1 /* -*- mode: c; c-basic-offset: 8; -*- 2 * vim: noexpandtab sw=8 ts=8 sts=0: 3 * 4 * journal.c 5 * 6 * Defines functions of journalling api 7 * 8 * Copyright (C) 2003, 2004 Oracle. All rights reserved. 9 * 10 * This program is free software; you can redistribute it and/or 11 * modify it under the terms of the GNU General Public 12 * License as published by the Free Software Foundation; either 13 * version 2 of the License, or (at your option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, 16 * but WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 18 * General Public License for more details. 19 * 20 * You should have received a copy of the GNU General Public 21 * License along with this program; if not, write to the 22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 23 * Boston, MA 021110-1307, USA. 24 */ 25 26 #include <linux/fs.h> 27 #include <linux/types.h> 28 #include <linux/slab.h> 29 #include <linux/highmem.h> 30 #include <linux/kthread.h> 31 32 #define MLOG_MASK_PREFIX ML_JOURNAL 33 #include <cluster/masklog.h> 34 35 #include "ocfs2.h" 36 37 #include "alloc.h" 38 #include "blockcheck.h" 39 #include "dir.h" 40 #include "dlmglue.h" 41 #include "extent_map.h" 42 #include "heartbeat.h" 43 #include "inode.h" 44 #include "journal.h" 45 #include "localalloc.h" 46 #include "slot_map.h" 47 #include "super.h" 48 #include "sysfile.h" 49 #include "quota.h" 50 51 #include "buffer_head_io.h" 52 53 DEFINE_SPINLOCK(trans_inc_lock); 54 55 static int ocfs2_force_read_journal(struct inode *inode); 56 static int ocfs2_recover_node(struct ocfs2_super *osb, 57 int node_num, int slot_num); 58 static int __ocfs2_recovery_thread(void *arg); 59 static int ocfs2_commit_cache(struct ocfs2_super *osb); 60 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota); 61 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb, 62 int dirty, int replayed); 63 static int ocfs2_trylock_journal(struct ocfs2_super *osb, 64 int slot_num); 65 static int ocfs2_recover_orphans(struct ocfs2_super *osb, 66 int slot); 67 static int ocfs2_commit_thread(void *arg); 68 69 static inline int ocfs2_wait_on_mount(struct ocfs2_super *osb) 70 { 71 return __ocfs2_wait_on_mount(osb, 0); 72 } 73 74 static inline int ocfs2_wait_on_quotas(struct ocfs2_super *osb) 75 { 76 return __ocfs2_wait_on_mount(osb, 1); 77 } 78 79 80 81 /* 82 * The recovery_list is a simple linked list of node numbers to recover. 83 * It is protected by the recovery_lock. 84 */ 85 86 struct ocfs2_recovery_map { 87 unsigned int rm_used; 88 unsigned int *rm_entries; 89 }; 90 91 int ocfs2_recovery_init(struct ocfs2_super *osb) 92 { 93 struct ocfs2_recovery_map *rm; 94 95 mutex_init(&osb->recovery_lock); 96 osb->disable_recovery = 0; 97 osb->recovery_thread_task = NULL; 98 init_waitqueue_head(&osb->recovery_event); 99 100 rm = kzalloc(sizeof(struct ocfs2_recovery_map) + 101 osb->max_slots * sizeof(unsigned int), 102 GFP_KERNEL); 103 if (!rm) { 104 mlog_errno(-ENOMEM); 105 return -ENOMEM; 106 } 107 108 rm->rm_entries = (unsigned int *)((char *)rm + 109 sizeof(struct ocfs2_recovery_map)); 110 osb->recovery_map = rm; 111 112 return 0; 113 } 114 115 /* we can't grab the goofy sem lock from inside wait_event, so we use 116 * memory barriers to make sure that we'll see the null task before 117 * being woken up */ 118 static int ocfs2_recovery_thread_running(struct ocfs2_super *osb) 119 { 120 mb(); 121 return osb->recovery_thread_task != NULL; 122 } 123 124 void ocfs2_recovery_exit(struct ocfs2_super *osb) 125 { 126 struct ocfs2_recovery_map *rm; 127 128 /* disable any new recovery threads and wait for any currently 129 * running ones to exit. Do this before setting the vol_state. */ 130 mutex_lock(&osb->recovery_lock); 131 osb->disable_recovery = 1; 132 mutex_unlock(&osb->recovery_lock); 133 wait_event(osb->recovery_event, !ocfs2_recovery_thread_running(osb)); 134 135 /* At this point, we know that no more recovery threads can be 136 * launched, so wait for any recovery completion work to 137 * complete. */ 138 flush_workqueue(ocfs2_wq); 139 140 /* 141 * Now that recovery is shut down, and the osb is about to be 142 * freed, the osb_lock is not taken here. 143 */ 144 rm = osb->recovery_map; 145 /* XXX: Should we bug if there are dirty entries? */ 146 147 kfree(rm); 148 } 149 150 static int __ocfs2_recovery_map_test(struct ocfs2_super *osb, 151 unsigned int node_num) 152 { 153 int i; 154 struct ocfs2_recovery_map *rm = osb->recovery_map; 155 156 assert_spin_locked(&osb->osb_lock); 157 158 for (i = 0; i < rm->rm_used; i++) { 159 if (rm->rm_entries[i] == node_num) 160 return 1; 161 } 162 163 return 0; 164 } 165 166 /* Behaves like test-and-set. Returns the previous value */ 167 static int ocfs2_recovery_map_set(struct ocfs2_super *osb, 168 unsigned int node_num) 169 { 170 struct ocfs2_recovery_map *rm = osb->recovery_map; 171 172 spin_lock(&osb->osb_lock); 173 if (__ocfs2_recovery_map_test(osb, node_num)) { 174 spin_unlock(&osb->osb_lock); 175 return 1; 176 } 177 178 /* XXX: Can this be exploited? Not from o2dlm... */ 179 BUG_ON(rm->rm_used >= osb->max_slots); 180 181 rm->rm_entries[rm->rm_used] = node_num; 182 rm->rm_used++; 183 spin_unlock(&osb->osb_lock); 184 185 return 0; 186 } 187 188 static void ocfs2_recovery_map_clear(struct ocfs2_super *osb, 189 unsigned int node_num) 190 { 191 int i; 192 struct ocfs2_recovery_map *rm = osb->recovery_map; 193 194 spin_lock(&osb->osb_lock); 195 196 for (i = 0; i < rm->rm_used; i++) { 197 if (rm->rm_entries[i] == node_num) 198 break; 199 } 200 201 if (i < rm->rm_used) { 202 /* XXX: be careful with the pointer math */ 203 memmove(&(rm->rm_entries[i]), &(rm->rm_entries[i + 1]), 204 (rm->rm_used - i - 1) * sizeof(unsigned int)); 205 rm->rm_used--; 206 } 207 208 spin_unlock(&osb->osb_lock); 209 } 210 211 static int ocfs2_commit_cache(struct ocfs2_super *osb) 212 { 213 int status = 0; 214 unsigned int flushed; 215 unsigned long old_id; 216 struct ocfs2_journal *journal = NULL; 217 218 mlog_entry_void(); 219 220 journal = osb->journal; 221 222 /* Flush all pending commits and checkpoint the journal. */ 223 down_write(&journal->j_trans_barrier); 224 225 if (atomic_read(&journal->j_num_trans) == 0) { 226 up_write(&journal->j_trans_barrier); 227 mlog(0, "No transactions for me to flush!\n"); 228 goto finally; 229 } 230 231 jbd2_journal_lock_updates(journal->j_journal); 232 status = jbd2_journal_flush(journal->j_journal); 233 jbd2_journal_unlock_updates(journal->j_journal); 234 if (status < 0) { 235 up_write(&journal->j_trans_barrier); 236 mlog_errno(status); 237 goto finally; 238 } 239 240 old_id = ocfs2_inc_trans_id(journal); 241 242 flushed = atomic_read(&journal->j_num_trans); 243 atomic_set(&journal->j_num_trans, 0); 244 up_write(&journal->j_trans_barrier); 245 246 mlog(0, "commit_thread: flushed transaction %lu (%u handles)\n", 247 journal->j_trans_id, flushed); 248 249 ocfs2_wake_downconvert_thread(osb); 250 wake_up(&journal->j_checkpointed); 251 finally: 252 mlog_exit(status); 253 return status; 254 } 255 256 /* pass it NULL and it will allocate a new handle object for you. If 257 * you pass it a handle however, it may still return error, in which 258 * case it has free'd the passed handle for you. */ 259 handle_t *ocfs2_start_trans(struct ocfs2_super *osb, int max_buffs) 260 { 261 journal_t *journal = osb->journal->j_journal; 262 handle_t *handle; 263 264 BUG_ON(!osb || !osb->journal->j_journal); 265 266 if (ocfs2_is_hard_readonly(osb)) 267 return ERR_PTR(-EROFS); 268 269 BUG_ON(osb->journal->j_state == OCFS2_JOURNAL_FREE); 270 BUG_ON(max_buffs <= 0); 271 272 /* Nested transaction? Just return the handle... */ 273 if (journal_current_handle()) 274 return jbd2_journal_start(journal, max_buffs); 275 276 down_read(&osb->journal->j_trans_barrier); 277 278 handle = jbd2_journal_start(journal, max_buffs); 279 if (IS_ERR(handle)) { 280 up_read(&osb->journal->j_trans_barrier); 281 282 mlog_errno(PTR_ERR(handle)); 283 284 if (is_journal_aborted(journal)) { 285 ocfs2_abort(osb->sb, "Detected aborted journal"); 286 handle = ERR_PTR(-EROFS); 287 } 288 } else { 289 if (!ocfs2_mount_local(osb)) 290 atomic_inc(&(osb->journal->j_num_trans)); 291 } 292 293 return handle; 294 } 295 296 int ocfs2_commit_trans(struct ocfs2_super *osb, 297 handle_t *handle) 298 { 299 int ret, nested; 300 struct ocfs2_journal *journal = osb->journal; 301 302 BUG_ON(!handle); 303 304 nested = handle->h_ref > 1; 305 ret = jbd2_journal_stop(handle); 306 if (ret < 0) 307 mlog_errno(ret); 308 309 if (!nested) 310 up_read(&journal->j_trans_barrier); 311 312 return ret; 313 } 314 315 /* 316 * 'nblocks' is what you want to add to the current 317 * transaction. extend_trans will either extend the current handle by 318 * nblocks, or commit it and start a new one with nblocks credits. 319 * 320 * This might call jbd2_journal_restart() which will commit dirty buffers 321 * and then restart the transaction. Before calling 322 * ocfs2_extend_trans(), any changed blocks should have been 323 * dirtied. After calling it, all blocks which need to be changed must 324 * go through another set of journal_access/journal_dirty calls. 325 * 326 * WARNING: This will not release any semaphores or disk locks taken 327 * during the transaction, so make sure they were taken *before* 328 * start_trans or we'll have ordering deadlocks. 329 * 330 * WARNING2: Note that we do *not* drop j_trans_barrier here. This is 331 * good because transaction ids haven't yet been recorded on the 332 * cluster locks associated with this handle. 333 */ 334 int ocfs2_extend_trans(handle_t *handle, int nblocks) 335 { 336 int status; 337 338 BUG_ON(!handle); 339 BUG_ON(!nblocks); 340 341 mlog_entry_void(); 342 343 mlog(0, "Trying to extend transaction by %d blocks\n", nblocks); 344 345 #ifdef CONFIG_OCFS2_DEBUG_FS 346 status = 1; 347 #else 348 status = jbd2_journal_extend(handle, nblocks); 349 if (status < 0) { 350 mlog_errno(status); 351 goto bail; 352 } 353 #endif 354 355 if (status > 0) { 356 mlog(0, 357 "jbd2_journal_extend failed, trying " 358 "jbd2_journal_restart\n"); 359 status = jbd2_journal_restart(handle, nblocks); 360 if (status < 0) { 361 mlog_errno(status); 362 goto bail; 363 } 364 } 365 366 status = 0; 367 bail: 368 369 mlog_exit(status); 370 return status; 371 } 372 373 struct ocfs2_triggers { 374 struct jbd2_buffer_trigger_type ot_triggers; 375 int ot_offset; 376 }; 377 378 static inline struct ocfs2_triggers *to_ocfs2_trigger(struct jbd2_buffer_trigger_type *triggers) 379 { 380 return container_of(triggers, struct ocfs2_triggers, ot_triggers); 381 } 382 383 static void ocfs2_commit_trigger(struct jbd2_buffer_trigger_type *triggers, 384 struct buffer_head *bh, 385 void *data, size_t size) 386 { 387 struct ocfs2_triggers *ot = to_ocfs2_trigger(triggers); 388 389 /* 390 * We aren't guaranteed to have the superblock here, so we 391 * must unconditionally compute the ecc data. 392 * __ocfs2_journal_access() will only set the triggers if 393 * metaecc is enabled. 394 */ 395 ocfs2_block_check_compute(data, size, data + ot->ot_offset); 396 } 397 398 /* 399 * Quota blocks have their own trigger because the struct ocfs2_block_check 400 * offset depends on the blocksize. 401 */ 402 static void ocfs2_dq_commit_trigger(struct jbd2_buffer_trigger_type *triggers, 403 struct buffer_head *bh, 404 void *data, size_t size) 405 { 406 struct ocfs2_disk_dqtrailer *dqt = 407 ocfs2_block_dqtrailer(size, data); 408 409 /* 410 * We aren't guaranteed to have the superblock here, so we 411 * must unconditionally compute the ecc data. 412 * __ocfs2_journal_access() will only set the triggers if 413 * metaecc is enabled. 414 */ 415 ocfs2_block_check_compute(data, size, &dqt->dq_check); 416 } 417 418 static void ocfs2_abort_trigger(struct jbd2_buffer_trigger_type *triggers, 419 struct buffer_head *bh) 420 { 421 mlog(ML_ERROR, 422 "ocfs2_abort_trigger called by JBD2. bh = 0x%lx, " 423 "bh->b_blocknr = %llu\n", 424 (unsigned long)bh, 425 (unsigned long long)bh->b_blocknr); 426 427 /* We aren't guaranteed to have the superblock here - but if we 428 * don't, it'll just crash. */ 429 ocfs2_error(bh->b_assoc_map->host->i_sb, 430 "JBD2 has aborted our journal, ocfs2 cannot continue\n"); 431 } 432 433 static struct ocfs2_triggers di_triggers = { 434 .ot_triggers = { 435 .t_commit = ocfs2_commit_trigger, 436 .t_abort = ocfs2_abort_trigger, 437 }, 438 .ot_offset = offsetof(struct ocfs2_dinode, i_check), 439 }; 440 441 static struct ocfs2_triggers eb_triggers = { 442 .ot_triggers = { 443 .t_commit = ocfs2_commit_trigger, 444 .t_abort = ocfs2_abort_trigger, 445 }, 446 .ot_offset = offsetof(struct ocfs2_extent_block, h_check), 447 }; 448 449 static struct ocfs2_triggers gd_triggers = { 450 .ot_triggers = { 451 .t_commit = ocfs2_commit_trigger, 452 .t_abort = ocfs2_abort_trigger, 453 }, 454 .ot_offset = offsetof(struct ocfs2_group_desc, bg_check), 455 }; 456 457 static struct ocfs2_triggers xb_triggers = { 458 .ot_triggers = { 459 .t_commit = ocfs2_commit_trigger, 460 .t_abort = ocfs2_abort_trigger, 461 }, 462 .ot_offset = offsetof(struct ocfs2_xattr_block, xb_check), 463 }; 464 465 static struct ocfs2_triggers dq_triggers = { 466 .ot_triggers = { 467 .t_commit = ocfs2_dq_commit_trigger, 468 .t_abort = ocfs2_abort_trigger, 469 }, 470 }; 471 472 static int __ocfs2_journal_access(handle_t *handle, 473 struct inode *inode, 474 struct buffer_head *bh, 475 struct ocfs2_triggers *triggers, 476 int type) 477 { 478 int status; 479 480 BUG_ON(!inode); 481 BUG_ON(!handle); 482 BUG_ON(!bh); 483 484 mlog_entry("bh->b_blocknr=%llu, type=%d (\"%s\"), bh->b_size = %zu\n", 485 (unsigned long long)bh->b_blocknr, type, 486 (type == OCFS2_JOURNAL_ACCESS_CREATE) ? 487 "OCFS2_JOURNAL_ACCESS_CREATE" : 488 "OCFS2_JOURNAL_ACCESS_WRITE", 489 bh->b_size); 490 491 /* we can safely remove this assertion after testing. */ 492 if (!buffer_uptodate(bh)) { 493 mlog(ML_ERROR, "giving me a buffer that's not uptodate!\n"); 494 mlog(ML_ERROR, "b_blocknr=%llu\n", 495 (unsigned long long)bh->b_blocknr); 496 BUG(); 497 } 498 499 /* Set the current transaction information on the inode so 500 * that the locking code knows whether it can drop it's locks 501 * on this inode or not. We're protected from the commit 502 * thread updating the current transaction id until 503 * ocfs2_commit_trans() because ocfs2_start_trans() took 504 * j_trans_barrier for us. */ 505 ocfs2_set_inode_lock_trans(OCFS2_SB(inode->i_sb)->journal, inode); 506 507 mutex_lock(&OCFS2_I(inode)->ip_io_mutex); 508 switch (type) { 509 case OCFS2_JOURNAL_ACCESS_CREATE: 510 case OCFS2_JOURNAL_ACCESS_WRITE: 511 status = jbd2_journal_get_write_access(handle, bh); 512 break; 513 514 case OCFS2_JOURNAL_ACCESS_UNDO: 515 status = jbd2_journal_get_undo_access(handle, bh); 516 break; 517 518 default: 519 status = -EINVAL; 520 mlog(ML_ERROR, "Uknown access type!\n"); 521 } 522 if (!status && ocfs2_meta_ecc(OCFS2_SB(inode->i_sb)) && triggers) 523 jbd2_journal_set_triggers(bh, &triggers->ot_triggers); 524 mutex_unlock(&OCFS2_I(inode)->ip_io_mutex); 525 526 if (status < 0) 527 mlog(ML_ERROR, "Error %d getting %d access to buffer!\n", 528 status, type); 529 530 mlog_exit(status); 531 return status; 532 } 533 534 int ocfs2_journal_access_di(handle_t *handle, struct inode *inode, 535 struct buffer_head *bh, int type) 536 { 537 return __ocfs2_journal_access(handle, inode, bh, &di_triggers, 538 type); 539 } 540 541 int ocfs2_journal_access_eb(handle_t *handle, struct inode *inode, 542 struct buffer_head *bh, int type) 543 { 544 return __ocfs2_journal_access(handle, inode, bh, &eb_triggers, 545 type); 546 } 547 548 int ocfs2_journal_access_gd(handle_t *handle, struct inode *inode, 549 struct buffer_head *bh, int type) 550 { 551 return __ocfs2_journal_access(handle, inode, bh, &gd_triggers, 552 type); 553 } 554 555 int ocfs2_journal_access_db(handle_t *handle, struct inode *inode, 556 struct buffer_head *bh, int type) 557 { 558 /* Right now, nothing for dirblocks */ 559 return __ocfs2_journal_access(handle, inode, bh, NULL, type); 560 } 561 562 int ocfs2_journal_access_xb(handle_t *handle, struct inode *inode, 563 struct buffer_head *bh, int type) 564 { 565 return __ocfs2_journal_access(handle, inode, bh, &xb_triggers, 566 type); 567 } 568 569 int ocfs2_journal_access_dq(handle_t *handle, struct inode *inode, 570 struct buffer_head *bh, int type) 571 { 572 return __ocfs2_journal_access(handle, inode, bh, &dq_triggers, 573 type); 574 } 575 576 int ocfs2_journal_access(handle_t *handle, struct inode *inode, 577 struct buffer_head *bh, int type) 578 { 579 return __ocfs2_journal_access(handle, inode, bh, NULL, type); 580 } 581 582 int ocfs2_journal_dirty(handle_t *handle, 583 struct buffer_head *bh) 584 { 585 int status; 586 587 mlog_entry("(bh->b_blocknr=%llu)\n", 588 (unsigned long long)bh->b_blocknr); 589 590 status = jbd2_journal_dirty_metadata(handle, bh); 591 if (status < 0) 592 mlog(ML_ERROR, "Could not dirty metadata buffer. " 593 "(bh->b_blocknr=%llu)\n", 594 (unsigned long long)bh->b_blocknr); 595 596 mlog_exit(status); 597 return status; 598 } 599 600 #define OCFS2_DEFAULT_COMMIT_INTERVAL (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE) 601 602 void ocfs2_set_journal_params(struct ocfs2_super *osb) 603 { 604 journal_t *journal = osb->journal->j_journal; 605 unsigned long commit_interval = OCFS2_DEFAULT_COMMIT_INTERVAL; 606 607 if (osb->osb_commit_interval) 608 commit_interval = osb->osb_commit_interval; 609 610 spin_lock(&journal->j_state_lock); 611 journal->j_commit_interval = commit_interval; 612 if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER) 613 journal->j_flags |= JBD2_BARRIER; 614 else 615 journal->j_flags &= ~JBD2_BARRIER; 616 spin_unlock(&journal->j_state_lock); 617 } 618 619 int ocfs2_journal_init(struct ocfs2_journal *journal, int *dirty) 620 { 621 int status = -1; 622 struct inode *inode = NULL; /* the journal inode */ 623 journal_t *j_journal = NULL; 624 struct ocfs2_dinode *di = NULL; 625 struct buffer_head *bh = NULL; 626 struct ocfs2_super *osb; 627 int inode_lock = 0; 628 629 mlog_entry_void(); 630 631 BUG_ON(!journal); 632 633 osb = journal->j_osb; 634 635 /* already have the inode for our journal */ 636 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE, 637 osb->slot_num); 638 if (inode == NULL) { 639 status = -EACCES; 640 mlog_errno(status); 641 goto done; 642 } 643 if (is_bad_inode(inode)) { 644 mlog(ML_ERROR, "access error (bad inode)\n"); 645 iput(inode); 646 inode = NULL; 647 status = -EACCES; 648 goto done; 649 } 650 651 SET_INODE_JOURNAL(inode); 652 OCFS2_I(inode)->ip_open_count++; 653 654 /* Skip recovery waits here - journal inode metadata never 655 * changes in a live cluster so it can be considered an 656 * exception to the rule. */ 657 status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY); 658 if (status < 0) { 659 if (status != -ERESTARTSYS) 660 mlog(ML_ERROR, "Could not get lock on journal!\n"); 661 goto done; 662 } 663 664 inode_lock = 1; 665 di = (struct ocfs2_dinode *)bh->b_data; 666 667 if (inode->i_size < OCFS2_MIN_JOURNAL_SIZE) { 668 mlog(ML_ERROR, "Journal file size (%lld) is too small!\n", 669 inode->i_size); 670 status = -EINVAL; 671 goto done; 672 } 673 674 mlog(0, "inode->i_size = %lld\n", inode->i_size); 675 mlog(0, "inode->i_blocks = %llu\n", 676 (unsigned long long)inode->i_blocks); 677 mlog(0, "inode->ip_clusters = %u\n", OCFS2_I(inode)->ip_clusters); 678 679 /* call the kernels journal init function now */ 680 j_journal = jbd2_journal_init_inode(inode); 681 if (j_journal == NULL) { 682 mlog(ML_ERROR, "Linux journal layer error\n"); 683 status = -EINVAL; 684 goto done; 685 } 686 687 mlog(0, "Returned from jbd2_journal_init_inode\n"); 688 mlog(0, "j_journal->j_maxlen = %u\n", j_journal->j_maxlen); 689 690 *dirty = (le32_to_cpu(di->id1.journal1.ij_flags) & 691 OCFS2_JOURNAL_DIRTY_FL); 692 693 journal->j_journal = j_journal; 694 journal->j_inode = inode; 695 journal->j_bh = bh; 696 697 ocfs2_set_journal_params(osb); 698 699 journal->j_state = OCFS2_JOURNAL_LOADED; 700 701 status = 0; 702 done: 703 if (status < 0) { 704 if (inode_lock) 705 ocfs2_inode_unlock(inode, 1); 706 brelse(bh); 707 if (inode) { 708 OCFS2_I(inode)->ip_open_count--; 709 iput(inode); 710 } 711 } 712 713 mlog_exit(status); 714 return status; 715 } 716 717 static void ocfs2_bump_recovery_generation(struct ocfs2_dinode *di) 718 { 719 le32_add_cpu(&(di->id1.journal1.ij_recovery_generation), 1); 720 } 721 722 static u32 ocfs2_get_recovery_generation(struct ocfs2_dinode *di) 723 { 724 return le32_to_cpu(di->id1.journal1.ij_recovery_generation); 725 } 726 727 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb, 728 int dirty, int replayed) 729 { 730 int status; 731 unsigned int flags; 732 struct ocfs2_journal *journal = osb->journal; 733 struct buffer_head *bh = journal->j_bh; 734 struct ocfs2_dinode *fe; 735 736 mlog_entry_void(); 737 738 fe = (struct ocfs2_dinode *)bh->b_data; 739 740 /* The journal bh on the osb always comes from ocfs2_journal_init() 741 * and was validated there inside ocfs2_inode_lock_full(). It's a 742 * code bug if we mess it up. */ 743 BUG_ON(!OCFS2_IS_VALID_DINODE(fe)); 744 745 flags = le32_to_cpu(fe->id1.journal1.ij_flags); 746 if (dirty) 747 flags |= OCFS2_JOURNAL_DIRTY_FL; 748 else 749 flags &= ~OCFS2_JOURNAL_DIRTY_FL; 750 fe->id1.journal1.ij_flags = cpu_to_le32(flags); 751 752 if (replayed) 753 ocfs2_bump_recovery_generation(fe); 754 755 ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check); 756 status = ocfs2_write_block(osb, bh, journal->j_inode); 757 if (status < 0) 758 mlog_errno(status); 759 760 mlog_exit(status); 761 return status; 762 } 763 764 /* 765 * If the journal has been kmalloc'd it needs to be freed after this 766 * call. 767 */ 768 void ocfs2_journal_shutdown(struct ocfs2_super *osb) 769 { 770 struct ocfs2_journal *journal = NULL; 771 int status = 0; 772 struct inode *inode = NULL; 773 int num_running_trans = 0; 774 775 mlog_entry_void(); 776 777 BUG_ON(!osb); 778 779 journal = osb->journal; 780 if (!journal) 781 goto done; 782 783 inode = journal->j_inode; 784 785 if (journal->j_state != OCFS2_JOURNAL_LOADED) 786 goto done; 787 788 /* need to inc inode use count - jbd2_journal_destroy will iput. */ 789 if (!igrab(inode)) 790 BUG(); 791 792 num_running_trans = atomic_read(&(osb->journal->j_num_trans)); 793 if (num_running_trans > 0) 794 mlog(0, "Shutting down journal: must wait on %d " 795 "running transactions!\n", 796 num_running_trans); 797 798 /* Do a commit_cache here. It will flush our journal, *and* 799 * release any locks that are still held. 800 * set the SHUTDOWN flag and release the trans lock. 801 * the commit thread will take the trans lock for us below. */ 802 journal->j_state = OCFS2_JOURNAL_IN_SHUTDOWN; 803 804 /* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not 805 * drop the trans_lock (which we want to hold until we 806 * completely destroy the journal. */ 807 if (osb->commit_task) { 808 /* Wait for the commit thread */ 809 mlog(0, "Waiting for ocfs2commit to exit....\n"); 810 kthread_stop(osb->commit_task); 811 osb->commit_task = NULL; 812 } 813 814 BUG_ON(atomic_read(&(osb->journal->j_num_trans)) != 0); 815 816 if (ocfs2_mount_local(osb)) { 817 jbd2_journal_lock_updates(journal->j_journal); 818 status = jbd2_journal_flush(journal->j_journal); 819 jbd2_journal_unlock_updates(journal->j_journal); 820 if (status < 0) 821 mlog_errno(status); 822 } 823 824 if (status == 0) { 825 /* 826 * Do not toggle if flush was unsuccessful otherwise 827 * will leave dirty metadata in a "clean" journal 828 */ 829 status = ocfs2_journal_toggle_dirty(osb, 0, 0); 830 if (status < 0) 831 mlog_errno(status); 832 } 833 834 /* Shutdown the kernel journal system */ 835 jbd2_journal_destroy(journal->j_journal); 836 journal->j_journal = NULL; 837 838 OCFS2_I(inode)->ip_open_count--; 839 840 /* unlock our journal */ 841 ocfs2_inode_unlock(inode, 1); 842 843 brelse(journal->j_bh); 844 journal->j_bh = NULL; 845 846 journal->j_state = OCFS2_JOURNAL_FREE; 847 848 // up_write(&journal->j_trans_barrier); 849 done: 850 if (inode) 851 iput(inode); 852 mlog_exit_void(); 853 } 854 855 static void ocfs2_clear_journal_error(struct super_block *sb, 856 journal_t *journal, 857 int slot) 858 { 859 int olderr; 860 861 olderr = jbd2_journal_errno(journal); 862 if (olderr) { 863 mlog(ML_ERROR, "File system error %d recorded in " 864 "journal %u.\n", olderr, slot); 865 mlog(ML_ERROR, "File system on device %s needs checking.\n", 866 sb->s_id); 867 868 jbd2_journal_ack_err(journal); 869 jbd2_journal_clear_err(journal); 870 } 871 } 872 873 int ocfs2_journal_load(struct ocfs2_journal *journal, int local, int replayed) 874 { 875 int status = 0; 876 struct ocfs2_super *osb; 877 878 mlog_entry_void(); 879 880 BUG_ON(!journal); 881 882 osb = journal->j_osb; 883 884 status = jbd2_journal_load(journal->j_journal); 885 if (status < 0) { 886 mlog(ML_ERROR, "Failed to load journal!\n"); 887 goto done; 888 } 889 890 ocfs2_clear_journal_error(osb->sb, journal->j_journal, osb->slot_num); 891 892 status = ocfs2_journal_toggle_dirty(osb, 1, replayed); 893 if (status < 0) { 894 mlog_errno(status); 895 goto done; 896 } 897 898 /* Launch the commit thread */ 899 if (!local) { 900 osb->commit_task = kthread_run(ocfs2_commit_thread, osb, 901 "ocfs2cmt"); 902 if (IS_ERR(osb->commit_task)) { 903 status = PTR_ERR(osb->commit_task); 904 osb->commit_task = NULL; 905 mlog(ML_ERROR, "unable to launch ocfs2commit thread, " 906 "error=%d", status); 907 goto done; 908 } 909 } else 910 osb->commit_task = NULL; 911 912 done: 913 mlog_exit(status); 914 return status; 915 } 916 917 918 /* 'full' flag tells us whether we clear out all blocks or if we just 919 * mark the journal clean */ 920 int ocfs2_journal_wipe(struct ocfs2_journal *journal, int full) 921 { 922 int status; 923 924 mlog_entry_void(); 925 926 BUG_ON(!journal); 927 928 status = jbd2_journal_wipe(journal->j_journal, full); 929 if (status < 0) { 930 mlog_errno(status); 931 goto bail; 932 } 933 934 status = ocfs2_journal_toggle_dirty(journal->j_osb, 0, 0); 935 if (status < 0) 936 mlog_errno(status); 937 938 bail: 939 mlog_exit(status); 940 return status; 941 } 942 943 static int ocfs2_recovery_completed(struct ocfs2_super *osb) 944 { 945 int empty; 946 struct ocfs2_recovery_map *rm = osb->recovery_map; 947 948 spin_lock(&osb->osb_lock); 949 empty = (rm->rm_used == 0); 950 spin_unlock(&osb->osb_lock); 951 952 return empty; 953 } 954 955 void ocfs2_wait_for_recovery(struct ocfs2_super *osb) 956 { 957 wait_event(osb->recovery_event, ocfs2_recovery_completed(osb)); 958 } 959 960 /* 961 * JBD Might read a cached version of another nodes journal file. We 962 * don't want this as this file changes often and we get no 963 * notification on those changes. The only way to be sure that we've 964 * got the most up to date version of those blocks then is to force 965 * read them off disk. Just searching through the buffer cache won't 966 * work as there may be pages backing this file which are still marked 967 * up to date. We know things can't change on this file underneath us 968 * as we have the lock by now :) 969 */ 970 static int ocfs2_force_read_journal(struct inode *inode) 971 { 972 int status = 0; 973 int i; 974 u64 v_blkno, p_blkno, p_blocks, num_blocks; 975 #define CONCURRENT_JOURNAL_FILL 32ULL 976 struct buffer_head *bhs[CONCURRENT_JOURNAL_FILL]; 977 978 mlog_entry_void(); 979 980 memset(bhs, 0, sizeof(struct buffer_head *) * CONCURRENT_JOURNAL_FILL); 981 982 num_blocks = ocfs2_blocks_for_bytes(inode->i_sb, inode->i_size); 983 v_blkno = 0; 984 while (v_blkno < num_blocks) { 985 status = ocfs2_extent_map_get_blocks(inode, v_blkno, 986 &p_blkno, &p_blocks, NULL); 987 if (status < 0) { 988 mlog_errno(status); 989 goto bail; 990 } 991 992 if (p_blocks > CONCURRENT_JOURNAL_FILL) 993 p_blocks = CONCURRENT_JOURNAL_FILL; 994 995 /* We are reading journal data which should not 996 * be put in the uptodate cache */ 997 status = ocfs2_read_blocks_sync(OCFS2_SB(inode->i_sb), 998 p_blkno, p_blocks, bhs); 999 if (status < 0) { 1000 mlog_errno(status); 1001 goto bail; 1002 } 1003 1004 for(i = 0; i < p_blocks; i++) { 1005 brelse(bhs[i]); 1006 bhs[i] = NULL; 1007 } 1008 1009 v_blkno += p_blocks; 1010 } 1011 1012 bail: 1013 for(i = 0; i < CONCURRENT_JOURNAL_FILL; i++) 1014 brelse(bhs[i]); 1015 mlog_exit(status); 1016 return status; 1017 } 1018 1019 struct ocfs2_la_recovery_item { 1020 struct list_head lri_list; 1021 int lri_slot; 1022 struct ocfs2_dinode *lri_la_dinode; 1023 struct ocfs2_dinode *lri_tl_dinode; 1024 struct ocfs2_quota_recovery *lri_qrec; 1025 }; 1026 1027 /* Does the second half of the recovery process. By this point, the 1028 * node is marked clean and can actually be considered recovered, 1029 * hence it's no longer in the recovery map, but there's still some 1030 * cleanup we can do which shouldn't happen within the recovery thread 1031 * as locking in that context becomes very difficult if we are to take 1032 * recovering nodes into account. 1033 * 1034 * NOTE: This function can and will sleep on recovery of other nodes 1035 * during cluster locking, just like any other ocfs2 process. 1036 */ 1037 void ocfs2_complete_recovery(struct work_struct *work) 1038 { 1039 int ret; 1040 struct ocfs2_journal *journal = 1041 container_of(work, struct ocfs2_journal, j_recovery_work); 1042 struct ocfs2_super *osb = journal->j_osb; 1043 struct ocfs2_dinode *la_dinode, *tl_dinode; 1044 struct ocfs2_la_recovery_item *item, *n; 1045 struct ocfs2_quota_recovery *qrec; 1046 LIST_HEAD(tmp_la_list); 1047 1048 mlog_entry_void(); 1049 1050 mlog(0, "completing recovery from keventd\n"); 1051 1052 spin_lock(&journal->j_lock); 1053 list_splice_init(&journal->j_la_cleanups, &tmp_la_list); 1054 spin_unlock(&journal->j_lock); 1055 1056 list_for_each_entry_safe(item, n, &tmp_la_list, lri_list) { 1057 list_del_init(&item->lri_list); 1058 1059 mlog(0, "Complete recovery for slot %d\n", item->lri_slot); 1060 1061 ocfs2_wait_on_quotas(osb); 1062 1063 la_dinode = item->lri_la_dinode; 1064 if (la_dinode) { 1065 mlog(0, "Clean up local alloc %llu\n", 1066 (unsigned long long)le64_to_cpu(la_dinode->i_blkno)); 1067 1068 ret = ocfs2_complete_local_alloc_recovery(osb, 1069 la_dinode); 1070 if (ret < 0) 1071 mlog_errno(ret); 1072 1073 kfree(la_dinode); 1074 } 1075 1076 tl_dinode = item->lri_tl_dinode; 1077 if (tl_dinode) { 1078 mlog(0, "Clean up truncate log %llu\n", 1079 (unsigned long long)le64_to_cpu(tl_dinode->i_blkno)); 1080 1081 ret = ocfs2_complete_truncate_log_recovery(osb, 1082 tl_dinode); 1083 if (ret < 0) 1084 mlog_errno(ret); 1085 1086 kfree(tl_dinode); 1087 } 1088 1089 ret = ocfs2_recover_orphans(osb, item->lri_slot); 1090 if (ret < 0) 1091 mlog_errno(ret); 1092 1093 qrec = item->lri_qrec; 1094 if (qrec) { 1095 mlog(0, "Recovering quota files"); 1096 ret = ocfs2_finish_quota_recovery(osb, qrec, 1097 item->lri_slot); 1098 if (ret < 0) 1099 mlog_errno(ret); 1100 /* Recovery info is already freed now */ 1101 } 1102 1103 kfree(item); 1104 } 1105 1106 mlog(0, "Recovery completion\n"); 1107 mlog_exit_void(); 1108 } 1109 1110 /* NOTE: This function always eats your references to la_dinode and 1111 * tl_dinode, either manually on error, or by passing them to 1112 * ocfs2_complete_recovery */ 1113 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal, 1114 int slot_num, 1115 struct ocfs2_dinode *la_dinode, 1116 struct ocfs2_dinode *tl_dinode, 1117 struct ocfs2_quota_recovery *qrec) 1118 { 1119 struct ocfs2_la_recovery_item *item; 1120 1121 item = kmalloc(sizeof(struct ocfs2_la_recovery_item), GFP_NOFS); 1122 if (!item) { 1123 /* Though we wish to avoid it, we are in fact safe in 1124 * skipping local alloc cleanup as fsck.ocfs2 is more 1125 * than capable of reclaiming unused space. */ 1126 if (la_dinode) 1127 kfree(la_dinode); 1128 1129 if (tl_dinode) 1130 kfree(tl_dinode); 1131 1132 if (qrec) 1133 ocfs2_free_quota_recovery(qrec); 1134 1135 mlog_errno(-ENOMEM); 1136 return; 1137 } 1138 1139 INIT_LIST_HEAD(&item->lri_list); 1140 item->lri_la_dinode = la_dinode; 1141 item->lri_slot = slot_num; 1142 item->lri_tl_dinode = tl_dinode; 1143 item->lri_qrec = qrec; 1144 1145 spin_lock(&journal->j_lock); 1146 list_add_tail(&item->lri_list, &journal->j_la_cleanups); 1147 queue_work(ocfs2_wq, &journal->j_recovery_work); 1148 spin_unlock(&journal->j_lock); 1149 } 1150 1151 /* Called by the mount code to queue recovery the last part of 1152 * recovery for it's own slot. */ 1153 void ocfs2_complete_mount_recovery(struct ocfs2_super *osb) 1154 { 1155 struct ocfs2_journal *journal = osb->journal; 1156 1157 if (osb->dirty) { 1158 /* No need to queue up our truncate_log as regular 1159 * cleanup will catch that. */ 1160 ocfs2_queue_recovery_completion(journal, 1161 osb->slot_num, 1162 osb->local_alloc_copy, 1163 NULL, 1164 NULL); 1165 ocfs2_schedule_truncate_log_flush(osb, 0); 1166 1167 osb->local_alloc_copy = NULL; 1168 osb->dirty = 0; 1169 } 1170 } 1171 1172 void ocfs2_complete_quota_recovery(struct ocfs2_super *osb) 1173 { 1174 if (osb->quota_rec) { 1175 ocfs2_queue_recovery_completion(osb->journal, 1176 osb->slot_num, 1177 NULL, 1178 NULL, 1179 osb->quota_rec); 1180 osb->quota_rec = NULL; 1181 } 1182 } 1183 1184 static int __ocfs2_recovery_thread(void *arg) 1185 { 1186 int status, node_num, slot_num; 1187 struct ocfs2_super *osb = arg; 1188 struct ocfs2_recovery_map *rm = osb->recovery_map; 1189 int *rm_quota = NULL; 1190 int rm_quota_used = 0, i; 1191 struct ocfs2_quota_recovery *qrec; 1192 1193 mlog_entry_void(); 1194 1195 status = ocfs2_wait_on_mount(osb); 1196 if (status < 0) { 1197 goto bail; 1198 } 1199 1200 rm_quota = kzalloc(osb->max_slots * sizeof(int), GFP_NOFS); 1201 if (!rm_quota) { 1202 status = -ENOMEM; 1203 goto bail; 1204 } 1205 restart: 1206 status = ocfs2_super_lock(osb, 1); 1207 if (status < 0) { 1208 mlog_errno(status); 1209 goto bail; 1210 } 1211 1212 spin_lock(&osb->osb_lock); 1213 while (rm->rm_used) { 1214 /* It's always safe to remove entry zero, as we won't 1215 * clear it until ocfs2_recover_node() has succeeded. */ 1216 node_num = rm->rm_entries[0]; 1217 spin_unlock(&osb->osb_lock); 1218 mlog(0, "checking node %d\n", node_num); 1219 slot_num = ocfs2_node_num_to_slot(osb, node_num); 1220 if (slot_num == -ENOENT) { 1221 status = 0; 1222 mlog(0, "no slot for this node, so no recovery" 1223 "required.\n"); 1224 goto skip_recovery; 1225 } 1226 mlog(0, "node %d was using slot %d\n", node_num, slot_num); 1227 1228 /* It is a bit subtle with quota recovery. We cannot do it 1229 * immediately because we have to obtain cluster locks from 1230 * quota files and we also don't want to just skip it because 1231 * then quota usage would be out of sync until some node takes 1232 * the slot. So we remember which nodes need quota recovery 1233 * and when everything else is done, we recover quotas. */ 1234 for (i = 0; i < rm_quota_used && rm_quota[i] != slot_num; i++); 1235 if (i == rm_quota_used) 1236 rm_quota[rm_quota_used++] = slot_num; 1237 1238 status = ocfs2_recover_node(osb, node_num, slot_num); 1239 skip_recovery: 1240 if (!status) { 1241 ocfs2_recovery_map_clear(osb, node_num); 1242 } else { 1243 mlog(ML_ERROR, 1244 "Error %d recovering node %d on device (%u,%u)!\n", 1245 status, node_num, 1246 MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev)); 1247 mlog(ML_ERROR, "Volume requires unmount.\n"); 1248 } 1249 1250 spin_lock(&osb->osb_lock); 1251 } 1252 spin_unlock(&osb->osb_lock); 1253 mlog(0, "All nodes recovered\n"); 1254 1255 /* Refresh all journal recovery generations from disk */ 1256 status = ocfs2_check_journals_nolocks(osb); 1257 status = (status == -EROFS) ? 0 : status; 1258 if (status < 0) 1259 mlog_errno(status); 1260 1261 /* Now it is right time to recover quotas... We have to do this under 1262 * superblock lock so that noone can start using the slot (and crash) 1263 * before we recover it */ 1264 for (i = 0; i < rm_quota_used; i++) { 1265 qrec = ocfs2_begin_quota_recovery(osb, rm_quota[i]); 1266 if (IS_ERR(qrec)) { 1267 status = PTR_ERR(qrec); 1268 mlog_errno(status); 1269 continue; 1270 } 1271 ocfs2_queue_recovery_completion(osb->journal, rm_quota[i], 1272 NULL, NULL, qrec); 1273 } 1274 1275 ocfs2_super_unlock(osb, 1); 1276 1277 /* We always run recovery on our own orphan dir - the dead 1278 * node(s) may have disallowd a previos inode delete. Re-processing 1279 * is therefore required. */ 1280 ocfs2_queue_recovery_completion(osb->journal, osb->slot_num, NULL, 1281 NULL, NULL); 1282 1283 bail: 1284 mutex_lock(&osb->recovery_lock); 1285 if (!status && !ocfs2_recovery_completed(osb)) { 1286 mutex_unlock(&osb->recovery_lock); 1287 goto restart; 1288 } 1289 1290 osb->recovery_thread_task = NULL; 1291 mb(); /* sync with ocfs2_recovery_thread_running */ 1292 wake_up(&osb->recovery_event); 1293 1294 mutex_unlock(&osb->recovery_lock); 1295 1296 if (rm_quota) 1297 kfree(rm_quota); 1298 1299 mlog_exit(status); 1300 /* no one is callint kthread_stop() for us so the kthread() api 1301 * requires that we call do_exit(). And it isn't exported, but 1302 * complete_and_exit() seems to be a minimal wrapper around it. */ 1303 complete_and_exit(NULL, status); 1304 return status; 1305 } 1306 1307 void ocfs2_recovery_thread(struct ocfs2_super *osb, int node_num) 1308 { 1309 mlog_entry("(node_num=%d, osb->node_num = %d)\n", 1310 node_num, osb->node_num); 1311 1312 mutex_lock(&osb->recovery_lock); 1313 if (osb->disable_recovery) 1314 goto out; 1315 1316 /* People waiting on recovery will wait on 1317 * the recovery map to empty. */ 1318 if (ocfs2_recovery_map_set(osb, node_num)) 1319 mlog(0, "node %d already in recovery map.\n", node_num); 1320 1321 mlog(0, "starting recovery thread...\n"); 1322 1323 if (osb->recovery_thread_task) 1324 goto out; 1325 1326 osb->recovery_thread_task = kthread_run(__ocfs2_recovery_thread, osb, 1327 "ocfs2rec"); 1328 if (IS_ERR(osb->recovery_thread_task)) { 1329 mlog_errno((int)PTR_ERR(osb->recovery_thread_task)); 1330 osb->recovery_thread_task = NULL; 1331 } 1332 1333 out: 1334 mutex_unlock(&osb->recovery_lock); 1335 wake_up(&osb->recovery_event); 1336 1337 mlog_exit_void(); 1338 } 1339 1340 static int ocfs2_read_journal_inode(struct ocfs2_super *osb, 1341 int slot_num, 1342 struct buffer_head **bh, 1343 struct inode **ret_inode) 1344 { 1345 int status = -EACCES; 1346 struct inode *inode = NULL; 1347 1348 BUG_ON(slot_num >= osb->max_slots); 1349 1350 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE, 1351 slot_num); 1352 if (!inode || is_bad_inode(inode)) { 1353 mlog_errno(status); 1354 goto bail; 1355 } 1356 SET_INODE_JOURNAL(inode); 1357 1358 status = ocfs2_read_inode_block_full(inode, bh, OCFS2_BH_IGNORE_CACHE); 1359 if (status < 0) { 1360 mlog_errno(status); 1361 goto bail; 1362 } 1363 1364 status = 0; 1365 1366 bail: 1367 if (inode) { 1368 if (status || !ret_inode) 1369 iput(inode); 1370 else 1371 *ret_inode = inode; 1372 } 1373 return status; 1374 } 1375 1376 /* Does the actual journal replay and marks the journal inode as 1377 * clean. Will only replay if the journal inode is marked dirty. */ 1378 static int ocfs2_replay_journal(struct ocfs2_super *osb, 1379 int node_num, 1380 int slot_num) 1381 { 1382 int status; 1383 int got_lock = 0; 1384 unsigned int flags; 1385 struct inode *inode = NULL; 1386 struct ocfs2_dinode *fe; 1387 journal_t *journal = NULL; 1388 struct buffer_head *bh = NULL; 1389 u32 slot_reco_gen; 1390 1391 status = ocfs2_read_journal_inode(osb, slot_num, &bh, &inode); 1392 if (status) { 1393 mlog_errno(status); 1394 goto done; 1395 } 1396 1397 fe = (struct ocfs2_dinode *)bh->b_data; 1398 slot_reco_gen = ocfs2_get_recovery_generation(fe); 1399 brelse(bh); 1400 bh = NULL; 1401 1402 /* 1403 * As the fs recovery is asynchronous, there is a small chance that 1404 * another node mounted (and recovered) the slot before the recovery 1405 * thread could get the lock. To handle that, we dirty read the journal 1406 * inode for that slot to get the recovery generation. If it is 1407 * different than what we expected, the slot has been recovered. 1408 * If not, it needs recovery. 1409 */ 1410 if (osb->slot_recovery_generations[slot_num] != slot_reco_gen) { 1411 mlog(0, "Slot %u already recovered (old/new=%u/%u)\n", slot_num, 1412 osb->slot_recovery_generations[slot_num], slot_reco_gen); 1413 osb->slot_recovery_generations[slot_num] = slot_reco_gen; 1414 status = -EBUSY; 1415 goto done; 1416 } 1417 1418 /* Continue with recovery as the journal has not yet been recovered */ 1419 1420 status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY); 1421 if (status < 0) { 1422 mlog(0, "status returned from ocfs2_inode_lock=%d\n", status); 1423 if (status != -ERESTARTSYS) 1424 mlog(ML_ERROR, "Could not lock journal!\n"); 1425 goto done; 1426 } 1427 got_lock = 1; 1428 1429 fe = (struct ocfs2_dinode *) bh->b_data; 1430 1431 flags = le32_to_cpu(fe->id1.journal1.ij_flags); 1432 slot_reco_gen = ocfs2_get_recovery_generation(fe); 1433 1434 if (!(flags & OCFS2_JOURNAL_DIRTY_FL)) { 1435 mlog(0, "No recovery required for node %d\n", node_num); 1436 /* Refresh recovery generation for the slot */ 1437 osb->slot_recovery_generations[slot_num] = slot_reco_gen; 1438 goto done; 1439 } 1440 1441 mlog(ML_NOTICE, "Recovering node %d from slot %d on device (%u,%u)\n", 1442 node_num, slot_num, 1443 MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev)); 1444 1445 OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters); 1446 1447 status = ocfs2_force_read_journal(inode); 1448 if (status < 0) { 1449 mlog_errno(status); 1450 goto done; 1451 } 1452 1453 mlog(0, "calling journal_init_inode\n"); 1454 journal = jbd2_journal_init_inode(inode); 1455 if (journal == NULL) { 1456 mlog(ML_ERROR, "Linux journal layer error\n"); 1457 status = -EIO; 1458 goto done; 1459 } 1460 1461 status = jbd2_journal_load(journal); 1462 if (status < 0) { 1463 mlog_errno(status); 1464 if (!igrab(inode)) 1465 BUG(); 1466 jbd2_journal_destroy(journal); 1467 goto done; 1468 } 1469 1470 ocfs2_clear_journal_error(osb->sb, journal, slot_num); 1471 1472 /* wipe the journal */ 1473 mlog(0, "flushing the journal.\n"); 1474 jbd2_journal_lock_updates(journal); 1475 status = jbd2_journal_flush(journal); 1476 jbd2_journal_unlock_updates(journal); 1477 if (status < 0) 1478 mlog_errno(status); 1479 1480 /* This will mark the node clean */ 1481 flags = le32_to_cpu(fe->id1.journal1.ij_flags); 1482 flags &= ~OCFS2_JOURNAL_DIRTY_FL; 1483 fe->id1.journal1.ij_flags = cpu_to_le32(flags); 1484 1485 /* Increment recovery generation to indicate successful recovery */ 1486 ocfs2_bump_recovery_generation(fe); 1487 osb->slot_recovery_generations[slot_num] = 1488 ocfs2_get_recovery_generation(fe); 1489 1490 ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check); 1491 status = ocfs2_write_block(osb, bh, inode); 1492 if (status < 0) 1493 mlog_errno(status); 1494 1495 if (!igrab(inode)) 1496 BUG(); 1497 1498 jbd2_journal_destroy(journal); 1499 1500 done: 1501 /* drop the lock on this nodes journal */ 1502 if (got_lock) 1503 ocfs2_inode_unlock(inode, 1); 1504 1505 if (inode) 1506 iput(inode); 1507 1508 brelse(bh); 1509 1510 mlog_exit(status); 1511 return status; 1512 } 1513 1514 /* 1515 * Do the most important parts of node recovery: 1516 * - Replay it's journal 1517 * - Stamp a clean local allocator file 1518 * - Stamp a clean truncate log 1519 * - Mark the node clean 1520 * 1521 * If this function completes without error, a node in OCFS2 can be 1522 * said to have been safely recovered. As a result, failure during the 1523 * second part of a nodes recovery process (local alloc recovery) is 1524 * far less concerning. 1525 */ 1526 static int ocfs2_recover_node(struct ocfs2_super *osb, 1527 int node_num, int slot_num) 1528 { 1529 int status = 0; 1530 struct ocfs2_dinode *la_copy = NULL; 1531 struct ocfs2_dinode *tl_copy = NULL; 1532 1533 mlog_entry("(node_num=%d, slot_num=%d, osb->node_num = %d)\n", 1534 node_num, slot_num, osb->node_num); 1535 1536 /* Should not ever be called to recover ourselves -- in that 1537 * case we should've called ocfs2_journal_load instead. */ 1538 BUG_ON(osb->node_num == node_num); 1539 1540 status = ocfs2_replay_journal(osb, node_num, slot_num); 1541 if (status < 0) { 1542 if (status == -EBUSY) { 1543 mlog(0, "Skipping recovery for slot %u (node %u) " 1544 "as another node has recovered it\n", slot_num, 1545 node_num); 1546 status = 0; 1547 goto done; 1548 } 1549 mlog_errno(status); 1550 goto done; 1551 } 1552 1553 /* Stamp a clean local alloc file AFTER recovering the journal... */ 1554 status = ocfs2_begin_local_alloc_recovery(osb, slot_num, &la_copy); 1555 if (status < 0) { 1556 mlog_errno(status); 1557 goto done; 1558 } 1559 1560 /* An error from begin_truncate_log_recovery is not 1561 * serious enough to warrant halting the rest of 1562 * recovery. */ 1563 status = ocfs2_begin_truncate_log_recovery(osb, slot_num, &tl_copy); 1564 if (status < 0) 1565 mlog_errno(status); 1566 1567 /* Likewise, this would be a strange but ultimately not so 1568 * harmful place to get an error... */ 1569 status = ocfs2_clear_slot(osb, slot_num); 1570 if (status < 0) 1571 mlog_errno(status); 1572 1573 /* This will kfree the memory pointed to by la_copy and tl_copy */ 1574 ocfs2_queue_recovery_completion(osb->journal, slot_num, la_copy, 1575 tl_copy, NULL); 1576 1577 status = 0; 1578 done: 1579 1580 mlog_exit(status); 1581 return status; 1582 } 1583 1584 /* Test node liveness by trylocking his journal. If we get the lock, 1585 * we drop it here. Return 0 if we got the lock, -EAGAIN if node is 1586 * still alive (we couldn't get the lock) and < 0 on error. */ 1587 static int ocfs2_trylock_journal(struct ocfs2_super *osb, 1588 int slot_num) 1589 { 1590 int status, flags; 1591 struct inode *inode = NULL; 1592 1593 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE, 1594 slot_num); 1595 if (inode == NULL) { 1596 mlog(ML_ERROR, "access error\n"); 1597 status = -EACCES; 1598 goto bail; 1599 } 1600 if (is_bad_inode(inode)) { 1601 mlog(ML_ERROR, "access error (bad inode)\n"); 1602 iput(inode); 1603 inode = NULL; 1604 status = -EACCES; 1605 goto bail; 1606 } 1607 SET_INODE_JOURNAL(inode); 1608 1609 flags = OCFS2_META_LOCK_RECOVERY | OCFS2_META_LOCK_NOQUEUE; 1610 status = ocfs2_inode_lock_full(inode, NULL, 1, flags); 1611 if (status < 0) { 1612 if (status != -EAGAIN) 1613 mlog_errno(status); 1614 goto bail; 1615 } 1616 1617 ocfs2_inode_unlock(inode, 1); 1618 bail: 1619 if (inode) 1620 iput(inode); 1621 1622 return status; 1623 } 1624 1625 /* Call this underneath ocfs2_super_lock. It also assumes that the 1626 * slot info struct has been updated from disk. */ 1627 int ocfs2_mark_dead_nodes(struct ocfs2_super *osb) 1628 { 1629 unsigned int node_num; 1630 int status, i; 1631 u32 gen; 1632 struct buffer_head *bh = NULL; 1633 struct ocfs2_dinode *di; 1634 1635 /* This is called with the super block cluster lock, so we 1636 * know that the slot map can't change underneath us. */ 1637 1638 for (i = 0; i < osb->max_slots; i++) { 1639 /* Read journal inode to get the recovery generation */ 1640 status = ocfs2_read_journal_inode(osb, i, &bh, NULL); 1641 if (status) { 1642 mlog_errno(status); 1643 goto bail; 1644 } 1645 di = (struct ocfs2_dinode *)bh->b_data; 1646 gen = ocfs2_get_recovery_generation(di); 1647 brelse(bh); 1648 bh = NULL; 1649 1650 spin_lock(&osb->osb_lock); 1651 osb->slot_recovery_generations[i] = gen; 1652 1653 mlog(0, "Slot %u recovery generation is %u\n", i, 1654 osb->slot_recovery_generations[i]); 1655 1656 if (i == osb->slot_num) { 1657 spin_unlock(&osb->osb_lock); 1658 continue; 1659 } 1660 1661 status = ocfs2_slot_to_node_num_locked(osb, i, &node_num); 1662 if (status == -ENOENT) { 1663 spin_unlock(&osb->osb_lock); 1664 continue; 1665 } 1666 1667 if (__ocfs2_recovery_map_test(osb, node_num)) { 1668 spin_unlock(&osb->osb_lock); 1669 continue; 1670 } 1671 spin_unlock(&osb->osb_lock); 1672 1673 /* Ok, we have a slot occupied by another node which 1674 * is not in the recovery map. We trylock his journal 1675 * file here to test if he's alive. */ 1676 status = ocfs2_trylock_journal(osb, i); 1677 if (!status) { 1678 /* Since we're called from mount, we know that 1679 * the recovery thread can't race us on 1680 * setting / checking the recovery bits. */ 1681 ocfs2_recovery_thread(osb, node_num); 1682 } else if ((status < 0) && (status != -EAGAIN)) { 1683 mlog_errno(status); 1684 goto bail; 1685 } 1686 } 1687 1688 status = 0; 1689 bail: 1690 mlog_exit(status); 1691 return status; 1692 } 1693 1694 struct ocfs2_orphan_filldir_priv { 1695 struct inode *head; 1696 struct ocfs2_super *osb; 1697 }; 1698 1699 static int ocfs2_orphan_filldir(void *priv, const char *name, int name_len, 1700 loff_t pos, u64 ino, unsigned type) 1701 { 1702 struct ocfs2_orphan_filldir_priv *p = priv; 1703 struct inode *iter; 1704 1705 if (name_len == 1 && !strncmp(".", name, 1)) 1706 return 0; 1707 if (name_len == 2 && !strncmp("..", name, 2)) 1708 return 0; 1709 1710 /* Skip bad inodes so that recovery can continue */ 1711 iter = ocfs2_iget(p->osb, ino, 1712 OCFS2_FI_FLAG_ORPHAN_RECOVERY, 0); 1713 if (IS_ERR(iter)) 1714 return 0; 1715 1716 mlog(0, "queue orphan %llu\n", 1717 (unsigned long long)OCFS2_I(iter)->ip_blkno); 1718 /* No locking is required for the next_orphan queue as there 1719 * is only ever a single process doing orphan recovery. */ 1720 OCFS2_I(iter)->ip_next_orphan = p->head; 1721 p->head = iter; 1722 1723 return 0; 1724 } 1725 1726 static int ocfs2_queue_orphans(struct ocfs2_super *osb, 1727 int slot, 1728 struct inode **head) 1729 { 1730 int status; 1731 struct inode *orphan_dir_inode = NULL; 1732 struct ocfs2_orphan_filldir_priv priv; 1733 loff_t pos = 0; 1734 1735 priv.osb = osb; 1736 priv.head = *head; 1737 1738 orphan_dir_inode = ocfs2_get_system_file_inode(osb, 1739 ORPHAN_DIR_SYSTEM_INODE, 1740 slot); 1741 if (!orphan_dir_inode) { 1742 status = -ENOENT; 1743 mlog_errno(status); 1744 return status; 1745 } 1746 1747 mutex_lock(&orphan_dir_inode->i_mutex); 1748 status = ocfs2_inode_lock(orphan_dir_inode, NULL, 0); 1749 if (status < 0) { 1750 mlog_errno(status); 1751 goto out; 1752 } 1753 1754 status = ocfs2_dir_foreach(orphan_dir_inode, &pos, &priv, 1755 ocfs2_orphan_filldir); 1756 if (status) { 1757 mlog_errno(status); 1758 goto out_cluster; 1759 } 1760 1761 *head = priv.head; 1762 1763 out_cluster: 1764 ocfs2_inode_unlock(orphan_dir_inode, 0); 1765 out: 1766 mutex_unlock(&orphan_dir_inode->i_mutex); 1767 iput(orphan_dir_inode); 1768 return status; 1769 } 1770 1771 static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super *osb, 1772 int slot) 1773 { 1774 int ret; 1775 1776 spin_lock(&osb->osb_lock); 1777 ret = !osb->osb_orphan_wipes[slot]; 1778 spin_unlock(&osb->osb_lock); 1779 return ret; 1780 } 1781 1782 static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super *osb, 1783 int slot) 1784 { 1785 spin_lock(&osb->osb_lock); 1786 /* Mark ourselves such that new processes in delete_inode() 1787 * know to quit early. */ 1788 ocfs2_node_map_set_bit(osb, &osb->osb_recovering_orphan_dirs, slot); 1789 while (osb->osb_orphan_wipes[slot]) { 1790 /* If any processes are already in the middle of an 1791 * orphan wipe on this dir, then we need to wait for 1792 * them. */ 1793 spin_unlock(&osb->osb_lock); 1794 wait_event_interruptible(osb->osb_wipe_event, 1795 ocfs2_orphan_recovery_can_continue(osb, slot)); 1796 spin_lock(&osb->osb_lock); 1797 } 1798 spin_unlock(&osb->osb_lock); 1799 } 1800 1801 static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super *osb, 1802 int slot) 1803 { 1804 ocfs2_node_map_clear_bit(osb, &osb->osb_recovering_orphan_dirs, slot); 1805 } 1806 1807 /* 1808 * Orphan recovery. Each mounted node has it's own orphan dir which we 1809 * must run during recovery. Our strategy here is to build a list of 1810 * the inodes in the orphan dir and iget/iput them. The VFS does 1811 * (most) of the rest of the work. 1812 * 1813 * Orphan recovery can happen at any time, not just mount so we have a 1814 * couple of extra considerations. 1815 * 1816 * - We grab as many inodes as we can under the orphan dir lock - 1817 * doing iget() outside the orphan dir risks getting a reference on 1818 * an invalid inode. 1819 * - We must be sure not to deadlock with other processes on the 1820 * system wanting to run delete_inode(). This can happen when they go 1821 * to lock the orphan dir and the orphan recovery process attempts to 1822 * iget() inside the orphan dir lock. This can be avoided by 1823 * advertising our state to ocfs2_delete_inode(). 1824 */ 1825 static int ocfs2_recover_orphans(struct ocfs2_super *osb, 1826 int slot) 1827 { 1828 int ret = 0; 1829 struct inode *inode = NULL; 1830 struct inode *iter; 1831 struct ocfs2_inode_info *oi; 1832 1833 mlog(0, "Recover inodes from orphan dir in slot %d\n", slot); 1834 1835 ocfs2_mark_recovering_orphan_dir(osb, slot); 1836 ret = ocfs2_queue_orphans(osb, slot, &inode); 1837 ocfs2_clear_recovering_orphan_dir(osb, slot); 1838 1839 /* Error here should be noted, but we want to continue with as 1840 * many queued inodes as we've got. */ 1841 if (ret) 1842 mlog_errno(ret); 1843 1844 while (inode) { 1845 oi = OCFS2_I(inode); 1846 mlog(0, "iput orphan %llu\n", (unsigned long long)oi->ip_blkno); 1847 1848 iter = oi->ip_next_orphan; 1849 1850 spin_lock(&oi->ip_lock); 1851 /* The remote delete code may have set these on the 1852 * assumption that the other node would wipe them 1853 * successfully. If they are still in the node's 1854 * orphan dir, we need to reset that state. */ 1855 oi->ip_flags &= ~(OCFS2_INODE_DELETED|OCFS2_INODE_SKIP_DELETE); 1856 1857 /* Set the proper information to get us going into 1858 * ocfs2_delete_inode. */ 1859 oi->ip_flags |= OCFS2_INODE_MAYBE_ORPHANED; 1860 spin_unlock(&oi->ip_lock); 1861 1862 iput(inode); 1863 1864 inode = iter; 1865 } 1866 1867 return ret; 1868 } 1869 1870 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota) 1871 { 1872 /* This check is good because ocfs2 will wait on our recovery 1873 * thread before changing it to something other than MOUNTED 1874 * or DISABLED. */ 1875 wait_event(osb->osb_mount_event, 1876 (!quota && atomic_read(&osb->vol_state) == VOLUME_MOUNTED) || 1877 atomic_read(&osb->vol_state) == VOLUME_MOUNTED_QUOTAS || 1878 atomic_read(&osb->vol_state) == VOLUME_DISABLED); 1879 1880 /* If there's an error on mount, then we may never get to the 1881 * MOUNTED flag, but this is set right before 1882 * dismount_volume() so we can trust it. */ 1883 if (atomic_read(&osb->vol_state) == VOLUME_DISABLED) { 1884 mlog(0, "mount error, exiting!\n"); 1885 return -EBUSY; 1886 } 1887 1888 return 0; 1889 } 1890 1891 static int ocfs2_commit_thread(void *arg) 1892 { 1893 int status; 1894 struct ocfs2_super *osb = arg; 1895 struct ocfs2_journal *journal = osb->journal; 1896 1897 /* we can trust j_num_trans here because _should_stop() is only set in 1898 * shutdown and nobody other than ourselves should be able to start 1899 * transactions. committing on shutdown might take a few iterations 1900 * as final transactions put deleted inodes on the list */ 1901 while (!(kthread_should_stop() && 1902 atomic_read(&journal->j_num_trans) == 0)) { 1903 1904 wait_event_interruptible(osb->checkpoint_event, 1905 atomic_read(&journal->j_num_trans) 1906 || kthread_should_stop()); 1907 1908 status = ocfs2_commit_cache(osb); 1909 if (status < 0) 1910 mlog_errno(status); 1911 1912 if (kthread_should_stop() && atomic_read(&journal->j_num_trans)){ 1913 mlog(ML_KTHREAD, 1914 "commit_thread: %u transactions pending on " 1915 "shutdown\n", 1916 atomic_read(&journal->j_num_trans)); 1917 } 1918 } 1919 1920 return 0; 1921 } 1922 1923 /* Reads all the journal inodes without taking any cluster locks. Used 1924 * for hard readonly access to determine whether any journal requires 1925 * recovery. Also used to refresh the recovery generation numbers after 1926 * a journal has been recovered by another node. 1927 */ 1928 int ocfs2_check_journals_nolocks(struct ocfs2_super *osb) 1929 { 1930 int ret = 0; 1931 unsigned int slot; 1932 struct buffer_head *di_bh = NULL; 1933 struct ocfs2_dinode *di; 1934 int journal_dirty = 0; 1935 1936 for(slot = 0; slot < osb->max_slots; slot++) { 1937 ret = ocfs2_read_journal_inode(osb, slot, &di_bh, NULL); 1938 if (ret) { 1939 mlog_errno(ret); 1940 goto out; 1941 } 1942 1943 di = (struct ocfs2_dinode *) di_bh->b_data; 1944 1945 osb->slot_recovery_generations[slot] = 1946 ocfs2_get_recovery_generation(di); 1947 1948 if (le32_to_cpu(di->id1.journal1.ij_flags) & 1949 OCFS2_JOURNAL_DIRTY_FL) 1950 journal_dirty = 1; 1951 1952 brelse(di_bh); 1953 di_bh = NULL; 1954 } 1955 1956 out: 1957 if (journal_dirty) 1958 ret = -EROFS; 1959 return ret; 1960 } 1961