xref: /openbmc/linux/fs/ocfs2/aops.c (revision 759273c3c429ffbd8f24655fd0480cd408a1804c)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/fs.h>
7 #include <linux/slab.h>
8 #include <linux/highmem.h>
9 #include <linux/pagemap.h>
10 #include <asm/byteorder.h>
11 #include <linux/swap.h>
12 #include <linux/mpage.h>
13 #include <linux/quotaops.h>
14 #include <linux/blkdev.h>
15 #include <linux/uio.h>
16 #include <linux/mm.h>
17 
18 #include <cluster/masklog.h>
19 
20 #include "ocfs2.h"
21 
22 #include "alloc.h"
23 #include "aops.h"
24 #include "dlmglue.h"
25 #include "extent_map.h"
26 #include "file.h"
27 #include "inode.h"
28 #include "journal.h"
29 #include "suballoc.h"
30 #include "super.h"
31 #include "symlink.h"
32 #include "refcounttree.h"
33 #include "ocfs2_trace.h"
34 
35 #include "buffer_head_io.h"
36 #include "dir.h"
37 #include "namei.h"
38 #include "sysfile.h"
39 
40 static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
41 				   struct buffer_head *bh_result, int create)
42 {
43 	int err = -EIO;
44 	int status;
45 	struct ocfs2_dinode *fe = NULL;
46 	struct buffer_head *bh = NULL;
47 	struct buffer_head *buffer_cache_bh = NULL;
48 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
49 	void *kaddr;
50 
51 	trace_ocfs2_symlink_get_block(
52 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
53 			(unsigned long long)iblock, bh_result, create);
54 
55 	BUG_ON(ocfs2_inode_is_fast_symlink(inode));
56 
57 	if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
58 		mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
59 		     (unsigned long long)iblock);
60 		goto bail;
61 	}
62 
63 	status = ocfs2_read_inode_block(inode, &bh);
64 	if (status < 0) {
65 		mlog_errno(status);
66 		goto bail;
67 	}
68 	fe = (struct ocfs2_dinode *) bh->b_data;
69 
70 	if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
71 						    le32_to_cpu(fe->i_clusters))) {
72 		err = -ENOMEM;
73 		mlog(ML_ERROR, "block offset is outside the allocated size: "
74 		     "%llu\n", (unsigned long long)iblock);
75 		goto bail;
76 	}
77 
78 	/* We don't use the page cache to create symlink data, so if
79 	 * need be, copy it over from the buffer cache. */
80 	if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
81 		u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
82 			    iblock;
83 		buffer_cache_bh = sb_getblk(osb->sb, blkno);
84 		if (!buffer_cache_bh) {
85 			err = -ENOMEM;
86 			mlog(ML_ERROR, "couldn't getblock for symlink!\n");
87 			goto bail;
88 		}
89 
90 		/* we haven't locked out transactions, so a commit
91 		 * could've happened. Since we've got a reference on
92 		 * the bh, even if it commits while we're doing the
93 		 * copy, the data is still good. */
94 		if (buffer_jbd(buffer_cache_bh)
95 		    && ocfs2_inode_is_new(inode)) {
96 			kaddr = kmap_atomic(bh_result->b_page);
97 			if (!kaddr) {
98 				mlog(ML_ERROR, "couldn't kmap!\n");
99 				goto bail;
100 			}
101 			memcpy(kaddr + (bh_result->b_size * iblock),
102 			       buffer_cache_bh->b_data,
103 			       bh_result->b_size);
104 			kunmap_atomic(kaddr);
105 			set_buffer_uptodate(bh_result);
106 		}
107 		brelse(buffer_cache_bh);
108 	}
109 
110 	map_bh(bh_result, inode->i_sb,
111 	       le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
112 
113 	err = 0;
114 
115 bail:
116 	brelse(bh);
117 
118 	return err;
119 }
120 
121 static int ocfs2_lock_get_block(struct inode *inode, sector_t iblock,
122 		    struct buffer_head *bh_result, int create)
123 {
124 	int ret = 0;
125 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
126 
127 	down_read(&oi->ip_alloc_sem);
128 	ret = ocfs2_get_block(inode, iblock, bh_result, create);
129 	up_read(&oi->ip_alloc_sem);
130 
131 	return ret;
132 }
133 
134 int ocfs2_get_block(struct inode *inode, sector_t iblock,
135 		    struct buffer_head *bh_result, int create)
136 {
137 	int err = 0;
138 	unsigned int ext_flags;
139 	u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
140 	u64 p_blkno, count, past_eof;
141 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
142 
143 	trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno,
144 			      (unsigned long long)iblock, bh_result, create);
145 
146 	if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
147 		mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
148 		     inode, inode->i_ino);
149 
150 	if (S_ISLNK(inode->i_mode)) {
151 		/* this always does I/O for some reason. */
152 		err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
153 		goto bail;
154 	}
155 
156 	err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
157 					  &ext_flags);
158 	if (err) {
159 		mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
160 		     "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
161 		     (unsigned long long)p_blkno);
162 		goto bail;
163 	}
164 
165 	if (max_blocks < count)
166 		count = max_blocks;
167 
168 	/*
169 	 * ocfs2 never allocates in this function - the only time we
170 	 * need to use BH_New is when we're extending i_size on a file
171 	 * system which doesn't support holes, in which case BH_New
172 	 * allows __block_write_begin() to zero.
173 	 *
174 	 * If we see this on a sparse file system, then a truncate has
175 	 * raced us and removed the cluster. In this case, we clear
176 	 * the buffers dirty and uptodate bits and let the buffer code
177 	 * ignore it as a hole.
178 	 */
179 	if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
180 		clear_buffer_dirty(bh_result);
181 		clear_buffer_uptodate(bh_result);
182 		goto bail;
183 	}
184 
185 	/* Treat the unwritten extent as a hole for zeroing purposes. */
186 	if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
187 		map_bh(bh_result, inode->i_sb, p_blkno);
188 
189 	bh_result->b_size = count << inode->i_blkbits;
190 
191 	if (!ocfs2_sparse_alloc(osb)) {
192 		if (p_blkno == 0) {
193 			err = -EIO;
194 			mlog(ML_ERROR,
195 			     "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
196 			     (unsigned long long)iblock,
197 			     (unsigned long long)p_blkno,
198 			     (unsigned long long)OCFS2_I(inode)->ip_blkno);
199 			mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
200 			dump_stack();
201 			goto bail;
202 		}
203 	}
204 
205 	past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
206 
207 	trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno,
208 				  (unsigned long long)past_eof);
209 	if (create && (iblock >= past_eof))
210 		set_buffer_new(bh_result);
211 
212 bail:
213 	if (err < 0)
214 		err = -EIO;
215 
216 	return err;
217 }
218 
219 int ocfs2_read_inline_data(struct inode *inode, struct page *page,
220 			   struct buffer_head *di_bh)
221 {
222 	void *kaddr;
223 	loff_t size;
224 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
225 
226 	if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
227 		ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag\n",
228 			    (unsigned long long)OCFS2_I(inode)->ip_blkno);
229 		return -EROFS;
230 	}
231 
232 	size = i_size_read(inode);
233 
234 	if (size > PAGE_SIZE ||
235 	    size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
236 		ocfs2_error(inode->i_sb,
237 			    "Inode %llu has with inline data has bad size: %Lu\n",
238 			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
239 			    (unsigned long long)size);
240 		return -EROFS;
241 	}
242 
243 	kaddr = kmap_atomic(page);
244 	if (size)
245 		memcpy(kaddr, di->id2.i_data.id_data, size);
246 	/* Clear the remaining part of the page */
247 	memset(kaddr + size, 0, PAGE_SIZE - size);
248 	flush_dcache_page(page);
249 	kunmap_atomic(kaddr);
250 
251 	SetPageUptodate(page);
252 
253 	return 0;
254 }
255 
256 static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
257 {
258 	int ret;
259 	struct buffer_head *di_bh = NULL;
260 
261 	BUG_ON(!PageLocked(page));
262 	BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
263 
264 	ret = ocfs2_read_inode_block(inode, &di_bh);
265 	if (ret) {
266 		mlog_errno(ret);
267 		goto out;
268 	}
269 
270 	ret = ocfs2_read_inline_data(inode, page, di_bh);
271 out:
272 	unlock_page(page);
273 
274 	brelse(di_bh);
275 	return ret;
276 }
277 
278 static int ocfs2_read_folio(struct file *file, struct folio *folio)
279 {
280 	struct page *page = &folio->page;
281 	struct inode *inode = page->mapping->host;
282 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
283 	loff_t start = (loff_t)page->index << PAGE_SHIFT;
284 	int ret, unlock = 1;
285 
286 	trace_ocfs2_readpage((unsigned long long)oi->ip_blkno,
287 			     (page ? page->index : 0));
288 
289 	ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
290 	if (ret != 0) {
291 		if (ret == AOP_TRUNCATED_PAGE)
292 			unlock = 0;
293 		mlog_errno(ret);
294 		goto out;
295 	}
296 
297 	if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
298 		/*
299 		 * Unlock the page and cycle ip_alloc_sem so that we don't
300 		 * busyloop waiting for ip_alloc_sem to unlock
301 		 */
302 		ret = AOP_TRUNCATED_PAGE;
303 		unlock_page(page);
304 		unlock = 0;
305 		down_read(&oi->ip_alloc_sem);
306 		up_read(&oi->ip_alloc_sem);
307 		goto out_inode_unlock;
308 	}
309 
310 	/*
311 	 * i_size might have just been updated as we grabed the meta lock.  We
312 	 * might now be discovering a truncate that hit on another node.
313 	 * block_read_full_folio->get_block freaks out if it is asked to read
314 	 * beyond the end of a file, so we check here.  Callers
315 	 * (generic_file_read, vm_ops->fault) are clever enough to check i_size
316 	 * and notice that the page they just read isn't needed.
317 	 *
318 	 * XXX sys_readahead() seems to get that wrong?
319 	 */
320 	if (start >= i_size_read(inode)) {
321 		zero_user(page, 0, PAGE_SIZE);
322 		SetPageUptodate(page);
323 		ret = 0;
324 		goto out_alloc;
325 	}
326 
327 	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
328 		ret = ocfs2_readpage_inline(inode, page);
329 	else
330 		ret = block_read_full_folio(page_folio(page), ocfs2_get_block);
331 	unlock = 0;
332 
333 out_alloc:
334 	up_read(&oi->ip_alloc_sem);
335 out_inode_unlock:
336 	ocfs2_inode_unlock(inode, 0);
337 out:
338 	if (unlock)
339 		unlock_page(page);
340 	return ret;
341 }
342 
343 /*
344  * This is used only for read-ahead. Failures or difficult to handle
345  * situations are safe to ignore.
346  *
347  * Right now, we don't bother with BH_Boundary - in-inode extent lists
348  * are quite large (243 extents on 4k blocks), so most inodes don't
349  * grow out to a tree. If need be, detecting boundary extents could
350  * trivially be added in a future version of ocfs2_get_block().
351  */
352 static void ocfs2_readahead(struct readahead_control *rac)
353 {
354 	int ret;
355 	struct inode *inode = rac->mapping->host;
356 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
357 
358 	/*
359 	 * Use the nonblocking flag for the dlm code to avoid page
360 	 * lock inversion, but don't bother with retrying.
361 	 */
362 	ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
363 	if (ret)
364 		return;
365 
366 	if (down_read_trylock(&oi->ip_alloc_sem) == 0)
367 		goto out_unlock;
368 
369 	/*
370 	 * Don't bother with inline-data. There isn't anything
371 	 * to read-ahead in that case anyway...
372 	 */
373 	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
374 		goto out_up;
375 
376 	/*
377 	 * Check whether a remote node truncated this file - we just
378 	 * drop out in that case as it's not worth handling here.
379 	 */
380 	if (readahead_pos(rac) >= i_size_read(inode))
381 		goto out_up;
382 
383 	mpage_readahead(rac, ocfs2_get_block);
384 
385 out_up:
386 	up_read(&oi->ip_alloc_sem);
387 out_unlock:
388 	ocfs2_inode_unlock(inode, 0);
389 }
390 
391 /* Note: Because we don't support holes, our allocation has
392  * already happened (allocation writes zeros to the file data)
393  * so we don't have to worry about ordered writes in
394  * ocfs2_writepage.
395  *
396  * ->writepage is called during the process of invalidating the page cache
397  * during blocked lock processing.  It can't block on any cluster locks
398  * to during block mapping.  It's relying on the fact that the block
399  * mapping can't have disappeared under the dirty pages that it is
400  * being asked to write back.
401  */
402 static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
403 {
404 	trace_ocfs2_writepage(
405 		(unsigned long long)OCFS2_I(page->mapping->host)->ip_blkno,
406 		page->index);
407 
408 	return block_write_full_page(page, ocfs2_get_block, wbc);
409 }
410 
411 /* Taken from ext3. We don't necessarily need the full blown
412  * functionality yet, but IMHO it's better to cut and paste the whole
413  * thing so we can avoid introducing our own bugs (and easily pick up
414  * their fixes when they happen) --Mark */
415 int walk_page_buffers(	handle_t *handle,
416 			struct buffer_head *head,
417 			unsigned from,
418 			unsigned to,
419 			int *partial,
420 			int (*fn)(	handle_t *handle,
421 					struct buffer_head *bh))
422 {
423 	struct buffer_head *bh;
424 	unsigned block_start, block_end;
425 	unsigned blocksize = head->b_size;
426 	int err, ret = 0;
427 	struct buffer_head *next;
428 
429 	for (	bh = head, block_start = 0;
430 		ret == 0 && (bh != head || !block_start);
431 	    	block_start = block_end, bh = next)
432 	{
433 		next = bh->b_this_page;
434 		block_end = block_start + blocksize;
435 		if (block_end <= from || block_start >= to) {
436 			if (partial && !buffer_uptodate(bh))
437 				*partial = 1;
438 			continue;
439 		}
440 		err = (*fn)(handle, bh);
441 		if (!ret)
442 			ret = err;
443 	}
444 	return ret;
445 }
446 
447 static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
448 {
449 	sector_t status;
450 	u64 p_blkno = 0;
451 	int err = 0;
452 	struct inode *inode = mapping->host;
453 
454 	trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno,
455 			 (unsigned long long)block);
456 
457 	/*
458 	 * The swap code (ab-)uses ->bmap to get a block mapping and then
459 	 * bypasseѕ the file system for actual I/O.  We really can't allow
460 	 * that on refcounted inodes, so we have to skip out here.  And yes,
461 	 * 0 is the magic code for a bmap error..
462 	 */
463 	if (ocfs2_is_refcount_inode(inode))
464 		return 0;
465 
466 	/* We don't need to lock journal system files, since they aren't
467 	 * accessed concurrently from multiple nodes.
468 	 */
469 	if (!INODE_JOURNAL(inode)) {
470 		err = ocfs2_inode_lock(inode, NULL, 0);
471 		if (err) {
472 			if (err != -ENOENT)
473 				mlog_errno(err);
474 			goto bail;
475 		}
476 		down_read(&OCFS2_I(inode)->ip_alloc_sem);
477 	}
478 
479 	if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
480 		err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
481 						  NULL);
482 
483 	if (!INODE_JOURNAL(inode)) {
484 		up_read(&OCFS2_I(inode)->ip_alloc_sem);
485 		ocfs2_inode_unlock(inode, 0);
486 	}
487 
488 	if (err) {
489 		mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
490 		     (unsigned long long)block);
491 		mlog_errno(err);
492 		goto bail;
493 	}
494 
495 bail:
496 	status = err ? 0 : p_blkno;
497 
498 	return status;
499 }
500 
501 static bool ocfs2_release_folio(struct folio *folio, gfp_t wait)
502 {
503 	if (!folio_buffers(folio))
504 		return false;
505 	return try_to_free_buffers(folio);
506 }
507 
508 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
509 					    u32 cpos,
510 					    unsigned int *start,
511 					    unsigned int *end)
512 {
513 	unsigned int cluster_start = 0, cluster_end = PAGE_SIZE;
514 
515 	if (unlikely(PAGE_SHIFT > osb->s_clustersize_bits)) {
516 		unsigned int cpp;
517 
518 		cpp = 1 << (PAGE_SHIFT - osb->s_clustersize_bits);
519 
520 		cluster_start = cpos % cpp;
521 		cluster_start = cluster_start << osb->s_clustersize_bits;
522 
523 		cluster_end = cluster_start + osb->s_clustersize;
524 	}
525 
526 	BUG_ON(cluster_start > PAGE_SIZE);
527 	BUG_ON(cluster_end > PAGE_SIZE);
528 
529 	if (start)
530 		*start = cluster_start;
531 	if (end)
532 		*end = cluster_end;
533 }
534 
535 /*
536  * 'from' and 'to' are the region in the page to avoid zeroing.
537  *
538  * If pagesize > clustersize, this function will avoid zeroing outside
539  * of the cluster boundary.
540  *
541  * from == to == 0 is code for "zero the entire cluster region"
542  */
543 static void ocfs2_clear_page_regions(struct page *page,
544 				     struct ocfs2_super *osb, u32 cpos,
545 				     unsigned from, unsigned to)
546 {
547 	void *kaddr;
548 	unsigned int cluster_start, cluster_end;
549 
550 	ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
551 
552 	kaddr = kmap_atomic(page);
553 
554 	if (from || to) {
555 		if (from > cluster_start)
556 			memset(kaddr + cluster_start, 0, from - cluster_start);
557 		if (to < cluster_end)
558 			memset(kaddr + to, 0, cluster_end - to);
559 	} else {
560 		memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
561 	}
562 
563 	kunmap_atomic(kaddr);
564 }
565 
566 /*
567  * Nonsparse file systems fully allocate before we get to the write
568  * code. This prevents ocfs2_write() from tagging the write as an
569  * allocating one, which means ocfs2_map_page_blocks() might try to
570  * read-in the blocks at the tail of our file. Avoid reading them by
571  * testing i_size against each block offset.
572  */
573 static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
574 				 unsigned int block_start)
575 {
576 	u64 offset = page_offset(page) + block_start;
577 
578 	if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
579 		return 1;
580 
581 	if (i_size_read(inode) > offset)
582 		return 1;
583 
584 	return 0;
585 }
586 
587 /*
588  * Some of this taken from __block_write_begin(). We already have our
589  * mapping by now though, and the entire write will be allocating or
590  * it won't, so not much need to use BH_New.
591  *
592  * This will also skip zeroing, which is handled externally.
593  */
594 int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
595 			  struct inode *inode, unsigned int from,
596 			  unsigned int to, int new)
597 {
598 	int ret = 0;
599 	struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
600 	unsigned int block_end, block_start;
601 	unsigned int bsize = i_blocksize(inode);
602 
603 	if (!page_has_buffers(page))
604 		create_empty_buffers(page, bsize, 0);
605 
606 	head = page_buffers(page);
607 	for (bh = head, block_start = 0; bh != head || !block_start;
608 	     bh = bh->b_this_page, block_start += bsize) {
609 		block_end = block_start + bsize;
610 
611 		clear_buffer_new(bh);
612 
613 		/*
614 		 * Ignore blocks outside of our i/o range -
615 		 * they may belong to unallocated clusters.
616 		 */
617 		if (block_start >= to || block_end <= from) {
618 			if (PageUptodate(page))
619 				set_buffer_uptodate(bh);
620 			continue;
621 		}
622 
623 		/*
624 		 * For an allocating write with cluster size >= page
625 		 * size, we always write the entire page.
626 		 */
627 		if (new)
628 			set_buffer_new(bh);
629 
630 		if (!buffer_mapped(bh)) {
631 			map_bh(bh, inode->i_sb, *p_blkno);
632 			clean_bdev_bh_alias(bh);
633 		}
634 
635 		if (PageUptodate(page)) {
636 			set_buffer_uptodate(bh);
637 		} else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
638 			   !buffer_new(bh) &&
639 			   ocfs2_should_read_blk(inode, page, block_start) &&
640 			   (block_start < from || block_end > to)) {
641 			ll_rw_block(REQ_OP_READ, 0, 1, &bh);
642 			*wait_bh++=bh;
643 		}
644 
645 		*p_blkno = *p_blkno + 1;
646 	}
647 
648 	/*
649 	 * If we issued read requests - let them complete.
650 	 */
651 	while(wait_bh > wait) {
652 		wait_on_buffer(*--wait_bh);
653 		if (!buffer_uptodate(*wait_bh))
654 			ret = -EIO;
655 	}
656 
657 	if (ret == 0 || !new)
658 		return ret;
659 
660 	/*
661 	 * If we get -EIO above, zero out any newly allocated blocks
662 	 * to avoid exposing stale data.
663 	 */
664 	bh = head;
665 	block_start = 0;
666 	do {
667 		block_end = block_start + bsize;
668 		if (block_end <= from)
669 			goto next_bh;
670 		if (block_start >= to)
671 			break;
672 
673 		zero_user(page, block_start, bh->b_size);
674 		set_buffer_uptodate(bh);
675 		mark_buffer_dirty(bh);
676 
677 next_bh:
678 		block_start = block_end;
679 		bh = bh->b_this_page;
680 	} while (bh != head);
681 
682 	return ret;
683 }
684 
685 #if (PAGE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
686 #define OCFS2_MAX_CTXT_PAGES	1
687 #else
688 #define OCFS2_MAX_CTXT_PAGES	(OCFS2_MAX_CLUSTERSIZE / PAGE_SIZE)
689 #endif
690 
691 #define OCFS2_MAX_CLUSTERS_PER_PAGE	(PAGE_SIZE / OCFS2_MIN_CLUSTERSIZE)
692 
693 struct ocfs2_unwritten_extent {
694 	struct list_head	ue_node;
695 	struct list_head	ue_ip_node;
696 	u32			ue_cpos;
697 	u32			ue_phys;
698 };
699 
700 /*
701  * Describe the state of a single cluster to be written to.
702  */
703 struct ocfs2_write_cluster_desc {
704 	u32		c_cpos;
705 	u32		c_phys;
706 	/*
707 	 * Give this a unique field because c_phys eventually gets
708 	 * filled.
709 	 */
710 	unsigned	c_new;
711 	unsigned	c_clear_unwritten;
712 	unsigned	c_needs_zero;
713 };
714 
715 struct ocfs2_write_ctxt {
716 	/* Logical cluster position / len of write */
717 	u32				w_cpos;
718 	u32				w_clen;
719 
720 	/* First cluster allocated in a nonsparse extend */
721 	u32				w_first_new_cpos;
722 
723 	/* Type of caller. Must be one of buffer, mmap, direct.  */
724 	ocfs2_write_type_t		w_type;
725 
726 	struct ocfs2_write_cluster_desc	w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
727 
728 	/*
729 	 * This is true if page_size > cluster_size.
730 	 *
731 	 * It triggers a set of special cases during write which might
732 	 * have to deal with allocating writes to partial pages.
733 	 */
734 	unsigned int			w_large_pages;
735 
736 	/*
737 	 * Pages involved in this write.
738 	 *
739 	 * w_target_page is the page being written to by the user.
740 	 *
741 	 * w_pages is an array of pages which always contains
742 	 * w_target_page, and in the case of an allocating write with
743 	 * page_size < cluster size, it will contain zero'd and mapped
744 	 * pages adjacent to w_target_page which need to be written
745 	 * out in so that future reads from that region will get
746 	 * zero's.
747 	 */
748 	unsigned int			w_num_pages;
749 	struct page			*w_pages[OCFS2_MAX_CTXT_PAGES];
750 	struct page			*w_target_page;
751 
752 	/*
753 	 * w_target_locked is used for page_mkwrite path indicating no unlocking
754 	 * against w_target_page in ocfs2_write_end_nolock.
755 	 */
756 	unsigned int			w_target_locked:1;
757 
758 	/*
759 	 * ocfs2_write_end() uses this to know what the real range to
760 	 * write in the target should be.
761 	 */
762 	unsigned int			w_target_from;
763 	unsigned int			w_target_to;
764 
765 	/*
766 	 * We could use journal_current_handle() but this is cleaner,
767 	 * IMHO -Mark
768 	 */
769 	handle_t			*w_handle;
770 
771 	struct buffer_head		*w_di_bh;
772 
773 	struct ocfs2_cached_dealloc_ctxt w_dealloc;
774 
775 	struct list_head		w_unwritten_list;
776 	unsigned int			w_unwritten_count;
777 };
778 
779 void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
780 {
781 	int i;
782 
783 	for(i = 0; i < num_pages; i++) {
784 		if (pages[i]) {
785 			unlock_page(pages[i]);
786 			mark_page_accessed(pages[i]);
787 			put_page(pages[i]);
788 		}
789 	}
790 }
791 
792 static void ocfs2_unlock_pages(struct ocfs2_write_ctxt *wc)
793 {
794 	int i;
795 
796 	/*
797 	 * w_target_locked is only set to true in the page_mkwrite() case.
798 	 * The intent is to allow us to lock the target page from write_begin()
799 	 * to write_end(). The caller must hold a ref on w_target_page.
800 	 */
801 	if (wc->w_target_locked) {
802 		BUG_ON(!wc->w_target_page);
803 		for (i = 0; i < wc->w_num_pages; i++) {
804 			if (wc->w_target_page == wc->w_pages[i]) {
805 				wc->w_pages[i] = NULL;
806 				break;
807 			}
808 		}
809 		mark_page_accessed(wc->w_target_page);
810 		put_page(wc->w_target_page);
811 	}
812 	ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
813 }
814 
815 static void ocfs2_free_unwritten_list(struct inode *inode,
816 				 struct list_head *head)
817 {
818 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
819 	struct ocfs2_unwritten_extent *ue = NULL, *tmp = NULL;
820 
821 	list_for_each_entry_safe(ue, tmp, head, ue_node) {
822 		list_del(&ue->ue_node);
823 		spin_lock(&oi->ip_lock);
824 		list_del(&ue->ue_ip_node);
825 		spin_unlock(&oi->ip_lock);
826 		kfree(ue);
827 	}
828 }
829 
830 static void ocfs2_free_write_ctxt(struct inode *inode,
831 				  struct ocfs2_write_ctxt *wc)
832 {
833 	ocfs2_free_unwritten_list(inode, &wc->w_unwritten_list);
834 	ocfs2_unlock_pages(wc);
835 	brelse(wc->w_di_bh);
836 	kfree(wc);
837 }
838 
839 static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
840 				  struct ocfs2_super *osb, loff_t pos,
841 				  unsigned len, ocfs2_write_type_t type,
842 				  struct buffer_head *di_bh)
843 {
844 	u32 cend;
845 	struct ocfs2_write_ctxt *wc;
846 
847 	wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
848 	if (!wc)
849 		return -ENOMEM;
850 
851 	wc->w_cpos = pos >> osb->s_clustersize_bits;
852 	wc->w_first_new_cpos = UINT_MAX;
853 	cend = (pos + len - 1) >> osb->s_clustersize_bits;
854 	wc->w_clen = cend - wc->w_cpos + 1;
855 	get_bh(di_bh);
856 	wc->w_di_bh = di_bh;
857 	wc->w_type = type;
858 
859 	if (unlikely(PAGE_SHIFT > osb->s_clustersize_bits))
860 		wc->w_large_pages = 1;
861 	else
862 		wc->w_large_pages = 0;
863 
864 	ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
865 	INIT_LIST_HEAD(&wc->w_unwritten_list);
866 
867 	*wcp = wc;
868 
869 	return 0;
870 }
871 
872 /*
873  * If a page has any new buffers, zero them out here, and mark them uptodate
874  * and dirty so they'll be written out (in order to prevent uninitialised
875  * block data from leaking). And clear the new bit.
876  */
877 static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
878 {
879 	unsigned int block_start, block_end;
880 	struct buffer_head *head, *bh;
881 
882 	BUG_ON(!PageLocked(page));
883 	if (!page_has_buffers(page))
884 		return;
885 
886 	bh = head = page_buffers(page);
887 	block_start = 0;
888 	do {
889 		block_end = block_start + bh->b_size;
890 
891 		if (buffer_new(bh)) {
892 			if (block_end > from && block_start < to) {
893 				if (!PageUptodate(page)) {
894 					unsigned start, end;
895 
896 					start = max(from, block_start);
897 					end = min(to, block_end);
898 
899 					zero_user_segment(page, start, end);
900 					set_buffer_uptodate(bh);
901 				}
902 
903 				clear_buffer_new(bh);
904 				mark_buffer_dirty(bh);
905 			}
906 		}
907 
908 		block_start = block_end;
909 		bh = bh->b_this_page;
910 	} while (bh != head);
911 }
912 
913 /*
914  * Only called when we have a failure during allocating write to write
915  * zero's to the newly allocated region.
916  */
917 static void ocfs2_write_failure(struct inode *inode,
918 				struct ocfs2_write_ctxt *wc,
919 				loff_t user_pos, unsigned user_len)
920 {
921 	int i;
922 	unsigned from = user_pos & (PAGE_SIZE - 1),
923 		to = user_pos + user_len;
924 	struct page *tmppage;
925 
926 	if (wc->w_target_page)
927 		ocfs2_zero_new_buffers(wc->w_target_page, from, to);
928 
929 	for(i = 0; i < wc->w_num_pages; i++) {
930 		tmppage = wc->w_pages[i];
931 
932 		if (tmppage && page_has_buffers(tmppage)) {
933 			if (ocfs2_should_order_data(inode))
934 				ocfs2_jbd2_inode_add_write(wc->w_handle, inode,
935 							   user_pos, user_len);
936 
937 			block_commit_write(tmppage, from, to);
938 		}
939 	}
940 }
941 
942 static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
943 					struct ocfs2_write_ctxt *wc,
944 					struct page *page, u32 cpos,
945 					loff_t user_pos, unsigned user_len,
946 					int new)
947 {
948 	int ret;
949 	unsigned int map_from = 0, map_to = 0;
950 	unsigned int cluster_start, cluster_end;
951 	unsigned int user_data_from = 0, user_data_to = 0;
952 
953 	ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
954 					&cluster_start, &cluster_end);
955 
956 	/* treat the write as new if the a hole/lseek spanned across
957 	 * the page boundary.
958 	 */
959 	new = new | ((i_size_read(inode) <= page_offset(page)) &&
960 			(page_offset(page) <= user_pos));
961 
962 	if (page == wc->w_target_page) {
963 		map_from = user_pos & (PAGE_SIZE - 1);
964 		map_to = map_from + user_len;
965 
966 		if (new)
967 			ret = ocfs2_map_page_blocks(page, p_blkno, inode,
968 						    cluster_start, cluster_end,
969 						    new);
970 		else
971 			ret = ocfs2_map_page_blocks(page, p_blkno, inode,
972 						    map_from, map_to, new);
973 		if (ret) {
974 			mlog_errno(ret);
975 			goto out;
976 		}
977 
978 		user_data_from = map_from;
979 		user_data_to = map_to;
980 		if (new) {
981 			map_from = cluster_start;
982 			map_to = cluster_end;
983 		}
984 	} else {
985 		/*
986 		 * If we haven't allocated the new page yet, we
987 		 * shouldn't be writing it out without copying user
988 		 * data. This is likely a math error from the caller.
989 		 */
990 		BUG_ON(!new);
991 
992 		map_from = cluster_start;
993 		map_to = cluster_end;
994 
995 		ret = ocfs2_map_page_blocks(page, p_blkno, inode,
996 					    cluster_start, cluster_end, new);
997 		if (ret) {
998 			mlog_errno(ret);
999 			goto out;
1000 		}
1001 	}
1002 
1003 	/*
1004 	 * Parts of newly allocated pages need to be zero'd.
1005 	 *
1006 	 * Above, we have also rewritten 'to' and 'from' - as far as
1007 	 * the rest of the function is concerned, the entire cluster
1008 	 * range inside of a page needs to be written.
1009 	 *
1010 	 * We can skip this if the page is up to date - it's already
1011 	 * been zero'd from being read in as a hole.
1012 	 */
1013 	if (new && !PageUptodate(page))
1014 		ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1015 					 cpos, user_data_from, user_data_to);
1016 
1017 	flush_dcache_page(page);
1018 
1019 out:
1020 	return ret;
1021 }
1022 
1023 /*
1024  * This function will only grab one clusters worth of pages.
1025  */
1026 static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1027 				      struct ocfs2_write_ctxt *wc,
1028 				      u32 cpos, loff_t user_pos,
1029 				      unsigned user_len, int new,
1030 				      struct page *mmap_page)
1031 {
1032 	int ret = 0, i;
1033 	unsigned long start, target_index, end_index, index;
1034 	struct inode *inode = mapping->host;
1035 	loff_t last_byte;
1036 
1037 	target_index = user_pos >> PAGE_SHIFT;
1038 
1039 	/*
1040 	 * Figure out how many pages we'll be manipulating here. For
1041 	 * non allocating write, we just change the one
1042 	 * page. Otherwise, we'll need a whole clusters worth.  If we're
1043 	 * writing past i_size, we only need enough pages to cover the
1044 	 * last page of the write.
1045 	 */
1046 	if (new) {
1047 		wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1048 		start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
1049 		/*
1050 		 * We need the index *past* the last page we could possibly
1051 		 * touch.  This is the page past the end of the write or
1052 		 * i_size, whichever is greater.
1053 		 */
1054 		last_byte = max(user_pos + user_len, i_size_read(inode));
1055 		BUG_ON(last_byte < 1);
1056 		end_index = ((last_byte - 1) >> PAGE_SHIFT) + 1;
1057 		if ((start + wc->w_num_pages) > end_index)
1058 			wc->w_num_pages = end_index - start;
1059 	} else {
1060 		wc->w_num_pages = 1;
1061 		start = target_index;
1062 	}
1063 	end_index = (user_pos + user_len - 1) >> PAGE_SHIFT;
1064 
1065 	for(i = 0; i < wc->w_num_pages; i++) {
1066 		index = start + i;
1067 
1068 		if (index >= target_index && index <= end_index &&
1069 		    wc->w_type == OCFS2_WRITE_MMAP) {
1070 			/*
1071 			 * ocfs2_pagemkwrite() is a little different
1072 			 * and wants us to directly use the page
1073 			 * passed in.
1074 			 */
1075 			lock_page(mmap_page);
1076 
1077 			/* Exit and let the caller retry */
1078 			if (mmap_page->mapping != mapping) {
1079 				WARN_ON(mmap_page->mapping);
1080 				unlock_page(mmap_page);
1081 				ret = -EAGAIN;
1082 				goto out;
1083 			}
1084 
1085 			get_page(mmap_page);
1086 			wc->w_pages[i] = mmap_page;
1087 			wc->w_target_locked = true;
1088 		} else if (index >= target_index && index <= end_index &&
1089 			   wc->w_type == OCFS2_WRITE_DIRECT) {
1090 			/* Direct write has no mapping page. */
1091 			wc->w_pages[i] = NULL;
1092 			continue;
1093 		} else {
1094 			wc->w_pages[i] = find_or_create_page(mapping, index,
1095 							     GFP_NOFS);
1096 			if (!wc->w_pages[i]) {
1097 				ret = -ENOMEM;
1098 				mlog_errno(ret);
1099 				goto out;
1100 			}
1101 		}
1102 		wait_for_stable_page(wc->w_pages[i]);
1103 
1104 		if (index == target_index)
1105 			wc->w_target_page = wc->w_pages[i];
1106 	}
1107 out:
1108 	if (ret)
1109 		wc->w_target_locked = false;
1110 	return ret;
1111 }
1112 
1113 /*
1114  * Prepare a single cluster for write one cluster into the file.
1115  */
1116 static int ocfs2_write_cluster(struct address_space *mapping,
1117 			       u32 *phys, unsigned int new,
1118 			       unsigned int clear_unwritten,
1119 			       unsigned int should_zero,
1120 			       struct ocfs2_alloc_context *data_ac,
1121 			       struct ocfs2_alloc_context *meta_ac,
1122 			       struct ocfs2_write_ctxt *wc, u32 cpos,
1123 			       loff_t user_pos, unsigned user_len)
1124 {
1125 	int ret, i;
1126 	u64 p_blkno;
1127 	struct inode *inode = mapping->host;
1128 	struct ocfs2_extent_tree et;
1129 	int bpc = ocfs2_clusters_to_blocks(inode->i_sb, 1);
1130 
1131 	if (new) {
1132 		u32 tmp_pos;
1133 
1134 		/*
1135 		 * This is safe to call with the page locks - it won't take
1136 		 * any additional semaphores or cluster locks.
1137 		 */
1138 		tmp_pos = cpos;
1139 		ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1140 					   &tmp_pos, 1, !clear_unwritten,
1141 					   wc->w_di_bh, wc->w_handle,
1142 					   data_ac, meta_ac, NULL);
1143 		/*
1144 		 * This shouldn't happen because we must have already
1145 		 * calculated the correct meta data allocation required. The
1146 		 * internal tree allocation code should know how to increase
1147 		 * transaction credits itself.
1148 		 *
1149 		 * If need be, we could handle -EAGAIN for a
1150 		 * RESTART_TRANS here.
1151 		 */
1152 		mlog_bug_on_msg(ret == -EAGAIN,
1153 				"Inode %llu: EAGAIN return during allocation.\n",
1154 				(unsigned long long)OCFS2_I(inode)->ip_blkno);
1155 		if (ret < 0) {
1156 			mlog_errno(ret);
1157 			goto out;
1158 		}
1159 	} else if (clear_unwritten) {
1160 		ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1161 					      wc->w_di_bh);
1162 		ret = ocfs2_mark_extent_written(inode, &et,
1163 						wc->w_handle, cpos, 1, *phys,
1164 						meta_ac, &wc->w_dealloc);
1165 		if (ret < 0) {
1166 			mlog_errno(ret);
1167 			goto out;
1168 		}
1169 	}
1170 
1171 	/*
1172 	 * The only reason this should fail is due to an inability to
1173 	 * find the extent added.
1174 	 */
1175 	ret = ocfs2_get_clusters(inode, cpos, phys, NULL, NULL);
1176 	if (ret < 0) {
1177 		mlog(ML_ERROR, "Get physical blkno failed for inode %llu, "
1178 			    "at logical cluster %u",
1179 			    (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos);
1180 		goto out;
1181 	}
1182 
1183 	BUG_ON(*phys == 0);
1184 
1185 	p_blkno = ocfs2_clusters_to_blocks(inode->i_sb, *phys);
1186 	if (!should_zero)
1187 		p_blkno += (user_pos >> inode->i_sb->s_blocksize_bits) & (u64)(bpc - 1);
1188 
1189 	for(i = 0; i < wc->w_num_pages; i++) {
1190 		int tmpret;
1191 
1192 		/* This is the direct io target page. */
1193 		if (wc->w_pages[i] == NULL) {
1194 			p_blkno++;
1195 			continue;
1196 		}
1197 
1198 		tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1199 						      wc->w_pages[i], cpos,
1200 						      user_pos, user_len,
1201 						      should_zero);
1202 		if (tmpret) {
1203 			mlog_errno(tmpret);
1204 			if (ret == 0)
1205 				ret = tmpret;
1206 		}
1207 	}
1208 
1209 	/*
1210 	 * We only have cleanup to do in case of allocating write.
1211 	 */
1212 	if (ret && new)
1213 		ocfs2_write_failure(inode, wc, user_pos, user_len);
1214 
1215 out:
1216 
1217 	return ret;
1218 }
1219 
1220 static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1221 				       struct ocfs2_alloc_context *data_ac,
1222 				       struct ocfs2_alloc_context *meta_ac,
1223 				       struct ocfs2_write_ctxt *wc,
1224 				       loff_t pos, unsigned len)
1225 {
1226 	int ret, i;
1227 	loff_t cluster_off;
1228 	unsigned int local_len = len;
1229 	struct ocfs2_write_cluster_desc *desc;
1230 	struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
1231 
1232 	for (i = 0; i < wc->w_clen; i++) {
1233 		desc = &wc->w_desc[i];
1234 
1235 		/*
1236 		 * We have to make sure that the total write passed in
1237 		 * doesn't extend past a single cluster.
1238 		 */
1239 		local_len = len;
1240 		cluster_off = pos & (osb->s_clustersize - 1);
1241 		if ((cluster_off + local_len) > osb->s_clustersize)
1242 			local_len = osb->s_clustersize - cluster_off;
1243 
1244 		ret = ocfs2_write_cluster(mapping, &desc->c_phys,
1245 					  desc->c_new,
1246 					  desc->c_clear_unwritten,
1247 					  desc->c_needs_zero,
1248 					  data_ac, meta_ac,
1249 					  wc, desc->c_cpos, pos, local_len);
1250 		if (ret) {
1251 			mlog_errno(ret);
1252 			goto out;
1253 		}
1254 
1255 		len -= local_len;
1256 		pos += local_len;
1257 	}
1258 
1259 	ret = 0;
1260 out:
1261 	return ret;
1262 }
1263 
1264 /*
1265  * ocfs2_write_end() wants to know which parts of the target page it
1266  * should complete the write on. It's easiest to compute them ahead of
1267  * time when a more complete view of the write is available.
1268  */
1269 static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1270 					struct ocfs2_write_ctxt *wc,
1271 					loff_t pos, unsigned len, int alloc)
1272 {
1273 	struct ocfs2_write_cluster_desc *desc;
1274 
1275 	wc->w_target_from = pos & (PAGE_SIZE - 1);
1276 	wc->w_target_to = wc->w_target_from + len;
1277 
1278 	if (alloc == 0)
1279 		return;
1280 
1281 	/*
1282 	 * Allocating write - we may have different boundaries based
1283 	 * on page size and cluster size.
1284 	 *
1285 	 * NOTE: We can no longer compute one value from the other as
1286 	 * the actual write length and user provided length may be
1287 	 * different.
1288 	 */
1289 
1290 	if (wc->w_large_pages) {
1291 		/*
1292 		 * We only care about the 1st and last cluster within
1293 		 * our range and whether they should be zero'd or not. Either
1294 		 * value may be extended out to the start/end of a
1295 		 * newly allocated cluster.
1296 		 */
1297 		desc = &wc->w_desc[0];
1298 		if (desc->c_needs_zero)
1299 			ocfs2_figure_cluster_boundaries(osb,
1300 							desc->c_cpos,
1301 							&wc->w_target_from,
1302 							NULL);
1303 
1304 		desc = &wc->w_desc[wc->w_clen - 1];
1305 		if (desc->c_needs_zero)
1306 			ocfs2_figure_cluster_boundaries(osb,
1307 							desc->c_cpos,
1308 							NULL,
1309 							&wc->w_target_to);
1310 	} else {
1311 		wc->w_target_from = 0;
1312 		wc->w_target_to = PAGE_SIZE;
1313 	}
1314 }
1315 
1316 /*
1317  * Check if this extent is marked UNWRITTEN by direct io. If so, we need not to
1318  * do the zero work. And should not to clear UNWRITTEN since it will be cleared
1319  * by the direct io procedure.
1320  * If this is a new extent that allocated by direct io, we should mark it in
1321  * the ip_unwritten_list.
1322  */
1323 static int ocfs2_unwritten_check(struct inode *inode,
1324 				 struct ocfs2_write_ctxt *wc,
1325 				 struct ocfs2_write_cluster_desc *desc)
1326 {
1327 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
1328 	struct ocfs2_unwritten_extent *ue = NULL, *new = NULL;
1329 	int ret = 0;
1330 
1331 	if (!desc->c_needs_zero)
1332 		return 0;
1333 
1334 retry:
1335 	spin_lock(&oi->ip_lock);
1336 	/* Needs not to zero no metter buffer or direct. The one who is zero
1337 	 * the cluster is doing zero. And he will clear unwritten after all
1338 	 * cluster io finished. */
1339 	list_for_each_entry(ue, &oi->ip_unwritten_list, ue_ip_node) {
1340 		if (desc->c_cpos == ue->ue_cpos) {
1341 			BUG_ON(desc->c_new);
1342 			desc->c_needs_zero = 0;
1343 			desc->c_clear_unwritten = 0;
1344 			goto unlock;
1345 		}
1346 	}
1347 
1348 	if (wc->w_type != OCFS2_WRITE_DIRECT)
1349 		goto unlock;
1350 
1351 	if (new == NULL) {
1352 		spin_unlock(&oi->ip_lock);
1353 		new = kmalloc(sizeof(struct ocfs2_unwritten_extent),
1354 			     GFP_NOFS);
1355 		if (new == NULL) {
1356 			ret = -ENOMEM;
1357 			goto out;
1358 		}
1359 		goto retry;
1360 	}
1361 	/* This direct write will doing zero. */
1362 	new->ue_cpos = desc->c_cpos;
1363 	new->ue_phys = desc->c_phys;
1364 	desc->c_clear_unwritten = 0;
1365 	list_add_tail(&new->ue_ip_node, &oi->ip_unwritten_list);
1366 	list_add_tail(&new->ue_node, &wc->w_unwritten_list);
1367 	wc->w_unwritten_count++;
1368 	new = NULL;
1369 unlock:
1370 	spin_unlock(&oi->ip_lock);
1371 out:
1372 	kfree(new);
1373 	return ret;
1374 }
1375 
1376 /*
1377  * Populate each single-cluster write descriptor in the write context
1378  * with information about the i/o to be done.
1379  *
1380  * Returns the number of clusters that will have to be allocated, as
1381  * well as a worst case estimate of the number of extent records that
1382  * would have to be created during a write to an unwritten region.
1383  */
1384 static int ocfs2_populate_write_desc(struct inode *inode,
1385 				     struct ocfs2_write_ctxt *wc,
1386 				     unsigned int *clusters_to_alloc,
1387 				     unsigned int *extents_to_split)
1388 {
1389 	int ret;
1390 	struct ocfs2_write_cluster_desc *desc;
1391 	unsigned int num_clusters = 0;
1392 	unsigned int ext_flags = 0;
1393 	u32 phys = 0;
1394 	int i;
1395 
1396 	*clusters_to_alloc = 0;
1397 	*extents_to_split = 0;
1398 
1399 	for (i = 0; i < wc->w_clen; i++) {
1400 		desc = &wc->w_desc[i];
1401 		desc->c_cpos = wc->w_cpos + i;
1402 
1403 		if (num_clusters == 0) {
1404 			/*
1405 			 * Need to look up the next extent record.
1406 			 */
1407 			ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
1408 						 &num_clusters, &ext_flags);
1409 			if (ret) {
1410 				mlog_errno(ret);
1411 				goto out;
1412 			}
1413 
1414 			/* We should already CoW the refcountd extent. */
1415 			BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
1416 
1417 			/*
1418 			 * Assume worst case - that we're writing in
1419 			 * the middle of the extent.
1420 			 *
1421 			 * We can assume that the write proceeds from
1422 			 * left to right, in which case the extent
1423 			 * insert code is smart enough to coalesce the
1424 			 * next splits into the previous records created.
1425 			 */
1426 			if (ext_flags & OCFS2_EXT_UNWRITTEN)
1427 				*extents_to_split = *extents_to_split + 2;
1428 		} else if (phys) {
1429 			/*
1430 			 * Only increment phys if it doesn't describe
1431 			 * a hole.
1432 			 */
1433 			phys++;
1434 		}
1435 
1436 		/*
1437 		 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1438 		 * file that got extended.  w_first_new_cpos tells us
1439 		 * where the newly allocated clusters are so we can
1440 		 * zero them.
1441 		 */
1442 		if (desc->c_cpos >= wc->w_first_new_cpos) {
1443 			BUG_ON(phys == 0);
1444 			desc->c_needs_zero = 1;
1445 		}
1446 
1447 		desc->c_phys = phys;
1448 		if (phys == 0) {
1449 			desc->c_new = 1;
1450 			desc->c_needs_zero = 1;
1451 			desc->c_clear_unwritten = 1;
1452 			*clusters_to_alloc = *clusters_to_alloc + 1;
1453 		}
1454 
1455 		if (ext_flags & OCFS2_EXT_UNWRITTEN) {
1456 			desc->c_clear_unwritten = 1;
1457 			desc->c_needs_zero = 1;
1458 		}
1459 
1460 		ret = ocfs2_unwritten_check(inode, wc, desc);
1461 		if (ret) {
1462 			mlog_errno(ret);
1463 			goto out;
1464 		}
1465 
1466 		num_clusters--;
1467 	}
1468 
1469 	ret = 0;
1470 out:
1471 	return ret;
1472 }
1473 
1474 static int ocfs2_write_begin_inline(struct address_space *mapping,
1475 				    struct inode *inode,
1476 				    struct ocfs2_write_ctxt *wc)
1477 {
1478 	int ret;
1479 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1480 	struct page *page;
1481 	handle_t *handle;
1482 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1483 
1484 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1485 	if (IS_ERR(handle)) {
1486 		ret = PTR_ERR(handle);
1487 		mlog_errno(ret);
1488 		goto out;
1489 	}
1490 
1491 	page = find_or_create_page(mapping, 0, GFP_NOFS);
1492 	if (!page) {
1493 		ocfs2_commit_trans(osb, handle);
1494 		ret = -ENOMEM;
1495 		mlog_errno(ret);
1496 		goto out;
1497 	}
1498 	/*
1499 	 * If we don't set w_num_pages then this page won't get unlocked
1500 	 * and freed on cleanup of the write context.
1501 	 */
1502 	wc->w_pages[0] = wc->w_target_page = page;
1503 	wc->w_num_pages = 1;
1504 
1505 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1506 				      OCFS2_JOURNAL_ACCESS_WRITE);
1507 	if (ret) {
1508 		ocfs2_commit_trans(osb, handle);
1509 
1510 		mlog_errno(ret);
1511 		goto out;
1512 	}
1513 
1514 	if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1515 		ocfs2_set_inode_data_inline(inode, di);
1516 
1517 	if (!PageUptodate(page)) {
1518 		ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1519 		if (ret) {
1520 			ocfs2_commit_trans(osb, handle);
1521 
1522 			goto out;
1523 		}
1524 	}
1525 
1526 	wc->w_handle = handle;
1527 out:
1528 	return ret;
1529 }
1530 
1531 int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1532 {
1533 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1534 
1535 	if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1536 		return 1;
1537 	return 0;
1538 }
1539 
1540 static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1541 					  struct inode *inode, loff_t pos,
1542 					  unsigned len, struct page *mmap_page,
1543 					  struct ocfs2_write_ctxt *wc)
1544 {
1545 	int ret, written = 0;
1546 	loff_t end = pos + len;
1547 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
1548 	struct ocfs2_dinode *di = NULL;
1549 
1550 	trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno,
1551 					     len, (unsigned long long)pos,
1552 					     oi->ip_dyn_features);
1553 
1554 	/*
1555 	 * Handle inodes which already have inline data 1st.
1556 	 */
1557 	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1558 		if (mmap_page == NULL &&
1559 		    ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1560 			goto do_inline_write;
1561 
1562 		/*
1563 		 * The write won't fit - we have to give this inode an
1564 		 * inline extent list now.
1565 		 */
1566 		ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1567 		if (ret)
1568 			mlog_errno(ret);
1569 		goto out;
1570 	}
1571 
1572 	/*
1573 	 * Check whether the inode can accept inline data.
1574 	 */
1575 	if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1576 		return 0;
1577 
1578 	/*
1579 	 * Check whether the write can fit.
1580 	 */
1581 	di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1582 	if (mmap_page ||
1583 	    end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1584 		return 0;
1585 
1586 do_inline_write:
1587 	ret = ocfs2_write_begin_inline(mapping, inode, wc);
1588 	if (ret) {
1589 		mlog_errno(ret);
1590 		goto out;
1591 	}
1592 
1593 	/*
1594 	 * This signals to the caller that the data can be written
1595 	 * inline.
1596 	 */
1597 	written = 1;
1598 out:
1599 	return written ? written : ret;
1600 }
1601 
1602 /*
1603  * This function only does anything for file systems which can't
1604  * handle sparse files.
1605  *
1606  * What we want to do here is fill in any hole between the current end
1607  * of allocation and the end of our write. That way the rest of the
1608  * write path can treat it as an non-allocating write, which has no
1609  * special case code for sparse/nonsparse files.
1610  */
1611 static int ocfs2_expand_nonsparse_inode(struct inode *inode,
1612 					struct buffer_head *di_bh,
1613 					loff_t pos, unsigned len,
1614 					struct ocfs2_write_ctxt *wc)
1615 {
1616 	int ret;
1617 	loff_t newsize = pos + len;
1618 
1619 	BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1620 
1621 	if (newsize <= i_size_read(inode))
1622 		return 0;
1623 
1624 	ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos);
1625 	if (ret)
1626 		mlog_errno(ret);
1627 
1628 	/* There is no wc if this is call from direct. */
1629 	if (wc)
1630 		wc->w_first_new_cpos =
1631 			ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
1632 
1633 	return ret;
1634 }
1635 
1636 static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh,
1637 			   loff_t pos)
1638 {
1639 	int ret = 0;
1640 
1641 	BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1642 	if (pos > i_size_read(inode))
1643 		ret = ocfs2_zero_extend(inode, di_bh, pos);
1644 
1645 	return ret;
1646 }
1647 
1648 int ocfs2_write_begin_nolock(struct address_space *mapping,
1649 			     loff_t pos, unsigned len, ocfs2_write_type_t type,
1650 			     struct page **pagep, void **fsdata,
1651 			     struct buffer_head *di_bh, struct page *mmap_page)
1652 {
1653 	int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
1654 	unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0;
1655 	struct ocfs2_write_ctxt *wc;
1656 	struct inode *inode = mapping->host;
1657 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1658 	struct ocfs2_dinode *di;
1659 	struct ocfs2_alloc_context *data_ac = NULL;
1660 	struct ocfs2_alloc_context *meta_ac = NULL;
1661 	handle_t *handle;
1662 	struct ocfs2_extent_tree et;
1663 	int try_free = 1, ret1;
1664 
1665 try_again:
1666 	ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, type, di_bh);
1667 	if (ret) {
1668 		mlog_errno(ret);
1669 		return ret;
1670 	}
1671 
1672 	if (ocfs2_supports_inline_data(osb)) {
1673 		ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
1674 						     mmap_page, wc);
1675 		if (ret == 1) {
1676 			ret = 0;
1677 			goto success;
1678 		}
1679 		if (ret < 0) {
1680 			mlog_errno(ret);
1681 			goto out;
1682 		}
1683 	}
1684 
1685 	/* Direct io change i_size late, should not zero tail here. */
1686 	if (type != OCFS2_WRITE_DIRECT) {
1687 		if (ocfs2_sparse_alloc(osb))
1688 			ret = ocfs2_zero_tail(inode, di_bh, pos);
1689 		else
1690 			ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos,
1691 							   len, wc);
1692 		if (ret) {
1693 			mlog_errno(ret);
1694 			goto out;
1695 		}
1696 	}
1697 
1698 	ret = ocfs2_check_range_for_refcount(inode, pos, len);
1699 	if (ret < 0) {
1700 		mlog_errno(ret);
1701 		goto out;
1702 	} else if (ret == 1) {
1703 		clusters_need = wc->w_clen;
1704 		ret = ocfs2_refcount_cow(inode, di_bh,
1705 					 wc->w_cpos, wc->w_clen, UINT_MAX);
1706 		if (ret) {
1707 			mlog_errno(ret);
1708 			goto out;
1709 		}
1710 	}
1711 
1712 	ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1713 					&extents_to_split);
1714 	if (ret) {
1715 		mlog_errno(ret);
1716 		goto out;
1717 	}
1718 	clusters_need += clusters_to_alloc;
1719 
1720 	di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1721 
1722 	trace_ocfs2_write_begin_nolock(
1723 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
1724 			(long long)i_size_read(inode),
1725 			le32_to_cpu(di->i_clusters),
1726 			pos, len, type, mmap_page,
1727 			clusters_to_alloc, extents_to_split);
1728 
1729 	/*
1730 	 * We set w_target_from, w_target_to here so that
1731 	 * ocfs2_write_end() knows which range in the target page to
1732 	 * write out. An allocation requires that we write the entire
1733 	 * cluster range.
1734 	 */
1735 	if (clusters_to_alloc || extents_to_split) {
1736 		/*
1737 		 * XXX: We are stretching the limits of
1738 		 * ocfs2_lock_allocators(). It greatly over-estimates
1739 		 * the work to be done.
1740 		 */
1741 		ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1742 					      wc->w_di_bh);
1743 		ret = ocfs2_lock_allocators(inode, &et,
1744 					    clusters_to_alloc, extents_to_split,
1745 					    &data_ac, &meta_ac);
1746 		if (ret) {
1747 			mlog_errno(ret);
1748 			goto out;
1749 		}
1750 
1751 		if (data_ac)
1752 			data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
1753 
1754 		credits = ocfs2_calc_extend_credits(inode->i_sb,
1755 						    &di->id2.i_list);
1756 	} else if (type == OCFS2_WRITE_DIRECT)
1757 		/* direct write needs not to start trans if no extents alloc. */
1758 		goto success;
1759 
1760 	/*
1761 	 * We have to zero sparse allocated clusters, unwritten extent clusters,
1762 	 * and non-sparse clusters we just extended.  For non-sparse writes,
1763 	 * we know zeros will only be needed in the first and/or last cluster.
1764 	 */
1765 	if (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
1766 			   wc->w_desc[wc->w_clen - 1].c_needs_zero))
1767 		cluster_of_pages = 1;
1768 	else
1769 		cluster_of_pages = 0;
1770 
1771 	ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
1772 
1773 	handle = ocfs2_start_trans(osb, credits);
1774 	if (IS_ERR(handle)) {
1775 		ret = PTR_ERR(handle);
1776 		mlog_errno(ret);
1777 		goto out;
1778 	}
1779 
1780 	wc->w_handle = handle;
1781 
1782 	if (clusters_to_alloc) {
1783 		ret = dquot_alloc_space_nodirty(inode,
1784 			ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1785 		if (ret)
1786 			goto out_commit;
1787 	}
1788 
1789 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1790 				      OCFS2_JOURNAL_ACCESS_WRITE);
1791 	if (ret) {
1792 		mlog_errno(ret);
1793 		goto out_quota;
1794 	}
1795 
1796 	/*
1797 	 * Fill our page array first. That way we've grabbed enough so
1798 	 * that we can zero and flush if we error after adding the
1799 	 * extent.
1800 	 */
1801 	ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len,
1802 					 cluster_of_pages, mmap_page);
1803 	if (ret) {
1804 		/*
1805 		 * ocfs2_grab_pages_for_write() returns -EAGAIN if it could not lock
1806 		 * the target page. In this case, we exit with no error and no target
1807 		 * page. This will trigger the caller, page_mkwrite(), to re-try
1808 		 * the operation.
1809 		 */
1810 		if (type == OCFS2_WRITE_MMAP && ret == -EAGAIN) {
1811 			BUG_ON(wc->w_target_page);
1812 			ret = 0;
1813 			goto out_quota;
1814 		}
1815 
1816 		mlog_errno(ret);
1817 		goto out_quota;
1818 	}
1819 
1820 	ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
1821 					  len);
1822 	if (ret) {
1823 		mlog_errno(ret);
1824 		goto out_quota;
1825 	}
1826 
1827 	if (data_ac)
1828 		ocfs2_free_alloc_context(data_ac);
1829 	if (meta_ac)
1830 		ocfs2_free_alloc_context(meta_ac);
1831 
1832 success:
1833 	if (pagep)
1834 		*pagep = wc->w_target_page;
1835 	*fsdata = wc;
1836 	return 0;
1837 out_quota:
1838 	if (clusters_to_alloc)
1839 		dquot_free_space(inode,
1840 			  ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1841 out_commit:
1842 	ocfs2_commit_trans(osb, handle);
1843 
1844 out:
1845 	/*
1846 	 * The mmapped page won't be unlocked in ocfs2_free_write_ctxt(),
1847 	 * even in case of error here like ENOSPC and ENOMEM. So, we need
1848 	 * to unlock the target page manually to prevent deadlocks when
1849 	 * retrying again on ENOSPC, or when returning non-VM_FAULT_LOCKED
1850 	 * to VM code.
1851 	 */
1852 	if (wc->w_target_locked)
1853 		unlock_page(mmap_page);
1854 
1855 	ocfs2_free_write_ctxt(inode, wc);
1856 
1857 	if (data_ac) {
1858 		ocfs2_free_alloc_context(data_ac);
1859 		data_ac = NULL;
1860 	}
1861 	if (meta_ac) {
1862 		ocfs2_free_alloc_context(meta_ac);
1863 		meta_ac = NULL;
1864 	}
1865 
1866 	if (ret == -ENOSPC && try_free) {
1867 		/*
1868 		 * Try to free some truncate log so that we can have enough
1869 		 * clusters to allocate.
1870 		 */
1871 		try_free = 0;
1872 
1873 		ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need);
1874 		if (ret1 == 1)
1875 			goto try_again;
1876 
1877 		if (ret1 < 0)
1878 			mlog_errno(ret1);
1879 	}
1880 
1881 	return ret;
1882 }
1883 
1884 static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
1885 			     loff_t pos, unsigned len,
1886 			     struct page **pagep, void **fsdata)
1887 {
1888 	int ret;
1889 	struct buffer_head *di_bh = NULL;
1890 	struct inode *inode = mapping->host;
1891 
1892 	ret = ocfs2_inode_lock(inode, &di_bh, 1);
1893 	if (ret) {
1894 		mlog_errno(ret);
1895 		return ret;
1896 	}
1897 
1898 	/*
1899 	 * Take alloc sem here to prevent concurrent lookups. That way
1900 	 * the mapping, zeroing and tree manipulation within
1901 	 * ocfs2_write() will be safe against ->read_folio(). This
1902 	 * should also serve to lock out allocation from a shared
1903 	 * writeable region.
1904 	 */
1905 	down_write(&OCFS2_I(inode)->ip_alloc_sem);
1906 
1907 	ret = ocfs2_write_begin_nolock(mapping, pos, len, OCFS2_WRITE_BUFFER,
1908 				       pagep, fsdata, di_bh, NULL);
1909 	if (ret) {
1910 		mlog_errno(ret);
1911 		goto out_fail;
1912 	}
1913 
1914 	brelse(di_bh);
1915 
1916 	return 0;
1917 
1918 out_fail:
1919 	up_write(&OCFS2_I(inode)->ip_alloc_sem);
1920 
1921 	brelse(di_bh);
1922 	ocfs2_inode_unlock(inode, 1);
1923 
1924 	return ret;
1925 }
1926 
1927 static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
1928 				   unsigned len, unsigned *copied,
1929 				   struct ocfs2_dinode *di,
1930 				   struct ocfs2_write_ctxt *wc)
1931 {
1932 	void *kaddr;
1933 
1934 	if (unlikely(*copied < len)) {
1935 		if (!PageUptodate(wc->w_target_page)) {
1936 			*copied = 0;
1937 			return;
1938 		}
1939 	}
1940 
1941 	kaddr = kmap_atomic(wc->w_target_page);
1942 	memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
1943 	kunmap_atomic(kaddr);
1944 
1945 	trace_ocfs2_write_end_inline(
1946 	     (unsigned long long)OCFS2_I(inode)->ip_blkno,
1947 	     (unsigned long long)pos, *copied,
1948 	     le16_to_cpu(di->id2.i_data.id_count),
1949 	     le16_to_cpu(di->i_dyn_features));
1950 }
1951 
1952 int ocfs2_write_end_nolock(struct address_space *mapping,
1953 			   loff_t pos, unsigned len, unsigned copied, void *fsdata)
1954 {
1955 	int i, ret;
1956 	unsigned from, to, start = pos & (PAGE_SIZE - 1);
1957 	struct inode *inode = mapping->host;
1958 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1959 	struct ocfs2_write_ctxt *wc = fsdata;
1960 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1961 	handle_t *handle = wc->w_handle;
1962 	struct page *tmppage;
1963 
1964 	BUG_ON(!list_empty(&wc->w_unwritten_list));
1965 
1966 	if (handle) {
1967 		ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode),
1968 				wc->w_di_bh, OCFS2_JOURNAL_ACCESS_WRITE);
1969 		if (ret) {
1970 			copied = ret;
1971 			mlog_errno(ret);
1972 			goto out;
1973 		}
1974 	}
1975 
1976 	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1977 		ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
1978 		goto out_write_size;
1979 	}
1980 
1981 	if (unlikely(copied < len) && wc->w_target_page) {
1982 		if (!PageUptodate(wc->w_target_page))
1983 			copied = 0;
1984 
1985 		ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
1986 				       start+len);
1987 	}
1988 	if (wc->w_target_page)
1989 		flush_dcache_page(wc->w_target_page);
1990 
1991 	for(i = 0; i < wc->w_num_pages; i++) {
1992 		tmppage = wc->w_pages[i];
1993 
1994 		/* This is the direct io target page. */
1995 		if (tmppage == NULL)
1996 			continue;
1997 
1998 		if (tmppage == wc->w_target_page) {
1999 			from = wc->w_target_from;
2000 			to = wc->w_target_to;
2001 
2002 			BUG_ON(from > PAGE_SIZE ||
2003 			       to > PAGE_SIZE ||
2004 			       to < from);
2005 		} else {
2006 			/*
2007 			 * Pages adjacent to the target (if any) imply
2008 			 * a hole-filling write in which case we want
2009 			 * to flush their entire range.
2010 			 */
2011 			from = 0;
2012 			to = PAGE_SIZE;
2013 		}
2014 
2015 		if (page_has_buffers(tmppage)) {
2016 			if (handle && ocfs2_should_order_data(inode)) {
2017 				loff_t start_byte =
2018 					((loff_t)tmppage->index << PAGE_SHIFT) +
2019 					from;
2020 				loff_t length = to - from;
2021 				ocfs2_jbd2_inode_add_write(handle, inode,
2022 							   start_byte, length);
2023 			}
2024 			block_commit_write(tmppage, from, to);
2025 		}
2026 	}
2027 
2028 out_write_size:
2029 	/* Direct io do not update i_size here. */
2030 	if (wc->w_type != OCFS2_WRITE_DIRECT) {
2031 		pos += copied;
2032 		if (pos > i_size_read(inode)) {
2033 			i_size_write(inode, pos);
2034 			mark_inode_dirty(inode);
2035 		}
2036 		inode->i_blocks = ocfs2_inode_sector_count(inode);
2037 		di->i_size = cpu_to_le64((u64)i_size_read(inode));
2038 		inode->i_mtime = inode->i_ctime = current_time(inode);
2039 		di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
2040 		di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
2041 		if (handle)
2042 			ocfs2_update_inode_fsync_trans(handle, inode, 1);
2043 	}
2044 	if (handle)
2045 		ocfs2_journal_dirty(handle, wc->w_di_bh);
2046 
2047 out:
2048 	/* unlock pages before dealloc since it needs acquiring j_trans_barrier
2049 	 * lock, or it will cause a deadlock since journal commit threads holds
2050 	 * this lock and will ask for the page lock when flushing the data.
2051 	 * put it here to preserve the unlock order.
2052 	 */
2053 	ocfs2_unlock_pages(wc);
2054 
2055 	if (handle)
2056 		ocfs2_commit_trans(osb, handle);
2057 
2058 	ocfs2_run_deallocs(osb, &wc->w_dealloc);
2059 
2060 	brelse(wc->w_di_bh);
2061 	kfree(wc);
2062 
2063 	return copied;
2064 }
2065 
2066 static int ocfs2_write_end(struct file *file, struct address_space *mapping,
2067 			   loff_t pos, unsigned len, unsigned copied,
2068 			   struct page *page, void *fsdata)
2069 {
2070 	int ret;
2071 	struct inode *inode = mapping->host;
2072 
2073 	ret = ocfs2_write_end_nolock(mapping, pos, len, copied, fsdata);
2074 
2075 	up_write(&OCFS2_I(inode)->ip_alloc_sem);
2076 	ocfs2_inode_unlock(inode, 1);
2077 
2078 	return ret;
2079 }
2080 
2081 struct ocfs2_dio_write_ctxt {
2082 	struct list_head	dw_zero_list;
2083 	unsigned		dw_zero_count;
2084 	int			dw_orphaned;
2085 	pid_t			dw_writer_pid;
2086 };
2087 
2088 static struct ocfs2_dio_write_ctxt *
2089 ocfs2_dio_alloc_write_ctx(struct buffer_head *bh, int *alloc)
2090 {
2091 	struct ocfs2_dio_write_ctxt *dwc = NULL;
2092 
2093 	if (bh->b_private)
2094 		return bh->b_private;
2095 
2096 	dwc = kmalloc(sizeof(struct ocfs2_dio_write_ctxt), GFP_NOFS);
2097 	if (dwc == NULL)
2098 		return NULL;
2099 	INIT_LIST_HEAD(&dwc->dw_zero_list);
2100 	dwc->dw_zero_count = 0;
2101 	dwc->dw_orphaned = 0;
2102 	dwc->dw_writer_pid = task_pid_nr(current);
2103 	bh->b_private = dwc;
2104 	*alloc = 1;
2105 
2106 	return dwc;
2107 }
2108 
2109 static void ocfs2_dio_free_write_ctx(struct inode *inode,
2110 				     struct ocfs2_dio_write_ctxt *dwc)
2111 {
2112 	ocfs2_free_unwritten_list(inode, &dwc->dw_zero_list);
2113 	kfree(dwc);
2114 }
2115 
2116 /*
2117  * TODO: Make this into a generic get_blocks function.
2118  *
2119  * From do_direct_io in direct-io.c:
2120  *  "So what we do is to permit the ->get_blocks function to populate
2121  *   bh.b_size with the size of IO which is permitted at this offset and
2122  *   this i_blkbits."
2123  *
2124  * This function is called directly from get_more_blocks in direct-io.c.
2125  *
2126  * called like this: dio->get_blocks(dio->inode, fs_startblk,
2127  * 					fs_count, map_bh, dio->rw == WRITE);
2128  */
2129 static int ocfs2_dio_wr_get_block(struct inode *inode, sector_t iblock,
2130 			       struct buffer_head *bh_result, int create)
2131 {
2132 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2133 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
2134 	struct ocfs2_write_ctxt *wc;
2135 	struct ocfs2_write_cluster_desc *desc = NULL;
2136 	struct ocfs2_dio_write_ctxt *dwc = NULL;
2137 	struct buffer_head *di_bh = NULL;
2138 	u64 p_blkno;
2139 	unsigned int i_blkbits = inode->i_sb->s_blocksize_bits;
2140 	loff_t pos = iblock << i_blkbits;
2141 	sector_t endblk = (i_size_read(inode) - 1) >> i_blkbits;
2142 	unsigned len, total_len = bh_result->b_size;
2143 	int ret = 0, first_get_block = 0;
2144 
2145 	len = osb->s_clustersize - (pos & (osb->s_clustersize - 1));
2146 	len = min(total_len, len);
2147 
2148 	/*
2149 	 * bh_result->b_size is count in get_more_blocks according to write
2150 	 * "pos" and "end", we need map twice to return different buffer state:
2151 	 * 1. area in file size, not set NEW;
2152 	 * 2. area out file size, set  NEW.
2153 	 *
2154 	 *		   iblock    endblk
2155 	 * |--------|---------|---------|---------
2156 	 * |<-------area in file------->|
2157 	 */
2158 
2159 	if ((iblock <= endblk) &&
2160 	    ((iblock + ((len - 1) >> i_blkbits)) > endblk))
2161 		len = (endblk - iblock + 1) << i_blkbits;
2162 
2163 	mlog(0, "get block of %lu at %llu:%u req %u\n",
2164 			inode->i_ino, pos, len, total_len);
2165 
2166 	/*
2167 	 * Because we need to change file size in ocfs2_dio_end_io_write(), or
2168 	 * we may need to add it to orphan dir. So can not fall to fast path
2169 	 * while file size will be changed.
2170 	 */
2171 	if (pos + total_len <= i_size_read(inode)) {
2172 
2173 		/* This is the fast path for re-write. */
2174 		ret = ocfs2_lock_get_block(inode, iblock, bh_result, create);
2175 		if (buffer_mapped(bh_result) &&
2176 		    !buffer_new(bh_result) &&
2177 		    ret == 0)
2178 			goto out;
2179 
2180 		/* Clear state set by ocfs2_get_block. */
2181 		bh_result->b_state = 0;
2182 	}
2183 
2184 	dwc = ocfs2_dio_alloc_write_ctx(bh_result, &first_get_block);
2185 	if (unlikely(dwc == NULL)) {
2186 		ret = -ENOMEM;
2187 		mlog_errno(ret);
2188 		goto out;
2189 	}
2190 
2191 	if (ocfs2_clusters_for_bytes(inode->i_sb, pos + total_len) >
2192 	    ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode)) &&
2193 	    !dwc->dw_orphaned) {
2194 		/*
2195 		 * when we are going to alloc extents beyond file size, add the
2196 		 * inode to orphan dir, so we can recall those spaces when
2197 		 * system crashed during write.
2198 		 */
2199 		ret = ocfs2_add_inode_to_orphan(osb, inode);
2200 		if (ret < 0) {
2201 			mlog_errno(ret);
2202 			goto out;
2203 		}
2204 		dwc->dw_orphaned = 1;
2205 	}
2206 
2207 	ret = ocfs2_inode_lock(inode, &di_bh, 1);
2208 	if (ret) {
2209 		mlog_errno(ret);
2210 		goto out;
2211 	}
2212 
2213 	down_write(&oi->ip_alloc_sem);
2214 
2215 	if (first_get_block) {
2216 		if (ocfs2_sparse_alloc(osb))
2217 			ret = ocfs2_zero_tail(inode, di_bh, pos);
2218 		else
2219 			ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos,
2220 							   total_len, NULL);
2221 		if (ret < 0) {
2222 			mlog_errno(ret);
2223 			goto unlock;
2224 		}
2225 	}
2226 
2227 	ret = ocfs2_write_begin_nolock(inode->i_mapping, pos, len,
2228 				       OCFS2_WRITE_DIRECT, NULL,
2229 				       (void **)&wc, di_bh, NULL);
2230 	if (ret) {
2231 		mlog_errno(ret);
2232 		goto unlock;
2233 	}
2234 
2235 	desc = &wc->w_desc[0];
2236 
2237 	p_blkno = ocfs2_clusters_to_blocks(inode->i_sb, desc->c_phys);
2238 	BUG_ON(p_blkno == 0);
2239 	p_blkno += iblock & (u64)(ocfs2_clusters_to_blocks(inode->i_sb, 1) - 1);
2240 
2241 	map_bh(bh_result, inode->i_sb, p_blkno);
2242 	bh_result->b_size = len;
2243 	if (desc->c_needs_zero)
2244 		set_buffer_new(bh_result);
2245 
2246 	if (iblock > endblk)
2247 		set_buffer_new(bh_result);
2248 
2249 	/* May sleep in end_io. It should not happen in a irq context. So defer
2250 	 * it to dio work queue. */
2251 	set_buffer_defer_completion(bh_result);
2252 
2253 	if (!list_empty(&wc->w_unwritten_list)) {
2254 		struct ocfs2_unwritten_extent *ue = NULL;
2255 
2256 		ue = list_first_entry(&wc->w_unwritten_list,
2257 				      struct ocfs2_unwritten_extent,
2258 				      ue_node);
2259 		BUG_ON(ue->ue_cpos != desc->c_cpos);
2260 		/* The physical address may be 0, fill it. */
2261 		ue->ue_phys = desc->c_phys;
2262 
2263 		list_splice_tail_init(&wc->w_unwritten_list, &dwc->dw_zero_list);
2264 		dwc->dw_zero_count += wc->w_unwritten_count;
2265 	}
2266 
2267 	ret = ocfs2_write_end_nolock(inode->i_mapping, pos, len, len, wc);
2268 	BUG_ON(ret != len);
2269 	ret = 0;
2270 unlock:
2271 	up_write(&oi->ip_alloc_sem);
2272 	ocfs2_inode_unlock(inode, 1);
2273 	brelse(di_bh);
2274 out:
2275 	if (ret < 0)
2276 		ret = -EIO;
2277 	return ret;
2278 }
2279 
2280 static int ocfs2_dio_end_io_write(struct inode *inode,
2281 				  struct ocfs2_dio_write_ctxt *dwc,
2282 				  loff_t offset,
2283 				  ssize_t bytes)
2284 {
2285 	struct ocfs2_cached_dealloc_ctxt dealloc;
2286 	struct ocfs2_extent_tree et;
2287 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2288 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
2289 	struct ocfs2_unwritten_extent *ue = NULL;
2290 	struct buffer_head *di_bh = NULL;
2291 	struct ocfs2_dinode *di;
2292 	struct ocfs2_alloc_context *data_ac = NULL;
2293 	struct ocfs2_alloc_context *meta_ac = NULL;
2294 	handle_t *handle = NULL;
2295 	loff_t end = offset + bytes;
2296 	int ret = 0, credits = 0;
2297 
2298 	ocfs2_init_dealloc_ctxt(&dealloc);
2299 
2300 	/* We do clear unwritten, delete orphan, change i_size here. If neither
2301 	 * of these happen, we can skip all this. */
2302 	if (list_empty(&dwc->dw_zero_list) &&
2303 	    end <= i_size_read(inode) &&
2304 	    !dwc->dw_orphaned)
2305 		goto out;
2306 
2307 	ret = ocfs2_inode_lock(inode, &di_bh, 1);
2308 	if (ret < 0) {
2309 		mlog_errno(ret);
2310 		goto out;
2311 	}
2312 
2313 	down_write(&oi->ip_alloc_sem);
2314 
2315 	/* Delete orphan before acquire i_rwsem. */
2316 	if (dwc->dw_orphaned) {
2317 		BUG_ON(dwc->dw_writer_pid != task_pid_nr(current));
2318 
2319 		end = end > i_size_read(inode) ? end : 0;
2320 
2321 		ret = ocfs2_del_inode_from_orphan(osb, inode, di_bh,
2322 				!!end, end);
2323 		if (ret < 0)
2324 			mlog_errno(ret);
2325 	}
2326 
2327 	di = (struct ocfs2_dinode *)di_bh->b_data;
2328 
2329 	ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh);
2330 
2331 	/* Attach dealloc with extent tree in case that we may reuse extents
2332 	 * which are already unlinked from current extent tree due to extent
2333 	 * rotation and merging.
2334 	 */
2335 	et.et_dealloc = &dealloc;
2336 
2337 	ret = ocfs2_lock_allocators(inode, &et, 0, dwc->dw_zero_count*2,
2338 				    &data_ac, &meta_ac);
2339 	if (ret) {
2340 		mlog_errno(ret);
2341 		goto unlock;
2342 	}
2343 
2344 	credits = ocfs2_calc_extend_credits(inode->i_sb, &di->id2.i_list);
2345 
2346 	handle = ocfs2_start_trans(osb, credits);
2347 	if (IS_ERR(handle)) {
2348 		ret = PTR_ERR(handle);
2349 		mlog_errno(ret);
2350 		goto unlock;
2351 	}
2352 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
2353 				      OCFS2_JOURNAL_ACCESS_WRITE);
2354 	if (ret) {
2355 		mlog_errno(ret);
2356 		goto commit;
2357 	}
2358 
2359 	list_for_each_entry(ue, &dwc->dw_zero_list, ue_node) {
2360 		ret = ocfs2_mark_extent_written(inode, &et, handle,
2361 						ue->ue_cpos, 1,
2362 						ue->ue_phys,
2363 						meta_ac, &dealloc);
2364 		if (ret < 0) {
2365 			mlog_errno(ret);
2366 			break;
2367 		}
2368 	}
2369 
2370 	if (end > i_size_read(inode)) {
2371 		ret = ocfs2_set_inode_size(handle, inode, di_bh, end);
2372 		if (ret < 0)
2373 			mlog_errno(ret);
2374 	}
2375 commit:
2376 	ocfs2_commit_trans(osb, handle);
2377 unlock:
2378 	up_write(&oi->ip_alloc_sem);
2379 	ocfs2_inode_unlock(inode, 1);
2380 	brelse(di_bh);
2381 out:
2382 	if (data_ac)
2383 		ocfs2_free_alloc_context(data_ac);
2384 	if (meta_ac)
2385 		ocfs2_free_alloc_context(meta_ac);
2386 	ocfs2_run_deallocs(osb, &dealloc);
2387 	ocfs2_dio_free_write_ctx(inode, dwc);
2388 
2389 	return ret;
2390 }
2391 
2392 /*
2393  * ocfs2_dio_end_io is called by the dio core when a dio is finished.  We're
2394  * particularly interested in the aio/dio case.  We use the rw_lock DLM lock
2395  * to protect io on one node from truncation on another.
2396  */
2397 static int ocfs2_dio_end_io(struct kiocb *iocb,
2398 			    loff_t offset,
2399 			    ssize_t bytes,
2400 			    void *private)
2401 {
2402 	struct inode *inode = file_inode(iocb->ki_filp);
2403 	int level;
2404 	int ret = 0;
2405 
2406 	/* this io's submitter should not have unlocked this before we could */
2407 	BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
2408 
2409 	if (bytes <= 0)
2410 		mlog_ratelimited(ML_ERROR, "Direct IO failed, bytes = %lld",
2411 				 (long long)bytes);
2412 	if (private) {
2413 		if (bytes > 0)
2414 			ret = ocfs2_dio_end_io_write(inode, private, offset,
2415 						     bytes);
2416 		else
2417 			ocfs2_dio_free_write_ctx(inode, private);
2418 	}
2419 
2420 	ocfs2_iocb_clear_rw_locked(iocb);
2421 
2422 	level = ocfs2_iocb_rw_locked_level(iocb);
2423 	ocfs2_rw_unlock(inode, level);
2424 	return ret;
2425 }
2426 
2427 static ssize_t ocfs2_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
2428 {
2429 	struct file *file = iocb->ki_filp;
2430 	struct inode *inode = file->f_mapping->host;
2431 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2432 	get_block_t *get_block;
2433 
2434 	/*
2435 	 * Fallback to buffered I/O if we see an inode without
2436 	 * extents.
2437 	 */
2438 	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
2439 		return 0;
2440 
2441 	/* Fallback to buffered I/O if we do not support append dio. */
2442 	if (iocb->ki_pos + iter->count > i_size_read(inode) &&
2443 	    !ocfs2_supports_append_dio(osb))
2444 		return 0;
2445 
2446 	if (iov_iter_rw(iter) == READ)
2447 		get_block = ocfs2_lock_get_block;
2448 	else
2449 		get_block = ocfs2_dio_wr_get_block;
2450 
2451 	return __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
2452 				    iter, get_block,
2453 				    ocfs2_dio_end_io, NULL, 0);
2454 }
2455 
2456 const struct address_space_operations ocfs2_aops = {
2457 	.dirty_folio		= block_dirty_folio,
2458 	.read_folio		= ocfs2_read_folio,
2459 	.readahead		= ocfs2_readahead,
2460 	.writepage		= ocfs2_writepage,
2461 	.write_begin		= ocfs2_write_begin,
2462 	.write_end		= ocfs2_write_end,
2463 	.bmap			= ocfs2_bmap,
2464 	.direct_IO		= ocfs2_direct_IO,
2465 	.invalidate_folio	= block_invalidate_folio,
2466 	.release_folio		= ocfs2_release_folio,
2467 	.migratepage		= buffer_migrate_page,
2468 	.is_partially_uptodate	= block_is_partially_uptodate,
2469 	.error_remove_page	= generic_error_remove_page,
2470 };
2471