1 /* -*- mode: c; c-basic-offset: 8; -*- 2 * vim: noexpandtab sw=8 ts=8 sts=0: 3 * 4 * alloc.c 5 * 6 * Extent allocs and frees 7 * 8 * Copyright (C) 2002, 2004 Oracle. All rights reserved. 9 * 10 * This program is free software; you can redistribute it and/or 11 * modify it under the terms of the GNU General Public 12 * License as published by the Free Software Foundation; either 13 * version 2 of the License, or (at your option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, 16 * but WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 18 * General Public License for more details. 19 * 20 * You should have received a copy of the GNU General Public 21 * License along with this program; if not, write to the 22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 23 * Boston, MA 021110-1307, USA. 24 */ 25 26 #include <linux/fs.h> 27 #include <linux/types.h> 28 #include <linux/slab.h> 29 #include <linux/highmem.h> 30 #include <linux/swap.h> 31 #include <linux/quotaops.h> 32 33 #define MLOG_MASK_PREFIX ML_DISK_ALLOC 34 #include <cluster/masklog.h> 35 36 #include "ocfs2.h" 37 38 #include "alloc.h" 39 #include "aops.h" 40 #include "blockcheck.h" 41 #include "dlmglue.h" 42 #include "extent_map.h" 43 #include "inode.h" 44 #include "journal.h" 45 #include "localalloc.h" 46 #include "suballoc.h" 47 #include "sysfile.h" 48 #include "file.h" 49 #include "super.h" 50 #include "uptodate.h" 51 #include "xattr.h" 52 53 #include "buffer_head_io.h" 54 55 56 /* 57 * Operations for a specific extent tree type. 58 * 59 * To implement an on-disk btree (extent tree) type in ocfs2, add 60 * an ocfs2_extent_tree_operations structure and the matching 61 * ocfs2_init_<thingy>_extent_tree() function. That's pretty much it 62 * for the allocation portion of the extent tree. 63 */ 64 struct ocfs2_extent_tree_operations { 65 /* 66 * last_eb_blk is the block number of the right most leaf extent 67 * block. Most on-disk structures containing an extent tree store 68 * this value for fast access. The ->eo_set_last_eb_blk() and 69 * ->eo_get_last_eb_blk() operations access this value. They are 70 * both required. 71 */ 72 void (*eo_set_last_eb_blk)(struct ocfs2_extent_tree *et, 73 u64 blkno); 74 u64 (*eo_get_last_eb_blk)(struct ocfs2_extent_tree *et); 75 76 /* 77 * The on-disk structure usually keeps track of how many total 78 * clusters are stored in this extent tree. This function updates 79 * that value. new_clusters is the delta, and must be 80 * added to the total. Required. 81 */ 82 void (*eo_update_clusters)(struct inode *inode, 83 struct ocfs2_extent_tree *et, 84 u32 new_clusters); 85 86 /* 87 * If ->eo_insert_check() exists, it is called before rec is 88 * inserted into the extent tree. It is optional. 89 */ 90 int (*eo_insert_check)(struct inode *inode, 91 struct ocfs2_extent_tree *et, 92 struct ocfs2_extent_rec *rec); 93 int (*eo_sanity_check)(struct inode *inode, struct ocfs2_extent_tree *et); 94 95 /* 96 * -------------------------------------------------------------- 97 * The remaining are internal to ocfs2_extent_tree and don't have 98 * accessor functions 99 */ 100 101 /* 102 * ->eo_fill_root_el() takes et->et_object and sets et->et_root_el. 103 * It is required. 104 */ 105 void (*eo_fill_root_el)(struct ocfs2_extent_tree *et); 106 107 /* 108 * ->eo_fill_max_leaf_clusters sets et->et_max_leaf_clusters if 109 * it exists. If it does not, et->et_max_leaf_clusters is set 110 * to 0 (unlimited). Optional. 111 */ 112 void (*eo_fill_max_leaf_clusters)(struct inode *inode, 113 struct ocfs2_extent_tree *et); 114 }; 115 116 117 /* 118 * Pre-declare ocfs2_dinode_et_ops so we can use it as a sanity check 119 * in the methods. 120 */ 121 static u64 ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree *et); 122 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree *et, 123 u64 blkno); 124 static void ocfs2_dinode_update_clusters(struct inode *inode, 125 struct ocfs2_extent_tree *et, 126 u32 clusters); 127 static int ocfs2_dinode_insert_check(struct inode *inode, 128 struct ocfs2_extent_tree *et, 129 struct ocfs2_extent_rec *rec); 130 static int ocfs2_dinode_sanity_check(struct inode *inode, 131 struct ocfs2_extent_tree *et); 132 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree *et); 133 static struct ocfs2_extent_tree_operations ocfs2_dinode_et_ops = { 134 .eo_set_last_eb_blk = ocfs2_dinode_set_last_eb_blk, 135 .eo_get_last_eb_blk = ocfs2_dinode_get_last_eb_blk, 136 .eo_update_clusters = ocfs2_dinode_update_clusters, 137 .eo_insert_check = ocfs2_dinode_insert_check, 138 .eo_sanity_check = ocfs2_dinode_sanity_check, 139 .eo_fill_root_el = ocfs2_dinode_fill_root_el, 140 }; 141 142 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree *et, 143 u64 blkno) 144 { 145 struct ocfs2_dinode *di = et->et_object; 146 147 BUG_ON(et->et_ops != &ocfs2_dinode_et_ops); 148 di->i_last_eb_blk = cpu_to_le64(blkno); 149 } 150 151 static u64 ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree *et) 152 { 153 struct ocfs2_dinode *di = et->et_object; 154 155 BUG_ON(et->et_ops != &ocfs2_dinode_et_ops); 156 return le64_to_cpu(di->i_last_eb_blk); 157 } 158 159 static void ocfs2_dinode_update_clusters(struct inode *inode, 160 struct ocfs2_extent_tree *et, 161 u32 clusters) 162 { 163 struct ocfs2_dinode *di = et->et_object; 164 165 le32_add_cpu(&di->i_clusters, clusters); 166 spin_lock(&OCFS2_I(inode)->ip_lock); 167 OCFS2_I(inode)->ip_clusters = le32_to_cpu(di->i_clusters); 168 spin_unlock(&OCFS2_I(inode)->ip_lock); 169 } 170 171 static int ocfs2_dinode_insert_check(struct inode *inode, 172 struct ocfs2_extent_tree *et, 173 struct ocfs2_extent_rec *rec) 174 { 175 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 176 177 BUG_ON(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL); 178 mlog_bug_on_msg(!ocfs2_sparse_alloc(osb) && 179 (OCFS2_I(inode)->ip_clusters != 180 le32_to_cpu(rec->e_cpos)), 181 "Device %s, asking for sparse allocation: inode %llu, " 182 "cpos %u, clusters %u\n", 183 osb->dev_str, 184 (unsigned long long)OCFS2_I(inode)->ip_blkno, 185 rec->e_cpos, 186 OCFS2_I(inode)->ip_clusters); 187 188 return 0; 189 } 190 191 static int ocfs2_dinode_sanity_check(struct inode *inode, 192 struct ocfs2_extent_tree *et) 193 { 194 struct ocfs2_dinode *di = et->et_object; 195 196 BUG_ON(et->et_ops != &ocfs2_dinode_et_ops); 197 BUG_ON(!OCFS2_IS_VALID_DINODE(di)); 198 199 return 0; 200 } 201 202 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree *et) 203 { 204 struct ocfs2_dinode *di = et->et_object; 205 206 et->et_root_el = &di->id2.i_list; 207 } 208 209 210 static void ocfs2_xattr_value_fill_root_el(struct ocfs2_extent_tree *et) 211 { 212 struct ocfs2_xattr_value_buf *vb = et->et_object; 213 214 et->et_root_el = &vb->vb_xv->xr_list; 215 } 216 217 static void ocfs2_xattr_value_set_last_eb_blk(struct ocfs2_extent_tree *et, 218 u64 blkno) 219 { 220 struct ocfs2_xattr_value_buf *vb = et->et_object; 221 222 vb->vb_xv->xr_last_eb_blk = cpu_to_le64(blkno); 223 } 224 225 static u64 ocfs2_xattr_value_get_last_eb_blk(struct ocfs2_extent_tree *et) 226 { 227 struct ocfs2_xattr_value_buf *vb = et->et_object; 228 229 return le64_to_cpu(vb->vb_xv->xr_last_eb_blk); 230 } 231 232 static void ocfs2_xattr_value_update_clusters(struct inode *inode, 233 struct ocfs2_extent_tree *et, 234 u32 clusters) 235 { 236 struct ocfs2_xattr_value_buf *vb = et->et_object; 237 238 le32_add_cpu(&vb->vb_xv->xr_clusters, clusters); 239 } 240 241 static struct ocfs2_extent_tree_operations ocfs2_xattr_value_et_ops = { 242 .eo_set_last_eb_blk = ocfs2_xattr_value_set_last_eb_blk, 243 .eo_get_last_eb_blk = ocfs2_xattr_value_get_last_eb_blk, 244 .eo_update_clusters = ocfs2_xattr_value_update_clusters, 245 .eo_fill_root_el = ocfs2_xattr_value_fill_root_el, 246 }; 247 248 static void ocfs2_xattr_tree_fill_root_el(struct ocfs2_extent_tree *et) 249 { 250 struct ocfs2_xattr_block *xb = et->et_object; 251 252 et->et_root_el = &xb->xb_attrs.xb_root.xt_list; 253 } 254 255 static void ocfs2_xattr_tree_fill_max_leaf_clusters(struct inode *inode, 256 struct ocfs2_extent_tree *et) 257 { 258 et->et_max_leaf_clusters = 259 ocfs2_clusters_for_bytes(inode->i_sb, 260 OCFS2_MAX_XATTR_TREE_LEAF_SIZE); 261 } 262 263 static void ocfs2_xattr_tree_set_last_eb_blk(struct ocfs2_extent_tree *et, 264 u64 blkno) 265 { 266 struct ocfs2_xattr_block *xb = et->et_object; 267 struct ocfs2_xattr_tree_root *xt = &xb->xb_attrs.xb_root; 268 269 xt->xt_last_eb_blk = cpu_to_le64(blkno); 270 } 271 272 static u64 ocfs2_xattr_tree_get_last_eb_blk(struct ocfs2_extent_tree *et) 273 { 274 struct ocfs2_xattr_block *xb = et->et_object; 275 struct ocfs2_xattr_tree_root *xt = &xb->xb_attrs.xb_root; 276 277 return le64_to_cpu(xt->xt_last_eb_blk); 278 } 279 280 static void ocfs2_xattr_tree_update_clusters(struct inode *inode, 281 struct ocfs2_extent_tree *et, 282 u32 clusters) 283 { 284 struct ocfs2_xattr_block *xb = et->et_object; 285 286 le32_add_cpu(&xb->xb_attrs.xb_root.xt_clusters, clusters); 287 } 288 289 static struct ocfs2_extent_tree_operations ocfs2_xattr_tree_et_ops = { 290 .eo_set_last_eb_blk = ocfs2_xattr_tree_set_last_eb_blk, 291 .eo_get_last_eb_blk = ocfs2_xattr_tree_get_last_eb_blk, 292 .eo_update_clusters = ocfs2_xattr_tree_update_clusters, 293 .eo_fill_root_el = ocfs2_xattr_tree_fill_root_el, 294 .eo_fill_max_leaf_clusters = ocfs2_xattr_tree_fill_max_leaf_clusters, 295 }; 296 297 static void ocfs2_dx_root_set_last_eb_blk(struct ocfs2_extent_tree *et, 298 u64 blkno) 299 { 300 struct ocfs2_dx_root_block *dx_root = et->et_object; 301 302 dx_root->dr_last_eb_blk = cpu_to_le64(blkno); 303 } 304 305 static u64 ocfs2_dx_root_get_last_eb_blk(struct ocfs2_extent_tree *et) 306 { 307 struct ocfs2_dx_root_block *dx_root = et->et_object; 308 309 return le64_to_cpu(dx_root->dr_last_eb_blk); 310 } 311 312 static void ocfs2_dx_root_update_clusters(struct inode *inode, 313 struct ocfs2_extent_tree *et, 314 u32 clusters) 315 { 316 struct ocfs2_dx_root_block *dx_root = et->et_object; 317 318 le32_add_cpu(&dx_root->dr_clusters, clusters); 319 } 320 321 static int ocfs2_dx_root_sanity_check(struct inode *inode, 322 struct ocfs2_extent_tree *et) 323 { 324 struct ocfs2_dx_root_block *dx_root = et->et_object; 325 326 BUG_ON(!OCFS2_IS_VALID_DX_ROOT(dx_root)); 327 328 return 0; 329 } 330 331 static void ocfs2_dx_root_fill_root_el(struct ocfs2_extent_tree *et) 332 { 333 struct ocfs2_dx_root_block *dx_root = et->et_object; 334 335 et->et_root_el = &dx_root->dr_list; 336 } 337 338 static struct ocfs2_extent_tree_operations ocfs2_dx_root_et_ops = { 339 .eo_set_last_eb_blk = ocfs2_dx_root_set_last_eb_blk, 340 .eo_get_last_eb_blk = ocfs2_dx_root_get_last_eb_blk, 341 .eo_update_clusters = ocfs2_dx_root_update_clusters, 342 .eo_sanity_check = ocfs2_dx_root_sanity_check, 343 .eo_fill_root_el = ocfs2_dx_root_fill_root_el, 344 }; 345 346 static void __ocfs2_init_extent_tree(struct ocfs2_extent_tree *et, 347 struct inode *inode, 348 struct buffer_head *bh, 349 ocfs2_journal_access_func access, 350 void *obj, 351 struct ocfs2_extent_tree_operations *ops) 352 { 353 et->et_ops = ops; 354 et->et_root_bh = bh; 355 et->et_root_journal_access = access; 356 if (!obj) 357 obj = (void *)bh->b_data; 358 et->et_object = obj; 359 360 et->et_ops->eo_fill_root_el(et); 361 if (!et->et_ops->eo_fill_max_leaf_clusters) 362 et->et_max_leaf_clusters = 0; 363 else 364 et->et_ops->eo_fill_max_leaf_clusters(inode, et); 365 } 366 367 void ocfs2_init_dinode_extent_tree(struct ocfs2_extent_tree *et, 368 struct inode *inode, 369 struct buffer_head *bh) 370 { 371 __ocfs2_init_extent_tree(et, inode, bh, ocfs2_journal_access_di, 372 NULL, &ocfs2_dinode_et_ops); 373 } 374 375 void ocfs2_init_xattr_tree_extent_tree(struct ocfs2_extent_tree *et, 376 struct inode *inode, 377 struct buffer_head *bh) 378 { 379 __ocfs2_init_extent_tree(et, inode, bh, ocfs2_journal_access_xb, 380 NULL, &ocfs2_xattr_tree_et_ops); 381 } 382 383 void ocfs2_init_xattr_value_extent_tree(struct ocfs2_extent_tree *et, 384 struct inode *inode, 385 struct ocfs2_xattr_value_buf *vb) 386 { 387 __ocfs2_init_extent_tree(et, inode, vb->vb_bh, vb->vb_access, vb, 388 &ocfs2_xattr_value_et_ops); 389 } 390 391 void ocfs2_init_dx_root_extent_tree(struct ocfs2_extent_tree *et, 392 struct inode *inode, 393 struct buffer_head *bh) 394 { 395 __ocfs2_init_extent_tree(et, inode, bh, ocfs2_journal_access_dr, 396 NULL, &ocfs2_dx_root_et_ops); 397 } 398 399 static inline void ocfs2_et_set_last_eb_blk(struct ocfs2_extent_tree *et, 400 u64 new_last_eb_blk) 401 { 402 et->et_ops->eo_set_last_eb_blk(et, new_last_eb_blk); 403 } 404 405 static inline u64 ocfs2_et_get_last_eb_blk(struct ocfs2_extent_tree *et) 406 { 407 return et->et_ops->eo_get_last_eb_blk(et); 408 } 409 410 static inline void ocfs2_et_update_clusters(struct inode *inode, 411 struct ocfs2_extent_tree *et, 412 u32 clusters) 413 { 414 et->et_ops->eo_update_clusters(inode, et, clusters); 415 } 416 417 static inline int ocfs2_et_root_journal_access(handle_t *handle, 418 struct inode *inode, 419 struct ocfs2_extent_tree *et, 420 int type) 421 { 422 return et->et_root_journal_access(handle, inode, et->et_root_bh, 423 type); 424 } 425 426 static inline int ocfs2_et_insert_check(struct inode *inode, 427 struct ocfs2_extent_tree *et, 428 struct ocfs2_extent_rec *rec) 429 { 430 int ret = 0; 431 432 if (et->et_ops->eo_insert_check) 433 ret = et->et_ops->eo_insert_check(inode, et, rec); 434 return ret; 435 } 436 437 static inline int ocfs2_et_sanity_check(struct inode *inode, 438 struct ocfs2_extent_tree *et) 439 { 440 int ret = 0; 441 442 if (et->et_ops->eo_sanity_check) 443 ret = et->et_ops->eo_sanity_check(inode, et); 444 return ret; 445 } 446 447 static void ocfs2_free_truncate_context(struct ocfs2_truncate_context *tc); 448 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt, 449 struct ocfs2_extent_block *eb); 450 451 /* 452 * Structures which describe a path through a btree, and functions to 453 * manipulate them. 454 * 455 * The idea here is to be as generic as possible with the tree 456 * manipulation code. 457 */ 458 struct ocfs2_path_item { 459 struct buffer_head *bh; 460 struct ocfs2_extent_list *el; 461 }; 462 463 #define OCFS2_MAX_PATH_DEPTH 5 464 465 struct ocfs2_path { 466 int p_tree_depth; 467 ocfs2_journal_access_func p_root_access; 468 struct ocfs2_path_item p_node[OCFS2_MAX_PATH_DEPTH]; 469 }; 470 471 #define path_root_bh(_path) ((_path)->p_node[0].bh) 472 #define path_root_el(_path) ((_path)->p_node[0].el) 473 #define path_root_access(_path)((_path)->p_root_access) 474 #define path_leaf_bh(_path) ((_path)->p_node[(_path)->p_tree_depth].bh) 475 #define path_leaf_el(_path) ((_path)->p_node[(_path)->p_tree_depth].el) 476 #define path_num_items(_path) ((_path)->p_tree_depth + 1) 477 478 static int ocfs2_find_path(struct inode *inode, struct ocfs2_path *path, 479 u32 cpos); 480 static void ocfs2_adjust_rightmost_records(struct inode *inode, 481 handle_t *handle, 482 struct ocfs2_path *path, 483 struct ocfs2_extent_rec *insert_rec); 484 /* 485 * Reset the actual path elements so that we can re-use the structure 486 * to build another path. Generally, this involves freeing the buffer 487 * heads. 488 */ 489 static void ocfs2_reinit_path(struct ocfs2_path *path, int keep_root) 490 { 491 int i, start = 0, depth = 0; 492 struct ocfs2_path_item *node; 493 494 if (keep_root) 495 start = 1; 496 497 for(i = start; i < path_num_items(path); i++) { 498 node = &path->p_node[i]; 499 500 brelse(node->bh); 501 node->bh = NULL; 502 node->el = NULL; 503 } 504 505 /* 506 * Tree depth may change during truncate, or insert. If we're 507 * keeping the root extent list, then make sure that our path 508 * structure reflects the proper depth. 509 */ 510 if (keep_root) 511 depth = le16_to_cpu(path_root_el(path)->l_tree_depth); 512 else 513 path_root_access(path) = NULL; 514 515 path->p_tree_depth = depth; 516 } 517 518 static void ocfs2_free_path(struct ocfs2_path *path) 519 { 520 if (path) { 521 ocfs2_reinit_path(path, 0); 522 kfree(path); 523 } 524 } 525 526 /* 527 * All the elements of src into dest. After this call, src could be freed 528 * without affecting dest. 529 * 530 * Both paths should have the same root. Any non-root elements of dest 531 * will be freed. 532 */ 533 static void ocfs2_cp_path(struct ocfs2_path *dest, struct ocfs2_path *src) 534 { 535 int i; 536 537 BUG_ON(path_root_bh(dest) != path_root_bh(src)); 538 BUG_ON(path_root_el(dest) != path_root_el(src)); 539 BUG_ON(path_root_access(dest) != path_root_access(src)); 540 541 ocfs2_reinit_path(dest, 1); 542 543 for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) { 544 dest->p_node[i].bh = src->p_node[i].bh; 545 dest->p_node[i].el = src->p_node[i].el; 546 547 if (dest->p_node[i].bh) 548 get_bh(dest->p_node[i].bh); 549 } 550 } 551 552 /* 553 * Make the *dest path the same as src and re-initialize src path to 554 * have a root only. 555 */ 556 static void ocfs2_mv_path(struct ocfs2_path *dest, struct ocfs2_path *src) 557 { 558 int i; 559 560 BUG_ON(path_root_bh(dest) != path_root_bh(src)); 561 BUG_ON(path_root_access(dest) != path_root_access(src)); 562 563 for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) { 564 brelse(dest->p_node[i].bh); 565 566 dest->p_node[i].bh = src->p_node[i].bh; 567 dest->p_node[i].el = src->p_node[i].el; 568 569 src->p_node[i].bh = NULL; 570 src->p_node[i].el = NULL; 571 } 572 } 573 574 /* 575 * Insert an extent block at given index. 576 * 577 * This will not take an additional reference on eb_bh. 578 */ 579 static inline void ocfs2_path_insert_eb(struct ocfs2_path *path, int index, 580 struct buffer_head *eb_bh) 581 { 582 struct ocfs2_extent_block *eb = (struct ocfs2_extent_block *)eb_bh->b_data; 583 584 /* 585 * Right now, no root bh is an extent block, so this helps 586 * catch code errors with dinode trees. The assertion can be 587 * safely removed if we ever need to insert extent block 588 * structures at the root. 589 */ 590 BUG_ON(index == 0); 591 592 path->p_node[index].bh = eb_bh; 593 path->p_node[index].el = &eb->h_list; 594 } 595 596 static struct ocfs2_path *ocfs2_new_path(struct buffer_head *root_bh, 597 struct ocfs2_extent_list *root_el, 598 ocfs2_journal_access_func access) 599 { 600 struct ocfs2_path *path; 601 602 BUG_ON(le16_to_cpu(root_el->l_tree_depth) >= OCFS2_MAX_PATH_DEPTH); 603 604 path = kzalloc(sizeof(*path), GFP_NOFS); 605 if (path) { 606 path->p_tree_depth = le16_to_cpu(root_el->l_tree_depth); 607 get_bh(root_bh); 608 path_root_bh(path) = root_bh; 609 path_root_el(path) = root_el; 610 path_root_access(path) = access; 611 } 612 613 return path; 614 } 615 616 static struct ocfs2_path *ocfs2_new_path_from_path(struct ocfs2_path *path) 617 { 618 return ocfs2_new_path(path_root_bh(path), path_root_el(path), 619 path_root_access(path)); 620 } 621 622 static struct ocfs2_path *ocfs2_new_path_from_et(struct ocfs2_extent_tree *et) 623 { 624 return ocfs2_new_path(et->et_root_bh, et->et_root_el, 625 et->et_root_journal_access); 626 } 627 628 /* 629 * Journal the buffer at depth idx. All idx>0 are extent_blocks, 630 * otherwise it's the root_access function. 631 * 632 * I don't like the way this function's name looks next to 633 * ocfs2_journal_access_path(), but I don't have a better one. 634 */ 635 static int ocfs2_path_bh_journal_access(handle_t *handle, 636 struct inode *inode, 637 struct ocfs2_path *path, 638 int idx) 639 { 640 ocfs2_journal_access_func access = path_root_access(path); 641 642 if (!access) 643 access = ocfs2_journal_access; 644 645 if (idx) 646 access = ocfs2_journal_access_eb; 647 648 return access(handle, inode, path->p_node[idx].bh, 649 OCFS2_JOURNAL_ACCESS_WRITE); 650 } 651 652 /* 653 * Convenience function to journal all components in a path. 654 */ 655 static int ocfs2_journal_access_path(struct inode *inode, handle_t *handle, 656 struct ocfs2_path *path) 657 { 658 int i, ret = 0; 659 660 if (!path) 661 goto out; 662 663 for(i = 0; i < path_num_items(path); i++) { 664 ret = ocfs2_path_bh_journal_access(handle, inode, path, i); 665 if (ret < 0) { 666 mlog_errno(ret); 667 goto out; 668 } 669 } 670 671 out: 672 return ret; 673 } 674 675 /* 676 * Return the index of the extent record which contains cluster #v_cluster. 677 * -1 is returned if it was not found. 678 * 679 * Should work fine on interior and exterior nodes. 680 */ 681 int ocfs2_search_extent_list(struct ocfs2_extent_list *el, u32 v_cluster) 682 { 683 int ret = -1; 684 int i; 685 struct ocfs2_extent_rec *rec; 686 u32 rec_end, rec_start, clusters; 687 688 for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) { 689 rec = &el->l_recs[i]; 690 691 rec_start = le32_to_cpu(rec->e_cpos); 692 clusters = ocfs2_rec_clusters(el, rec); 693 694 rec_end = rec_start + clusters; 695 696 if (v_cluster >= rec_start && v_cluster < rec_end) { 697 ret = i; 698 break; 699 } 700 } 701 702 return ret; 703 } 704 705 enum ocfs2_contig_type { 706 CONTIG_NONE = 0, 707 CONTIG_LEFT, 708 CONTIG_RIGHT, 709 CONTIG_LEFTRIGHT, 710 }; 711 712 713 /* 714 * NOTE: ocfs2_block_extent_contig(), ocfs2_extents_adjacent() and 715 * ocfs2_extent_contig only work properly against leaf nodes! 716 */ 717 static int ocfs2_block_extent_contig(struct super_block *sb, 718 struct ocfs2_extent_rec *ext, 719 u64 blkno) 720 { 721 u64 blk_end = le64_to_cpu(ext->e_blkno); 722 723 blk_end += ocfs2_clusters_to_blocks(sb, 724 le16_to_cpu(ext->e_leaf_clusters)); 725 726 return blkno == blk_end; 727 } 728 729 static int ocfs2_extents_adjacent(struct ocfs2_extent_rec *left, 730 struct ocfs2_extent_rec *right) 731 { 732 u32 left_range; 733 734 left_range = le32_to_cpu(left->e_cpos) + 735 le16_to_cpu(left->e_leaf_clusters); 736 737 return (left_range == le32_to_cpu(right->e_cpos)); 738 } 739 740 static enum ocfs2_contig_type 741 ocfs2_extent_contig(struct inode *inode, 742 struct ocfs2_extent_rec *ext, 743 struct ocfs2_extent_rec *insert_rec) 744 { 745 u64 blkno = le64_to_cpu(insert_rec->e_blkno); 746 747 /* 748 * Refuse to coalesce extent records with different flag 749 * fields - we don't want to mix unwritten extents with user 750 * data. 751 */ 752 if (ext->e_flags != insert_rec->e_flags) 753 return CONTIG_NONE; 754 755 if (ocfs2_extents_adjacent(ext, insert_rec) && 756 ocfs2_block_extent_contig(inode->i_sb, ext, blkno)) 757 return CONTIG_RIGHT; 758 759 blkno = le64_to_cpu(ext->e_blkno); 760 if (ocfs2_extents_adjacent(insert_rec, ext) && 761 ocfs2_block_extent_contig(inode->i_sb, insert_rec, blkno)) 762 return CONTIG_LEFT; 763 764 return CONTIG_NONE; 765 } 766 767 /* 768 * NOTE: We can have pretty much any combination of contiguousness and 769 * appending. 770 * 771 * The usefulness of APPEND_TAIL is more in that it lets us know that 772 * we'll have to update the path to that leaf. 773 */ 774 enum ocfs2_append_type { 775 APPEND_NONE = 0, 776 APPEND_TAIL, 777 }; 778 779 enum ocfs2_split_type { 780 SPLIT_NONE = 0, 781 SPLIT_LEFT, 782 SPLIT_RIGHT, 783 }; 784 785 struct ocfs2_insert_type { 786 enum ocfs2_split_type ins_split; 787 enum ocfs2_append_type ins_appending; 788 enum ocfs2_contig_type ins_contig; 789 int ins_contig_index; 790 int ins_tree_depth; 791 }; 792 793 struct ocfs2_merge_ctxt { 794 enum ocfs2_contig_type c_contig_type; 795 int c_has_empty_extent; 796 int c_split_covers_rec; 797 }; 798 799 static int ocfs2_validate_extent_block(struct super_block *sb, 800 struct buffer_head *bh) 801 { 802 int rc; 803 struct ocfs2_extent_block *eb = 804 (struct ocfs2_extent_block *)bh->b_data; 805 806 mlog(0, "Validating extent block %llu\n", 807 (unsigned long long)bh->b_blocknr); 808 809 BUG_ON(!buffer_uptodate(bh)); 810 811 /* 812 * If the ecc fails, we return the error but otherwise 813 * leave the filesystem running. We know any error is 814 * local to this block. 815 */ 816 rc = ocfs2_validate_meta_ecc(sb, bh->b_data, &eb->h_check); 817 if (rc) { 818 mlog(ML_ERROR, "Checksum failed for extent block %llu\n", 819 (unsigned long long)bh->b_blocknr); 820 return rc; 821 } 822 823 /* 824 * Errors after here are fatal. 825 */ 826 827 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) { 828 ocfs2_error(sb, 829 "Extent block #%llu has bad signature %.*s", 830 (unsigned long long)bh->b_blocknr, 7, 831 eb->h_signature); 832 return -EINVAL; 833 } 834 835 if (le64_to_cpu(eb->h_blkno) != bh->b_blocknr) { 836 ocfs2_error(sb, 837 "Extent block #%llu has an invalid h_blkno " 838 "of %llu", 839 (unsigned long long)bh->b_blocknr, 840 (unsigned long long)le64_to_cpu(eb->h_blkno)); 841 return -EINVAL; 842 } 843 844 if (le32_to_cpu(eb->h_fs_generation) != OCFS2_SB(sb)->fs_generation) { 845 ocfs2_error(sb, 846 "Extent block #%llu has an invalid " 847 "h_fs_generation of #%u", 848 (unsigned long long)bh->b_blocknr, 849 le32_to_cpu(eb->h_fs_generation)); 850 return -EINVAL; 851 } 852 853 return 0; 854 } 855 856 int ocfs2_read_extent_block(struct inode *inode, u64 eb_blkno, 857 struct buffer_head **bh) 858 { 859 int rc; 860 struct buffer_head *tmp = *bh; 861 862 rc = ocfs2_read_block(INODE_CACHE(inode), eb_blkno, &tmp, 863 ocfs2_validate_extent_block); 864 865 /* If ocfs2_read_block() got us a new bh, pass it up. */ 866 if (!rc && !*bh) 867 *bh = tmp; 868 869 return rc; 870 } 871 872 873 /* 874 * How many free extents have we got before we need more meta data? 875 */ 876 int ocfs2_num_free_extents(struct ocfs2_super *osb, 877 struct inode *inode, 878 struct ocfs2_extent_tree *et) 879 { 880 int retval; 881 struct ocfs2_extent_list *el = NULL; 882 struct ocfs2_extent_block *eb; 883 struct buffer_head *eb_bh = NULL; 884 u64 last_eb_blk = 0; 885 886 mlog_entry_void(); 887 888 el = et->et_root_el; 889 last_eb_blk = ocfs2_et_get_last_eb_blk(et); 890 891 if (last_eb_blk) { 892 retval = ocfs2_read_extent_block(inode, last_eb_blk, &eb_bh); 893 if (retval < 0) { 894 mlog_errno(retval); 895 goto bail; 896 } 897 eb = (struct ocfs2_extent_block *) eb_bh->b_data; 898 el = &eb->h_list; 899 } 900 901 BUG_ON(el->l_tree_depth != 0); 902 903 retval = le16_to_cpu(el->l_count) - le16_to_cpu(el->l_next_free_rec); 904 bail: 905 brelse(eb_bh); 906 907 mlog_exit(retval); 908 return retval; 909 } 910 911 /* expects array to already be allocated 912 * 913 * sets h_signature, h_blkno, h_suballoc_bit, h_suballoc_slot, and 914 * l_count for you 915 */ 916 static int ocfs2_create_new_meta_bhs(struct ocfs2_super *osb, 917 handle_t *handle, 918 struct inode *inode, 919 int wanted, 920 struct ocfs2_alloc_context *meta_ac, 921 struct buffer_head *bhs[]) 922 { 923 int count, status, i; 924 u16 suballoc_bit_start; 925 u32 num_got; 926 u64 first_blkno; 927 struct ocfs2_extent_block *eb; 928 929 mlog_entry_void(); 930 931 count = 0; 932 while (count < wanted) { 933 status = ocfs2_claim_metadata(osb, 934 handle, 935 meta_ac, 936 wanted - count, 937 &suballoc_bit_start, 938 &num_got, 939 &first_blkno); 940 if (status < 0) { 941 mlog_errno(status); 942 goto bail; 943 } 944 945 for(i = count; i < (num_got + count); i++) { 946 bhs[i] = sb_getblk(osb->sb, first_blkno); 947 if (bhs[i] == NULL) { 948 status = -EIO; 949 mlog_errno(status); 950 goto bail; 951 } 952 ocfs2_set_new_buffer_uptodate(INODE_CACHE(inode), 953 bhs[i]); 954 955 status = ocfs2_journal_access_eb(handle, inode, bhs[i], 956 OCFS2_JOURNAL_ACCESS_CREATE); 957 if (status < 0) { 958 mlog_errno(status); 959 goto bail; 960 } 961 962 memset(bhs[i]->b_data, 0, osb->sb->s_blocksize); 963 eb = (struct ocfs2_extent_block *) bhs[i]->b_data; 964 /* Ok, setup the minimal stuff here. */ 965 strcpy(eb->h_signature, OCFS2_EXTENT_BLOCK_SIGNATURE); 966 eb->h_blkno = cpu_to_le64(first_blkno); 967 eb->h_fs_generation = cpu_to_le32(osb->fs_generation); 968 eb->h_suballoc_slot = cpu_to_le16(osb->slot_num); 969 eb->h_suballoc_bit = cpu_to_le16(suballoc_bit_start); 970 eb->h_list.l_count = 971 cpu_to_le16(ocfs2_extent_recs_per_eb(osb->sb)); 972 973 suballoc_bit_start++; 974 first_blkno++; 975 976 /* We'll also be dirtied by the caller, so 977 * this isn't absolutely necessary. */ 978 status = ocfs2_journal_dirty(handle, bhs[i]); 979 if (status < 0) { 980 mlog_errno(status); 981 goto bail; 982 } 983 } 984 985 count += num_got; 986 } 987 988 status = 0; 989 bail: 990 if (status < 0) { 991 for(i = 0; i < wanted; i++) { 992 brelse(bhs[i]); 993 bhs[i] = NULL; 994 } 995 } 996 mlog_exit(status); 997 return status; 998 } 999 1000 /* 1001 * Helper function for ocfs2_add_branch() and ocfs2_shift_tree_depth(). 1002 * 1003 * Returns the sum of the rightmost extent rec logical offset and 1004 * cluster count. 1005 * 1006 * ocfs2_add_branch() uses this to determine what logical cluster 1007 * value should be populated into the leftmost new branch records. 1008 * 1009 * ocfs2_shift_tree_depth() uses this to determine the # clusters 1010 * value for the new topmost tree record. 1011 */ 1012 static inline u32 ocfs2_sum_rightmost_rec(struct ocfs2_extent_list *el) 1013 { 1014 int i; 1015 1016 i = le16_to_cpu(el->l_next_free_rec) - 1; 1017 1018 return le32_to_cpu(el->l_recs[i].e_cpos) + 1019 ocfs2_rec_clusters(el, &el->l_recs[i]); 1020 } 1021 1022 /* 1023 * Change range of the branches in the right most path according to the leaf 1024 * extent block's rightmost record. 1025 */ 1026 static int ocfs2_adjust_rightmost_branch(handle_t *handle, 1027 struct inode *inode, 1028 struct ocfs2_extent_tree *et) 1029 { 1030 int status; 1031 struct ocfs2_path *path = NULL; 1032 struct ocfs2_extent_list *el; 1033 struct ocfs2_extent_rec *rec; 1034 1035 path = ocfs2_new_path_from_et(et); 1036 if (!path) { 1037 status = -ENOMEM; 1038 return status; 1039 } 1040 1041 status = ocfs2_find_path(inode, path, UINT_MAX); 1042 if (status < 0) { 1043 mlog_errno(status); 1044 goto out; 1045 } 1046 1047 status = ocfs2_extend_trans(handle, path_num_items(path) + 1048 handle->h_buffer_credits); 1049 if (status < 0) { 1050 mlog_errno(status); 1051 goto out; 1052 } 1053 1054 status = ocfs2_journal_access_path(inode, handle, path); 1055 if (status < 0) { 1056 mlog_errno(status); 1057 goto out; 1058 } 1059 1060 el = path_leaf_el(path); 1061 rec = &el->l_recs[le32_to_cpu(el->l_next_free_rec) - 1]; 1062 1063 ocfs2_adjust_rightmost_records(inode, handle, path, rec); 1064 1065 out: 1066 ocfs2_free_path(path); 1067 return status; 1068 } 1069 1070 /* 1071 * Add an entire tree branch to our inode. eb_bh is the extent block 1072 * to start at, if we don't want to start the branch at the dinode 1073 * structure. 1074 * 1075 * last_eb_bh is required as we have to update it's next_leaf pointer 1076 * for the new last extent block. 1077 * 1078 * the new branch will be 'empty' in the sense that every block will 1079 * contain a single record with cluster count == 0. 1080 */ 1081 static int ocfs2_add_branch(struct ocfs2_super *osb, 1082 handle_t *handle, 1083 struct inode *inode, 1084 struct ocfs2_extent_tree *et, 1085 struct buffer_head *eb_bh, 1086 struct buffer_head **last_eb_bh, 1087 struct ocfs2_alloc_context *meta_ac) 1088 { 1089 int status, new_blocks, i; 1090 u64 next_blkno, new_last_eb_blk; 1091 struct buffer_head *bh; 1092 struct buffer_head **new_eb_bhs = NULL; 1093 struct ocfs2_extent_block *eb; 1094 struct ocfs2_extent_list *eb_el; 1095 struct ocfs2_extent_list *el; 1096 u32 new_cpos, root_end; 1097 1098 mlog_entry_void(); 1099 1100 BUG_ON(!last_eb_bh || !*last_eb_bh); 1101 1102 if (eb_bh) { 1103 eb = (struct ocfs2_extent_block *) eb_bh->b_data; 1104 el = &eb->h_list; 1105 } else 1106 el = et->et_root_el; 1107 1108 /* we never add a branch to a leaf. */ 1109 BUG_ON(!el->l_tree_depth); 1110 1111 new_blocks = le16_to_cpu(el->l_tree_depth); 1112 1113 eb = (struct ocfs2_extent_block *)(*last_eb_bh)->b_data; 1114 new_cpos = ocfs2_sum_rightmost_rec(&eb->h_list); 1115 root_end = ocfs2_sum_rightmost_rec(et->et_root_el); 1116 1117 /* 1118 * If there is a gap before the root end and the real end 1119 * of the righmost leaf block, we need to remove the gap 1120 * between new_cpos and root_end first so that the tree 1121 * is consistent after we add a new branch(it will start 1122 * from new_cpos). 1123 */ 1124 if (root_end > new_cpos) { 1125 mlog(0, "adjust the cluster end from %u to %u\n", 1126 root_end, new_cpos); 1127 status = ocfs2_adjust_rightmost_branch(handle, inode, et); 1128 if (status) { 1129 mlog_errno(status); 1130 goto bail; 1131 } 1132 } 1133 1134 /* allocate the number of new eb blocks we need */ 1135 new_eb_bhs = kcalloc(new_blocks, sizeof(struct buffer_head *), 1136 GFP_KERNEL); 1137 if (!new_eb_bhs) { 1138 status = -ENOMEM; 1139 mlog_errno(status); 1140 goto bail; 1141 } 1142 1143 status = ocfs2_create_new_meta_bhs(osb, handle, inode, new_blocks, 1144 meta_ac, new_eb_bhs); 1145 if (status < 0) { 1146 mlog_errno(status); 1147 goto bail; 1148 } 1149 1150 /* Note: new_eb_bhs[new_blocks - 1] is the guy which will be 1151 * linked with the rest of the tree. 1152 * conversly, new_eb_bhs[0] is the new bottommost leaf. 1153 * 1154 * when we leave the loop, new_last_eb_blk will point to the 1155 * newest leaf, and next_blkno will point to the topmost extent 1156 * block. */ 1157 next_blkno = new_last_eb_blk = 0; 1158 for(i = 0; i < new_blocks; i++) { 1159 bh = new_eb_bhs[i]; 1160 eb = (struct ocfs2_extent_block *) bh->b_data; 1161 /* ocfs2_create_new_meta_bhs() should create it right! */ 1162 BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb)); 1163 eb_el = &eb->h_list; 1164 1165 status = ocfs2_journal_access_eb(handle, inode, bh, 1166 OCFS2_JOURNAL_ACCESS_CREATE); 1167 if (status < 0) { 1168 mlog_errno(status); 1169 goto bail; 1170 } 1171 1172 eb->h_next_leaf_blk = 0; 1173 eb_el->l_tree_depth = cpu_to_le16(i); 1174 eb_el->l_next_free_rec = cpu_to_le16(1); 1175 /* 1176 * This actually counts as an empty extent as 1177 * c_clusters == 0 1178 */ 1179 eb_el->l_recs[0].e_cpos = cpu_to_le32(new_cpos); 1180 eb_el->l_recs[0].e_blkno = cpu_to_le64(next_blkno); 1181 /* 1182 * eb_el isn't always an interior node, but even leaf 1183 * nodes want a zero'd flags and reserved field so 1184 * this gets the whole 32 bits regardless of use. 1185 */ 1186 eb_el->l_recs[0].e_int_clusters = cpu_to_le32(0); 1187 if (!eb_el->l_tree_depth) 1188 new_last_eb_blk = le64_to_cpu(eb->h_blkno); 1189 1190 status = ocfs2_journal_dirty(handle, bh); 1191 if (status < 0) { 1192 mlog_errno(status); 1193 goto bail; 1194 } 1195 1196 next_blkno = le64_to_cpu(eb->h_blkno); 1197 } 1198 1199 /* This is a bit hairy. We want to update up to three blocks 1200 * here without leaving any of them in an inconsistent state 1201 * in case of error. We don't have to worry about 1202 * journal_dirty erroring as it won't unless we've aborted the 1203 * handle (in which case we would never be here) so reserving 1204 * the write with journal_access is all we need to do. */ 1205 status = ocfs2_journal_access_eb(handle, inode, *last_eb_bh, 1206 OCFS2_JOURNAL_ACCESS_WRITE); 1207 if (status < 0) { 1208 mlog_errno(status); 1209 goto bail; 1210 } 1211 status = ocfs2_et_root_journal_access(handle, inode, et, 1212 OCFS2_JOURNAL_ACCESS_WRITE); 1213 if (status < 0) { 1214 mlog_errno(status); 1215 goto bail; 1216 } 1217 if (eb_bh) { 1218 status = ocfs2_journal_access_eb(handle, inode, eb_bh, 1219 OCFS2_JOURNAL_ACCESS_WRITE); 1220 if (status < 0) { 1221 mlog_errno(status); 1222 goto bail; 1223 } 1224 } 1225 1226 /* Link the new branch into the rest of the tree (el will 1227 * either be on the root_bh, or the extent block passed in. */ 1228 i = le16_to_cpu(el->l_next_free_rec); 1229 el->l_recs[i].e_blkno = cpu_to_le64(next_blkno); 1230 el->l_recs[i].e_cpos = cpu_to_le32(new_cpos); 1231 el->l_recs[i].e_int_clusters = 0; 1232 le16_add_cpu(&el->l_next_free_rec, 1); 1233 1234 /* fe needs a new last extent block pointer, as does the 1235 * next_leaf on the previously last-extent-block. */ 1236 ocfs2_et_set_last_eb_blk(et, new_last_eb_blk); 1237 1238 eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data; 1239 eb->h_next_leaf_blk = cpu_to_le64(new_last_eb_blk); 1240 1241 status = ocfs2_journal_dirty(handle, *last_eb_bh); 1242 if (status < 0) 1243 mlog_errno(status); 1244 status = ocfs2_journal_dirty(handle, et->et_root_bh); 1245 if (status < 0) 1246 mlog_errno(status); 1247 if (eb_bh) { 1248 status = ocfs2_journal_dirty(handle, eb_bh); 1249 if (status < 0) 1250 mlog_errno(status); 1251 } 1252 1253 /* 1254 * Some callers want to track the rightmost leaf so pass it 1255 * back here. 1256 */ 1257 brelse(*last_eb_bh); 1258 get_bh(new_eb_bhs[0]); 1259 *last_eb_bh = new_eb_bhs[0]; 1260 1261 status = 0; 1262 bail: 1263 if (new_eb_bhs) { 1264 for (i = 0; i < new_blocks; i++) 1265 brelse(new_eb_bhs[i]); 1266 kfree(new_eb_bhs); 1267 } 1268 1269 mlog_exit(status); 1270 return status; 1271 } 1272 1273 /* 1274 * adds another level to the allocation tree. 1275 * returns back the new extent block so you can add a branch to it 1276 * after this call. 1277 */ 1278 static int ocfs2_shift_tree_depth(struct ocfs2_super *osb, 1279 handle_t *handle, 1280 struct inode *inode, 1281 struct ocfs2_extent_tree *et, 1282 struct ocfs2_alloc_context *meta_ac, 1283 struct buffer_head **ret_new_eb_bh) 1284 { 1285 int status, i; 1286 u32 new_clusters; 1287 struct buffer_head *new_eb_bh = NULL; 1288 struct ocfs2_extent_block *eb; 1289 struct ocfs2_extent_list *root_el; 1290 struct ocfs2_extent_list *eb_el; 1291 1292 mlog_entry_void(); 1293 1294 status = ocfs2_create_new_meta_bhs(osb, handle, inode, 1, meta_ac, 1295 &new_eb_bh); 1296 if (status < 0) { 1297 mlog_errno(status); 1298 goto bail; 1299 } 1300 1301 eb = (struct ocfs2_extent_block *) new_eb_bh->b_data; 1302 /* ocfs2_create_new_meta_bhs() should create it right! */ 1303 BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb)); 1304 1305 eb_el = &eb->h_list; 1306 root_el = et->et_root_el; 1307 1308 status = ocfs2_journal_access_eb(handle, inode, new_eb_bh, 1309 OCFS2_JOURNAL_ACCESS_CREATE); 1310 if (status < 0) { 1311 mlog_errno(status); 1312 goto bail; 1313 } 1314 1315 /* copy the root extent list data into the new extent block */ 1316 eb_el->l_tree_depth = root_el->l_tree_depth; 1317 eb_el->l_next_free_rec = root_el->l_next_free_rec; 1318 for (i = 0; i < le16_to_cpu(root_el->l_next_free_rec); i++) 1319 eb_el->l_recs[i] = root_el->l_recs[i]; 1320 1321 status = ocfs2_journal_dirty(handle, new_eb_bh); 1322 if (status < 0) { 1323 mlog_errno(status); 1324 goto bail; 1325 } 1326 1327 status = ocfs2_et_root_journal_access(handle, inode, et, 1328 OCFS2_JOURNAL_ACCESS_WRITE); 1329 if (status < 0) { 1330 mlog_errno(status); 1331 goto bail; 1332 } 1333 1334 new_clusters = ocfs2_sum_rightmost_rec(eb_el); 1335 1336 /* update root_bh now */ 1337 le16_add_cpu(&root_el->l_tree_depth, 1); 1338 root_el->l_recs[0].e_cpos = 0; 1339 root_el->l_recs[0].e_blkno = eb->h_blkno; 1340 root_el->l_recs[0].e_int_clusters = cpu_to_le32(new_clusters); 1341 for (i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++) 1342 memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec)); 1343 root_el->l_next_free_rec = cpu_to_le16(1); 1344 1345 /* If this is our 1st tree depth shift, then last_eb_blk 1346 * becomes the allocated extent block */ 1347 if (root_el->l_tree_depth == cpu_to_le16(1)) 1348 ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno)); 1349 1350 status = ocfs2_journal_dirty(handle, et->et_root_bh); 1351 if (status < 0) { 1352 mlog_errno(status); 1353 goto bail; 1354 } 1355 1356 *ret_new_eb_bh = new_eb_bh; 1357 new_eb_bh = NULL; 1358 status = 0; 1359 bail: 1360 brelse(new_eb_bh); 1361 1362 mlog_exit(status); 1363 return status; 1364 } 1365 1366 /* 1367 * Should only be called when there is no space left in any of the 1368 * leaf nodes. What we want to do is find the lowest tree depth 1369 * non-leaf extent block with room for new records. There are three 1370 * valid results of this search: 1371 * 1372 * 1) a lowest extent block is found, then we pass it back in 1373 * *lowest_eb_bh and return '0' 1374 * 1375 * 2) the search fails to find anything, but the root_el has room. We 1376 * pass NULL back in *lowest_eb_bh, but still return '0' 1377 * 1378 * 3) the search fails to find anything AND the root_el is full, in 1379 * which case we return > 0 1380 * 1381 * return status < 0 indicates an error. 1382 */ 1383 static int ocfs2_find_branch_target(struct ocfs2_super *osb, 1384 struct inode *inode, 1385 struct ocfs2_extent_tree *et, 1386 struct buffer_head **target_bh) 1387 { 1388 int status = 0, i; 1389 u64 blkno; 1390 struct ocfs2_extent_block *eb; 1391 struct ocfs2_extent_list *el; 1392 struct buffer_head *bh = NULL; 1393 struct buffer_head *lowest_bh = NULL; 1394 1395 mlog_entry_void(); 1396 1397 *target_bh = NULL; 1398 1399 el = et->et_root_el; 1400 1401 while(le16_to_cpu(el->l_tree_depth) > 1) { 1402 if (le16_to_cpu(el->l_next_free_rec) == 0) { 1403 ocfs2_error(inode->i_sb, "Dinode %llu has empty " 1404 "extent list (next_free_rec == 0)", 1405 (unsigned long long)OCFS2_I(inode)->ip_blkno); 1406 status = -EIO; 1407 goto bail; 1408 } 1409 i = le16_to_cpu(el->l_next_free_rec) - 1; 1410 blkno = le64_to_cpu(el->l_recs[i].e_blkno); 1411 if (!blkno) { 1412 ocfs2_error(inode->i_sb, "Dinode %llu has extent " 1413 "list where extent # %d has no physical " 1414 "block start", 1415 (unsigned long long)OCFS2_I(inode)->ip_blkno, i); 1416 status = -EIO; 1417 goto bail; 1418 } 1419 1420 brelse(bh); 1421 bh = NULL; 1422 1423 status = ocfs2_read_extent_block(inode, blkno, &bh); 1424 if (status < 0) { 1425 mlog_errno(status); 1426 goto bail; 1427 } 1428 1429 eb = (struct ocfs2_extent_block *) bh->b_data; 1430 el = &eb->h_list; 1431 1432 if (le16_to_cpu(el->l_next_free_rec) < 1433 le16_to_cpu(el->l_count)) { 1434 brelse(lowest_bh); 1435 lowest_bh = bh; 1436 get_bh(lowest_bh); 1437 } 1438 } 1439 1440 /* If we didn't find one and the fe doesn't have any room, 1441 * then return '1' */ 1442 el = et->et_root_el; 1443 if (!lowest_bh && (el->l_next_free_rec == el->l_count)) 1444 status = 1; 1445 1446 *target_bh = lowest_bh; 1447 bail: 1448 brelse(bh); 1449 1450 mlog_exit(status); 1451 return status; 1452 } 1453 1454 /* 1455 * Grow a b-tree so that it has more records. 1456 * 1457 * We might shift the tree depth in which case existing paths should 1458 * be considered invalid. 1459 * 1460 * Tree depth after the grow is returned via *final_depth. 1461 * 1462 * *last_eb_bh will be updated by ocfs2_add_branch(). 1463 */ 1464 static int ocfs2_grow_tree(struct inode *inode, handle_t *handle, 1465 struct ocfs2_extent_tree *et, int *final_depth, 1466 struct buffer_head **last_eb_bh, 1467 struct ocfs2_alloc_context *meta_ac) 1468 { 1469 int ret, shift; 1470 struct ocfs2_extent_list *el = et->et_root_el; 1471 int depth = le16_to_cpu(el->l_tree_depth); 1472 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1473 struct buffer_head *bh = NULL; 1474 1475 BUG_ON(meta_ac == NULL); 1476 1477 shift = ocfs2_find_branch_target(osb, inode, et, &bh); 1478 if (shift < 0) { 1479 ret = shift; 1480 mlog_errno(ret); 1481 goto out; 1482 } 1483 1484 /* We traveled all the way to the bottom of the allocation tree 1485 * and didn't find room for any more extents - we need to add 1486 * another tree level */ 1487 if (shift) { 1488 BUG_ON(bh); 1489 mlog(0, "need to shift tree depth (current = %d)\n", depth); 1490 1491 /* ocfs2_shift_tree_depth will return us a buffer with 1492 * the new extent block (so we can pass that to 1493 * ocfs2_add_branch). */ 1494 ret = ocfs2_shift_tree_depth(osb, handle, inode, et, 1495 meta_ac, &bh); 1496 if (ret < 0) { 1497 mlog_errno(ret); 1498 goto out; 1499 } 1500 depth++; 1501 if (depth == 1) { 1502 /* 1503 * Special case: we have room now if we shifted from 1504 * tree_depth 0, so no more work needs to be done. 1505 * 1506 * We won't be calling add_branch, so pass 1507 * back *last_eb_bh as the new leaf. At depth 1508 * zero, it should always be null so there's 1509 * no reason to brelse. 1510 */ 1511 BUG_ON(*last_eb_bh); 1512 get_bh(bh); 1513 *last_eb_bh = bh; 1514 goto out; 1515 } 1516 } 1517 1518 /* call ocfs2_add_branch to add the final part of the tree with 1519 * the new data. */ 1520 mlog(0, "add branch. bh = %p\n", bh); 1521 ret = ocfs2_add_branch(osb, handle, inode, et, bh, last_eb_bh, 1522 meta_ac); 1523 if (ret < 0) { 1524 mlog_errno(ret); 1525 goto out; 1526 } 1527 1528 out: 1529 if (final_depth) 1530 *final_depth = depth; 1531 brelse(bh); 1532 return ret; 1533 } 1534 1535 /* 1536 * This function will discard the rightmost extent record. 1537 */ 1538 static void ocfs2_shift_records_right(struct ocfs2_extent_list *el) 1539 { 1540 int next_free = le16_to_cpu(el->l_next_free_rec); 1541 int count = le16_to_cpu(el->l_count); 1542 unsigned int num_bytes; 1543 1544 BUG_ON(!next_free); 1545 /* This will cause us to go off the end of our extent list. */ 1546 BUG_ON(next_free >= count); 1547 1548 num_bytes = sizeof(struct ocfs2_extent_rec) * next_free; 1549 1550 memmove(&el->l_recs[1], &el->l_recs[0], num_bytes); 1551 } 1552 1553 static void ocfs2_rotate_leaf(struct ocfs2_extent_list *el, 1554 struct ocfs2_extent_rec *insert_rec) 1555 { 1556 int i, insert_index, next_free, has_empty, num_bytes; 1557 u32 insert_cpos = le32_to_cpu(insert_rec->e_cpos); 1558 struct ocfs2_extent_rec *rec; 1559 1560 next_free = le16_to_cpu(el->l_next_free_rec); 1561 has_empty = ocfs2_is_empty_extent(&el->l_recs[0]); 1562 1563 BUG_ON(!next_free); 1564 1565 /* The tree code before us didn't allow enough room in the leaf. */ 1566 BUG_ON(el->l_next_free_rec == el->l_count && !has_empty); 1567 1568 /* 1569 * The easiest way to approach this is to just remove the 1570 * empty extent and temporarily decrement next_free. 1571 */ 1572 if (has_empty) { 1573 /* 1574 * If next_free was 1 (only an empty extent), this 1575 * loop won't execute, which is fine. We still want 1576 * the decrement above to happen. 1577 */ 1578 for(i = 0; i < (next_free - 1); i++) 1579 el->l_recs[i] = el->l_recs[i+1]; 1580 1581 next_free--; 1582 } 1583 1584 /* 1585 * Figure out what the new record index should be. 1586 */ 1587 for(i = 0; i < next_free; i++) { 1588 rec = &el->l_recs[i]; 1589 1590 if (insert_cpos < le32_to_cpu(rec->e_cpos)) 1591 break; 1592 } 1593 insert_index = i; 1594 1595 mlog(0, "ins %u: index %d, has_empty %d, next_free %d, count %d\n", 1596 insert_cpos, insert_index, has_empty, next_free, le16_to_cpu(el->l_count)); 1597 1598 BUG_ON(insert_index < 0); 1599 BUG_ON(insert_index >= le16_to_cpu(el->l_count)); 1600 BUG_ON(insert_index > next_free); 1601 1602 /* 1603 * No need to memmove if we're just adding to the tail. 1604 */ 1605 if (insert_index != next_free) { 1606 BUG_ON(next_free >= le16_to_cpu(el->l_count)); 1607 1608 num_bytes = next_free - insert_index; 1609 num_bytes *= sizeof(struct ocfs2_extent_rec); 1610 memmove(&el->l_recs[insert_index + 1], 1611 &el->l_recs[insert_index], 1612 num_bytes); 1613 } 1614 1615 /* 1616 * Either we had an empty extent, and need to re-increment or 1617 * there was no empty extent on a non full rightmost leaf node, 1618 * in which case we still need to increment. 1619 */ 1620 next_free++; 1621 el->l_next_free_rec = cpu_to_le16(next_free); 1622 /* 1623 * Make sure none of the math above just messed up our tree. 1624 */ 1625 BUG_ON(le16_to_cpu(el->l_next_free_rec) > le16_to_cpu(el->l_count)); 1626 1627 el->l_recs[insert_index] = *insert_rec; 1628 1629 } 1630 1631 static void ocfs2_remove_empty_extent(struct ocfs2_extent_list *el) 1632 { 1633 int size, num_recs = le16_to_cpu(el->l_next_free_rec); 1634 1635 BUG_ON(num_recs == 0); 1636 1637 if (ocfs2_is_empty_extent(&el->l_recs[0])) { 1638 num_recs--; 1639 size = num_recs * sizeof(struct ocfs2_extent_rec); 1640 memmove(&el->l_recs[0], &el->l_recs[1], size); 1641 memset(&el->l_recs[num_recs], 0, 1642 sizeof(struct ocfs2_extent_rec)); 1643 el->l_next_free_rec = cpu_to_le16(num_recs); 1644 } 1645 } 1646 1647 /* 1648 * Create an empty extent record . 1649 * 1650 * l_next_free_rec may be updated. 1651 * 1652 * If an empty extent already exists do nothing. 1653 */ 1654 static void ocfs2_create_empty_extent(struct ocfs2_extent_list *el) 1655 { 1656 int next_free = le16_to_cpu(el->l_next_free_rec); 1657 1658 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0); 1659 1660 if (next_free == 0) 1661 goto set_and_inc; 1662 1663 if (ocfs2_is_empty_extent(&el->l_recs[0])) 1664 return; 1665 1666 mlog_bug_on_msg(el->l_count == el->l_next_free_rec, 1667 "Asked to create an empty extent in a full list:\n" 1668 "count = %u, tree depth = %u", 1669 le16_to_cpu(el->l_count), 1670 le16_to_cpu(el->l_tree_depth)); 1671 1672 ocfs2_shift_records_right(el); 1673 1674 set_and_inc: 1675 le16_add_cpu(&el->l_next_free_rec, 1); 1676 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec)); 1677 } 1678 1679 /* 1680 * For a rotation which involves two leaf nodes, the "root node" is 1681 * the lowest level tree node which contains a path to both leafs. This 1682 * resulting set of information can be used to form a complete "subtree" 1683 * 1684 * This function is passed two full paths from the dinode down to a 1685 * pair of adjacent leaves. It's task is to figure out which path 1686 * index contains the subtree root - this can be the root index itself 1687 * in a worst-case rotation. 1688 * 1689 * The array index of the subtree root is passed back. 1690 */ 1691 static int ocfs2_find_subtree_root(struct inode *inode, 1692 struct ocfs2_path *left, 1693 struct ocfs2_path *right) 1694 { 1695 int i = 0; 1696 1697 /* 1698 * Check that the caller passed in two paths from the same tree. 1699 */ 1700 BUG_ON(path_root_bh(left) != path_root_bh(right)); 1701 1702 do { 1703 i++; 1704 1705 /* 1706 * The caller didn't pass two adjacent paths. 1707 */ 1708 mlog_bug_on_msg(i > left->p_tree_depth, 1709 "Inode %lu, left depth %u, right depth %u\n" 1710 "left leaf blk %llu, right leaf blk %llu\n", 1711 inode->i_ino, left->p_tree_depth, 1712 right->p_tree_depth, 1713 (unsigned long long)path_leaf_bh(left)->b_blocknr, 1714 (unsigned long long)path_leaf_bh(right)->b_blocknr); 1715 } while (left->p_node[i].bh->b_blocknr == 1716 right->p_node[i].bh->b_blocknr); 1717 1718 return i - 1; 1719 } 1720 1721 typedef void (path_insert_t)(void *, struct buffer_head *); 1722 1723 /* 1724 * Traverse a btree path in search of cpos, starting at root_el. 1725 * 1726 * This code can be called with a cpos larger than the tree, in which 1727 * case it will return the rightmost path. 1728 */ 1729 static int __ocfs2_find_path(struct inode *inode, 1730 struct ocfs2_extent_list *root_el, u32 cpos, 1731 path_insert_t *func, void *data) 1732 { 1733 int i, ret = 0; 1734 u32 range; 1735 u64 blkno; 1736 struct buffer_head *bh = NULL; 1737 struct ocfs2_extent_block *eb; 1738 struct ocfs2_extent_list *el; 1739 struct ocfs2_extent_rec *rec; 1740 struct ocfs2_inode_info *oi = OCFS2_I(inode); 1741 1742 el = root_el; 1743 while (el->l_tree_depth) { 1744 if (le16_to_cpu(el->l_next_free_rec) == 0) { 1745 ocfs2_error(inode->i_sb, 1746 "Inode %llu has empty extent list at " 1747 "depth %u\n", 1748 (unsigned long long)oi->ip_blkno, 1749 le16_to_cpu(el->l_tree_depth)); 1750 ret = -EROFS; 1751 goto out; 1752 1753 } 1754 1755 for(i = 0; i < le16_to_cpu(el->l_next_free_rec) - 1; i++) { 1756 rec = &el->l_recs[i]; 1757 1758 /* 1759 * In the case that cpos is off the allocation 1760 * tree, this should just wind up returning the 1761 * rightmost record. 1762 */ 1763 range = le32_to_cpu(rec->e_cpos) + 1764 ocfs2_rec_clusters(el, rec); 1765 if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range) 1766 break; 1767 } 1768 1769 blkno = le64_to_cpu(el->l_recs[i].e_blkno); 1770 if (blkno == 0) { 1771 ocfs2_error(inode->i_sb, 1772 "Inode %llu has bad blkno in extent list " 1773 "at depth %u (index %d)\n", 1774 (unsigned long long)oi->ip_blkno, 1775 le16_to_cpu(el->l_tree_depth), i); 1776 ret = -EROFS; 1777 goto out; 1778 } 1779 1780 brelse(bh); 1781 bh = NULL; 1782 ret = ocfs2_read_extent_block(inode, blkno, &bh); 1783 if (ret) { 1784 mlog_errno(ret); 1785 goto out; 1786 } 1787 1788 eb = (struct ocfs2_extent_block *) bh->b_data; 1789 el = &eb->h_list; 1790 1791 if (le16_to_cpu(el->l_next_free_rec) > 1792 le16_to_cpu(el->l_count)) { 1793 ocfs2_error(inode->i_sb, 1794 "Inode %llu has bad count in extent list " 1795 "at block %llu (next free=%u, count=%u)\n", 1796 (unsigned long long)oi->ip_blkno, 1797 (unsigned long long)bh->b_blocknr, 1798 le16_to_cpu(el->l_next_free_rec), 1799 le16_to_cpu(el->l_count)); 1800 ret = -EROFS; 1801 goto out; 1802 } 1803 1804 if (func) 1805 func(data, bh); 1806 } 1807 1808 out: 1809 /* 1810 * Catch any trailing bh that the loop didn't handle. 1811 */ 1812 brelse(bh); 1813 1814 return ret; 1815 } 1816 1817 /* 1818 * Given an initialized path (that is, it has a valid root extent 1819 * list), this function will traverse the btree in search of the path 1820 * which would contain cpos. 1821 * 1822 * The path traveled is recorded in the path structure. 1823 * 1824 * Note that this will not do any comparisons on leaf node extent 1825 * records, so it will work fine in the case that we just added a tree 1826 * branch. 1827 */ 1828 struct find_path_data { 1829 int index; 1830 struct ocfs2_path *path; 1831 }; 1832 static void find_path_ins(void *data, struct buffer_head *bh) 1833 { 1834 struct find_path_data *fp = data; 1835 1836 get_bh(bh); 1837 ocfs2_path_insert_eb(fp->path, fp->index, bh); 1838 fp->index++; 1839 } 1840 static int ocfs2_find_path(struct inode *inode, struct ocfs2_path *path, 1841 u32 cpos) 1842 { 1843 struct find_path_data data; 1844 1845 data.index = 1; 1846 data.path = path; 1847 return __ocfs2_find_path(inode, path_root_el(path), cpos, 1848 find_path_ins, &data); 1849 } 1850 1851 static void find_leaf_ins(void *data, struct buffer_head *bh) 1852 { 1853 struct ocfs2_extent_block *eb =(struct ocfs2_extent_block *)bh->b_data; 1854 struct ocfs2_extent_list *el = &eb->h_list; 1855 struct buffer_head **ret = data; 1856 1857 /* We want to retain only the leaf block. */ 1858 if (le16_to_cpu(el->l_tree_depth) == 0) { 1859 get_bh(bh); 1860 *ret = bh; 1861 } 1862 } 1863 /* 1864 * Find the leaf block in the tree which would contain cpos. No 1865 * checking of the actual leaf is done. 1866 * 1867 * Some paths want to call this instead of allocating a path structure 1868 * and calling ocfs2_find_path(). 1869 * 1870 * This function doesn't handle non btree extent lists. 1871 */ 1872 int ocfs2_find_leaf(struct inode *inode, struct ocfs2_extent_list *root_el, 1873 u32 cpos, struct buffer_head **leaf_bh) 1874 { 1875 int ret; 1876 struct buffer_head *bh = NULL; 1877 1878 ret = __ocfs2_find_path(inode, root_el, cpos, find_leaf_ins, &bh); 1879 if (ret) { 1880 mlog_errno(ret); 1881 goto out; 1882 } 1883 1884 *leaf_bh = bh; 1885 out: 1886 return ret; 1887 } 1888 1889 /* 1890 * Adjust the adjacent records (left_rec, right_rec) involved in a rotation. 1891 * 1892 * Basically, we've moved stuff around at the bottom of the tree and 1893 * we need to fix up the extent records above the changes to reflect 1894 * the new changes. 1895 * 1896 * left_rec: the record on the left. 1897 * left_child_el: is the child list pointed to by left_rec 1898 * right_rec: the record to the right of left_rec 1899 * right_child_el: is the child list pointed to by right_rec 1900 * 1901 * By definition, this only works on interior nodes. 1902 */ 1903 static void ocfs2_adjust_adjacent_records(struct ocfs2_extent_rec *left_rec, 1904 struct ocfs2_extent_list *left_child_el, 1905 struct ocfs2_extent_rec *right_rec, 1906 struct ocfs2_extent_list *right_child_el) 1907 { 1908 u32 left_clusters, right_end; 1909 1910 /* 1911 * Interior nodes never have holes. Their cpos is the cpos of 1912 * the leftmost record in their child list. Their cluster 1913 * count covers the full theoretical range of their child list 1914 * - the range between their cpos and the cpos of the record 1915 * immediately to their right. 1916 */ 1917 left_clusters = le32_to_cpu(right_child_el->l_recs[0].e_cpos); 1918 if (!ocfs2_rec_clusters(right_child_el, &right_child_el->l_recs[0])) { 1919 BUG_ON(right_child_el->l_tree_depth); 1920 BUG_ON(le16_to_cpu(right_child_el->l_next_free_rec) <= 1); 1921 left_clusters = le32_to_cpu(right_child_el->l_recs[1].e_cpos); 1922 } 1923 left_clusters -= le32_to_cpu(left_rec->e_cpos); 1924 left_rec->e_int_clusters = cpu_to_le32(left_clusters); 1925 1926 /* 1927 * Calculate the rightmost cluster count boundary before 1928 * moving cpos - we will need to adjust clusters after 1929 * updating e_cpos to keep the same highest cluster count. 1930 */ 1931 right_end = le32_to_cpu(right_rec->e_cpos); 1932 right_end += le32_to_cpu(right_rec->e_int_clusters); 1933 1934 right_rec->e_cpos = left_rec->e_cpos; 1935 le32_add_cpu(&right_rec->e_cpos, left_clusters); 1936 1937 right_end -= le32_to_cpu(right_rec->e_cpos); 1938 right_rec->e_int_clusters = cpu_to_le32(right_end); 1939 } 1940 1941 /* 1942 * Adjust the adjacent root node records involved in a 1943 * rotation. left_el_blkno is passed in as a key so that we can easily 1944 * find it's index in the root list. 1945 */ 1946 static void ocfs2_adjust_root_records(struct ocfs2_extent_list *root_el, 1947 struct ocfs2_extent_list *left_el, 1948 struct ocfs2_extent_list *right_el, 1949 u64 left_el_blkno) 1950 { 1951 int i; 1952 1953 BUG_ON(le16_to_cpu(root_el->l_tree_depth) <= 1954 le16_to_cpu(left_el->l_tree_depth)); 1955 1956 for(i = 0; i < le16_to_cpu(root_el->l_next_free_rec) - 1; i++) { 1957 if (le64_to_cpu(root_el->l_recs[i].e_blkno) == left_el_blkno) 1958 break; 1959 } 1960 1961 /* 1962 * The path walking code should have never returned a root and 1963 * two paths which are not adjacent. 1964 */ 1965 BUG_ON(i >= (le16_to_cpu(root_el->l_next_free_rec) - 1)); 1966 1967 ocfs2_adjust_adjacent_records(&root_el->l_recs[i], left_el, 1968 &root_el->l_recs[i + 1], right_el); 1969 } 1970 1971 /* 1972 * We've changed a leaf block (in right_path) and need to reflect that 1973 * change back up the subtree. 1974 * 1975 * This happens in multiple places: 1976 * - When we've moved an extent record from the left path leaf to the right 1977 * path leaf to make room for an empty extent in the left path leaf. 1978 * - When our insert into the right path leaf is at the leftmost edge 1979 * and requires an update of the path immediately to it's left. This 1980 * can occur at the end of some types of rotation and appending inserts. 1981 * - When we've adjusted the last extent record in the left path leaf and the 1982 * 1st extent record in the right path leaf during cross extent block merge. 1983 */ 1984 static void ocfs2_complete_edge_insert(struct inode *inode, handle_t *handle, 1985 struct ocfs2_path *left_path, 1986 struct ocfs2_path *right_path, 1987 int subtree_index) 1988 { 1989 int ret, i, idx; 1990 struct ocfs2_extent_list *el, *left_el, *right_el; 1991 struct ocfs2_extent_rec *left_rec, *right_rec; 1992 struct buffer_head *root_bh = left_path->p_node[subtree_index].bh; 1993 1994 /* 1995 * Update the counts and position values within all the 1996 * interior nodes to reflect the leaf rotation we just did. 1997 * 1998 * The root node is handled below the loop. 1999 * 2000 * We begin the loop with right_el and left_el pointing to the 2001 * leaf lists and work our way up. 2002 * 2003 * NOTE: within this loop, left_el and right_el always refer 2004 * to the *child* lists. 2005 */ 2006 left_el = path_leaf_el(left_path); 2007 right_el = path_leaf_el(right_path); 2008 for(i = left_path->p_tree_depth - 1; i > subtree_index; i--) { 2009 mlog(0, "Adjust records at index %u\n", i); 2010 2011 /* 2012 * One nice property of knowing that all of these 2013 * nodes are below the root is that we only deal with 2014 * the leftmost right node record and the rightmost 2015 * left node record. 2016 */ 2017 el = left_path->p_node[i].el; 2018 idx = le16_to_cpu(left_el->l_next_free_rec) - 1; 2019 left_rec = &el->l_recs[idx]; 2020 2021 el = right_path->p_node[i].el; 2022 right_rec = &el->l_recs[0]; 2023 2024 ocfs2_adjust_adjacent_records(left_rec, left_el, right_rec, 2025 right_el); 2026 2027 ret = ocfs2_journal_dirty(handle, left_path->p_node[i].bh); 2028 if (ret) 2029 mlog_errno(ret); 2030 2031 ret = ocfs2_journal_dirty(handle, right_path->p_node[i].bh); 2032 if (ret) 2033 mlog_errno(ret); 2034 2035 /* 2036 * Setup our list pointers now so that the current 2037 * parents become children in the next iteration. 2038 */ 2039 left_el = left_path->p_node[i].el; 2040 right_el = right_path->p_node[i].el; 2041 } 2042 2043 /* 2044 * At the root node, adjust the two adjacent records which 2045 * begin our path to the leaves. 2046 */ 2047 2048 el = left_path->p_node[subtree_index].el; 2049 left_el = left_path->p_node[subtree_index + 1].el; 2050 right_el = right_path->p_node[subtree_index + 1].el; 2051 2052 ocfs2_adjust_root_records(el, left_el, right_el, 2053 left_path->p_node[subtree_index + 1].bh->b_blocknr); 2054 2055 root_bh = left_path->p_node[subtree_index].bh; 2056 2057 ret = ocfs2_journal_dirty(handle, root_bh); 2058 if (ret) 2059 mlog_errno(ret); 2060 } 2061 2062 static int ocfs2_rotate_subtree_right(struct inode *inode, 2063 handle_t *handle, 2064 struct ocfs2_path *left_path, 2065 struct ocfs2_path *right_path, 2066 int subtree_index) 2067 { 2068 int ret, i; 2069 struct buffer_head *right_leaf_bh; 2070 struct buffer_head *left_leaf_bh = NULL; 2071 struct buffer_head *root_bh; 2072 struct ocfs2_extent_list *right_el, *left_el; 2073 struct ocfs2_extent_rec move_rec; 2074 2075 left_leaf_bh = path_leaf_bh(left_path); 2076 left_el = path_leaf_el(left_path); 2077 2078 if (left_el->l_next_free_rec != left_el->l_count) { 2079 ocfs2_error(inode->i_sb, 2080 "Inode %llu has non-full interior leaf node %llu" 2081 "(next free = %u)", 2082 (unsigned long long)OCFS2_I(inode)->ip_blkno, 2083 (unsigned long long)left_leaf_bh->b_blocknr, 2084 le16_to_cpu(left_el->l_next_free_rec)); 2085 return -EROFS; 2086 } 2087 2088 /* 2089 * This extent block may already have an empty record, so we 2090 * return early if so. 2091 */ 2092 if (ocfs2_is_empty_extent(&left_el->l_recs[0])) 2093 return 0; 2094 2095 root_bh = left_path->p_node[subtree_index].bh; 2096 BUG_ON(root_bh != right_path->p_node[subtree_index].bh); 2097 2098 ret = ocfs2_path_bh_journal_access(handle, inode, right_path, 2099 subtree_index); 2100 if (ret) { 2101 mlog_errno(ret); 2102 goto out; 2103 } 2104 2105 for(i = subtree_index + 1; i < path_num_items(right_path); i++) { 2106 ret = ocfs2_path_bh_journal_access(handle, inode, 2107 right_path, i); 2108 if (ret) { 2109 mlog_errno(ret); 2110 goto out; 2111 } 2112 2113 ret = ocfs2_path_bh_journal_access(handle, inode, 2114 left_path, i); 2115 if (ret) { 2116 mlog_errno(ret); 2117 goto out; 2118 } 2119 } 2120 2121 right_leaf_bh = path_leaf_bh(right_path); 2122 right_el = path_leaf_el(right_path); 2123 2124 /* This is a code error, not a disk corruption. */ 2125 mlog_bug_on_msg(!right_el->l_next_free_rec, "Inode %llu: Rotate fails " 2126 "because rightmost leaf block %llu is empty\n", 2127 (unsigned long long)OCFS2_I(inode)->ip_blkno, 2128 (unsigned long long)right_leaf_bh->b_blocknr); 2129 2130 ocfs2_create_empty_extent(right_el); 2131 2132 ret = ocfs2_journal_dirty(handle, right_leaf_bh); 2133 if (ret) { 2134 mlog_errno(ret); 2135 goto out; 2136 } 2137 2138 /* Do the copy now. */ 2139 i = le16_to_cpu(left_el->l_next_free_rec) - 1; 2140 move_rec = left_el->l_recs[i]; 2141 right_el->l_recs[0] = move_rec; 2142 2143 /* 2144 * Clear out the record we just copied and shift everything 2145 * over, leaving an empty extent in the left leaf. 2146 * 2147 * We temporarily subtract from next_free_rec so that the 2148 * shift will lose the tail record (which is now defunct). 2149 */ 2150 le16_add_cpu(&left_el->l_next_free_rec, -1); 2151 ocfs2_shift_records_right(left_el); 2152 memset(&left_el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec)); 2153 le16_add_cpu(&left_el->l_next_free_rec, 1); 2154 2155 ret = ocfs2_journal_dirty(handle, left_leaf_bh); 2156 if (ret) { 2157 mlog_errno(ret); 2158 goto out; 2159 } 2160 2161 ocfs2_complete_edge_insert(inode, handle, left_path, right_path, 2162 subtree_index); 2163 2164 out: 2165 return ret; 2166 } 2167 2168 /* 2169 * Given a full path, determine what cpos value would return us a path 2170 * containing the leaf immediately to the left of the current one. 2171 * 2172 * Will return zero if the path passed in is already the leftmost path. 2173 */ 2174 static int ocfs2_find_cpos_for_left_leaf(struct super_block *sb, 2175 struct ocfs2_path *path, u32 *cpos) 2176 { 2177 int i, j, ret = 0; 2178 u64 blkno; 2179 struct ocfs2_extent_list *el; 2180 2181 BUG_ON(path->p_tree_depth == 0); 2182 2183 *cpos = 0; 2184 2185 blkno = path_leaf_bh(path)->b_blocknr; 2186 2187 /* Start at the tree node just above the leaf and work our way up. */ 2188 i = path->p_tree_depth - 1; 2189 while (i >= 0) { 2190 el = path->p_node[i].el; 2191 2192 /* 2193 * Find the extent record just before the one in our 2194 * path. 2195 */ 2196 for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) { 2197 if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) { 2198 if (j == 0) { 2199 if (i == 0) { 2200 /* 2201 * We've determined that the 2202 * path specified is already 2203 * the leftmost one - return a 2204 * cpos of zero. 2205 */ 2206 goto out; 2207 } 2208 /* 2209 * The leftmost record points to our 2210 * leaf - we need to travel up the 2211 * tree one level. 2212 */ 2213 goto next_node; 2214 } 2215 2216 *cpos = le32_to_cpu(el->l_recs[j - 1].e_cpos); 2217 *cpos = *cpos + ocfs2_rec_clusters(el, 2218 &el->l_recs[j - 1]); 2219 *cpos = *cpos - 1; 2220 goto out; 2221 } 2222 } 2223 2224 /* 2225 * If we got here, we never found a valid node where 2226 * the tree indicated one should be. 2227 */ 2228 ocfs2_error(sb, 2229 "Invalid extent tree at extent block %llu\n", 2230 (unsigned long long)blkno); 2231 ret = -EROFS; 2232 goto out; 2233 2234 next_node: 2235 blkno = path->p_node[i].bh->b_blocknr; 2236 i--; 2237 } 2238 2239 out: 2240 return ret; 2241 } 2242 2243 /* 2244 * Extend the transaction by enough credits to complete the rotation, 2245 * and still leave at least the original number of credits allocated 2246 * to this transaction. 2247 */ 2248 static int ocfs2_extend_rotate_transaction(handle_t *handle, int subtree_depth, 2249 int op_credits, 2250 struct ocfs2_path *path) 2251 { 2252 int credits = (path->p_tree_depth - subtree_depth) * 2 + 1 + op_credits; 2253 2254 if (handle->h_buffer_credits < credits) 2255 return ocfs2_extend_trans(handle, credits); 2256 2257 return 0; 2258 } 2259 2260 /* 2261 * Trap the case where we're inserting into the theoretical range past 2262 * the _actual_ left leaf range. Otherwise, we'll rotate a record 2263 * whose cpos is less than ours into the right leaf. 2264 * 2265 * It's only necessary to look at the rightmost record of the left 2266 * leaf because the logic that calls us should ensure that the 2267 * theoretical ranges in the path components above the leaves are 2268 * correct. 2269 */ 2270 static int ocfs2_rotate_requires_path_adjustment(struct ocfs2_path *left_path, 2271 u32 insert_cpos) 2272 { 2273 struct ocfs2_extent_list *left_el; 2274 struct ocfs2_extent_rec *rec; 2275 int next_free; 2276 2277 left_el = path_leaf_el(left_path); 2278 next_free = le16_to_cpu(left_el->l_next_free_rec); 2279 rec = &left_el->l_recs[next_free - 1]; 2280 2281 if (insert_cpos > le32_to_cpu(rec->e_cpos)) 2282 return 1; 2283 return 0; 2284 } 2285 2286 static int ocfs2_leftmost_rec_contains(struct ocfs2_extent_list *el, u32 cpos) 2287 { 2288 int next_free = le16_to_cpu(el->l_next_free_rec); 2289 unsigned int range; 2290 struct ocfs2_extent_rec *rec; 2291 2292 if (next_free == 0) 2293 return 0; 2294 2295 rec = &el->l_recs[0]; 2296 if (ocfs2_is_empty_extent(rec)) { 2297 /* Empty list. */ 2298 if (next_free == 1) 2299 return 0; 2300 rec = &el->l_recs[1]; 2301 } 2302 2303 range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); 2304 if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range) 2305 return 1; 2306 return 0; 2307 } 2308 2309 /* 2310 * Rotate all the records in a btree right one record, starting at insert_cpos. 2311 * 2312 * The path to the rightmost leaf should be passed in. 2313 * 2314 * The array is assumed to be large enough to hold an entire path (tree depth). 2315 * 2316 * Upon succesful return from this function: 2317 * 2318 * - The 'right_path' array will contain a path to the leaf block 2319 * whose range contains e_cpos. 2320 * - That leaf block will have a single empty extent in list index 0. 2321 * - In the case that the rotation requires a post-insert update, 2322 * *ret_left_path will contain a valid path which can be passed to 2323 * ocfs2_insert_path(). 2324 */ 2325 static int ocfs2_rotate_tree_right(struct inode *inode, 2326 handle_t *handle, 2327 enum ocfs2_split_type split, 2328 u32 insert_cpos, 2329 struct ocfs2_path *right_path, 2330 struct ocfs2_path **ret_left_path) 2331 { 2332 int ret, start, orig_credits = handle->h_buffer_credits; 2333 u32 cpos; 2334 struct ocfs2_path *left_path = NULL; 2335 2336 *ret_left_path = NULL; 2337 2338 left_path = ocfs2_new_path_from_path(right_path); 2339 if (!left_path) { 2340 ret = -ENOMEM; 2341 mlog_errno(ret); 2342 goto out; 2343 } 2344 2345 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path, &cpos); 2346 if (ret) { 2347 mlog_errno(ret); 2348 goto out; 2349 } 2350 2351 mlog(0, "Insert: %u, first left path cpos: %u\n", insert_cpos, cpos); 2352 2353 /* 2354 * What we want to do here is: 2355 * 2356 * 1) Start with the rightmost path. 2357 * 2358 * 2) Determine a path to the leaf block directly to the left 2359 * of that leaf. 2360 * 2361 * 3) Determine the 'subtree root' - the lowest level tree node 2362 * which contains a path to both leaves. 2363 * 2364 * 4) Rotate the subtree. 2365 * 2366 * 5) Find the next subtree by considering the left path to be 2367 * the new right path. 2368 * 2369 * The check at the top of this while loop also accepts 2370 * insert_cpos == cpos because cpos is only a _theoretical_ 2371 * value to get us the left path - insert_cpos might very well 2372 * be filling that hole. 2373 * 2374 * Stop at a cpos of '0' because we either started at the 2375 * leftmost branch (i.e., a tree with one branch and a 2376 * rotation inside of it), or we've gone as far as we can in 2377 * rotating subtrees. 2378 */ 2379 while (cpos && insert_cpos <= cpos) { 2380 mlog(0, "Rotating a tree: ins. cpos: %u, left path cpos: %u\n", 2381 insert_cpos, cpos); 2382 2383 ret = ocfs2_find_path(inode, left_path, cpos); 2384 if (ret) { 2385 mlog_errno(ret); 2386 goto out; 2387 } 2388 2389 mlog_bug_on_msg(path_leaf_bh(left_path) == 2390 path_leaf_bh(right_path), 2391 "Inode %lu: error during insert of %u " 2392 "(left path cpos %u) results in two identical " 2393 "paths ending at %llu\n", 2394 inode->i_ino, insert_cpos, cpos, 2395 (unsigned long long) 2396 path_leaf_bh(left_path)->b_blocknr); 2397 2398 if (split == SPLIT_NONE && 2399 ocfs2_rotate_requires_path_adjustment(left_path, 2400 insert_cpos)) { 2401 2402 /* 2403 * We've rotated the tree as much as we 2404 * should. The rest is up to 2405 * ocfs2_insert_path() to complete, after the 2406 * record insertion. We indicate this 2407 * situation by returning the left path. 2408 * 2409 * The reason we don't adjust the records here 2410 * before the record insert is that an error 2411 * later might break the rule where a parent 2412 * record e_cpos will reflect the actual 2413 * e_cpos of the 1st nonempty record of the 2414 * child list. 2415 */ 2416 *ret_left_path = left_path; 2417 goto out_ret_path; 2418 } 2419 2420 start = ocfs2_find_subtree_root(inode, left_path, right_path); 2421 2422 mlog(0, "Subtree root at index %d (blk %llu, depth %d)\n", 2423 start, 2424 (unsigned long long) right_path->p_node[start].bh->b_blocknr, 2425 right_path->p_tree_depth); 2426 2427 ret = ocfs2_extend_rotate_transaction(handle, start, 2428 orig_credits, right_path); 2429 if (ret) { 2430 mlog_errno(ret); 2431 goto out; 2432 } 2433 2434 ret = ocfs2_rotate_subtree_right(inode, handle, left_path, 2435 right_path, start); 2436 if (ret) { 2437 mlog_errno(ret); 2438 goto out; 2439 } 2440 2441 if (split != SPLIT_NONE && 2442 ocfs2_leftmost_rec_contains(path_leaf_el(right_path), 2443 insert_cpos)) { 2444 /* 2445 * A rotate moves the rightmost left leaf 2446 * record over to the leftmost right leaf 2447 * slot. If we're doing an extent split 2448 * instead of a real insert, then we have to 2449 * check that the extent to be split wasn't 2450 * just moved over. If it was, then we can 2451 * exit here, passing left_path back - 2452 * ocfs2_split_extent() is smart enough to 2453 * search both leaves. 2454 */ 2455 *ret_left_path = left_path; 2456 goto out_ret_path; 2457 } 2458 2459 /* 2460 * There is no need to re-read the next right path 2461 * as we know that it'll be our current left 2462 * path. Optimize by copying values instead. 2463 */ 2464 ocfs2_mv_path(right_path, left_path); 2465 2466 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path, 2467 &cpos); 2468 if (ret) { 2469 mlog_errno(ret); 2470 goto out; 2471 } 2472 } 2473 2474 out: 2475 ocfs2_free_path(left_path); 2476 2477 out_ret_path: 2478 return ret; 2479 } 2480 2481 static int ocfs2_update_edge_lengths(struct inode *inode, handle_t *handle, 2482 int subtree_index, struct ocfs2_path *path) 2483 { 2484 int i, idx, ret; 2485 struct ocfs2_extent_rec *rec; 2486 struct ocfs2_extent_list *el; 2487 struct ocfs2_extent_block *eb; 2488 u32 range; 2489 2490 /* 2491 * In normal tree rotation process, we will never touch the 2492 * tree branch above subtree_index and ocfs2_extend_rotate_transaction 2493 * doesn't reserve the credits for them either. 2494 * 2495 * But we do have a special case here which will update the rightmost 2496 * records for all the bh in the path. 2497 * So we have to allocate extra credits and access them. 2498 */ 2499 ret = ocfs2_extend_trans(handle, 2500 handle->h_buffer_credits + subtree_index); 2501 if (ret) { 2502 mlog_errno(ret); 2503 goto out; 2504 } 2505 2506 ret = ocfs2_journal_access_path(inode, handle, path); 2507 if (ret) { 2508 mlog_errno(ret); 2509 goto out; 2510 } 2511 2512 /* Path should always be rightmost. */ 2513 eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data; 2514 BUG_ON(eb->h_next_leaf_blk != 0ULL); 2515 2516 el = &eb->h_list; 2517 BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0); 2518 idx = le16_to_cpu(el->l_next_free_rec) - 1; 2519 rec = &el->l_recs[idx]; 2520 range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); 2521 2522 for (i = 0; i < path->p_tree_depth; i++) { 2523 el = path->p_node[i].el; 2524 idx = le16_to_cpu(el->l_next_free_rec) - 1; 2525 rec = &el->l_recs[idx]; 2526 2527 rec->e_int_clusters = cpu_to_le32(range); 2528 le32_add_cpu(&rec->e_int_clusters, -le32_to_cpu(rec->e_cpos)); 2529 2530 ocfs2_journal_dirty(handle, path->p_node[i].bh); 2531 } 2532 out: 2533 return ret; 2534 } 2535 2536 static void ocfs2_unlink_path(struct inode *inode, handle_t *handle, 2537 struct ocfs2_cached_dealloc_ctxt *dealloc, 2538 struct ocfs2_path *path, int unlink_start) 2539 { 2540 int ret, i; 2541 struct ocfs2_extent_block *eb; 2542 struct ocfs2_extent_list *el; 2543 struct buffer_head *bh; 2544 2545 for(i = unlink_start; i < path_num_items(path); i++) { 2546 bh = path->p_node[i].bh; 2547 2548 eb = (struct ocfs2_extent_block *)bh->b_data; 2549 /* 2550 * Not all nodes might have had their final count 2551 * decremented by the caller - handle this here. 2552 */ 2553 el = &eb->h_list; 2554 if (le16_to_cpu(el->l_next_free_rec) > 1) { 2555 mlog(ML_ERROR, 2556 "Inode %llu, attempted to remove extent block " 2557 "%llu with %u records\n", 2558 (unsigned long long)OCFS2_I(inode)->ip_blkno, 2559 (unsigned long long)le64_to_cpu(eb->h_blkno), 2560 le16_to_cpu(el->l_next_free_rec)); 2561 2562 ocfs2_journal_dirty(handle, bh); 2563 ocfs2_remove_from_cache(INODE_CACHE(inode), bh); 2564 continue; 2565 } 2566 2567 el->l_next_free_rec = 0; 2568 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec)); 2569 2570 ocfs2_journal_dirty(handle, bh); 2571 2572 ret = ocfs2_cache_extent_block_free(dealloc, eb); 2573 if (ret) 2574 mlog_errno(ret); 2575 2576 ocfs2_remove_from_cache(INODE_CACHE(inode), bh); 2577 } 2578 } 2579 2580 static void ocfs2_unlink_subtree(struct inode *inode, handle_t *handle, 2581 struct ocfs2_path *left_path, 2582 struct ocfs2_path *right_path, 2583 int subtree_index, 2584 struct ocfs2_cached_dealloc_ctxt *dealloc) 2585 { 2586 int i; 2587 struct buffer_head *root_bh = left_path->p_node[subtree_index].bh; 2588 struct ocfs2_extent_list *root_el = left_path->p_node[subtree_index].el; 2589 struct ocfs2_extent_list *el; 2590 struct ocfs2_extent_block *eb; 2591 2592 el = path_leaf_el(left_path); 2593 2594 eb = (struct ocfs2_extent_block *)right_path->p_node[subtree_index + 1].bh->b_data; 2595 2596 for(i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++) 2597 if (root_el->l_recs[i].e_blkno == eb->h_blkno) 2598 break; 2599 2600 BUG_ON(i >= le16_to_cpu(root_el->l_next_free_rec)); 2601 2602 memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec)); 2603 le16_add_cpu(&root_el->l_next_free_rec, -1); 2604 2605 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data; 2606 eb->h_next_leaf_blk = 0; 2607 2608 ocfs2_journal_dirty(handle, root_bh); 2609 ocfs2_journal_dirty(handle, path_leaf_bh(left_path)); 2610 2611 ocfs2_unlink_path(inode, handle, dealloc, right_path, 2612 subtree_index + 1); 2613 } 2614 2615 static int ocfs2_rotate_subtree_left(struct inode *inode, handle_t *handle, 2616 struct ocfs2_path *left_path, 2617 struct ocfs2_path *right_path, 2618 int subtree_index, 2619 struct ocfs2_cached_dealloc_ctxt *dealloc, 2620 int *deleted, 2621 struct ocfs2_extent_tree *et) 2622 { 2623 int ret, i, del_right_subtree = 0, right_has_empty = 0; 2624 struct buffer_head *root_bh, *et_root_bh = path_root_bh(right_path); 2625 struct ocfs2_extent_list *right_leaf_el, *left_leaf_el; 2626 struct ocfs2_extent_block *eb; 2627 2628 *deleted = 0; 2629 2630 right_leaf_el = path_leaf_el(right_path); 2631 left_leaf_el = path_leaf_el(left_path); 2632 root_bh = left_path->p_node[subtree_index].bh; 2633 BUG_ON(root_bh != right_path->p_node[subtree_index].bh); 2634 2635 if (!ocfs2_is_empty_extent(&left_leaf_el->l_recs[0])) 2636 return 0; 2637 2638 eb = (struct ocfs2_extent_block *)path_leaf_bh(right_path)->b_data; 2639 if (ocfs2_is_empty_extent(&right_leaf_el->l_recs[0])) { 2640 /* 2641 * It's legal for us to proceed if the right leaf is 2642 * the rightmost one and it has an empty extent. There 2643 * are two cases to handle - whether the leaf will be 2644 * empty after removal or not. If the leaf isn't empty 2645 * then just remove the empty extent up front. The 2646 * next block will handle empty leaves by flagging 2647 * them for unlink. 2648 * 2649 * Non rightmost leaves will throw -EAGAIN and the 2650 * caller can manually move the subtree and retry. 2651 */ 2652 2653 if (eb->h_next_leaf_blk != 0ULL) 2654 return -EAGAIN; 2655 2656 if (le16_to_cpu(right_leaf_el->l_next_free_rec) > 1) { 2657 ret = ocfs2_journal_access_eb(handle, inode, 2658 path_leaf_bh(right_path), 2659 OCFS2_JOURNAL_ACCESS_WRITE); 2660 if (ret) { 2661 mlog_errno(ret); 2662 goto out; 2663 } 2664 2665 ocfs2_remove_empty_extent(right_leaf_el); 2666 } else 2667 right_has_empty = 1; 2668 } 2669 2670 if (eb->h_next_leaf_blk == 0ULL && 2671 le16_to_cpu(right_leaf_el->l_next_free_rec) == 1) { 2672 /* 2673 * We have to update i_last_eb_blk during the meta 2674 * data delete. 2675 */ 2676 ret = ocfs2_et_root_journal_access(handle, inode, et, 2677 OCFS2_JOURNAL_ACCESS_WRITE); 2678 if (ret) { 2679 mlog_errno(ret); 2680 goto out; 2681 } 2682 2683 del_right_subtree = 1; 2684 } 2685 2686 /* 2687 * Getting here with an empty extent in the right path implies 2688 * that it's the rightmost path and will be deleted. 2689 */ 2690 BUG_ON(right_has_empty && !del_right_subtree); 2691 2692 ret = ocfs2_path_bh_journal_access(handle, inode, right_path, 2693 subtree_index); 2694 if (ret) { 2695 mlog_errno(ret); 2696 goto out; 2697 } 2698 2699 for(i = subtree_index + 1; i < path_num_items(right_path); i++) { 2700 ret = ocfs2_path_bh_journal_access(handle, inode, 2701 right_path, i); 2702 if (ret) { 2703 mlog_errno(ret); 2704 goto out; 2705 } 2706 2707 ret = ocfs2_path_bh_journal_access(handle, inode, 2708 left_path, i); 2709 if (ret) { 2710 mlog_errno(ret); 2711 goto out; 2712 } 2713 } 2714 2715 if (!right_has_empty) { 2716 /* 2717 * Only do this if we're moving a real 2718 * record. Otherwise, the action is delayed until 2719 * after removal of the right path in which case we 2720 * can do a simple shift to remove the empty extent. 2721 */ 2722 ocfs2_rotate_leaf(left_leaf_el, &right_leaf_el->l_recs[0]); 2723 memset(&right_leaf_el->l_recs[0], 0, 2724 sizeof(struct ocfs2_extent_rec)); 2725 } 2726 if (eb->h_next_leaf_blk == 0ULL) { 2727 /* 2728 * Move recs over to get rid of empty extent, decrease 2729 * next_free. This is allowed to remove the last 2730 * extent in our leaf (setting l_next_free_rec to 2731 * zero) - the delete code below won't care. 2732 */ 2733 ocfs2_remove_empty_extent(right_leaf_el); 2734 } 2735 2736 ret = ocfs2_journal_dirty(handle, path_leaf_bh(left_path)); 2737 if (ret) 2738 mlog_errno(ret); 2739 ret = ocfs2_journal_dirty(handle, path_leaf_bh(right_path)); 2740 if (ret) 2741 mlog_errno(ret); 2742 2743 if (del_right_subtree) { 2744 ocfs2_unlink_subtree(inode, handle, left_path, right_path, 2745 subtree_index, dealloc); 2746 ret = ocfs2_update_edge_lengths(inode, handle, subtree_index, 2747 left_path); 2748 if (ret) { 2749 mlog_errno(ret); 2750 goto out; 2751 } 2752 2753 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data; 2754 ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno)); 2755 2756 /* 2757 * Removal of the extent in the left leaf was skipped 2758 * above so we could delete the right path 2759 * 1st. 2760 */ 2761 if (right_has_empty) 2762 ocfs2_remove_empty_extent(left_leaf_el); 2763 2764 ret = ocfs2_journal_dirty(handle, et_root_bh); 2765 if (ret) 2766 mlog_errno(ret); 2767 2768 *deleted = 1; 2769 } else 2770 ocfs2_complete_edge_insert(inode, handle, left_path, right_path, 2771 subtree_index); 2772 2773 out: 2774 return ret; 2775 } 2776 2777 /* 2778 * Given a full path, determine what cpos value would return us a path 2779 * containing the leaf immediately to the right of the current one. 2780 * 2781 * Will return zero if the path passed in is already the rightmost path. 2782 * 2783 * This looks similar, but is subtly different to 2784 * ocfs2_find_cpos_for_left_leaf(). 2785 */ 2786 static int ocfs2_find_cpos_for_right_leaf(struct super_block *sb, 2787 struct ocfs2_path *path, u32 *cpos) 2788 { 2789 int i, j, ret = 0; 2790 u64 blkno; 2791 struct ocfs2_extent_list *el; 2792 2793 *cpos = 0; 2794 2795 if (path->p_tree_depth == 0) 2796 return 0; 2797 2798 blkno = path_leaf_bh(path)->b_blocknr; 2799 2800 /* Start at the tree node just above the leaf and work our way up. */ 2801 i = path->p_tree_depth - 1; 2802 while (i >= 0) { 2803 int next_free; 2804 2805 el = path->p_node[i].el; 2806 2807 /* 2808 * Find the extent record just after the one in our 2809 * path. 2810 */ 2811 next_free = le16_to_cpu(el->l_next_free_rec); 2812 for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) { 2813 if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) { 2814 if (j == (next_free - 1)) { 2815 if (i == 0) { 2816 /* 2817 * We've determined that the 2818 * path specified is already 2819 * the rightmost one - return a 2820 * cpos of zero. 2821 */ 2822 goto out; 2823 } 2824 /* 2825 * The rightmost record points to our 2826 * leaf - we need to travel up the 2827 * tree one level. 2828 */ 2829 goto next_node; 2830 } 2831 2832 *cpos = le32_to_cpu(el->l_recs[j + 1].e_cpos); 2833 goto out; 2834 } 2835 } 2836 2837 /* 2838 * If we got here, we never found a valid node where 2839 * the tree indicated one should be. 2840 */ 2841 ocfs2_error(sb, 2842 "Invalid extent tree at extent block %llu\n", 2843 (unsigned long long)blkno); 2844 ret = -EROFS; 2845 goto out; 2846 2847 next_node: 2848 blkno = path->p_node[i].bh->b_blocknr; 2849 i--; 2850 } 2851 2852 out: 2853 return ret; 2854 } 2855 2856 static int ocfs2_rotate_rightmost_leaf_left(struct inode *inode, 2857 handle_t *handle, 2858 struct ocfs2_path *path) 2859 { 2860 int ret; 2861 struct buffer_head *bh = path_leaf_bh(path); 2862 struct ocfs2_extent_list *el = path_leaf_el(path); 2863 2864 if (!ocfs2_is_empty_extent(&el->l_recs[0])) 2865 return 0; 2866 2867 ret = ocfs2_path_bh_journal_access(handle, inode, path, 2868 path_num_items(path) - 1); 2869 if (ret) { 2870 mlog_errno(ret); 2871 goto out; 2872 } 2873 2874 ocfs2_remove_empty_extent(el); 2875 2876 ret = ocfs2_journal_dirty(handle, bh); 2877 if (ret) 2878 mlog_errno(ret); 2879 2880 out: 2881 return ret; 2882 } 2883 2884 static int __ocfs2_rotate_tree_left(struct inode *inode, 2885 handle_t *handle, int orig_credits, 2886 struct ocfs2_path *path, 2887 struct ocfs2_cached_dealloc_ctxt *dealloc, 2888 struct ocfs2_path **empty_extent_path, 2889 struct ocfs2_extent_tree *et) 2890 { 2891 int ret, subtree_root, deleted; 2892 u32 right_cpos; 2893 struct ocfs2_path *left_path = NULL; 2894 struct ocfs2_path *right_path = NULL; 2895 2896 BUG_ON(!ocfs2_is_empty_extent(&(path_leaf_el(path)->l_recs[0]))); 2897 2898 *empty_extent_path = NULL; 2899 2900 ret = ocfs2_find_cpos_for_right_leaf(inode->i_sb, path, 2901 &right_cpos); 2902 if (ret) { 2903 mlog_errno(ret); 2904 goto out; 2905 } 2906 2907 left_path = ocfs2_new_path_from_path(path); 2908 if (!left_path) { 2909 ret = -ENOMEM; 2910 mlog_errno(ret); 2911 goto out; 2912 } 2913 2914 ocfs2_cp_path(left_path, path); 2915 2916 right_path = ocfs2_new_path_from_path(path); 2917 if (!right_path) { 2918 ret = -ENOMEM; 2919 mlog_errno(ret); 2920 goto out; 2921 } 2922 2923 while (right_cpos) { 2924 ret = ocfs2_find_path(inode, right_path, right_cpos); 2925 if (ret) { 2926 mlog_errno(ret); 2927 goto out; 2928 } 2929 2930 subtree_root = ocfs2_find_subtree_root(inode, left_path, 2931 right_path); 2932 2933 mlog(0, "Subtree root at index %d (blk %llu, depth %d)\n", 2934 subtree_root, 2935 (unsigned long long) 2936 right_path->p_node[subtree_root].bh->b_blocknr, 2937 right_path->p_tree_depth); 2938 2939 ret = ocfs2_extend_rotate_transaction(handle, subtree_root, 2940 orig_credits, left_path); 2941 if (ret) { 2942 mlog_errno(ret); 2943 goto out; 2944 } 2945 2946 /* 2947 * Caller might still want to make changes to the 2948 * tree root, so re-add it to the journal here. 2949 */ 2950 ret = ocfs2_path_bh_journal_access(handle, inode, 2951 left_path, 0); 2952 if (ret) { 2953 mlog_errno(ret); 2954 goto out; 2955 } 2956 2957 ret = ocfs2_rotate_subtree_left(inode, handle, left_path, 2958 right_path, subtree_root, 2959 dealloc, &deleted, et); 2960 if (ret == -EAGAIN) { 2961 /* 2962 * The rotation has to temporarily stop due to 2963 * the right subtree having an empty 2964 * extent. Pass it back to the caller for a 2965 * fixup. 2966 */ 2967 *empty_extent_path = right_path; 2968 right_path = NULL; 2969 goto out; 2970 } 2971 if (ret) { 2972 mlog_errno(ret); 2973 goto out; 2974 } 2975 2976 /* 2977 * The subtree rotate might have removed records on 2978 * the rightmost edge. If so, then rotation is 2979 * complete. 2980 */ 2981 if (deleted) 2982 break; 2983 2984 ocfs2_mv_path(left_path, right_path); 2985 2986 ret = ocfs2_find_cpos_for_right_leaf(inode->i_sb, left_path, 2987 &right_cpos); 2988 if (ret) { 2989 mlog_errno(ret); 2990 goto out; 2991 } 2992 } 2993 2994 out: 2995 ocfs2_free_path(right_path); 2996 ocfs2_free_path(left_path); 2997 2998 return ret; 2999 } 3000 3001 static int ocfs2_remove_rightmost_path(struct inode *inode, handle_t *handle, 3002 struct ocfs2_path *path, 3003 struct ocfs2_cached_dealloc_ctxt *dealloc, 3004 struct ocfs2_extent_tree *et) 3005 { 3006 int ret, subtree_index; 3007 u32 cpos; 3008 struct ocfs2_path *left_path = NULL; 3009 struct ocfs2_extent_block *eb; 3010 struct ocfs2_extent_list *el; 3011 3012 3013 ret = ocfs2_et_sanity_check(inode, et); 3014 if (ret) 3015 goto out; 3016 /* 3017 * There's two ways we handle this depending on 3018 * whether path is the only existing one. 3019 */ 3020 ret = ocfs2_extend_rotate_transaction(handle, 0, 3021 handle->h_buffer_credits, 3022 path); 3023 if (ret) { 3024 mlog_errno(ret); 3025 goto out; 3026 } 3027 3028 ret = ocfs2_journal_access_path(inode, handle, path); 3029 if (ret) { 3030 mlog_errno(ret); 3031 goto out; 3032 } 3033 3034 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path, &cpos); 3035 if (ret) { 3036 mlog_errno(ret); 3037 goto out; 3038 } 3039 3040 if (cpos) { 3041 /* 3042 * We have a path to the left of this one - it needs 3043 * an update too. 3044 */ 3045 left_path = ocfs2_new_path_from_path(path); 3046 if (!left_path) { 3047 ret = -ENOMEM; 3048 mlog_errno(ret); 3049 goto out; 3050 } 3051 3052 ret = ocfs2_find_path(inode, left_path, cpos); 3053 if (ret) { 3054 mlog_errno(ret); 3055 goto out; 3056 } 3057 3058 ret = ocfs2_journal_access_path(inode, handle, left_path); 3059 if (ret) { 3060 mlog_errno(ret); 3061 goto out; 3062 } 3063 3064 subtree_index = ocfs2_find_subtree_root(inode, left_path, path); 3065 3066 ocfs2_unlink_subtree(inode, handle, left_path, path, 3067 subtree_index, dealloc); 3068 ret = ocfs2_update_edge_lengths(inode, handle, subtree_index, 3069 left_path); 3070 if (ret) { 3071 mlog_errno(ret); 3072 goto out; 3073 } 3074 3075 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data; 3076 ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno)); 3077 } else { 3078 /* 3079 * 'path' is also the leftmost path which 3080 * means it must be the only one. This gets 3081 * handled differently because we want to 3082 * revert the inode back to having extents 3083 * in-line. 3084 */ 3085 ocfs2_unlink_path(inode, handle, dealloc, path, 1); 3086 3087 el = et->et_root_el; 3088 el->l_tree_depth = 0; 3089 el->l_next_free_rec = 0; 3090 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec)); 3091 3092 ocfs2_et_set_last_eb_blk(et, 0); 3093 } 3094 3095 ocfs2_journal_dirty(handle, path_root_bh(path)); 3096 3097 out: 3098 ocfs2_free_path(left_path); 3099 return ret; 3100 } 3101 3102 /* 3103 * Left rotation of btree records. 3104 * 3105 * In many ways, this is (unsurprisingly) the opposite of right 3106 * rotation. We start at some non-rightmost path containing an empty 3107 * extent in the leaf block. The code works its way to the rightmost 3108 * path by rotating records to the left in every subtree. 3109 * 3110 * This is used by any code which reduces the number of extent records 3111 * in a leaf. After removal, an empty record should be placed in the 3112 * leftmost list position. 3113 * 3114 * This won't handle a length update of the rightmost path records if 3115 * the rightmost tree leaf record is removed so the caller is 3116 * responsible for detecting and correcting that. 3117 */ 3118 static int ocfs2_rotate_tree_left(struct inode *inode, handle_t *handle, 3119 struct ocfs2_path *path, 3120 struct ocfs2_cached_dealloc_ctxt *dealloc, 3121 struct ocfs2_extent_tree *et) 3122 { 3123 int ret, orig_credits = handle->h_buffer_credits; 3124 struct ocfs2_path *tmp_path = NULL, *restart_path = NULL; 3125 struct ocfs2_extent_block *eb; 3126 struct ocfs2_extent_list *el; 3127 3128 el = path_leaf_el(path); 3129 if (!ocfs2_is_empty_extent(&el->l_recs[0])) 3130 return 0; 3131 3132 if (path->p_tree_depth == 0) { 3133 rightmost_no_delete: 3134 /* 3135 * Inline extents. This is trivially handled, so do 3136 * it up front. 3137 */ 3138 ret = ocfs2_rotate_rightmost_leaf_left(inode, handle, 3139 path); 3140 if (ret) 3141 mlog_errno(ret); 3142 goto out; 3143 } 3144 3145 /* 3146 * Handle rightmost branch now. There's several cases: 3147 * 1) simple rotation leaving records in there. That's trivial. 3148 * 2) rotation requiring a branch delete - there's no more 3149 * records left. Two cases of this: 3150 * a) There are branches to the left. 3151 * b) This is also the leftmost (the only) branch. 3152 * 3153 * 1) is handled via ocfs2_rotate_rightmost_leaf_left() 3154 * 2a) we need the left branch so that we can update it with the unlink 3155 * 2b) we need to bring the inode back to inline extents. 3156 */ 3157 3158 eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data; 3159 el = &eb->h_list; 3160 if (eb->h_next_leaf_blk == 0) { 3161 /* 3162 * This gets a bit tricky if we're going to delete the 3163 * rightmost path. Get the other cases out of the way 3164 * 1st. 3165 */ 3166 if (le16_to_cpu(el->l_next_free_rec) > 1) 3167 goto rightmost_no_delete; 3168 3169 if (le16_to_cpu(el->l_next_free_rec) == 0) { 3170 ret = -EIO; 3171 ocfs2_error(inode->i_sb, 3172 "Inode %llu has empty extent block at %llu", 3173 (unsigned long long)OCFS2_I(inode)->ip_blkno, 3174 (unsigned long long)le64_to_cpu(eb->h_blkno)); 3175 goto out; 3176 } 3177 3178 /* 3179 * XXX: The caller can not trust "path" any more after 3180 * this as it will have been deleted. What do we do? 3181 * 3182 * In theory the rotate-for-merge code will never get 3183 * here because it'll always ask for a rotate in a 3184 * nonempty list. 3185 */ 3186 3187 ret = ocfs2_remove_rightmost_path(inode, handle, path, 3188 dealloc, et); 3189 if (ret) 3190 mlog_errno(ret); 3191 goto out; 3192 } 3193 3194 /* 3195 * Now we can loop, remembering the path we get from -EAGAIN 3196 * and restarting from there. 3197 */ 3198 try_rotate: 3199 ret = __ocfs2_rotate_tree_left(inode, handle, orig_credits, path, 3200 dealloc, &restart_path, et); 3201 if (ret && ret != -EAGAIN) { 3202 mlog_errno(ret); 3203 goto out; 3204 } 3205 3206 while (ret == -EAGAIN) { 3207 tmp_path = restart_path; 3208 restart_path = NULL; 3209 3210 ret = __ocfs2_rotate_tree_left(inode, handle, orig_credits, 3211 tmp_path, dealloc, 3212 &restart_path, et); 3213 if (ret && ret != -EAGAIN) { 3214 mlog_errno(ret); 3215 goto out; 3216 } 3217 3218 ocfs2_free_path(tmp_path); 3219 tmp_path = NULL; 3220 3221 if (ret == 0) 3222 goto try_rotate; 3223 } 3224 3225 out: 3226 ocfs2_free_path(tmp_path); 3227 ocfs2_free_path(restart_path); 3228 return ret; 3229 } 3230 3231 static void ocfs2_cleanup_merge(struct ocfs2_extent_list *el, 3232 int index) 3233 { 3234 struct ocfs2_extent_rec *rec = &el->l_recs[index]; 3235 unsigned int size; 3236 3237 if (rec->e_leaf_clusters == 0) { 3238 /* 3239 * We consumed all of the merged-from record. An empty 3240 * extent cannot exist anywhere but the 1st array 3241 * position, so move things over if the merged-from 3242 * record doesn't occupy that position. 3243 * 3244 * This creates a new empty extent so the caller 3245 * should be smart enough to have removed any existing 3246 * ones. 3247 */ 3248 if (index > 0) { 3249 BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0])); 3250 size = index * sizeof(struct ocfs2_extent_rec); 3251 memmove(&el->l_recs[1], &el->l_recs[0], size); 3252 } 3253 3254 /* 3255 * Always memset - the caller doesn't check whether it 3256 * created an empty extent, so there could be junk in 3257 * the other fields. 3258 */ 3259 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec)); 3260 } 3261 } 3262 3263 static int ocfs2_get_right_path(struct inode *inode, 3264 struct ocfs2_path *left_path, 3265 struct ocfs2_path **ret_right_path) 3266 { 3267 int ret; 3268 u32 right_cpos; 3269 struct ocfs2_path *right_path = NULL; 3270 struct ocfs2_extent_list *left_el; 3271 3272 *ret_right_path = NULL; 3273 3274 /* This function shouldn't be called for non-trees. */ 3275 BUG_ON(left_path->p_tree_depth == 0); 3276 3277 left_el = path_leaf_el(left_path); 3278 BUG_ON(left_el->l_next_free_rec != left_el->l_count); 3279 3280 ret = ocfs2_find_cpos_for_right_leaf(inode->i_sb, left_path, 3281 &right_cpos); 3282 if (ret) { 3283 mlog_errno(ret); 3284 goto out; 3285 } 3286 3287 /* This function shouldn't be called for the rightmost leaf. */ 3288 BUG_ON(right_cpos == 0); 3289 3290 right_path = ocfs2_new_path_from_path(left_path); 3291 if (!right_path) { 3292 ret = -ENOMEM; 3293 mlog_errno(ret); 3294 goto out; 3295 } 3296 3297 ret = ocfs2_find_path(inode, right_path, right_cpos); 3298 if (ret) { 3299 mlog_errno(ret); 3300 goto out; 3301 } 3302 3303 *ret_right_path = right_path; 3304 out: 3305 if (ret) 3306 ocfs2_free_path(right_path); 3307 return ret; 3308 } 3309 3310 /* 3311 * Remove split_rec clusters from the record at index and merge them 3312 * onto the beginning of the record "next" to it. 3313 * For index < l_count - 1, the next means the extent rec at index + 1. 3314 * For index == l_count - 1, the "next" means the 1st extent rec of the 3315 * next extent block. 3316 */ 3317 static int ocfs2_merge_rec_right(struct inode *inode, 3318 struct ocfs2_path *left_path, 3319 handle_t *handle, 3320 struct ocfs2_extent_rec *split_rec, 3321 int index) 3322 { 3323 int ret, next_free, i; 3324 unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters); 3325 struct ocfs2_extent_rec *left_rec; 3326 struct ocfs2_extent_rec *right_rec; 3327 struct ocfs2_extent_list *right_el; 3328 struct ocfs2_path *right_path = NULL; 3329 int subtree_index = 0; 3330 struct ocfs2_extent_list *el = path_leaf_el(left_path); 3331 struct buffer_head *bh = path_leaf_bh(left_path); 3332 struct buffer_head *root_bh = NULL; 3333 3334 BUG_ON(index >= le16_to_cpu(el->l_next_free_rec)); 3335 left_rec = &el->l_recs[index]; 3336 3337 if (index == le16_to_cpu(el->l_next_free_rec) - 1 && 3338 le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count)) { 3339 /* we meet with a cross extent block merge. */ 3340 ret = ocfs2_get_right_path(inode, left_path, &right_path); 3341 if (ret) { 3342 mlog_errno(ret); 3343 goto out; 3344 } 3345 3346 right_el = path_leaf_el(right_path); 3347 next_free = le16_to_cpu(right_el->l_next_free_rec); 3348 BUG_ON(next_free <= 0); 3349 right_rec = &right_el->l_recs[0]; 3350 if (ocfs2_is_empty_extent(right_rec)) { 3351 BUG_ON(next_free <= 1); 3352 right_rec = &right_el->l_recs[1]; 3353 } 3354 3355 BUG_ON(le32_to_cpu(left_rec->e_cpos) + 3356 le16_to_cpu(left_rec->e_leaf_clusters) != 3357 le32_to_cpu(right_rec->e_cpos)); 3358 3359 subtree_index = ocfs2_find_subtree_root(inode, 3360 left_path, right_path); 3361 3362 ret = ocfs2_extend_rotate_transaction(handle, subtree_index, 3363 handle->h_buffer_credits, 3364 right_path); 3365 if (ret) { 3366 mlog_errno(ret); 3367 goto out; 3368 } 3369 3370 root_bh = left_path->p_node[subtree_index].bh; 3371 BUG_ON(root_bh != right_path->p_node[subtree_index].bh); 3372 3373 ret = ocfs2_path_bh_journal_access(handle, inode, right_path, 3374 subtree_index); 3375 if (ret) { 3376 mlog_errno(ret); 3377 goto out; 3378 } 3379 3380 for (i = subtree_index + 1; 3381 i < path_num_items(right_path); i++) { 3382 ret = ocfs2_path_bh_journal_access(handle, inode, 3383 right_path, i); 3384 if (ret) { 3385 mlog_errno(ret); 3386 goto out; 3387 } 3388 3389 ret = ocfs2_path_bh_journal_access(handle, inode, 3390 left_path, i); 3391 if (ret) { 3392 mlog_errno(ret); 3393 goto out; 3394 } 3395 } 3396 3397 } else { 3398 BUG_ON(index == le16_to_cpu(el->l_next_free_rec) - 1); 3399 right_rec = &el->l_recs[index + 1]; 3400 } 3401 3402 ret = ocfs2_path_bh_journal_access(handle, inode, left_path, 3403 path_num_items(left_path) - 1); 3404 if (ret) { 3405 mlog_errno(ret); 3406 goto out; 3407 } 3408 3409 le16_add_cpu(&left_rec->e_leaf_clusters, -split_clusters); 3410 3411 le32_add_cpu(&right_rec->e_cpos, -split_clusters); 3412 le64_add_cpu(&right_rec->e_blkno, 3413 -ocfs2_clusters_to_blocks(inode->i_sb, split_clusters)); 3414 le16_add_cpu(&right_rec->e_leaf_clusters, split_clusters); 3415 3416 ocfs2_cleanup_merge(el, index); 3417 3418 ret = ocfs2_journal_dirty(handle, bh); 3419 if (ret) 3420 mlog_errno(ret); 3421 3422 if (right_path) { 3423 ret = ocfs2_journal_dirty(handle, path_leaf_bh(right_path)); 3424 if (ret) 3425 mlog_errno(ret); 3426 3427 ocfs2_complete_edge_insert(inode, handle, left_path, 3428 right_path, subtree_index); 3429 } 3430 out: 3431 if (right_path) 3432 ocfs2_free_path(right_path); 3433 return ret; 3434 } 3435 3436 static int ocfs2_get_left_path(struct inode *inode, 3437 struct ocfs2_path *right_path, 3438 struct ocfs2_path **ret_left_path) 3439 { 3440 int ret; 3441 u32 left_cpos; 3442 struct ocfs2_path *left_path = NULL; 3443 3444 *ret_left_path = NULL; 3445 3446 /* This function shouldn't be called for non-trees. */ 3447 BUG_ON(right_path->p_tree_depth == 0); 3448 3449 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, 3450 right_path, &left_cpos); 3451 if (ret) { 3452 mlog_errno(ret); 3453 goto out; 3454 } 3455 3456 /* This function shouldn't be called for the leftmost leaf. */ 3457 BUG_ON(left_cpos == 0); 3458 3459 left_path = ocfs2_new_path_from_path(right_path); 3460 if (!left_path) { 3461 ret = -ENOMEM; 3462 mlog_errno(ret); 3463 goto out; 3464 } 3465 3466 ret = ocfs2_find_path(inode, left_path, left_cpos); 3467 if (ret) { 3468 mlog_errno(ret); 3469 goto out; 3470 } 3471 3472 *ret_left_path = left_path; 3473 out: 3474 if (ret) 3475 ocfs2_free_path(left_path); 3476 return ret; 3477 } 3478 3479 /* 3480 * Remove split_rec clusters from the record at index and merge them 3481 * onto the tail of the record "before" it. 3482 * For index > 0, the "before" means the extent rec at index - 1. 3483 * 3484 * For index == 0, the "before" means the last record of the previous 3485 * extent block. And there is also a situation that we may need to 3486 * remove the rightmost leaf extent block in the right_path and change 3487 * the right path to indicate the new rightmost path. 3488 */ 3489 static int ocfs2_merge_rec_left(struct inode *inode, 3490 struct ocfs2_path *right_path, 3491 handle_t *handle, 3492 struct ocfs2_extent_rec *split_rec, 3493 struct ocfs2_cached_dealloc_ctxt *dealloc, 3494 struct ocfs2_extent_tree *et, 3495 int index) 3496 { 3497 int ret, i, subtree_index = 0, has_empty_extent = 0; 3498 unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters); 3499 struct ocfs2_extent_rec *left_rec; 3500 struct ocfs2_extent_rec *right_rec; 3501 struct ocfs2_extent_list *el = path_leaf_el(right_path); 3502 struct buffer_head *bh = path_leaf_bh(right_path); 3503 struct buffer_head *root_bh = NULL; 3504 struct ocfs2_path *left_path = NULL; 3505 struct ocfs2_extent_list *left_el; 3506 3507 BUG_ON(index < 0); 3508 3509 right_rec = &el->l_recs[index]; 3510 if (index == 0) { 3511 /* we meet with a cross extent block merge. */ 3512 ret = ocfs2_get_left_path(inode, right_path, &left_path); 3513 if (ret) { 3514 mlog_errno(ret); 3515 goto out; 3516 } 3517 3518 left_el = path_leaf_el(left_path); 3519 BUG_ON(le16_to_cpu(left_el->l_next_free_rec) != 3520 le16_to_cpu(left_el->l_count)); 3521 3522 left_rec = &left_el->l_recs[ 3523 le16_to_cpu(left_el->l_next_free_rec) - 1]; 3524 BUG_ON(le32_to_cpu(left_rec->e_cpos) + 3525 le16_to_cpu(left_rec->e_leaf_clusters) != 3526 le32_to_cpu(split_rec->e_cpos)); 3527 3528 subtree_index = ocfs2_find_subtree_root(inode, 3529 left_path, right_path); 3530 3531 ret = ocfs2_extend_rotate_transaction(handle, subtree_index, 3532 handle->h_buffer_credits, 3533 left_path); 3534 if (ret) { 3535 mlog_errno(ret); 3536 goto out; 3537 } 3538 3539 root_bh = left_path->p_node[subtree_index].bh; 3540 BUG_ON(root_bh != right_path->p_node[subtree_index].bh); 3541 3542 ret = ocfs2_path_bh_journal_access(handle, inode, right_path, 3543 subtree_index); 3544 if (ret) { 3545 mlog_errno(ret); 3546 goto out; 3547 } 3548 3549 for (i = subtree_index + 1; 3550 i < path_num_items(right_path); i++) { 3551 ret = ocfs2_path_bh_journal_access(handle, inode, 3552 right_path, i); 3553 if (ret) { 3554 mlog_errno(ret); 3555 goto out; 3556 } 3557 3558 ret = ocfs2_path_bh_journal_access(handle, inode, 3559 left_path, i); 3560 if (ret) { 3561 mlog_errno(ret); 3562 goto out; 3563 } 3564 } 3565 } else { 3566 left_rec = &el->l_recs[index - 1]; 3567 if (ocfs2_is_empty_extent(&el->l_recs[0])) 3568 has_empty_extent = 1; 3569 } 3570 3571 ret = ocfs2_path_bh_journal_access(handle, inode, right_path, 3572 path_num_items(right_path) - 1); 3573 if (ret) { 3574 mlog_errno(ret); 3575 goto out; 3576 } 3577 3578 if (has_empty_extent && index == 1) { 3579 /* 3580 * The easy case - we can just plop the record right in. 3581 */ 3582 *left_rec = *split_rec; 3583 3584 has_empty_extent = 0; 3585 } else 3586 le16_add_cpu(&left_rec->e_leaf_clusters, split_clusters); 3587 3588 le32_add_cpu(&right_rec->e_cpos, split_clusters); 3589 le64_add_cpu(&right_rec->e_blkno, 3590 ocfs2_clusters_to_blocks(inode->i_sb, split_clusters)); 3591 le16_add_cpu(&right_rec->e_leaf_clusters, -split_clusters); 3592 3593 ocfs2_cleanup_merge(el, index); 3594 3595 ret = ocfs2_journal_dirty(handle, bh); 3596 if (ret) 3597 mlog_errno(ret); 3598 3599 if (left_path) { 3600 ret = ocfs2_journal_dirty(handle, path_leaf_bh(left_path)); 3601 if (ret) 3602 mlog_errno(ret); 3603 3604 /* 3605 * In the situation that the right_rec is empty and the extent 3606 * block is empty also, ocfs2_complete_edge_insert can't handle 3607 * it and we need to delete the right extent block. 3608 */ 3609 if (le16_to_cpu(right_rec->e_leaf_clusters) == 0 && 3610 le16_to_cpu(el->l_next_free_rec) == 1) { 3611 3612 ret = ocfs2_remove_rightmost_path(inode, handle, 3613 right_path, 3614 dealloc, et); 3615 if (ret) { 3616 mlog_errno(ret); 3617 goto out; 3618 } 3619 3620 /* Now the rightmost extent block has been deleted. 3621 * So we use the new rightmost path. 3622 */ 3623 ocfs2_mv_path(right_path, left_path); 3624 left_path = NULL; 3625 } else 3626 ocfs2_complete_edge_insert(inode, handle, left_path, 3627 right_path, subtree_index); 3628 } 3629 out: 3630 if (left_path) 3631 ocfs2_free_path(left_path); 3632 return ret; 3633 } 3634 3635 static int ocfs2_try_to_merge_extent(struct inode *inode, 3636 handle_t *handle, 3637 struct ocfs2_path *path, 3638 int split_index, 3639 struct ocfs2_extent_rec *split_rec, 3640 struct ocfs2_cached_dealloc_ctxt *dealloc, 3641 struct ocfs2_merge_ctxt *ctxt, 3642 struct ocfs2_extent_tree *et) 3643 3644 { 3645 int ret = 0; 3646 struct ocfs2_extent_list *el = path_leaf_el(path); 3647 struct ocfs2_extent_rec *rec = &el->l_recs[split_index]; 3648 3649 BUG_ON(ctxt->c_contig_type == CONTIG_NONE); 3650 3651 if (ctxt->c_split_covers_rec && ctxt->c_has_empty_extent) { 3652 /* 3653 * The merge code will need to create an empty 3654 * extent to take the place of the newly 3655 * emptied slot. Remove any pre-existing empty 3656 * extents - having more than one in a leaf is 3657 * illegal. 3658 */ 3659 ret = ocfs2_rotate_tree_left(inode, handle, path, 3660 dealloc, et); 3661 if (ret) { 3662 mlog_errno(ret); 3663 goto out; 3664 } 3665 split_index--; 3666 rec = &el->l_recs[split_index]; 3667 } 3668 3669 if (ctxt->c_contig_type == CONTIG_LEFTRIGHT) { 3670 /* 3671 * Left-right contig implies this. 3672 */ 3673 BUG_ON(!ctxt->c_split_covers_rec); 3674 3675 /* 3676 * Since the leftright insert always covers the entire 3677 * extent, this call will delete the insert record 3678 * entirely, resulting in an empty extent record added to 3679 * the extent block. 3680 * 3681 * Since the adding of an empty extent shifts 3682 * everything back to the right, there's no need to 3683 * update split_index here. 3684 * 3685 * When the split_index is zero, we need to merge it to the 3686 * prevoius extent block. It is more efficient and easier 3687 * if we do merge_right first and merge_left later. 3688 */ 3689 ret = ocfs2_merge_rec_right(inode, path, 3690 handle, split_rec, 3691 split_index); 3692 if (ret) { 3693 mlog_errno(ret); 3694 goto out; 3695 } 3696 3697 /* 3698 * We can only get this from logic error above. 3699 */ 3700 BUG_ON(!ocfs2_is_empty_extent(&el->l_recs[0])); 3701 3702 /* The merge left us with an empty extent, remove it. */ 3703 ret = ocfs2_rotate_tree_left(inode, handle, path, 3704 dealloc, et); 3705 if (ret) { 3706 mlog_errno(ret); 3707 goto out; 3708 } 3709 3710 rec = &el->l_recs[split_index]; 3711 3712 /* 3713 * Note that we don't pass split_rec here on purpose - 3714 * we've merged it into the rec already. 3715 */ 3716 ret = ocfs2_merge_rec_left(inode, path, 3717 handle, rec, 3718 dealloc, et, 3719 split_index); 3720 3721 if (ret) { 3722 mlog_errno(ret); 3723 goto out; 3724 } 3725 3726 ret = ocfs2_rotate_tree_left(inode, handle, path, 3727 dealloc, et); 3728 /* 3729 * Error from this last rotate is not critical, so 3730 * print but don't bubble it up. 3731 */ 3732 if (ret) 3733 mlog_errno(ret); 3734 ret = 0; 3735 } else { 3736 /* 3737 * Merge a record to the left or right. 3738 * 3739 * 'contig_type' is relative to the existing record, 3740 * so for example, if we're "right contig", it's to 3741 * the record on the left (hence the left merge). 3742 */ 3743 if (ctxt->c_contig_type == CONTIG_RIGHT) { 3744 ret = ocfs2_merge_rec_left(inode, 3745 path, 3746 handle, split_rec, 3747 dealloc, et, 3748 split_index); 3749 if (ret) { 3750 mlog_errno(ret); 3751 goto out; 3752 } 3753 } else { 3754 ret = ocfs2_merge_rec_right(inode, 3755 path, 3756 handle, split_rec, 3757 split_index); 3758 if (ret) { 3759 mlog_errno(ret); 3760 goto out; 3761 } 3762 } 3763 3764 if (ctxt->c_split_covers_rec) { 3765 /* 3766 * The merge may have left an empty extent in 3767 * our leaf. Try to rotate it away. 3768 */ 3769 ret = ocfs2_rotate_tree_left(inode, handle, path, 3770 dealloc, et); 3771 if (ret) 3772 mlog_errno(ret); 3773 ret = 0; 3774 } 3775 } 3776 3777 out: 3778 return ret; 3779 } 3780 3781 static void ocfs2_subtract_from_rec(struct super_block *sb, 3782 enum ocfs2_split_type split, 3783 struct ocfs2_extent_rec *rec, 3784 struct ocfs2_extent_rec *split_rec) 3785 { 3786 u64 len_blocks; 3787 3788 len_blocks = ocfs2_clusters_to_blocks(sb, 3789 le16_to_cpu(split_rec->e_leaf_clusters)); 3790 3791 if (split == SPLIT_LEFT) { 3792 /* 3793 * Region is on the left edge of the existing 3794 * record. 3795 */ 3796 le32_add_cpu(&rec->e_cpos, 3797 le16_to_cpu(split_rec->e_leaf_clusters)); 3798 le64_add_cpu(&rec->e_blkno, len_blocks); 3799 le16_add_cpu(&rec->e_leaf_clusters, 3800 -le16_to_cpu(split_rec->e_leaf_clusters)); 3801 } else { 3802 /* 3803 * Region is on the right edge of the existing 3804 * record. 3805 */ 3806 le16_add_cpu(&rec->e_leaf_clusters, 3807 -le16_to_cpu(split_rec->e_leaf_clusters)); 3808 } 3809 } 3810 3811 /* 3812 * Do the final bits of extent record insertion at the target leaf 3813 * list. If this leaf is part of an allocation tree, it is assumed 3814 * that the tree above has been prepared. 3815 */ 3816 static void ocfs2_insert_at_leaf(struct ocfs2_extent_rec *insert_rec, 3817 struct ocfs2_extent_list *el, 3818 struct ocfs2_insert_type *insert, 3819 struct inode *inode) 3820 { 3821 int i = insert->ins_contig_index; 3822 unsigned int range; 3823 struct ocfs2_extent_rec *rec; 3824 3825 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0); 3826 3827 if (insert->ins_split != SPLIT_NONE) { 3828 i = ocfs2_search_extent_list(el, le32_to_cpu(insert_rec->e_cpos)); 3829 BUG_ON(i == -1); 3830 rec = &el->l_recs[i]; 3831 ocfs2_subtract_from_rec(inode->i_sb, insert->ins_split, rec, 3832 insert_rec); 3833 goto rotate; 3834 } 3835 3836 /* 3837 * Contiguous insert - either left or right. 3838 */ 3839 if (insert->ins_contig != CONTIG_NONE) { 3840 rec = &el->l_recs[i]; 3841 if (insert->ins_contig == CONTIG_LEFT) { 3842 rec->e_blkno = insert_rec->e_blkno; 3843 rec->e_cpos = insert_rec->e_cpos; 3844 } 3845 le16_add_cpu(&rec->e_leaf_clusters, 3846 le16_to_cpu(insert_rec->e_leaf_clusters)); 3847 return; 3848 } 3849 3850 /* 3851 * Handle insert into an empty leaf. 3852 */ 3853 if (le16_to_cpu(el->l_next_free_rec) == 0 || 3854 ((le16_to_cpu(el->l_next_free_rec) == 1) && 3855 ocfs2_is_empty_extent(&el->l_recs[0]))) { 3856 el->l_recs[0] = *insert_rec; 3857 el->l_next_free_rec = cpu_to_le16(1); 3858 return; 3859 } 3860 3861 /* 3862 * Appending insert. 3863 */ 3864 if (insert->ins_appending == APPEND_TAIL) { 3865 i = le16_to_cpu(el->l_next_free_rec) - 1; 3866 rec = &el->l_recs[i]; 3867 range = le32_to_cpu(rec->e_cpos) 3868 + le16_to_cpu(rec->e_leaf_clusters); 3869 BUG_ON(le32_to_cpu(insert_rec->e_cpos) < range); 3870 3871 mlog_bug_on_msg(le16_to_cpu(el->l_next_free_rec) >= 3872 le16_to_cpu(el->l_count), 3873 "inode %lu, depth %u, count %u, next free %u, " 3874 "rec.cpos %u, rec.clusters %u, " 3875 "insert.cpos %u, insert.clusters %u\n", 3876 inode->i_ino, 3877 le16_to_cpu(el->l_tree_depth), 3878 le16_to_cpu(el->l_count), 3879 le16_to_cpu(el->l_next_free_rec), 3880 le32_to_cpu(el->l_recs[i].e_cpos), 3881 le16_to_cpu(el->l_recs[i].e_leaf_clusters), 3882 le32_to_cpu(insert_rec->e_cpos), 3883 le16_to_cpu(insert_rec->e_leaf_clusters)); 3884 i++; 3885 el->l_recs[i] = *insert_rec; 3886 le16_add_cpu(&el->l_next_free_rec, 1); 3887 return; 3888 } 3889 3890 rotate: 3891 /* 3892 * Ok, we have to rotate. 3893 * 3894 * At this point, it is safe to assume that inserting into an 3895 * empty leaf and appending to a leaf have both been handled 3896 * above. 3897 * 3898 * This leaf needs to have space, either by the empty 1st 3899 * extent record, or by virtue of an l_next_rec < l_count. 3900 */ 3901 ocfs2_rotate_leaf(el, insert_rec); 3902 } 3903 3904 static void ocfs2_adjust_rightmost_records(struct inode *inode, 3905 handle_t *handle, 3906 struct ocfs2_path *path, 3907 struct ocfs2_extent_rec *insert_rec) 3908 { 3909 int ret, i, next_free; 3910 struct buffer_head *bh; 3911 struct ocfs2_extent_list *el; 3912 struct ocfs2_extent_rec *rec; 3913 3914 /* 3915 * Update everything except the leaf block. 3916 */ 3917 for (i = 0; i < path->p_tree_depth; i++) { 3918 bh = path->p_node[i].bh; 3919 el = path->p_node[i].el; 3920 3921 next_free = le16_to_cpu(el->l_next_free_rec); 3922 if (next_free == 0) { 3923 ocfs2_error(inode->i_sb, 3924 "Dinode %llu has a bad extent list", 3925 (unsigned long long)OCFS2_I(inode)->ip_blkno); 3926 ret = -EIO; 3927 return; 3928 } 3929 3930 rec = &el->l_recs[next_free - 1]; 3931 3932 rec->e_int_clusters = insert_rec->e_cpos; 3933 le32_add_cpu(&rec->e_int_clusters, 3934 le16_to_cpu(insert_rec->e_leaf_clusters)); 3935 le32_add_cpu(&rec->e_int_clusters, 3936 -le32_to_cpu(rec->e_cpos)); 3937 3938 ret = ocfs2_journal_dirty(handle, bh); 3939 if (ret) 3940 mlog_errno(ret); 3941 3942 } 3943 } 3944 3945 static int ocfs2_append_rec_to_path(struct inode *inode, handle_t *handle, 3946 struct ocfs2_extent_rec *insert_rec, 3947 struct ocfs2_path *right_path, 3948 struct ocfs2_path **ret_left_path) 3949 { 3950 int ret, next_free; 3951 struct ocfs2_extent_list *el; 3952 struct ocfs2_path *left_path = NULL; 3953 3954 *ret_left_path = NULL; 3955 3956 /* 3957 * This shouldn't happen for non-trees. The extent rec cluster 3958 * count manipulation below only works for interior nodes. 3959 */ 3960 BUG_ON(right_path->p_tree_depth == 0); 3961 3962 /* 3963 * If our appending insert is at the leftmost edge of a leaf, 3964 * then we might need to update the rightmost records of the 3965 * neighboring path. 3966 */ 3967 el = path_leaf_el(right_path); 3968 next_free = le16_to_cpu(el->l_next_free_rec); 3969 if (next_free == 0 || 3970 (next_free == 1 && ocfs2_is_empty_extent(&el->l_recs[0]))) { 3971 u32 left_cpos; 3972 3973 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path, 3974 &left_cpos); 3975 if (ret) { 3976 mlog_errno(ret); 3977 goto out; 3978 } 3979 3980 mlog(0, "Append may need a left path update. cpos: %u, " 3981 "left_cpos: %u\n", le32_to_cpu(insert_rec->e_cpos), 3982 left_cpos); 3983 3984 /* 3985 * No need to worry if the append is already in the 3986 * leftmost leaf. 3987 */ 3988 if (left_cpos) { 3989 left_path = ocfs2_new_path_from_path(right_path); 3990 if (!left_path) { 3991 ret = -ENOMEM; 3992 mlog_errno(ret); 3993 goto out; 3994 } 3995 3996 ret = ocfs2_find_path(inode, left_path, left_cpos); 3997 if (ret) { 3998 mlog_errno(ret); 3999 goto out; 4000 } 4001 4002 /* 4003 * ocfs2_insert_path() will pass the left_path to the 4004 * journal for us. 4005 */ 4006 } 4007 } 4008 4009 ret = ocfs2_journal_access_path(inode, handle, right_path); 4010 if (ret) { 4011 mlog_errno(ret); 4012 goto out; 4013 } 4014 4015 ocfs2_adjust_rightmost_records(inode, handle, right_path, insert_rec); 4016 4017 *ret_left_path = left_path; 4018 ret = 0; 4019 out: 4020 if (ret != 0) 4021 ocfs2_free_path(left_path); 4022 4023 return ret; 4024 } 4025 4026 static void ocfs2_split_record(struct inode *inode, 4027 struct ocfs2_path *left_path, 4028 struct ocfs2_path *right_path, 4029 struct ocfs2_extent_rec *split_rec, 4030 enum ocfs2_split_type split) 4031 { 4032 int index; 4033 u32 cpos = le32_to_cpu(split_rec->e_cpos); 4034 struct ocfs2_extent_list *left_el = NULL, *right_el, *insert_el, *el; 4035 struct ocfs2_extent_rec *rec, *tmprec; 4036 4037 right_el = path_leaf_el(right_path); 4038 if (left_path) 4039 left_el = path_leaf_el(left_path); 4040 4041 el = right_el; 4042 insert_el = right_el; 4043 index = ocfs2_search_extent_list(el, cpos); 4044 if (index != -1) { 4045 if (index == 0 && left_path) { 4046 BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0])); 4047 4048 /* 4049 * This typically means that the record 4050 * started in the left path but moved to the 4051 * right as a result of rotation. We either 4052 * move the existing record to the left, or we 4053 * do the later insert there. 4054 * 4055 * In this case, the left path should always 4056 * exist as the rotate code will have passed 4057 * it back for a post-insert update. 4058 */ 4059 4060 if (split == SPLIT_LEFT) { 4061 /* 4062 * It's a left split. Since we know 4063 * that the rotate code gave us an 4064 * empty extent in the left path, we 4065 * can just do the insert there. 4066 */ 4067 insert_el = left_el; 4068 } else { 4069 /* 4070 * Right split - we have to move the 4071 * existing record over to the left 4072 * leaf. The insert will be into the 4073 * newly created empty extent in the 4074 * right leaf. 4075 */ 4076 tmprec = &right_el->l_recs[index]; 4077 ocfs2_rotate_leaf(left_el, tmprec); 4078 el = left_el; 4079 4080 memset(tmprec, 0, sizeof(*tmprec)); 4081 index = ocfs2_search_extent_list(left_el, cpos); 4082 BUG_ON(index == -1); 4083 } 4084 } 4085 } else { 4086 BUG_ON(!left_path); 4087 BUG_ON(!ocfs2_is_empty_extent(&left_el->l_recs[0])); 4088 /* 4089 * Left path is easy - we can just allow the insert to 4090 * happen. 4091 */ 4092 el = left_el; 4093 insert_el = left_el; 4094 index = ocfs2_search_extent_list(el, cpos); 4095 BUG_ON(index == -1); 4096 } 4097 4098 rec = &el->l_recs[index]; 4099 ocfs2_subtract_from_rec(inode->i_sb, split, rec, split_rec); 4100 ocfs2_rotate_leaf(insert_el, split_rec); 4101 } 4102 4103 /* 4104 * This function only does inserts on an allocation b-tree. For tree 4105 * depth = 0, ocfs2_insert_at_leaf() is called directly. 4106 * 4107 * right_path is the path we want to do the actual insert 4108 * in. left_path should only be passed in if we need to update that 4109 * portion of the tree after an edge insert. 4110 */ 4111 static int ocfs2_insert_path(struct inode *inode, 4112 handle_t *handle, 4113 struct ocfs2_path *left_path, 4114 struct ocfs2_path *right_path, 4115 struct ocfs2_extent_rec *insert_rec, 4116 struct ocfs2_insert_type *insert) 4117 { 4118 int ret, subtree_index; 4119 struct buffer_head *leaf_bh = path_leaf_bh(right_path); 4120 4121 if (left_path) { 4122 int credits = handle->h_buffer_credits; 4123 4124 /* 4125 * There's a chance that left_path got passed back to 4126 * us without being accounted for in the 4127 * journal. Extend our transaction here to be sure we 4128 * can change those blocks. 4129 */ 4130 credits += left_path->p_tree_depth; 4131 4132 ret = ocfs2_extend_trans(handle, credits); 4133 if (ret < 0) { 4134 mlog_errno(ret); 4135 goto out; 4136 } 4137 4138 ret = ocfs2_journal_access_path(inode, handle, left_path); 4139 if (ret < 0) { 4140 mlog_errno(ret); 4141 goto out; 4142 } 4143 } 4144 4145 /* 4146 * Pass both paths to the journal. The majority of inserts 4147 * will be touching all components anyway. 4148 */ 4149 ret = ocfs2_journal_access_path(inode, handle, right_path); 4150 if (ret < 0) { 4151 mlog_errno(ret); 4152 goto out; 4153 } 4154 4155 if (insert->ins_split != SPLIT_NONE) { 4156 /* 4157 * We could call ocfs2_insert_at_leaf() for some types 4158 * of splits, but it's easier to just let one separate 4159 * function sort it all out. 4160 */ 4161 ocfs2_split_record(inode, left_path, right_path, 4162 insert_rec, insert->ins_split); 4163 4164 /* 4165 * Split might have modified either leaf and we don't 4166 * have a guarantee that the later edge insert will 4167 * dirty this for us. 4168 */ 4169 if (left_path) 4170 ret = ocfs2_journal_dirty(handle, 4171 path_leaf_bh(left_path)); 4172 if (ret) 4173 mlog_errno(ret); 4174 } else 4175 ocfs2_insert_at_leaf(insert_rec, path_leaf_el(right_path), 4176 insert, inode); 4177 4178 ret = ocfs2_journal_dirty(handle, leaf_bh); 4179 if (ret) 4180 mlog_errno(ret); 4181 4182 if (left_path) { 4183 /* 4184 * The rotate code has indicated that we need to fix 4185 * up portions of the tree after the insert. 4186 * 4187 * XXX: Should we extend the transaction here? 4188 */ 4189 subtree_index = ocfs2_find_subtree_root(inode, left_path, 4190 right_path); 4191 ocfs2_complete_edge_insert(inode, handle, left_path, 4192 right_path, subtree_index); 4193 } 4194 4195 ret = 0; 4196 out: 4197 return ret; 4198 } 4199 4200 static int ocfs2_do_insert_extent(struct inode *inode, 4201 handle_t *handle, 4202 struct ocfs2_extent_tree *et, 4203 struct ocfs2_extent_rec *insert_rec, 4204 struct ocfs2_insert_type *type) 4205 { 4206 int ret, rotate = 0; 4207 u32 cpos; 4208 struct ocfs2_path *right_path = NULL; 4209 struct ocfs2_path *left_path = NULL; 4210 struct ocfs2_extent_list *el; 4211 4212 el = et->et_root_el; 4213 4214 ret = ocfs2_et_root_journal_access(handle, inode, et, 4215 OCFS2_JOURNAL_ACCESS_WRITE); 4216 if (ret) { 4217 mlog_errno(ret); 4218 goto out; 4219 } 4220 4221 if (le16_to_cpu(el->l_tree_depth) == 0) { 4222 ocfs2_insert_at_leaf(insert_rec, el, type, inode); 4223 goto out_update_clusters; 4224 } 4225 4226 right_path = ocfs2_new_path_from_et(et); 4227 if (!right_path) { 4228 ret = -ENOMEM; 4229 mlog_errno(ret); 4230 goto out; 4231 } 4232 4233 /* 4234 * Determine the path to start with. Rotations need the 4235 * rightmost path, everything else can go directly to the 4236 * target leaf. 4237 */ 4238 cpos = le32_to_cpu(insert_rec->e_cpos); 4239 if (type->ins_appending == APPEND_NONE && 4240 type->ins_contig == CONTIG_NONE) { 4241 rotate = 1; 4242 cpos = UINT_MAX; 4243 } 4244 4245 ret = ocfs2_find_path(inode, right_path, cpos); 4246 if (ret) { 4247 mlog_errno(ret); 4248 goto out; 4249 } 4250 4251 /* 4252 * Rotations and appends need special treatment - they modify 4253 * parts of the tree's above them. 4254 * 4255 * Both might pass back a path immediate to the left of the 4256 * one being inserted to. This will be cause 4257 * ocfs2_insert_path() to modify the rightmost records of 4258 * left_path to account for an edge insert. 4259 * 4260 * XXX: When modifying this code, keep in mind that an insert 4261 * can wind up skipping both of these two special cases... 4262 */ 4263 if (rotate) { 4264 ret = ocfs2_rotate_tree_right(inode, handle, type->ins_split, 4265 le32_to_cpu(insert_rec->e_cpos), 4266 right_path, &left_path); 4267 if (ret) { 4268 mlog_errno(ret); 4269 goto out; 4270 } 4271 4272 /* 4273 * ocfs2_rotate_tree_right() might have extended the 4274 * transaction without re-journaling our tree root. 4275 */ 4276 ret = ocfs2_et_root_journal_access(handle, inode, et, 4277 OCFS2_JOURNAL_ACCESS_WRITE); 4278 if (ret) { 4279 mlog_errno(ret); 4280 goto out; 4281 } 4282 } else if (type->ins_appending == APPEND_TAIL 4283 && type->ins_contig != CONTIG_LEFT) { 4284 ret = ocfs2_append_rec_to_path(inode, handle, insert_rec, 4285 right_path, &left_path); 4286 if (ret) { 4287 mlog_errno(ret); 4288 goto out; 4289 } 4290 } 4291 4292 ret = ocfs2_insert_path(inode, handle, left_path, right_path, 4293 insert_rec, type); 4294 if (ret) { 4295 mlog_errno(ret); 4296 goto out; 4297 } 4298 4299 out_update_clusters: 4300 if (type->ins_split == SPLIT_NONE) 4301 ocfs2_et_update_clusters(inode, et, 4302 le16_to_cpu(insert_rec->e_leaf_clusters)); 4303 4304 ret = ocfs2_journal_dirty(handle, et->et_root_bh); 4305 if (ret) 4306 mlog_errno(ret); 4307 4308 out: 4309 ocfs2_free_path(left_path); 4310 ocfs2_free_path(right_path); 4311 4312 return ret; 4313 } 4314 4315 static enum ocfs2_contig_type 4316 ocfs2_figure_merge_contig_type(struct inode *inode, struct ocfs2_path *path, 4317 struct ocfs2_extent_list *el, int index, 4318 struct ocfs2_extent_rec *split_rec) 4319 { 4320 int status; 4321 enum ocfs2_contig_type ret = CONTIG_NONE; 4322 u32 left_cpos, right_cpos; 4323 struct ocfs2_extent_rec *rec = NULL; 4324 struct ocfs2_extent_list *new_el; 4325 struct ocfs2_path *left_path = NULL, *right_path = NULL; 4326 struct buffer_head *bh; 4327 struct ocfs2_extent_block *eb; 4328 4329 if (index > 0) { 4330 rec = &el->l_recs[index - 1]; 4331 } else if (path->p_tree_depth > 0) { 4332 status = ocfs2_find_cpos_for_left_leaf(inode->i_sb, 4333 path, &left_cpos); 4334 if (status) 4335 goto out; 4336 4337 if (left_cpos != 0) { 4338 left_path = ocfs2_new_path_from_path(path); 4339 if (!left_path) 4340 goto out; 4341 4342 status = ocfs2_find_path(inode, left_path, left_cpos); 4343 if (status) 4344 goto out; 4345 4346 new_el = path_leaf_el(left_path); 4347 4348 if (le16_to_cpu(new_el->l_next_free_rec) != 4349 le16_to_cpu(new_el->l_count)) { 4350 bh = path_leaf_bh(left_path); 4351 eb = (struct ocfs2_extent_block *)bh->b_data; 4352 ocfs2_error(inode->i_sb, 4353 "Extent block #%llu has an " 4354 "invalid l_next_free_rec of " 4355 "%d. It should have " 4356 "matched the l_count of %d", 4357 (unsigned long long)le64_to_cpu(eb->h_blkno), 4358 le16_to_cpu(new_el->l_next_free_rec), 4359 le16_to_cpu(new_el->l_count)); 4360 status = -EINVAL; 4361 goto out; 4362 } 4363 rec = &new_el->l_recs[ 4364 le16_to_cpu(new_el->l_next_free_rec) - 1]; 4365 } 4366 } 4367 4368 /* 4369 * We're careful to check for an empty extent record here - 4370 * the merge code will know what to do if it sees one. 4371 */ 4372 if (rec) { 4373 if (index == 1 && ocfs2_is_empty_extent(rec)) { 4374 if (split_rec->e_cpos == el->l_recs[index].e_cpos) 4375 ret = CONTIG_RIGHT; 4376 } else { 4377 ret = ocfs2_extent_contig(inode, rec, split_rec); 4378 } 4379 } 4380 4381 rec = NULL; 4382 if (index < (le16_to_cpu(el->l_next_free_rec) - 1)) 4383 rec = &el->l_recs[index + 1]; 4384 else if (le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count) && 4385 path->p_tree_depth > 0) { 4386 status = ocfs2_find_cpos_for_right_leaf(inode->i_sb, 4387 path, &right_cpos); 4388 if (status) 4389 goto out; 4390 4391 if (right_cpos == 0) 4392 goto out; 4393 4394 right_path = ocfs2_new_path_from_path(path); 4395 if (!right_path) 4396 goto out; 4397 4398 status = ocfs2_find_path(inode, right_path, right_cpos); 4399 if (status) 4400 goto out; 4401 4402 new_el = path_leaf_el(right_path); 4403 rec = &new_el->l_recs[0]; 4404 if (ocfs2_is_empty_extent(rec)) { 4405 if (le16_to_cpu(new_el->l_next_free_rec) <= 1) { 4406 bh = path_leaf_bh(right_path); 4407 eb = (struct ocfs2_extent_block *)bh->b_data; 4408 ocfs2_error(inode->i_sb, 4409 "Extent block #%llu has an " 4410 "invalid l_next_free_rec of %d", 4411 (unsigned long long)le64_to_cpu(eb->h_blkno), 4412 le16_to_cpu(new_el->l_next_free_rec)); 4413 status = -EINVAL; 4414 goto out; 4415 } 4416 rec = &new_el->l_recs[1]; 4417 } 4418 } 4419 4420 if (rec) { 4421 enum ocfs2_contig_type contig_type; 4422 4423 contig_type = ocfs2_extent_contig(inode, rec, split_rec); 4424 4425 if (contig_type == CONTIG_LEFT && ret == CONTIG_RIGHT) 4426 ret = CONTIG_LEFTRIGHT; 4427 else if (ret == CONTIG_NONE) 4428 ret = contig_type; 4429 } 4430 4431 out: 4432 if (left_path) 4433 ocfs2_free_path(left_path); 4434 if (right_path) 4435 ocfs2_free_path(right_path); 4436 4437 return ret; 4438 } 4439 4440 static void ocfs2_figure_contig_type(struct inode *inode, 4441 struct ocfs2_insert_type *insert, 4442 struct ocfs2_extent_list *el, 4443 struct ocfs2_extent_rec *insert_rec, 4444 struct ocfs2_extent_tree *et) 4445 { 4446 int i; 4447 enum ocfs2_contig_type contig_type = CONTIG_NONE; 4448 4449 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0); 4450 4451 for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) { 4452 contig_type = ocfs2_extent_contig(inode, &el->l_recs[i], 4453 insert_rec); 4454 if (contig_type != CONTIG_NONE) { 4455 insert->ins_contig_index = i; 4456 break; 4457 } 4458 } 4459 insert->ins_contig = contig_type; 4460 4461 if (insert->ins_contig != CONTIG_NONE) { 4462 struct ocfs2_extent_rec *rec = 4463 &el->l_recs[insert->ins_contig_index]; 4464 unsigned int len = le16_to_cpu(rec->e_leaf_clusters) + 4465 le16_to_cpu(insert_rec->e_leaf_clusters); 4466 4467 /* 4468 * Caller might want us to limit the size of extents, don't 4469 * calculate contiguousness if we might exceed that limit. 4470 */ 4471 if (et->et_max_leaf_clusters && 4472 (len > et->et_max_leaf_clusters)) 4473 insert->ins_contig = CONTIG_NONE; 4474 } 4475 } 4476 4477 /* 4478 * This should only be called against the righmost leaf extent list. 4479 * 4480 * ocfs2_figure_appending_type() will figure out whether we'll have to 4481 * insert at the tail of the rightmost leaf. 4482 * 4483 * This should also work against the root extent list for tree's with 0 4484 * depth. If we consider the root extent list to be the rightmost leaf node 4485 * then the logic here makes sense. 4486 */ 4487 static void ocfs2_figure_appending_type(struct ocfs2_insert_type *insert, 4488 struct ocfs2_extent_list *el, 4489 struct ocfs2_extent_rec *insert_rec) 4490 { 4491 int i; 4492 u32 cpos = le32_to_cpu(insert_rec->e_cpos); 4493 struct ocfs2_extent_rec *rec; 4494 4495 insert->ins_appending = APPEND_NONE; 4496 4497 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0); 4498 4499 if (!el->l_next_free_rec) 4500 goto set_tail_append; 4501 4502 if (ocfs2_is_empty_extent(&el->l_recs[0])) { 4503 /* Were all records empty? */ 4504 if (le16_to_cpu(el->l_next_free_rec) == 1) 4505 goto set_tail_append; 4506 } 4507 4508 i = le16_to_cpu(el->l_next_free_rec) - 1; 4509 rec = &el->l_recs[i]; 4510 4511 if (cpos >= 4512 (le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters))) 4513 goto set_tail_append; 4514 4515 return; 4516 4517 set_tail_append: 4518 insert->ins_appending = APPEND_TAIL; 4519 } 4520 4521 /* 4522 * Helper function called at the begining of an insert. 4523 * 4524 * This computes a few things that are commonly used in the process of 4525 * inserting into the btree: 4526 * - Whether the new extent is contiguous with an existing one. 4527 * - The current tree depth. 4528 * - Whether the insert is an appending one. 4529 * - The total # of free records in the tree. 4530 * 4531 * All of the information is stored on the ocfs2_insert_type 4532 * structure. 4533 */ 4534 static int ocfs2_figure_insert_type(struct inode *inode, 4535 struct ocfs2_extent_tree *et, 4536 struct buffer_head **last_eb_bh, 4537 struct ocfs2_extent_rec *insert_rec, 4538 int *free_records, 4539 struct ocfs2_insert_type *insert) 4540 { 4541 int ret; 4542 struct ocfs2_extent_block *eb; 4543 struct ocfs2_extent_list *el; 4544 struct ocfs2_path *path = NULL; 4545 struct buffer_head *bh = NULL; 4546 4547 insert->ins_split = SPLIT_NONE; 4548 4549 el = et->et_root_el; 4550 insert->ins_tree_depth = le16_to_cpu(el->l_tree_depth); 4551 4552 if (el->l_tree_depth) { 4553 /* 4554 * If we have tree depth, we read in the 4555 * rightmost extent block ahead of time as 4556 * ocfs2_figure_insert_type() and ocfs2_add_branch() 4557 * may want it later. 4558 */ 4559 ret = ocfs2_read_extent_block(inode, 4560 ocfs2_et_get_last_eb_blk(et), 4561 &bh); 4562 if (ret) { 4563 mlog_exit(ret); 4564 goto out; 4565 } 4566 eb = (struct ocfs2_extent_block *) bh->b_data; 4567 el = &eb->h_list; 4568 } 4569 4570 /* 4571 * Unless we have a contiguous insert, we'll need to know if 4572 * there is room left in our allocation tree for another 4573 * extent record. 4574 * 4575 * XXX: This test is simplistic, we can search for empty 4576 * extent records too. 4577 */ 4578 *free_records = le16_to_cpu(el->l_count) - 4579 le16_to_cpu(el->l_next_free_rec); 4580 4581 if (!insert->ins_tree_depth) { 4582 ocfs2_figure_contig_type(inode, insert, el, insert_rec, et); 4583 ocfs2_figure_appending_type(insert, el, insert_rec); 4584 return 0; 4585 } 4586 4587 path = ocfs2_new_path_from_et(et); 4588 if (!path) { 4589 ret = -ENOMEM; 4590 mlog_errno(ret); 4591 goto out; 4592 } 4593 4594 /* 4595 * In the case that we're inserting past what the tree 4596 * currently accounts for, ocfs2_find_path() will return for 4597 * us the rightmost tree path. This is accounted for below in 4598 * the appending code. 4599 */ 4600 ret = ocfs2_find_path(inode, path, le32_to_cpu(insert_rec->e_cpos)); 4601 if (ret) { 4602 mlog_errno(ret); 4603 goto out; 4604 } 4605 4606 el = path_leaf_el(path); 4607 4608 /* 4609 * Now that we have the path, there's two things we want to determine: 4610 * 1) Contiguousness (also set contig_index if this is so) 4611 * 4612 * 2) Are we doing an append? We can trivially break this up 4613 * into two types of appends: simple record append, or a 4614 * rotate inside the tail leaf. 4615 */ 4616 ocfs2_figure_contig_type(inode, insert, el, insert_rec, et); 4617 4618 /* 4619 * The insert code isn't quite ready to deal with all cases of 4620 * left contiguousness. Specifically, if it's an insert into 4621 * the 1st record in a leaf, it will require the adjustment of 4622 * cluster count on the last record of the path directly to it's 4623 * left. For now, just catch that case and fool the layers 4624 * above us. This works just fine for tree_depth == 0, which 4625 * is why we allow that above. 4626 */ 4627 if (insert->ins_contig == CONTIG_LEFT && 4628 insert->ins_contig_index == 0) 4629 insert->ins_contig = CONTIG_NONE; 4630 4631 /* 4632 * Ok, so we can simply compare against last_eb to figure out 4633 * whether the path doesn't exist. This will only happen in 4634 * the case that we're doing a tail append, so maybe we can 4635 * take advantage of that information somehow. 4636 */ 4637 if (ocfs2_et_get_last_eb_blk(et) == 4638 path_leaf_bh(path)->b_blocknr) { 4639 /* 4640 * Ok, ocfs2_find_path() returned us the rightmost 4641 * tree path. This might be an appending insert. There are 4642 * two cases: 4643 * 1) We're doing a true append at the tail: 4644 * -This might even be off the end of the leaf 4645 * 2) We're "appending" by rotating in the tail 4646 */ 4647 ocfs2_figure_appending_type(insert, el, insert_rec); 4648 } 4649 4650 out: 4651 ocfs2_free_path(path); 4652 4653 if (ret == 0) 4654 *last_eb_bh = bh; 4655 else 4656 brelse(bh); 4657 return ret; 4658 } 4659 4660 /* 4661 * Insert an extent into an inode btree. 4662 * 4663 * The caller needs to update fe->i_clusters 4664 */ 4665 int ocfs2_insert_extent(struct ocfs2_super *osb, 4666 handle_t *handle, 4667 struct inode *inode, 4668 struct ocfs2_extent_tree *et, 4669 u32 cpos, 4670 u64 start_blk, 4671 u32 new_clusters, 4672 u8 flags, 4673 struct ocfs2_alloc_context *meta_ac) 4674 { 4675 int status; 4676 int uninitialized_var(free_records); 4677 struct buffer_head *last_eb_bh = NULL; 4678 struct ocfs2_insert_type insert = {0, }; 4679 struct ocfs2_extent_rec rec; 4680 4681 mlog(0, "add %u clusters at position %u to inode %llu\n", 4682 new_clusters, cpos, (unsigned long long)OCFS2_I(inode)->ip_blkno); 4683 4684 memset(&rec, 0, sizeof(rec)); 4685 rec.e_cpos = cpu_to_le32(cpos); 4686 rec.e_blkno = cpu_to_le64(start_blk); 4687 rec.e_leaf_clusters = cpu_to_le16(new_clusters); 4688 rec.e_flags = flags; 4689 status = ocfs2_et_insert_check(inode, et, &rec); 4690 if (status) { 4691 mlog_errno(status); 4692 goto bail; 4693 } 4694 4695 status = ocfs2_figure_insert_type(inode, et, &last_eb_bh, &rec, 4696 &free_records, &insert); 4697 if (status < 0) { 4698 mlog_errno(status); 4699 goto bail; 4700 } 4701 4702 mlog(0, "Insert.appending: %u, Insert.Contig: %u, " 4703 "Insert.contig_index: %d, Insert.free_records: %d, " 4704 "Insert.tree_depth: %d\n", 4705 insert.ins_appending, insert.ins_contig, insert.ins_contig_index, 4706 free_records, insert.ins_tree_depth); 4707 4708 if (insert.ins_contig == CONTIG_NONE && free_records == 0) { 4709 status = ocfs2_grow_tree(inode, handle, et, 4710 &insert.ins_tree_depth, &last_eb_bh, 4711 meta_ac); 4712 if (status) { 4713 mlog_errno(status); 4714 goto bail; 4715 } 4716 } 4717 4718 /* Finally, we can add clusters. This might rotate the tree for us. */ 4719 status = ocfs2_do_insert_extent(inode, handle, et, &rec, &insert); 4720 if (status < 0) 4721 mlog_errno(status); 4722 else if (et->et_ops == &ocfs2_dinode_et_ops) 4723 ocfs2_extent_map_insert_rec(inode, &rec); 4724 4725 bail: 4726 brelse(last_eb_bh); 4727 4728 mlog_exit(status); 4729 return status; 4730 } 4731 4732 /* 4733 * Allcate and add clusters into the extent b-tree. 4734 * The new clusters(clusters_to_add) will be inserted at logical_offset. 4735 * The extent b-tree's root is specified by et, and 4736 * it is not limited to the file storage. Any extent tree can use this 4737 * function if it implements the proper ocfs2_extent_tree. 4738 */ 4739 int ocfs2_add_clusters_in_btree(struct ocfs2_super *osb, 4740 struct inode *inode, 4741 u32 *logical_offset, 4742 u32 clusters_to_add, 4743 int mark_unwritten, 4744 struct ocfs2_extent_tree *et, 4745 handle_t *handle, 4746 struct ocfs2_alloc_context *data_ac, 4747 struct ocfs2_alloc_context *meta_ac, 4748 enum ocfs2_alloc_restarted *reason_ret) 4749 { 4750 int status = 0; 4751 int free_extents; 4752 enum ocfs2_alloc_restarted reason = RESTART_NONE; 4753 u32 bit_off, num_bits; 4754 u64 block; 4755 u8 flags = 0; 4756 4757 BUG_ON(!clusters_to_add); 4758 4759 if (mark_unwritten) 4760 flags = OCFS2_EXT_UNWRITTEN; 4761 4762 free_extents = ocfs2_num_free_extents(osb, inode, et); 4763 if (free_extents < 0) { 4764 status = free_extents; 4765 mlog_errno(status); 4766 goto leave; 4767 } 4768 4769 /* there are two cases which could cause us to EAGAIN in the 4770 * we-need-more-metadata case: 4771 * 1) we haven't reserved *any* 4772 * 2) we are so fragmented, we've needed to add metadata too 4773 * many times. */ 4774 if (!free_extents && !meta_ac) { 4775 mlog(0, "we haven't reserved any metadata!\n"); 4776 status = -EAGAIN; 4777 reason = RESTART_META; 4778 goto leave; 4779 } else if ((!free_extents) 4780 && (ocfs2_alloc_context_bits_left(meta_ac) 4781 < ocfs2_extend_meta_needed(et->et_root_el))) { 4782 mlog(0, "filesystem is really fragmented...\n"); 4783 status = -EAGAIN; 4784 reason = RESTART_META; 4785 goto leave; 4786 } 4787 4788 status = __ocfs2_claim_clusters(osb, handle, data_ac, 1, 4789 clusters_to_add, &bit_off, &num_bits); 4790 if (status < 0) { 4791 if (status != -ENOSPC) 4792 mlog_errno(status); 4793 goto leave; 4794 } 4795 4796 BUG_ON(num_bits > clusters_to_add); 4797 4798 /* reserve our write early -- insert_extent may update the tree root */ 4799 status = ocfs2_et_root_journal_access(handle, inode, et, 4800 OCFS2_JOURNAL_ACCESS_WRITE); 4801 if (status < 0) { 4802 mlog_errno(status); 4803 goto leave; 4804 } 4805 4806 block = ocfs2_clusters_to_blocks(osb->sb, bit_off); 4807 mlog(0, "Allocating %u clusters at block %u for inode %llu\n", 4808 num_bits, bit_off, (unsigned long long)OCFS2_I(inode)->ip_blkno); 4809 status = ocfs2_insert_extent(osb, handle, inode, et, 4810 *logical_offset, block, 4811 num_bits, flags, meta_ac); 4812 if (status < 0) { 4813 mlog_errno(status); 4814 goto leave; 4815 } 4816 4817 status = ocfs2_journal_dirty(handle, et->et_root_bh); 4818 if (status < 0) { 4819 mlog_errno(status); 4820 goto leave; 4821 } 4822 4823 clusters_to_add -= num_bits; 4824 *logical_offset += num_bits; 4825 4826 if (clusters_to_add) { 4827 mlog(0, "need to alloc once more, wanted = %u\n", 4828 clusters_to_add); 4829 status = -EAGAIN; 4830 reason = RESTART_TRANS; 4831 } 4832 4833 leave: 4834 mlog_exit(status); 4835 if (reason_ret) 4836 *reason_ret = reason; 4837 return status; 4838 } 4839 4840 static void ocfs2_make_right_split_rec(struct super_block *sb, 4841 struct ocfs2_extent_rec *split_rec, 4842 u32 cpos, 4843 struct ocfs2_extent_rec *rec) 4844 { 4845 u32 rec_cpos = le32_to_cpu(rec->e_cpos); 4846 u32 rec_range = rec_cpos + le16_to_cpu(rec->e_leaf_clusters); 4847 4848 memset(split_rec, 0, sizeof(struct ocfs2_extent_rec)); 4849 4850 split_rec->e_cpos = cpu_to_le32(cpos); 4851 split_rec->e_leaf_clusters = cpu_to_le16(rec_range - cpos); 4852 4853 split_rec->e_blkno = rec->e_blkno; 4854 le64_add_cpu(&split_rec->e_blkno, 4855 ocfs2_clusters_to_blocks(sb, cpos - rec_cpos)); 4856 4857 split_rec->e_flags = rec->e_flags; 4858 } 4859 4860 static int ocfs2_split_and_insert(struct inode *inode, 4861 handle_t *handle, 4862 struct ocfs2_path *path, 4863 struct ocfs2_extent_tree *et, 4864 struct buffer_head **last_eb_bh, 4865 int split_index, 4866 struct ocfs2_extent_rec *orig_split_rec, 4867 struct ocfs2_alloc_context *meta_ac) 4868 { 4869 int ret = 0, depth; 4870 unsigned int insert_range, rec_range, do_leftright = 0; 4871 struct ocfs2_extent_rec tmprec; 4872 struct ocfs2_extent_list *rightmost_el; 4873 struct ocfs2_extent_rec rec; 4874 struct ocfs2_extent_rec split_rec = *orig_split_rec; 4875 struct ocfs2_insert_type insert; 4876 struct ocfs2_extent_block *eb; 4877 4878 leftright: 4879 /* 4880 * Store a copy of the record on the stack - it might move 4881 * around as the tree is manipulated below. 4882 */ 4883 rec = path_leaf_el(path)->l_recs[split_index]; 4884 4885 rightmost_el = et->et_root_el; 4886 4887 depth = le16_to_cpu(rightmost_el->l_tree_depth); 4888 if (depth) { 4889 BUG_ON(!(*last_eb_bh)); 4890 eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data; 4891 rightmost_el = &eb->h_list; 4892 } 4893 4894 if (le16_to_cpu(rightmost_el->l_next_free_rec) == 4895 le16_to_cpu(rightmost_el->l_count)) { 4896 ret = ocfs2_grow_tree(inode, handle, et, 4897 &depth, last_eb_bh, meta_ac); 4898 if (ret) { 4899 mlog_errno(ret); 4900 goto out; 4901 } 4902 } 4903 4904 memset(&insert, 0, sizeof(struct ocfs2_insert_type)); 4905 insert.ins_appending = APPEND_NONE; 4906 insert.ins_contig = CONTIG_NONE; 4907 insert.ins_tree_depth = depth; 4908 4909 insert_range = le32_to_cpu(split_rec.e_cpos) + 4910 le16_to_cpu(split_rec.e_leaf_clusters); 4911 rec_range = le32_to_cpu(rec.e_cpos) + 4912 le16_to_cpu(rec.e_leaf_clusters); 4913 4914 if (split_rec.e_cpos == rec.e_cpos) { 4915 insert.ins_split = SPLIT_LEFT; 4916 } else if (insert_range == rec_range) { 4917 insert.ins_split = SPLIT_RIGHT; 4918 } else { 4919 /* 4920 * Left/right split. We fake this as a right split 4921 * first and then make a second pass as a left split. 4922 */ 4923 insert.ins_split = SPLIT_RIGHT; 4924 4925 ocfs2_make_right_split_rec(inode->i_sb, &tmprec, insert_range, 4926 &rec); 4927 4928 split_rec = tmprec; 4929 4930 BUG_ON(do_leftright); 4931 do_leftright = 1; 4932 } 4933 4934 ret = ocfs2_do_insert_extent(inode, handle, et, &split_rec, &insert); 4935 if (ret) { 4936 mlog_errno(ret); 4937 goto out; 4938 } 4939 4940 if (do_leftright == 1) { 4941 u32 cpos; 4942 struct ocfs2_extent_list *el; 4943 4944 do_leftright++; 4945 split_rec = *orig_split_rec; 4946 4947 ocfs2_reinit_path(path, 1); 4948 4949 cpos = le32_to_cpu(split_rec.e_cpos); 4950 ret = ocfs2_find_path(inode, path, cpos); 4951 if (ret) { 4952 mlog_errno(ret); 4953 goto out; 4954 } 4955 4956 el = path_leaf_el(path); 4957 split_index = ocfs2_search_extent_list(el, cpos); 4958 goto leftright; 4959 } 4960 out: 4961 4962 return ret; 4963 } 4964 4965 static int ocfs2_replace_extent_rec(struct inode *inode, 4966 handle_t *handle, 4967 struct ocfs2_path *path, 4968 struct ocfs2_extent_list *el, 4969 int split_index, 4970 struct ocfs2_extent_rec *split_rec) 4971 { 4972 int ret; 4973 4974 ret = ocfs2_path_bh_journal_access(handle, inode, path, 4975 path_num_items(path) - 1); 4976 if (ret) { 4977 mlog_errno(ret); 4978 goto out; 4979 } 4980 4981 el->l_recs[split_index] = *split_rec; 4982 4983 ocfs2_journal_dirty(handle, path_leaf_bh(path)); 4984 out: 4985 return ret; 4986 } 4987 4988 /* 4989 * Mark part or all of the extent record at split_index in the leaf 4990 * pointed to by path as written. This removes the unwritten 4991 * extent flag. 4992 * 4993 * Care is taken to handle contiguousness so as to not grow the tree. 4994 * 4995 * meta_ac is not strictly necessary - we only truly need it if growth 4996 * of the tree is required. All other cases will degrade into a less 4997 * optimal tree layout. 4998 * 4999 * last_eb_bh should be the rightmost leaf block for any extent 5000 * btree. Since a split may grow the tree or a merge might shrink it, 5001 * the caller cannot trust the contents of that buffer after this call. 5002 * 5003 * This code is optimized for readability - several passes might be 5004 * made over certain portions of the tree. All of those blocks will 5005 * have been brought into cache (and pinned via the journal), so the 5006 * extra overhead is not expressed in terms of disk reads. 5007 */ 5008 static int __ocfs2_mark_extent_written(struct inode *inode, 5009 struct ocfs2_extent_tree *et, 5010 handle_t *handle, 5011 struct ocfs2_path *path, 5012 int split_index, 5013 struct ocfs2_extent_rec *split_rec, 5014 struct ocfs2_alloc_context *meta_ac, 5015 struct ocfs2_cached_dealloc_ctxt *dealloc) 5016 { 5017 int ret = 0; 5018 struct ocfs2_extent_list *el = path_leaf_el(path); 5019 struct buffer_head *last_eb_bh = NULL; 5020 struct ocfs2_extent_rec *rec = &el->l_recs[split_index]; 5021 struct ocfs2_merge_ctxt ctxt; 5022 struct ocfs2_extent_list *rightmost_el; 5023 5024 if (!(rec->e_flags & OCFS2_EXT_UNWRITTEN)) { 5025 ret = -EIO; 5026 mlog_errno(ret); 5027 goto out; 5028 } 5029 5030 if (le32_to_cpu(rec->e_cpos) > le32_to_cpu(split_rec->e_cpos) || 5031 ((le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)) < 5032 (le32_to_cpu(split_rec->e_cpos) + le16_to_cpu(split_rec->e_leaf_clusters)))) { 5033 ret = -EIO; 5034 mlog_errno(ret); 5035 goto out; 5036 } 5037 5038 ctxt.c_contig_type = ocfs2_figure_merge_contig_type(inode, path, el, 5039 split_index, 5040 split_rec); 5041 5042 /* 5043 * The core merge / split code wants to know how much room is 5044 * left in this inodes allocation tree, so we pass the 5045 * rightmost extent list. 5046 */ 5047 if (path->p_tree_depth) { 5048 struct ocfs2_extent_block *eb; 5049 5050 ret = ocfs2_read_extent_block(inode, 5051 ocfs2_et_get_last_eb_blk(et), 5052 &last_eb_bh); 5053 if (ret) { 5054 mlog_exit(ret); 5055 goto out; 5056 } 5057 5058 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data; 5059 rightmost_el = &eb->h_list; 5060 } else 5061 rightmost_el = path_root_el(path); 5062 5063 if (rec->e_cpos == split_rec->e_cpos && 5064 rec->e_leaf_clusters == split_rec->e_leaf_clusters) 5065 ctxt.c_split_covers_rec = 1; 5066 else 5067 ctxt.c_split_covers_rec = 0; 5068 5069 ctxt.c_has_empty_extent = ocfs2_is_empty_extent(&el->l_recs[0]); 5070 5071 mlog(0, "index: %d, contig: %u, has_empty: %u, split_covers: %u\n", 5072 split_index, ctxt.c_contig_type, ctxt.c_has_empty_extent, 5073 ctxt.c_split_covers_rec); 5074 5075 if (ctxt.c_contig_type == CONTIG_NONE) { 5076 if (ctxt.c_split_covers_rec) 5077 ret = ocfs2_replace_extent_rec(inode, handle, 5078 path, el, 5079 split_index, split_rec); 5080 else 5081 ret = ocfs2_split_and_insert(inode, handle, path, et, 5082 &last_eb_bh, split_index, 5083 split_rec, meta_ac); 5084 if (ret) 5085 mlog_errno(ret); 5086 } else { 5087 ret = ocfs2_try_to_merge_extent(inode, handle, path, 5088 split_index, split_rec, 5089 dealloc, &ctxt, et); 5090 if (ret) 5091 mlog_errno(ret); 5092 } 5093 5094 out: 5095 brelse(last_eb_bh); 5096 return ret; 5097 } 5098 5099 /* 5100 * Mark the already-existing extent at cpos as written for len clusters. 5101 * 5102 * If the existing extent is larger than the request, initiate a 5103 * split. An attempt will be made at merging with adjacent extents. 5104 * 5105 * The caller is responsible for passing down meta_ac if we'll need it. 5106 */ 5107 int ocfs2_mark_extent_written(struct inode *inode, 5108 struct ocfs2_extent_tree *et, 5109 handle_t *handle, u32 cpos, u32 len, u32 phys, 5110 struct ocfs2_alloc_context *meta_ac, 5111 struct ocfs2_cached_dealloc_ctxt *dealloc) 5112 { 5113 int ret, index; 5114 u64 start_blkno = ocfs2_clusters_to_blocks(inode->i_sb, phys); 5115 struct ocfs2_extent_rec split_rec; 5116 struct ocfs2_path *left_path = NULL; 5117 struct ocfs2_extent_list *el; 5118 5119 mlog(0, "Inode %lu cpos %u, len %u, phys %u (%llu)\n", 5120 inode->i_ino, cpos, len, phys, (unsigned long long)start_blkno); 5121 5122 if (!ocfs2_writes_unwritten_extents(OCFS2_SB(inode->i_sb))) { 5123 ocfs2_error(inode->i_sb, "Inode %llu has unwritten extents " 5124 "that are being written to, but the feature bit " 5125 "is not set in the super block.", 5126 (unsigned long long)OCFS2_I(inode)->ip_blkno); 5127 ret = -EROFS; 5128 goto out; 5129 } 5130 5131 /* 5132 * XXX: This should be fixed up so that we just re-insert the 5133 * next extent records. 5134 * 5135 * XXX: This is a hack on the extent tree, maybe it should be 5136 * an op? 5137 */ 5138 if (et->et_ops == &ocfs2_dinode_et_ops) 5139 ocfs2_extent_map_trunc(inode, 0); 5140 5141 left_path = ocfs2_new_path_from_et(et); 5142 if (!left_path) { 5143 ret = -ENOMEM; 5144 mlog_errno(ret); 5145 goto out; 5146 } 5147 5148 ret = ocfs2_find_path(inode, left_path, cpos); 5149 if (ret) { 5150 mlog_errno(ret); 5151 goto out; 5152 } 5153 el = path_leaf_el(left_path); 5154 5155 index = ocfs2_search_extent_list(el, cpos); 5156 if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) { 5157 ocfs2_error(inode->i_sb, 5158 "Inode %llu has an extent at cpos %u which can no " 5159 "longer be found.\n", 5160 (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos); 5161 ret = -EROFS; 5162 goto out; 5163 } 5164 5165 memset(&split_rec, 0, sizeof(struct ocfs2_extent_rec)); 5166 split_rec.e_cpos = cpu_to_le32(cpos); 5167 split_rec.e_leaf_clusters = cpu_to_le16(len); 5168 split_rec.e_blkno = cpu_to_le64(start_blkno); 5169 split_rec.e_flags = path_leaf_el(left_path)->l_recs[index].e_flags; 5170 split_rec.e_flags &= ~OCFS2_EXT_UNWRITTEN; 5171 5172 ret = __ocfs2_mark_extent_written(inode, et, handle, left_path, 5173 index, &split_rec, meta_ac, 5174 dealloc); 5175 if (ret) 5176 mlog_errno(ret); 5177 5178 out: 5179 ocfs2_free_path(left_path); 5180 return ret; 5181 } 5182 5183 static int ocfs2_split_tree(struct inode *inode, struct ocfs2_extent_tree *et, 5184 handle_t *handle, struct ocfs2_path *path, 5185 int index, u32 new_range, 5186 struct ocfs2_alloc_context *meta_ac) 5187 { 5188 int ret, depth, credits = handle->h_buffer_credits; 5189 struct buffer_head *last_eb_bh = NULL; 5190 struct ocfs2_extent_block *eb; 5191 struct ocfs2_extent_list *rightmost_el, *el; 5192 struct ocfs2_extent_rec split_rec; 5193 struct ocfs2_extent_rec *rec; 5194 struct ocfs2_insert_type insert; 5195 5196 /* 5197 * Setup the record to split before we grow the tree. 5198 */ 5199 el = path_leaf_el(path); 5200 rec = &el->l_recs[index]; 5201 ocfs2_make_right_split_rec(inode->i_sb, &split_rec, new_range, rec); 5202 5203 depth = path->p_tree_depth; 5204 if (depth > 0) { 5205 ret = ocfs2_read_extent_block(inode, 5206 ocfs2_et_get_last_eb_blk(et), 5207 &last_eb_bh); 5208 if (ret < 0) { 5209 mlog_errno(ret); 5210 goto out; 5211 } 5212 5213 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data; 5214 rightmost_el = &eb->h_list; 5215 } else 5216 rightmost_el = path_leaf_el(path); 5217 5218 credits += path->p_tree_depth + 5219 ocfs2_extend_meta_needed(et->et_root_el); 5220 ret = ocfs2_extend_trans(handle, credits); 5221 if (ret) { 5222 mlog_errno(ret); 5223 goto out; 5224 } 5225 5226 if (le16_to_cpu(rightmost_el->l_next_free_rec) == 5227 le16_to_cpu(rightmost_el->l_count)) { 5228 ret = ocfs2_grow_tree(inode, handle, et, &depth, &last_eb_bh, 5229 meta_ac); 5230 if (ret) { 5231 mlog_errno(ret); 5232 goto out; 5233 } 5234 } 5235 5236 memset(&insert, 0, sizeof(struct ocfs2_insert_type)); 5237 insert.ins_appending = APPEND_NONE; 5238 insert.ins_contig = CONTIG_NONE; 5239 insert.ins_split = SPLIT_RIGHT; 5240 insert.ins_tree_depth = depth; 5241 5242 ret = ocfs2_do_insert_extent(inode, handle, et, &split_rec, &insert); 5243 if (ret) 5244 mlog_errno(ret); 5245 5246 out: 5247 brelse(last_eb_bh); 5248 return ret; 5249 } 5250 5251 static int ocfs2_truncate_rec(struct inode *inode, handle_t *handle, 5252 struct ocfs2_path *path, int index, 5253 struct ocfs2_cached_dealloc_ctxt *dealloc, 5254 u32 cpos, u32 len, 5255 struct ocfs2_extent_tree *et) 5256 { 5257 int ret; 5258 u32 left_cpos, rec_range, trunc_range; 5259 int wants_rotate = 0, is_rightmost_tree_rec = 0; 5260 struct super_block *sb = inode->i_sb; 5261 struct ocfs2_path *left_path = NULL; 5262 struct ocfs2_extent_list *el = path_leaf_el(path); 5263 struct ocfs2_extent_rec *rec; 5264 struct ocfs2_extent_block *eb; 5265 5266 if (ocfs2_is_empty_extent(&el->l_recs[0]) && index > 0) { 5267 ret = ocfs2_rotate_tree_left(inode, handle, path, dealloc, et); 5268 if (ret) { 5269 mlog_errno(ret); 5270 goto out; 5271 } 5272 5273 index--; 5274 } 5275 5276 if (index == (le16_to_cpu(el->l_next_free_rec) - 1) && 5277 path->p_tree_depth) { 5278 /* 5279 * Check whether this is the rightmost tree record. If 5280 * we remove all of this record or part of its right 5281 * edge then an update of the record lengths above it 5282 * will be required. 5283 */ 5284 eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data; 5285 if (eb->h_next_leaf_blk == 0) 5286 is_rightmost_tree_rec = 1; 5287 } 5288 5289 rec = &el->l_recs[index]; 5290 if (index == 0 && path->p_tree_depth && 5291 le32_to_cpu(rec->e_cpos) == cpos) { 5292 /* 5293 * Changing the leftmost offset (via partial or whole 5294 * record truncate) of an interior (or rightmost) path 5295 * means we have to update the subtree that is formed 5296 * by this leaf and the one to it's left. 5297 * 5298 * There are two cases we can skip: 5299 * 1) Path is the leftmost one in our inode tree. 5300 * 2) The leaf is rightmost and will be empty after 5301 * we remove the extent record - the rotate code 5302 * knows how to update the newly formed edge. 5303 */ 5304 5305 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path, 5306 &left_cpos); 5307 if (ret) { 5308 mlog_errno(ret); 5309 goto out; 5310 } 5311 5312 if (left_cpos && le16_to_cpu(el->l_next_free_rec) > 1) { 5313 left_path = ocfs2_new_path_from_path(path); 5314 if (!left_path) { 5315 ret = -ENOMEM; 5316 mlog_errno(ret); 5317 goto out; 5318 } 5319 5320 ret = ocfs2_find_path(inode, left_path, left_cpos); 5321 if (ret) { 5322 mlog_errno(ret); 5323 goto out; 5324 } 5325 } 5326 } 5327 5328 ret = ocfs2_extend_rotate_transaction(handle, 0, 5329 handle->h_buffer_credits, 5330 path); 5331 if (ret) { 5332 mlog_errno(ret); 5333 goto out; 5334 } 5335 5336 ret = ocfs2_journal_access_path(inode, handle, path); 5337 if (ret) { 5338 mlog_errno(ret); 5339 goto out; 5340 } 5341 5342 ret = ocfs2_journal_access_path(inode, handle, left_path); 5343 if (ret) { 5344 mlog_errno(ret); 5345 goto out; 5346 } 5347 5348 rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); 5349 trunc_range = cpos + len; 5350 5351 if (le32_to_cpu(rec->e_cpos) == cpos && rec_range == trunc_range) { 5352 int next_free; 5353 5354 memset(rec, 0, sizeof(*rec)); 5355 ocfs2_cleanup_merge(el, index); 5356 wants_rotate = 1; 5357 5358 next_free = le16_to_cpu(el->l_next_free_rec); 5359 if (is_rightmost_tree_rec && next_free > 1) { 5360 /* 5361 * We skip the edge update if this path will 5362 * be deleted by the rotate code. 5363 */ 5364 rec = &el->l_recs[next_free - 1]; 5365 ocfs2_adjust_rightmost_records(inode, handle, path, 5366 rec); 5367 } 5368 } else if (le32_to_cpu(rec->e_cpos) == cpos) { 5369 /* Remove leftmost portion of the record. */ 5370 le32_add_cpu(&rec->e_cpos, len); 5371 le64_add_cpu(&rec->e_blkno, ocfs2_clusters_to_blocks(sb, len)); 5372 le16_add_cpu(&rec->e_leaf_clusters, -len); 5373 } else if (rec_range == trunc_range) { 5374 /* Remove rightmost portion of the record */ 5375 le16_add_cpu(&rec->e_leaf_clusters, -len); 5376 if (is_rightmost_tree_rec) 5377 ocfs2_adjust_rightmost_records(inode, handle, path, rec); 5378 } else { 5379 /* Caller should have trapped this. */ 5380 mlog(ML_ERROR, "Inode %llu: Invalid record truncate: (%u, %u) " 5381 "(%u, %u)\n", (unsigned long long)OCFS2_I(inode)->ip_blkno, 5382 le32_to_cpu(rec->e_cpos), 5383 le16_to_cpu(rec->e_leaf_clusters), cpos, len); 5384 BUG(); 5385 } 5386 5387 if (left_path) { 5388 int subtree_index; 5389 5390 subtree_index = ocfs2_find_subtree_root(inode, left_path, path); 5391 ocfs2_complete_edge_insert(inode, handle, left_path, path, 5392 subtree_index); 5393 } 5394 5395 ocfs2_journal_dirty(handle, path_leaf_bh(path)); 5396 5397 ret = ocfs2_rotate_tree_left(inode, handle, path, dealloc, et); 5398 if (ret) { 5399 mlog_errno(ret); 5400 goto out; 5401 } 5402 5403 out: 5404 ocfs2_free_path(left_path); 5405 return ret; 5406 } 5407 5408 int ocfs2_remove_extent(struct inode *inode, 5409 struct ocfs2_extent_tree *et, 5410 u32 cpos, u32 len, handle_t *handle, 5411 struct ocfs2_alloc_context *meta_ac, 5412 struct ocfs2_cached_dealloc_ctxt *dealloc) 5413 { 5414 int ret, index; 5415 u32 rec_range, trunc_range; 5416 struct ocfs2_extent_rec *rec; 5417 struct ocfs2_extent_list *el; 5418 struct ocfs2_path *path = NULL; 5419 5420 ocfs2_extent_map_trunc(inode, 0); 5421 5422 path = ocfs2_new_path_from_et(et); 5423 if (!path) { 5424 ret = -ENOMEM; 5425 mlog_errno(ret); 5426 goto out; 5427 } 5428 5429 ret = ocfs2_find_path(inode, path, cpos); 5430 if (ret) { 5431 mlog_errno(ret); 5432 goto out; 5433 } 5434 5435 el = path_leaf_el(path); 5436 index = ocfs2_search_extent_list(el, cpos); 5437 if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) { 5438 ocfs2_error(inode->i_sb, 5439 "Inode %llu has an extent at cpos %u which can no " 5440 "longer be found.\n", 5441 (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos); 5442 ret = -EROFS; 5443 goto out; 5444 } 5445 5446 /* 5447 * We have 3 cases of extent removal: 5448 * 1) Range covers the entire extent rec 5449 * 2) Range begins or ends on one edge of the extent rec 5450 * 3) Range is in the middle of the extent rec (no shared edges) 5451 * 5452 * For case 1 we remove the extent rec and left rotate to 5453 * fill the hole. 5454 * 5455 * For case 2 we just shrink the existing extent rec, with a 5456 * tree update if the shrinking edge is also the edge of an 5457 * extent block. 5458 * 5459 * For case 3 we do a right split to turn the extent rec into 5460 * something case 2 can handle. 5461 */ 5462 rec = &el->l_recs[index]; 5463 rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); 5464 trunc_range = cpos + len; 5465 5466 BUG_ON(cpos < le32_to_cpu(rec->e_cpos) || trunc_range > rec_range); 5467 5468 mlog(0, "Inode %llu, remove (cpos %u, len %u). Existing index %d " 5469 "(cpos %u, len %u)\n", 5470 (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos, len, index, 5471 le32_to_cpu(rec->e_cpos), ocfs2_rec_clusters(el, rec)); 5472 5473 if (le32_to_cpu(rec->e_cpos) == cpos || rec_range == trunc_range) { 5474 ret = ocfs2_truncate_rec(inode, handle, path, index, dealloc, 5475 cpos, len, et); 5476 if (ret) { 5477 mlog_errno(ret); 5478 goto out; 5479 } 5480 } else { 5481 ret = ocfs2_split_tree(inode, et, handle, path, index, 5482 trunc_range, meta_ac); 5483 if (ret) { 5484 mlog_errno(ret); 5485 goto out; 5486 } 5487 5488 /* 5489 * The split could have manipulated the tree enough to 5490 * move the record location, so we have to look for it again. 5491 */ 5492 ocfs2_reinit_path(path, 1); 5493 5494 ret = ocfs2_find_path(inode, path, cpos); 5495 if (ret) { 5496 mlog_errno(ret); 5497 goto out; 5498 } 5499 5500 el = path_leaf_el(path); 5501 index = ocfs2_search_extent_list(el, cpos); 5502 if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) { 5503 ocfs2_error(inode->i_sb, 5504 "Inode %llu: split at cpos %u lost record.", 5505 (unsigned long long)OCFS2_I(inode)->ip_blkno, 5506 cpos); 5507 ret = -EROFS; 5508 goto out; 5509 } 5510 5511 /* 5512 * Double check our values here. If anything is fishy, 5513 * it's easier to catch it at the top level. 5514 */ 5515 rec = &el->l_recs[index]; 5516 rec_range = le32_to_cpu(rec->e_cpos) + 5517 ocfs2_rec_clusters(el, rec); 5518 if (rec_range != trunc_range) { 5519 ocfs2_error(inode->i_sb, 5520 "Inode %llu: error after split at cpos %u" 5521 "trunc len %u, existing record is (%u,%u)", 5522 (unsigned long long)OCFS2_I(inode)->ip_blkno, 5523 cpos, len, le32_to_cpu(rec->e_cpos), 5524 ocfs2_rec_clusters(el, rec)); 5525 ret = -EROFS; 5526 goto out; 5527 } 5528 5529 ret = ocfs2_truncate_rec(inode, handle, path, index, dealloc, 5530 cpos, len, et); 5531 if (ret) { 5532 mlog_errno(ret); 5533 goto out; 5534 } 5535 } 5536 5537 out: 5538 ocfs2_free_path(path); 5539 return ret; 5540 } 5541 5542 int ocfs2_remove_btree_range(struct inode *inode, 5543 struct ocfs2_extent_tree *et, 5544 u32 cpos, u32 phys_cpos, u32 len, 5545 struct ocfs2_cached_dealloc_ctxt *dealloc) 5546 { 5547 int ret; 5548 u64 phys_blkno = ocfs2_clusters_to_blocks(inode->i_sb, phys_cpos); 5549 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 5550 struct inode *tl_inode = osb->osb_tl_inode; 5551 handle_t *handle; 5552 struct ocfs2_alloc_context *meta_ac = NULL; 5553 5554 ret = ocfs2_lock_allocators(inode, et, 0, 1, NULL, &meta_ac); 5555 if (ret) { 5556 mlog_errno(ret); 5557 return ret; 5558 } 5559 5560 mutex_lock(&tl_inode->i_mutex); 5561 5562 if (ocfs2_truncate_log_needs_flush(osb)) { 5563 ret = __ocfs2_flush_truncate_log(osb); 5564 if (ret < 0) { 5565 mlog_errno(ret); 5566 goto out; 5567 } 5568 } 5569 5570 handle = ocfs2_start_trans(osb, ocfs2_remove_extent_credits(osb->sb)); 5571 if (IS_ERR(handle)) { 5572 ret = PTR_ERR(handle); 5573 mlog_errno(ret); 5574 goto out; 5575 } 5576 5577 ret = ocfs2_et_root_journal_access(handle, inode, et, 5578 OCFS2_JOURNAL_ACCESS_WRITE); 5579 if (ret) { 5580 mlog_errno(ret); 5581 goto out; 5582 } 5583 5584 vfs_dq_free_space_nodirty(inode, 5585 ocfs2_clusters_to_bytes(inode->i_sb, len)); 5586 5587 ret = ocfs2_remove_extent(inode, et, cpos, len, handle, meta_ac, 5588 dealloc); 5589 if (ret) { 5590 mlog_errno(ret); 5591 goto out_commit; 5592 } 5593 5594 ocfs2_et_update_clusters(inode, et, -len); 5595 5596 ret = ocfs2_journal_dirty(handle, et->et_root_bh); 5597 if (ret) { 5598 mlog_errno(ret); 5599 goto out_commit; 5600 } 5601 5602 ret = ocfs2_truncate_log_append(osb, handle, phys_blkno, len); 5603 if (ret) 5604 mlog_errno(ret); 5605 5606 out_commit: 5607 ocfs2_commit_trans(osb, handle); 5608 out: 5609 mutex_unlock(&tl_inode->i_mutex); 5610 5611 if (meta_ac) 5612 ocfs2_free_alloc_context(meta_ac); 5613 5614 return ret; 5615 } 5616 5617 int ocfs2_truncate_log_needs_flush(struct ocfs2_super *osb) 5618 { 5619 struct buffer_head *tl_bh = osb->osb_tl_bh; 5620 struct ocfs2_dinode *di; 5621 struct ocfs2_truncate_log *tl; 5622 5623 di = (struct ocfs2_dinode *) tl_bh->b_data; 5624 tl = &di->id2.i_dealloc; 5625 5626 mlog_bug_on_msg(le16_to_cpu(tl->tl_used) > le16_to_cpu(tl->tl_count), 5627 "slot %d, invalid truncate log parameters: used = " 5628 "%u, count = %u\n", osb->slot_num, 5629 le16_to_cpu(tl->tl_used), le16_to_cpu(tl->tl_count)); 5630 return le16_to_cpu(tl->tl_used) == le16_to_cpu(tl->tl_count); 5631 } 5632 5633 static int ocfs2_truncate_log_can_coalesce(struct ocfs2_truncate_log *tl, 5634 unsigned int new_start) 5635 { 5636 unsigned int tail_index; 5637 unsigned int current_tail; 5638 5639 /* No records, nothing to coalesce */ 5640 if (!le16_to_cpu(tl->tl_used)) 5641 return 0; 5642 5643 tail_index = le16_to_cpu(tl->tl_used) - 1; 5644 current_tail = le32_to_cpu(tl->tl_recs[tail_index].t_start); 5645 current_tail += le32_to_cpu(tl->tl_recs[tail_index].t_clusters); 5646 5647 return current_tail == new_start; 5648 } 5649 5650 int ocfs2_truncate_log_append(struct ocfs2_super *osb, 5651 handle_t *handle, 5652 u64 start_blk, 5653 unsigned int num_clusters) 5654 { 5655 int status, index; 5656 unsigned int start_cluster, tl_count; 5657 struct inode *tl_inode = osb->osb_tl_inode; 5658 struct buffer_head *tl_bh = osb->osb_tl_bh; 5659 struct ocfs2_dinode *di; 5660 struct ocfs2_truncate_log *tl; 5661 5662 mlog_entry("start_blk = %llu, num_clusters = %u\n", 5663 (unsigned long long)start_blk, num_clusters); 5664 5665 BUG_ON(mutex_trylock(&tl_inode->i_mutex)); 5666 5667 start_cluster = ocfs2_blocks_to_clusters(osb->sb, start_blk); 5668 5669 di = (struct ocfs2_dinode *) tl_bh->b_data; 5670 5671 /* tl_bh is loaded from ocfs2_truncate_log_init(). It's validated 5672 * by the underlying call to ocfs2_read_inode_block(), so any 5673 * corruption is a code bug */ 5674 BUG_ON(!OCFS2_IS_VALID_DINODE(di)); 5675 5676 tl = &di->id2.i_dealloc; 5677 tl_count = le16_to_cpu(tl->tl_count); 5678 mlog_bug_on_msg(tl_count > ocfs2_truncate_recs_per_inode(osb->sb) || 5679 tl_count == 0, 5680 "Truncate record count on #%llu invalid " 5681 "wanted %u, actual %u\n", 5682 (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, 5683 ocfs2_truncate_recs_per_inode(osb->sb), 5684 le16_to_cpu(tl->tl_count)); 5685 5686 /* Caller should have known to flush before calling us. */ 5687 index = le16_to_cpu(tl->tl_used); 5688 if (index >= tl_count) { 5689 status = -ENOSPC; 5690 mlog_errno(status); 5691 goto bail; 5692 } 5693 5694 status = ocfs2_journal_access_di(handle, tl_inode, tl_bh, 5695 OCFS2_JOURNAL_ACCESS_WRITE); 5696 if (status < 0) { 5697 mlog_errno(status); 5698 goto bail; 5699 } 5700 5701 mlog(0, "Log truncate of %u clusters starting at cluster %u to " 5702 "%llu (index = %d)\n", num_clusters, start_cluster, 5703 (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, index); 5704 5705 if (ocfs2_truncate_log_can_coalesce(tl, start_cluster)) { 5706 /* 5707 * Move index back to the record we are coalescing with. 5708 * ocfs2_truncate_log_can_coalesce() guarantees nonzero 5709 */ 5710 index--; 5711 5712 num_clusters += le32_to_cpu(tl->tl_recs[index].t_clusters); 5713 mlog(0, "Coalesce with index %u (start = %u, clusters = %u)\n", 5714 index, le32_to_cpu(tl->tl_recs[index].t_start), 5715 num_clusters); 5716 } else { 5717 tl->tl_recs[index].t_start = cpu_to_le32(start_cluster); 5718 tl->tl_used = cpu_to_le16(index + 1); 5719 } 5720 tl->tl_recs[index].t_clusters = cpu_to_le32(num_clusters); 5721 5722 status = ocfs2_journal_dirty(handle, tl_bh); 5723 if (status < 0) { 5724 mlog_errno(status); 5725 goto bail; 5726 } 5727 5728 bail: 5729 mlog_exit(status); 5730 return status; 5731 } 5732 5733 static int ocfs2_replay_truncate_records(struct ocfs2_super *osb, 5734 handle_t *handle, 5735 struct inode *data_alloc_inode, 5736 struct buffer_head *data_alloc_bh) 5737 { 5738 int status = 0; 5739 int i; 5740 unsigned int num_clusters; 5741 u64 start_blk; 5742 struct ocfs2_truncate_rec rec; 5743 struct ocfs2_dinode *di; 5744 struct ocfs2_truncate_log *tl; 5745 struct inode *tl_inode = osb->osb_tl_inode; 5746 struct buffer_head *tl_bh = osb->osb_tl_bh; 5747 5748 mlog_entry_void(); 5749 5750 di = (struct ocfs2_dinode *) tl_bh->b_data; 5751 tl = &di->id2.i_dealloc; 5752 i = le16_to_cpu(tl->tl_used) - 1; 5753 while (i >= 0) { 5754 /* Caller has given us at least enough credits to 5755 * update the truncate log dinode */ 5756 status = ocfs2_journal_access_di(handle, tl_inode, tl_bh, 5757 OCFS2_JOURNAL_ACCESS_WRITE); 5758 if (status < 0) { 5759 mlog_errno(status); 5760 goto bail; 5761 } 5762 5763 tl->tl_used = cpu_to_le16(i); 5764 5765 status = ocfs2_journal_dirty(handle, tl_bh); 5766 if (status < 0) { 5767 mlog_errno(status); 5768 goto bail; 5769 } 5770 5771 /* TODO: Perhaps we can calculate the bulk of the 5772 * credits up front rather than extending like 5773 * this. */ 5774 status = ocfs2_extend_trans(handle, 5775 OCFS2_TRUNCATE_LOG_FLUSH_ONE_REC); 5776 if (status < 0) { 5777 mlog_errno(status); 5778 goto bail; 5779 } 5780 5781 rec = tl->tl_recs[i]; 5782 start_blk = ocfs2_clusters_to_blocks(data_alloc_inode->i_sb, 5783 le32_to_cpu(rec.t_start)); 5784 num_clusters = le32_to_cpu(rec.t_clusters); 5785 5786 /* if start_blk is not set, we ignore the record as 5787 * invalid. */ 5788 if (start_blk) { 5789 mlog(0, "free record %d, start = %u, clusters = %u\n", 5790 i, le32_to_cpu(rec.t_start), num_clusters); 5791 5792 status = ocfs2_free_clusters(handle, data_alloc_inode, 5793 data_alloc_bh, start_blk, 5794 num_clusters); 5795 if (status < 0) { 5796 mlog_errno(status); 5797 goto bail; 5798 } 5799 } 5800 i--; 5801 } 5802 5803 bail: 5804 mlog_exit(status); 5805 return status; 5806 } 5807 5808 /* Expects you to already be holding tl_inode->i_mutex */ 5809 int __ocfs2_flush_truncate_log(struct ocfs2_super *osb) 5810 { 5811 int status; 5812 unsigned int num_to_flush; 5813 handle_t *handle; 5814 struct inode *tl_inode = osb->osb_tl_inode; 5815 struct inode *data_alloc_inode = NULL; 5816 struct buffer_head *tl_bh = osb->osb_tl_bh; 5817 struct buffer_head *data_alloc_bh = NULL; 5818 struct ocfs2_dinode *di; 5819 struct ocfs2_truncate_log *tl; 5820 5821 mlog_entry_void(); 5822 5823 BUG_ON(mutex_trylock(&tl_inode->i_mutex)); 5824 5825 di = (struct ocfs2_dinode *) tl_bh->b_data; 5826 5827 /* tl_bh is loaded from ocfs2_truncate_log_init(). It's validated 5828 * by the underlying call to ocfs2_read_inode_block(), so any 5829 * corruption is a code bug */ 5830 BUG_ON(!OCFS2_IS_VALID_DINODE(di)); 5831 5832 tl = &di->id2.i_dealloc; 5833 num_to_flush = le16_to_cpu(tl->tl_used); 5834 mlog(0, "Flush %u records from truncate log #%llu\n", 5835 num_to_flush, (unsigned long long)OCFS2_I(tl_inode)->ip_blkno); 5836 if (!num_to_flush) { 5837 status = 0; 5838 goto out; 5839 } 5840 5841 data_alloc_inode = ocfs2_get_system_file_inode(osb, 5842 GLOBAL_BITMAP_SYSTEM_INODE, 5843 OCFS2_INVALID_SLOT); 5844 if (!data_alloc_inode) { 5845 status = -EINVAL; 5846 mlog(ML_ERROR, "Could not get bitmap inode!\n"); 5847 goto out; 5848 } 5849 5850 mutex_lock(&data_alloc_inode->i_mutex); 5851 5852 status = ocfs2_inode_lock(data_alloc_inode, &data_alloc_bh, 1); 5853 if (status < 0) { 5854 mlog_errno(status); 5855 goto out_mutex; 5856 } 5857 5858 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE); 5859 if (IS_ERR(handle)) { 5860 status = PTR_ERR(handle); 5861 mlog_errno(status); 5862 goto out_unlock; 5863 } 5864 5865 status = ocfs2_replay_truncate_records(osb, handle, data_alloc_inode, 5866 data_alloc_bh); 5867 if (status < 0) 5868 mlog_errno(status); 5869 5870 ocfs2_commit_trans(osb, handle); 5871 5872 out_unlock: 5873 brelse(data_alloc_bh); 5874 ocfs2_inode_unlock(data_alloc_inode, 1); 5875 5876 out_mutex: 5877 mutex_unlock(&data_alloc_inode->i_mutex); 5878 iput(data_alloc_inode); 5879 5880 out: 5881 mlog_exit(status); 5882 return status; 5883 } 5884 5885 int ocfs2_flush_truncate_log(struct ocfs2_super *osb) 5886 { 5887 int status; 5888 struct inode *tl_inode = osb->osb_tl_inode; 5889 5890 mutex_lock(&tl_inode->i_mutex); 5891 status = __ocfs2_flush_truncate_log(osb); 5892 mutex_unlock(&tl_inode->i_mutex); 5893 5894 return status; 5895 } 5896 5897 static void ocfs2_truncate_log_worker(struct work_struct *work) 5898 { 5899 int status; 5900 struct ocfs2_super *osb = 5901 container_of(work, struct ocfs2_super, 5902 osb_truncate_log_wq.work); 5903 5904 mlog_entry_void(); 5905 5906 status = ocfs2_flush_truncate_log(osb); 5907 if (status < 0) 5908 mlog_errno(status); 5909 else 5910 ocfs2_init_inode_steal_slot(osb); 5911 5912 mlog_exit(status); 5913 } 5914 5915 #define OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL (2 * HZ) 5916 void ocfs2_schedule_truncate_log_flush(struct ocfs2_super *osb, 5917 int cancel) 5918 { 5919 if (osb->osb_tl_inode) { 5920 /* We want to push off log flushes while truncates are 5921 * still running. */ 5922 if (cancel) 5923 cancel_delayed_work(&osb->osb_truncate_log_wq); 5924 5925 queue_delayed_work(ocfs2_wq, &osb->osb_truncate_log_wq, 5926 OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL); 5927 } 5928 } 5929 5930 static int ocfs2_get_truncate_log_info(struct ocfs2_super *osb, 5931 int slot_num, 5932 struct inode **tl_inode, 5933 struct buffer_head **tl_bh) 5934 { 5935 int status; 5936 struct inode *inode = NULL; 5937 struct buffer_head *bh = NULL; 5938 5939 inode = ocfs2_get_system_file_inode(osb, 5940 TRUNCATE_LOG_SYSTEM_INODE, 5941 slot_num); 5942 if (!inode) { 5943 status = -EINVAL; 5944 mlog(ML_ERROR, "Could not get load truncate log inode!\n"); 5945 goto bail; 5946 } 5947 5948 status = ocfs2_read_inode_block(inode, &bh); 5949 if (status < 0) { 5950 iput(inode); 5951 mlog_errno(status); 5952 goto bail; 5953 } 5954 5955 *tl_inode = inode; 5956 *tl_bh = bh; 5957 bail: 5958 mlog_exit(status); 5959 return status; 5960 } 5961 5962 /* called during the 1st stage of node recovery. we stamp a clean 5963 * truncate log and pass back a copy for processing later. if the 5964 * truncate log does not require processing, a *tl_copy is set to 5965 * NULL. */ 5966 int ocfs2_begin_truncate_log_recovery(struct ocfs2_super *osb, 5967 int slot_num, 5968 struct ocfs2_dinode **tl_copy) 5969 { 5970 int status; 5971 struct inode *tl_inode = NULL; 5972 struct buffer_head *tl_bh = NULL; 5973 struct ocfs2_dinode *di; 5974 struct ocfs2_truncate_log *tl; 5975 5976 *tl_copy = NULL; 5977 5978 mlog(0, "recover truncate log from slot %d\n", slot_num); 5979 5980 status = ocfs2_get_truncate_log_info(osb, slot_num, &tl_inode, &tl_bh); 5981 if (status < 0) { 5982 mlog_errno(status); 5983 goto bail; 5984 } 5985 5986 di = (struct ocfs2_dinode *) tl_bh->b_data; 5987 5988 /* tl_bh is loaded from ocfs2_get_truncate_log_info(). It's 5989 * validated by the underlying call to ocfs2_read_inode_block(), 5990 * so any corruption is a code bug */ 5991 BUG_ON(!OCFS2_IS_VALID_DINODE(di)); 5992 5993 tl = &di->id2.i_dealloc; 5994 if (le16_to_cpu(tl->tl_used)) { 5995 mlog(0, "We'll have %u logs to recover\n", 5996 le16_to_cpu(tl->tl_used)); 5997 5998 *tl_copy = kmalloc(tl_bh->b_size, GFP_KERNEL); 5999 if (!(*tl_copy)) { 6000 status = -ENOMEM; 6001 mlog_errno(status); 6002 goto bail; 6003 } 6004 6005 /* Assuming the write-out below goes well, this copy 6006 * will be passed back to recovery for processing. */ 6007 memcpy(*tl_copy, tl_bh->b_data, tl_bh->b_size); 6008 6009 /* All we need to do to clear the truncate log is set 6010 * tl_used. */ 6011 tl->tl_used = 0; 6012 6013 ocfs2_compute_meta_ecc(osb->sb, tl_bh->b_data, &di->i_check); 6014 status = ocfs2_write_block(osb, tl_bh, INODE_CACHE(tl_inode)); 6015 if (status < 0) { 6016 mlog_errno(status); 6017 goto bail; 6018 } 6019 } 6020 6021 bail: 6022 if (tl_inode) 6023 iput(tl_inode); 6024 brelse(tl_bh); 6025 6026 if (status < 0 && (*tl_copy)) { 6027 kfree(*tl_copy); 6028 *tl_copy = NULL; 6029 } 6030 6031 mlog_exit(status); 6032 return status; 6033 } 6034 6035 int ocfs2_complete_truncate_log_recovery(struct ocfs2_super *osb, 6036 struct ocfs2_dinode *tl_copy) 6037 { 6038 int status = 0; 6039 int i; 6040 unsigned int clusters, num_recs, start_cluster; 6041 u64 start_blk; 6042 handle_t *handle; 6043 struct inode *tl_inode = osb->osb_tl_inode; 6044 struct ocfs2_truncate_log *tl; 6045 6046 mlog_entry_void(); 6047 6048 if (OCFS2_I(tl_inode)->ip_blkno == le64_to_cpu(tl_copy->i_blkno)) { 6049 mlog(ML_ERROR, "Asked to recover my own truncate log!\n"); 6050 return -EINVAL; 6051 } 6052 6053 tl = &tl_copy->id2.i_dealloc; 6054 num_recs = le16_to_cpu(tl->tl_used); 6055 mlog(0, "cleanup %u records from %llu\n", num_recs, 6056 (unsigned long long)le64_to_cpu(tl_copy->i_blkno)); 6057 6058 mutex_lock(&tl_inode->i_mutex); 6059 for(i = 0; i < num_recs; i++) { 6060 if (ocfs2_truncate_log_needs_flush(osb)) { 6061 status = __ocfs2_flush_truncate_log(osb); 6062 if (status < 0) { 6063 mlog_errno(status); 6064 goto bail_up; 6065 } 6066 } 6067 6068 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE); 6069 if (IS_ERR(handle)) { 6070 status = PTR_ERR(handle); 6071 mlog_errno(status); 6072 goto bail_up; 6073 } 6074 6075 clusters = le32_to_cpu(tl->tl_recs[i].t_clusters); 6076 start_cluster = le32_to_cpu(tl->tl_recs[i].t_start); 6077 start_blk = ocfs2_clusters_to_blocks(osb->sb, start_cluster); 6078 6079 status = ocfs2_truncate_log_append(osb, handle, 6080 start_blk, clusters); 6081 ocfs2_commit_trans(osb, handle); 6082 if (status < 0) { 6083 mlog_errno(status); 6084 goto bail_up; 6085 } 6086 } 6087 6088 bail_up: 6089 mutex_unlock(&tl_inode->i_mutex); 6090 6091 mlog_exit(status); 6092 return status; 6093 } 6094 6095 void ocfs2_truncate_log_shutdown(struct ocfs2_super *osb) 6096 { 6097 int status; 6098 struct inode *tl_inode = osb->osb_tl_inode; 6099 6100 mlog_entry_void(); 6101 6102 if (tl_inode) { 6103 cancel_delayed_work(&osb->osb_truncate_log_wq); 6104 flush_workqueue(ocfs2_wq); 6105 6106 status = ocfs2_flush_truncate_log(osb); 6107 if (status < 0) 6108 mlog_errno(status); 6109 6110 brelse(osb->osb_tl_bh); 6111 iput(osb->osb_tl_inode); 6112 } 6113 6114 mlog_exit_void(); 6115 } 6116 6117 int ocfs2_truncate_log_init(struct ocfs2_super *osb) 6118 { 6119 int status; 6120 struct inode *tl_inode = NULL; 6121 struct buffer_head *tl_bh = NULL; 6122 6123 mlog_entry_void(); 6124 6125 status = ocfs2_get_truncate_log_info(osb, 6126 osb->slot_num, 6127 &tl_inode, 6128 &tl_bh); 6129 if (status < 0) 6130 mlog_errno(status); 6131 6132 /* ocfs2_truncate_log_shutdown keys on the existence of 6133 * osb->osb_tl_inode so we don't set any of the osb variables 6134 * until we're sure all is well. */ 6135 INIT_DELAYED_WORK(&osb->osb_truncate_log_wq, 6136 ocfs2_truncate_log_worker); 6137 osb->osb_tl_bh = tl_bh; 6138 osb->osb_tl_inode = tl_inode; 6139 6140 mlog_exit(status); 6141 return status; 6142 } 6143 6144 /* 6145 * Delayed de-allocation of suballocator blocks. 6146 * 6147 * Some sets of block de-allocations might involve multiple suballocator inodes. 6148 * 6149 * The locking for this can get extremely complicated, especially when 6150 * the suballocator inodes to delete from aren't known until deep 6151 * within an unrelated codepath. 6152 * 6153 * ocfs2_extent_block structures are a good example of this - an inode 6154 * btree could have been grown by any number of nodes each allocating 6155 * out of their own suballoc inode. 6156 * 6157 * These structures allow the delay of block de-allocation until a 6158 * later time, when locking of multiple cluster inodes won't cause 6159 * deadlock. 6160 */ 6161 6162 /* 6163 * Describe a single bit freed from a suballocator. For the block 6164 * suballocators, it represents one block. For the global cluster 6165 * allocator, it represents some clusters and free_bit indicates 6166 * clusters number. 6167 */ 6168 struct ocfs2_cached_block_free { 6169 struct ocfs2_cached_block_free *free_next; 6170 u64 free_blk; 6171 unsigned int free_bit; 6172 }; 6173 6174 struct ocfs2_per_slot_free_list { 6175 struct ocfs2_per_slot_free_list *f_next_suballocator; 6176 int f_inode_type; 6177 int f_slot; 6178 struct ocfs2_cached_block_free *f_first; 6179 }; 6180 6181 static int ocfs2_free_cached_blocks(struct ocfs2_super *osb, 6182 int sysfile_type, 6183 int slot, 6184 struct ocfs2_cached_block_free *head) 6185 { 6186 int ret; 6187 u64 bg_blkno; 6188 handle_t *handle; 6189 struct inode *inode; 6190 struct buffer_head *di_bh = NULL; 6191 struct ocfs2_cached_block_free *tmp; 6192 6193 inode = ocfs2_get_system_file_inode(osb, sysfile_type, slot); 6194 if (!inode) { 6195 ret = -EINVAL; 6196 mlog_errno(ret); 6197 goto out; 6198 } 6199 6200 mutex_lock(&inode->i_mutex); 6201 6202 ret = ocfs2_inode_lock(inode, &di_bh, 1); 6203 if (ret) { 6204 mlog_errno(ret); 6205 goto out_mutex; 6206 } 6207 6208 handle = ocfs2_start_trans(osb, OCFS2_SUBALLOC_FREE); 6209 if (IS_ERR(handle)) { 6210 ret = PTR_ERR(handle); 6211 mlog_errno(ret); 6212 goto out_unlock; 6213 } 6214 6215 while (head) { 6216 bg_blkno = ocfs2_which_suballoc_group(head->free_blk, 6217 head->free_bit); 6218 mlog(0, "Free bit: (bit %u, blkno %llu)\n", 6219 head->free_bit, (unsigned long long)head->free_blk); 6220 6221 ret = ocfs2_free_suballoc_bits(handle, inode, di_bh, 6222 head->free_bit, bg_blkno, 1); 6223 if (ret) { 6224 mlog_errno(ret); 6225 goto out_journal; 6226 } 6227 6228 ret = ocfs2_extend_trans(handle, OCFS2_SUBALLOC_FREE); 6229 if (ret) { 6230 mlog_errno(ret); 6231 goto out_journal; 6232 } 6233 6234 tmp = head; 6235 head = head->free_next; 6236 kfree(tmp); 6237 } 6238 6239 out_journal: 6240 ocfs2_commit_trans(osb, handle); 6241 6242 out_unlock: 6243 ocfs2_inode_unlock(inode, 1); 6244 brelse(di_bh); 6245 out_mutex: 6246 mutex_unlock(&inode->i_mutex); 6247 iput(inode); 6248 out: 6249 while(head) { 6250 /* Premature exit may have left some dangling items. */ 6251 tmp = head; 6252 head = head->free_next; 6253 kfree(tmp); 6254 } 6255 6256 return ret; 6257 } 6258 6259 int ocfs2_cache_cluster_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt, 6260 u64 blkno, unsigned int bit) 6261 { 6262 int ret = 0; 6263 struct ocfs2_cached_block_free *item; 6264 6265 item = kmalloc(sizeof(*item), GFP_NOFS); 6266 if (item == NULL) { 6267 ret = -ENOMEM; 6268 mlog_errno(ret); 6269 return ret; 6270 } 6271 6272 mlog(0, "Insert clusters: (bit %u, blk %llu)\n", 6273 bit, (unsigned long long)blkno); 6274 6275 item->free_blk = blkno; 6276 item->free_bit = bit; 6277 item->free_next = ctxt->c_global_allocator; 6278 6279 ctxt->c_global_allocator = item; 6280 return ret; 6281 } 6282 6283 static int ocfs2_free_cached_clusters(struct ocfs2_super *osb, 6284 struct ocfs2_cached_block_free *head) 6285 { 6286 struct ocfs2_cached_block_free *tmp; 6287 struct inode *tl_inode = osb->osb_tl_inode; 6288 handle_t *handle; 6289 int ret = 0; 6290 6291 mutex_lock(&tl_inode->i_mutex); 6292 6293 while (head) { 6294 if (ocfs2_truncate_log_needs_flush(osb)) { 6295 ret = __ocfs2_flush_truncate_log(osb); 6296 if (ret < 0) { 6297 mlog_errno(ret); 6298 break; 6299 } 6300 } 6301 6302 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE); 6303 if (IS_ERR(handle)) { 6304 ret = PTR_ERR(handle); 6305 mlog_errno(ret); 6306 break; 6307 } 6308 6309 ret = ocfs2_truncate_log_append(osb, handle, head->free_blk, 6310 head->free_bit); 6311 6312 ocfs2_commit_trans(osb, handle); 6313 tmp = head; 6314 head = head->free_next; 6315 kfree(tmp); 6316 6317 if (ret < 0) { 6318 mlog_errno(ret); 6319 break; 6320 } 6321 } 6322 6323 mutex_unlock(&tl_inode->i_mutex); 6324 6325 while (head) { 6326 /* Premature exit may have left some dangling items. */ 6327 tmp = head; 6328 head = head->free_next; 6329 kfree(tmp); 6330 } 6331 6332 return ret; 6333 } 6334 6335 int ocfs2_run_deallocs(struct ocfs2_super *osb, 6336 struct ocfs2_cached_dealloc_ctxt *ctxt) 6337 { 6338 int ret = 0, ret2; 6339 struct ocfs2_per_slot_free_list *fl; 6340 6341 if (!ctxt) 6342 return 0; 6343 6344 while (ctxt->c_first_suballocator) { 6345 fl = ctxt->c_first_suballocator; 6346 6347 if (fl->f_first) { 6348 mlog(0, "Free items: (type %u, slot %d)\n", 6349 fl->f_inode_type, fl->f_slot); 6350 ret2 = ocfs2_free_cached_blocks(osb, 6351 fl->f_inode_type, 6352 fl->f_slot, 6353 fl->f_first); 6354 if (ret2) 6355 mlog_errno(ret2); 6356 if (!ret) 6357 ret = ret2; 6358 } 6359 6360 ctxt->c_first_suballocator = fl->f_next_suballocator; 6361 kfree(fl); 6362 } 6363 6364 if (ctxt->c_global_allocator) { 6365 ret2 = ocfs2_free_cached_clusters(osb, 6366 ctxt->c_global_allocator); 6367 if (ret2) 6368 mlog_errno(ret2); 6369 if (!ret) 6370 ret = ret2; 6371 6372 ctxt->c_global_allocator = NULL; 6373 } 6374 6375 return ret; 6376 } 6377 6378 static struct ocfs2_per_slot_free_list * 6379 ocfs2_find_per_slot_free_list(int type, 6380 int slot, 6381 struct ocfs2_cached_dealloc_ctxt *ctxt) 6382 { 6383 struct ocfs2_per_slot_free_list *fl = ctxt->c_first_suballocator; 6384 6385 while (fl) { 6386 if (fl->f_inode_type == type && fl->f_slot == slot) 6387 return fl; 6388 6389 fl = fl->f_next_suballocator; 6390 } 6391 6392 fl = kmalloc(sizeof(*fl), GFP_NOFS); 6393 if (fl) { 6394 fl->f_inode_type = type; 6395 fl->f_slot = slot; 6396 fl->f_first = NULL; 6397 fl->f_next_suballocator = ctxt->c_first_suballocator; 6398 6399 ctxt->c_first_suballocator = fl; 6400 } 6401 return fl; 6402 } 6403 6404 static int ocfs2_cache_block_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt, 6405 int type, int slot, u64 blkno, 6406 unsigned int bit) 6407 { 6408 int ret; 6409 struct ocfs2_per_slot_free_list *fl; 6410 struct ocfs2_cached_block_free *item; 6411 6412 fl = ocfs2_find_per_slot_free_list(type, slot, ctxt); 6413 if (fl == NULL) { 6414 ret = -ENOMEM; 6415 mlog_errno(ret); 6416 goto out; 6417 } 6418 6419 item = kmalloc(sizeof(*item), GFP_NOFS); 6420 if (item == NULL) { 6421 ret = -ENOMEM; 6422 mlog_errno(ret); 6423 goto out; 6424 } 6425 6426 mlog(0, "Insert: (type %d, slot %u, bit %u, blk %llu)\n", 6427 type, slot, bit, (unsigned long long)blkno); 6428 6429 item->free_blk = blkno; 6430 item->free_bit = bit; 6431 item->free_next = fl->f_first; 6432 6433 fl->f_first = item; 6434 6435 ret = 0; 6436 out: 6437 return ret; 6438 } 6439 6440 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt, 6441 struct ocfs2_extent_block *eb) 6442 { 6443 return ocfs2_cache_block_dealloc(ctxt, EXTENT_ALLOC_SYSTEM_INODE, 6444 le16_to_cpu(eb->h_suballoc_slot), 6445 le64_to_cpu(eb->h_blkno), 6446 le16_to_cpu(eb->h_suballoc_bit)); 6447 } 6448 6449 /* This function will figure out whether the currently last extent 6450 * block will be deleted, and if it will, what the new last extent 6451 * block will be so we can update his h_next_leaf_blk field, as well 6452 * as the dinodes i_last_eb_blk */ 6453 static int ocfs2_find_new_last_ext_blk(struct inode *inode, 6454 unsigned int clusters_to_del, 6455 struct ocfs2_path *path, 6456 struct buffer_head **new_last_eb) 6457 { 6458 int next_free, ret = 0; 6459 u32 cpos; 6460 struct ocfs2_extent_rec *rec; 6461 struct ocfs2_extent_block *eb; 6462 struct ocfs2_extent_list *el; 6463 struct buffer_head *bh = NULL; 6464 6465 *new_last_eb = NULL; 6466 6467 /* we have no tree, so of course, no last_eb. */ 6468 if (!path->p_tree_depth) 6469 goto out; 6470 6471 /* trunc to zero special case - this makes tree_depth = 0 6472 * regardless of what it is. */ 6473 if (OCFS2_I(inode)->ip_clusters == clusters_to_del) 6474 goto out; 6475 6476 el = path_leaf_el(path); 6477 BUG_ON(!el->l_next_free_rec); 6478 6479 /* 6480 * Make sure that this extent list will actually be empty 6481 * after we clear away the data. We can shortcut out if 6482 * there's more than one non-empty extent in the 6483 * list. Otherwise, a check of the remaining extent is 6484 * necessary. 6485 */ 6486 next_free = le16_to_cpu(el->l_next_free_rec); 6487 rec = NULL; 6488 if (ocfs2_is_empty_extent(&el->l_recs[0])) { 6489 if (next_free > 2) 6490 goto out; 6491 6492 /* We may have a valid extent in index 1, check it. */ 6493 if (next_free == 2) 6494 rec = &el->l_recs[1]; 6495 6496 /* 6497 * Fall through - no more nonempty extents, so we want 6498 * to delete this leaf. 6499 */ 6500 } else { 6501 if (next_free > 1) 6502 goto out; 6503 6504 rec = &el->l_recs[0]; 6505 } 6506 6507 if (rec) { 6508 /* 6509 * Check it we'll only be trimming off the end of this 6510 * cluster. 6511 */ 6512 if (le16_to_cpu(rec->e_leaf_clusters) > clusters_to_del) 6513 goto out; 6514 } 6515 6516 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path, &cpos); 6517 if (ret) { 6518 mlog_errno(ret); 6519 goto out; 6520 } 6521 6522 ret = ocfs2_find_leaf(inode, path_root_el(path), cpos, &bh); 6523 if (ret) { 6524 mlog_errno(ret); 6525 goto out; 6526 } 6527 6528 eb = (struct ocfs2_extent_block *) bh->b_data; 6529 el = &eb->h_list; 6530 6531 /* ocfs2_find_leaf() gets the eb from ocfs2_read_extent_block(). 6532 * Any corruption is a code bug. */ 6533 BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb)); 6534 6535 *new_last_eb = bh; 6536 get_bh(*new_last_eb); 6537 mlog(0, "returning block %llu, (cpos: %u)\n", 6538 (unsigned long long)le64_to_cpu(eb->h_blkno), cpos); 6539 out: 6540 brelse(bh); 6541 6542 return ret; 6543 } 6544 6545 /* 6546 * Trim some clusters off the rightmost edge of a tree. Only called 6547 * during truncate. 6548 * 6549 * The caller needs to: 6550 * - start journaling of each path component. 6551 * - compute and fully set up any new last ext block 6552 */ 6553 static int ocfs2_trim_tree(struct inode *inode, struct ocfs2_path *path, 6554 handle_t *handle, struct ocfs2_truncate_context *tc, 6555 u32 clusters_to_del, u64 *delete_start) 6556 { 6557 int ret, i, index = path->p_tree_depth; 6558 u32 new_edge = 0; 6559 u64 deleted_eb = 0; 6560 struct buffer_head *bh; 6561 struct ocfs2_extent_list *el; 6562 struct ocfs2_extent_rec *rec; 6563 6564 *delete_start = 0; 6565 6566 while (index >= 0) { 6567 bh = path->p_node[index].bh; 6568 el = path->p_node[index].el; 6569 6570 mlog(0, "traveling tree (index = %d, block = %llu)\n", 6571 index, (unsigned long long)bh->b_blocknr); 6572 6573 BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0); 6574 6575 if (index != 6576 (path->p_tree_depth - le16_to_cpu(el->l_tree_depth))) { 6577 ocfs2_error(inode->i_sb, 6578 "Inode %lu has invalid ext. block %llu", 6579 inode->i_ino, 6580 (unsigned long long)bh->b_blocknr); 6581 ret = -EROFS; 6582 goto out; 6583 } 6584 6585 find_tail_record: 6586 i = le16_to_cpu(el->l_next_free_rec) - 1; 6587 rec = &el->l_recs[i]; 6588 6589 mlog(0, "Extent list before: record %d: (%u, %u, %llu), " 6590 "next = %u\n", i, le32_to_cpu(rec->e_cpos), 6591 ocfs2_rec_clusters(el, rec), 6592 (unsigned long long)le64_to_cpu(rec->e_blkno), 6593 le16_to_cpu(el->l_next_free_rec)); 6594 6595 BUG_ON(ocfs2_rec_clusters(el, rec) < clusters_to_del); 6596 6597 if (le16_to_cpu(el->l_tree_depth) == 0) { 6598 /* 6599 * If the leaf block contains a single empty 6600 * extent and no records, we can just remove 6601 * the block. 6602 */ 6603 if (i == 0 && ocfs2_is_empty_extent(rec)) { 6604 memset(rec, 0, 6605 sizeof(struct ocfs2_extent_rec)); 6606 el->l_next_free_rec = cpu_to_le16(0); 6607 6608 goto delete; 6609 } 6610 6611 /* 6612 * Remove any empty extents by shifting things 6613 * left. That should make life much easier on 6614 * the code below. This condition is rare 6615 * enough that we shouldn't see a performance 6616 * hit. 6617 */ 6618 if (ocfs2_is_empty_extent(&el->l_recs[0])) { 6619 le16_add_cpu(&el->l_next_free_rec, -1); 6620 6621 for(i = 0; 6622 i < le16_to_cpu(el->l_next_free_rec); i++) 6623 el->l_recs[i] = el->l_recs[i + 1]; 6624 6625 memset(&el->l_recs[i], 0, 6626 sizeof(struct ocfs2_extent_rec)); 6627 6628 /* 6629 * We've modified our extent list. The 6630 * simplest way to handle this change 6631 * is to being the search from the 6632 * start again. 6633 */ 6634 goto find_tail_record; 6635 } 6636 6637 le16_add_cpu(&rec->e_leaf_clusters, -clusters_to_del); 6638 6639 /* 6640 * We'll use "new_edge" on our way back up the 6641 * tree to know what our rightmost cpos is. 6642 */ 6643 new_edge = le16_to_cpu(rec->e_leaf_clusters); 6644 new_edge += le32_to_cpu(rec->e_cpos); 6645 6646 /* 6647 * The caller will use this to delete data blocks. 6648 */ 6649 *delete_start = le64_to_cpu(rec->e_blkno) 6650 + ocfs2_clusters_to_blocks(inode->i_sb, 6651 le16_to_cpu(rec->e_leaf_clusters)); 6652 6653 /* 6654 * If it's now empty, remove this record. 6655 */ 6656 if (le16_to_cpu(rec->e_leaf_clusters) == 0) { 6657 memset(rec, 0, 6658 sizeof(struct ocfs2_extent_rec)); 6659 le16_add_cpu(&el->l_next_free_rec, -1); 6660 } 6661 } else { 6662 if (le64_to_cpu(rec->e_blkno) == deleted_eb) { 6663 memset(rec, 0, 6664 sizeof(struct ocfs2_extent_rec)); 6665 le16_add_cpu(&el->l_next_free_rec, -1); 6666 6667 goto delete; 6668 } 6669 6670 /* Can this actually happen? */ 6671 if (le16_to_cpu(el->l_next_free_rec) == 0) 6672 goto delete; 6673 6674 /* 6675 * We never actually deleted any clusters 6676 * because our leaf was empty. There's no 6677 * reason to adjust the rightmost edge then. 6678 */ 6679 if (new_edge == 0) 6680 goto delete; 6681 6682 rec->e_int_clusters = cpu_to_le32(new_edge); 6683 le32_add_cpu(&rec->e_int_clusters, 6684 -le32_to_cpu(rec->e_cpos)); 6685 6686 /* 6687 * A deleted child record should have been 6688 * caught above. 6689 */ 6690 BUG_ON(le32_to_cpu(rec->e_int_clusters) == 0); 6691 } 6692 6693 delete: 6694 ret = ocfs2_journal_dirty(handle, bh); 6695 if (ret) { 6696 mlog_errno(ret); 6697 goto out; 6698 } 6699 6700 mlog(0, "extent list container %llu, after: record %d: " 6701 "(%u, %u, %llu), next = %u.\n", 6702 (unsigned long long)bh->b_blocknr, i, 6703 le32_to_cpu(rec->e_cpos), ocfs2_rec_clusters(el, rec), 6704 (unsigned long long)le64_to_cpu(rec->e_blkno), 6705 le16_to_cpu(el->l_next_free_rec)); 6706 6707 /* 6708 * We must be careful to only attempt delete of an 6709 * extent block (and not the root inode block). 6710 */ 6711 if (index > 0 && le16_to_cpu(el->l_next_free_rec) == 0) { 6712 struct ocfs2_extent_block *eb = 6713 (struct ocfs2_extent_block *)bh->b_data; 6714 6715 /* 6716 * Save this for use when processing the 6717 * parent block. 6718 */ 6719 deleted_eb = le64_to_cpu(eb->h_blkno); 6720 6721 mlog(0, "deleting this extent block.\n"); 6722 6723 ocfs2_remove_from_cache(INODE_CACHE(inode), bh); 6724 6725 BUG_ON(ocfs2_rec_clusters(el, &el->l_recs[0])); 6726 BUG_ON(le32_to_cpu(el->l_recs[0].e_cpos)); 6727 BUG_ON(le64_to_cpu(el->l_recs[0].e_blkno)); 6728 6729 ret = ocfs2_cache_extent_block_free(&tc->tc_dealloc, eb); 6730 /* An error here is not fatal. */ 6731 if (ret < 0) 6732 mlog_errno(ret); 6733 } else { 6734 deleted_eb = 0; 6735 } 6736 6737 index--; 6738 } 6739 6740 ret = 0; 6741 out: 6742 return ret; 6743 } 6744 6745 static int ocfs2_do_truncate(struct ocfs2_super *osb, 6746 unsigned int clusters_to_del, 6747 struct inode *inode, 6748 struct buffer_head *fe_bh, 6749 handle_t *handle, 6750 struct ocfs2_truncate_context *tc, 6751 struct ocfs2_path *path) 6752 { 6753 int status; 6754 struct ocfs2_dinode *fe; 6755 struct ocfs2_extent_block *last_eb = NULL; 6756 struct ocfs2_extent_list *el; 6757 struct buffer_head *last_eb_bh = NULL; 6758 u64 delete_blk = 0; 6759 6760 fe = (struct ocfs2_dinode *) fe_bh->b_data; 6761 6762 status = ocfs2_find_new_last_ext_blk(inode, clusters_to_del, 6763 path, &last_eb_bh); 6764 if (status < 0) { 6765 mlog_errno(status); 6766 goto bail; 6767 } 6768 6769 /* 6770 * Each component will be touched, so we might as well journal 6771 * here to avoid having to handle errors later. 6772 */ 6773 status = ocfs2_journal_access_path(inode, handle, path); 6774 if (status < 0) { 6775 mlog_errno(status); 6776 goto bail; 6777 } 6778 6779 if (last_eb_bh) { 6780 status = ocfs2_journal_access_eb(handle, inode, last_eb_bh, 6781 OCFS2_JOURNAL_ACCESS_WRITE); 6782 if (status < 0) { 6783 mlog_errno(status); 6784 goto bail; 6785 } 6786 6787 last_eb = (struct ocfs2_extent_block *) last_eb_bh->b_data; 6788 } 6789 6790 el = &(fe->id2.i_list); 6791 6792 /* 6793 * Lower levels depend on this never happening, but it's best 6794 * to check it up here before changing the tree. 6795 */ 6796 if (el->l_tree_depth && el->l_recs[0].e_int_clusters == 0) { 6797 ocfs2_error(inode->i_sb, 6798 "Inode %lu has an empty extent record, depth %u\n", 6799 inode->i_ino, le16_to_cpu(el->l_tree_depth)); 6800 status = -EROFS; 6801 goto bail; 6802 } 6803 6804 vfs_dq_free_space_nodirty(inode, 6805 ocfs2_clusters_to_bytes(osb->sb, clusters_to_del)); 6806 spin_lock(&OCFS2_I(inode)->ip_lock); 6807 OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters) - 6808 clusters_to_del; 6809 spin_unlock(&OCFS2_I(inode)->ip_lock); 6810 le32_add_cpu(&fe->i_clusters, -clusters_to_del); 6811 inode->i_blocks = ocfs2_inode_sector_count(inode); 6812 6813 status = ocfs2_trim_tree(inode, path, handle, tc, 6814 clusters_to_del, &delete_blk); 6815 if (status) { 6816 mlog_errno(status); 6817 goto bail; 6818 } 6819 6820 if (le32_to_cpu(fe->i_clusters) == 0) { 6821 /* trunc to zero is a special case. */ 6822 el->l_tree_depth = 0; 6823 fe->i_last_eb_blk = 0; 6824 } else if (last_eb) 6825 fe->i_last_eb_blk = last_eb->h_blkno; 6826 6827 status = ocfs2_journal_dirty(handle, fe_bh); 6828 if (status < 0) { 6829 mlog_errno(status); 6830 goto bail; 6831 } 6832 6833 if (last_eb) { 6834 /* If there will be a new last extent block, then by 6835 * definition, there cannot be any leaves to the right of 6836 * him. */ 6837 last_eb->h_next_leaf_blk = 0; 6838 status = ocfs2_journal_dirty(handle, last_eb_bh); 6839 if (status < 0) { 6840 mlog_errno(status); 6841 goto bail; 6842 } 6843 } 6844 6845 if (delete_blk) { 6846 status = ocfs2_truncate_log_append(osb, handle, delete_blk, 6847 clusters_to_del); 6848 if (status < 0) { 6849 mlog_errno(status); 6850 goto bail; 6851 } 6852 } 6853 status = 0; 6854 bail: 6855 brelse(last_eb_bh); 6856 mlog_exit(status); 6857 return status; 6858 } 6859 6860 static int ocfs2_zero_func(handle_t *handle, struct buffer_head *bh) 6861 { 6862 set_buffer_uptodate(bh); 6863 mark_buffer_dirty(bh); 6864 return 0; 6865 } 6866 6867 static void ocfs2_map_and_dirty_page(struct inode *inode, handle_t *handle, 6868 unsigned int from, unsigned int to, 6869 struct page *page, int zero, u64 *phys) 6870 { 6871 int ret, partial = 0; 6872 6873 ret = ocfs2_map_page_blocks(page, phys, inode, from, to, 0); 6874 if (ret) 6875 mlog_errno(ret); 6876 6877 if (zero) 6878 zero_user_segment(page, from, to); 6879 6880 /* 6881 * Need to set the buffers we zero'd into uptodate 6882 * here if they aren't - ocfs2_map_page_blocks() 6883 * might've skipped some 6884 */ 6885 ret = walk_page_buffers(handle, page_buffers(page), 6886 from, to, &partial, 6887 ocfs2_zero_func); 6888 if (ret < 0) 6889 mlog_errno(ret); 6890 else if (ocfs2_should_order_data(inode)) { 6891 ret = ocfs2_jbd2_file_inode(handle, inode); 6892 if (ret < 0) 6893 mlog_errno(ret); 6894 } 6895 6896 if (!partial) 6897 SetPageUptodate(page); 6898 6899 flush_dcache_page(page); 6900 } 6901 6902 static void ocfs2_zero_cluster_pages(struct inode *inode, loff_t start, 6903 loff_t end, struct page **pages, 6904 int numpages, u64 phys, handle_t *handle) 6905 { 6906 int i; 6907 struct page *page; 6908 unsigned int from, to = PAGE_CACHE_SIZE; 6909 struct super_block *sb = inode->i_sb; 6910 6911 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(sb))); 6912 6913 if (numpages == 0) 6914 goto out; 6915 6916 to = PAGE_CACHE_SIZE; 6917 for(i = 0; i < numpages; i++) { 6918 page = pages[i]; 6919 6920 from = start & (PAGE_CACHE_SIZE - 1); 6921 if ((end >> PAGE_CACHE_SHIFT) == page->index) 6922 to = end & (PAGE_CACHE_SIZE - 1); 6923 6924 BUG_ON(from > PAGE_CACHE_SIZE); 6925 BUG_ON(to > PAGE_CACHE_SIZE); 6926 6927 ocfs2_map_and_dirty_page(inode, handle, from, to, page, 1, 6928 &phys); 6929 6930 start = (page->index + 1) << PAGE_CACHE_SHIFT; 6931 } 6932 out: 6933 if (pages) 6934 ocfs2_unlock_and_free_pages(pages, numpages); 6935 } 6936 6937 static int ocfs2_grab_eof_pages(struct inode *inode, loff_t start, loff_t end, 6938 struct page **pages, int *num) 6939 { 6940 int numpages, ret = 0; 6941 struct super_block *sb = inode->i_sb; 6942 struct address_space *mapping = inode->i_mapping; 6943 unsigned long index; 6944 loff_t last_page_bytes; 6945 6946 BUG_ON(start > end); 6947 6948 BUG_ON(start >> OCFS2_SB(sb)->s_clustersize_bits != 6949 (end - 1) >> OCFS2_SB(sb)->s_clustersize_bits); 6950 6951 numpages = 0; 6952 last_page_bytes = PAGE_ALIGN(end); 6953 index = start >> PAGE_CACHE_SHIFT; 6954 do { 6955 pages[numpages] = grab_cache_page(mapping, index); 6956 if (!pages[numpages]) { 6957 ret = -ENOMEM; 6958 mlog_errno(ret); 6959 goto out; 6960 } 6961 6962 numpages++; 6963 index++; 6964 } while (index < (last_page_bytes >> PAGE_CACHE_SHIFT)); 6965 6966 out: 6967 if (ret != 0) { 6968 if (pages) 6969 ocfs2_unlock_and_free_pages(pages, numpages); 6970 numpages = 0; 6971 } 6972 6973 *num = numpages; 6974 6975 return ret; 6976 } 6977 6978 /* 6979 * Zero the area past i_size but still within an allocated 6980 * cluster. This avoids exposing nonzero data on subsequent file 6981 * extends. 6982 * 6983 * We need to call this before i_size is updated on the inode because 6984 * otherwise block_write_full_page() will skip writeout of pages past 6985 * i_size. The new_i_size parameter is passed for this reason. 6986 */ 6987 int ocfs2_zero_range_for_truncate(struct inode *inode, handle_t *handle, 6988 u64 range_start, u64 range_end) 6989 { 6990 int ret = 0, numpages; 6991 struct page **pages = NULL; 6992 u64 phys; 6993 unsigned int ext_flags; 6994 struct super_block *sb = inode->i_sb; 6995 6996 /* 6997 * File systems which don't support sparse files zero on every 6998 * extend. 6999 */ 7000 if (!ocfs2_sparse_alloc(OCFS2_SB(sb))) 7001 return 0; 7002 7003 pages = kcalloc(ocfs2_pages_per_cluster(sb), 7004 sizeof(struct page *), GFP_NOFS); 7005 if (pages == NULL) { 7006 ret = -ENOMEM; 7007 mlog_errno(ret); 7008 goto out; 7009 } 7010 7011 if (range_start == range_end) 7012 goto out; 7013 7014 ret = ocfs2_extent_map_get_blocks(inode, 7015 range_start >> sb->s_blocksize_bits, 7016 &phys, NULL, &ext_flags); 7017 if (ret) { 7018 mlog_errno(ret); 7019 goto out; 7020 } 7021 7022 /* 7023 * Tail is a hole, or is marked unwritten. In either case, we 7024 * can count on read and write to return/push zero's. 7025 */ 7026 if (phys == 0 || ext_flags & OCFS2_EXT_UNWRITTEN) 7027 goto out; 7028 7029 ret = ocfs2_grab_eof_pages(inode, range_start, range_end, pages, 7030 &numpages); 7031 if (ret) { 7032 mlog_errno(ret); 7033 goto out; 7034 } 7035 7036 ocfs2_zero_cluster_pages(inode, range_start, range_end, pages, 7037 numpages, phys, handle); 7038 7039 /* 7040 * Initiate writeout of the pages we zero'd here. We don't 7041 * wait on them - the truncate_inode_pages() call later will 7042 * do that for us. 7043 */ 7044 ret = do_sync_mapping_range(inode->i_mapping, range_start, 7045 range_end - 1, SYNC_FILE_RANGE_WRITE); 7046 if (ret) 7047 mlog_errno(ret); 7048 7049 out: 7050 if (pages) 7051 kfree(pages); 7052 7053 return ret; 7054 } 7055 7056 static void ocfs2_zero_dinode_id2_with_xattr(struct inode *inode, 7057 struct ocfs2_dinode *di) 7058 { 7059 unsigned int blocksize = 1 << inode->i_sb->s_blocksize_bits; 7060 unsigned int xattrsize = le16_to_cpu(di->i_xattr_inline_size); 7061 7062 if (le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_XATTR_FL) 7063 memset(&di->id2, 0, blocksize - 7064 offsetof(struct ocfs2_dinode, id2) - 7065 xattrsize); 7066 else 7067 memset(&di->id2, 0, blocksize - 7068 offsetof(struct ocfs2_dinode, id2)); 7069 } 7070 7071 void ocfs2_dinode_new_extent_list(struct inode *inode, 7072 struct ocfs2_dinode *di) 7073 { 7074 ocfs2_zero_dinode_id2_with_xattr(inode, di); 7075 di->id2.i_list.l_tree_depth = 0; 7076 di->id2.i_list.l_next_free_rec = 0; 7077 di->id2.i_list.l_count = cpu_to_le16( 7078 ocfs2_extent_recs_per_inode_with_xattr(inode->i_sb, di)); 7079 } 7080 7081 void ocfs2_set_inode_data_inline(struct inode *inode, struct ocfs2_dinode *di) 7082 { 7083 struct ocfs2_inode_info *oi = OCFS2_I(inode); 7084 struct ocfs2_inline_data *idata = &di->id2.i_data; 7085 7086 spin_lock(&oi->ip_lock); 7087 oi->ip_dyn_features |= OCFS2_INLINE_DATA_FL; 7088 di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features); 7089 spin_unlock(&oi->ip_lock); 7090 7091 /* 7092 * We clear the entire i_data structure here so that all 7093 * fields can be properly initialized. 7094 */ 7095 ocfs2_zero_dinode_id2_with_xattr(inode, di); 7096 7097 idata->id_count = cpu_to_le16( 7098 ocfs2_max_inline_data_with_xattr(inode->i_sb, di)); 7099 } 7100 7101 int ocfs2_convert_inline_data_to_extents(struct inode *inode, 7102 struct buffer_head *di_bh) 7103 { 7104 int ret, i, has_data, num_pages = 0; 7105 handle_t *handle; 7106 u64 uninitialized_var(block); 7107 struct ocfs2_inode_info *oi = OCFS2_I(inode); 7108 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 7109 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 7110 struct ocfs2_alloc_context *data_ac = NULL; 7111 struct page **pages = NULL; 7112 loff_t end = osb->s_clustersize; 7113 struct ocfs2_extent_tree et; 7114 int did_quota = 0; 7115 7116 has_data = i_size_read(inode) ? 1 : 0; 7117 7118 if (has_data) { 7119 pages = kcalloc(ocfs2_pages_per_cluster(osb->sb), 7120 sizeof(struct page *), GFP_NOFS); 7121 if (pages == NULL) { 7122 ret = -ENOMEM; 7123 mlog_errno(ret); 7124 goto out; 7125 } 7126 7127 ret = ocfs2_reserve_clusters(osb, 1, &data_ac); 7128 if (ret) { 7129 mlog_errno(ret); 7130 goto out; 7131 } 7132 } 7133 7134 handle = ocfs2_start_trans(osb, 7135 ocfs2_inline_to_extents_credits(osb->sb)); 7136 if (IS_ERR(handle)) { 7137 ret = PTR_ERR(handle); 7138 mlog_errno(ret); 7139 goto out_unlock; 7140 } 7141 7142 ret = ocfs2_journal_access_di(handle, inode, di_bh, 7143 OCFS2_JOURNAL_ACCESS_WRITE); 7144 if (ret) { 7145 mlog_errno(ret); 7146 goto out_commit; 7147 } 7148 7149 if (has_data) { 7150 u32 bit_off, num; 7151 unsigned int page_end; 7152 u64 phys; 7153 7154 if (vfs_dq_alloc_space_nodirty(inode, 7155 ocfs2_clusters_to_bytes(osb->sb, 1))) { 7156 ret = -EDQUOT; 7157 goto out_commit; 7158 } 7159 did_quota = 1; 7160 7161 ret = ocfs2_claim_clusters(osb, handle, data_ac, 1, &bit_off, 7162 &num); 7163 if (ret) { 7164 mlog_errno(ret); 7165 goto out_commit; 7166 } 7167 7168 /* 7169 * Save two copies, one for insert, and one that can 7170 * be changed by ocfs2_map_and_dirty_page() below. 7171 */ 7172 block = phys = ocfs2_clusters_to_blocks(inode->i_sb, bit_off); 7173 7174 /* 7175 * Non sparse file systems zero on extend, so no need 7176 * to do that now. 7177 */ 7178 if (!ocfs2_sparse_alloc(osb) && 7179 PAGE_CACHE_SIZE < osb->s_clustersize) 7180 end = PAGE_CACHE_SIZE; 7181 7182 ret = ocfs2_grab_eof_pages(inode, 0, end, pages, &num_pages); 7183 if (ret) { 7184 mlog_errno(ret); 7185 goto out_commit; 7186 } 7187 7188 /* 7189 * This should populate the 1st page for us and mark 7190 * it up to date. 7191 */ 7192 ret = ocfs2_read_inline_data(inode, pages[0], di_bh); 7193 if (ret) { 7194 mlog_errno(ret); 7195 goto out_commit; 7196 } 7197 7198 page_end = PAGE_CACHE_SIZE; 7199 if (PAGE_CACHE_SIZE > osb->s_clustersize) 7200 page_end = osb->s_clustersize; 7201 7202 for (i = 0; i < num_pages; i++) 7203 ocfs2_map_and_dirty_page(inode, handle, 0, page_end, 7204 pages[i], i > 0, &phys); 7205 } 7206 7207 spin_lock(&oi->ip_lock); 7208 oi->ip_dyn_features &= ~OCFS2_INLINE_DATA_FL; 7209 di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features); 7210 spin_unlock(&oi->ip_lock); 7211 7212 ocfs2_dinode_new_extent_list(inode, di); 7213 7214 ocfs2_journal_dirty(handle, di_bh); 7215 7216 if (has_data) { 7217 /* 7218 * An error at this point should be extremely rare. If 7219 * this proves to be false, we could always re-build 7220 * the in-inode data from our pages. 7221 */ 7222 ocfs2_init_dinode_extent_tree(&et, inode, di_bh); 7223 ret = ocfs2_insert_extent(osb, handle, inode, &et, 7224 0, block, 1, 0, NULL); 7225 if (ret) { 7226 mlog_errno(ret); 7227 goto out_commit; 7228 } 7229 7230 inode->i_blocks = ocfs2_inode_sector_count(inode); 7231 } 7232 7233 out_commit: 7234 if (ret < 0 && did_quota) 7235 vfs_dq_free_space_nodirty(inode, 7236 ocfs2_clusters_to_bytes(osb->sb, 1)); 7237 7238 ocfs2_commit_trans(osb, handle); 7239 7240 out_unlock: 7241 if (data_ac) 7242 ocfs2_free_alloc_context(data_ac); 7243 7244 out: 7245 if (pages) { 7246 ocfs2_unlock_and_free_pages(pages, num_pages); 7247 kfree(pages); 7248 } 7249 7250 return ret; 7251 } 7252 7253 /* 7254 * It is expected, that by the time you call this function, 7255 * inode->i_size and fe->i_size have been adjusted. 7256 * 7257 * WARNING: This will kfree the truncate context 7258 */ 7259 int ocfs2_commit_truncate(struct ocfs2_super *osb, 7260 struct inode *inode, 7261 struct buffer_head *fe_bh, 7262 struct ocfs2_truncate_context *tc) 7263 { 7264 int status, i, credits, tl_sem = 0; 7265 u32 clusters_to_del, new_highest_cpos, range; 7266 struct ocfs2_extent_list *el; 7267 handle_t *handle = NULL; 7268 struct inode *tl_inode = osb->osb_tl_inode; 7269 struct ocfs2_path *path = NULL; 7270 struct ocfs2_dinode *di = (struct ocfs2_dinode *)fe_bh->b_data; 7271 7272 mlog_entry_void(); 7273 7274 new_highest_cpos = ocfs2_clusters_for_bytes(osb->sb, 7275 i_size_read(inode)); 7276 7277 path = ocfs2_new_path(fe_bh, &di->id2.i_list, 7278 ocfs2_journal_access_di); 7279 if (!path) { 7280 status = -ENOMEM; 7281 mlog_errno(status); 7282 goto bail; 7283 } 7284 7285 ocfs2_extent_map_trunc(inode, new_highest_cpos); 7286 7287 start: 7288 /* 7289 * Check that we still have allocation to delete. 7290 */ 7291 if (OCFS2_I(inode)->ip_clusters == 0) { 7292 status = 0; 7293 goto bail; 7294 } 7295 7296 /* 7297 * Truncate always works against the rightmost tree branch. 7298 */ 7299 status = ocfs2_find_path(inode, path, UINT_MAX); 7300 if (status) { 7301 mlog_errno(status); 7302 goto bail; 7303 } 7304 7305 mlog(0, "inode->ip_clusters = %u, tree_depth = %u\n", 7306 OCFS2_I(inode)->ip_clusters, path->p_tree_depth); 7307 7308 /* 7309 * By now, el will point to the extent list on the bottom most 7310 * portion of this tree. Only the tail record is considered in 7311 * each pass. 7312 * 7313 * We handle the following cases, in order: 7314 * - empty extent: delete the remaining branch 7315 * - remove the entire record 7316 * - remove a partial record 7317 * - no record needs to be removed (truncate has completed) 7318 */ 7319 el = path_leaf_el(path); 7320 if (le16_to_cpu(el->l_next_free_rec) == 0) { 7321 ocfs2_error(inode->i_sb, 7322 "Inode %llu has empty extent block at %llu\n", 7323 (unsigned long long)OCFS2_I(inode)->ip_blkno, 7324 (unsigned long long)path_leaf_bh(path)->b_blocknr); 7325 status = -EROFS; 7326 goto bail; 7327 } 7328 7329 i = le16_to_cpu(el->l_next_free_rec) - 1; 7330 range = le32_to_cpu(el->l_recs[i].e_cpos) + 7331 ocfs2_rec_clusters(el, &el->l_recs[i]); 7332 if (i == 0 && ocfs2_is_empty_extent(&el->l_recs[i])) { 7333 clusters_to_del = 0; 7334 } else if (le32_to_cpu(el->l_recs[i].e_cpos) >= new_highest_cpos) { 7335 clusters_to_del = ocfs2_rec_clusters(el, &el->l_recs[i]); 7336 } else if (range > new_highest_cpos) { 7337 clusters_to_del = (ocfs2_rec_clusters(el, &el->l_recs[i]) + 7338 le32_to_cpu(el->l_recs[i].e_cpos)) - 7339 new_highest_cpos; 7340 } else { 7341 status = 0; 7342 goto bail; 7343 } 7344 7345 mlog(0, "clusters_to_del = %u in this pass, tail blk=%llu\n", 7346 clusters_to_del, (unsigned long long)path_leaf_bh(path)->b_blocknr); 7347 7348 mutex_lock(&tl_inode->i_mutex); 7349 tl_sem = 1; 7350 /* ocfs2_truncate_log_needs_flush guarantees us at least one 7351 * record is free for use. If there isn't any, we flush to get 7352 * an empty truncate log. */ 7353 if (ocfs2_truncate_log_needs_flush(osb)) { 7354 status = __ocfs2_flush_truncate_log(osb); 7355 if (status < 0) { 7356 mlog_errno(status); 7357 goto bail; 7358 } 7359 } 7360 7361 credits = ocfs2_calc_tree_trunc_credits(osb->sb, clusters_to_del, 7362 (struct ocfs2_dinode *)fe_bh->b_data, 7363 el); 7364 handle = ocfs2_start_trans(osb, credits); 7365 if (IS_ERR(handle)) { 7366 status = PTR_ERR(handle); 7367 handle = NULL; 7368 mlog_errno(status); 7369 goto bail; 7370 } 7371 7372 status = ocfs2_do_truncate(osb, clusters_to_del, inode, fe_bh, handle, 7373 tc, path); 7374 if (status < 0) { 7375 mlog_errno(status); 7376 goto bail; 7377 } 7378 7379 mutex_unlock(&tl_inode->i_mutex); 7380 tl_sem = 0; 7381 7382 ocfs2_commit_trans(osb, handle); 7383 handle = NULL; 7384 7385 ocfs2_reinit_path(path, 1); 7386 7387 /* 7388 * The check above will catch the case where we've truncated 7389 * away all allocation. 7390 */ 7391 goto start; 7392 7393 bail: 7394 7395 ocfs2_schedule_truncate_log_flush(osb, 1); 7396 7397 if (tl_sem) 7398 mutex_unlock(&tl_inode->i_mutex); 7399 7400 if (handle) 7401 ocfs2_commit_trans(osb, handle); 7402 7403 ocfs2_run_deallocs(osb, &tc->tc_dealloc); 7404 7405 ocfs2_free_path(path); 7406 7407 /* This will drop the ext_alloc cluster lock for us */ 7408 ocfs2_free_truncate_context(tc); 7409 7410 mlog_exit(status); 7411 return status; 7412 } 7413 7414 /* 7415 * Expects the inode to already be locked. 7416 */ 7417 int ocfs2_prepare_truncate(struct ocfs2_super *osb, 7418 struct inode *inode, 7419 struct buffer_head *fe_bh, 7420 struct ocfs2_truncate_context **tc) 7421 { 7422 int status; 7423 unsigned int new_i_clusters; 7424 struct ocfs2_dinode *fe; 7425 struct ocfs2_extent_block *eb; 7426 struct buffer_head *last_eb_bh = NULL; 7427 7428 mlog_entry_void(); 7429 7430 *tc = NULL; 7431 7432 new_i_clusters = ocfs2_clusters_for_bytes(osb->sb, 7433 i_size_read(inode)); 7434 fe = (struct ocfs2_dinode *) fe_bh->b_data; 7435 7436 mlog(0, "fe->i_clusters = %u, new_i_clusters = %u, fe->i_size =" 7437 "%llu\n", le32_to_cpu(fe->i_clusters), new_i_clusters, 7438 (unsigned long long)le64_to_cpu(fe->i_size)); 7439 7440 *tc = kzalloc(sizeof(struct ocfs2_truncate_context), GFP_KERNEL); 7441 if (!(*tc)) { 7442 status = -ENOMEM; 7443 mlog_errno(status); 7444 goto bail; 7445 } 7446 ocfs2_init_dealloc_ctxt(&(*tc)->tc_dealloc); 7447 7448 if (fe->id2.i_list.l_tree_depth) { 7449 status = ocfs2_read_extent_block(inode, 7450 le64_to_cpu(fe->i_last_eb_blk), 7451 &last_eb_bh); 7452 if (status < 0) { 7453 mlog_errno(status); 7454 goto bail; 7455 } 7456 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data; 7457 } 7458 7459 (*tc)->tc_last_eb_bh = last_eb_bh; 7460 7461 status = 0; 7462 bail: 7463 if (status < 0) { 7464 if (*tc) 7465 ocfs2_free_truncate_context(*tc); 7466 *tc = NULL; 7467 } 7468 mlog_exit_void(); 7469 return status; 7470 } 7471 7472 /* 7473 * 'start' is inclusive, 'end' is not. 7474 */ 7475 int ocfs2_truncate_inline(struct inode *inode, struct buffer_head *di_bh, 7476 unsigned int start, unsigned int end, int trunc) 7477 { 7478 int ret; 7479 unsigned int numbytes; 7480 handle_t *handle; 7481 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 7482 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 7483 struct ocfs2_inline_data *idata = &di->id2.i_data; 7484 7485 if (end > i_size_read(inode)) 7486 end = i_size_read(inode); 7487 7488 BUG_ON(start >= end); 7489 7490 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) || 7491 !(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL) || 7492 !ocfs2_supports_inline_data(osb)) { 7493 ocfs2_error(inode->i_sb, 7494 "Inline data flags for inode %llu don't agree! " 7495 "Disk: 0x%x, Memory: 0x%x, Superblock: 0x%x\n", 7496 (unsigned long long)OCFS2_I(inode)->ip_blkno, 7497 le16_to_cpu(di->i_dyn_features), 7498 OCFS2_I(inode)->ip_dyn_features, 7499 osb->s_feature_incompat); 7500 ret = -EROFS; 7501 goto out; 7502 } 7503 7504 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 7505 if (IS_ERR(handle)) { 7506 ret = PTR_ERR(handle); 7507 mlog_errno(ret); 7508 goto out; 7509 } 7510 7511 ret = ocfs2_journal_access_di(handle, inode, di_bh, 7512 OCFS2_JOURNAL_ACCESS_WRITE); 7513 if (ret) { 7514 mlog_errno(ret); 7515 goto out_commit; 7516 } 7517 7518 numbytes = end - start; 7519 memset(idata->id_data + start, 0, numbytes); 7520 7521 /* 7522 * No need to worry about the data page here - it's been 7523 * truncated already and inline data doesn't need it for 7524 * pushing zero's to disk, so we'll let readpage pick it up 7525 * later. 7526 */ 7527 if (trunc) { 7528 i_size_write(inode, start); 7529 di->i_size = cpu_to_le64(start); 7530 } 7531 7532 inode->i_blocks = ocfs2_inode_sector_count(inode); 7533 inode->i_ctime = inode->i_mtime = CURRENT_TIME; 7534 7535 di->i_ctime = di->i_mtime = cpu_to_le64(inode->i_ctime.tv_sec); 7536 di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec); 7537 7538 ocfs2_journal_dirty(handle, di_bh); 7539 7540 out_commit: 7541 ocfs2_commit_trans(osb, handle); 7542 7543 out: 7544 return ret; 7545 } 7546 7547 static void ocfs2_free_truncate_context(struct ocfs2_truncate_context *tc) 7548 { 7549 /* 7550 * The caller is responsible for completing deallocation 7551 * before freeing the context. 7552 */ 7553 if (tc->tc_dealloc.c_first_suballocator != NULL) 7554 mlog(ML_NOTICE, 7555 "Truncate completion has non-empty dealloc context\n"); 7556 7557 brelse(tc->tc_last_eb_bh); 7558 7559 kfree(tc); 7560 } 7561