xref: /openbmc/linux/fs/ocfs2/journal.c (revision 13723d00e374c2a6d6ccb5af6de965e89c3e1b01)
1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * journal.c
5  *
6  * Defines functions of journalling api
7  *
8  * Copyright (C) 2003, 2004 Oracle.  All rights reserved.
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public
12  * License as published by the Free Software Foundation; either
13  * version 2 of the License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public
21  * License along with this program; if not, write to the
22  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23  * Boston, MA 021110-1307, USA.
24  */
25 
26 #include <linux/fs.h>
27 #include <linux/types.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/kthread.h>
31 
32 #define MLOG_MASK_PREFIX ML_JOURNAL
33 #include <cluster/masklog.h>
34 
35 #include "ocfs2.h"
36 
37 #include "alloc.h"
38 #include "blockcheck.h"
39 #include "dir.h"
40 #include "dlmglue.h"
41 #include "extent_map.h"
42 #include "heartbeat.h"
43 #include "inode.h"
44 #include "journal.h"
45 #include "localalloc.h"
46 #include "slot_map.h"
47 #include "super.h"
48 #include "sysfile.h"
49 #include "quota.h"
50 
51 #include "buffer_head_io.h"
52 
53 DEFINE_SPINLOCK(trans_inc_lock);
54 
55 static int ocfs2_force_read_journal(struct inode *inode);
56 static int ocfs2_recover_node(struct ocfs2_super *osb,
57 			      int node_num, int slot_num);
58 static int __ocfs2_recovery_thread(void *arg);
59 static int ocfs2_commit_cache(struct ocfs2_super *osb);
60 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota);
61 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
62 				      int dirty, int replayed);
63 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
64 				 int slot_num);
65 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
66 				 int slot);
67 static int ocfs2_commit_thread(void *arg);
68 
69 static inline int ocfs2_wait_on_mount(struct ocfs2_super *osb)
70 {
71 	return __ocfs2_wait_on_mount(osb, 0);
72 }
73 
74 static inline int ocfs2_wait_on_quotas(struct ocfs2_super *osb)
75 {
76 	return __ocfs2_wait_on_mount(osb, 1);
77 }
78 
79 
80 
81 /*
82  * The recovery_list is a simple linked list of node numbers to recover.
83  * It is protected by the recovery_lock.
84  */
85 
86 struct ocfs2_recovery_map {
87 	unsigned int rm_used;
88 	unsigned int *rm_entries;
89 };
90 
91 int ocfs2_recovery_init(struct ocfs2_super *osb)
92 {
93 	struct ocfs2_recovery_map *rm;
94 
95 	mutex_init(&osb->recovery_lock);
96 	osb->disable_recovery = 0;
97 	osb->recovery_thread_task = NULL;
98 	init_waitqueue_head(&osb->recovery_event);
99 
100 	rm = kzalloc(sizeof(struct ocfs2_recovery_map) +
101 		     osb->max_slots * sizeof(unsigned int),
102 		     GFP_KERNEL);
103 	if (!rm) {
104 		mlog_errno(-ENOMEM);
105 		return -ENOMEM;
106 	}
107 
108 	rm->rm_entries = (unsigned int *)((char *)rm +
109 					  sizeof(struct ocfs2_recovery_map));
110 	osb->recovery_map = rm;
111 
112 	return 0;
113 }
114 
115 /* we can't grab the goofy sem lock from inside wait_event, so we use
116  * memory barriers to make sure that we'll see the null task before
117  * being woken up */
118 static int ocfs2_recovery_thread_running(struct ocfs2_super *osb)
119 {
120 	mb();
121 	return osb->recovery_thread_task != NULL;
122 }
123 
124 void ocfs2_recovery_exit(struct ocfs2_super *osb)
125 {
126 	struct ocfs2_recovery_map *rm;
127 
128 	/* disable any new recovery threads and wait for any currently
129 	 * running ones to exit. Do this before setting the vol_state. */
130 	mutex_lock(&osb->recovery_lock);
131 	osb->disable_recovery = 1;
132 	mutex_unlock(&osb->recovery_lock);
133 	wait_event(osb->recovery_event, !ocfs2_recovery_thread_running(osb));
134 
135 	/* At this point, we know that no more recovery threads can be
136 	 * launched, so wait for any recovery completion work to
137 	 * complete. */
138 	flush_workqueue(ocfs2_wq);
139 
140 	/*
141 	 * Now that recovery is shut down, and the osb is about to be
142 	 * freed,  the osb_lock is not taken here.
143 	 */
144 	rm = osb->recovery_map;
145 	/* XXX: Should we bug if there are dirty entries? */
146 
147 	kfree(rm);
148 }
149 
150 static int __ocfs2_recovery_map_test(struct ocfs2_super *osb,
151 				     unsigned int node_num)
152 {
153 	int i;
154 	struct ocfs2_recovery_map *rm = osb->recovery_map;
155 
156 	assert_spin_locked(&osb->osb_lock);
157 
158 	for (i = 0; i < rm->rm_used; i++) {
159 		if (rm->rm_entries[i] == node_num)
160 			return 1;
161 	}
162 
163 	return 0;
164 }
165 
166 /* Behaves like test-and-set.  Returns the previous value */
167 static int ocfs2_recovery_map_set(struct ocfs2_super *osb,
168 				  unsigned int node_num)
169 {
170 	struct ocfs2_recovery_map *rm = osb->recovery_map;
171 
172 	spin_lock(&osb->osb_lock);
173 	if (__ocfs2_recovery_map_test(osb, node_num)) {
174 		spin_unlock(&osb->osb_lock);
175 		return 1;
176 	}
177 
178 	/* XXX: Can this be exploited? Not from o2dlm... */
179 	BUG_ON(rm->rm_used >= osb->max_slots);
180 
181 	rm->rm_entries[rm->rm_used] = node_num;
182 	rm->rm_used++;
183 	spin_unlock(&osb->osb_lock);
184 
185 	return 0;
186 }
187 
188 static void ocfs2_recovery_map_clear(struct ocfs2_super *osb,
189 				     unsigned int node_num)
190 {
191 	int i;
192 	struct ocfs2_recovery_map *rm = osb->recovery_map;
193 
194 	spin_lock(&osb->osb_lock);
195 
196 	for (i = 0; i < rm->rm_used; i++) {
197 		if (rm->rm_entries[i] == node_num)
198 			break;
199 	}
200 
201 	if (i < rm->rm_used) {
202 		/* XXX: be careful with the pointer math */
203 		memmove(&(rm->rm_entries[i]), &(rm->rm_entries[i + 1]),
204 			(rm->rm_used - i - 1) * sizeof(unsigned int));
205 		rm->rm_used--;
206 	}
207 
208 	spin_unlock(&osb->osb_lock);
209 }
210 
211 static int ocfs2_commit_cache(struct ocfs2_super *osb)
212 {
213 	int status = 0;
214 	unsigned int flushed;
215 	unsigned long old_id;
216 	struct ocfs2_journal *journal = NULL;
217 
218 	mlog_entry_void();
219 
220 	journal = osb->journal;
221 
222 	/* Flush all pending commits and checkpoint the journal. */
223 	down_write(&journal->j_trans_barrier);
224 
225 	if (atomic_read(&journal->j_num_trans) == 0) {
226 		up_write(&journal->j_trans_barrier);
227 		mlog(0, "No transactions for me to flush!\n");
228 		goto finally;
229 	}
230 
231 	jbd2_journal_lock_updates(journal->j_journal);
232 	status = jbd2_journal_flush(journal->j_journal);
233 	jbd2_journal_unlock_updates(journal->j_journal);
234 	if (status < 0) {
235 		up_write(&journal->j_trans_barrier);
236 		mlog_errno(status);
237 		goto finally;
238 	}
239 
240 	old_id = ocfs2_inc_trans_id(journal);
241 
242 	flushed = atomic_read(&journal->j_num_trans);
243 	atomic_set(&journal->j_num_trans, 0);
244 	up_write(&journal->j_trans_barrier);
245 
246 	mlog(0, "commit_thread: flushed transaction %lu (%u handles)\n",
247 	     journal->j_trans_id, flushed);
248 
249 	ocfs2_wake_downconvert_thread(osb);
250 	wake_up(&journal->j_checkpointed);
251 finally:
252 	mlog_exit(status);
253 	return status;
254 }
255 
256 /* pass it NULL and it will allocate a new handle object for you.  If
257  * you pass it a handle however, it may still return error, in which
258  * case it has free'd the passed handle for you. */
259 handle_t *ocfs2_start_trans(struct ocfs2_super *osb, int max_buffs)
260 {
261 	journal_t *journal = osb->journal->j_journal;
262 	handle_t *handle;
263 
264 	BUG_ON(!osb || !osb->journal->j_journal);
265 
266 	if (ocfs2_is_hard_readonly(osb))
267 		return ERR_PTR(-EROFS);
268 
269 	BUG_ON(osb->journal->j_state == OCFS2_JOURNAL_FREE);
270 	BUG_ON(max_buffs <= 0);
271 
272 	/* Nested transaction? Just return the handle... */
273 	if (journal_current_handle())
274 		return jbd2_journal_start(journal, max_buffs);
275 
276 	down_read(&osb->journal->j_trans_barrier);
277 
278 	handle = jbd2_journal_start(journal, max_buffs);
279 	if (IS_ERR(handle)) {
280 		up_read(&osb->journal->j_trans_barrier);
281 
282 		mlog_errno(PTR_ERR(handle));
283 
284 		if (is_journal_aborted(journal)) {
285 			ocfs2_abort(osb->sb, "Detected aborted journal");
286 			handle = ERR_PTR(-EROFS);
287 		}
288 	} else {
289 		if (!ocfs2_mount_local(osb))
290 			atomic_inc(&(osb->journal->j_num_trans));
291 	}
292 
293 	return handle;
294 }
295 
296 int ocfs2_commit_trans(struct ocfs2_super *osb,
297 		       handle_t *handle)
298 {
299 	int ret, nested;
300 	struct ocfs2_journal *journal = osb->journal;
301 
302 	BUG_ON(!handle);
303 
304 	nested = handle->h_ref > 1;
305 	ret = jbd2_journal_stop(handle);
306 	if (ret < 0)
307 		mlog_errno(ret);
308 
309 	if (!nested)
310 		up_read(&journal->j_trans_barrier);
311 
312 	return ret;
313 }
314 
315 /*
316  * 'nblocks' is what you want to add to the current
317  * transaction. extend_trans will either extend the current handle by
318  * nblocks, or commit it and start a new one with nblocks credits.
319  *
320  * This might call jbd2_journal_restart() which will commit dirty buffers
321  * and then restart the transaction. Before calling
322  * ocfs2_extend_trans(), any changed blocks should have been
323  * dirtied. After calling it, all blocks which need to be changed must
324  * go through another set of journal_access/journal_dirty calls.
325  *
326  * WARNING: This will not release any semaphores or disk locks taken
327  * during the transaction, so make sure they were taken *before*
328  * start_trans or we'll have ordering deadlocks.
329  *
330  * WARNING2: Note that we do *not* drop j_trans_barrier here. This is
331  * good because transaction ids haven't yet been recorded on the
332  * cluster locks associated with this handle.
333  */
334 int ocfs2_extend_trans(handle_t *handle, int nblocks)
335 {
336 	int status;
337 
338 	BUG_ON(!handle);
339 	BUG_ON(!nblocks);
340 
341 	mlog_entry_void();
342 
343 	mlog(0, "Trying to extend transaction by %d blocks\n", nblocks);
344 
345 #ifdef CONFIG_OCFS2_DEBUG_FS
346 	status = 1;
347 #else
348 	status = jbd2_journal_extend(handle, nblocks);
349 	if (status < 0) {
350 		mlog_errno(status);
351 		goto bail;
352 	}
353 #endif
354 
355 	if (status > 0) {
356 		mlog(0,
357 		     "jbd2_journal_extend failed, trying "
358 		     "jbd2_journal_restart\n");
359 		status = jbd2_journal_restart(handle, nblocks);
360 		if (status < 0) {
361 			mlog_errno(status);
362 			goto bail;
363 		}
364 	}
365 
366 	status = 0;
367 bail:
368 
369 	mlog_exit(status);
370 	return status;
371 }
372 
373 struct ocfs2_triggers {
374 	struct jbd2_buffer_trigger_type	ot_triggers;
375 	int				ot_offset;
376 };
377 
378 static inline struct ocfs2_triggers *to_ocfs2_trigger(struct jbd2_buffer_trigger_type *triggers)
379 {
380 	return container_of(triggers, struct ocfs2_triggers, ot_triggers);
381 }
382 
383 static void ocfs2_commit_trigger(struct jbd2_buffer_trigger_type *triggers,
384 				 struct buffer_head *bh,
385 				 void *data, size_t size)
386 {
387 	struct ocfs2_triggers *ot = to_ocfs2_trigger(triggers);
388 
389 	/*
390 	 * We aren't guaranteed to have the superblock here, so we
391 	 * must unconditionally compute the ecc data.
392 	 * __ocfs2_journal_access() will only set the triggers if
393 	 * metaecc is enabled.
394 	 */
395 	ocfs2_block_check_compute(data, size, data + ot->ot_offset);
396 }
397 
398 /*
399  * Quota blocks have their own trigger because the struct ocfs2_block_check
400  * offset depends on the blocksize.
401  */
402 static void ocfs2_dq_commit_trigger(struct jbd2_buffer_trigger_type *triggers,
403 				 struct buffer_head *bh,
404 				 void *data, size_t size)
405 {
406 	struct ocfs2_disk_dqtrailer *dqt =
407 		ocfs2_block_dqtrailer(size, data);
408 
409 	/*
410 	 * We aren't guaranteed to have the superblock here, so we
411 	 * must unconditionally compute the ecc data.
412 	 * __ocfs2_journal_access() will only set the triggers if
413 	 * metaecc is enabled.
414 	 */
415 	ocfs2_block_check_compute(data, size, &dqt->dq_check);
416 }
417 
418 static void ocfs2_abort_trigger(struct jbd2_buffer_trigger_type *triggers,
419 				struct buffer_head *bh)
420 {
421 	mlog(ML_ERROR,
422 	     "ocfs2_abort_trigger called by JBD2.  bh = 0x%lx, "
423 	     "bh->b_blocknr = %llu\n",
424 	     (unsigned long)bh,
425 	     (unsigned long long)bh->b_blocknr);
426 
427 	/* We aren't guaranteed to have the superblock here - but if we
428 	 * don't, it'll just crash. */
429 	ocfs2_error(bh->b_assoc_map->host->i_sb,
430 		    "JBD2 has aborted our journal, ocfs2 cannot continue\n");
431 }
432 
433 static struct ocfs2_triggers di_triggers = {
434 	.ot_triggers = {
435 		.t_commit = ocfs2_commit_trigger,
436 		.t_abort = ocfs2_abort_trigger,
437 	},
438 	.ot_offset	= offsetof(struct ocfs2_dinode, i_check),
439 };
440 
441 static struct ocfs2_triggers eb_triggers = {
442 	.ot_triggers = {
443 		.t_commit = ocfs2_commit_trigger,
444 		.t_abort = ocfs2_abort_trigger,
445 	},
446 	.ot_offset	= offsetof(struct ocfs2_extent_block, h_check),
447 };
448 
449 static struct ocfs2_triggers gd_triggers = {
450 	.ot_triggers = {
451 		.t_commit = ocfs2_commit_trigger,
452 		.t_abort = ocfs2_abort_trigger,
453 	},
454 	.ot_offset	= offsetof(struct ocfs2_group_desc, bg_check),
455 };
456 
457 static struct ocfs2_triggers xb_triggers = {
458 	.ot_triggers = {
459 		.t_commit = ocfs2_commit_trigger,
460 		.t_abort = ocfs2_abort_trigger,
461 	},
462 	.ot_offset	= offsetof(struct ocfs2_xattr_block, xb_check),
463 };
464 
465 static struct ocfs2_triggers dq_triggers = {
466 	.ot_triggers = {
467 		.t_commit = ocfs2_dq_commit_trigger,
468 		.t_abort = ocfs2_abort_trigger,
469 	},
470 };
471 
472 static int __ocfs2_journal_access(handle_t *handle,
473 				  struct inode *inode,
474 				  struct buffer_head *bh,
475 				  struct ocfs2_triggers *triggers,
476 				  int type)
477 {
478 	int status;
479 
480 	BUG_ON(!inode);
481 	BUG_ON(!handle);
482 	BUG_ON(!bh);
483 
484 	mlog_entry("bh->b_blocknr=%llu, type=%d (\"%s\"), bh->b_size = %zu\n",
485 		   (unsigned long long)bh->b_blocknr, type,
486 		   (type == OCFS2_JOURNAL_ACCESS_CREATE) ?
487 		   "OCFS2_JOURNAL_ACCESS_CREATE" :
488 		   "OCFS2_JOURNAL_ACCESS_WRITE",
489 		   bh->b_size);
490 
491 	/* we can safely remove this assertion after testing. */
492 	if (!buffer_uptodate(bh)) {
493 		mlog(ML_ERROR, "giving me a buffer that's not uptodate!\n");
494 		mlog(ML_ERROR, "b_blocknr=%llu\n",
495 		     (unsigned long long)bh->b_blocknr);
496 		BUG();
497 	}
498 
499 	/* Set the current transaction information on the inode so
500 	 * that the locking code knows whether it can drop it's locks
501 	 * on this inode or not. We're protected from the commit
502 	 * thread updating the current transaction id until
503 	 * ocfs2_commit_trans() because ocfs2_start_trans() took
504 	 * j_trans_barrier for us. */
505 	ocfs2_set_inode_lock_trans(OCFS2_SB(inode->i_sb)->journal, inode);
506 
507 	mutex_lock(&OCFS2_I(inode)->ip_io_mutex);
508 	switch (type) {
509 	case OCFS2_JOURNAL_ACCESS_CREATE:
510 	case OCFS2_JOURNAL_ACCESS_WRITE:
511 		status = jbd2_journal_get_write_access(handle, bh);
512 		break;
513 
514 	case OCFS2_JOURNAL_ACCESS_UNDO:
515 		status = jbd2_journal_get_undo_access(handle, bh);
516 		break;
517 
518 	default:
519 		status = -EINVAL;
520 		mlog(ML_ERROR, "Uknown access type!\n");
521 	}
522 	if (!status && ocfs2_meta_ecc(OCFS2_SB(inode->i_sb)) && triggers)
523 		jbd2_journal_set_triggers(bh, &triggers->ot_triggers);
524 	mutex_unlock(&OCFS2_I(inode)->ip_io_mutex);
525 
526 	if (status < 0)
527 		mlog(ML_ERROR, "Error %d getting %d access to buffer!\n",
528 		     status, type);
529 
530 	mlog_exit(status);
531 	return status;
532 }
533 
534 int ocfs2_journal_access_di(handle_t *handle, struct inode *inode,
535 			       struct buffer_head *bh, int type)
536 {
537 	return __ocfs2_journal_access(handle, inode, bh, &di_triggers,
538 				      type);
539 }
540 
541 int ocfs2_journal_access_eb(handle_t *handle, struct inode *inode,
542 			    struct buffer_head *bh, int type)
543 {
544 	return __ocfs2_journal_access(handle, inode, bh, &eb_triggers,
545 				      type);
546 }
547 
548 int ocfs2_journal_access_gd(handle_t *handle, struct inode *inode,
549 			    struct buffer_head *bh, int type)
550 {
551 	return __ocfs2_journal_access(handle, inode, bh, &gd_triggers,
552 				      type);
553 }
554 
555 int ocfs2_journal_access_db(handle_t *handle, struct inode *inode,
556 			    struct buffer_head *bh, int type)
557 {
558 	/* Right now, nothing for dirblocks */
559 	return __ocfs2_journal_access(handle, inode, bh, NULL, type);
560 }
561 
562 int ocfs2_journal_access_xb(handle_t *handle, struct inode *inode,
563 			    struct buffer_head *bh, int type)
564 {
565 	return __ocfs2_journal_access(handle, inode, bh, &xb_triggers,
566 				      type);
567 }
568 
569 int ocfs2_journal_access_dq(handle_t *handle, struct inode *inode,
570 			    struct buffer_head *bh, int type)
571 {
572 	return __ocfs2_journal_access(handle, inode, bh, &dq_triggers,
573 				      type);
574 }
575 
576 int ocfs2_journal_access(handle_t *handle, struct inode *inode,
577 			 struct buffer_head *bh, int type)
578 {
579 	return __ocfs2_journal_access(handle, inode, bh, NULL, type);
580 }
581 
582 int ocfs2_journal_dirty(handle_t *handle,
583 			struct buffer_head *bh)
584 {
585 	int status;
586 
587 	mlog_entry("(bh->b_blocknr=%llu)\n",
588 		   (unsigned long long)bh->b_blocknr);
589 
590 	status = jbd2_journal_dirty_metadata(handle, bh);
591 	if (status < 0)
592 		mlog(ML_ERROR, "Could not dirty metadata buffer. "
593 		     "(bh->b_blocknr=%llu)\n",
594 		     (unsigned long long)bh->b_blocknr);
595 
596 	mlog_exit(status);
597 	return status;
598 }
599 
600 #define OCFS2_DEFAULT_COMMIT_INTERVAL	(HZ * JBD2_DEFAULT_MAX_COMMIT_AGE)
601 
602 void ocfs2_set_journal_params(struct ocfs2_super *osb)
603 {
604 	journal_t *journal = osb->journal->j_journal;
605 	unsigned long commit_interval = OCFS2_DEFAULT_COMMIT_INTERVAL;
606 
607 	if (osb->osb_commit_interval)
608 		commit_interval = osb->osb_commit_interval;
609 
610 	spin_lock(&journal->j_state_lock);
611 	journal->j_commit_interval = commit_interval;
612 	if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER)
613 		journal->j_flags |= JBD2_BARRIER;
614 	else
615 		journal->j_flags &= ~JBD2_BARRIER;
616 	spin_unlock(&journal->j_state_lock);
617 }
618 
619 int ocfs2_journal_init(struct ocfs2_journal *journal, int *dirty)
620 {
621 	int status = -1;
622 	struct inode *inode = NULL; /* the journal inode */
623 	journal_t *j_journal = NULL;
624 	struct ocfs2_dinode *di = NULL;
625 	struct buffer_head *bh = NULL;
626 	struct ocfs2_super *osb;
627 	int inode_lock = 0;
628 
629 	mlog_entry_void();
630 
631 	BUG_ON(!journal);
632 
633 	osb = journal->j_osb;
634 
635 	/* already have the inode for our journal */
636 	inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
637 					    osb->slot_num);
638 	if (inode == NULL) {
639 		status = -EACCES;
640 		mlog_errno(status);
641 		goto done;
642 	}
643 	if (is_bad_inode(inode)) {
644 		mlog(ML_ERROR, "access error (bad inode)\n");
645 		iput(inode);
646 		inode = NULL;
647 		status = -EACCES;
648 		goto done;
649 	}
650 
651 	SET_INODE_JOURNAL(inode);
652 	OCFS2_I(inode)->ip_open_count++;
653 
654 	/* Skip recovery waits here - journal inode metadata never
655 	 * changes in a live cluster so it can be considered an
656 	 * exception to the rule. */
657 	status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
658 	if (status < 0) {
659 		if (status != -ERESTARTSYS)
660 			mlog(ML_ERROR, "Could not get lock on journal!\n");
661 		goto done;
662 	}
663 
664 	inode_lock = 1;
665 	di = (struct ocfs2_dinode *)bh->b_data;
666 
667 	if (inode->i_size <  OCFS2_MIN_JOURNAL_SIZE) {
668 		mlog(ML_ERROR, "Journal file size (%lld) is too small!\n",
669 		     inode->i_size);
670 		status = -EINVAL;
671 		goto done;
672 	}
673 
674 	mlog(0, "inode->i_size = %lld\n", inode->i_size);
675 	mlog(0, "inode->i_blocks = %llu\n",
676 			(unsigned long long)inode->i_blocks);
677 	mlog(0, "inode->ip_clusters = %u\n", OCFS2_I(inode)->ip_clusters);
678 
679 	/* call the kernels journal init function now */
680 	j_journal = jbd2_journal_init_inode(inode);
681 	if (j_journal == NULL) {
682 		mlog(ML_ERROR, "Linux journal layer error\n");
683 		status = -EINVAL;
684 		goto done;
685 	}
686 
687 	mlog(0, "Returned from jbd2_journal_init_inode\n");
688 	mlog(0, "j_journal->j_maxlen = %u\n", j_journal->j_maxlen);
689 
690 	*dirty = (le32_to_cpu(di->id1.journal1.ij_flags) &
691 		  OCFS2_JOURNAL_DIRTY_FL);
692 
693 	journal->j_journal = j_journal;
694 	journal->j_inode = inode;
695 	journal->j_bh = bh;
696 
697 	ocfs2_set_journal_params(osb);
698 
699 	journal->j_state = OCFS2_JOURNAL_LOADED;
700 
701 	status = 0;
702 done:
703 	if (status < 0) {
704 		if (inode_lock)
705 			ocfs2_inode_unlock(inode, 1);
706 		brelse(bh);
707 		if (inode) {
708 			OCFS2_I(inode)->ip_open_count--;
709 			iput(inode);
710 		}
711 	}
712 
713 	mlog_exit(status);
714 	return status;
715 }
716 
717 static void ocfs2_bump_recovery_generation(struct ocfs2_dinode *di)
718 {
719 	le32_add_cpu(&(di->id1.journal1.ij_recovery_generation), 1);
720 }
721 
722 static u32 ocfs2_get_recovery_generation(struct ocfs2_dinode *di)
723 {
724 	return le32_to_cpu(di->id1.journal1.ij_recovery_generation);
725 }
726 
727 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
728 				      int dirty, int replayed)
729 {
730 	int status;
731 	unsigned int flags;
732 	struct ocfs2_journal *journal = osb->journal;
733 	struct buffer_head *bh = journal->j_bh;
734 	struct ocfs2_dinode *fe;
735 
736 	mlog_entry_void();
737 
738 	fe = (struct ocfs2_dinode *)bh->b_data;
739 
740 	/* The journal bh on the osb always comes from ocfs2_journal_init()
741 	 * and was validated there inside ocfs2_inode_lock_full().  It's a
742 	 * code bug if we mess it up. */
743 	BUG_ON(!OCFS2_IS_VALID_DINODE(fe));
744 
745 	flags = le32_to_cpu(fe->id1.journal1.ij_flags);
746 	if (dirty)
747 		flags |= OCFS2_JOURNAL_DIRTY_FL;
748 	else
749 		flags &= ~OCFS2_JOURNAL_DIRTY_FL;
750 	fe->id1.journal1.ij_flags = cpu_to_le32(flags);
751 
752 	if (replayed)
753 		ocfs2_bump_recovery_generation(fe);
754 
755 	ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
756 	status = ocfs2_write_block(osb, bh, journal->j_inode);
757 	if (status < 0)
758 		mlog_errno(status);
759 
760 	mlog_exit(status);
761 	return status;
762 }
763 
764 /*
765  * If the journal has been kmalloc'd it needs to be freed after this
766  * call.
767  */
768 void ocfs2_journal_shutdown(struct ocfs2_super *osb)
769 {
770 	struct ocfs2_journal *journal = NULL;
771 	int status = 0;
772 	struct inode *inode = NULL;
773 	int num_running_trans = 0;
774 
775 	mlog_entry_void();
776 
777 	BUG_ON(!osb);
778 
779 	journal = osb->journal;
780 	if (!journal)
781 		goto done;
782 
783 	inode = journal->j_inode;
784 
785 	if (journal->j_state != OCFS2_JOURNAL_LOADED)
786 		goto done;
787 
788 	/* need to inc inode use count - jbd2_journal_destroy will iput. */
789 	if (!igrab(inode))
790 		BUG();
791 
792 	num_running_trans = atomic_read(&(osb->journal->j_num_trans));
793 	if (num_running_trans > 0)
794 		mlog(0, "Shutting down journal: must wait on %d "
795 		     "running transactions!\n",
796 		     num_running_trans);
797 
798 	/* Do a commit_cache here. It will flush our journal, *and*
799 	 * release any locks that are still held.
800 	 * set the SHUTDOWN flag and release the trans lock.
801 	 * the commit thread will take the trans lock for us below. */
802 	journal->j_state = OCFS2_JOURNAL_IN_SHUTDOWN;
803 
804 	/* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not
805 	 * drop the trans_lock (which we want to hold until we
806 	 * completely destroy the journal. */
807 	if (osb->commit_task) {
808 		/* Wait for the commit thread */
809 		mlog(0, "Waiting for ocfs2commit to exit....\n");
810 		kthread_stop(osb->commit_task);
811 		osb->commit_task = NULL;
812 	}
813 
814 	BUG_ON(atomic_read(&(osb->journal->j_num_trans)) != 0);
815 
816 	if (ocfs2_mount_local(osb)) {
817 		jbd2_journal_lock_updates(journal->j_journal);
818 		status = jbd2_journal_flush(journal->j_journal);
819 		jbd2_journal_unlock_updates(journal->j_journal);
820 		if (status < 0)
821 			mlog_errno(status);
822 	}
823 
824 	if (status == 0) {
825 		/*
826 		 * Do not toggle if flush was unsuccessful otherwise
827 		 * will leave dirty metadata in a "clean" journal
828 		 */
829 		status = ocfs2_journal_toggle_dirty(osb, 0, 0);
830 		if (status < 0)
831 			mlog_errno(status);
832 	}
833 
834 	/* Shutdown the kernel journal system */
835 	jbd2_journal_destroy(journal->j_journal);
836 	journal->j_journal = NULL;
837 
838 	OCFS2_I(inode)->ip_open_count--;
839 
840 	/* unlock our journal */
841 	ocfs2_inode_unlock(inode, 1);
842 
843 	brelse(journal->j_bh);
844 	journal->j_bh = NULL;
845 
846 	journal->j_state = OCFS2_JOURNAL_FREE;
847 
848 //	up_write(&journal->j_trans_barrier);
849 done:
850 	if (inode)
851 		iput(inode);
852 	mlog_exit_void();
853 }
854 
855 static void ocfs2_clear_journal_error(struct super_block *sb,
856 				      journal_t *journal,
857 				      int slot)
858 {
859 	int olderr;
860 
861 	olderr = jbd2_journal_errno(journal);
862 	if (olderr) {
863 		mlog(ML_ERROR, "File system error %d recorded in "
864 		     "journal %u.\n", olderr, slot);
865 		mlog(ML_ERROR, "File system on device %s needs checking.\n",
866 		     sb->s_id);
867 
868 		jbd2_journal_ack_err(journal);
869 		jbd2_journal_clear_err(journal);
870 	}
871 }
872 
873 int ocfs2_journal_load(struct ocfs2_journal *journal, int local, int replayed)
874 {
875 	int status = 0;
876 	struct ocfs2_super *osb;
877 
878 	mlog_entry_void();
879 
880 	BUG_ON(!journal);
881 
882 	osb = journal->j_osb;
883 
884 	status = jbd2_journal_load(journal->j_journal);
885 	if (status < 0) {
886 		mlog(ML_ERROR, "Failed to load journal!\n");
887 		goto done;
888 	}
889 
890 	ocfs2_clear_journal_error(osb->sb, journal->j_journal, osb->slot_num);
891 
892 	status = ocfs2_journal_toggle_dirty(osb, 1, replayed);
893 	if (status < 0) {
894 		mlog_errno(status);
895 		goto done;
896 	}
897 
898 	/* Launch the commit thread */
899 	if (!local) {
900 		osb->commit_task = kthread_run(ocfs2_commit_thread, osb,
901 					       "ocfs2cmt");
902 		if (IS_ERR(osb->commit_task)) {
903 			status = PTR_ERR(osb->commit_task);
904 			osb->commit_task = NULL;
905 			mlog(ML_ERROR, "unable to launch ocfs2commit thread, "
906 			     "error=%d", status);
907 			goto done;
908 		}
909 	} else
910 		osb->commit_task = NULL;
911 
912 done:
913 	mlog_exit(status);
914 	return status;
915 }
916 
917 
918 /* 'full' flag tells us whether we clear out all blocks or if we just
919  * mark the journal clean */
920 int ocfs2_journal_wipe(struct ocfs2_journal *journal, int full)
921 {
922 	int status;
923 
924 	mlog_entry_void();
925 
926 	BUG_ON(!journal);
927 
928 	status = jbd2_journal_wipe(journal->j_journal, full);
929 	if (status < 0) {
930 		mlog_errno(status);
931 		goto bail;
932 	}
933 
934 	status = ocfs2_journal_toggle_dirty(journal->j_osb, 0, 0);
935 	if (status < 0)
936 		mlog_errno(status);
937 
938 bail:
939 	mlog_exit(status);
940 	return status;
941 }
942 
943 static int ocfs2_recovery_completed(struct ocfs2_super *osb)
944 {
945 	int empty;
946 	struct ocfs2_recovery_map *rm = osb->recovery_map;
947 
948 	spin_lock(&osb->osb_lock);
949 	empty = (rm->rm_used == 0);
950 	spin_unlock(&osb->osb_lock);
951 
952 	return empty;
953 }
954 
955 void ocfs2_wait_for_recovery(struct ocfs2_super *osb)
956 {
957 	wait_event(osb->recovery_event, ocfs2_recovery_completed(osb));
958 }
959 
960 /*
961  * JBD Might read a cached version of another nodes journal file. We
962  * don't want this as this file changes often and we get no
963  * notification on those changes. The only way to be sure that we've
964  * got the most up to date version of those blocks then is to force
965  * read them off disk. Just searching through the buffer cache won't
966  * work as there may be pages backing this file which are still marked
967  * up to date. We know things can't change on this file underneath us
968  * as we have the lock by now :)
969  */
970 static int ocfs2_force_read_journal(struct inode *inode)
971 {
972 	int status = 0;
973 	int i;
974 	u64 v_blkno, p_blkno, p_blocks, num_blocks;
975 #define CONCURRENT_JOURNAL_FILL 32ULL
976 	struct buffer_head *bhs[CONCURRENT_JOURNAL_FILL];
977 
978 	mlog_entry_void();
979 
980 	memset(bhs, 0, sizeof(struct buffer_head *) * CONCURRENT_JOURNAL_FILL);
981 
982 	num_blocks = ocfs2_blocks_for_bytes(inode->i_sb, inode->i_size);
983 	v_blkno = 0;
984 	while (v_blkno < num_blocks) {
985 		status = ocfs2_extent_map_get_blocks(inode, v_blkno,
986 						     &p_blkno, &p_blocks, NULL);
987 		if (status < 0) {
988 			mlog_errno(status);
989 			goto bail;
990 		}
991 
992 		if (p_blocks > CONCURRENT_JOURNAL_FILL)
993 			p_blocks = CONCURRENT_JOURNAL_FILL;
994 
995 		/* We are reading journal data which should not
996 		 * be put in the uptodate cache */
997 		status = ocfs2_read_blocks_sync(OCFS2_SB(inode->i_sb),
998 						p_blkno, p_blocks, bhs);
999 		if (status < 0) {
1000 			mlog_errno(status);
1001 			goto bail;
1002 		}
1003 
1004 		for(i = 0; i < p_blocks; i++) {
1005 			brelse(bhs[i]);
1006 			bhs[i] = NULL;
1007 		}
1008 
1009 		v_blkno += p_blocks;
1010 	}
1011 
1012 bail:
1013 	for(i = 0; i < CONCURRENT_JOURNAL_FILL; i++)
1014 		brelse(bhs[i]);
1015 	mlog_exit(status);
1016 	return status;
1017 }
1018 
1019 struct ocfs2_la_recovery_item {
1020 	struct list_head	lri_list;
1021 	int			lri_slot;
1022 	struct ocfs2_dinode	*lri_la_dinode;
1023 	struct ocfs2_dinode	*lri_tl_dinode;
1024 	struct ocfs2_quota_recovery *lri_qrec;
1025 };
1026 
1027 /* Does the second half of the recovery process. By this point, the
1028  * node is marked clean and can actually be considered recovered,
1029  * hence it's no longer in the recovery map, but there's still some
1030  * cleanup we can do which shouldn't happen within the recovery thread
1031  * as locking in that context becomes very difficult if we are to take
1032  * recovering nodes into account.
1033  *
1034  * NOTE: This function can and will sleep on recovery of other nodes
1035  * during cluster locking, just like any other ocfs2 process.
1036  */
1037 void ocfs2_complete_recovery(struct work_struct *work)
1038 {
1039 	int ret;
1040 	struct ocfs2_journal *journal =
1041 		container_of(work, struct ocfs2_journal, j_recovery_work);
1042 	struct ocfs2_super *osb = journal->j_osb;
1043 	struct ocfs2_dinode *la_dinode, *tl_dinode;
1044 	struct ocfs2_la_recovery_item *item, *n;
1045 	struct ocfs2_quota_recovery *qrec;
1046 	LIST_HEAD(tmp_la_list);
1047 
1048 	mlog_entry_void();
1049 
1050 	mlog(0, "completing recovery from keventd\n");
1051 
1052 	spin_lock(&journal->j_lock);
1053 	list_splice_init(&journal->j_la_cleanups, &tmp_la_list);
1054 	spin_unlock(&journal->j_lock);
1055 
1056 	list_for_each_entry_safe(item, n, &tmp_la_list, lri_list) {
1057 		list_del_init(&item->lri_list);
1058 
1059 		mlog(0, "Complete recovery for slot %d\n", item->lri_slot);
1060 
1061 		ocfs2_wait_on_quotas(osb);
1062 
1063 		la_dinode = item->lri_la_dinode;
1064 		if (la_dinode) {
1065 			mlog(0, "Clean up local alloc %llu\n",
1066 			     (unsigned long long)le64_to_cpu(la_dinode->i_blkno));
1067 
1068 			ret = ocfs2_complete_local_alloc_recovery(osb,
1069 								  la_dinode);
1070 			if (ret < 0)
1071 				mlog_errno(ret);
1072 
1073 			kfree(la_dinode);
1074 		}
1075 
1076 		tl_dinode = item->lri_tl_dinode;
1077 		if (tl_dinode) {
1078 			mlog(0, "Clean up truncate log %llu\n",
1079 			     (unsigned long long)le64_to_cpu(tl_dinode->i_blkno));
1080 
1081 			ret = ocfs2_complete_truncate_log_recovery(osb,
1082 								   tl_dinode);
1083 			if (ret < 0)
1084 				mlog_errno(ret);
1085 
1086 			kfree(tl_dinode);
1087 		}
1088 
1089 		ret = ocfs2_recover_orphans(osb, item->lri_slot);
1090 		if (ret < 0)
1091 			mlog_errno(ret);
1092 
1093 		qrec = item->lri_qrec;
1094 		if (qrec) {
1095 			mlog(0, "Recovering quota files");
1096 			ret = ocfs2_finish_quota_recovery(osb, qrec,
1097 							  item->lri_slot);
1098 			if (ret < 0)
1099 				mlog_errno(ret);
1100 			/* Recovery info is already freed now */
1101 		}
1102 
1103 		kfree(item);
1104 	}
1105 
1106 	mlog(0, "Recovery completion\n");
1107 	mlog_exit_void();
1108 }
1109 
1110 /* NOTE: This function always eats your references to la_dinode and
1111  * tl_dinode, either manually on error, or by passing them to
1112  * ocfs2_complete_recovery */
1113 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
1114 					    int slot_num,
1115 					    struct ocfs2_dinode *la_dinode,
1116 					    struct ocfs2_dinode *tl_dinode,
1117 					    struct ocfs2_quota_recovery *qrec)
1118 {
1119 	struct ocfs2_la_recovery_item *item;
1120 
1121 	item = kmalloc(sizeof(struct ocfs2_la_recovery_item), GFP_NOFS);
1122 	if (!item) {
1123 		/* Though we wish to avoid it, we are in fact safe in
1124 		 * skipping local alloc cleanup as fsck.ocfs2 is more
1125 		 * than capable of reclaiming unused space. */
1126 		if (la_dinode)
1127 			kfree(la_dinode);
1128 
1129 		if (tl_dinode)
1130 			kfree(tl_dinode);
1131 
1132 		if (qrec)
1133 			ocfs2_free_quota_recovery(qrec);
1134 
1135 		mlog_errno(-ENOMEM);
1136 		return;
1137 	}
1138 
1139 	INIT_LIST_HEAD(&item->lri_list);
1140 	item->lri_la_dinode = la_dinode;
1141 	item->lri_slot = slot_num;
1142 	item->lri_tl_dinode = tl_dinode;
1143 	item->lri_qrec = qrec;
1144 
1145 	spin_lock(&journal->j_lock);
1146 	list_add_tail(&item->lri_list, &journal->j_la_cleanups);
1147 	queue_work(ocfs2_wq, &journal->j_recovery_work);
1148 	spin_unlock(&journal->j_lock);
1149 }
1150 
1151 /* Called by the mount code to queue recovery the last part of
1152  * recovery for it's own slot. */
1153 void ocfs2_complete_mount_recovery(struct ocfs2_super *osb)
1154 {
1155 	struct ocfs2_journal *journal = osb->journal;
1156 
1157 	if (osb->dirty) {
1158 		/* No need to queue up our truncate_log as regular
1159 		 * cleanup will catch that. */
1160 		ocfs2_queue_recovery_completion(journal,
1161 						osb->slot_num,
1162 						osb->local_alloc_copy,
1163 						NULL,
1164 						NULL);
1165 		ocfs2_schedule_truncate_log_flush(osb, 0);
1166 
1167 		osb->local_alloc_copy = NULL;
1168 		osb->dirty = 0;
1169 	}
1170 }
1171 
1172 void ocfs2_complete_quota_recovery(struct ocfs2_super *osb)
1173 {
1174 	if (osb->quota_rec) {
1175 		ocfs2_queue_recovery_completion(osb->journal,
1176 						osb->slot_num,
1177 						NULL,
1178 						NULL,
1179 						osb->quota_rec);
1180 		osb->quota_rec = NULL;
1181 	}
1182 }
1183 
1184 static int __ocfs2_recovery_thread(void *arg)
1185 {
1186 	int status, node_num, slot_num;
1187 	struct ocfs2_super *osb = arg;
1188 	struct ocfs2_recovery_map *rm = osb->recovery_map;
1189 	int *rm_quota = NULL;
1190 	int rm_quota_used = 0, i;
1191 	struct ocfs2_quota_recovery *qrec;
1192 
1193 	mlog_entry_void();
1194 
1195 	status = ocfs2_wait_on_mount(osb);
1196 	if (status < 0) {
1197 		goto bail;
1198 	}
1199 
1200 	rm_quota = kzalloc(osb->max_slots * sizeof(int), GFP_NOFS);
1201 	if (!rm_quota) {
1202 		status = -ENOMEM;
1203 		goto bail;
1204 	}
1205 restart:
1206 	status = ocfs2_super_lock(osb, 1);
1207 	if (status < 0) {
1208 		mlog_errno(status);
1209 		goto bail;
1210 	}
1211 
1212 	spin_lock(&osb->osb_lock);
1213 	while (rm->rm_used) {
1214 		/* It's always safe to remove entry zero, as we won't
1215 		 * clear it until ocfs2_recover_node() has succeeded. */
1216 		node_num = rm->rm_entries[0];
1217 		spin_unlock(&osb->osb_lock);
1218 		mlog(0, "checking node %d\n", node_num);
1219 		slot_num = ocfs2_node_num_to_slot(osb, node_num);
1220 		if (slot_num == -ENOENT) {
1221 			status = 0;
1222 			mlog(0, "no slot for this node, so no recovery"
1223 			     "required.\n");
1224 			goto skip_recovery;
1225 		}
1226 		mlog(0, "node %d was using slot %d\n", node_num, slot_num);
1227 
1228 		/* It is a bit subtle with quota recovery. We cannot do it
1229 		 * immediately because we have to obtain cluster locks from
1230 		 * quota files and we also don't want to just skip it because
1231 		 * then quota usage would be out of sync until some node takes
1232 		 * the slot. So we remember which nodes need quota recovery
1233 		 * and when everything else is done, we recover quotas. */
1234 		for (i = 0; i < rm_quota_used && rm_quota[i] != slot_num; i++);
1235 		if (i == rm_quota_used)
1236 			rm_quota[rm_quota_used++] = slot_num;
1237 
1238 		status = ocfs2_recover_node(osb, node_num, slot_num);
1239 skip_recovery:
1240 		if (!status) {
1241 			ocfs2_recovery_map_clear(osb, node_num);
1242 		} else {
1243 			mlog(ML_ERROR,
1244 			     "Error %d recovering node %d on device (%u,%u)!\n",
1245 			     status, node_num,
1246 			     MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
1247 			mlog(ML_ERROR, "Volume requires unmount.\n");
1248 		}
1249 
1250 		spin_lock(&osb->osb_lock);
1251 	}
1252 	spin_unlock(&osb->osb_lock);
1253 	mlog(0, "All nodes recovered\n");
1254 
1255 	/* Refresh all journal recovery generations from disk */
1256 	status = ocfs2_check_journals_nolocks(osb);
1257 	status = (status == -EROFS) ? 0 : status;
1258 	if (status < 0)
1259 		mlog_errno(status);
1260 
1261 	/* Now it is right time to recover quotas... We have to do this under
1262 	 * superblock lock so that noone can start using the slot (and crash)
1263 	 * before we recover it */
1264 	for (i = 0; i < rm_quota_used; i++) {
1265 		qrec = ocfs2_begin_quota_recovery(osb, rm_quota[i]);
1266 		if (IS_ERR(qrec)) {
1267 			status = PTR_ERR(qrec);
1268 			mlog_errno(status);
1269 			continue;
1270 		}
1271 		ocfs2_queue_recovery_completion(osb->journal, rm_quota[i],
1272 						NULL, NULL, qrec);
1273 	}
1274 
1275 	ocfs2_super_unlock(osb, 1);
1276 
1277 	/* We always run recovery on our own orphan dir - the dead
1278 	 * node(s) may have disallowd a previos inode delete. Re-processing
1279 	 * is therefore required. */
1280 	ocfs2_queue_recovery_completion(osb->journal, osb->slot_num, NULL,
1281 					NULL, NULL);
1282 
1283 bail:
1284 	mutex_lock(&osb->recovery_lock);
1285 	if (!status && !ocfs2_recovery_completed(osb)) {
1286 		mutex_unlock(&osb->recovery_lock);
1287 		goto restart;
1288 	}
1289 
1290 	osb->recovery_thread_task = NULL;
1291 	mb(); /* sync with ocfs2_recovery_thread_running */
1292 	wake_up(&osb->recovery_event);
1293 
1294 	mutex_unlock(&osb->recovery_lock);
1295 
1296 	if (rm_quota)
1297 		kfree(rm_quota);
1298 
1299 	mlog_exit(status);
1300 	/* no one is callint kthread_stop() for us so the kthread() api
1301 	 * requires that we call do_exit().  And it isn't exported, but
1302 	 * complete_and_exit() seems to be a minimal wrapper around it. */
1303 	complete_and_exit(NULL, status);
1304 	return status;
1305 }
1306 
1307 void ocfs2_recovery_thread(struct ocfs2_super *osb, int node_num)
1308 {
1309 	mlog_entry("(node_num=%d, osb->node_num = %d)\n",
1310 		   node_num, osb->node_num);
1311 
1312 	mutex_lock(&osb->recovery_lock);
1313 	if (osb->disable_recovery)
1314 		goto out;
1315 
1316 	/* People waiting on recovery will wait on
1317 	 * the recovery map to empty. */
1318 	if (ocfs2_recovery_map_set(osb, node_num))
1319 		mlog(0, "node %d already in recovery map.\n", node_num);
1320 
1321 	mlog(0, "starting recovery thread...\n");
1322 
1323 	if (osb->recovery_thread_task)
1324 		goto out;
1325 
1326 	osb->recovery_thread_task =  kthread_run(__ocfs2_recovery_thread, osb,
1327 						 "ocfs2rec");
1328 	if (IS_ERR(osb->recovery_thread_task)) {
1329 		mlog_errno((int)PTR_ERR(osb->recovery_thread_task));
1330 		osb->recovery_thread_task = NULL;
1331 	}
1332 
1333 out:
1334 	mutex_unlock(&osb->recovery_lock);
1335 	wake_up(&osb->recovery_event);
1336 
1337 	mlog_exit_void();
1338 }
1339 
1340 static int ocfs2_read_journal_inode(struct ocfs2_super *osb,
1341 				    int slot_num,
1342 				    struct buffer_head **bh,
1343 				    struct inode **ret_inode)
1344 {
1345 	int status = -EACCES;
1346 	struct inode *inode = NULL;
1347 
1348 	BUG_ON(slot_num >= osb->max_slots);
1349 
1350 	inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1351 					    slot_num);
1352 	if (!inode || is_bad_inode(inode)) {
1353 		mlog_errno(status);
1354 		goto bail;
1355 	}
1356 	SET_INODE_JOURNAL(inode);
1357 
1358 	status = ocfs2_read_inode_block_full(inode, bh, OCFS2_BH_IGNORE_CACHE);
1359 	if (status < 0) {
1360 		mlog_errno(status);
1361 		goto bail;
1362 	}
1363 
1364 	status = 0;
1365 
1366 bail:
1367 	if (inode) {
1368 		if (status || !ret_inode)
1369 			iput(inode);
1370 		else
1371 			*ret_inode = inode;
1372 	}
1373 	return status;
1374 }
1375 
1376 /* Does the actual journal replay and marks the journal inode as
1377  * clean. Will only replay if the journal inode is marked dirty. */
1378 static int ocfs2_replay_journal(struct ocfs2_super *osb,
1379 				int node_num,
1380 				int slot_num)
1381 {
1382 	int status;
1383 	int got_lock = 0;
1384 	unsigned int flags;
1385 	struct inode *inode = NULL;
1386 	struct ocfs2_dinode *fe;
1387 	journal_t *journal = NULL;
1388 	struct buffer_head *bh = NULL;
1389 	u32 slot_reco_gen;
1390 
1391 	status = ocfs2_read_journal_inode(osb, slot_num, &bh, &inode);
1392 	if (status) {
1393 		mlog_errno(status);
1394 		goto done;
1395 	}
1396 
1397 	fe = (struct ocfs2_dinode *)bh->b_data;
1398 	slot_reco_gen = ocfs2_get_recovery_generation(fe);
1399 	brelse(bh);
1400 	bh = NULL;
1401 
1402 	/*
1403 	 * As the fs recovery is asynchronous, there is a small chance that
1404 	 * another node mounted (and recovered) the slot before the recovery
1405 	 * thread could get the lock. To handle that, we dirty read the journal
1406 	 * inode for that slot to get the recovery generation. If it is
1407 	 * different than what we expected, the slot has been recovered.
1408 	 * If not, it needs recovery.
1409 	 */
1410 	if (osb->slot_recovery_generations[slot_num] != slot_reco_gen) {
1411 		mlog(0, "Slot %u already recovered (old/new=%u/%u)\n", slot_num,
1412 		     osb->slot_recovery_generations[slot_num], slot_reco_gen);
1413 		osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1414 		status = -EBUSY;
1415 		goto done;
1416 	}
1417 
1418 	/* Continue with recovery as the journal has not yet been recovered */
1419 
1420 	status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
1421 	if (status < 0) {
1422 		mlog(0, "status returned from ocfs2_inode_lock=%d\n", status);
1423 		if (status != -ERESTARTSYS)
1424 			mlog(ML_ERROR, "Could not lock journal!\n");
1425 		goto done;
1426 	}
1427 	got_lock = 1;
1428 
1429 	fe = (struct ocfs2_dinode *) bh->b_data;
1430 
1431 	flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1432 	slot_reco_gen = ocfs2_get_recovery_generation(fe);
1433 
1434 	if (!(flags & OCFS2_JOURNAL_DIRTY_FL)) {
1435 		mlog(0, "No recovery required for node %d\n", node_num);
1436 		/* Refresh recovery generation for the slot */
1437 		osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1438 		goto done;
1439 	}
1440 
1441 	mlog(ML_NOTICE, "Recovering node %d from slot %d on device (%u,%u)\n",
1442 	     node_num, slot_num,
1443 	     MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
1444 
1445 	OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters);
1446 
1447 	status = ocfs2_force_read_journal(inode);
1448 	if (status < 0) {
1449 		mlog_errno(status);
1450 		goto done;
1451 	}
1452 
1453 	mlog(0, "calling journal_init_inode\n");
1454 	journal = jbd2_journal_init_inode(inode);
1455 	if (journal == NULL) {
1456 		mlog(ML_ERROR, "Linux journal layer error\n");
1457 		status = -EIO;
1458 		goto done;
1459 	}
1460 
1461 	status = jbd2_journal_load(journal);
1462 	if (status < 0) {
1463 		mlog_errno(status);
1464 		if (!igrab(inode))
1465 			BUG();
1466 		jbd2_journal_destroy(journal);
1467 		goto done;
1468 	}
1469 
1470 	ocfs2_clear_journal_error(osb->sb, journal, slot_num);
1471 
1472 	/* wipe the journal */
1473 	mlog(0, "flushing the journal.\n");
1474 	jbd2_journal_lock_updates(journal);
1475 	status = jbd2_journal_flush(journal);
1476 	jbd2_journal_unlock_updates(journal);
1477 	if (status < 0)
1478 		mlog_errno(status);
1479 
1480 	/* This will mark the node clean */
1481 	flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1482 	flags &= ~OCFS2_JOURNAL_DIRTY_FL;
1483 	fe->id1.journal1.ij_flags = cpu_to_le32(flags);
1484 
1485 	/* Increment recovery generation to indicate successful recovery */
1486 	ocfs2_bump_recovery_generation(fe);
1487 	osb->slot_recovery_generations[slot_num] =
1488 					ocfs2_get_recovery_generation(fe);
1489 
1490 	ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
1491 	status = ocfs2_write_block(osb, bh, inode);
1492 	if (status < 0)
1493 		mlog_errno(status);
1494 
1495 	if (!igrab(inode))
1496 		BUG();
1497 
1498 	jbd2_journal_destroy(journal);
1499 
1500 done:
1501 	/* drop the lock on this nodes journal */
1502 	if (got_lock)
1503 		ocfs2_inode_unlock(inode, 1);
1504 
1505 	if (inode)
1506 		iput(inode);
1507 
1508 	brelse(bh);
1509 
1510 	mlog_exit(status);
1511 	return status;
1512 }
1513 
1514 /*
1515  * Do the most important parts of node recovery:
1516  *  - Replay it's journal
1517  *  - Stamp a clean local allocator file
1518  *  - Stamp a clean truncate log
1519  *  - Mark the node clean
1520  *
1521  * If this function completes without error, a node in OCFS2 can be
1522  * said to have been safely recovered. As a result, failure during the
1523  * second part of a nodes recovery process (local alloc recovery) is
1524  * far less concerning.
1525  */
1526 static int ocfs2_recover_node(struct ocfs2_super *osb,
1527 			      int node_num, int slot_num)
1528 {
1529 	int status = 0;
1530 	struct ocfs2_dinode *la_copy = NULL;
1531 	struct ocfs2_dinode *tl_copy = NULL;
1532 
1533 	mlog_entry("(node_num=%d, slot_num=%d, osb->node_num = %d)\n",
1534 		   node_num, slot_num, osb->node_num);
1535 
1536 	/* Should not ever be called to recover ourselves -- in that
1537 	 * case we should've called ocfs2_journal_load instead. */
1538 	BUG_ON(osb->node_num == node_num);
1539 
1540 	status = ocfs2_replay_journal(osb, node_num, slot_num);
1541 	if (status < 0) {
1542 		if (status == -EBUSY) {
1543 			mlog(0, "Skipping recovery for slot %u (node %u) "
1544 			     "as another node has recovered it\n", slot_num,
1545 			     node_num);
1546 			status = 0;
1547 			goto done;
1548 		}
1549 		mlog_errno(status);
1550 		goto done;
1551 	}
1552 
1553 	/* Stamp a clean local alloc file AFTER recovering the journal... */
1554 	status = ocfs2_begin_local_alloc_recovery(osb, slot_num, &la_copy);
1555 	if (status < 0) {
1556 		mlog_errno(status);
1557 		goto done;
1558 	}
1559 
1560 	/* An error from begin_truncate_log_recovery is not
1561 	 * serious enough to warrant halting the rest of
1562 	 * recovery. */
1563 	status = ocfs2_begin_truncate_log_recovery(osb, slot_num, &tl_copy);
1564 	if (status < 0)
1565 		mlog_errno(status);
1566 
1567 	/* Likewise, this would be a strange but ultimately not so
1568 	 * harmful place to get an error... */
1569 	status = ocfs2_clear_slot(osb, slot_num);
1570 	if (status < 0)
1571 		mlog_errno(status);
1572 
1573 	/* This will kfree the memory pointed to by la_copy and tl_copy */
1574 	ocfs2_queue_recovery_completion(osb->journal, slot_num, la_copy,
1575 					tl_copy, NULL);
1576 
1577 	status = 0;
1578 done:
1579 
1580 	mlog_exit(status);
1581 	return status;
1582 }
1583 
1584 /* Test node liveness by trylocking his journal. If we get the lock,
1585  * we drop it here. Return 0 if we got the lock, -EAGAIN if node is
1586  * still alive (we couldn't get the lock) and < 0 on error. */
1587 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
1588 				 int slot_num)
1589 {
1590 	int status, flags;
1591 	struct inode *inode = NULL;
1592 
1593 	inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1594 					    slot_num);
1595 	if (inode == NULL) {
1596 		mlog(ML_ERROR, "access error\n");
1597 		status = -EACCES;
1598 		goto bail;
1599 	}
1600 	if (is_bad_inode(inode)) {
1601 		mlog(ML_ERROR, "access error (bad inode)\n");
1602 		iput(inode);
1603 		inode = NULL;
1604 		status = -EACCES;
1605 		goto bail;
1606 	}
1607 	SET_INODE_JOURNAL(inode);
1608 
1609 	flags = OCFS2_META_LOCK_RECOVERY | OCFS2_META_LOCK_NOQUEUE;
1610 	status = ocfs2_inode_lock_full(inode, NULL, 1, flags);
1611 	if (status < 0) {
1612 		if (status != -EAGAIN)
1613 			mlog_errno(status);
1614 		goto bail;
1615 	}
1616 
1617 	ocfs2_inode_unlock(inode, 1);
1618 bail:
1619 	if (inode)
1620 		iput(inode);
1621 
1622 	return status;
1623 }
1624 
1625 /* Call this underneath ocfs2_super_lock. It also assumes that the
1626  * slot info struct has been updated from disk. */
1627 int ocfs2_mark_dead_nodes(struct ocfs2_super *osb)
1628 {
1629 	unsigned int node_num;
1630 	int status, i;
1631 	u32 gen;
1632 	struct buffer_head *bh = NULL;
1633 	struct ocfs2_dinode *di;
1634 
1635 	/* This is called with the super block cluster lock, so we
1636 	 * know that the slot map can't change underneath us. */
1637 
1638 	for (i = 0; i < osb->max_slots; i++) {
1639 		/* Read journal inode to get the recovery generation */
1640 		status = ocfs2_read_journal_inode(osb, i, &bh, NULL);
1641 		if (status) {
1642 			mlog_errno(status);
1643 			goto bail;
1644 		}
1645 		di = (struct ocfs2_dinode *)bh->b_data;
1646 		gen = ocfs2_get_recovery_generation(di);
1647 		brelse(bh);
1648 		bh = NULL;
1649 
1650 		spin_lock(&osb->osb_lock);
1651 		osb->slot_recovery_generations[i] = gen;
1652 
1653 		mlog(0, "Slot %u recovery generation is %u\n", i,
1654 		     osb->slot_recovery_generations[i]);
1655 
1656 		if (i == osb->slot_num) {
1657 			spin_unlock(&osb->osb_lock);
1658 			continue;
1659 		}
1660 
1661 		status = ocfs2_slot_to_node_num_locked(osb, i, &node_num);
1662 		if (status == -ENOENT) {
1663 			spin_unlock(&osb->osb_lock);
1664 			continue;
1665 		}
1666 
1667 		if (__ocfs2_recovery_map_test(osb, node_num)) {
1668 			spin_unlock(&osb->osb_lock);
1669 			continue;
1670 		}
1671 		spin_unlock(&osb->osb_lock);
1672 
1673 		/* Ok, we have a slot occupied by another node which
1674 		 * is not in the recovery map. We trylock his journal
1675 		 * file here to test if he's alive. */
1676 		status = ocfs2_trylock_journal(osb, i);
1677 		if (!status) {
1678 			/* Since we're called from mount, we know that
1679 			 * the recovery thread can't race us on
1680 			 * setting / checking the recovery bits. */
1681 			ocfs2_recovery_thread(osb, node_num);
1682 		} else if ((status < 0) && (status != -EAGAIN)) {
1683 			mlog_errno(status);
1684 			goto bail;
1685 		}
1686 	}
1687 
1688 	status = 0;
1689 bail:
1690 	mlog_exit(status);
1691 	return status;
1692 }
1693 
1694 struct ocfs2_orphan_filldir_priv {
1695 	struct inode		*head;
1696 	struct ocfs2_super	*osb;
1697 };
1698 
1699 static int ocfs2_orphan_filldir(void *priv, const char *name, int name_len,
1700 				loff_t pos, u64 ino, unsigned type)
1701 {
1702 	struct ocfs2_orphan_filldir_priv *p = priv;
1703 	struct inode *iter;
1704 
1705 	if (name_len == 1 && !strncmp(".", name, 1))
1706 		return 0;
1707 	if (name_len == 2 && !strncmp("..", name, 2))
1708 		return 0;
1709 
1710 	/* Skip bad inodes so that recovery can continue */
1711 	iter = ocfs2_iget(p->osb, ino,
1712 			  OCFS2_FI_FLAG_ORPHAN_RECOVERY, 0);
1713 	if (IS_ERR(iter))
1714 		return 0;
1715 
1716 	mlog(0, "queue orphan %llu\n",
1717 	     (unsigned long long)OCFS2_I(iter)->ip_blkno);
1718 	/* No locking is required for the next_orphan queue as there
1719 	 * is only ever a single process doing orphan recovery. */
1720 	OCFS2_I(iter)->ip_next_orphan = p->head;
1721 	p->head = iter;
1722 
1723 	return 0;
1724 }
1725 
1726 static int ocfs2_queue_orphans(struct ocfs2_super *osb,
1727 			       int slot,
1728 			       struct inode **head)
1729 {
1730 	int status;
1731 	struct inode *orphan_dir_inode = NULL;
1732 	struct ocfs2_orphan_filldir_priv priv;
1733 	loff_t pos = 0;
1734 
1735 	priv.osb = osb;
1736 	priv.head = *head;
1737 
1738 	orphan_dir_inode = ocfs2_get_system_file_inode(osb,
1739 						       ORPHAN_DIR_SYSTEM_INODE,
1740 						       slot);
1741 	if  (!orphan_dir_inode) {
1742 		status = -ENOENT;
1743 		mlog_errno(status);
1744 		return status;
1745 	}
1746 
1747 	mutex_lock(&orphan_dir_inode->i_mutex);
1748 	status = ocfs2_inode_lock(orphan_dir_inode, NULL, 0);
1749 	if (status < 0) {
1750 		mlog_errno(status);
1751 		goto out;
1752 	}
1753 
1754 	status = ocfs2_dir_foreach(orphan_dir_inode, &pos, &priv,
1755 				   ocfs2_orphan_filldir);
1756 	if (status) {
1757 		mlog_errno(status);
1758 		goto out_cluster;
1759 	}
1760 
1761 	*head = priv.head;
1762 
1763 out_cluster:
1764 	ocfs2_inode_unlock(orphan_dir_inode, 0);
1765 out:
1766 	mutex_unlock(&orphan_dir_inode->i_mutex);
1767 	iput(orphan_dir_inode);
1768 	return status;
1769 }
1770 
1771 static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super *osb,
1772 					      int slot)
1773 {
1774 	int ret;
1775 
1776 	spin_lock(&osb->osb_lock);
1777 	ret = !osb->osb_orphan_wipes[slot];
1778 	spin_unlock(&osb->osb_lock);
1779 	return ret;
1780 }
1781 
1782 static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super *osb,
1783 					     int slot)
1784 {
1785 	spin_lock(&osb->osb_lock);
1786 	/* Mark ourselves such that new processes in delete_inode()
1787 	 * know to quit early. */
1788 	ocfs2_node_map_set_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
1789 	while (osb->osb_orphan_wipes[slot]) {
1790 		/* If any processes are already in the middle of an
1791 		 * orphan wipe on this dir, then we need to wait for
1792 		 * them. */
1793 		spin_unlock(&osb->osb_lock);
1794 		wait_event_interruptible(osb->osb_wipe_event,
1795 					 ocfs2_orphan_recovery_can_continue(osb, slot));
1796 		spin_lock(&osb->osb_lock);
1797 	}
1798 	spin_unlock(&osb->osb_lock);
1799 }
1800 
1801 static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super *osb,
1802 					      int slot)
1803 {
1804 	ocfs2_node_map_clear_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
1805 }
1806 
1807 /*
1808  * Orphan recovery. Each mounted node has it's own orphan dir which we
1809  * must run during recovery. Our strategy here is to build a list of
1810  * the inodes in the orphan dir and iget/iput them. The VFS does
1811  * (most) of the rest of the work.
1812  *
1813  * Orphan recovery can happen at any time, not just mount so we have a
1814  * couple of extra considerations.
1815  *
1816  * - We grab as many inodes as we can under the orphan dir lock -
1817  *   doing iget() outside the orphan dir risks getting a reference on
1818  *   an invalid inode.
1819  * - We must be sure not to deadlock with other processes on the
1820  *   system wanting to run delete_inode(). This can happen when they go
1821  *   to lock the orphan dir and the orphan recovery process attempts to
1822  *   iget() inside the orphan dir lock. This can be avoided by
1823  *   advertising our state to ocfs2_delete_inode().
1824  */
1825 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
1826 				 int slot)
1827 {
1828 	int ret = 0;
1829 	struct inode *inode = NULL;
1830 	struct inode *iter;
1831 	struct ocfs2_inode_info *oi;
1832 
1833 	mlog(0, "Recover inodes from orphan dir in slot %d\n", slot);
1834 
1835 	ocfs2_mark_recovering_orphan_dir(osb, slot);
1836 	ret = ocfs2_queue_orphans(osb, slot, &inode);
1837 	ocfs2_clear_recovering_orphan_dir(osb, slot);
1838 
1839 	/* Error here should be noted, but we want to continue with as
1840 	 * many queued inodes as we've got. */
1841 	if (ret)
1842 		mlog_errno(ret);
1843 
1844 	while (inode) {
1845 		oi = OCFS2_I(inode);
1846 		mlog(0, "iput orphan %llu\n", (unsigned long long)oi->ip_blkno);
1847 
1848 		iter = oi->ip_next_orphan;
1849 
1850 		spin_lock(&oi->ip_lock);
1851 		/* The remote delete code may have set these on the
1852 		 * assumption that the other node would wipe them
1853 		 * successfully.  If they are still in the node's
1854 		 * orphan dir, we need to reset that state. */
1855 		oi->ip_flags &= ~(OCFS2_INODE_DELETED|OCFS2_INODE_SKIP_DELETE);
1856 
1857 		/* Set the proper information to get us going into
1858 		 * ocfs2_delete_inode. */
1859 		oi->ip_flags |= OCFS2_INODE_MAYBE_ORPHANED;
1860 		spin_unlock(&oi->ip_lock);
1861 
1862 		iput(inode);
1863 
1864 		inode = iter;
1865 	}
1866 
1867 	return ret;
1868 }
1869 
1870 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota)
1871 {
1872 	/* This check is good because ocfs2 will wait on our recovery
1873 	 * thread before changing it to something other than MOUNTED
1874 	 * or DISABLED. */
1875 	wait_event(osb->osb_mount_event,
1876 		  (!quota && atomic_read(&osb->vol_state) == VOLUME_MOUNTED) ||
1877 		   atomic_read(&osb->vol_state) == VOLUME_MOUNTED_QUOTAS ||
1878 		   atomic_read(&osb->vol_state) == VOLUME_DISABLED);
1879 
1880 	/* If there's an error on mount, then we may never get to the
1881 	 * MOUNTED flag, but this is set right before
1882 	 * dismount_volume() so we can trust it. */
1883 	if (atomic_read(&osb->vol_state) == VOLUME_DISABLED) {
1884 		mlog(0, "mount error, exiting!\n");
1885 		return -EBUSY;
1886 	}
1887 
1888 	return 0;
1889 }
1890 
1891 static int ocfs2_commit_thread(void *arg)
1892 {
1893 	int status;
1894 	struct ocfs2_super *osb = arg;
1895 	struct ocfs2_journal *journal = osb->journal;
1896 
1897 	/* we can trust j_num_trans here because _should_stop() is only set in
1898 	 * shutdown and nobody other than ourselves should be able to start
1899 	 * transactions.  committing on shutdown might take a few iterations
1900 	 * as final transactions put deleted inodes on the list */
1901 	while (!(kthread_should_stop() &&
1902 		 atomic_read(&journal->j_num_trans) == 0)) {
1903 
1904 		wait_event_interruptible(osb->checkpoint_event,
1905 					 atomic_read(&journal->j_num_trans)
1906 					 || kthread_should_stop());
1907 
1908 		status = ocfs2_commit_cache(osb);
1909 		if (status < 0)
1910 			mlog_errno(status);
1911 
1912 		if (kthread_should_stop() && atomic_read(&journal->j_num_trans)){
1913 			mlog(ML_KTHREAD,
1914 			     "commit_thread: %u transactions pending on "
1915 			     "shutdown\n",
1916 			     atomic_read(&journal->j_num_trans));
1917 		}
1918 	}
1919 
1920 	return 0;
1921 }
1922 
1923 /* Reads all the journal inodes without taking any cluster locks. Used
1924  * for hard readonly access to determine whether any journal requires
1925  * recovery. Also used to refresh the recovery generation numbers after
1926  * a journal has been recovered by another node.
1927  */
1928 int ocfs2_check_journals_nolocks(struct ocfs2_super *osb)
1929 {
1930 	int ret = 0;
1931 	unsigned int slot;
1932 	struct buffer_head *di_bh = NULL;
1933 	struct ocfs2_dinode *di;
1934 	int journal_dirty = 0;
1935 
1936 	for(slot = 0; slot < osb->max_slots; slot++) {
1937 		ret = ocfs2_read_journal_inode(osb, slot, &di_bh, NULL);
1938 		if (ret) {
1939 			mlog_errno(ret);
1940 			goto out;
1941 		}
1942 
1943 		di = (struct ocfs2_dinode *) di_bh->b_data;
1944 
1945 		osb->slot_recovery_generations[slot] =
1946 					ocfs2_get_recovery_generation(di);
1947 
1948 		if (le32_to_cpu(di->id1.journal1.ij_flags) &
1949 		    OCFS2_JOURNAL_DIRTY_FL)
1950 			journal_dirty = 1;
1951 
1952 		brelse(di_bh);
1953 		di_bh = NULL;
1954 	}
1955 
1956 out:
1957 	if (journal_dirty)
1958 		ret = -EROFS;
1959 	return ret;
1960 }
1961