_struct *proc_mem_open(struct inode *inode, unsigned int mode)
776 {
777 	struct task_struct *task = get_proc_task(inode);
778 	struct mm_struct *mm = ERR_PTR(-ESRCH);
779 
780 	if (task) {
781 		mm = mm_access(task, mode | PTRACE_MODE_FSCREDS);
782 		put_task_struct(task);
783 
784 		if (!IS_ERR_OR_NULL(mm)) {
785 			/* ensure this mm_struct can't be freed */
786 			mmgrab(mm);
787 			/* but do not pin its memory */
788 			mmput(mm);
789 		}
790 	}
791 
792 	return mm;
793 }
794 
795 static int __mem_open(struct inode *inode, struct file *file, unsigned int mode)
796 {
797 	struct mm_struct *mm = proc_mem_open(inode, mode);
798 
799 	if (IS_ERR(mm))
800 		return PTR_ERR(mm);
801 
802 	file->private_data = mm;
803 	return 0;
804 }
805 
806 static int mem_open(struct inode *inode, struct file *file)
807 {
808 	int ret = __mem_open(inode, file, PTRACE_MODE_ATTACH);
809 
810 	/* OK to pass negative loff_t, we can catch out-of-range */
811 	file->f_mode |= FMODE_UNSIGNED_OFFSET;
812 
813 	return ret;
814 }
815 
816 static ssize_t mem_rw(struct file *file, char __user *buf,
817 			size_t count, loff_t *ppos, int write)
818 {
819 	struct mm_struct *mm = file->private_data;
820 	unsigned long addr = *ppos;
821 	ssize_t copied;
822 	char *page;
823 	unsigned int flags;
824 
825 	if (!mm)
826 		return 0;
827 
828 	page = (char *)__get_free_page(GFP_KERNEL);
829 	if (!page)
830 		return -ENOMEM;
831 
832 	copied = 0;
833 	if (!mmget_not_zero(mm))
834 		goto free;
835 
836 	flags = FOLL_FORCE | (write ? FOLL_WRITE : 0);
837 
838 	while (count > 0) {
839 		int this_len = min_t(int, count, PAGE_SIZE);
840 
841 		if (write && copy_from_user(page, buf, this_len)) {
842 			copied = -EFAULT;
843 			break;
844 		}
845 
846 		this_len = access_remote_vm(mm, addr, page, this_len, flags);
847 		if (!this_len) {
848 			if (!copied)
849 				copied = -EIO;
850 			break;
851 		}
852 
853 		if (!write && copy_to_user(buf, page, this_len)) {
854 			copied = -EFAULT;
855 			break;
856 		}
857 
858 		buf += this_len;
859 		addr += this_len;
860 		copied += this_len;
861 		count -= this_len;
862 	}
863 	*ppos = addr;
864 
865 	mmput(mm);
866 free:
867 	free_page((unsigned long) page);
868 	return copied;
869 }
870 
871 static ssize_t mem_read(struct file *file, char __user *buf,
872 			size_t count, loff_t *ppos)
873 {
874 	return mem_rw(file, buf, count, ppos, 0);
875 }
876 
877 static ssize_t mem_write(struct file *file, const char __user *buf,
878 			 size_t count, loff_t *ppos)
879 {
880 	return mem_rw(file, (char __user*)buf, count, ppos, 1);
881 }
882 
883 loff_t mem_lseek(struct file *file, loff_t offset, int orig)
884 {
885 	switch (orig) {
886 	case 0:
887 		file->f_pos = offset;
888 		break;
889 	case 1:
890 		file->f_pos += offset;
891 		break;
892 	default:
893 		return -EINVAL;
894 	}
895 	force_successful_syscall_return();
896 	return file->f_pos;
897 }
898 
899 static int mem_release(struct inode *inode, struct file *file)
900 {
901 	struct mm_struct *mm = file->private_data;
902 	if (mm)
903 		mmdrop(mm);
904 	return 0;
905 }
906 
907 static const struct file_operations proc_mem_operations = {
908 	.llseek		= mem_lseek,
909 	.read		= mem_read,
910 	.write		= mem_write,
911 	.open		= mem_open,
912 	.release	= mem_release,
913 };
914 
915 static int environ_open(struct inode *inode, struct file *file)
916 {
917 	return __mem_open(inode, file, PTRACE_MODE_READ);
918 }
919 
920 static ssize_t environ_read(struct file *file, char __user *buf,
921 			size_t count, loff_t *ppos)
922 {
923 	char *page;
924 	unsigned long src = *ppos;
925 	int ret = 0;
926 	struct mm_struct *mm = file->private_data;
927 	unsigned long env_start, env_end;
928 
929 	/* Ensure the process spawned far enough to have an environment. */
930 	if (!mm || !mm->env_end)
931 		return 0;
932 
933 	page = (char *)__get_free_page(GFP_KERNEL);
934 	if (!page)
935 		return -ENOMEM;
936 
937 	ret = 0;
938 	if (!mmget_not_zero(mm))
939 		goto free;
940 
941 	spin_lock(&mm->arg_lock);
942 	env_start = mm->env_start;
943 	env_end = mm->env_end;
944 	spin_unlock(&mm->arg_lock);
945 
946 	while (count > 0) {
947 		size_t this_len, max_len;
948 		int retval;
949 
950 		if (src >= (env_end - env_start))
951 			break;
952 
953 		this_len = env_end - (env_start + src);
954 
955 		max_len = min_t(size_t, PAGE_SIZE, count);
956 		this_len = min(max_len, this_len);
957 
958 		retval = access_remote_vm(mm, (env_start + src), page, this_len, FOLL_ANON);
959 
960 		if (retval <= 0) {
961 			ret = retval;
962 			break;
963 		}
964 
965 		if (copy_to_user(buf, page, retval)) {
966 			ret = -EFAULT;
967 			break;
968 		}
969 
970 		ret += retval;
971 		src += retval;
972 		buf += retval;
973 		count -= retval;
974 	}
975 	*ppos = src;
976 	mmput(mm);
977 
978 free:
979 	free_page((unsigned long) page);
980 	return ret;
981 }
982 
983 static const struct file_operations proc_environ_operations = {
984 	.open		= environ_open,
985 	.read		= environ_read,
986 	.llseek		= generic_file_llseek,
987 	.release	= mem_release,
988 };
989 
990 static int auxv_open(struct inode *inode, struct file *file)
991 {
992 	return __mem_open(inode, file, PTRACE_MODE_READ_FSCREDS);
993 }
994 
995 static ssize_t auxv_read(struct file *file, char __user *buf,
996 			size_t count, loff_t *ppos)
997 {
998 	struct mm_struct *mm = file->private_data;
999 	unsigned int nwords = 0;
1000 
1001 	if (!mm)
1002 		return 0;
1003 	do {
1004 		nwords += 2;
1005 	} while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
1006 	return simple_read_from_buffer(buf, count, ppos, mm->saved_auxv,
1007 				       nwords * sizeof(mm->saved_auxv[0]));
1008 }
1009 
1010 static const struct file_operations proc_auxv_operations = {
1011 	.open		= auxv_open,
1012 	.read		= auxv_read,
1013 	.llseek		= generic_file_llseek,
1014 	.release	= mem_release,
1015 };
1016 
1017 static ssize_t oom_adj_read(struct file *file, char __user *buf, size_t count,
1018 			    loff_t *ppos)
1019 {
1020 	struct task_struct *task = get_proc_task(file_inode(file));
1021 	char buffer[PROC_NUMBUF];
1022 	int oom_adj = OOM_ADJUST_MIN;
1023 	size_t len;
1024 
1025 	if (!task)
1026 		return -ESRCH;
1027 	if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MAX)
1028 		oom_adj = OOM_ADJUST_MAX;
1029 	else
1030 		oom_adj = (task->signal->oom_score_adj * -OOM_DISABLE) /
1031 			  OOM_SCORE_ADJ_MAX;
1032 	put_task_struct(task);
1033 	len = snprintf(buffer, sizeof(buffer), "%d\n", oom_adj);
1034 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1035 }
1036 
1037 static int __set_oom_adj(struct file *file, int oom_adj, bool legacy)
1038 {
1039 	static DEFINE_MUTEX(oom_adj_mutex);
1040 	struct mm_struct *mm = NULL;
1041 	struct task_struct *task;
1042 	int err = 0;
1043 
1044 	task = get_proc_task(file_inode(file));
1045 	if (!task)
1046 		return -ESRCH;
1047 
1048 	mutex_lock(&oom_adj_mutex);
1049 	if (legacy) {
1050 		if (oom_adj < task->signal->oom_score_adj &&
1051 				!capable(CAP_SYS_RESOURCE)) {
1052 			err = -EACCES;
1053 			goto err_unlock;
1054 		}
1055 		/*
1056 		 * /proc/pid/oom_adj is provided for legacy purposes, ask users to use
1057 		 * /proc/pid/oom_score_adj instead.
1058 		 */
1059 		pr_warn_once("%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n",
1060 			  current->comm, task_pid_nr(current), task_pid_nr(task),
1061 			  task_pid_nr(task));
1062 	} else {
1063 		if ((short)oom_adj < task->signal->oom_score_adj_min &&
1064 				!capable(CAP_SYS_RESOURCE)) {
1065 			err = -EACCES;
1066 			goto err_unlock;
1067 		}
1068 	}
1069 
1070 	/*
1071 	 * Make sure we will check other processes sharing the mm if this is
1072 	 * not vfrok which wants its own oom_score_adj.
1073 	 * pin the mm so it doesn't go away and get reused after task_unlock
1074 	 */
1075 	if (!task->vfork_done) {
1076 		struct task_struct *p = find_lock_task_mm(task);
1077 
1078 		if (p) {
1079 			if (atomic_read(&p->mm->mm_users) > 1) {
1080 				mm = p->mm;
1081 				mmgrab(mm);
1082 			}
1083 			task_unlock(p);
1084 		}
1085 	}
1086 
1087 	task->signal->oom_score_adj = oom_adj;
1088 	if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1089 		task->signal->oom_score_adj_min = (short)oom_adj;
1090 	trace_oom_score_adj_update(task);
1091 
1092 	if (mm) {
1093 		struct task_struct *p;
1094 
1095 		rcu_read_lock();
1096 		for_each_process(p) {
1097 			if (same_thread_group(task, p))
1098 				continue;
1099 
1100 			/* do not touch kernel threads or the global init */
1101 			if (p->flags & PF_KTHREAD || is_global_init(p))
1102 				continue;
1103 
1104 			task_lock(p);
1105 			if (!p->vfork_done && process_shares_mm(p, mm)) {
1106 				p->signal->oom_score_adj = oom_adj;
1107 				if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1108 					p->signal->oom_score_adj_min = (short)oom_adj;
1109 			}
1110 			task_unlock(p);
1111 		}
1112 		rcu_read_unlock();
1113 		mmdrop(mm);
1114 	}
1115 err_unlock:
1116 	mutex_unlock(&oom_adj_mutex);
1117 	put_task_struct(task);
1118 	return err;
1119 }
1120 
1121 /*
1122  * /proc/pid/oom_adj exists solely for backwards compatibility with previous
1123  * kernels.  The effective policy is defined by oom_score_adj, which has a
1124  * different scale: oom_adj grew exponentially and oom_score_adj grows linearly.
1125  * Values written to oom_adj are simply mapped linearly to oom_score_adj.
1126  * Processes that become oom disabled via oom_adj will still be oom disabled
1127  * with this implementation.
1128  *
1129  * oom_adj cannot be removed since existing userspace binaries use it.
1130  */
1131 static ssize_t oom_adj_write(struct file *file, const char __user *buf,
1132 			     size_t count, loff_t *ppos)
1133 {
1134 	char buffer[PROC_NUMBUF];
1135 	int oom_adj;
1136 	int err;
1137 
1138 	memset(buffer, 0, sizeof(buffer));
1139 	if (count > sizeof(buffer) - 1)
1140 		count = sizeof(buffer) - 1;
1141 	if (copy_from_user(buffer, buf, count)) {
1142 		err = -EFAULT;
1143 		goto out;
1144 	}
1145 
1146 	err = kstrtoint(strstrip(buffer), 0, &oom_adj);
1147 	if (err)
1148 		goto out;
1149 	if ((oom_adj < OOM_ADJUST_MIN || oom_adj > OOM_ADJUST_MAX) &&
1150 	     oom_adj != OOM_DISABLE) {
1151 		err = -EINVAL;
1152 		goto out;
1153 	}
1154 
1155 	/*
1156 	 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum
1157 	 * value is always attainable.
1158 	 */
1159 	if (oom_adj == OOM_ADJUST_MAX)
1160 		oom_adj = OOM_SCORE_ADJ_MAX;
1161 	else
1162 		oom_adj = (oom_adj * OOM_SCORE_ADJ_MAX) / -OOM_DISABLE;
1163 
1164 	err = __set_oom_adj(file, oom_adj, true);
1165 out:
1166 	return err < 0 ? err : count;
1167 }
1168 
1169 static const struct file_operations proc_oom_adj_operations = {
1170 	.read		= oom_adj_read,
1171 	.write		= oom_adj_write,
1172 	.llseek		= generic_file_llseek,
1173 };
1174 
1175 static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
1176 					size_t count, loff_t *ppos)
1177 {
1178 	struct task_struct *task = get_proc_task(file_inode(file));
1179 	char buffer[PROC_NUMBUF];
1180 	short oom_score_adj = OOM_SCORE_ADJ_MIN;
1181 	size_t len;
1182 
1183 	if (!task)
1184 		return -ESRCH;
1185 	oom_score_adj = task->signal->oom_score_adj;
1186 	put_task_struct(task);
1187 	len = snprintf(buffer, sizeof(buffer), "%hd\n", oom_score_adj);
1188 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1189 }
1190 
1191 static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
1192 					size_t count, loff_t *ppos)
1193 {
1194 	char buffer[PROC_NUMBUF];
1195 	int oom_score_adj;
1196 	int err;
1197 
1198 	memset(buffer, 0, sizeof(buffer));
1199 	if (count > sizeof(buffer) - 1)
1200 		count = sizeof(buffer) - 1;
1201 	if (copy_from_user(buffer, buf, count)) {
1202 		err = -EFAULT;
1203 		goto out;
1204 	}
1205 
1206 	err = kstrtoint(strstrip(buffer), 0, &oom_score_adj);
1207 	if (err)
1208 		goto out;
1209 	if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
1210 			oom_score_adj > OOM_SCORE_ADJ_MAX) {
1211 		err = -EINVAL;
1212 		goto out;
1213 	}
1214 
1215 	err = __set_oom_adj(file, oom_score_adj, false);
1216 out:
1217 	return err < 0 ? err : count;
1218 }
1219 
1220 static const struct file_operations proc_oom_score_adj_operations = {
1221 	.read		= oom_score_adj_read,
1222 	.write		= oom_score_adj_write,
1223 	.llseek		= default_llseek,
1224 };
1225 
1226 #ifdef CONFIG_AUDIT
1227 #define TMPBUFLEN 11
1228 static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1229 				  size_t count, loff_t *ppos)
1230 {
1231 	struct inode * inode = file_inode(file);
1232 	struct task_struct *task = get_proc_task(inode);
1233 	ssize_t length;
1234 	char tmpbuf[TMPBUFLEN];
1235 
1236 	if (!task)
1237 		return -ESRCH;
1238 	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1239 			   from_kuid(file->f_cred->user_ns,
1240 				     audit_get_loginuid(task)));
1241 	put_task_struct(task);
1242 	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1243 }
1244 
1245 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1246 				   size_t count, loff_t *ppos)
1247 {
1248 	struct inode * inode = file_inode(file);
1249 	uid_t loginuid;
1250 	kuid_t kloginuid;
1251 	int rv;
1252 
1253 	rcu_read_lock();
1254 	if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1255 		rcu_read_unlock();
1256 		return -EPERM;
1257 	}
1258 	rcu_read_unlock();
1259 
1260 	if (*ppos != 0) {
1261 		/* No partial writes. */
1262 		return -EINVAL;
1263 	}
1264 
1265 	rv = kstrtou32_from_user(buf, count, 10, &loginuid);
1266 	if (rv < 0)
1267 		return rv;
1268 
1269 	/* is userspace tring to explicitly UNSET the loginuid? */
1270 	if (loginuid == AUDIT_UID_UNSET) {
1271 		kloginuid = INVALID_UID;
1272 	} else {
1273 		kloginuid = make_kuid(file->f_cred->user_ns, loginuid);
1274 		if (!uid_valid(kloginuid))
1275 			return -EINVAL;
1276 	}
1277 
1278 	rv = audit_set_loginuid(kloginuid);
1279 	if (rv < 0)
1280 		return rv;
1281 	return count;
1282 }
1283 
1284 static const struct file_operations proc_loginuid_operations = {
1285 	.read		= proc_loginuid_read,
1286 	.write		= proc_loginuid_write,
1287 	.llseek		= generic_file_llseek,
1288 };
1289 
1290 static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1291 				  size_t count, loff_t *ppos)
1292 {
1293 	struct inode * inode = file_inode(file);
1294 	struct task_struct *task = get_proc_task(inode);
1295 	ssize_t length;
1296 	char tmpbuf[TMPBUFLEN];
1297 
1298 	if (!task)
1299 		return -ESRCH;
1300 	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1301 				audit_get_sessionid(task));
1302 	put_task_struct(task);
1303 	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1304 }
1305 
1306 static const struct file_operations proc_sessionid_operations = {
1307 	.read		= proc_sessionid_read,
1308 	.llseek		= generic_file_llseek,
1309 };
1310 #endif
1311 
1312 #ifdef CONFIG_FAULT_INJECTION
1313 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1314 				      size_t count, loff_t *ppos)
1315 {
1316 	struct task_struct *task = get_proc_task(file_inode(file));
1317 	char buffer[PROC_NUMBUF];
1318 	size_t len;
1319 	int make_it_fail;
1320 
1321 	if (!task)
1322 		return -ESRCH;
1323 	make_it_fail = task->make_it_fail;
1324 	put_task_struct(task);
1325 
1326 	len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1327 
1328 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1329 }
1330 
1331 static ssize_t proc_fault_inject_write(struct file * file,
1332 			const char __user * buf, size_t count, loff_t *ppos)
1333 {
1334 	struct task_struct *task;
1335 	char buffer[PROC_NUMBUF];
1336 	int make_it_fail;
1337 	int rv;
1338 
1339 	if (!capable(CAP_SYS_RESOURCE))
1340 		return -EPERM;
1341 	memset(buffer, 0, sizeof(buffer));
1342 	if (count > sizeof(buffer) - 1)
1343 		count = sizeof(buffer) - 1;
1344 	if (copy_from_user(buffer, buf, count))
1345 		return -EFAULT;
1346 	rv = kstrtoint(strstrip(buffer), 0, &make_it_fail);
1347 	if (rv < 0)
1348 		return rv;
1349 	if (make_it_fail < 0 || make_it_fail > 1)
1350 		return -EINVAL;
1351 
1352 	task = get_proc_task(file_inode(file));
1353 	if (!task)
1354 		return -ESRCH;
1355 	task->make_it_fail = make_it_fail;
1356 	put_task_struct(task);
1357 
1358 	return count;
1359 }
1360 
1361 static const struct file_operations proc_fault_inject_operations = {
1362 	.read		= proc_fault_inject_read,
1363 	.write		= proc_fault_inject_write,
1364 	.llseek		= generic_file_llseek,
1365 };
1366 
1367 static ssize_t proc_fail_nth_write(struct file *file, const char __user *buf,
1368 				   size_t count, loff_t *ppos)
1369 {
1370 	struct task_struct *task;
1371 	int err;
1372 	unsigned int n;
1373 
1374 	err = kstrtouint_from_user(buf, count, 0, &n);
1375 	if (err)
1376 		return err;
1377 
1378 	task = get_proc_task(file_inode(file));
1379 	if (!task)
1380 		return -ESRCH;
1381 	task->fail_nth = n;
1382 	put_task_struct(task);
1383 
1384 	return count;
1385 }
1386 
1387 static ssize_t proc_fail_nth_read(struct file *file, char __user *buf,
1388 				  size_t count, loff_t *ppos)
1389 {
1390 	struct task_struct *task;
1391 	char numbuf[PROC_NUMBUF];
1392 	ssize_t len;
1393 
1394 	task = get_proc_task(file_inode(file));
1395 	if (!task)
1396 		return -ESRCH;
1397 	len = snprintf(numbuf, sizeof(numbuf), "%u\n", task->fail_nth);
1398 	put_task_struct(task);
1399 	return simple_read_from_buffer(buf, count, ppos, numbuf, len);
1400 }
1401 
1402 static const struct file_operations proc_fail_nth_operations = {
1403 	.read		= proc_fail_nth_read,
1404 	.write		= proc_fail_nth_write,
1405 };
1406 #endif
1407 
1408 
1409 #ifdef CONFIG_SCHED_DEBUG
1410 /*
1411  * Print out various scheduling related per-task fields:
1412  */
1413 static int sched_show(struct seq_file *m, void *v)
1414 {
1415 	struct inode *inode = m->private;
1416 	struct pid_namespace *ns = proc_pid_ns(inode);
1417 	struct task_struct *p;
1418 
1419 	p = get_proc_task(inode);
1420 	if (!p)
1421 		return -ESRCH;
1422 	proc_sched_show_task(p, ns, m);
1423 
1424 	put_task_struct(p);
1425 
1426 	return 0;
1427 }
1428 
1429 static ssize_t
1430 sched_write(struct file *file, const char __user *buf,
1431 	    size_t count, loff_t *offset)
1432 {
1433 	struct inode *inode = file_inode(file);
1434 	struct task_struct *p;
1435 
1436 	p = get_proc_task(inode);
1437 	if (!p)
1438 		return -ESRCH;
1439 	proc_sched_set_task(p);
1440 
1441 	put_task_struct(p);
1442 
1443 	return count;
1444 }
1445 
1446 static int sched_open(struct inode *inode, struct file *filp)
1447 {
1448 	return single_open(filp, sched_show, inode);
1449 }
1450 
1451 static const struct file_operations proc_pid_sched_operations = {
1452 	.open		= sched_open,
1453 	.read		= seq_read,
1454 	.write		= sched_write,
1455 	.llseek		= seq_lseek,
1456 	.release	= single_release,
1457 };
1458 
1459 #endif
1460 
1461 #ifdef CONFIG_SCHED_AUTOGROUP
1462 /*
1463  * Print out autogroup related information:
1464  */
1465 static int sched_autogroup_show(struct seq_file *m, void *v)
1466 {
1467 	struct inode *inode = m->private;
1468 	struct task_struct *p;
1469 
1470 	p = get_proc_task(inode);
1471 	if (!p)
1472 		return -ESRCH;
1473 	proc_sched_autogroup_show_task(p, m);
1474 
1475 	put_task_struct(p);
1476 
1477 	return 0;
1478 }
1479 
1480 static ssize_t
1481 sched_autogroup_write(struct file *file, const char __user *buf,
1482 	    size_t count, loff_t *offset)
1483 {
1484 	struct inode *inode = file_inode(file);
1485 	struct task_struct *p;
1486 	char buffer[PROC_NUMBUF];
1487 	int nice;
1488 	int err;
1489 
1490 	memset(buffer, 0, sizeof(buffer));
1491 	if (count > sizeof(buffer) - 1)
1492 		count = sizeof(buffer) - 1;
1493 	if (copy_from_user(buffer, buf, count))
1494 		return -EFAULT;
1495 
1496 	err = kstrtoint(strstrip(buffer), 0, &nice);
1497 	if (err < 0)
1498 		return err;
1499 
1500 	p = get_proc_task(inode);
1501 	if (!p)
1502 		return -ESRCH;
1503 
1504 	err = proc_sched_autogroup_set_nice(p, nice);
1505 	if (err)
1506 		count = err;
1507 
1508 	put_task_struct(p);
1509 
1510 	return count;
1511 }
1512 
1513 static int sched_autogroup_open(struct inode *inode, struct file *filp)
1514 {
1515 	int ret;
1516 
1517 	ret = single_open(filp, sched_autogroup_show, NULL);
1518 	if (!ret) {
1519 		struct seq_file *m = filp->private_data;
1520 
1521 		m->private = inode;
1522 	}
1523 	return ret;
1524 }
1525 
1526 static const struct file_operations proc_pid_sched_autogroup_operations = {
1527 	.open		= sched_autogroup_open,
1528 	.read		= seq_read,
1529 	.write		= sched_autogroup_write,
1530 	.llseek		= seq_lseek,
1531 	.release	= single_release,
1532 };
1533 
1534 #endif /* CONFIG_SCHED_AUTOGROUP */
1535 
1536 static ssize_t comm_write(struct file *file, const char __user *buf,
1537 				size_t count, loff_t *offset)
1538 {
1539 	struct inode *inode = file_inode(file);
1540 	struct task_struct *p;
1541 	char buffer[TASK_COMM_LEN];
1542 	const size_t maxlen = sizeof(buffer) - 1;
1543 
1544 	memset(buffer, 0, sizeof(buffer));
1545 	if (copy_from_user(buffer, buf, count > maxlen ? maxlen : count))
1546 		return -EFAULT;
1547 
1548 	p = get_proc_task(inode);
1549 	if (!p)
1550 		return -ESRCH;
1551 
1552 	if (same_thread_group(current, p))
1553 		set_task_comm(p, buffer);
1554 	else
1555 		count = -EINVAL;
1556 
1557 	put_task_struct(p);
1558 
1559 	return count;
1560 }
1561 
1562 static int comm_show(struct seq_file *m, void *v)
1563 {
1564 	struct inode *inode = m->private;
1565 	struct task_struct *p;
1566 
1567 	p = get_proc_task(inode);
1568 	if (!p)
1569 		return -ESRCH;
1570 
1571 	proc_task_name(m, p, false);
1572 	seq_putc(m, '\n');
1573 
1574 	put_task_struct(p);
1575 
1576 	return 0;
1577 }
1578 
1579 static int comm_open(struct inode *inode, struct file *filp)
1580 {
1581 	return single_open(filp, comm_show, inode);
1582 }
1583 
1584 static const struct file_operations proc_pid_set_comm_operations = {
1585 	.open		= comm_open,
1586 	.read		= seq_read,
1587 	.write		= comm_write,
1588 	.llseek		= seq_lseek,
1589 	.release	= single_release,
1590 };
1591 
1592 static int proc_exe_link(struct dentry *dentry, struct path *exe_path)
1593 {
1594 	struct task_struct *task;
1595 	struct file *exe_file;
1596 
1597 	task = get_proc_task(d_inode(dentry));
1598 	if (!task)
1599 		return -ENOENT;
1600 	exe_file = get_task_exe_file(task);
1601 	put_task_struct(task);
1602 	if (exe_file) {
1603 		*exe_path = exe_file->f_path;
1604 		path_get(&exe_file->f_path);
1605 		fput(exe_file);
1606 		return 0;
1607 	} else
1608 		return -ENOENT;
1609 }
1610 
1611 static const char *proc_pid_get_link(struct dentry *dentry,
1612 				     struct inode *inode,
1613 				     struct delayed_call *done)
1614 {
1615 	struct path path;
1616 	int error = -EACCES;
1617 
1618 	if (!dentry)
1619 		return ERR_PTR(-ECHILD);
1620 
1621 	/* Are we allowed to snoop on the tasks file descriptors? */
1622 	if (!proc_fd_access_allowed(inode))
1623 		goto out;
1624 
1625 	error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1626 	if (error)
1627 		goto out;
1628 
1629 	nd_jump_link(&path);
1630 	return NULL;
1631 out:
1632 	return ERR_PTR(error);
1633 }
1634 
1635 static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1636 {
1637 	char *tmp = (char *)__get_free_page(GFP_KERNEL);
1638 	char *pathname;
1639 	int len;
1640 
1641 	if (!tmp)
1642 		return -ENOMEM;
1643 
1644 	pathname = d_path(path, tmp, PAGE_SIZE);
1645 	len = PTR_ERR(pathname);
1646 	if (IS_ERR(pathname))
1647 		goto out;
1648 	len = tmp + PAGE_SIZE - 1 - pathname;
1649 
1650 	if (len > buflen)
1651 		len = buflen;
1652 	if (copy_to_user(buffer, pathname, len))
1653 		len = -EFAULT;
1654  out:
1655 	free_page((unsigned long)tmp);
1656 	return len;
1657 }
1658 
1659 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1660 {
1661 	int error = -EACCES;
1662 	struct inode *inode = d_inode(dentry);
1663 	struct path path;
1664 
1665 	/* Are we allowed to snoop on the tasks file descriptors? */
1666 	if (!proc_fd_access_allowed(inode))
1667 		goto out;
1668 
1669 	error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1670 	if (error)
1671 		goto out;
1672 
1673 	error = do_proc_readlink(&path, buffer, buflen);
1674 	path_put(&path);
1675 out:
1676 	return error;
1677 }
1678 
1679 const struct inode_operations proc_pid_link_inode_operations = {
1680 	.readlink	= proc_pid_readlink,
1681 	.get_link	= proc_pid_get_link,
1682 	.setattr	= proc_setattr,
1683 };
1684 
1685 
1686 /* building an inode */
1687 
1688 void task_dump_owner(struct task_struct *task, umode_t mode,
1689 		     kuid_t *ruid, kgid_t *rgid)
1690 {
1691 	/* Depending on the state of dumpable compute who should own a
1692 	 * proc file for a task.
1693 	 */
1694 	const struct cred *cred;
1695 	kuid_t uid;
1696 	kgid_t gid;
1697 
1698 	if (unlikely(task->flags & PF_KTHREAD)) {
1699 		*ruid = GLOBAL_ROOT_UID;
1700 		*rgid = GLOBAL_ROOT_GID;
1701 		return;
1702 	}
1703 
1704 	/* Default to the tasks effective ownership */
1705 	rcu_read_lock();
1706 	cred = __task_cred(task);
1707 	uid = cred->euid;
1708 	gid = cred->egid;
1709 	rcu_read_unlock();
1710 
1711 	/*
1712 	 * Before the /proc/pid/status file was created the only way to read
1713 	 * the effective uid of a /process was to stat /proc/pid.  Reading
1714 	 * /proc/pid/status is slow enough that procps and other packages
1715 	 * kept stating /proc/pid.  To keep the rules in /proc simple I have
1716 	 * made this apply to all per process world readable and executable
1717 	 * directories.
1718 	 */
1719 	if (mode != (S_IFDIR|S_IRUGO|S_IXUGO)) {
1720 		struct mm_struct *mm;
1721 		task_lock(task);
1722 		mm = task->mm;
1723 		/* Make non-dumpable tasks owned by some root */
1724 		if (mm) {
1725 			if (get_dumpable(mm) != SUID_DUMP_USER) {
1726 				struct user_namespace *user_ns = mm->user_ns;
1727 
1728 				uid = make_kuid(user_ns, 0);
1729 				if (!uid_valid(uid))
1730 					uid = GLOBAL_ROOT_UID;
1731 
1732 				gid = make_kgid(user_ns, 0);
1733 				if (!gid_valid(gid))
1734 					gid = GLOBAL_ROOT_GID;
1735 			}
1736 		} else {
1737 			uid = GLOBAL_ROOT_UID;
1738 			gid = GLOBAL_ROOT_GID;
1739 		}
1740 		task_unlock(task);
1741 	}
1742 	*ruid = uid;
1743 	*rgid = gid;
1744 }
1745 
1746 struct inode *proc_pid_make_inode(struct super_block * sb,
1747 				  struct task_struct *task, umode_t mode)
1748 {
1749 	struct inode * inode;
1750 	struct proc_inode *ei;
1751 
1752 	/* We need a new inode */
1753 
1754 	inode = new_inode(sb);
1755 	if (!inode)
1756 		goto out;
1757 
1758 	/* Common stuff */
1759 	ei = PROC_I(inode);
1760 	inode->i_mode = mode;
1761 	inode->i_ino = get_next_ino();
1762 	inode->i_mtime = inode->i_atime = inode->i_ctime = current_time(inode);
1763 	inode->i_op = &proc_def_inode_operations;
1764 
1765 	/*
1766 	 * grab the reference to task.
1767 	 */
1768 	ei->pid = get_task_pid(task, PIDTYPE_PID);
1769 	if (!ei->pid)
1770 		goto out_unlock;
1771 
1772 	task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid);
1773 	security_task_to_inode(task, inode);
1774 
1775 out:
1776 	return inode;
1777 
1778 out_unlock:
1779 	iput(inode);
1780 	return NULL;
1781 }
1782 
1783 int pid_getattr(const struct path *path, struct kstat *stat,
1784 		u32 request_mask, unsigned int query_flags)
1785 {
1786 	struct inode *inode = d_inode(path->dentry);
1787 	struct pid_namespace *pid = proc_pid_ns(inode);
1788 	struct task_struct *task;
1789 
1790 	generic_fillattr(inode, stat);
1791 
1792 	stat->uid = GLOBAL_ROOT_UID;
1793 	stat->gid = GLOBAL_ROOT_GID;
1794 	rcu_read_lock();
1795 	task = pid_task(proc_pid(inode), PIDTYPE_PID);
1796 	if (task) {
1797 		if (!has_pid_permissions(pid, task, HIDEPID_INVISIBLE)) {
1798 			rcu_read_unlock();
1799 			/*
1800 			 * This doesn't prevent learning whether PID exists,
1801 			 * it only makes getattr() consistent with readdir().
1802 			 */
1803 			return -ENOENT;
1804 		}
1805 		task_dump_owner(task, inode->i_mode, &stat->uid, &stat->gid);
1806 	}
1807 	rcu_read_unlock();
1808 	return 0;
1809 }
1810 
1811 /* dentry stuff */
1812 
1813 /*
1814  * Set <pid>/... inode ownership (can change due to setuid(), etc.)
1815  */
1816 void pid_update_inode(struct task_struct *task, struct inode *inode)
1817 {
1818 	task_dump_owner(task, inode->i_mode, &inode->i_uid, &inode->i_gid);
1819 
1820 	inode->i_mode &= ~(S_ISUID | S_ISGID);
1821 	security_task_to_inode(task, inode);
1822 }
1823 
1824 /*
1825  * Rewrite the inode's ownerships here because the owning task may have
1826  * performed a setuid(), etc.
1827  *
1828  */
1829 static int pid_revalidate(struct dentry *dentry, unsigned int flags)
1830 {
1831 	struct inode *inode;
1832 	struct task_struct *task;
1833 
1834 	if (flags & LOOKUP_RCU)
1835 		return -ECHILD;
1836 
1837 	inode = d_inode(dentry);
1838 	task = get_proc_task(inode);
1839 
1840 	if (task) {
1841 		pid_update_inode(task, inode);
1842 		put_task_struct(task);
1843 		return 1;
1844 	}
1845 	return 0;
1846 }
1847 
1848 static inline bool proc_inode_is_dead(struct inode *inode)
1849 {
1850 	return !proc_pid(inode)->tasks[PIDTYPE_PID].first;
1851 }
1852 
1853 int pid_delete_dentry(const struct dentry *dentry)
1854 {
1855 	/* Is the task we represent dead?
1856 	 * If so, then don't put the dentry on the lru list,
1857 	 * kill it immediately.
1858 	 */
1859 	return proc_inode_is_dead(d_inode(dentry));
1860 }
1861 
1862 const struct dentry_operations pid_dentry_operations =
1863 {
1864 	.d_revalidate	= pid_revalidate,
1865 	.d_delete	= pid_delete_dentry,
1866 };
1867 
1868 /* Lookups */
1869 
1870 /*
1871  * Fill a directory entry.
1872  *
1873  * If possible create the dcache entry and derive our inode number and
1874  * file type from dcache entry.
1875  *
1876  * Since all of the proc inode numbers are dynamically generated, the inode
1877  * numbers do not exist until the inode is cache.  This means creating the
1878  * the dcache entry in readdir is necessary to keep the inode numbers
1879  * reported by readdir in sync with the inode numbers reported
1880  * by stat.
1881  */
1882 bool proc_fill_cache(struct file *file, struct dir_context *ctx,
1883 	const char *name, unsigned int len,
1884 	instantiate_t instantiate, struct task_struct *task, const void *ptr)
1885 {
1886 	struct dentry *child, *dir = file->f_path.dentry;
1887 	struct qstr qname = QSTR_INIT(name, len);
1888 	struct inode *inode;
1889 	unsigned type = DT_UNKNOWN;
1890 	ino_t ino = 1;
1891 
1892 	child = d_hash_and_lookup(dir, &qname);
1893 	if (!child) {
1894 		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1895 		child = d_alloc_parallel(dir, &qname, &wq);
1896 		if (IS_ERR(child))
1897 			goto end_instantiate;
1898 		if (d_in_lookup(child)) {
1899 			struct dentry *res;
1900 			res = instantiate(child, task, ptr);
1901 			d_lookup_done(child);
1902 			if (unlikely(res)) {
1903 				dput(child);
1904 				child = res;
1905 				if (IS_ERR(child))
1906 					goto end_instantiate;
1907 			}
1908 		}
1909 	}
1910 	inode = d_inode(child);
1911 	ino = inode->i_ino;
1912 	type = inode->i_mode >> 12;
1913 	dput(child);
1914 end_instantiate:
1915 	return dir_emit(ctx, name, len, ino, type);
1916 }
1917 
1918 /*
1919  * dname_to_vma_addr - maps a dentry name into two unsigned longs
1920  * which represent vma start and end addresses.
1921  */
1922 static int dname_to_vma_addr(struct dentry *dentry,
1923 			     unsigned long *start, unsigned long *end)
1924 {
1925 	const char *str = dentry->d_name.name;
1926 	unsigned long long sval, eval;
1927 	unsigned int len;
1928 
1929 	if (str[0] == '0' && str[1] != '-')
1930 		return -EINVAL;
1931 	len = _parse_integer(str, 16, &sval);
1932 	if (len & KSTRTOX_OVERFLOW)
1933 		return -EINVAL;
1934 	if (sval != (unsigned long)sval)
1935 		return -EINVAL;
1936 	str += len;
1937 
1938 	if (*str != '-')
1939 		return -EINVAL;
1940 	str++;
1941 
1942 	if (str[0] == '0' && str[1])
1943 		return -EINVAL;
1944 	len = _parse_integer(str, 16, &eval);
1945 	if (len & KSTRTOX_OVERFLOW)
1946 		return -EINVAL;
1947 	if (eval != (unsigned long)eval)
1948 		return -EINVAL;
1949 	str += len;
1950 
1951 	if (*str != '\0')
1952 		return -EINVAL;
1953 
1954 	*start = sval;
1955 	*end = eval;
1956 
1957 	return 0;
1958 }
1959 
1960 static int map_files_d_revalidate(struct dentry *dentry, unsigned int flags)
1961 {
1962 	unsigned long vm_start, vm_end;
1963 	bool exact_vma_exists = false;
1964 	struct mm_struct *mm = NULL;
1965 	struct task_struct *task;
1966 	struct inode *inode;
1967 	int status = 0;
1968 
1969 	if (flags & LOOKUP_RCU)
1970 		return -ECHILD;
1971 
1972 	inode = d_inode(dentry);
1973 	task = get_proc_task(inode);
1974 	if (!task)
1975 		goto out_notask;
1976 
1977 	mm = mm_access(task, PTRACE_MODE_READ_FSCREDS);
1978 	if (IS_ERR_OR_NULL(mm))
1979 		goto out;
1980 
1981 	if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) {
1982 		status = down_read_killable(&mm->mmap_sem);
1983 		if (!status) {
1984 			exact_vma_exists = !!find_exact_vma(mm, vm_start,
1985 							    vm_end);
1986 			up_read(&mm->mmap_sem);
1987 		}
1988 	}
1989 
1990 	mmput(mm);
1991 
1992 	if (exact_vma_exists) {
1993 		task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid);
1994 
1995 		security_task_to_inode(task, inode);
1996 		status = 1;
1997 	}
1998 
1999 out:
2000 	put_task_struct(task);
2001 
2002 out_notask:
2003 	return status;
2004 }
2005 
2006 static const struct dentry_operations tid_map_files_dentry_operations = {
2007 	.d_revalidate	= map_files_d_revalidate,
2008 	.d_delete	= pid_delete_dentry,
2009 };
2010 
2011 static int map_files_get_link(struct dentry *dentry, struct path *path)
2012 {
2013 	unsigned long vm_start, vm_end;
2014 	struct vm_area_struct *vma;
2015 	struct task_struct *task;
2016 	struct mm_struct *mm;
2017 	int rc;
2018 
2019 	rc = -ENOENT;
2020 	task = get_proc_task(d_inode(dentry));
2021 	if (!task)
2022 		goto out;
2023 
2024 	mm = get_task_mm(task);
2025 	put_task_struct(task);
2026 	if (!mm)
2027 		goto out;
2028 
2029 	rc = dname_to_vma_addr(dentry, &vm_start, &vm_end);
2030 	if (rc)
2031 		goto out_mmput;
2032 
2033 	rc = down_read_killable(&mm->mmap_sem);
2034 	if (rc)
2035 		goto out_mmput;
2036 
2037 	rc = -ENOENT;
2038 	vma = find_exact_vma(mm, vm_start, vm_end);
2039 	if (vma && vma->vm_file) {
2040 		*path = vma->vm_file->f_path;
2041 		path_get(path);
2042 		rc = 0;
2043 	}
2044 	up_read(&mm->mmap_sem);
2045 
2046 out_mmput:
2047 	mmput(mm);
2048 out:
2049 	return rc;
2050 }
2051 
2052 struct map_files_info {
2053 	unsigned long	start;
2054 	unsigned long	end;
2055 	fmode_t		mode;
2056 };
2057 
2058 /*
2059  * Only allow CAP_SYS_ADMIN to follow the links, due to concerns about how the
2060  * symlinks may be used to bypass permissions on ancestor directories in the
2061  * path to the file in question.
2062  */
2063 static const char *
2064 proc_map_files_get_link(struct dentry *dentry,
2065 			struct inode *inode,
2066 		        struct delayed_call *done)
2067 {
2068 	if (!capable(CAP_SYS_ADMIN))
2069 		return ERR_PTR(-EPERM);
2070 
2071 	return proc_pid_get_link(dentry, inode, done);
2072 }
2073 
2074 /*
2075  * Identical to proc_pid_link_inode_operations except for get_link()
2076  */
2077 static const struct inode_operations proc_map_files_link_inode_operations = {
2078 	.readlink	= proc_pid_readlink,
2079 	.get_link	= proc_map_files_get_link,
2080 	.setattr	= proc_setattr,
2081 };
2082 
2083 static struct dentry *
2084 proc_map_files_instantiate(struct dentry *dentry,
2085 			   struct task_struct *task, const void *ptr)
2086 {
2087 	fmode_t mode = (fmode_t)(unsigned long)ptr;
2088 	struct proc_inode *ei;
2089 	struct inode *inode;
2090 
2091 	inode = proc_pid_make_inode(dentry->d_sb, task, S_IFLNK |
2092 				    ((mode & FMODE_READ ) ? S_IRUSR : 0) |
2093 				    ((mode & FMODE_WRITE) ? S_IWUSR : 0));
2094 	if (!inode)
2095 		return ERR_PTR(-ENOENT);
2096 
2097 	ei = PROC_I(inode);
2098 	ei->op.proc_get_link = map_files_get_link;
2099 
2100 	inode->i_op = &proc_map_files_link_inode_operations;
2101 	inode->i_size = 64;
2102 
2103 	d_set_d_op(dentry, &tid_map_files_dentry_operations);
2104 	return d_splice_alias(inode, dentry);
2105 }
2106 
2107 static struct dentry *proc_map_files_lookup(struct inode *dir,
2108 		struct dentry *dentry, unsigned int flags)
2109 {
2110 	unsigned long vm_start, vm_end;
2111 	struct vm_area_struct *vma;
2112 	struct task_struct *task;
2113 	struct dentry *result;
2114 	struct mm_struct *mm;
2115 
2116 	result = ERR_PTR(-ENOENT);
2117 	task = get_proc_task(dir);
2118 	if (!task)
2119 		goto out;
2120 
2121 	result = ERR_PTR(-EACCES);
2122 	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2123 		goto out_put_task;
2124 
2125 	result = ERR_PTR(-ENOENT);
2126 	if (dname_to_vma_addr(dentry, &vm_start, &vm_end))
2127 		goto out_put_task;
2128 
2129 	mm = get_task_mm(task);
2130 	if (!mm)
2131 		goto out_put_task;
2132 
2133 	result = ERR_PTR(-EINTR);
2134 	if (down_read_killable(&mm->mmap_sem))
2135 		goto out_put_mm;
2136 
2137 	result = ERR_PTR(-ENOENT);
2138 	vma = find_exact_vma(mm, vm_start, vm_end);
2139 	if (!vma)
2140 		goto out_no_vma;
2141 
2142 	if (vma->vm_file)
2143 		result = proc_map_files_instantiate(dentry, task,
2144 				(void *)(unsigned long)vma->vm_file->f_mode);
2145 
2146 out_no_vma:
2147 	up_read(&mm->mmap_sem);
2148 out_put_mm:
2149 	mmput(mm);
2150 out_put_task:
2151 	put_task_struct(task);
2152 out:
2153 	return result;
2154 }
2155 
2156 static const struct inode_operations proc_map_files_inode_operations = {
2157 	.lookup		= proc_map_files_lookup,
2158 	.permission	= proc_fd_permission,
2159 	.setattr	= proc_setattr,
2160 };
2161 
2162 static int
2163 proc_map_files_readdir(struct file *file, struct dir_context *ctx)
2164 {
2165 	struct vm_area_struct *vma;
2166 	struct task_struct *task;
2167 	struct mm_struct *mm;
2168 	unsigned long nr_files, pos, i;
2169 	GENRADIX(struct map_files_info) fa;
2170 	struct map_files_info *p;
2171 	int ret;
2172 
2173 	genradix_init(&fa);
2174 
2175 	ret = -ENOENT;
2176 	task = get_proc_task(file_inode(file));
2177 	if (!task)
2178 		goto out;
2179 
2180 	ret = -EACCES;
2181 	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2182 		goto out_put_task;
2183 
2184 	ret = 0;
2185 	if (!dir_emit_dots(file, ctx))
2186 		goto out_put_task;
2187 
2188 	mm = get_task_mm(task);
2189 	if (!mm)
2190 		goto out_put_task;
2191 
2192 	ret = down_read_killable(&mm->mmap_sem);
2193 	if (ret) {
2194 		mmput(mm);
2195 		goto out_put_task;
2196 	}
2197 
2198 	nr_files = 0;
2199 
2200 	/*
2201 	 * We need two passes here:
2202 	 *
2203 	 *  1) Collect vmas of mapped files with mmap_sem taken
2204 	 *  2) Release mmap_sem and instantiate entries
2205 	 *
2206 	 * otherwise we get lockdep complained, since filldir()
2207 	 * routine might require mmap_sem taken in might_fault().
2208 	 */
2209 
2210 	for (vma = mm->mmap, pos = 2; vma; vma = vma->vm_next) {
2211 		if (!vma->vm_file)
2212 			continue;
2213 		if (++pos <= ctx->pos)
2214 			continue;
2215 
2216 		p = genradix_ptr_alloc(&fa, nr_files++, GFP_KERNEL);
2217 		if (!p) {
2218 			ret = -ENOMEM;
2219 			up_read(&mm->mmap_sem);
2220 			mmput(mm);
2221 			goto out_put_task;
2222 		}
2223 
2224 		p->start = vma->vm_start;
2225 		p->end = vma->vm_end;
2226 		p->mode = vma->vm_file->f_mode;
2227 	}
2228 	up_read(&mm->mmap_sem);
2229 	mmput(mm);
2230 
2231 	for (i = 0; i < nr_files; i++) {
2232 		char buf[4 * sizeof(long) + 2];	/* max: %lx-%lx\0 */
2233 		unsigned int len;
2234 
2235 		p = genradix_ptr(&fa, i);
2236 		len = snprintf(buf, sizeof(buf), "%lx-%lx", p->start, p->end);
2237 		if (!proc_fill_cache(file, ctx,
2238 				      buf, len,
2239 				      proc_map_files_instantiate,
2240 				      task,
2241 				      (void *)(unsigned long)p->mode))
2242 			break;
2243 		ctx->pos++;
2244 	}
2245 
2246 out_put_task:
2247 	put_task_struct(task);
2248 out:
2249 	genradix_free(&fa);
2250 	return ret;
2251 }
2252 
2253 static const struct file_operations proc_map_files_operations = {
2254 	.read		= generic_read_dir,
2255 	.iterate_shared	= proc_map_files_readdir,
2256 	.llseek		= generic_file_llseek,
2257 };
2258 
2259 #if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS)
2260 struct timers_private {
2261 	struct pid *pid;
2262 	struct task_struct *task;
2263 	struct sighand_struct *sighand;
2264 	struct pid_namespace *ns;
2265 	unsigned long flags;
2266 };
2267 
2268 static void *timers_start(struct seq_file *m, loff_t *pos)
2269 {
2270 	struct timers_private *tp = m->private;
2271 
2272 	tp->task = get_pid_task(tp->pid, PIDTYPE_PID);
2273 	if (!tp->task)
2274 		return ERR_PTR(-ESRCH);
2275 
2276 	tp->sighand = lock_task_sighand(tp->task, &tp->flags);
2277 	if (!tp->sighand)
2278 		return ERR_PTR(-ESRCH);
2279 
2280 	return seq_list_start(&tp->task->signal->posix_timers, *pos);
2281 }
2282 
2283 static void *timers_next(struct seq_file *m, void *v, loff_t *pos)
2284 {
2285 	struct timers_private *tp = m->private;
2286 	return seq_list_next(v, &tp->task->signal->posix_timers, pos);
2287 }
2288 
2289 static void timers_stop(struct seq_file *m, void *v)
2290 {
2291 	struct timers_private *tp = m->private;
2292 
2293 	if (tp->sighand) {
2294 		unlock_task_sighand(tp->task, &tp->flags);
2295 		tp->sighand = NULL;
2296 	}
2297 
2298 	if (tp->task) {
2299 		put_task_struct(tp->task);
2300 		tp->task = NULL;
2301 	}
2302 }
2303 
2304 static int show_timer(struct seq_file *m, void *v)
2305 {
2306 	struct k_itimer *timer;
2307 	struct timers_private *tp = m->private;
2308 	int notify;
2309 	static const char * const nstr[] = {
2310 		[SIGEV_SIGNAL] = "signal",
2311 		[SIGEV_NONE] = "none",
2312 		[SIGEV_THREAD] = "thread",
2313 	};
2314 
2315 	timer = list_entry((struct list_head *)v, struct k_itimer, list);
2316 	notify = timer->it_sigev_notify;
2317 
2318 	seq_printf(m, "ID: %d\n", timer->it_id);
2319 	seq_printf(m, "signal: %d/%px\n",
2320 		   timer->sigq->info.si_signo,
2321 		   timer->sigq->info.si_value.sival_ptr);
2322 	seq_printf(m, "notify: %s/%s.%d\n",
2323 		   nstr[notify & ~SIGEV_THREAD_ID],
2324 		   (notify & SIGEV_THREAD_ID) ? "tid" : "pid",
2325 		   pid_nr_ns(timer->it_pid, tp->ns));
2326 	seq_printf(m, "ClockID: %d\n", timer->it_clock);
2327 
2328 	return 0;
2329 }
2330 
2331 static const struct seq_operations proc_timers_seq_ops = {
2332 	.start	= timers_start,
2333 	.next	= timers_next,
2334 	.stop	= timers_stop,
2335 	.show	= show_timer,
2336 };
2337 
2338 static int proc_timers_open(struct inode *inode, struct file *file)
2339 {
2340 	struct timers_private *tp;
2341 
2342 	tp = __seq_open_private(file, &proc_timers_seq_ops,
2343 			sizeof(struct timers_private));
2344 	if (!tp)
2345 		return -ENOMEM;
2346 
2347 	tp->pid = proc_pid(inode);
2348 	tp->ns = proc_pid_ns(inode);
2349 	return 0;
2350 }
2351 
2352 static const struct file_operations proc_timers_operations = {
2353 	.open		= proc_timers_open,
2354 	.read		= seq_read,
2355 	.llseek		= seq_lseek,
2356 	.release	= seq_release_private,
2357 };
2358 #endif
2359 
2360 static ssize_t timerslack_ns_write(struct file *file, const char __user *buf,
2361 					size_t count, loff_t *offset)
2362 {
2363 	struct inode *inode = file_inode(file);
2364 	struct task_struct *p;
2365 	u64 slack_ns;
2366 	int err;
2367 
2368 	err = kstrtoull_from_user(buf, count, 10, &slack_ns);
2369 	if (err < 0)
2370 		return err;
2371 
2372 	p = get_proc_task(inode);
2373 	if (!p)
2374 		return -ESRCH;
2375 
2376 	if (p != current) {
2377 		rcu_read_lock();
2378 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
2379 			rcu_read_unlock();
2380 			count = -EPERM;
2381 			goto out;
2382 		}
2383 		rcu_read_unlock();
2384 
2385 		err = security_task_setscheduler(p);
2386 		if (err) {
2387 			count = err;
2388 			goto out;
2389 		}
2390 	}
2391 
2392 	task_lock(p);
2393 	if (slack_ns == 0)
2394 		p->timer_slack_ns = p->default_timer_slack_ns;
2395 	else
2396 		p->timer_slack_ns = slack_ns;
2397 	task_unlock(p);
2398 
2399 out:
2400 	put_task_struct(p);
2401 
2402 	return count;
2403 }
2404 
2405 static int timerslack_ns_show(struct seq_file *m, void *v)
2406 {
2407 	struct inode *inode = m->private;
2408 	struct task_struct *p;
2409 	int err = 0;
2410 
2411 	p = get_proc_task(inode);
2412 	if (!p)
2413 		return -ESRCH;
2414 
2415 	if (p != current) {
2416 		rcu_read_lock();
2417 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
2418 			rcu_read_unlock();
2419 			err = -EPERM;
2420 			goto out;
2421 		}
2422 		rcu_read_unlock();
2423 
2424 		err = security_task_getscheduler(p);
2425 		if (err)
2426 			goto out;
2427 	}
2428 
2429 	task_lock(p);
2430 	seq_printf(m, "%llu\n", p->timer_slack_ns);
2431 	task_unlock(p);
2432 
2433 out:
2434 	put_task_struct(p);
2435 
2436 	return err;
2437 }
2438 
2439 static int timerslack_ns_open(struct inode *inode, struct file *filp)
2440 {
2441 	return single_open(filp, timerslack_ns_show, inode);
2442 }
2443 
2444 static const struct file_operations proc_pid_set_timerslack_ns_operations = {
2445 	.open		= timerslack_ns_open,
2446 	.read		= seq_read,
2447 	.write		= timerslack_ns_write,
2448 	.llseek		= seq_lseek,
2449 	.release	= single_release,
2450 };
2451 
2452 static struct dentry *proc_pident_instantiate(struct dentry *dentry,
2453 	struct task_struct *task, const void *ptr)
2454 {
2455 	const struct pid_entry *p = ptr;
2456 	struct inode *inode;
2457 	struct proc_inode *ei;
2458 
2459 	inode = proc_pid_make_inode(dentry->d_sb, task, p->mode);
2460 	if (!inode)
2461 		return ERR_PTR(-ENOENT);
2462 
2463 	ei = PROC_I(inode);
2464 	if (S_ISDIR(inode->i_mode))
2465 		set_nlink(inode, 2);	/* Use getattr to fix if necessary */
2466 	if (p->iop)
2467 		inode->i_op = p->iop;
2468 	if (p->fop)
2469 		inode->i_fop = p->fop;
2470 	ei->op = p->op;
2471 	pid_update_inode(task, inode);
2472 	d_set_d_op(dentry, &pid_dentry_operations);
2473 	return d_splice_alias(inode, dentry);
2474 }
2475 
2476 static struct dentry *proc_pident_lookup(struct inode *dir,
2477 					 struct dentry *dentry,
2478 					 const struct pid_entry *p,
2479 					 const struct pid_entry *end)
2480 {
2481 	struct task_struct *task = get_proc_task(dir);
2482 	struct dentry *res = ERR_PTR(-ENOENT);
2483 
2484 	if (!task)
2485 		goto out_no_task;
2486 
2487 	/*
2488 	 * Yes, it does not scale. And it should not. Don't add
2489 	 * new entries into /proc/<tgid>/ without very good reasons.
2490 	 */
2491 	for (; p < end; p++) {
2492 		if (p->len != dentry->d_name.len)
2493 			continue;
2494 		if (!memcmp(dentry->d_name.name, p->name, p->len)) {
2495 			res = proc_pident_instantiate(dentry, task, p);
2496 			break;
2497 		}
2498 	}
2499 	put_task_struct(task);
2500 out_no_task:
2501 	return res;
2502 }
2503 
2504 static int proc_pident_readdir(struct file *file, struct dir_context *ctx,
2505 		const struct pid_entry *ents, unsigned int nents)
2506 {
2507 	struct task_struct *task = get_proc_task(file_inode(file));
2508 	const struct pid_entry *p;
2509 
2510 	if (!task)
2511 		return -ENOENT;
2512 
2513 	if (!dir_emit_dots(file, ctx))
2514 		goto out;
2515 
2516 	if (ctx->pos >= nents + 2)
2517 		goto out;
2518 
2519 	for (p = ents + (ctx->pos - 2); p < ents + nents; p++) {
2520 		if (!proc_fill_cache(file, ctx, p->name, p->len,
2521 				proc_pident_instantiate, task, p))
2522 			break;
2523 		ctx->pos++;
2524 	}
2525 out:
2526 	put_task_struct(task);
2527 	return 0;
2528 }
2529 
2530 #ifdef CONFIG_SECURITY
2531 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2532 				  size_t count, loff_t *ppos)
2533 {
2534 	struct inode * inode = file_inode(file);
2535 	char *p = NULL;
2536 	ssize_t length;
2537 	struct task_struct *task = get_proc_task(inode);
2538 
2539 	if (!task)
2540 		return -ESRCH;
2541 
2542 	length = security_getprocattr(task, PROC_I(inode)->op.lsm,
2543 				      (char*)file->f_path.dentry->d_name.name,
2544 				      &p);
2545 	put_task_struct(task);
2546 	if (length > 0)
2547 		length = simple_read_from_buffer(buf, count, ppos, p, length);
2548 	kfree(p);
2549 	return length;
2550 }
2551 
2552 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2553 				   size_t count, loff_t *ppos)
2554 {
2555 	struct inode * inode = file_inode(file);
2556 	struct task_struct *task;
2557 	void *page;
2558 	int rv;
2559 
2560 	rcu_read_lock();
2561 	task = pid_task(proc_pid(inode), PIDTYPE_PID);
2562 	if (!task) {
2563 		rcu_read_unlock();
2564 		return -ESRCH;
2565 	}
2566 	/* A task may only write its own attributes. */
2567 	if (current != task) {
2568 		rcu_read_unlock();
2569 		return -EACCES;
2570 	}
2571 	/* Prevent changes to overridden credentials. */
2572 	if (current_cred() != current_real_cred()) {
2573 		rcu_read_unlock();
2574 		return -EBUSY;
2575 	}
2576 	rcu_read_unlock();
2577 
2578 	if (count > PAGE_SIZE)
2579 		count = PAGE_SIZE;
2580 
2581 	/* No partial writes. */
2582 	if (*ppos != 0)
2583 		return -EINVAL;
2584 
2585 	page = memdup_user(buf, count);
2586 	if (IS_ERR(page)) {
2587 		rv = PTR_ERR(page);
2588 		goto out;
2589 	}
2590 
2591 	/* Guard against adverse ptrace interaction */
2592 	rv = mutex_lock_interruptible(&current->signal->cred_guard_mutex);
2593 	if (rv < 0)
2594 		goto out_free;
2595 
2596 	rv = security_setprocattr(PROC_I(inode)->op.lsm,
2597 				  file->f_path.dentry->d_name.name, page,
2598 				  count);
2599 	mutex_unlock(&current->signal->cred_guard_mutex);
2600 out_free:
2601 	kfree(page);
2602 out:
2603 	return rv;
2604 }
2605 
2606 static const struct file_operations proc_pid_attr_operations = {
2607 	.read		= proc_pid_attr_read,
2608 	.write		= proc_pid_attr_write,
2609 	.llseek		= generic_file_llseek,
2610 };
2611 
2612 #define LSM_DIR_OPS(LSM) \
2613 static int proc_##LSM##_attr_dir_iterate(struct file *filp, \
2614 			     struct dir_context *ctx) \
2615 { \
2616 	return proc_pident_readdir(filp, ctx, \
2617 				   LSM##_attr_dir_stuff, \
2618 				   ARRAY_SIZE(LSM##_attr_dir_stuff)); \
2619 } \
2620 \
2621 static const struct file_operations proc_##LSM##_attr_dir_ops = { \
2622 	.read		= generic_read_dir, \
2623 	.iterate	= proc_##LSM##_attr_dir_iterate, \
2624 	.llseek		= default_llseek, \
2625 }; \
2626 \
2627 static struct dentry *proc_##LSM##_attr_dir_lookup(struct inode *dir, \
2628 				struct dentry *dentry, unsigned int flags) \
2629 { \
2630 	return proc_pident_lookup(dir, dentry, \
2631 				  LSM##_attr_dir_stuff, \
2632 				  LSM##_attr_dir_stuff + ARRAY_SIZE(LSM##_attr_dir_stuff)); \
2633 } \
2634 \
2635 static const struct inode_operations proc_##LSM##_attr_dir_inode_ops = { \
2636 	.lookup		= proc_##LSM##_attr_dir_lookup, \
2637 	.getattr	= pid_getattr, \
2638 	.setattr	= proc_setattr, \
2639 }
2640 
2641 #ifdef CONFIG_SECURITY_SMACK
2642 static const struct pid_entry smack_attr_dir_stuff[] = {
2643 	ATTR("smack", "current",	0666),
2644 };
2645 LSM_DIR_OPS(smack);
2646 #endif
2647 
2648 static const struct pid_entry attr_dir_stuff[] = {
2649 	ATTR(NULL, "current",		0666),
2650 	ATTR(NULL, "prev",		0444),
2651 	ATTR(NULL, "exec",		0666),
2652 	ATTR(NULL, "fscreate",		0666),
2653 	ATTR(NULL, "keycreate",		0666),
2654 	ATTR(NULL, "sockcreate",	0666),
2655 #ifdef CONFIG_SECURITY_SMACK
2656 	DIR("smack",			0555,
2657 	    proc_smack_attr_dir_inode_ops, proc_smack_attr_dir_ops),
2658 #endif
2659 };
2660 
2661 static int proc_attr_dir_readdir(struct file *file, struct dir_context *ctx)
2662 {
2663 	return proc_pident_readdir(file, ctx,
2664 				   attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2665 }
2666 
2667 static const struct file_operations proc_attr_dir_operations = {
2668 	.read		= generic_read_dir,
2669 	.iterate_shared	= proc_attr_dir_readdir,
2670 	.llseek		= generic_file_llseek,
2671 };
2672 
2673 static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2674 				struct dentry *dentry, unsigned int flags)
2675 {
2676 	return proc_pident_lookup(dir, dentry,
2677 				  attr_dir_stuff,
2678 				  attr_dir_stuff + ARRAY_SIZE(attr_dir_stuff));
2679 }
2680 
2681 static const struct inode_operations proc_attr_dir_inode_operations = {
2682 	.lookup		= proc_attr_dir_lookup,
2683 	.getattr	= pid_getattr,
2684 	.setattr	= proc_setattr,
2685 };
2686 
2687 #endif
2688 
2689 #ifdef CONFIG_ELF_CORE
2690 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2691 					 size_t count, loff_t *ppos)
2692 {
2693 	struct task_struct *task = get_proc_task(file_inode(file));
2694 	struct mm_struct *mm;
2695 	char buffer[PROC_NUMBUF];
2696 	size_t len;
2697 	int ret;
2698 
2699 	if (!task)
2700 		return -ESRCH;
2701 
2702 	ret = 0;
2703 	mm = get_task_mm(task);
2704 	if (mm) {
2705 		len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2706 			       ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2707 				MMF_DUMP_FILTER_SHIFT));
2708 		mmput(mm);
2709 		ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2710 	}
2711 
2712 	put_task_struct(task);
2713 
2714 	return ret;
2715 }
2716 
2717 static ssize_t proc_coredump_filter_write(struct file *file,
2718 					  const char __user *buf,
2719 					  size_t count,
2720 					  loff_t *ppos)
2721 {
2722 	struct task_struct *task;
2723 	struct mm_struct *mm;
2724 	unsigned int val;
2725 	int ret;
2726 	int i;
2727 	unsigned long mask;
2728 
2729 	ret = kstrtouint_from_user(buf, count, 0, &val);
2730 	if (ret < 0)
2731 		return ret;
2732 
2733 	ret = -ESRCH;
2734 	task = get_proc_task(file_inode(file));
2735 	if (!task)
2736 		goto out_no_task;
2737 
2738 	mm = get_task_mm(task);
2739 	if (!mm)
2740 		goto out_no_mm;
2741 	ret = 0;
2742 
2743 	for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2744 		if (val & mask)
2745 			set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2746 		else
2747 			clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2748 	}
2749 
2750 	mmput(mm);
2751  out_no_mm:
2752 	put_task_struct(task);
2753  out_no_task:
2754 	if (ret < 0)
2755 		return ret;
2756 	return count;
2757 }
2758 
2759 static const struct file_operations proc_coredump_filter_operations = {
2760 	.read		= proc_coredump_filter_read,
2761 	.write		= proc_coredump_filter_write,
2762 	.llseek		= generic_file_llseek,
2763 };
2764 #endif
2765 
2766 #ifdef CONFIG_TASK_IO_ACCOUNTING
2767 static int do_io_accounting(struct task_struct *task, struct seq_file *m, int whole)
2768 {
2769 	struct task_io_accounting acct = task->ioac;
2770 	unsigned long flags;
2771 	int result;
2772 
2773 	result = mutex_lock_killable(&task->signal->cred_guard_mutex);
2774 	if (result)
2775 		return result;
2776 
2777 	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) {
2778 		result = -EACCES;
2779 		goto out_unlock;
2780 	}
2781 
2782 	if (whole && lock_task_sighand(task, &flags)) {
2783 		struct task_struct *t = task;
2784 
2785 		task_io_accounting_add(&acct, &task->signal->ioac);
2786 		while_each_thread(task, t)
2787 			task_io_accounting_add(&acct, &t->ioac);
2788 
2789 		unlock_task_sighand(task, &flags);
2790 	}
2791 	seq_printf(m,
2792 		   "rchar: %llu\n"
2793 		   "wchar: %llu\n"
2794 		   "syscr: %llu\n"
2795 		   "syscw: %llu\n"
2796 		   "read_bytes: %llu\n"
2797 		   "write_bytes: %llu\n"
2798 		   "cancelled_write_bytes: %llu\n",
2799 		   (unsigned long long)acct.rchar,
2800 		   (unsigned long long)acct.wchar,
2801 		   (unsigned long long)acct.syscr,
2802 		   (unsigned long long)acct.syscw,
2803 		   (unsigned long long)acct.read_bytes,
2804 		   (unsigned long long)acct.write_bytes,
2805 		   (unsigned long long)acct.cancelled_write_bytes);
2806 	result = 0;
2807 
2808 out_unlock:
2809 	mutex_unlock(&task->signal->cred_guard_mutex);
2810 	return result;
2811 }
2812 
2813 static int proc_tid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2814 				  struct pid *pid, struct task_struct *task)
2815 {
2816 	return do_io_accounting(task, m, 0);
2817 }
2818 
2819 static int proc_tgid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2820 				   struct pid *pid, struct task_struct *task)
2821 {
2822 	return do_io_accounting(task, m, 1);
2823 }
2824 #endif /* CONFIG_TASK_IO_ACCOUNTING */
2825 
2826 #ifdef CONFIG_USER_NS
2827 static int proc_id_map_open(struct inode *inode, struct file *file,
2828 	const struct seq_operations *seq_ops)
2829 {
2830 	struct user_namespace *ns = NULL;
2831 	struct task_struct *task;
2832 	struct seq_file *seq;
2833 	int ret = -EINVAL;
2834 
2835 	task = get_proc_task(inode);
2836 	if (task) {
2837 		rcu_read_lock();
2838 		ns = get_user_ns(task_cred_xxx(task, user_ns));
2839 		rcu_read_unlock();
2840 		put_task_struct(task);
2841 	}
2842 	if (!ns)
2843 		goto err;
2844 
2845 	ret = seq_open(file, seq_ops);
2846 	if (ret)
2847 		goto err_put_ns;
2848 
2849 	seq = file->private_data;
2850 	seq->private = ns;
2851 
2852 	return 0;
2853 err_put_ns:
2854 	put_user_ns(ns);
2855 err:
2856 	return ret;
2857 }
2858 
2859 static int proc_id_map_release(struct inode *inode, struct file *file)
2860 {
2861 	struct seq_file *seq = file->private_data;
2862 	struct user_namespace *ns = seq->private;
2863 	put_user_ns(ns);
2864 	return seq_release(inode, file);
2865 }
2866 
2867 static int proc_uid_map_open(struct inode *inode, struct file *file)
2868 {
2869 	return proc_id_map_open(inode, file, &proc_uid_seq_operations);
2870 }
2871 
2872 static int proc_gid_map_open(struct inode *inode, struct file *file)
2873 {
2874 	return proc_id_map_open(inode, file, &proc_gid_seq_operations);
2875 }
2876 
2877 static int proc_projid_map_open(struct inode *inode, struct file *file)
2878 {
2879 	return proc_id_map_open(inode, file, &proc_projid_seq_operations);
2880 }
2881 
2882 static const struct file_operations proc_uid_map_operations = {
2883 	.open		= proc_uid_map_open,
2884 	.write		= proc_uid_map_write,
2885 	.read		= seq_read,
2886 	.llseek		= seq_lseek,
2887 	.release	= proc_id_map_release,
2888 };
2889 
2890 static const struct file_operations proc_gid_map_operations = {
2891 	.open		= proc_gid_map_open,
2892 	.write		= proc_gid_map_write,
2893 	.read		= seq_read,
2894 	.llseek		= seq_lseek,
2895 	.release	= proc_id_map_release,
2896 };
2897 
2898 static const struct file_operations proc_projid_map_operations = {
2899 	.open		= proc_projid_map_open,
2900 	.write		= proc_projid_map_write,
2901 	.read		= seq_read,
2902 	.llseek		= seq_lseek,
2903 	.release	= proc_id_map_release,
2904 };
2905 
2906 static int proc_setgroups_open(struct inode *inode, struct file *file)
2907 {
2908 	struct user_namespace *ns = NULL;
2909 	struct task_struct *task;
2910 	int ret;
2911 
2912 	ret = -ESRCH;
2913 	task = get_proc_task(inode);
2914 	if (task) {
2915 		rcu_read_lock();
2916 		ns = get_user_ns(task_cred_xxx(task, user_ns));
2917 		rcu_read_unlock();
2918 		put_task_struct(task);
2919 	}
2920 	if (!ns)
2921 		goto err;
2922 
2923 	if (file->f_mode & FMODE_WRITE) {
2924 		ret = -EACCES;
2925 		if (!ns_capable(ns, CAP_SYS_ADMIN))
2926 			goto err_put_ns;
2927 	}
2928 
2929 	ret = single_open(file, &proc_setgroups_show, ns);
2930 	if (ret)
2931 		goto err_put_ns;
2932 
2933 	return 0;
2934 err_put_ns:
2935 	put_user_ns(ns);
2936 err:
2937 	return ret;
2938 }
2939 
2940 static int proc_setgroups_release(struct inode *inode, struct file *file)
2941 {
2942 	struct seq_file *seq = file->private_data;
2943 	struct user_namespace *ns = seq->private;
2944 	int ret = single_release(inode, file);
2945 	put_user_ns(ns);
2946 	return ret;
2947 }
2948 
2949 static const struct file_operations proc_setgroups_operations = {
2950 	.open		= proc_setgroups_open,
2951 	.write		= proc_setgroups_write,
2952 	.read		= seq_read,
2953 	.llseek		= seq_lseek,
2954 	.release	= proc_setgroups_release,
2955 };
2956 #endif /* CONFIG_USER_NS */
2957 
2958 static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
2959 				struct pid *pid, struct task_struct *task)
2960 {
2961 	int err = lock_trace(task);
2962 	if (!err) {
2963 		seq_printf(m, "%08x\n", task->personality);
2964 		unlock_trace(task);
2965 	}
2966 	return err;
2967 }
2968 
2969 #ifdef CONFIG_LIVEPATCH
2970 static int proc_pid_patch_state(struct seq_file *m, struct pid_namespace *ns,
2971 				struct pid *pid, struct task_struct *task)
2972 {
2973 	seq_printf(m, "%d\n", task->patch_state);
2974 	return 0;
2975 }
2976 #endif /* CONFIG_LIVEPATCH */
2977 
2978 #ifdef CONFIG_STACKLEAK_METRICS
2979 static int proc_stack_depth(struct seq_file *m, struct pid_namespace *ns,
2980 				struct pid *pid, struct task_struct *task)
2981 {
2982 	unsigned long prev_depth = THREAD_SIZE -
2983 				(task->prev_lowest_stack & (THREAD_SIZE - 1));
2984 	unsigned long depth = THREAD_SIZE -
2985 				(task->lowest_stack & (THREAD_SIZE - 1));
2986 
2987 	seq_printf(m, "previous stack depth: %lu\nstack depth: %lu\n",
2988 							prev_depth, depth);
2989 	return 0;
2990 }
2991 #endif /* CONFIG_STACKLEAK_METRICS */
2992 
2993 /*
2994  * Thread groups
2995  */
2996 static const struct file_operations proc_task_operations;
2997 static const struct inode_operations proc_task_inode_operations;
2998 
2999 static const struct pid_entry tgid_base_stuff[] = {
3000 	DIR("task",       S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
3001 	DIR("fd",         S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3002 	DIR("map_files",  S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations),
3003 	DIR("fdinfo",     S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3004 	DIR("ns",	  S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3005 #ifdef CONFIG_NET
3006 	DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
3007 #endif
3008 	REG("environ",    S_IRUSR, proc_environ_operations),
3009 	REG("auxv",       S_IRUSR, proc_auxv_operations),
3010 	ONE("status",     S_IRUGO, proc_pid_status),
3011 	ONE("personality", S_IRUSR, proc_pid_personality),
3012 	ONE("limits",	  S_IRUGO, proc_pid_limits),
3013 #ifdef CONFIG_SCHED_DEBUG
3014 	REG("sched",      S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3015 #endif
3016 #ifdef CONFIG_SCHED_AUTOGROUP
3017 	REG("autogroup",  S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations),
3018 #endif
3019 	REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
3020 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3021 	ONE("syscall",    S_IRUSR, proc_pid_syscall),
3022 #endif
3023 	REG("cmdline",    S_IRUGO, proc_pid_cmdline_ops),
3024 	ONE("stat",       S_IRUGO, proc_tgid_stat),
3025 	ONE("statm",      S_IRUGO, proc_pid_statm),
3026 	REG("maps",       S_IRUGO, proc_pid_maps_operations),
3027 #ifdef CONFIG_NUMA
3028 	REG("numa_maps",  S_IRUGO, proc_pid_numa_maps_operations),
3029 #endif
3030 	REG("mem",        S_IRUSR|S_IWUSR, proc_mem_operations),
3031 	LNK("cwd",        proc_cwd_link),
3032 	LNK("root",       proc_root_link),
3033 	LNK("exe",        proc_exe_link),
3034 	REG("mounts",     S_IRUGO, proc_mounts_operations),
3035 	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
3036 	REG("mountstats", S_IRUSR, proc_mountstats_operations),
3037 #ifdef CONFIG_PROC_PAGE_MONITOR
3038 	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3039 	REG("smaps",      S_IRUGO, proc_pid_smaps_operations),
3040 	REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations),
3041 	REG("pagemap",    S_IRUSR, proc_pagemap_operations),
3042 #endif
3043 #ifdef CONFIG_SECURITY
3044 	DIR("attr",       S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3045 #endif
3046 #ifdef CONFIG_KALLSYMS
3047 	ONE("wchan",      S_IRUGO, proc_pid_wchan),
3048 #endif
3049 #ifdef CONFIG_STACKTRACE
3050 	ONE("stack",      S_IRUSR, proc_pid_stack),
3051 #endif
3052 #ifdef CONFIG_SCHED_INFO
3053 	ONE("schedstat",  S_IRUGO, proc_pid_schedstat),
3054 #endif
3055 #ifdef CONFIG_LATENCYTOP
3056 	REG("latency",  S_IRUGO, proc_lstats_operations),
3057 #endif
3058 #ifdef CONFIG_PROC_PID_CPUSET
3059 	ONE("cpuset",     S_IRUGO, proc_cpuset_show),
3060 #endif
3061 #ifdef CONFIG_CGROUPS
3062 	ONE("cgroup",  S_IRUGO, proc_cgroup_show),
3063 #endif
3064 	ONE("oom_score",  S_IRUGO, proc_oom_score),
3065 	REG("oom_adj",    S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3066 	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3067 #ifdef CONFIG_AUDIT
3068 	REG("loginuid",   S_IWUSR|S_IRUGO, proc_loginuid_operations),
3069 	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
3070 #endif
3071 #ifdef CONFIG_FAULT_INJECTION
3072 	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3073 	REG("fail-nth", 0644, proc_fail_nth_operations),
3074 #endif
3075 #ifdef CONFIG_ELF_CORE
3076 	REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
3077 #endif
3078 #ifdef CONFIG_TASK_IO_ACCOUNTING
3079 	ONE("io",	S_IRUSR, proc_tgid_io_accounting),
3080 #endif
3081 #ifdef CONFIG_USER_NS
3082 	REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
3083 	REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
3084 	REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3085 	REG("setgroups",  S_IRUGO|S_IWUSR, proc_setgroups_operations),
3086 #endif
3087 #if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS)
3088 	REG("timers",	  S_IRUGO, proc_timers_operations),
3089 #endif
3090 	REG("timerslack_ns", S_IRUGO|S_IWUGO, proc_pid_set_timerslack_ns_operations),
3091 #ifdef CONFIG_LIVEPATCH
3092 	ONE("patch_state",  S_IRUSR, proc_pid_patch_state),
3093 #endif
3094 #ifdef CONFIG_STACKLEAK_METRICS
3095 	ONE("stack_depth", S_IRUGO, proc_stack_depth),
3096 #endif
3097 #ifdef CONFIG_PROC_PID_ARCH_STATUS
3098 	ONE("arch_status", S_IRUGO, proc_pid_arch_status),
3099 #endif
3100 };
3101 
3102 static int proc_tgid_base_readdir(struct file *file, struct dir_context *ctx)
3103 {
3104 	return proc_pident_readdir(file, ctx,
3105 				   tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3106 }
3107 
3108 static const struct file_operations proc_tgid_base_operations = {
3109 	.read		= generic_read_dir,
3110 	.iterate_shared	= proc_tgid_base_readdir,
3111 	.llseek		= generic_file_llseek,
3112 };
3113 
3114 struct pid *tgid_pidfd_to_pid(const struct file *file)
3115 {
3116 	if (file->f_op != &proc_tgid_base_operations)
3117 		return ERR_PTR(-EBADF);
3118 
3119 	return proc_pid(file_inode(file));
3120 }
3121 
3122 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3123 {
3124 	return proc_pident_lookup(dir, dentry,
3125 				  tgid_base_stuff,
3126 				  tgid_base_stuff + ARRAY_SIZE(tgid_base_stuff));
3127 }
3128 
3129 static const struct inode_operations proc_tgid_base_inode_operations = {
3130 	.lookup		= proc_tgid_base_lookup,
3131 	.getattr	= pid_getattr,
3132 	.setattr	= proc_setattr,
3133 	.permission	= proc_pid_permission,
3134 };
3135 
3136 static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid)
3137 {
3138 	struct dentry *dentry, *leader, *dir;
3139 	char buf[10 + 1];
3140 	struct qstr name;
3141 
3142 	name.name = buf;
3143 	name.len = snprintf(buf, sizeof(buf), "%u", pid);
3144 	/* no ->d_hash() rejects on procfs */
3145 	dentry = d_hash_and_lookup(mnt->mnt_root, &name);
3146 	if (dentry) {
3147 		d_invalidate(dentry);
3148 		dput(dentry);
3149 	}
3150 
3151 	if (pid == tgid)
3152 		return;
3153 
3154 	name.name = buf;
3155 	name.len = snprintf(buf, sizeof(buf), "%u", tgid);
3156 	leader = d_hash_and_lookup(mnt->mnt_root, &name);
3157 	if (!leader)
3158 		goto out;
3159 
3160 	name.name = "task";
3161 	name.len = strlen(name.name);
3162 	dir = d_hash_and_lookup(leader, &name);
3163 	if (!dir)
3164 		goto out_put_leader;
3165 
3166 	name.name = buf;
3167 	name.len = snprintf(buf, sizeof(buf), "%u", pid);
3168 	dentry = d_hash_and_lookup(dir, &name);
3169 	if (dentry) {
3170 		d_invalidate(dentry);
3171 		dput(dentry);
3172 	}
3173 
3174 	dput(dir);
3175 out_put_leader:
3176 	dput(leader);
3177 out:
3178 	return;
3179 }
3180 
3181 /**
3182  * proc_flush_task -  Remove dcache entries for @task from the /proc dcache.
3183  * @task: task that should be flushed.
3184  *
3185  * When flushing dentries from proc, one needs to flush them from global
3186  * proc (proc_mnt) and from all the namespaces' procs this task was seen
3187  * in. This call is supposed to do all of this job.
3188  *
3189  * Looks in the dcache for
3190  * /proc/@pid
3191  * /proc/@tgid/task/@pid
3192  * if either directory is present flushes it and all of it'ts children
3193  * from the dcache.
3194  *
3195  * It is safe and reasonable to cache /proc entries for a task until
3196  * that task exits.  After that they just clog up the dcache with
3197  * useless entries, possibly causing useful dcache entries to be
3198  * flushed instead.  This routine is proved to flush those useless
3199  * dcache entries at process exit time.
3200  *
3201  * NOTE: This routine is just an optimization so it does not guarantee
3202  *       that no dcache entries will exist at process exit time it
3203  *       just makes it very unlikely that any will persist.
3204  */
3205 
3206 void proc_flush_task(struct task_struct *task)
3207 {
3208 	int i;
3209 	struct pid *pid, *tgid;
3210 	struct upid *upid;
3211 
3212 	pid = task_pid(task);
3213 	tgid = task_tgid(task);
3214 
3215 	for (i = 0; i <= pid->level; i++) {
3216 		upid = &pid->numbers[i];
3217 		proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr,
3218 					tgid->numbers[i].nr);
3219 	}
3220 }
3221 
3222 static struct dentry *proc_pid_instantiate(struct dentry * dentry,
3223 				   struct task_struct *task, const void *ptr)
3224 {
3225 	struct inode *inode;
3226 
3227 	inode = proc_pid_make_inode(dentry->d_sb, task, S_IFDIR | S_IRUGO | S_IXUGO);
3228 	if (!inode)
3229 		return ERR_PTR(-ENOENT);
3230 
3231 	inode->i_op = &proc_tgid_base_inode_operations;
3232 	inode->i_fop = &proc_tgid_base_operations;
3233 	inode->i_flags|=S_IMMUTABLE;
3234 
3235 	set_nlink(inode, nlink_tgid);
3236 	pid_update_inode(task, inode);
3237 
3238 	d_set_d_op(dentry, &pid_dentry_operations);
3239 	return d_splice_alias(inode, dentry);
3240 }
3241 
3242 struct dentry *proc_pid_lookup(struct dentry *dentry, unsigned int flags)
3243 {
3244 	struct task_struct *task;
3245 	unsigned tgid;
3246 	struct pid_namespace *ns;
3247 	struct dentry *result = ERR_PTR(-ENOENT);
3248 
3249 	tgid = name_to_int(&dentry->d_name);
3250 	if (tgid == ~0U)
3251 		goto out;
3252 
3253 	ns = dentry->d_sb->s_fs_info;
3254 	rcu_read_lock();
3255 	task = find_task_by_pid_ns(tgid, ns);
3256 	if (task)
3257 		get_task_struct(task);
3258 	rcu_read_unlock();
3259 	if (!task)
3260 		goto out;
3261 
3262 	result = proc_pid_instantiate(dentry, task, NULL);
3263 	put_task_struct(task);
3264 out:
3265 	return result;
3266 }
3267 
3268 /*
3269  * Find the first task with tgid >= tgid
3270  *
3271  */
3272 struct tgid_iter {
3273 	unsigned int tgid;
3274 	struct task_struct *task;
3275 };
3276 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
3277 {
3278 	struct pid *pid;
3279 
3280 	if (iter.task)
3281 		put_task_struct(iter.task);
3282 	rcu_read_lock();
3283 retry:
3284 	iter.task = NULL;
3285 	pid = find_ge_pid(iter.tgid, ns);
3286 	if (pid) {
3287 		iter.tgid = pid_nr_ns(pid, ns);
3288 		iter.task = pid_task(pid, PIDTYPE_PID);
3289 		/* What we to know is if the pid we have find is the
3290 		 * pid of a thread_group_leader.  Testing for task
3291 		 * being a thread_group_leader is the obvious thing
3292 		 * todo but there is a window when it fails, due to
3293 		 * the pid transfer logic in de_thread.
3294 		 *
3295 		 * So we perform the straight forward test of seeing
3296 		 * if the pid we have found is the pid of a thread
3297 		 * group leader, and don't worry if the task we have
3298 		 * found doesn't happen to be a thread group leader.
3299 		 * As we don't care in the case of readdir.
3300 		 */
3301 		if (!iter.task || !has_group_leader_pid(iter.task)) {
3302 			iter.tgid += 1;
3303 			goto retry;
3304 		}
3305 		get_task_struct(iter.task);
3306 	}
3307 	rcu_read_unlock();
3308 	return iter;
3309 }
3310 
3311 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + 2)
3312 
3313 /* for the /proc/ directory itself, after non-process stuff has been done */
3314 int proc_pid_readdir(struct file *file, struct dir_context *ctx)
3315 {
3316 	struct tgid_iter iter;
3317 	struct pid_namespace *ns = proc_pid_ns(file_inode(file));
3318 	loff_t pos = ctx->pos;
3319 
3320 	if (pos >= PID_MAX_LIMIT + TGID_OFFSET)
3321 		return 0;
3322 
3323 	if (pos == TGID_OFFSET - 2) {
3324 		struct inode *inode = d_inode(ns->proc_self);
3325 		if (!dir_emit(ctx, "self", 4, inode->i_ino, DT_LNK))
3326 			return 0;
3327 		ctx->pos = pos = pos + 1;
3328 	}
3329 	if (pos == TGID_OFFSET - 1) {
3330 		struct inode *inode = d_inode(ns->proc_thread_self);
3331 		if (!dir_emit(ctx, "thread-self", 11, inode->i_ino, DT_LNK))
3332 			return 0;
3333 		ctx->pos = pos = pos + 1;
3334 	}
3335 	iter.tgid = pos - TGID_OFFSET;
3336 	iter.task = NULL;
3337 	for (iter = next_tgid(ns, iter);
3338 	     iter.task;
3339 	     iter.tgid += 1, iter = next_tgid(ns, iter)) {
3340 		char name[10 + 1];
3341 		unsigned int len;
3342 
3343 		cond_resched();
3344 		if (!has_pid_permissions(ns, iter.task, HIDEPID_INVISIBLE))
3345 			continue;
3346 
3347 		len = snprintf(name, sizeof(name), "%u", iter.tgid);
3348 		ctx->pos = iter.tgid + TGID_OFFSET;
3349 		if (!proc_fill_cache(file, ctx, name, len,
3350 				     proc_pid_instantiate, iter.task, NULL)) {
3351 			put_task_struct(iter.task);
3352 			return 0;
3353 		}
3354 	}
3355 	ctx->pos = PID_MAX_LIMIT + TGID_OFFSET;
3356 	return 0;
3357 }
3358 
3359 /*
3360  * proc_tid_comm_permission is a special permission function exclusively
3361  * used for the node /proc/<pid>/task/<tid>/comm.
3362  * It bypasses generic permission checks in the case where a task of the same
3363  * task group attempts to access the node.
3364  * The rationale behind this is that glibc and bionic access this node for
3365  * cross thread naming (pthread_set/getname_np(!self)). However, if
3366  * PR_SET_DUMPABLE gets set to 0 this node among others becomes uid=0 gid=0,
3367  * which locks out the cross thread naming implementation.
3368  * This function makes sure that the node is always accessible for members of
3369  * same thread group.
3370  */
3371 static int proc_tid_comm_permission(struct inode *inode, int mask)
3372 {
3373 	bool is_same_tgroup;
3374 	struct task_struct *task;
3375 
3376 	task = get_proc_task(inode);
3377 	if (!task)
3378 		return -ESRCH;
3379 	is_same_tgroup = same_thread_group(current, task);
3380 	put_task_struct(task);
3381 
3382 	if (likely(is_same_tgroup && !(mask & MAY_EXEC))) {
3383 		/* This file (/proc/<pid>/task/<tid>/comm) can always be
3384 		 * read or written by the members of the corresponding
3385 		 * thread group.
3386 		 */
3387 		return 0;
3388 	}
3389 
3390 	return generic_permission(inode, mask);
3391 }
3392 
3393 static const struct inode_operations proc_tid_comm_inode_operations = {
3394 		.permission = proc_tid_comm_permission,
3395 };
3396 
3397 /*
3398  * Tasks
3399  */
3400 static const struct pid_entry tid_base_stuff[] = {
3401 	DIR("fd",        S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3402 	DIR("fdinfo",    S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3403 	DIR("ns",	 S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3404 #ifdef CONFIG_NET
3405 	DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
3406 #endif
3407 	REG("environ",   S_IRUSR, proc_environ_operations),
3408 	REG("auxv",      S_IRUSR, proc_auxv_operations),
3409 	ONE("status",    S_IRUGO, proc_pid_status),
3410 	ONE("personality", S_IRUSR, proc_pid_personality),
3411 	ONE("limits",	 S_IRUGO, proc_pid_limits),
3412 #ifdef CONFIG_SCHED_DEBUG
3413 	REG("sched",     S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3414 #endif
3415 	NOD("comm",      S_IFREG|S_IRUGO|S_IWUSR,
3416 			 &proc_tid_comm_inode_operations,
3417 			 &proc_pid_set_comm_operations, {}),
3418 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3419 	ONE("syscall",   S_IRUSR, proc_pid_syscall),
3420 #endif
3421 	REG("cmdline",   S_IRUGO, proc_pid_cmdline_ops),
3422 	ONE("stat",      S_IRUGO, proc_tid_stat),
3423 	ONE("statm",     S_IRUGO, proc_pid_statm),
3424 	REG("maps",      S_IRUGO, proc_pid_maps_operations),
3425 #ifdef CONFIG_PROC_CHILDREN
3426 	REG("children",  S_IRUGO, proc_tid_children_operations),
3427 #endif
3428 #ifdef CONFIG_NUMA
3429 	REG("numa_maps", S_IRUGO, proc_pid_numa_maps_operations),
3430 #endif
3431 	REG("mem",       S_IRUSR|S_IWUSR, proc_mem_operations),
3432 	LNK("cwd",       proc_cwd_link),
3433 	LNK("root",      proc_root_link),
3434 	LNK("exe",       proc_exe_link),
3435 	REG("mounts",    S_IRUGO, proc_mounts_operations),
3436 	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
3437 #ifdef CONFIG_PROC_PAGE_MONITOR
3438 	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3439 	REG("smaps",     S_IRUGO, proc_pid_smaps_operations),
3440 	REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations),
3441 	REG("pagemap",    S_IRUSR, proc_pagemap_operations),
3442 #endif
3443 #ifdef CONFIG_SECURITY
3444 	DIR("attr",      S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3445 #endif
3446 #ifdef CONFIG_KALLSYMS
3447 	ONE("wchan",     S_IRUGO, proc_pid_wchan),
3448 #endif
3449 #ifdef CONFIG_STACKTRACE
3450 	ONE("stack",      S_IRUSR, proc_pid_stack),
3451 #endif
3452 #ifdef CONFIG_SCHED_INFO
3453 	ONE("schedstat", S_IRUGO, proc_pid_schedstat),
3454 #endif
3455 #ifdef CONFIG_LATENCYTOP
3456 	REG("latency",  S_IRUGO, proc_lstats_operations),
3457 #endif
3458 #ifdef CONFIG_PROC_PID_CPUSET
3459 	ONE("cpuset",    S_IRUGO, proc_cpuset_show),
3460 #endif
3461 #ifdef CONFIG_CGROUPS
3462 	ONE("cgroup",  S_IRUGO, proc_cgroup_show),
3463 #endif
3464 	ONE("oom_score", S_IRUGO, proc_oom_score),
3465 	REG("oom_adj",   S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3466 	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3467 #ifdef CONFIG_AUDIT
3468 	REG("loginuid",  S_IWUSR|S_IRUGO, proc_loginuid_operations),
3469 	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
3470 #endif
3471 #ifdef CONFIG_FAULT_INJECTION
3472 	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3473 	REG("fail-nth", 0644, proc_fail_nth_operations),
3474 #endif
3475 #ifdef CONFIG_TASK_IO_ACCOUNTING
3476 	ONE("io",	S_IRUSR, proc_tid_io_accounting),
3477 #endif
3478 #ifdef CONFIG_USER_NS
3479 	REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
3480 	REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
3481 	REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3482 	REG("setgroups",  S_IRUGO|S_IWUSR, proc_setgroups_operations),
3483 #endif
3484 #ifdef CONFIG_LIVEPATCH
3485 	ONE("patch_state",  S_IRUSR, proc_pid_patch_state),
3486 #endif
3487 #ifdef CONFIG_PROC_PID_ARCH_STATUS
3488 	ONE("arch_status", S_IRUGO, proc_pid_arch_status),
3489 #endif
3490 };
3491 
3492 static int proc_tid_base_readdir(struct file *file, struct dir_context *ctx)
3493 {
3494 	return proc_pident_readdir(file, ctx,
3495 				   tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3496 }
3497 
3498 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3499 {
3500 	return proc_pident_lookup(dir, dentry,
3501 				  tid_base_stuff,
3502 				  tid_base_stuff + ARRAY_SIZE(tid_base_stuff));
3503 }
3504 
3505 static const struct file_operations proc_tid_base_operations = {
3506 	.read		= generic_read_dir,
3507 	.iterate_shared	= proc_tid_base_readdir,
3508 	.llseek		= generic_file_llseek,
3509 };
3510 
3511 static const struct inode_operations proc_tid_base_inode_operations = {
3512 	.lookup		= proc_tid_base_lookup,
3513 	.getattr	= pid_getattr,
3514 	.setattr	= proc_setattr,
3515 };
3516 
3517 static struct dentry *proc_task_instantiate(struct dentry *dentry,
3518 	struct task_struct *task, const void *ptr)
3519 {
3520 	struct inode *inode;
3521 	inode = proc_pid_make_inode(dentry->d_sb, task, S_IFDIR | S_IRUGO | S_IXUGO);
3522 	if (!inode)
3523 		return ERR_PTR(-ENOENT);
3524 
3525 	inode->i_op = &proc_tid_base_inode_operations;
3526 	inode->i_fop = &proc_tid_base_operations;
3527 	inode->i_flags |= S_IMMUTABLE;
3528 
3529 	set_nlink(inode, nlink_tid);
3530 	pid_update_inode(task, inode);
3531 
3532 	d_set_d_op(dentry, &pid_dentry_operations);
3533 	return d_splice_alias(inode, dentry);
3534 }
3535 
3536 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3537 {
3538 	struct task_struct *task;
3539 	struct task_struct *leader = get_proc_task(dir);
3540 	unsigned tid;
3541 	struct pid_namespace *ns;
3542 	struct dentry *result = ERR_PTR(-ENOENT);
3543 
3544 	if (!leader)
3545 		goto out_no_task;
3546 
3547 	tid = name_to_int(&dentry->d_name);
3548 	if (tid == ~0U)
3549 		goto out;
3550 
3551 	ns = dentry->d_sb->s_fs_info;
3552 	rcu_read_lock();
3553 	task = find_task_by_pid_ns(tid, ns);
3554 	if (task)
3555 		get_task_struct(task);
3556 	rcu_read_unlock();
3557 	if (!task)
3558 		goto out;
3559 	if (!same_thread_group(leader, task))
3560 		goto out_drop_task;
3561 
3562 	result = proc_task_instantiate(dentry, task, NULL);
3563 out_drop_task:
3564 	put_task_struct(task);
3565 out:
3566 	put_task_struct(leader);
3567 out_no_task:
3568 	return result;
3569 }
3570 
3571 /*
3572  * Find the first tid of a thread group to return to user space.
3573  *
3574  * Usually this is just the thread group leader, but if the users
3575  * buffer was too small or there was a seek into the middle of the
3576  * directory we have more work todo.
3577  *
3578  * In the case of a short read we start with find_task_by_pid.
3579  *
3580  * In the case of a seek we start with the leader and walk nr
3581  * threads past it.
3582  */
3583 static struct task_struct *first_tid(struct pid *pid, int tid, loff_t f_pos,
3584 					struct pid_namespace *ns)
3585 {
3586 	struct task_struct *pos, *task;
3587 	unsigned long nr = f_pos;
3588 
3589 	if (nr != f_pos)	/* 32bit overflow? */
3590 		return NULL;
3591 
3592 	rcu_read_lock();
3593 	task = pid_task(pid, PIDTYPE_PID);
3594 	if (!task)
3595 		goto fail;
3596 
3597 	/* Attempt to start with the tid of a thread */
3598 	if (tid && nr) {
3599 		pos = find_task_by_pid_ns(tid, ns);
3600 		if (pos && same_thread_group(pos, task))
3601 			goto found;
3602 	}
3603 
3604 	/* If nr exceeds the number of threads there is nothing todo */
3605 	if (nr >= get_nr_threads(task))
3606 		goto fail;
3607 
3608 	/* If we haven't found our starting place yet start
3609 	 * with the leader and walk nr threads forward.
3610 	 */
3611 	pos = task = task->group_leader;
3612 	do {
3613 		if (!nr--)
3614 			goto found;
3615 	} while_each_thread(task, pos);
3616 fail:
3617 	pos = NULL;
3618 	goto out;
3619 found:
3620 	get_task_struct(pos);
3621 out:
3622 	rcu_read_unlock();
3623 	return pos;
3624 }
3625 
3626 /*
3627  * Find the next thread in the thread list.
3628  * Return NULL if there is an error or no next thread.
3629  *
3630  * The reference to the input task_struct is released.
3631  */
3632 static struct task_struct *next_tid(struct task_struct *start)
3633 {
3634 	struct task_struct *pos = NULL;
3635 	rcu_read_lock();
3636 	if (pid_alive(start)) {
3637 		pos = next_thread(start);
3638 		if (thread_group_leader(pos))
3639 			pos = NULL;
3640 		else
3641 			get_task_struct(pos);
3642 	}
3643 	rcu_read_unlock();
3644 	put_task_struct(start);
3645 	return pos;
3646 }
3647 
3648 /* for the /proc/TGID/task/ directories */
3649 static int proc_task_readdir(struct file *file, struct dir_context *ctx)
3650 {
3651 	struct inode *inode = file_inode(file);
3652 	struct task_struct *task;
3653 	struct pid_namespace *ns;
3654 	int tid;
3655 
3656 	if (proc_inode_is_dead(inode))
3657 		return -ENOENT;
3658 
3659 	if (!dir_emit_dots(file, ctx))
3660 		return 0;
3661 
3662 	/* f_version caches the tgid value that the last readdir call couldn't
3663 	 * return. lseek aka telldir automagically resets f_version to 0.
3664 	 */
3665 	ns = proc_pid_ns(inode);
3666 	tid = (int)file->f_version;
3667 	file->f_version = 0;
3668 	for (task = first_tid(proc_pid(inode), tid, ctx->pos - 2, ns);
3669 	     task;
3670 	     task = next_tid(task), ctx->pos++) {
3671 		char name[10 + 1];
3672 		unsigned int len;
3673 		tid = task_pid_nr_ns(task, ns);
3674 		len = snprintf(name, sizeof(name), "%u", tid);
3675 		if (!proc_fill_cache(file, ctx, name, len,
3676 				proc_task_instantiate, task, NULL)) {
3677 			/* returning this tgid failed, save it as the first
3678 			 * pid for the next readir call */
3679 			file->f_version = (u64)tid;
3680 			put_task_struct(task);
3681 			break;
3682 		}
3683 	}
3684 
3685 	return 0;
3686 }
3687 
3688 static int proc_task_getattr(const struct path *path, struct kstat *stat,
3689 			     u32 request_mask, unsigned int query_flags)
3690 {
3691 	struct inode *inode = d_inode(path->dentry);
3692 	struct task_struct *p = get_proc_task(inode);
3693 	generic_fillattr(inode, stat);
3694 
3695 	if (p) {
3696 		stat->nlink += get_nr_threads(p);
3697 		put_task_struct(p);
3698 	}
3699 
3700 	return 0;
3701 }
3702 
3703 static const struct inode_operations proc_task_inode_operations = {
3704 	.lookup		= proc_task_lookup,
3705 	.getattr	= proc_task_getattr,
3706 	.setattr	= proc_setattr,
3707 	.permission	= proc_pid_permission,
3708 };
3709 
3710 static const struct file_operations proc_task_operations = {
3711 	.read		= generic_read_dir,
3712 	.iterate_shared	= proc_task_readdir,
3713 	.llseek		= generic_file_llseek,
3714 };
3715 
3716 void __init set_proc_pid_nlink(void)
3717 {
3718 	nlink_tid = pid_entry_nlink(tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3719 	nlink_tgid = pid_entry_nlink(tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3720 }
3721