1 /* -*- mode: c; c-basic-offset: 8; -*- 2 * vim: noexpandtab sw=8 ts=8 sts=0: 3 * 4 * journal.c 5 * 6 * Defines functions of journalling api 7 * 8 * Copyright (C) 2003, 2004 Oracle. All rights reserved. 9 * 10 * This program is free software; you can redistribute it and/or 11 * modify it under the terms of the GNU General Public 12 * License as published by the Free Software Foundation; either 13 * version 2 of the License, or (at your option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, 16 * but WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 18 * General Public License for more details. 19 * 20 * You should have received a copy of the GNU General Public 21 * License along with this program; if not, write to the 22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 23 * Boston, MA 021110-1307, USA. 24 */ 25 26 #include <linux/fs.h> 27 #include <linux/types.h> 28 #include <linux/slab.h> 29 #include <linux/highmem.h> 30 #include <linux/kthread.h> 31 32 #define MLOG_MASK_PREFIX ML_JOURNAL 33 #include <cluster/masklog.h> 34 35 #include "ocfs2.h" 36 37 #include "alloc.h" 38 #include "dir.h" 39 #include "dlmglue.h" 40 #include "extent_map.h" 41 #include "heartbeat.h" 42 #include "inode.h" 43 #include "journal.h" 44 #include "localalloc.h" 45 #include "slot_map.h" 46 #include "super.h" 47 #include "vote.h" 48 #include "sysfile.h" 49 50 #include "buffer_head_io.h" 51 52 DEFINE_SPINLOCK(trans_inc_lock); 53 54 static int ocfs2_force_read_journal(struct inode *inode); 55 static int ocfs2_recover_node(struct ocfs2_super *osb, 56 int node_num); 57 static int __ocfs2_recovery_thread(void *arg); 58 static int ocfs2_commit_cache(struct ocfs2_super *osb); 59 static int ocfs2_wait_on_mount(struct ocfs2_super *osb); 60 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb, 61 int dirty); 62 static int ocfs2_trylock_journal(struct ocfs2_super *osb, 63 int slot_num); 64 static int ocfs2_recover_orphans(struct ocfs2_super *osb, 65 int slot); 66 static int ocfs2_commit_thread(void *arg); 67 68 static int ocfs2_commit_cache(struct ocfs2_super *osb) 69 { 70 int status = 0; 71 unsigned int flushed; 72 unsigned long old_id; 73 struct ocfs2_journal *journal = NULL; 74 75 mlog_entry_void(); 76 77 journal = osb->journal; 78 79 /* Flush all pending commits and checkpoint the journal. */ 80 down_write(&journal->j_trans_barrier); 81 82 if (atomic_read(&journal->j_num_trans) == 0) { 83 up_write(&journal->j_trans_barrier); 84 mlog(0, "No transactions for me to flush!\n"); 85 goto finally; 86 } 87 88 journal_lock_updates(journal->j_journal); 89 status = journal_flush(journal->j_journal); 90 journal_unlock_updates(journal->j_journal); 91 if (status < 0) { 92 up_write(&journal->j_trans_barrier); 93 mlog_errno(status); 94 goto finally; 95 } 96 97 old_id = ocfs2_inc_trans_id(journal); 98 99 flushed = atomic_read(&journal->j_num_trans); 100 atomic_set(&journal->j_num_trans, 0); 101 up_write(&journal->j_trans_barrier); 102 103 mlog(0, "commit_thread: flushed transaction %lu (%u handles)\n", 104 journal->j_trans_id, flushed); 105 106 ocfs2_kick_vote_thread(osb); 107 wake_up(&journal->j_checkpointed); 108 finally: 109 mlog_exit(status); 110 return status; 111 } 112 113 /* pass it NULL and it will allocate a new handle object for you. If 114 * you pass it a handle however, it may still return error, in which 115 * case it has free'd the passed handle for you. */ 116 handle_t *ocfs2_start_trans(struct ocfs2_super *osb, int max_buffs) 117 { 118 journal_t *journal = osb->journal->j_journal; 119 handle_t *handle; 120 121 BUG_ON(!osb || !osb->journal->j_journal); 122 123 if (ocfs2_is_hard_readonly(osb)) 124 return ERR_PTR(-EROFS); 125 126 BUG_ON(osb->journal->j_state == OCFS2_JOURNAL_FREE); 127 BUG_ON(max_buffs <= 0); 128 129 /* JBD might support this, but our journalling code doesn't yet. */ 130 if (journal_current_handle()) { 131 mlog(ML_ERROR, "Recursive transaction attempted!\n"); 132 BUG(); 133 } 134 135 down_read(&osb->journal->j_trans_barrier); 136 137 handle = journal_start(journal, max_buffs); 138 if (IS_ERR(handle)) { 139 up_read(&osb->journal->j_trans_barrier); 140 141 mlog_errno(PTR_ERR(handle)); 142 143 if (is_journal_aborted(journal)) { 144 ocfs2_abort(osb->sb, "Detected aborted journal"); 145 handle = ERR_PTR(-EROFS); 146 } 147 } else { 148 if (!ocfs2_mount_local(osb)) 149 atomic_inc(&(osb->journal->j_num_trans)); 150 } 151 152 return handle; 153 } 154 155 int ocfs2_commit_trans(struct ocfs2_super *osb, 156 handle_t *handle) 157 { 158 int ret; 159 struct ocfs2_journal *journal = osb->journal; 160 161 BUG_ON(!handle); 162 163 ret = journal_stop(handle); 164 if (ret < 0) 165 mlog_errno(ret); 166 167 up_read(&journal->j_trans_barrier); 168 169 return ret; 170 } 171 172 /* 173 * 'nblocks' is what you want to add to the current 174 * transaction. extend_trans will either extend the current handle by 175 * nblocks, or commit it and start a new one with nblocks credits. 176 * 177 * This might call journal_restart() which will commit dirty buffers 178 * and then restart the transaction. Before calling 179 * ocfs2_extend_trans(), any changed blocks should have been 180 * dirtied. After calling it, all blocks which need to be changed must 181 * go through another set of journal_access/journal_dirty calls. 182 * 183 * WARNING: This will not release any semaphores or disk locks taken 184 * during the transaction, so make sure they were taken *before* 185 * start_trans or we'll have ordering deadlocks. 186 * 187 * WARNING2: Note that we do *not* drop j_trans_barrier here. This is 188 * good because transaction ids haven't yet been recorded on the 189 * cluster locks associated with this handle. 190 */ 191 int ocfs2_extend_trans(handle_t *handle, int nblocks) 192 { 193 int status; 194 195 BUG_ON(!handle); 196 BUG_ON(!nblocks); 197 198 mlog_entry_void(); 199 200 mlog(0, "Trying to extend transaction by %d blocks\n", nblocks); 201 202 #ifdef OCFS2_DEBUG_FS 203 status = 1; 204 #else 205 status = journal_extend(handle, nblocks); 206 if (status < 0) { 207 mlog_errno(status); 208 goto bail; 209 } 210 #endif 211 212 if (status > 0) { 213 mlog(0, "journal_extend failed, trying journal_restart\n"); 214 status = journal_restart(handle, nblocks); 215 if (status < 0) { 216 mlog_errno(status); 217 goto bail; 218 } 219 } 220 221 status = 0; 222 bail: 223 224 mlog_exit(status); 225 return status; 226 } 227 228 int ocfs2_journal_access(handle_t *handle, 229 struct inode *inode, 230 struct buffer_head *bh, 231 int type) 232 { 233 int status; 234 235 BUG_ON(!inode); 236 BUG_ON(!handle); 237 BUG_ON(!bh); 238 239 mlog_entry("bh->b_blocknr=%llu, type=%d (\"%s\"), bh->b_size = %zu\n", 240 (unsigned long long)bh->b_blocknr, type, 241 (type == OCFS2_JOURNAL_ACCESS_CREATE) ? 242 "OCFS2_JOURNAL_ACCESS_CREATE" : 243 "OCFS2_JOURNAL_ACCESS_WRITE", 244 bh->b_size); 245 246 /* we can safely remove this assertion after testing. */ 247 if (!buffer_uptodate(bh)) { 248 mlog(ML_ERROR, "giving me a buffer that's not uptodate!\n"); 249 mlog(ML_ERROR, "b_blocknr=%llu\n", 250 (unsigned long long)bh->b_blocknr); 251 BUG(); 252 } 253 254 /* Set the current transaction information on the inode so 255 * that the locking code knows whether it can drop it's locks 256 * on this inode or not. We're protected from the commit 257 * thread updating the current transaction id until 258 * ocfs2_commit_trans() because ocfs2_start_trans() took 259 * j_trans_barrier for us. */ 260 ocfs2_set_inode_lock_trans(OCFS2_SB(inode->i_sb)->journal, inode); 261 262 mutex_lock(&OCFS2_I(inode)->ip_io_mutex); 263 switch (type) { 264 case OCFS2_JOURNAL_ACCESS_CREATE: 265 case OCFS2_JOURNAL_ACCESS_WRITE: 266 status = journal_get_write_access(handle, bh); 267 break; 268 269 case OCFS2_JOURNAL_ACCESS_UNDO: 270 status = journal_get_undo_access(handle, bh); 271 break; 272 273 default: 274 status = -EINVAL; 275 mlog(ML_ERROR, "Uknown access type!\n"); 276 } 277 mutex_unlock(&OCFS2_I(inode)->ip_io_mutex); 278 279 if (status < 0) 280 mlog(ML_ERROR, "Error %d getting %d access to buffer!\n", 281 status, type); 282 283 mlog_exit(status); 284 return status; 285 } 286 287 int ocfs2_journal_dirty(handle_t *handle, 288 struct buffer_head *bh) 289 { 290 int status; 291 292 mlog_entry("(bh->b_blocknr=%llu)\n", 293 (unsigned long long)bh->b_blocknr); 294 295 status = journal_dirty_metadata(handle, bh); 296 if (status < 0) 297 mlog(ML_ERROR, "Could not dirty metadata buffer. " 298 "(bh->b_blocknr=%llu)\n", 299 (unsigned long long)bh->b_blocknr); 300 301 mlog_exit(status); 302 return status; 303 } 304 305 int ocfs2_journal_dirty_data(handle_t *handle, 306 struct buffer_head *bh) 307 { 308 int err = journal_dirty_data(handle, bh); 309 if (err) 310 mlog_errno(err); 311 /* TODO: When we can handle it, abort the handle and go RO on 312 * error here. */ 313 314 return err; 315 } 316 317 #define OCFS2_DEFAULT_COMMIT_INTERVAL (HZ * 5) 318 319 void ocfs2_set_journal_params(struct ocfs2_super *osb) 320 { 321 journal_t *journal = osb->journal->j_journal; 322 323 spin_lock(&journal->j_state_lock); 324 journal->j_commit_interval = OCFS2_DEFAULT_COMMIT_INTERVAL; 325 if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER) 326 journal->j_flags |= JFS_BARRIER; 327 else 328 journal->j_flags &= ~JFS_BARRIER; 329 spin_unlock(&journal->j_state_lock); 330 } 331 332 int ocfs2_journal_init(struct ocfs2_journal *journal, int *dirty) 333 { 334 int status = -1; 335 struct inode *inode = NULL; /* the journal inode */ 336 journal_t *j_journal = NULL; 337 struct ocfs2_dinode *di = NULL; 338 struct buffer_head *bh = NULL; 339 struct ocfs2_super *osb; 340 int meta_lock = 0; 341 342 mlog_entry_void(); 343 344 BUG_ON(!journal); 345 346 osb = journal->j_osb; 347 348 /* already have the inode for our journal */ 349 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE, 350 osb->slot_num); 351 if (inode == NULL) { 352 status = -EACCES; 353 mlog_errno(status); 354 goto done; 355 } 356 if (is_bad_inode(inode)) { 357 mlog(ML_ERROR, "access error (bad inode)\n"); 358 iput(inode); 359 inode = NULL; 360 status = -EACCES; 361 goto done; 362 } 363 364 SET_INODE_JOURNAL(inode); 365 OCFS2_I(inode)->ip_open_count++; 366 367 /* Skip recovery waits here - journal inode metadata never 368 * changes in a live cluster so it can be considered an 369 * exception to the rule. */ 370 status = ocfs2_meta_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY); 371 if (status < 0) { 372 if (status != -ERESTARTSYS) 373 mlog(ML_ERROR, "Could not get lock on journal!\n"); 374 goto done; 375 } 376 377 meta_lock = 1; 378 di = (struct ocfs2_dinode *)bh->b_data; 379 380 if (inode->i_size < OCFS2_MIN_JOURNAL_SIZE) { 381 mlog(ML_ERROR, "Journal file size (%lld) is too small!\n", 382 inode->i_size); 383 status = -EINVAL; 384 goto done; 385 } 386 387 mlog(0, "inode->i_size = %lld\n", inode->i_size); 388 mlog(0, "inode->i_blocks = %llu\n", 389 (unsigned long long)inode->i_blocks); 390 mlog(0, "inode->ip_clusters = %u\n", OCFS2_I(inode)->ip_clusters); 391 392 /* call the kernels journal init function now */ 393 j_journal = journal_init_inode(inode); 394 if (j_journal == NULL) { 395 mlog(ML_ERROR, "Linux journal layer error\n"); 396 status = -EINVAL; 397 goto done; 398 } 399 400 mlog(0, "Returned from journal_init_inode\n"); 401 mlog(0, "j_journal->j_maxlen = %u\n", j_journal->j_maxlen); 402 403 *dirty = (le32_to_cpu(di->id1.journal1.ij_flags) & 404 OCFS2_JOURNAL_DIRTY_FL); 405 406 journal->j_journal = j_journal; 407 journal->j_inode = inode; 408 journal->j_bh = bh; 409 410 ocfs2_set_journal_params(osb); 411 412 journal->j_state = OCFS2_JOURNAL_LOADED; 413 414 status = 0; 415 done: 416 if (status < 0) { 417 if (meta_lock) 418 ocfs2_meta_unlock(inode, 1); 419 if (bh != NULL) 420 brelse(bh); 421 if (inode) { 422 OCFS2_I(inode)->ip_open_count--; 423 iput(inode); 424 } 425 } 426 427 mlog_exit(status); 428 return status; 429 } 430 431 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb, 432 int dirty) 433 { 434 int status; 435 unsigned int flags; 436 struct ocfs2_journal *journal = osb->journal; 437 struct buffer_head *bh = journal->j_bh; 438 struct ocfs2_dinode *fe; 439 440 mlog_entry_void(); 441 442 fe = (struct ocfs2_dinode *)bh->b_data; 443 if (!OCFS2_IS_VALID_DINODE(fe)) { 444 /* This is called from startup/shutdown which will 445 * handle the errors in a specific manner, so no need 446 * to call ocfs2_error() here. */ 447 mlog(ML_ERROR, "Journal dinode %llu has invalid " 448 "signature: %.*s", 449 (unsigned long long)le64_to_cpu(fe->i_blkno), 7, 450 fe->i_signature); 451 status = -EIO; 452 goto out; 453 } 454 455 flags = le32_to_cpu(fe->id1.journal1.ij_flags); 456 if (dirty) 457 flags |= OCFS2_JOURNAL_DIRTY_FL; 458 else 459 flags &= ~OCFS2_JOURNAL_DIRTY_FL; 460 fe->id1.journal1.ij_flags = cpu_to_le32(flags); 461 462 status = ocfs2_write_block(osb, bh, journal->j_inode); 463 if (status < 0) 464 mlog_errno(status); 465 466 out: 467 mlog_exit(status); 468 return status; 469 } 470 471 /* 472 * If the journal has been kmalloc'd it needs to be freed after this 473 * call. 474 */ 475 void ocfs2_journal_shutdown(struct ocfs2_super *osb) 476 { 477 struct ocfs2_journal *journal = NULL; 478 int status = 0; 479 struct inode *inode = NULL; 480 int num_running_trans = 0; 481 482 mlog_entry_void(); 483 484 BUG_ON(!osb); 485 486 journal = osb->journal; 487 if (!journal) 488 goto done; 489 490 inode = journal->j_inode; 491 492 if (journal->j_state != OCFS2_JOURNAL_LOADED) 493 goto done; 494 495 /* need to inc inode use count as journal_destroy will iput. */ 496 if (!igrab(inode)) 497 BUG(); 498 499 num_running_trans = atomic_read(&(osb->journal->j_num_trans)); 500 if (num_running_trans > 0) 501 mlog(0, "Shutting down journal: must wait on %d " 502 "running transactions!\n", 503 num_running_trans); 504 505 /* Do a commit_cache here. It will flush our journal, *and* 506 * release any locks that are still held. 507 * set the SHUTDOWN flag and release the trans lock. 508 * the commit thread will take the trans lock for us below. */ 509 journal->j_state = OCFS2_JOURNAL_IN_SHUTDOWN; 510 511 /* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not 512 * drop the trans_lock (which we want to hold until we 513 * completely destroy the journal. */ 514 if (osb->commit_task) { 515 /* Wait for the commit thread */ 516 mlog(0, "Waiting for ocfs2commit to exit....\n"); 517 kthread_stop(osb->commit_task); 518 osb->commit_task = NULL; 519 } 520 521 BUG_ON(atomic_read(&(osb->journal->j_num_trans)) != 0); 522 523 if (ocfs2_mount_local(osb)) { 524 journal_lock_updates(journal->j_journal); 525 status = journal_flush(journal->j_journal); 526 journal_unlock_updates(journal->j_journal); 527 if (status < 0) 528 mlog_errno(status); 529 } 530 531 if (status == 0) { 532 /* 533 * Do not toggle if flush was unsuccessful otherwise 534 * will leave dirty metadata in a "clean" journal 535 */ 536 status = ocfs2_journal_toggle_dirty(osb, 0); 537 if (status < 0) 538 mlog_errno(status); 539 } 540 541 /* Shutdown the kernel journal system */ 542 journal_destroy(journal->j_journal); 543 544 OCFS2_I(inode)->ip_open_count--; 545 546 /* unlock our journal */ 547 ocfs2_meta_unlock(inode, 1); 548 549 brelse(journal->j_bh); 550 journal->j_bh = NULL; 551 552 journal->j_state = OCFS2_JOURNAL_FREE; 553 554 // up_write(&journal->j_trans_barrier); 555 done: 556 if (inode) 557 iput(inode); 558 mlog_exit_void(); 559 } 560 561 static void ocfs2_clear_journal_error(struct super_block *sb, 562 journal_t *journal, 563 int slot) 564 { 565 int olderr; 566 567 olderr = journal_errno(journal); 568 if (olderr) { 569 mlog(ML_ERROR, "File system error %d recorded in " 570 "journal %u.\n", olderr, slot); 571 mlog(ML_ERROR, "File system on device %s needs checking.\n", 572 sb->s_id); 573 574 journal_ack_err(journal); 575 journal_clear_err(journal); 576 } 577 } 578 579 int ocfs2_journal_load(struct ocfs2_journal *journal, int local) 580 { 581 int status = 0; 582 struct ocfs2_super *osb; 583 584 mlog_entry_void(); 585 586 if (!journal) 587 BUG(); 588 589 osb = journal->j_osb; 590 591 status = journal_load(journal->j_journal); 592 if (status < 0) { 593 mlog(ML_ERROR, "Failed to load journal!\n"); 594 goto done; 595 } 596 597 ocfs2_clear_journal_error(osb->sb, journal->j_journal, osb->slot_num); 598 599 status = ocfs2_journal_toggle_dirty(osb, 1); 600 if (status < 0) { 601 mlog_errno(status); 602 goto done; 603 } 604 605 /* Launch the commit thread */ 606 if (!local) { 607 osb->commit_task = kthread_run(ocfs2_commit_thread, osb, 608 "ocfs2cmt"); 609 if (IS_ERR(osb->commit_task)) { 610 status = PTR_ERR(osb->commit_task); 611 osb->commit_task = NULL; 612 mlog(ML_ERROR, "unable to launch ocfs2commit thread, " 613 "error=%d", status); 614 goto done; 615 } 616 } else 617 osb->commit_task = NULL; 618 619 done: 620 mlog_exit(status); 621 return status; 622 } 623 624 625 /* 'full' flag tells us whether we clear out all blocks or if we just 626 * mark the journal clean */ 627 int ocfs2_journal_wipe(struct ocfs2_journal *journal, int full) 628 { 629 int status; 630 631 mlog_entry_void(); 632 633 BUG_ON(!journal); 634 635 status = journal_wipe(journal->j_journal, full); 636 if (status < 0) { 637 mlog_errno(status); 638 goto bail; 639 } 640 641 status = ocfs2_journal_toggle_dirty(journal->j_osb, 0); 642 if (status < 0) 643 mlog_errno(status); 644 645 bail: 646 mlog_exit(status); 647 return status; 648 } 649 650 /* 651 * JBD Might read a cached version of another nodes journal file. We 652 * don't want this as this file changes often and we get no 653 * notification on those changes. The only way to be sure that we've 654 * got the most up to date version of those blocks then is to force 655 * read them off disk. Just searching through the buffer cache won't 656 * work as there may be pages backing this file which are still marked 657 * up to date. We know things can't change on this file underneath us 658 * as we have the lock by now :) 659 */ 660 static int ocfs2_force_read_journal(struct inode *inode) 661 { 662 int status = 0; 663 int i; 664 u64 v_blkno, p_blkno, p_blocks, num_blocks; 665 #define CONCURRENT_JOURNAL_FILL 32ULL 666 struct buffer_head *bhs[CONCURRENT_JOURNAL_FILL]; 667 668 mlog_entry_void(); 669 670 memset(bhs, 0, sizeof(struct buffer_head *) * CONCURRENT_JOURNAL_FILL); 671 672 num_blocks = ocfs2_blocks_for_bytes(inode->i_sb, inode->i_size); 673 v_blkno = 0; 674 while (v_blkno < num_blocks) { 675 status = ocfs2_extent_map_get_blocks(inode, v_blkno, 676 &p_blkno, &p_blocks, NULL); 677 if (status < 0) { 678 mlog_errno(status); 679 goto bail; 680 } 681 682 if (p_blocks > CONCURRENT_JOURNAL_FILL) 683 p_blocks = CONCURRENT_JOURNAL_FILL; 684 685 /* We are reading journal data which should not 686 * be put in the uptodate cache */ 687 status = ocfs2_read_blocks(OCFS2_SB(inode->i_sb), 688 p_blkno, p_blocks, bhs, 0, 689 NULL); 690 if (status < 0) { 691 mlog_errno(status); 692 goto bail; 693 } 694 695 for(i = 0; i < p_blocks; i++) { 696 brelse(bhs[i]); 697 bhs[i] = NULL; 698 } 699 700 v_blkno += p_blocks; 701 } 702 703 bail: 704 for(i = 0; i < CONCURRENT_JOURNAL_FILL; i++) 705 if (bhs[i]) 706 brelse(bhs[i]); 707 mlog_exit(status); 708 return status; 709 } 710 711 struct ocfs2_la_recovery_item { 712 struct list_head lri_list; 713 int lri_slot; 714 struct ocfs2_dinode *lri_la_dinode; 715 struct ocfs2_dinode *lri_tl_dinode; 716 }; 717 718 /* Does the second half of the recovery process. By this point, the 719 * node is marked clean and can actually be considered recovered, 720 * hence it's no longer in the recovery map, but there's still some 721 * cleanup we can do which shouldn't happen within the recovery thread 722 * as locking in that context becomes very difficult if we are to take 723 * recovering nodes into account. 724 * 725 * NOTE: This function can and will sleep on recovery of other nodes 726 * during cluster locking, just like any other ocfs2 process. 727 */ 728 void ocfs2_complete_recovery(struct work_struct *work) 729 { 730 int ret; 731 struct ocfs2_journal *journal = 732 container_of(work, struct ocfs2_journal, j_recovery_work); 733 struct ocfs2_super *osb = journal->j_osb; 734 struct ocfs2_dinode *la_dinode, *tl_dinode; 735 struct ocfs2_la_recovery_item *item, *n; 736 LIST_HEAD(tmp_la_list); 737 738 mlog_entry_void(); 739 740 mlog(0, "completing recovery from keventd\n"); 741 742 spin_lock(&journal->j_lock); 743 list_splice_init(&journal->j_la_cleanups, &tmp_la_list); 744 spin_unlock(&journal->j_lock); 745 746 list_for_each_entry_safe(item, n, &tmp_la_list, lri_list) { 747 list_del_init(&item->lri_list); 748 749 mlog(0, "Complete recovery for slot %d\n", item->lri_slot); 750 751 la_dinode = item->lri_la_dinode; 752 if (la_dinode) { 753 mlog(0, "Clean up local alloc %llu\n", 754 (unsigned long long)le64_to_cpu(la_dinode->i_blkno)); 755 756 ret = ocfs2_complete_local_alloc_recovery(osb, 757 la_dinode); 758 if (ret < 0) 759 mlog_errno(ret); 760 761 kfree(la_dinode); 762 } 763 764 tl_dinode = item->lri_tl_dinode; 765 if (tl_dinode) { 766 mlog(0, "Clean up truncate log %llu\n", 767 (unsigned long long)le64_to_cpu(tl_dinode->i_blkno)); 768 769 ret = ocfs2_complete_truncate_log_recovery(osb, 770 tl_dinode); 771 if (ret < 0) 772 mlog_errno(ret); 773 774 kfree(tl_dinode); 775 } 776 777 ret = ocfs2_recover_orphans(osb, item->lri_slot); 778 if (ret < 0) 779 mlog_errno(ret); 780 781 kfree(item); 782 } 783 784 mlog(0, "Recovery completion\n"); 785 mlog_exit_void(); 786 } 787 788 /* NOTE: This function always eats your references to la_dinode and 789 * tl_dinode, either manually on error, or by passing them to 790 * ocfs2_complete_recovery */ 791 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal, 792 int slot_num, 793 struct ocfs2_dinode *la_dinode, 794 struct ocfs2_dinode *tl_dinode) 795 { 796 struct ocfs2_la_recovery_item *item; 797 798 item = kmalloc(sizeof(struct ocfs2_la_recovery_item), GFP_NOFS); 799 if (!item) { 800 /* Though we wish to avoid it, we are in fact safe in 801 * skipping local alloc cleanup as fsck.ocfs2 is more 802 * than capable of reclaiming unused space. */ 803 if (la_dinode) 804 kfree(la_dinode); 805 806 if (tl_dinode) 807 kfree(tl_dinode); 808 809 mlog_errno(-ENOMEM); 810 return; 811 } 812 813 INIT_LIST_HEAD(&item->lri_list); 814 item->lri_la_dinode = la_dinode; 815 item->lri_slot = slot_num; 816 item->lri_tl_dinode = tl_dinode; 817 818 spin_lock(&journal->j_lock); 819 list_add_tail(&item->lri_list, &journal->j_la_cleanups); 820 queue_work(ocfs2_wq, &journal->j_recovery_work); 821 spin_unlock(&journal->j_lock); 822 } 823 824 /* Called by the mount code to queue recovery the last part of 825 * recovery for it's own slot. */ 826 void ocfs2_complete_mount_recovery(struct ocfs2_super *osb) 827 { 828 struct ocfs2_journal *journal = osb->journal; 829 830 if (osb->dirty) { 831 /* No need to queue up our truncate_log as regular 832 * cleanup will catch that. */ 833 ocfs2_queue_recovery_completion(journal, 834 osb->slot_num, 835 osb->local_alloc_copy, 836 NULL); 837 ocfs2_schedule_truncate_log_flush(osb, 0); 838 839 osb->local_alloc_copy = NULL; 840 osb->dirty = 0; 841 } 842 } 843 844 static int __ocfs2_recovery_thread(void *arg) 845 { 846 int status, node_num; 847 struct ocfs2_super *osb = arg; 848 849 mlog_entry_void(); 850 851 status = ocfs2_wait_on_mount(osb); 852 if (status < 0) { 853 goto bail; 854 } 855 856 restart: 857 status = ocfs2_super_lock(osb, 1); 858 if (status < 0) { 859 mlog_errno(status); 860 goto bail; 861 } 862 863 while(!ocfs2_node_map_is_empty(osb, &osb->recovery_map)) { 864 node_num = ocfs2_node_map_first_set_bit(osb, 865 &osb->recovery_map); 866 if (node_num == O2NM_INVALID_NODE_NUM) { 867 mlog(0, "Out of nodes to recover.\n"); 868 break; 869 } 870 871 status = ocfs2_recover_node(osb, node_num); 872 if (status < 0) { 873 mlog(ML_ERROR, 874 "Error %d recovering node %d on device (%u,%u)!\n", 875 status, node_num, 876 MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev)); 877 mlog(ML_ERROR, "Volume requires unmount.\n"); 878 continue; 879 } 880 881 ocfs2_recovery_map_clear(osb, node_num); 882 } 883 ocfs2_super_unlock(osb, 1); 884 885 /* We always run recovery on our own orphan dir - the dead 886 * node(s) may have voted "no" on an inode delete earlier. A 887 * revote is therefore required. */ 888 ocfs2_queue_recovery_completion(osb->journal, osb->slot_num, NULL, 889 NULL); 890 891 bail: 892 mutex_lock(&osb->recovery_lock); 893 if (!status && 894 !ocfs2_node_map_is_empty(osb, &osb->recovery_map)) { 895 mutex_unlock(&osb->recovery_lock); 896 goto restart; 897 } 898 899 osb->recovery_thread_task = NULL; 900 mb(); /* sync with ocfs2_recovery_thread_running */ 901 wake_up(&osb->recovery_event); 902 903 mutex_unlock(&osb->recovery_lock); 904 905 mlog_exit(status); 906 /* no one is callint kthread_stop() for us so the kthread() api 907 * requires that we call do_exit(). And it isn't exported, but 908 * complete_and_exit() seems to be a minimal wrapper around it. */ 909 complete_and_exit(NULL, status); 910 return status; 911 } 912 913 void ocfs2_recovery_thread(struct ocfs2_super *osb, int node_num) 914 { 915 mlog_entry("(node_num=%d, osb->node_num = %d)\n", 916 node_num, osb->node_num); 917 918 mutex_lock(&osb->recovery_lock); 919 if (osb->disable_recovery) 920 goto out; 921 922 /* People waiting on recovery will wait on 923 * the recovery map to empty. */ 924 if (!ocfs2_recovery_map_set(osb, node_num)) 925 mlog(0, "node %d already be in recovery.\n", node_num); 926 927 mlog(0, "starting recovery thread...\n"); 928 929 if (osb->recovery_thread_task) 930 goto out; 931 932 osb->recovery_thread_task = kthread_run(__ocfs2_recovery_thread, osb, 933 "ocfs2rec"); 934 if (IS_ERR(osb->recovery_thread_task)) { 935 mlog_errno((int)PTR_ERR(osb->recovery_thread_task)); 936 osb->recovery_thread_task = NULL; 937 } 938 939 out: 940 mutex_unlock(&osb->recovery_lock); 941 wake_up(&osb->recovery_event); 942 943 mlog_exit_void(); 944 } 945 946 /* Does the actual journal replay and marks the journal inode as 947 * clean. Will only replay if the journal inode is marked dirty. */ 948 static int ocfs2_replay_journal(struct ocfs2_super *osb, 949 int node_num, 950 int slot_num) 951 { 952 int status; 953 int got_lock = 0; 954 unsigned int flags; 955 struct inode *inode = NULL; 956 struct ocfs2_dinode *fe; 957 journal_t *journal = NULL; 958 struct buffer_head *bh = NULL; 959 960 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE, 961 slot_num); 962 if (inode == NULL) { 963 status = -EACCES; 964 mlog_errno(status); 965 goto done; 966 } 967 if (is_bad_inode(inode)) { 968 status = -EACCES; 969 iput(inode); 970 inode = NULL; 971 mlog_errno(status); 972 goto done; 973 } 974 SET_INODE_JOURNAL(inode); 975 976 status = ocfs2_meta_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY); 977 if (status < 0) { 978 mlog(0, "status returned from ocfs2_meta_lock=%d\n", status); 979 if (status != -ERESTARTSYS) 980 mlog(ML_ERROR, "Could not lock journal!\n"); 981 goto done; 982 } 983 got_lock = 1; 984 985 fe = (struct ocfs2_dinode *) bh->b_data; 986 987 flags = le32_to_cpu(fe->id1.journal1.ij_flags); 988 989 if (!(flags & OCFS2_JOURNAL_DIRTY_FL)) { 990 mlog(0, "No recovery required for node %d\n", node_num); 991 goto done; 992 } 993 994 mlog(ML_NOTICE, "Recovering node %d from slot %d on device (%u,%u)\n", 995 node_num, slot_num, 996 MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev)); 997 998 OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters); 999 1000 status = ocfs2_force_read_journal(inode); 1001 if (status < 0) { 1002 mlog_errno(status); 1003 goto done; 1004 } 1005 1006 mlog(0, "calling journal_init_inode\n"); 1007 journal = journal_init_inode(inode); 1008 if (journal == NULL) { 1009 mlog(ML_ERROR, "Linux journal layer error\n"); 1010 status = -EIO; 1011 goto done; 1012 } 1013 1014 status = journal_load(journal); 1015 if (status < 0) { 1016 mlog_errno(status); 1017 if (!igrab(inode)) 1018 BUG(); 1019 journal_destroy(journal); 1020 goto done; 1021 } 1022 1023 ocfs2_clear_journal_error(osb->sb, journal, slot_num); 1024 1025 /* wipe the journal */ 1026 mlog(0, "flushing the journal.\n"); 1027 journal_lock_updates(journal); 1028 status = journal_flush(journal); 1029 journal_unlock_updates(journal); 1030 if (status < 0) 1031 mlog_errno(status); 1032 1033 /* This will mark the node clean */ 1034 flags = le32_to_cpu(fe->id1.journal1.ij_flags); 1035 flags &= ~OCFS2_JOURNAL_DIRTY_FL; 1036 fe->id1.journal1.ij_flags = cpu_to_le32(flags); 1037 1038 status = ocfs2_write_block(osb, bh, inode); 1039 if (status < 0) 1040 mlog_errno(status); 1041 1042 if (!igrab(inode)) 1043 BUG(); 1044 1045 journal_destroy(journal); 1046 1047 done: 1048 /* drop the lock on this nodes journal */ 1049 if (got_lock) 1050 ocfs2_meta_unlock(inode, 1); 1051 1052 if (inode) 1053 iput(inode); 1054 1055 if (bh) 1056 brelse(bh); 1057 1058 mlog_exit(status); 1059 return status; 1060 } 1061 1062 /* 1063 * Do the most important parts of node recovery: 1064 * - Replay it's journal 1065 * - Stamp a clean local allocator file 1066 * - Stamp a clean truncate log 1067 * - Mark the node clean 1068 * 1069 * If this function completes without error, a node in OCFS2 can be 1070 * said to have been safely recovered. As a result, failure during the 1071 * second part of a nodes recovery process (local alloc recovery) is 1072 * far less concerning. 1073 */ 1074 static int ocfs2_recover_node(struct ocfs2_super *osb, 1075 int node_num) 1076 { 1077 int status = 0; 1078 int slot_num; 1079 struct ocfs2_slot_info *si = osb->slot_info; 1080 struct ocfs2_dinode *la_copy = NULL; 1081 struct ocfs2_dinode *tl_copy = NULL; 1082 1083 mlog_entry("(node_num=%d, osb->node_num = %d)\n", 1084 node_num, osb->node_num); 1085 1086 mlog(0, "checking node %d\n", node_num); 1087 1088 /* Should not ever be called to recover ourselves -- in that 1089 * case we should've called ocfs2_journal_load instead. */ 1090 BUG_ON(osb->node_num == node_num); 1091 1092 slot_num = ocfs2_node_num_to_slot(si, node_num); 1093 if (slot_num == OCFS2_INVALID_SLOT) { 1094 status = 0; 1095 mlog(0, "no slot for this node, so no recovery required.\n"); 1096 goto done; 1097 } 1098 1099 mlog(0, "node %d was using slot %d\n", node_num, slot_num); 1100 1101 status = ocfs2_replay_journal(osb, node_num, slot_num); 1102 if (status < 0) { 1103 mlog_errno(status); 1104 goto done; 1105 } 1106 1107 /* Stamp a clean local alloc file AFTER recovering the journal... */ 1108 status = ocfs2_begin_local_alloc_recovery(osb, slot_num, &la_copy); 1109 if (status < 0) { 1110 mlog_errno(status); 1111 goto done; 1112 } 1113 1114 /* An error from begin_truncate_log_recovery is not 1115 * serious enough to warrant halting the rest of 1116 * recovery. */ 1117 status = ocfs2_begin_truncate_log_recovery(osb, slot_num, &tl_copy); 1118 if (status < 0) 1119 mlog_errno(status); 1120 1121 /* Likewise, this would be a strange but ultimately not so 1122 * harmful place to get an error... */ 1123 ocfs2_clear_slot(si, slot_num); 1124 status = ocfs2_update_disk_slots(osb, si); 1125 if (status < 0) 1126 mlog_errno(status); 1127 1128 /* This will kfree the memory pointed to by la_copy and tl_copy */ 1129 ocfs2_queue_recovery_completion(osb->journal, slot_num, la_copy, 1130 tl_copy); 1131 1132 status = 0; 1133 done: 1134 1135 mlog_exit(status); 1136 return status; 1137 } 1138 1139 /* Test node liveness by trylocking his journal. If we get the lock, 1140 * we drop it here. Return 0 if we got the lock, -EAGAIN if node is 1141 * still alive (we couldn't get the lock) and < 0 on error. */ 1142 static int ocfs2_trylock_journal(struct ocfs2_super *osb, 1143 int slot_num) 1144 { 1145 int status, flags; 1146 struct inode *inode = NULL; 1147 1148 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE, 1149 slot_num); 1150 if (inode == NULL) { 1151 mlog(ML_ERROR, "access error\n"); 1152 status = -EACCES; 1153 goto bail; 1154 } 1155 if (is_bad_inode(inode)) { 1156 mlog(ML_ERROR, "access error (bad inode)\n"); 1157 iput(inode); 1158 inode = NULL; 1159 status = -EACCES; 1160 goto bail; 1161 } 1162 SET_INODE_JOURNAL(inode); 1163 1164 flags = OCFS2_META_LOCK_RECOVERY | OCFS2_META_LOCK_NOQUEUE; 1165 status = ocfs2_meta_lock_full(inode, NULL, 1, flags); 1166 if (status < 0) { 1167 if (status != -EAGAIN) 1168 mlog_errno(status); 1169 goto bail; 1170 } 1171 1172 ocfs2_meta_unlock(inode, 1); 1173 bail: 1174 if (inode) 1175 iput(inode); 1176 1177 return status; 1178 } 1179 1180 /* Call this underneath ocfs2_super_lock. It also assumes that the 1181 * slot info struct has been updated from disk. */ 1182 int ocfs2_mark_dead_nodes(struct ocfs2_super *osb) 1183 { 1184 int status, i, node_num; 1185 struct ocfs2_slot_info *si = osb->slot_info; 1186 1187 /* This is called with the super block cluster lock, so we 1188 * know that the slot map can't change underneath us. */ 1189 1190 spin_lock(&si->si_lock); 1191 for(i = 0; i < si->si_num_slots; i++) { 1192 if (i == osb->slot_num) 1193 continue; 1194 if (ocfs2_is_empty_slot(si, i)) 1195 continue; 1196 1197 node_num = si->si_global_node_nums[i]; 1198 if (ocfs2_node_map_test_bit(osb, &osb->recovery_map, node_num)) 1199 continue; 1200 spin_unlock(&si->si_lock); 1201 1202 /* Ok, we have a slot occupied by another node which 1203 * is not in the recovery map. We trylock his journal 1204 * file here to test if he's alive. */ 1205 status = ocfs2_trylock_journal(osb, i); 1206 if (!status) { 1207 /* Since we're called from mount, we know that 1208 * the recovery thread can't race us on 1209 * setting / checking the recovery bits. */ 1210 ocfs2_recovery_thread(osb, node_num); 1211 } else if ((status < 0) && (status != -EAGAIN)) { 1212 mlog_errno(status); 1213 goto bail; 1214 } 1215 1216 spin_lock(&si->si_lock); 1217 } 1218 spin_unlock(&si->si_lock); 1219 1220 status = 0; 1221 bail: 1222 mlog_exit(status); 1223 return status; 1224 } 1225 1226 struct ocfs2_orphan_filldir_priv { 1227 struct inode *head; 1228 struct ocfs2_super *osb; 1229 }; 1230 1231 static int ocfs2_orphan_filldir(void *priv, const char *name, int name_len, 1232 loff_t pos, u64 ino, unsigned type) 1233 { 1234 struct ocfs2_orphan_filldir_priv *p = priv; 1235 struct inode *iter; 1236 1237 if (name_len == 1 && !strncmp(".", name, 1)) 1238 return 0; 1239 if (name_len == 2 && !strncmp("..", name, 2)) 1240 return 0; 1241 1242 /* Skip bad inodes so that recovery can continue */ 1243 iter = ocfs2_iget(p->osb, ino, 1244 OCFS2_FI_FLAG_ORPHAN_RECOVERY); 1245 if (IS_ERR(iter)) 1246 return 0; 1247 1248 mlog(0, "queue orphan %llu\n", 1249 (unsigned long long)OCFS2_I(iter)->ip_blkno); 1250 /* No locking is required for the next_orphan queue as there 1251 * is only ever a single process doing orphan recovery. */ 1252 OCFS2_I(iter)->ip_next_orphan = p->head; 1253 p->head = iter; 1254 1255 return 0; 1256 } 1257 1258 static int ocfs2_queue_orphans(struct ocfs2_super *osb, 1259 int slot, 1260 struct inode **head) 1261 { 1262 int status; 1263 struct inode *orphan_dir_inode = NULL; 1264 struct ocfs2_orphan_filldir_priv priv; 1265 loff_t pos = 0; 1266 1267 priv.osb = osb; 1268 priv.head = *head; 1269 1270 orphan_dir_inode = ocfs2_get_system_file_inode(osb, 1271 ORPHAN_DIR_SYSTEM_INODE, 1272 slot); 1273 if (!orphan_dir_inode) { 1274 status = -ENOENT; 1275 mlog_errno(status); 1276 return status; 1277 } 1278 1279 mutex_lock(&orphan_dir_inode->i_mutex); 1280 status = ocfs2_meta_lock(orphan_dir_inode, NULL, 0); 1281 if (status < 0) { 1282 mlog_errno(status); 1283 goto out; 1284 } 1285 1286 status = ocfs2_dir_foreach(orphan_dir_inode, &pos, &priv, 1287 ocfs2_orphan_filldir); 1288 if (status) { 1289 mlog_errno(status); 1290 goto out_cluster; 1291 } 1292 1293 *head = priv.head; 1294 1295 out_cluster: 1296 ocfs2_meta_unlock(orphan_dir_inode, 0); 1297 out: 1298 mutex_unlock(&orphan_dir_inode->i_mutex); 1299 iput(orphan_dir_inode); 1300 return status; 1301 } 1302 1303 static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super *osb, 1304 int slot) 1305 { 1306 int ret; 1307 1308 spin_lock(&osb->osb_lock); 1309 ret = !osb->osb_orphan_wipes[slot]; 1310 spin_unlock(&osb->osb_lock); 1311 return ret; 1312 } 1313 1314 static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super *osb, 1315 int slot) 1316 { 1317 spin_lock(&osb->osb_lock); 1318 /* Mark ourselves such that new processes in delete_inode() 1319 * know to quit early. */ 1320 ocfs2_node_map_set_bit(osb, &osb->osb_recovering_orphan_dirs, slot); 1321 while (osb->osb_orphan_wipes[slot]) { 1322 /* If any processes are already in the middle of an 1323 * orphan wipe on this dir, then we need to wait for 1324 * them. */ 1325 spin_unlock(&osb->osb_lock); 1326 wait_event_interruptible(osb->osb_wipe_event, 1327 ocfs2_orphan_recovery_can_continue(osb, slot)); 1328 spin_lock(&osb->osb_lock); 1329 } 1330 spin_unlock(&osb->osb_lock); 1331 } 1332 1333 static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super *osb, 1334 int slot) 1335 { 1336 ocfs2_node_map_clear_bit(osb, &osb->osb_recovering_orphan_dirs, slot); 1337 } 1338 1339 /* 1340 * Orphan recovery. Each mounted node has it's own orphan dir which we 1341 * must run during recovery. Our strategy here is to build a list of 1342 * the inodes in the orphan dir and iget/iput them. The VFS does 1343 * (most) of the rest of the work. 1344 * 1345 * Orphan recovery can happen at any time, not just mount so we have a 1346 * couple of extra considerations. 1347 * 1348 * - We grab as many inodes as we can under the orphan dir lock - 1349 * doing iget() outside the orphan dir risks getting a reference on 1350 * an invalid inode. 1351 * - We must be sure not to deadlock with other processes on the 1352 * system wanting to run delete_inode(). This can happen when they go 1353 * to lock the orphan dir and the orphan recovery process attempts to 1354 * iget() inside the orphan dir lock. This can be avoided by 1355 * advertising our state to ocfs2_delete_inode(). 1356 */ 1357 static int ocfs2_recover_orphans(struct ocfs2_super *osb, 1358 int slot) 1359 { 1360 int ret = 0; 1361 struct inode *inode = NULL; 1362 struct inode *iter; 1363 struct ocfs2_inode_info *oi; 1364 1365 mlog(0, "Recover inodes from orphan dir in slot %d\n", slot); 1366 1367 ocfs2_mark_recovering_orphan_dir(osb, slot); 1368 ret = ocfs2_queue_orphans(osb, slot, &inode); 1369 ocfs2_clear_recovering_orphan_dir(osb, slot); 1370 1371 /* Error here should be noted, but we want to continue with as 1372 * many queued inodes as we've got. */ 1373 if (ret) 1374 mlog_errno(ret); 1375 1376 while (inode) { 1377 oi = OCFS2_I(inode); 1378 mlog(0, "iput orphan %llu\n", (unsigned long long)oi->ip_blkno); 1379 1380 iter = oi->ip_next_orphan; 1381 1382 spin_lock(&oi->ip_lock); 1383 /* Delete voting may have set these on the assumption 1384 * that the other node would wipe them successfully. 1385 * If they are still in the node's orphan dir, we need 1386 * to reset that state. */ 1387 oi->ip_flags &= ~(OCFS2_INODE_DELETED|OCFS2_INODE_SKIP_DELETE); 1388 1389 /* Set the proper information to get us going into 1390 * ocfs2_delete_inode. */ 1391 oi->ip_flags |= OCFS2_INODE_MAYBE_ORPHANED; 1392 spin_unlock(&oi->ip_lock); 1393 1394 iput(inode); 1395 1396 inode = iter; 1397 } 1398 1399 return ret; 1400 } 1401 1402 static int ocfs2_wait_on_mount(struct ocfs2_super *osb) 1403 { 1404 /* This check is good because ocfs2 will wait on our recovery 1405 * thread before changing it to something other than MOUNTED 1406 * or DISABLED. */ 1407 wait_event(osb->osb_mount_event, 1408 atomic_read(&osb->vol_state) == VOLUME_MOUNTED || 1409 atomic_read(&osb->vol_state) == VOLUME_DISABLED); 1410 1411 /* If there's an error on mount, then we may never get to the 1412 * MOUNTED flag, but this is set right before 1413 * dismount_volume() so we can trust it. */ 1414 if (atomic_read(&osb->vol_state) == VOLUME_DISABLED) { 1415 mlog(0, "mount error, exiting!\n"); 1416 return -EBUSY; 1417 } 1418 1419 return 0; 1420 } 1421 1422 static int ocfs2_commit_thread(void *arg) 1423 { 1424 int status; 1425 struct ocfs2_super *osb = arg; 1426 struct ocfs2_journal *journal = osb->journal; 1427 1428 /* we can trust j_num_trans here because _should_stop() is only set in 1429 * shutdown and nobody other than ourselves should be able to start 1430 * transactions. committing on shutdown might take a few iterations 1431 * as final transactions put deleted inodes on the list */ 1432 while (!(kthread_should_stop() && 1433 atomic_read(&journal->j_num_trans) == 0)) { 1434 1435 wait_event_interruptible(osb->checkpoint_event, 1436 atomic_read(&journal->j_num_trans) 1437 || kthread_should_stop()); 1438 1439 status = ocfs2_commit_cache(osb); 1440 if (status < 0) 1441 mlog_errno(status); 1442 1443 if (kthread_should_stop() && atomic_read(&journal->j_num_trans)){ 1444 mlog(ML_KTHREAD, 1445 "commit_thread: %u transactions pending on " 1446 "shutdown\n", 1447 atomic_read(&journal->j_num_trans)); 1448 } 1449 } 1450 1451 return 0; 1452 } 1453 1454 /* Look for a dirty journal without taking any cluster locks. Used for 1455 * hard readonly access to determine whether the file system journals 1456 * require recovery. */ 1457 int ocfs2_check_journals_nolocks(struct ocfs2_super *osb) 1458 { 1459 int ret = 0; 1460 unsigned int slot; 1461 struct buffer_head *di_bh; 1462 struct ocfs2_dinode *di; 1463 struct inode *journal = NULL; 1464 1465 for(slot = 0; slot < osb->max_slots; slot++) { 1466 journal = ocfs2_get_system_file_inode(osb, 1467 JOURNAL_SYSTEM_INODE, 1468 slot); 1469 if (!journal || is_bad_inode(journal)) { 1470 ret = -EACCES; 1471 mlog_errno(ret); 1472 goto out; 1473 } 1474 1475 di_bh = NULL; 1476 ret = ocfs2_read_block(osb, OCFS2_I(journal)->ip_blkno, &di_bh, 1477 0, journal); 1478 if (ret < 0) { 1479 mlog_errno(ret); 1480 goto out; 1481 } 1482 1483 di = (struct ocfs2_dinode *) di_bh->b_data; 1484 1485 if (le32_to_cpu(di->id1.journal1.ij_flags) & 1486 OCFS2_JOURNAL_DIRTY_FL) 1487 ret = -EROFS; 1488 1489 brelse(di_bh); 1490 if (ret) 1491 break; 1492 } 1493 1494 out: 1495 if (journal) 1496 iput(journal); 1497 1498 return ret; 1499 } 1500