xref: /openbmc/linux/fs/ocfs2/journal.c (revision e8aed3450c0afd6fdb79ec233f806e3e69454dfe)
1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * journal.c
5  *
6  * Defines functions of journalling api
7  *
8  * Copyright (C) 2003, 2004 Oracle.  All rights reserved.
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public
12  * License as published by the Free Software Foundation; either
13  * version 2 of the License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public
21  * License along with this program; if not, write to the
22  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23  * Boston, MA 021110-1307, USA.
24  */
25 
26 #include <linux/fs.h>
27 #include <linux/types.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/kthread.h>
31 
32 #define MLOG_MASK_PREFIX ML_JOURNAL
33 #include <cluster/masklog.h>
34 
35 #include "ocfs2.h"
36 
37 #include "alloc.h"
38 #include "dir.h"
39 #include "dlmglue.h"
40 #include "extent_map.h"
41 #include "heartbeat.h"
42 #include "inode.h"
43 #include "journal.h"
44 #include "localalloc.h"
45 #include "slot_map.h"
46 #include "super.h"
47 #include "vote.h"
48 #include "sysfile.h"
49 
50 #include "buffer_head_io.h"
51 
52 DEFINE_SPINLOCK(trans_inc_lock);
53 
54 static int ocfs2_force_read_journal(struct inode *inode);
55 static int ocfs2_recover_node(struct ocfs2_super *osb,
56 			      int node_num);
57 static int __ocfs2_recovery_thread(void *arg);
58 static int ocfs2_commit_cache(struct ocfs2_super *osb);
59 static int ocfs2_wait_on_mount(struct ocfs2_super *osb);
60 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
61 				      int dirty);
62 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
63 				 int slot_num);
64 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
65 				 int slot);
66 static int ocfs2_commit_thread(void *arg);
67 
68 static int ocfs2_commit_cache(struct ocfs2_super *osb)
69 {
70 	int status = 0;
71 	unsigned int flushed;
72 	unsigned long old_id;
73 	struct ocfs2_journal *journal = NULL;
74 
75 	mlog_entry_void();
76 
77 	journal = osb->journal;
78 
79 	/* Flush all pending commits and checkpoint the journal. */
80 	down_write(&journal->j_trans_barrier);
81 
82 	if (atomic_read(&journal->j_num_trans) == 0) {
83 		up_write(&journal->j_trans_barrier);
84 		mlog(0, "No transactions for me to flush!\n");
85 		goto finally;
86 	}
87 
88 	journal_lock_updates(journal->j_journal);
89 	status = journal_flush(journal->j_journal);
90 	journal_unlock_updates(journal->j_journal);
91 	if (status < 0) {
92 		up_write(&journal->j_trans_barrier);
93 		mlog_errno(status);
94 		goto finally;
95 	}
96 
97 	old_id = ocfs2_inc_trans_id(journal);
98 
99 	flushed = atomic_read(&journal->j_num_trans);
100 	atomic_set(&journal->j_num_trans, 0);
101 	up_write(&journal->j_trans_barrier);
102 
103 	mlog(0, "commit_thread: flushed transaction %lu (%u handles)\n",
104 	     journal->j_trans_id, flushed);
105 
106 	ocfs2_kick_vote_thread(osb);
107 	wake_up(&journal->j_checkpointed);
108 finally:
109 	mlog_exit(status);
110 	return status;
111 }
112 
113 /* pass it NULL and it will allocate a new handle object for you.  If
114  * you pass it a handle however, it may still return error, in which
115  * case it has free'd the passed handle for you. */
116 handle_t *ocfs2_start_trans(struct ocfs2_super *osb, int max_buffs)
117 {
118 	journal_t *journal = osb->journal->j_journal;
119 	handle_t *handle;
120 
121 	BUG_ON(!osb || !osb->journal->j_journal);
122 
123 	if (ocfs2_is_hard_readonly(osb))
124 		return ERR_PTR(-EROFS);
125 
126 	BUG_ON(osb->journal->j_state == OCFS2_JOURNAL_FREE);
127 	BUG_ON(max_buffs <= 0);
128 
129 	/* JBD might support this, but our journalling code doesn't yet. */
130 	if (journal_current_handle()) {
131 		mlog(ML_ERROR, "Recursive transaction attempted!\n");
132 		BUG();
133 	}
134 
135 	down_read(&osb->journal->j_trans_barrier);
136 
137 	handle = journal_start(journal, max_buffs);
138 	if (IS_ERR(handle)) {
139 		up_read(&osb->journal->j_trans_barrier);
140 
141 		mlog_errno(PTR_ERR(handle));
142 
143 		if (is_journal_aborted(journal)) {
144 			ocfs2_abort(osb->sb, "Detected aborted journal");
145 			handle = ERR_PTR(-EROFS);
146 		}
147 	} else {
148 		if (!ocfs2_mount_local(osb))
149 			atomic_inc(&(osb->journal->j_num_trans));
150 	}
151 
152 	return handle;
153 }
154 
155 int ocfs2_commit_trans(struct ocfs2_super *osb,
156 		       handle_t *handle)
157 {
158 	int ret;
159 	struct ocfs2_journal *journal = osb->journal;
160 
161 	BUG_ON(!handle);
162 
163 	ret = journal_stop(handle);
164 	if (ret < 0)
165 		mlog_errno(ret);
166 
167 	up_read(&journal->j_trans_barrier);
168 
169 	return ret;
170 }
171 
172 /*
173  * 'nblocks' is what you want to add to the current
174  * transaction. extend_trans will either extend the current handle by
175  * nblocks, or commit it and start a new one with nblocks credits.
176  *
177  * This might call journal_restart() which will commit dirty buffers
178  * and then restart the transaction. Before calling
179  * ocfs2_extend_trans(), any changed blocks should have been
180  * dirtied. After calling it, all blocks which need to be changed must
181  * go through another set of journal_access/journal_dirty calls.
182  *
183  * WARNING: This will not release any semaphores or disk locks taken
184  * during the transaction, so make sure they were taken *before*
185  * start_trans or we'll have ordering deadlocks.
186  *
187  * WARNING2: Note that we do *not* drop j_trans_barrier here. This is
188  * good because transaction ids haven't yet been recorded on the
189  * cluster locks associated with this handle.
190  */
191 int ocfs2_extend_trans(handle_t *handle, int nblocks)
192 {
193 	int status;
194 
195 	BUG_ON(!handle);
196 	BUG_ON(!nblocks);
197 
198 	mlog_entry_void();
199 
200 	mlog(0, "Trying to extend transaction by %d blocks\n", nblocks);
201 
202 #ifdef OCFS2_DEBUG_FS
203 	status = 1;
204 #else
205 	status = journal_extend(handle, nblocks);
206 	if (status < 0) {
207 		mlog_errno(status);
208 		goto bail;
209 	}
210 #endif
211 
212 	if (status > 0) {
213 		mlog(0, "journal_extend failed, trying journal_restart\n");
214 		status = journal_restart(handle, nblocks);
215 		if (status < 0) {
216 			mlog_errno(status);
217 			goto bail;
218 		}
219 	}
220 
221 	status = 0;
222 bail:
223 
224 	mlog_exit(status);
225 	return status;
226 }
227 
228 int ocfs2_journal_access(handle_t *handle,
229 			 struct inode *inode,
230 			 struct buffer_head *bh,
231 			 int type)
232 {
233 	int status;
234 
235 	BUG_ON(!inode);
236 	BUG_ON(!handle);
237 	BUG_ON(!bh);
238 
239 	mlog_entry("bh->b_blocknr=%llu, type=%d (\"%s\"), bh->b_size = %zu\n",
240 		   (unsigned long long)bh->b_blocknr, type,
241 		   (type == OCFS2_JOURNAL_ACCESS_CREATE) ?
242 		   "OCFS2_JOURNAL_ACCESS_CREATE" :
243 		   "OCFS2_JOURNAL_ACCESS_WRITE",
244 		   bh->b_size);
245 
246 	/* we can safely remove this assertion after testing. */
247 	if (!buffer_uptodate(bh)) {
248 		mlog(ML_ERROR, "giving me a buffer that's not uptodate!\n");
249 		mlog(ML_ERROR, "b_blocknr=%llu\n",
250 		     (unsigned long long)bh->b_blocknr);
251 		BUG();
252 	}
253 
254 	/* Set the current transaction information on the inode so
255 	 * that the locking code knows whether it can drop it's locks
256 	 * on this inode or not. We're protected from the commit
257 	 * thread updating the current transaction id until
258 	 * ocfs2_commit_trans() because ocfs2_start_trans() took
259 	 * j_trans_barrier for us. */
260 	ocfs2_set_inode_lock_trans(OCFS2_SB(inode->i_sb)->journal, inode);
261 
262 	mutex_lock(&OCFS2_I(inode)->ip_io_mutex);
263 	switch (type) {
264 	case OCFS2_JOURNAL_ACCESS_CREATE:
265 	case OCFS2_JOURNAL_ACCESS_WRITE:
266 		status = journal_get_write_access(handle, bh);
267 		break;
268 
269 	case OCFS2_JOURNAL_ACCESS_UNDO:
270 		status = journal_get_undo_access(handle, bh);
271 		break;
272 
273 	default:
274 		status = -EINVAL;
275 		mlog(ML_ERROR, "Uknown access type!\n");
276 	}
277 	mutex_unlock(&OCFS2_I(inode)->ip_io_mutex);
278 
279 	if (status < 0)
280 		mlog(ML_ERROR, "Error %d getting %d access to buffer!\n",
281 		     status, type);
282 
283 	mlog_exit(status);
284 	return status;
285 }
286 
287 int ocfs2_journal_dirty(handle_t *handle,
288 			struct buffer_head *bh)
289 {
290 	int status;
291 
292 	mlog_entry("(bh->b_blocknr=%llu)\n",
293 		   (unsigned long long)bh->b_blocknr);
294 
295 	status = journal_dirty_metadata(handle, bh);
296 	if (status < 0)
297 		mlog(ML_ERROR, "Could not dirty metadata buffer. "
298 		     "(bh->b_blocknr=%llu)\n",
299 		     (unsigned long long)bh->b_blocknr);
300 
301 	mlog_exit(status);
302 	return status;
303 }
304 
305 int ocfs2_journal_dirty_data(handle_t *handle,
306 			     struct buffer_head *bh)
307 {
308 	int err = journal_dirty_data(handle, bh);
309 	if (err)
310 		mlog_errno(err);
311 	/* TODO: When we can handle it, abort the handle and go RO on
312 	 * error here. */
313 
314 	return err;
315 }
316 
317 #define OCFS2_DEFAULT_COMMIT_INTERVAL 	(HZ * 5)
318 
319 void ocfs2_set_journal_params(struct ocfs2_super *osb)
320 {
321 	journal_t *journal = osb->journal->j_journal;
322 
323 	spin_lock(&journal->j_state_lock);
324 	journal->j_commit_interval = OCFS2_DEFAULT_COMMIT_INTERVAL;
325 	if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER)
326 		journal->j_flags |= JFS_BARRIER;
327 	else
328 		journal->j_flags &= ~JFS_BARRIER;
329 	spin_unlock(&journal->j_state_lock);
330 }
331 
332 int ocfs2_journal_init(struct ocfs2_journal *journal, int *dirty)
333 {
334 	int status = -1;
335 	struct inode *inode = NULL; /* the journal inode */
336 	journal_t *j_journal = NULL;
337 	struct ocfs2_dinode *di = NULL;
338 	struct buffer_head *bh = NULL;
339 	struct ocfs2_super *osb;
340 	int meta_lock = 0;
341 
342 	mlog_entry_void();
343 
344 	BUG_ON(!journal);
345 
346 	osb = journal->j_osb;
347 
348 	/* already have the inode for our journal */
349 	inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
350 					    osb->slot_num);
351 	if (inode == NULL) {
352 		status = -EACCES;
353 		mlog_errno(status);
354 		goto done;
355 	}
356 	if (is_bad_inode(inode)) {
357 		mlog(ML_ERROR, "access error (bad inode)\n");
358 		iput(inode);
359 		inode = NULL;
360 		status = -EACCES;
361 		goto done;
362 	}
363 
364 	SET_INODE_JOURNAL(inode);
365 	OCFS2_I(inode)->ip_open_count++;
366 
367 	/* Skip recovery waits here - journal inode metadata never
368 	 * changes in a live cluster so it can be considered an
369 	 * exception to the rule. */
370 	status = ocfs2_meta_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
371 	if (status < 0) {
372 		if (status != -ERESTARTSYS)
373 			mlog(ML_ERROR, "Could not get lock on journal!\n");
374 		goto done;
375 	}
376 
377 	meta_lock = 1;
378 	di = (struct ocfs2_dinode *)bh->b_data;
379 
380 	if (inode->i_size <  OCFS2_MIN_JOURNAL_SIZE) {
381 		mlog(ML_ERROR, "Journal file size (%lld) is too small!\n",
382 		     inode->i_size);
383 		status = -EINVAL;
384 		goto done;
385 	}
386 
387 	mlog(0, "inode->i_size = %lld\n", inode->i_size);
388 	mlog(0, "inode->i_blocks = %llu\n",
389 			(unsigned long long)inode->i_blocks);
390 	mlog(0, "inode->ip_clusters = %u\n", OCFS2_I(inode)->ip_clusters);
391 
392 	/* call the kernels journal init function now */
393 	j_journal = journal_init_inode(inode);
394 	if (j_journal == NULL) {
395 		mlog(ML_ERROR, "Linux journal layer error\n");
396 		status = -EINVAL;
397 		goto done;
398 	}
399 
400 	mlog(0, "Returned from journal_init_inode\n");
401 	mlog(0, "j_journal->j_maxlen = %u\n", j_journal->j_maxlen);
402 
403 	*dirty = (le32_to_cpu(di->id1.journal1.ij_flags) &
404 		  OCFS2_JOURNAL_DIRTY_FL);
405 
406 	journal->j_journal = j_journal;
407 	journal->j_inode = inode;
408 	journal->j_bh = bh;
409 
410 	ocfs2_set_journal_params(osb);
411 
412 	journal->j_state = OCFS2_JOURNAL_LOADED;
413 
414 	status = 0;
415 done:
416 	if (status < 0) {
417 		if (meta_lock)
418 			ocfs2_meta_unlock(inode, 1);
419 		if (bh != NULL)
420 			brelse(bh);
421 		if (inode) {
422 			OCFS2_I(inode)->ip_open_count--;
423 			iput(inode);
424 		}
425 	}
426 
427 	mlog_exit(status);
428 	return status;
429 }
430 
431 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
432 				      int dirty)
433 {
434 	int status;
435 	unsigned int flags;
436 	struct ocfs2_journal *journal = osb->journal;
437 	struct buffer_head *bh = journal->j_bh;
438 	struct ocfs2_dinode *fe;
439 
440 	mlog_entry_void();
441 
442 	fe = (struct ocfs2_dinode *)bh->b_data;
443 	if (!OCFS2_IS_VALID_DINODE(fe)) {
444 		/* This is called from startup/shutdown which will
445 		 * handle the errors in a specific manner, so no need
446 		 * to call ocfs2_error() here. */
447 		mlog(ML_ERROR, "Journal dinode %llu  has invalid "
448 		     "signature: %.*s",
449 		     (unsigned long long)le64_to_cpu(fe->i_blkno), 7,
450 		     fe->i_signature);
451 		status = -EIO;
452 		goto out;
453 	}
454 
455 	flags = le32_to_cpu(fe->id1.journal1.ij_flags);
456 	if (dirty)
457 		flags |= OCFS2_JOURNAL_DIRTY_FL;
458 	else
459 		flags &= ~OCFS2_JOURNAL_DIRTY_FL;
460 	fe->id1.journal1.ij_flags = cpu_to_le32(flags);
461 
462 	status = ocfs2_write_block(osb, bh, journal->j_inode);
463 	if (status < 0)
464 		mlog_errno(status);
465 
466 out:
467 	mlog_exit(status);
468 	return status;
469 }
470 
471 /*
472  * If the journal has been kmalloc'd it needs to be freed after this
473  * call.
474  */
475 void ocfs2_journal_shutdown(struct ocfs2_super *osb)
476 {
477 	struct ocfs2_journal *journal = NULL;
478 	int status = 0;
479 	struct inode *inode = NULL;
480 	int num_running_trans = 0;
481 
482 	mlog_entry_void();
483 
484 	BUG_ON(!osb);
485 
486 	journal = osb->journal;
487 	if (!journal)
488 		goto done;
489 
490 	inode = journal->j_inode;
491 
492 	if (journal->j_state != OCFS2_JOURNAL_LOADED)
493 		goto done;
494 
495 	/* need to inc inode use count as journal_destroy will iput. */
496 	if (!igrab(inode))
497 		BUG();
498 
499 	num_running_trans = atomic_read(&(osb->journal->j_num_trans));
500 	if (num_running_trans > 0)
501 		mlog(0, "Shutting down journal: must wait on %d "
502 		     "running transactions!\n",
503 		     num_running_trans);
504 
505 	/* Do a commit_cache here. It will flush our journal, *and*
506 	 * release any locks that are still held.
507 	 * set the SHUTDOWN flag and release the trans lock.
508 	 * the commit thread will take the trans lock for us below. */
509 	journal->j_state = OCFS2_JOURNAL_IN_SHUTDOWN;
510 
511 	/* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not
512 	 * drop the trans_lock (which we want to hold until we
513 	 * completely destroy the journal. */
514 	if (osb->commit_task) {
515 		/* Wait for the commit thread */
516 		mlog(0, "Waiting for ocfs2commit to exit....\n");
517 		kthread_stop(osb->commit_task);
518 		osb->commit_task = NULL;
519 	}
520 
521 	BUG_ON(atomic_read(&(osb->journal->j_num_trans)) != 0);
522 
523 	if (ocfs2_mount_local(osb)) {
524 		journal_lock_updates(journal->j_journal);
525 		status = journal_flush(journal->j_journal);
526 		journal_unlock_updates(journal->j_journal);
527 		if (status < 0)
528 			mlog_errno(status);
529 	}
530 
531 	if (status == 0) {
532 		/*
533 		 * Do not toggle if flush was unsuccessful otherwise
534 		 * will leave dirty metadata in a "clean" journal
535 		 */
536 		status = ocfs2_journal_toggle_dirty(osb, 0);
537 		if (status < 0)
538 			mlog_errno(status);
539 	}
540 
541 	/* Shutdown the kernel journal system */
542 	journal_destroy(journal->j_journal);
543 
544 	OCFS2_I(inode)->ip_open_count--;
545 
546 	/* unlock our journal */
547 	ocfs2_meta_unlock(inode, 1);
548 
549 	brelse(journal->j_bh);
550 	journal->j_bh = NULL;
551 
552 	journal->j_state = OCFS2_JOURNAL_FREE;
553 
554 //	up_write(&journal->j_trans_barrier);
555 done:
556 	if (inode)
557 		iput(inode);
558 	mlog_exit_void();
559 }
560 
561 static void ocfs2_clear_journal_error(struct super_block *sb,
562 				      journal_t *journal,
563 				      int slot)
564 {
565 	int olderr;
566 
567 	olderr = journal_errno(journal);
568 	if (olderr) {
569 		mlog(ML_ERROR, "File system error %d recorded in "
570 		     "journal %u.\n", olderr, slot);
571 		mlog(ML_ERROR, "File system on device %s needs checking.\n",
572 		     sb->s_id);
573 
574 		journal_ack_err(journal);
575 		journal_clear_err(journal);
576 	}
577 }
578 
579 int ocfs2_journal_load(struct ocfs2_journal *journal, int local)
580 {
581 	int status = 0;
582 	struct ocfs2_super *osb;
583 
584 	mlog_entry_void();
585 
586 	if (!journal)
587 		BUG();
588 
589 	osb = journal->j_osb;
590 
591 	status = journal_load(journal->j_journal);
592 	if (status < 0) {
593 		mlog(ML_ERROR, "Failed to load journal!\n");
594 		goto done;
595 	}
596 
597 	ocfs2_clear_journal_error(osb->sb, journal->j_journal, osb->slot_num);
598 
599 	status = ocfs2_journal_toggle_dirty(osb, 1);
600 	if (status < 0) {
601 		mlog_errno(status);
602 		goto done;
603 	}
604 
605 	/* Launch the commit thread */
606 	if (!local) {
607 		osb->commit_task = kthread_run(ocfs2_commit_thread, osb,
608 					       "ocfs2cmt");
609 		if (IS_ERR(osb->commit_task)) {
610 			status = PTR_ERR(osb->commit_task);
611 			osb->commit_task = NULL;
612 			mlog(ML_ERROR, "unable to launch ocfs2commit thread, "
613 			     "error=%d", status);
614 			goto done;
615 		}
616 	} else
617 		osb->commit_task = NULL;
618 
619 done:
620 	mlog_exit(status);
621 	return status;
622 }
623 
624 
625 /* 'full' flag tells us whether we clear out all blocks or if we just
626  * mark the journal clean */
627 int ocfs2_journal_wipe(struct ocfs2_journal *journal, int full)
628 {
629 	int status;
630 
631 	mlog_entry_void();
632 
633 	BUG_ON(!journal);
634 
635 	status = journal_wipe(journal->j_journal, full);
636 	if (status < 0) {
637 		mlog_errno(status);
638 		goto bail;
639 	}
640 
641 	status = ocfs2_journal_toggle_dirty(journal->j_osb, 0);
642 	if (status < 0)
643 		mlog_errno(status);
644 
645 bail:
646 	mlog_exit(status);
647 	return status;
648 }
649 
650 /*
651  * JBD Might read a cached version of another nodes journal file. We
652  * don't want this as this file changes often and we get no
653  * notification on those changes. The only way to be sure that we've
654  * got the most up to date version of those blocks then is to force
655  * read them off disk. Just searching through the buffer cache won't
656  * work as there may be pages backing this file which are still marked
657  * up to date. We know things can't change on this file underneath us
658  * as we have the lock by now :)
659  */
660 static int ocfs2_force_read_journal(struct inode *inode)
661 {
662 	int status = 0;
663 	int i;
664 	u64 v_blkno, p_blkno, p_blocks, num_blocks;
665 #define CONCURRENT_JOURNAL_FILL 32ULL
666 	struct buffer_head *bhs[CONCURRENT_JOURNAL_FILL];
667 
668 	mlog_entry_void();
669 
670 	memset(bhs, 0, sizeof(struct buffer_head *) * CONCURRENT_JOURNAL_FILL);
671 
672 	num_blocks = ocfs2_blocks_for_bytes(inode->i_sb, inode->i_size);
673 	v_blkno = 0;
674 	while (v_blkno < num_blocks) {
675 		status = ocfs2_extent_map_get_blocks(inode, v_blkno,
676 						     &p_blkno, &p_blocks, NULL);
677 		if (status < 0) {
678 			mlog_errno(status);
679 			goto bail;
680 		}
681 
682 		if (p_blocks > CONCURRENT_JOURNAL_FILL)
683 			p_blocks = CONCURRENT_JOURNAL_FILL;
684 
685 		/* We are reading journal data which should not
686 		 * be put in the uptodate cache */
687 		status = ocfs2_read_blocks(OCFS2_SB(inode->i_sb),
688 					   p_blkno, p_blocks, bhs, 0,
689 					   NULL);
690 		if (status < 0) {
691 			mlog_errno(status);
692 			goto bail;
693 		}
694 
695 		for(i = 0; i < p_blocks; i++) {
696 			brelse(bhs[i]);
697 			bhs[i] = NULL;
698 		}
699 
700 		v_blkno += p_blocks;
701 	}
702 
703 bail:
704 	for(i = 0; i < CONCURRENT_JOURNAL_FILL; i++)
705 		if (bhs[i])
706 			brelse(bhs[i]);
707 	mlog_exit(status);
708 	return status;
709 }
710 
711 struct ocfs2_la_recovery_item {
712 	struct list_head	lri_list;
713 	int			lri_slot;
714 	struct ocfs2_dinode	*lri_la_dinode;
715 	struct ocfs2_dinode	*lri_tl_dinode;
716 };
717 
718 /* Does the second half of the recovery process. By this point, the
719  * node is marked clean and can actually be considered recovered,
720  * hence it's no longer in the recovery map, but there's still some
721  * cleanup we can do which shouldn't happen within the recovery thread
722  * as locking in that context becomes very difficult if we are to take
723  * recovering nodes into account.
724  *
725  * NOTE: This function can and will sleep on recovery of other nodes
726  * during cluster locking, just like any other ocfs2 process.
727  */
728 void ocfs2_complete_recovery(struct work_struct *work)
729 {
730 	int ret;
731 	struct ocfs2_journal *journal =
732 		container_of(work, struct ocfs2_journal, j_recovery_work);
733 	struct ocfs2_super *osb = journal->j_osb;
734 	struct ocfs2_dinode *la_dinode, *tl_dinode;
735 	struct ocfs2_la_recovery_item *item, *n;
736 	LIST_HEAD(tmp_la_list);
737 
738 	mlog_entry_void();
739 
740 	mlog(0, "completing recovery from keventd\n");
741 
742 	spin_lock(&journal->j_lock);
743 	list_splice_init(&journal->j_la_cleanups, &tmp_la_list);
744 	spin_unlock(&journal->j_lock);
745 
746 	list_for_each_entry_safe(item, n, &tmp_la_list, lri_list) {
747 		list_del_init(&item->lri_list);
748 
749 		mlog(0, "Complete recovery for slot %d\n", item->lri_slot);
750 
751 		la_dinode = item->lri_la_dinode;
752 		if (la_dinode) {
753 			mlog(0, "Clean up local alloc %llu\n",
754 			     (unsigned long long)le64_to_cpu(la_dinode->i_blkno));
755 
756 			ret = ocfs2_complete_local_alloc_recovery(osb,
757 								  la_dinode);
758 			if (ret < 0)
759 				mlog_errno(ret);
760 
761 			kfree(la_dinode);
762 		}
763 
764 		tl_dinode = item->lri_tl_dinode;
765 		if (tl_dinode) {
766 			mlog(0, "Clean up truncate log %llu\n",
767 			     (unsigned long long)le64_to_cpu(tl_dinode->i_blkno));
768 
769 			ret = ocfs2_complete_truncate_log_recovery(osb,
770 								   tl_dinode);
771 			if (ret < 0)
772 				mlog_errno(ret);
773 
774 			kfree(tl_dinode);
775 		}
776 
777 		ret = ocfs2_recover_orphans(osb, item->lri_slot);
778 		if (ret < 0)
779 			mlog_errno(ret);
780 
781 		kfree(item);
782 	}
783 
784 	mlog(0, "Recovery completion\n");
785 	mlog_exit_void();
786 }
787 
788 /* NOTE: This function always eats your references to la_dinode and
789  * tl_dinode, either manually on error, or by passing them to
790  * ocfs2_complete_recovery */
791 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
792 					    int slot_num,
793 					    struct ocfs2_dinode *la_dinode,
794 					    struct ocfs2_dinode *tl_dinode)
795 {
796 	struct ocfs2_la_recovery_item *item;
797 
798 	item = kmalloc(sizeof(struct ocfs2_la_recovery_item), GFP_NOFS);
799 	if (!item) {
800 		/* Though we wish to avoid it, we are in fact safe in
801 		 * skipping local alloc cleanup as fsck.ocfs2 is more
802 		 * than capable of reclaiming unused space. */
803 		if (la_dinode)
804 			kfree(la_dinode);
805 
806 		if (tl_dinode)
807 			kfree(tl_dinode);
808 
809 		mlog_errno(-ENOMEM);
810 		return;
811 	}
812 
813 	INIT_LIST_HEAD(&item->lri_list);
814 	item->lri_la_dinode = la_dinode;
815 	item->lri_slot = slot_num;
816 	item->lri_tl_dinode = tl_dinode;
817 
818 	spin_lock(&journal->j_lock);
819 	list_add_tail(&item->lri_list, &journal->j_la_cleanups);
820 	queue_work(ocfs2_wq, &journal->j_recovery_work);
821 	spin_unlock(&journal->j_lock);
822 }
823 
824 /* Called by the mount code to queue recovery the last part of
825  * recovery for it's own slot. */
826 void ocfs2_complete_mount_recovery(struct ocfs2_super *osb)
827 {
828 	struct ocfs2_journal *journal = osb->journal;
829 
830 	if (osb->dirty) {
831 		/* No need to queue up our truncate_log as regular
832 		 * cleanup will catch that. */
833 		ocfs2_queue_recovery_completion(journal,
834 						osb->slot_num,
835 						osb->local_alloc_copy,
836 						NULL);
837 		ocfs2_schedule_truncate_log_flush(osb, 0);
838 
839 		osb->local_alloc_copy = NULL;
840 		osb->dirty = 0;
841 	}
842 }
843 
844 static int __ocfs2_recovery_thread(void *arg)
845 {
846 	int status, node_num;
847 	struct ocfs2_super *osb = arg;
848 
849 	mlog_entry_void();
850 
851 	status = ocfs2_wait_on_mount(osb);
852 	if (status < 0) {
853 		goto bail;
854 	}
855 
856 restart:
857 	status = ocfs2_super_lock(osb, 1);
858 	if (status < 0) {
859 		mlog_errno(status);
860 		goto bail;
861 	}
862 
863 	while(!ocfs2_node_map_is_empty(osb, &osb->recovery_map)) {
864 		node_num = ocfs2_node_map_first_set_bit(osb,
865 							&osb->recovery_map);
866 		if (node_num == O2NM_INVALID_NODE_NUM) {
867 			mlog(0, "Out of nodes to recover.\n");
868 			break;
869 		}
870 
871 		status = ocfs2_recover_node(osb, node_num);
872 		if (status < 0) {
873 			mlog(ML_ERROR,
874 			     "Error %d recovering node %d on device (%u,%u)!\n",
875 			     status, node_num,
876 			     MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
877 			mlog(ML_ERROR, "Volume requires unmount.\n");
878 			continue;
879 		}
880 
881 		ocfs2_recovery_map_clear(osb, node_num);
882 	}
883 	ocfs2_super_unlock(osb, 1);
884 
885 	/* We always run recovery on our own orphan dir - the dead
886 	 * node(s) may have voted "no" on an inode delete earlier. A
887 	 * revote is therefore required. */
888 	ocfs2_queue_recovery_completion(osb->journal, osb->slot_num, NULL,
889 					NULL);
890 
891 bail:
892 	mutex_lock(&osb->recovery_lock);
893 	if (!status &&
894 	    !ocfs2_node_map_is_empty(osb, &osb->recovery_map)) {
895 		mutex_unlock(&osb->recovery_lock);
896 		goto restart;
897 	}
898 
899 	osb->recovery_thread_task = NULL;
900 	mb(); /* sync with ocfs2_recovery_thread_running */
901 	wake_up(&osb->recovery_event);
902 
903 	mutex_unlock(&osb->recovery_lock);
904 
905 	mlog_exit(status);
906 	/* no one is callint kthread_stop() for us so the kthread() api
907 	 * requires that we call do_exit().  And it isn't exported, but
908 	 * complete_and_exit() seems to be a minimal wrapper around it. */
909 	complete_and_exit(NULL, status);
910 	return status;
911 }
912 
913 void ocfs2_recovery_thread(struct ocfs2_super *osb, int node_num)
914 {
915 	mlog_entry("(node_num=%d, osb->node_num = %d)\n",
916 		   node_num, osb->node_num);
917 
918 	mutex_lock(&osb->recovery_lock);
919 	if (osb->disable_recovery)
920 		goto out;
921 
922 	/* People waiting on recovery will wait on
923 	 * the recovery map to empty. */
924 	if (!ocfs2_recovery_map_set(osb, node_num))
925 		mlog(0, "node %d already be in recovery.\n", node_num);
926 
927 	mlog(0, "starting recovery thread...\n");
928 
929 	if (osb->recovery_thread_task)
930 		goto out;
931 
932 	osb->recovery_thread_task =  kthread_run(__ocfs2_recovery_thread, osb,
933 						 "ocfs2rec");
934 	if (IS_ERR(osb->recovery_thread_task)) {
935 		mlog_errno((int)PTR_ERR(osb->recovery_thread_task));
936 		osb->recovery_thread_task = NULL;
937 	}
938 
939 out:
940 	mutex_unlock(&osb->recovery_lock);
941 	wake_up(&osb->recovery_event);
942 
943 	mlog_exit_void();
944 }
945 
946 /* Does the actual journal replay and marks the journal inode as
947  * clean. Will only replay if the journal inode is marked dirty. */
948 static int ocfs2_replay_journal(struct ocfs2_super *osb,
949 				int node_num,
950 				int slot_num)
951 {
952 	int status;
953 	int got_lock = 0;
954 	unsigned int flags;
955 	struct inode *inode = NULL;
956 	struct ocfs2_dinode *fe;
957 	journal_t *journal = NULL;
958 	struct buffer_head *bh = NULL;
959 
960 	inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
961 					    slot_num);
962 	if (inode == NULL) {
963 		status = -EACCES;
964 		mlog_errno(status);
965 		goto done;
966 	}
967 	if (is_bad_inode(inode)) {
968 		status = -EACCES;
969 		iput(inode);
970 		inode = NULL;
971 		mlog_errno(status);
972 		goto done;
973 	}
974 	SET_INODE_JOURNAL(inode);
975 
976 	status = ocfs2_meta_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
977 	if (status < 0) {
978 		mlog(0, "status returned from ocfs2_meta_lock=%d\n", status);
979 		if (status != -ERESTARTSYS)
980 			mlog(ML_ERROR, "Could not lock journal!\n");
981 		goto done;
982 	}
983 	got_lock = 1;
984 
985 	fe = (struct ocfs2_dinode *) bh->b_data;
986 
987 	flags = le32_to_cpu(fe->id1.journal1.ij_flags);
988 
989 	if (!(flags & OCFS2_JOURNAL_DIRTY_FL)) {
990 		mlog(0, "No recovery required for node %d\n", node_num);
991 		goto done;
992 	}
993 
994 	mlog(ML_NOTICE, "Recovering node %d from slot %d on device (%u,%u)\n",
995 	     node_num, slot_num,
996 	     MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
997 
998 	OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters);
999 
1000 	status = ocfs2_force_read_journal(inode);
1001 	if (status < 0) {
1002 		mlog_errno(status);
1003 		goto done;
1004 	}
1005 
1006 	mlog(0, "calling journal_init_inode\n");
1007 	journal = journal_init_inode(inode);
1008 	if (journal == NULL) {
1009 		mlog(ML_ERROR, "Linux journal layer error\n");
1010 		status = -EIO;
1011 		goto done;
1012 	}
1013 
1014 	status = journal_load(journal);
1015 	if (status < 0) {
1016 		mlog_errno(status);
1017 		if (!igrab(inode))
1018 			BUG();
1019 		journal_destroy(journal);
1020 		goto done;
1021 	}
1022 
1023 	ocfs2_clear_journal_error(osb->sb, journal, slot_num);
1024 
1025 	/* wipe the journal */
1026 	mlog(0, "flushing the journal.\n");
1027 	journal_lock_updates(journal);
1028 	status = journal_flush(journal);
1029 	journal_unlock_updates(journal);
1030 	if (status < 0)
1031 		mlog_errno(status);
1032 
1033 	/* This will mark the node clean */
1034 	flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1035 	flags &= ~OCFS2_JOURNAL_DIRTY_FL;
1036 	fe->id1.journal1.ij_flags = cpu_to_le32(flags);
1037 
1038 	status = ocfs2_write_block(osb, bh, inode);
1039 	if (status < 0)
1040 		mlog_errno(status);
1041 
1042 	if (!igrab(inode))
1043 		BUG();
1044 
1045 	journal_destroy(journal);
1046 
1047 done:
1048 	/* drop the lock on this nodes journal */
1049 	if (got_lock)
1050 		ocfs2_meta_unlock(inode, 1);
1051 
1052 	if (inode)
1053 		iput(inode);
1054 
1055 	if (bh)
1056 		brelse(bh);
1057 
1058 	mlog_exit(status);
1059 	return status;
1060 }
1061 
1062 /*
1063  * Do the most important parts of node recovery:
1064  *  - Replay it's journal
1065  *  - Stamp a clean local allocator file
1066  *  - Stamp a clean truncate log
1067  *  - Mark the node clean
1068  *
1069  * If this function completes without error, a node in OCFS2 can be
1070  * said to have been safely recovered. As a result, failure during the
1071  * second part of a nodes recovery process (local alloc recovery) is
1072  * far less concerning.
1073  */
1074 static int ocfs2_recover_node(struct ocfs2_super *osb,
1075 			      int node_num)
1076 {
1077 	int status = 0;
1078 	int slot_num;
1079 	struct ocfs2_slot_info *si = osb->slot_info;
1080 	struct ocfs2_dinode *la_copy = NULL;
1081 	struct ocfs2_dinode *tl_copy = NULL;
1082 
1083 	mlog_entry("(node_num=%d, osb->node_num = %d)\n",
1084 		   node_num, osb->node_num);
1085 
1086 	mlog(0, "checking node %d\n", node_num);
1087 
1088 	/* Should not ever be called to recover ourselves -- in that
1089 	 * case we should've called ocfs2_journal_load instead. */
1090 	BUG_ON(osb->node_num == node_num);
1091 
1092 	slot_num = ocfs2_node_num_to_slot(si, node_num);
1093 	if (slot_num == OCFS2_INVALID_SLOT) {
1094 		status = 0;
1095 		mlog(0, "no slot for this node, so no recovery required.\n");
1096 		goto done;
1097 	}
1098 
1099 	mlog(0, "node %d was using slot %d\n", node_num, slot_num);
1100 
1101 	status = ocfs2_replay_journal(osb, node_num, slot_num);
1102 	if (status < 0) {
1103 		mlog_errno(status);
1104 		goto done;
1105 	}
1106 
1107 	/* Stamp a clean local alloc file AFTER recovering the journal... */
1108 	status = ocfs2_begin_local_alloc_recovery(osb, slot_num, &la_copy);
1109 	if (status < 0) {
1110 		mlog_errno(status);
1111 		goto done;
1112 	}
1113 
1114 	/* An error from begin_truncate_log_recovery is not
1115 	 * serious enough to warrant halting the rest of
1116 	 * recovery. */
1117 	status = ocfs2_begin_truncate_log_recovery(osb, slot_num, &tl_copy);
1118 	if (status < 0)
1119 		mlog_errno(status);
1120 
1121 	/* Likewise, this would be a strange but ultimately not so
1122 	 * harmful place to get an error... */
1123 	ocfs2_clear_slot(si, slot_num);
1124 	status = ocfs2_update_disk_slots(osb, si);
1125 	if (status < 0)
1126 		mlog_errno(status);
1127 
1128 	/* This will kfree the memory pointed to by la_copy and tl_copy */
1129 	ocfs2_queue_recovery_completion(osb->journal, slot_num, la_copy,
1130 					tl_copy);
1131 
1132 	status = 0;
1133 done:
1134 
1135 	mlog_exit(status);
1136 	return status;
1137 }
1138 
1139 /* Test node liveness by trylocking his journal. If we get the lock,
1140  * we drop it here. Return 0 if we got the lock, -EAGAIN if node is
1141  * still alive (we couldn't get the lock) and < 0 on error. */
1142 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
1143 				 int slot_num)
1144 {
1145 	int status, flags;
1146 	struct inode *inode = NULL;
1147 
1148 	inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1149 					    slot_num);
1150 	if (inode == NULL) {
1151 		mlog(ML_ERROR, "access error\n");
1152 		status = -EACCES;
1153 		goto bail;
1154 	}
1155 	if (is_bad_inode(inode)) {
1156 		mlog(ML_ERROR, "access error (bad inode)\n");
1157 		iput(inode);
1158 		inode = NULL;
1159 		status = -EACCES;
1160 		goto bail;
1161 	}
1162 	SET_INODE_JOURNAL(inode);
1163 
1164 	flags = OCFS2_META_LOCK_RECOVERY | OCFS2_META_LOCK_NOQUEUE;
1165 	status = ocfs2_meta_lock_full(inode, NULL, 1, flags);
1166 	if (status < 0) {
1167 		if (status != -EAGAIN)
1168 			mlog_errno(status);
1169 		goto bail;
1170 	}
1171 
1172 	ocfs2_meta_unlock(inode, 1);
1173 bail:
1174 	if (inode)
1175 		iput(inode);
1176 
1177 	return status;
1178 }
1179 
1180 /* Call this underneath ocfs2_super_lock. It also assumes that the
1181  * slot info struct has been updated from disk. */
1182 int ocfs2_mark_dead_nodes(struct ocfs2_super *osb)
1183 {
1184 	int status, i, node_num;
1185 	struct ocfs2_slot_info *si = osb->slot_info;
1186 
1187 	/* This is called with the super block cluster lock, so we
1188 	 * know that the slot map can't change underneath us. */
1189 
1190 	spin_lock(&si->si_lock);
1191 	for(i = 0; i < si->si_num_slots; i++) {
1192 		if (i == osb->slot_num)
1193 			continue;
1194 		if (ocfs2_is_empty_slot(si, i))
1195 			continue;
1196 
1197 		node_num = si->si_global_node_nums[i];
1198 		if (ocfs2_node_map_test_bit(osb, &osb->recovery_map, node_num))
1199 			continue;
1200 		spin_unlock(&si->si_lock);
1201 
1202 		/* Ok, we have a slot occupied by another node which
1203 		 * is not in the recovery map. We trylock his journal
1204 		 * file here to test if he's alive. */
1205 		status = ocfs2_trylock_journal(osb, i);
1206 		if (!status) {
1207 			/* Since we're called from mount, we know that
1208 			 * the recovery thread can't race us on
1209 			 * setting / checking the recovery bits. */
1210 			ocfs2_recovery_thread(osb, node_num);
1211 		} else if ((status < 0) && (status != -EAGAIN)) {
1212 			mlog_errno(status);
1213 			goto bail;
1214 		}
1215 
1216 		spin_lock(&si->si_lock);
1217 	}
1218 	spin_unlock(&si->si_lock);
1219 
1220 	status = 0;
1221 bail:
1222 	mlog_exit(status);
1223 	return status;
1224 }
1225 
1226 struct ocfs2_orphan_filldir_priv {
1227 	struct inode		*head;
1228 	struct ocfs2_super	*osb;
1229 };
1230 
1231 static int ocfs2_orphan_filldir(void *priv, const char *name, int name_len,
1232 				loff_t pos, u64 ino, unsigned type)
1233 {
1234 	struct ocfs2_orphan_filldir_priv *p = priv;
1235 	struct inode *iter;
1236 
1237 	if (name_len == 1 && !strncmp(".", name, 1))
1238 		return 0;
1239 	if (name_len == 2 && !strncmp("..", name, 2))
1240 		return 0;
1241 
1242 	/* Skip bad inodes so that recovery can continue */
1243 	iter = ocfs2_iget(p->osb, ino,
1244 			  OCFS2_FI_FLAG_ORPHAN_RECOVERY);
1245 	if (IS_ERR(iter))
1246 		return 0;
1247 
1248 	mlog(0, "queue orphan %llu\n",
1249 	     (unsigned long long)OCFS2_I(iter)->ip_blkno);
1250 	/* No locking is required for the next_orphan queue as there
1251 	 * is only ever a single process doing orphan recovery. */
1252 	OCFS2_I(iter)->ip_next_orphan = p->head;
1253 	p->head = iter;
1254 
1255 	return 0;
1256 }
1257 
1258 static int ocfs2_queue_orphans(struct ocfs2_super *osb,
1259 			       int slot,
1260 			       struct inode **head)
1261 {
1262 	int status;
1263 	struct inode *orphan_dir_inode = NULL;
1264 	struct ocfs2_orphan_filldir_priv priv;
1265 	loff_t pos = 0;
1266 
1267 	priv.osb = osb;
1268 	priv.head = *head;
1269 
1270 	orphan_dir_inode = ocfs2_get_system_file_inode(osb,
1271 						       ORPHAN_DIR_SYSTEM_INODE,
1272 						       slot);
1273 	if  (!orphan_dir_inode) {
1274 		status = -ENOENT;
1275 		mlog_errno(status);
1276 		return status;
1277 	}
1278 
1279 	mutex_lock(&orphan_dir_inode->i_mutex);
1280 	status = ocfs2_meta_lock(orphan_dir_inode, NULL, 0);
1281 	if (status < 0) {
1282 		mlog_errno(status);
1283 		goto out;
1284 	}
1285 
1286 	status = ocfs2_dir_foreach(orphan_dir_inode, &pos, &priv,
1287 				   ocfs2_orphan_filldir);
1288 	if (status) {
1289 		mlog_errno(status);
1290 		goto out_cluster;
1291 	}
1292 
1293 	*head = priv.head;
1294 
1295 out_cluster:
1296 	ocfs2_meta_unlock(orphan_dir_inode, 0);
1297 out:
1298 	mutex_unlock(&orphan_dir_inode->i_mutex);
1299 	iput(orphan_dir_inode);
1300 	return status;
1301 }
1302 
1303 static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super *osb,
1304 					      int slot)
1305 {
1306 	int ret;
1307 
1308 	spin_lock(&osb->osb_lock);
1309 	ret = !osb->osb_orphan_wipes[slot];
1310 	spin_unlock(&osb->osb_lock);
1311 	return ret;
1312 }
1313 
1314 static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super *osb,
1315 					     int slot)
1316 {
1317 	spin_lock(&osb->osb_lock);
1318 	/* Mark ourselves such that new processes in delete_inode()
1319 	 * know to quit early. */
1320 	ocfs2_node_map_set_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
1321 	while (osb->osb_orphan_wipes[slot]) {
1322 		/* If any processes are already in the middle of an
1323 		 * orphan wipe on this dir, then we need to wait for
1324 		 * them. */
1325 		spin_unlock(&osb->osb_lock);
1326 		wait_event_interruptible(osb->osb_wipe_event,
1327 					 ocfs2_orphan_recovery_can_continue(osb, slot));
1328 		spin_lock(&osb->osb_lock);
1329 	}
1330 	spin_unlock(&osb->osb_lock);
1331 }
1332 
1333 static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super *osb,
1334 					      int slot)
1335 {
1336 	ocfs2_node_map_clear_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
1337 }
1338 
1339 /*
1340  * Orphan recovery. Each mounted node has it's own orphan dir which we
1341  * must run during recovery. Our strategy here is to build a list of
1342  * the inodes in the orphan dir and iget/iput them. The VFS does
1343  * (most) of the rest of the work.
1344  *
1345  * Orphan recovery can happen at any time, not just mount so we have a
1346  * couple of extra considerations.
1347  *
1348  * - We grab as many inodes as we can under the orphan dir lock -
1349  *   doing iget() outside the orphan dir risks getting a reference on
1350  *   an invalid inode.
1351  * - We must be sure not to deadlock with other processes on the
1352  *   system wanting to run delete_inode(). This can happen when they go
1353  *   to lock the orphan dir and the orphan recovery process attempts to
1354  *   iget() inside the orphan dir lock. This can be avoided by
1355  *   advertising our state to ocfs2_delete_inode().
1356  */
1357 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
1358 				 int slot)
1359 {
1360 	int ret = 0;
1361 	struct inode *inode = NULL;
1362 	struct inode *iter;
1363 	struct ocfs2_inode_info *oi;
1364 
1365 	mlog(0, "Recover inodes from orphan dir in slot %d\n", slot);
1366 
1367 	ocfs2_mark_recovering_orphan_dir(osb, slot);
1368 	ret = ocfs2_queue_orphans(osb, slot, &inode);
1369 	ocfs2_clear_recovering_orphan_dir(osb, slot);
1370 
1371 	/* Error here should be noted, but we want to continue with as
1372 	 * many queued inodes as we've got. */
1373 	if (ret)
1374 		mlog_errno(ret);
1375 
1376 	while (inode) {
1377 		oi = OCFS2_I(inode);
1378 		mlog(0, "iput orphan %llu\n", (unsigned long long)oi->ip_blkno);
1379 
1380 		iter = oi->ip_next_orphan;
1381 
1382 		spin_lock(&oi->ip_lock);
1383 		/* Delete voting may have set these on the assumption
1384 		 * that the other node would wipe them successfully.
1385 		 * If they are still in the node's orphan dir, we need
1386 		 * to reset that state. */
1387 		oi->ip_flags &= ~(OCFS2_INODE_DELETED|OCFS2_INODE_SKIP_DELETE);
1388 
1389 		/* Set the proper information to get us going into
1390 		 * ocfs2_delete_inode. */
1391 		oi->ip_flags |= OCFS2_INODE_MAYBE_ORPHANED;
1392 		spin_unlock(&oi->ip_lock);
1393 
1394 		iput(inode);
1395 
1396 		inode = iter;
1397 	}
1398 
1399 	return ret;
1400 }
1401 
1402 static int ocfs2_wait_on_mount(struct ocfs2_super *osb)
1403 {
1404 	/* This check is good because ocfs2 will wait on our recovery
1405 	 * thread before changing it to something other than MOUNTED
1406 	 * or DISABLED. */
1407 	wait_event(osb->osb_mount_event,
1408 		   atomic_read(&osb->vol_state) == VOLUME_MOUNTED ||
1409 		   atomic_read(&osb->vol_state) == VOLUME_DISABLED);
1410 
1411 	/* If there's an error on mount, then we may never get to the
1412 	 * MOUNTED flag, but this is set right before
1413 	 * dismount_volume() so we can trust it. */
1414 	if (atomic_read(&osb->vol_state) == VOLUME_DISABLED) {
1415 		mlog(0, "mount error, exiting!\n");
1416 		return -EBUSY;
1417 	}
1418 
1419 	return 0;
1420 }
1421 
1422 static int ocfs2_commit_thread(void *arg)
1423 {
1424 	int status;
1425 	struct ocfs2_super *osb = arg;
1426 	struct ocfs2_journal *journal = osb->journal;
1427 
1428 	/* we can trust j_num_trans here because _should_stop() is only set in
1429 	 * shutdown and nobody other than ourselves should be able to start
1430 	 * transactions.  committing on shutdown might take a few iterations
1431 	 * as final transactions put deleted inodes on the list */
1432 	while (!(kthread_should_stop() &&
1433 		 atomic_read(&journal->j_num_trans) == 0)) {
1434 
1435 		wait_event_interruptible(osb->checkpoint_event,
1436 					 atomic_read(&journal->j_num_trans)
1437 					 || kthread_should_stop());
1438 
1439 		status = ocfs2_commit_cache(osb);
1440 		if (status < 0)
1441 			mlog_errno(status);
1442 
1443 		if (kthread_should_stop() && atomic_read(&journal->j_num_trans)){
1444 			mlog(ML_KTHREAD,
1445 			     "commit_thread: %u transactions pending on "
1446 			     "shutdown\n",
1447 			     atomic_read(&journal->j_num_trans));
1448 		}
1449 	}
1450 
1451 	return 0;
1452 }
1453 
1454 /* Look for a dirty journal without taking any cluster locks. Used for
1455  * hard readonly access to determine whether the file system journals
1456  * require recovery. */
1457 int ocfs2_check_journals_nolocks(struct ocfs2_super *osb)
1458 {
1459 	int ret = 0;
1460 	unsigned int slot;
1461 	struct buffer_head *di_bh;
1462 	struct ocfs2_dinode *di;
1463 	struct inode *journal = NULL;
1464 
1465 	for(slot = 0; slot < osb->max_slots; slot++) {
1466 		journal = ocfs2_get_system_file_inode(osb,
1467 						      JOURNAL_SYSTEM_INODE,
1468 						      slot);
1469 		if (!journal || is_bad_inode(journal)) {
1470 			ret = -EACCES;
1471 			mlog_errno(ret);
1472 			goto out;
1473 		}
1474 
1475 		di_bh = NULL;
1476 		ret = ocfs2_read_block(osb, OCFS2_I(journal)->ip_blkno, &di_bh,
1477 				       0, journal);
1478 		if (ret < 0) {
1479 			mlog_errno(ret);
1480 			goto out;
1481 		}
1482 
1483 		di = (struct ocfs2_dinode *) di_bh->b_data;
1484 
1485 		if (le32_to_cpu(di->id1.journal1.ij_flags) &
1486 		    OCFS2_JOURNAL_DIRTY_FL)
1487 			ret = -EROFS;
1488 
1489 		brelse(di_bh);
1490 		if (ret)
1491 			break;
1492 	}
1493 
1494 out:
1495 	if (journal)
1496 		iput(journal);
1497 
1498 	return ret;
1499 }
1500