xref: /openbmc/linux/fs/ocfs2/alloc.c (revision 8cb471e8f82506937fe5e2e9fb0bf90f6b1f1170)
1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * alloc.c
5  *
6  * Extent allocs and frees
7  *
8  * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public
12  * License as published by the Free Software Foundation; either
13  * version 2 of the License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public
21  * License along with this program; if not, write to the
22  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23  * Boston, MA 021110-1307, USA.
24  */
25 
26 #include <linux/fs.h>
27 #include <linux/types.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/swap.h>
31 #include <linux/quotaops.h>
32 
33 #define MLOG_MASK_PREFIX ML_DISK_ALLOC
34 #include <cluster/masklog.h>
35 
36 #include "ocfs2.h"
37 
38 #include "alloc.h"
39 #include "aops.h"
40 #include "blockcheck.h"
41 #include "dlmglue.h"
42 #include "extent_map.h"
43 #include "inode.h"
44 #include "journal.h"
45 #include "localalloc.h"
46 #include "suballoc.h"
47 #include "sysfile.h"
48 #include "file.h"
49 #include "super.h"
50 #include "uptodate.h"
51 #include "xattr.h"
52 
53 #include "buffer_head_io.h"
54 
55 
56 /*
57  * Operations for a specific extent tree type.
58  *
59  * To implement an on-disk btree (extent tree) type in ocfs2, add
60  * an ocfs2_extent_tree_operations structure and the matching
61  * ocfs2_init_<thingy>_extent_tree() function.  That's pretty much it
62  * for the allocation portion of the extent tree.
63  */
64 struct ocfs2_extent_tree_operations {
65 	/*
66 	 * last_eb_blk is the block number of the right most leaf extent
67 	 * block.  Most on-disk structures containing an extent tree store
68 	 * this value for fast access.  The ->eo_set_last_eb_blk() and
69 	 * ->eo_get_last_eb_blk() operations access this value.  They are
70 	 *  both required.
71 	 */
72 	void (*eo_set_last_eb_blk)(struct ocfs2_extent_tree *et,
73 				   u64 blkno);
74 	u64 (*eo_get_last_eb_blk)(struct ocfs2_extent_tree *et);
75 
76 	/*
77 	 * The on-disk structure usually keeps track of how many total
78 	 * clusters are stored in this extent tree.  This function updates
79 	 * that value.  new_clusters is the delta, and must be
80 	 * added to the total.  Required.
81 	 */
82 	void (*eo_update_clusters)(struct inode *inode,
83 				   struct ocfs2_extent_tree *et,
84 				   u32 new_clusters);
85 
86 	/*
87 	 * If ->eo_insert_check() exists, it is called before rec is
88 	 * inserted into the extent tree.  It is optional.
89 	 */
90 	int (*eo_insert_check)(struct inode *inode,
91 			       struct ocfs2_extent_tree *et,
92 			       struct ocfs2_extent_rec *rec);
93 	int (*eo_sanity_check)(struct inode *inode, struct ocfs2_extent_tree *et);
94 
95 	/*
96 	 * --------------------------------------------------------------
97 	 * The remaining are internal to ocfs2_extent_tree and don't have
98 	 * accessor functions
99 	 */
100 
101 	/*
102 	 * ->eo_fill_root_el() takes et->et_object and sets et->et_root_el.
103 	 * It is required.
104 	 */
105 	void (*eo_fill_root_el)(struct ocfs2_extent_tree *et);
106 
107 	/*
108 	 * ->eo_fill_max_leaf_clusters sets et->et_max_leaf_clusters if
109 	 * it exists.  If it does not, et->et_max_leaf_clusters is set
110 	 * to 0 (unlimited).  Optional.
111 	 */
112 	void (*eo_fill_max_leaf_clusters)(struct inode *inode,
113 					  struct ocfs2_extent_tree *et);
114 };
115 
116 
117 /*
118  * Pre-declare ocfs2_dinode_et_ops so we can use it as a sanity check
119  * in the methods.
120  */
121 static u64 ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree *et);
122 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree *et,
123 					 u64 blkno);
124 static void ocfs2_dinode_update_clusters(struct inode *inode,
125 					 struct ocfs2_extent_tree *et,
126 					 u32 clusters);
127 static int ocfs2_dinode_insert_check(struct inode *inode,
128 				     struct ocfs2_extent_tree *et,
129 				     struct ocfs2_extent_rec *rec);
130 static int ocfs2_dinode_sanity_check(struct inode *inode,
131 				     struct ocfs2_extent_tree *et);
132 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree *et);
133 static struct ocfs2_extent_tree_operations ocfs2_dinode_et_ops = {
134 	.eo_set_last_eb_blk	= ocfs2_dinode_set_last_eb_blk,
135 	.eo_get_last_eb_blk	= ocfs2_dinode_get_last_eb_blk,
136 	.eo_update_clusters	= ocfs2_dinode_update_clusters,
137 	.eo_insert_check	= ocfs2_dinode_insert_check,
138 	.eo_sanity_check	= ocfs2_dinode_sanity_check,
139 	.eo_fill_root_el	= ocfs2_dinode_fill_root_el,
140 };
141 
142 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree *et,
143 					 u64 blkno)
144 {
145 	struct ocfs2_dinode *di = et->et_object;
146 
147 	BUG_ON(et->et_ops != &ocfs2_dinode_et_ops);
148 	di->i_last_eb_blk = cpu_to_le64(blkno);
149 }
150 
151 static u64 ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree *et)
152 {
153 	struct ocfs2_dinode *di = et->et_object;
154 
155 	BUG_ON(et->et_ops != &ocfs2_dinode_et_ops);
156 	return le64_to_cpu(di->i_last_eb_blk);
157 }
158 
159 static void ocfs2_dinode_update_clusters(struct inode *inode,
160 					 struct ocfs2_extent_tree *et,
161 					 u32 clusters)
162 {
163 	struct ocfs2_dinode *di = et->et_object;
164 
165 	le32_add_cpu(&di->i_clusters, clusters);
166 	spin_lock(&OCFS2_I(inode)->ip_lock);
167 	OCFS2_I(inode)->ip_clusters = le32_to_cpu(di->i_clusters);
168 	spin_unlock(&OCFS2_I(inode)->ip_lock);
169 }
170 
171 static int ocfs2_dinode_insert_check(struct inode *inode,
172 				     struct ocfs2_extent_tree *et,
173 				     struct ocfs2_extent_rec *rec)
174 {
175 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
176 
177 	BUG_ON(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL);
178 	mlog_bug_on_msg(!ocfs2_sparse_alloc(osb) &&
179 			(OCFS2_I(inode)->ip_clusters !=
180 			 le32_to_cpu(rec->e_cpos)),
181 			"Device %s, asking for sparse allocation: inode %llu, "
182 			"cpos %u, clusters %u\n",
183 			osb->dev_str,
184 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
185 			rec->e_cpos,
186 			OCFS2_I(inode)->ip_clusters);
187 
188 	return 0;
189 }
190 
191 static int ocfs2_dinode_sanity_check(struct inode *inode,
192 				     struct ocfs2_extent_tree *et)
193 {
194 	struct ocfs2_dinode *di = et->et_object;
195 
196 	BUG_ON(et->et_ops != &ocfs2_dinode_et_ops);
197 	BUG_ON(!OCFS2_IS_VALID_DINODE(di));
198 
199 	return 0;
200 }
201 
202 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree *et)
203 {
204 	struct ocfs2_dinode *di = et->et_object;
205 
206 	et->et_root_el = &di->id2.i_list;
207 }
208 
209 
210 static void ocfs2_xattr_value_fill_root_el(struct ocfs2_extent_tree *et)
211 {
212 	struct ocfs2_xattr_value_buf *vb = et->et_object;
213 
214 	et->et_root_el = &vb->vb_xv->xr_list;
215 }
216 
217 static void ocfs2_xattr_value_set_last_eb_blk(struct ocfs2_extent_tree *et,
218 					      u64 blkno)
219 {
220 	struct ocfs2_xattr_value_buf *vb = et->et_object;
221 
222 	vb->vb_xv->xr_last_eb_blk = cpu_to_le64(blkno);
223 }
224 
225 static u64 ocfs2_xattr_value_get_last_eb_blk(struct ocfs2_extent_tree *et)
226 {
227 	struct ocfs2_xattr_value_buf *vb = et->et_object;
228 
229 	return le64_to_cpu(vb->vb_xv->xr_last_eb_blk);
230 }
231 
232 static void ocfs2_xattr_value_update_clusters(struct inode *inode,
233 					      struct ocfs2_extent_tree *et,
234 					      u32 clusters)
235 {
236 	struct ocfs2_xattr_value_buf *vb = et->et_object;
237 
238 	le32_add_cpu(&vb->vb_xv->xr_clusters, clusters);
239 }
240 
241 static struct ocfs2_extent_tree_operations ocfs2_xattr_value_et_ops = {
242 	.eo_set_last_eb_blk	= ocfs2_xattr_value_set_last_eb_blk,
243 	.eo_get_last_eb_blk	= ocfs2_xattr_value_get_last_eb_blk,
244 	.eo_update_clusters	= ocfs2_xattr_value_update_clusters,
245 	.eo_fill_root_el	= ocfs2_xattr_value_fill_root_el,
246 };
247 
248 static void ocfs2_xattr_tree_fill_root_el(struct ocfs2_extent_tree *et)
249 {
250 	struct ocfs2_xattr_block *xb = et->et_object;
251 
252 	et->et_root_el = &xb->xb_attrs.xb_root.xt_list;
253 }
254 
255 static void ocfs2_xattr_tree_fill_max_leaf_clusters(struct inode *inode,
256 						    struct ocfs2_extent_tree *et)
257 {
258 	et->et_max_leaf_clusters =
259 		ocfs2_clusters_for_bytes(inode->i_sb,
260 					 OCFS2_MAX_XATTR_TREE_LEAF_SIZE);
261 }
262 
263 static void ocfs2_xattr_tree_set_last_eb_blk(struct ocfs2_extent_tree *et,
264 					     u64 blkno)
265 {
266 	struct ocfs2_xattr_block *xb = et->et_object;
267 	struct ocfs2_xattr_tree_root *xt = &xb->xb_attrs.xb_root;
268 
269 	xt->xt_last_eb_blk = cpu_to_le64(blkno);
270 }
271 
272 static u64 ocfs2_xattr_tree_get_last_eb_blk(struct ocfs2_extent_tree *et)
273 {
274 	struct ocfs2_xattr_block *xb = et->et_object;
275 	struct ocfs2_xattr_tree_root *xt = &xb->xb_attrs.xb_root;
276 
277 	return le64_to_cpu(xt->xt_last_eb_blk);
278 }
279 
280 static void ocfs2_xattr_tree_update_clusters(struct inode *inode,
281 					     struct ocfs2_extent_tree *et,
282 					     u32 clusters)
283 {
284 	struct ocfs2_xattr_block *xb = et->et_object;
285 
286 	le32_add_cpu(&xb->xb_attrs.xb_root.xt_clusters, clusters);
287 }
288 
289 static struct ocfs2_extent_tree_operations ocfs2_xattr_tree_et_ops = {
290 	.eo_set_last_eb_blk	= ocfs2_xattr_tree_set_last_eb_blk,
291 	.eo_get_last_eb_blk	= ocfs2_xattr_tree_get_last_eb_blk,
292 	.eo_update_clusters	= ocfs2_xattr_tree_update_clusters,
293 	.eo_fill_root_el	= ocfs2_xattr_tree_fill_root_el,
294 	.eo_fill_max_leaf_clusters = ocfs2_xattr_tree_fill_max_leaf_clusters,
295 };
296 
297 static void ocfs2_dx_root_set_last_eb_blk(struct ocfs2_extent_tree *et,
298 					  u64 blkno)
299 {
300 	struct ocfs2_dx_root_block *dx_root = et->et_object;
301 
302 	dx_root->dr_last_eb_blk = cpu_to_le64(blkno);
303 }
304 
305 static u64 ocfs2_dx_root_get_last_eb_blk(struct ocfs2_extent_tree *et)
306 {
307 	struct ocfs2_dx_root_block *dx_root = et->et_object;
308 
309 	return le64_to_cpu(dx_root->dr_last_eb_blk);
310 }
311 
312 static void ocfs2_dx_root_update_clusters(struct inode *inode,
313 					  struct ocfs2_extent_tree *et,
314 					  u32 clusters)
315 {
316 	struct ocfs2_dx_root_block *dx_root = et->et_object;
317 
318 	le32_add_cpu(&dx_root->dr_clusters, clusters);
319 }
320 
321 static int ocfs2_dx_root_sanity_check(struct inode *inode,
322 				      struct ocfs2_extent_tree *et)
323 {
324 	struct ocfs2_dx_root_block *dx_root = et->et_object;
325 
326 	BUG_ON(!OCFS2_IS_VALID_DX_ROOT(dx_root));
327 
328 	return 0;
329 }
330 
331 static void ocfs2_dx_root_fill_root_el(struct ocfs2_extent_tree *et)
332 {
333 	struct ocfs2_dx_root_block *dx_root = et->et_object;
334 
335 	et->et_root_el = &dx_root->dr_list;
336 }
337 
338 static struct ocfs2_extent_tree_operations ocfs2_dx_root_et_ops = {
339 	.eo_set_last_eb_blk	= ocfs2_dx_root_set_last_eb_blk,
340 	.eo_get_last_eb_blk	= ocfs2_dx_root_get_last_eb_blk,
341 	.eo_update_clusters	= ocfs2_dx_root_update_clusters,
342 	.eo_sanity_check	= ocfs2_dx_root_sanity_check,
343 	.eo_fill_root_el	= ocfs2_dx_root_fill_root_el,
344 };
345 
346 static void __ocfs2_init_extent_tree(struct ocfs2_extent_tree *et,
347 				     struct inode *inode,
348 				     struct buffer_head *bh,
349 				     ocfs2_journal_access_func access,
350 				     void *obj,
351 				     struct ocfs2_extent_tree_operations *ops)
352 {
353 	et->et_ops = ops;
354 	et->et_root_bh = bh;
355 	et->et_root_journal_access = access;
356 	if (!obj)
357 		obj = (void *)bh->b_data;
358 	et->et_object = obj;
359 
360 	et->et_ops->eo_fill_root_el(et);
361 	if (!et->et_ops->eo_fill_max_leaf_clusters)
362 		et->et_max_leaf_clusters = 0;
363 	else
364 		et->et_ops->eo_fill_max_leaf_clusters(inode, et);
365 }
366 
367 void ocfs2_init_dinode_extent_tree(struct ocfs2_extent_tree *et,
368 				   struct inode *inode,
369 				   struct buffer_head *bh)
370 {
371 	__ocfs2_init_extent_tree(et, inode, bh, ocfs2_journal_access_di,
372 				 NULL, &ocfs2_dinode_et_ops);
373 }
374 
375 void ocfs2_init_xattr_tree_extent_tree(struct ocfs2_extent_tree *et,
376 				       struct inode *inode,
377 				       struct buffer_head *bh)
378 {
379 	__ocfs2_init_extent_tree(et, inode, bh, ocfs2_journal_access_xb,
380 				 NULL, &ocfs2_xattr_tree_et_ops);
381 }
382 
383 void ocfs2_init_xattr_value_extent_tree(struct ocfs2_extent_tree *et,
384 					struct inode *inode,
385 					struct ocfs2_xattr_value_buf *vb)
386 {
387 	__ocfs2_init_extent_tree(et, inode, vb->vb_bh, vb->vb_access, vb,
388 				 &ocfs2_xattr_value_et_ops);
389 }
390 
391 void ocfs2_init_dx_root_extent_tree(struct ocfs2_extent_tree *et,
392 				    struct inode *inode,
393 				    struct buffer_head *bh)
394 {
395 	__ocfs2_init_extent_tree(et, inode, bh, ocfs2_journal_access_dr,
396 				 NULL, &ocfs2_dx_root_et_ops);
397 }
398 
399 static inline void ocfs2_et_set_last_eb_blk(struct ocfs2_extent_tree *et,
400 					    u64 new_last_eb_blk)
401 {
402 	et->et_ops->eo_set_last_eb_blk(et, new_last_eb_blk);
403 }
404 
405 static inline u64 ocfs2_et_get_last_eb_blk(struct ocfs2_extent_tree *et)
406 {
407 	return et->et_ops->eo_get_last_eb_blk(et);
408 }
409 
410 static inline void ocfs2_et_update_clusters(struct inode *inode,
411 					    struct ocfs2_extent_tree *et,
412 					    u32 clusters)
413 {
414 	et->et_ops->eo_update_clusters(inode, et, clusters);
415 }
416 
417 static inline int ocfs2_et_root_journal_access(handle_t *handle,
418 					       struct inode *inode,
419 					       struct ocfs2_extent_tree *et,
420 					       int type)
421 {
422 	return et->et_root_journal_access(handle, inode, et->et_root_bh,
423 					  type);
424 }
425 
426 static inline int ocfs2_et_insert_check(struct inode *inode,
427 					struct ocfs2_extent_tree *et,
428 					struct ocfs2_extent_rec *rec)
429 {
430 	int ret = 0;
431 
432 	if (et->et_ops->eo_insert_check)
433 		ret = et->et_ops->eo_insert_check(inode, et, rec);
434 	return ret;
435 }
436 
437 static inline int ocfs2_et_sanity_check(struct inode *inode,
438 					struct ocfs2_extent_tree *et)
439 {
440 	int ret = 0;
441 
442 	if (et->et_ops->eo_sanity_check)
443 		ret = et->et_ops->eo_sanity_check(inode, et);
444 	return ret;
445 }
446 
447 static void ocfs2_free_truncate_context(struct ocfs2_truncate_context *tc);
448 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt,
449 					 struct ocfs2_extent_block *eb);
450 
451 /*
452  * Structures which describe a path through a btree, and functions to
453  * manipulate them.
454  *
455  * The idea here is to be as generic as possible with the tree
456  * manipulation code.
457  */
458 struct ocfs2_path_item {
459 	struct buffer_head		*bh;
460 	struct ocfs2_extent_list	*el;
461 };
462 
463 #define OCFS2_MAX_PATH_DEPTH	5
464 
465 struct ocfs2_path {
466 	int				p_tree_depth;
467 	ocfs2_journal_access_func	p_root_access;
468 	struct ocfs2_path_item		p_node[OCFS2_MAX_PATH_DEPTH];
469 };
470 
471 #define path_root_bh(_path) ((_path)->p_node[0].bh)
472 #define path_root_el(_path) ((_path)->p_node[0].el)
473 #define path_root_access(_path)((_path)->p_root_access)
474 #define path_leaf_bh(_path) ((_path)->p_node[(_path)->p_tree_depth].bh)
475 #define path_leaf_el(_path) ((_path)->p_node[(_path)->p_tree_depth].el)
476 #define path_num_items(_path) ((_path)->p_tree_depth + 1)
477 
478 static int ocfs2_find_path(struct inode *inode, struct ocfs2_path *path,
479 			   u32 cpos);
480 static void ocfs2_adjust_rightmost_records(struct inode *inode,
481 					   handle_t *handle,
482 					   struct ocfs2_path *path,
483 					   struct ocfs2_extent_rec *insert_rec);
484 /*
485  * Reset the actual path elements so that we can re-use the structure
486  * to build another path. Generally, this involves freeing the buffer
487  * heads.
488  */
489 static void ocfs2_reinit_path(struct ocfs2_path *path, int keep_root)
490 {
491 	int i, start = 0, depth = 0;
492 	struct ocfs2_path_item *node;
493 
494 	if (keep_root)
495 		start = 1;
496 
497 	for(i = start; i < path_num_items(path); i++) {
498 		node = &path->p_node[i];
499 
500 		brelse(node->bh);
501 		node->bh = NULL;
502 		node->el = NULL;
503 	}
504 
505 	/*
506 	 * Tree depth may change during truncate, or insert. If we're
507 	 * keeping the root extent list, then make sure that our path
508 	 * structure reflects the proper depth.
509 	 */
510 	if (keep_root)
511 		depth = le16_to_cpu(path_root_el(path)->l_tree_depth);
512 	else
513 		path_root_access(path) = NULL;
514 
515 	path->p_tree_depth = depth;
516 }
517 
518 static void ocfs2_free_path(struct ocfs2_path *path)
519 {
520 	if (path) {
521 		ocfs2_reinit_path(path, 0);
522 		kfree(path);
523 	}
524 }
525 
526 /*
527  * All the elements of src into dest. After this call, src could be freed
528  * without affecting dest.
529  *
530  * Both paths should have the same root. Any non-root elements of dest
531  * will be freed.
532  */
533 static void ocfs2_cp_path(struct ocfs2_path *dest, struct ocfs2_path *src)
534 {
535 	int i;
536 
537 	BUG_ON(path_root_bh(dest) != path_root_bh(src));
538 	BUG_ON(path_root_el(dest) != path_root_el(src));
539 	BUG_ON(path_root_access(dest) != path_root_access(src));
540 
541 	ocfs2_reinit_path(dest, 1);
542 
543 	for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) {
544 		dest->p_node[i].bh = src->p_node[i].bh;
545 		dest->p_node[i].el = src->p_node[i].el;
546 
547 		if (dest->p_node[i].bh)
548 			get_bh(dest->p_node[i].bh);
549 	}
550 }
551 
552 /*
553  * Make the *dest path the same as src and re-initialize src path to
554  * have a root only.
555  */
556 static void ocfs2_mv_path(struct ocfs2_path *dest, struct ocfs2_path *src)
557 {
558 	int i;
559 
560 	BUG_ON(path_root_bh(dest) != path_root_bh(src));
561 	BUG_ON(path_root_access(dest) != path_root_access(src));
562 
563 	for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) {
564 		brelse(dest->p_node[i].bh);
565 
566 		dest->p_node[i].bh = src->p_node[i].bh;
567 		dest->p_node[i].el = src->p_node[i].el;
568 
569 		src->p_node[i].bh = NULL;
570 		src->p_node[i].el = NULL;
571 	}
572 }
573 
574 /*
575  * Insert an extent block at given index.
576  *
577  * This will not take an additional reference on eb_bh.
578  */
579 static inline void ocfs2_path_insert_eb(struct ocfs2_path *path, int index,
580 					struct buffer_head *eb_bh)
581 {
582 	struct ocfs2_extent_block *eb = (struct ocfs2_extent_block *)eb_bh->b_data;
583 
584 	/*
585 	 * Right now, no root bh is an extent block, so this helps
586 	 * catch code errors with dinode trees. The assertion can be
587 	 * safely removed if we ever need to insert extent block
588 	 * structures at the root.
589 	 */
590 	BUG_ON(index == 0);
591 
592 	path->p_node[index].bh = eb_bh;
593 	path->p_node[index].el = &eb->h_list;
594 }
595 
596 static struct ocfs2_path *ocfs2_new_path(struct buffer_head *root_bh,
597 					 struct ocfs2_extent_list *root_el,
598 					 ocfs2_journal_access_func access)
599 {
600 	struct ocfs2_path *path;
601 
602 	BUG_ON(le16_to_cpu(root_el->l_tree_depth) >= OCFS2_MAX_PATH_DEPTH);
603 
604 	path = kzalloc(sizeof(*path), GFP_NOFS);
605 	if (path) {
606 		path->p_tree_depth = le16_to_cpu(root_el->l_tree_depth);
607 		get_bh(root_bh);
608 		path_root_bh(path) = root_bh;
609 		path_root_el(path) = root_el;
610 		path_root_access(path) = access;
611 	}
612 
613 	return path;
614 }
615 
616 static struct ocfs2_path *ocfs2_new_path_from_path(struct ocfs2_path *path)
617 {
618 	return ocfs2_new_path(path_root_bh(path), path_root_el(path),
619 			      path_root_access(path));
620 }
621 
622 static struct ocfs2_path *ocfs2_new_path_from_et(struct ocfs2_extent_tree *et)
623 {
624 	return ocfs2_new_path(et->et_root_bh, et->et_root_el,
625 			      et->et_root_journal_access);
626 }
627 
628 /*
629  * Journal the buffer at depth idx.  All idx>0 are extent_blocks,
630  * otherwise it's the root_access function.
631  *
632  * I don't like the way this function's name looks next to
633  * ocfs2_journal_access_path(), but I don't have a better one.
634  */
635 static int ocfs2_path_bh_journal_access(handle_t *handle,
636 					struct inode *inode,
637 					struct ocfs2_path *path,
638 					int idx)
639 {
640 	ocfs2_journal_access_func access = path_root_access(path);
641 
642 	if (!access)
643 		access = ocfs2_journal_access;
644 
645 	if (idx)
646 		access = ocfs2_journal_access_eb;
647 
648 	return access(handle, inode, path->p_node[idx].bh,
649 		      OCFS2_JOURNAL_ACCESS_WRITE);
650 }
651 
652 /*
653  * Convenience function to journal all components in a path.
654  */
655 static int ocfs2_journal_access_path(struct inode *inode, handle_t *handle,
656 				     struct ocfs2_path *path)
657 {
658 	int i, ret = 0;
659 
660 	if (!path)
661 		goto out;
662 
663 	for(i = 0; i < path_num_items(path); i++) {
664 		ret = ocfs2_path_bh_journal_access(handle, inode, path, i);
665 		if (ret < 0) {
666 			mlog_errno(ret);
667 			goto out;
668 		}
669 	}
670 
671 out:
672 	return ret;
673 }
674 
675 /*
676  * Return the index of the extent record which contains cluster #v_cluster.
677  * -1 is returned if it was not found.
678  *
679  * Should work fine on interior and exterior nodes.
680  */
681 int ocfs2_search_extent_list(struct ocfs2_extent_list *el, u32 v_cluster)
682 {
683 	int ret = -1;
684 	int i;
685 	struct ocfs2_extent_rec *rec;
686 	u32 rec_end, rec_start, clusters;
687 
688 	for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) {
689 		rec = &el->l_recs[i];
690 
691 		rec_start = le32_to_cpu(rec->e_cpos);
692 		clusters = ocfs2_rec_clusters(el, rec);
693 
694 		rec_end = rec_start + clusters;
695 
696 		if (v_cluster >= rec_start && v_cluster < rec_end) {
697 			ret = i;
698 			break;
699 		}
700 	}
701 
702 	return ret;
703 }
704 
705 enum ocfs2_contig_type {
706 	CONTIG_NONE = 0,
707 	CONTIG_LEFT,
708 	CONTIG_RIGHT,
709 	CONTIG_LEFTRIGHT,
710 };
711 
712 
713 /*
714  * NOTE: ocfs2_block_extent_contig(), ocfs2_extents_adjacent() and
715  * ocfs2_extent_contig only work properly against leaf nodes!
716  */
717 static int ocfs2_block_extent_contig(struct super_block *sb,
718 				     struct ocfs2_extent_rec *ext,
719 				     u64 blkno)
720 {
721 	u64 blk_end = le64_to_cpu(ext->e_blkno);
722 
723 	blk_end += ocfs2_clusters_to_blocks(sb,
724 				    le16_to_cpu(ext->e_leaf_clusters));
725 
726 	return blkno == blk_end;
727 }
728 
729 static int ocfs2_extents_adjacent(struct ocfs2_extent_rec *left,
730 				  struct ocfs2_extent_rec *right)
731 {
732 	u32 left_range;
733 
734 	left_range = le32_to_cpu(left->e_cpos) +
735 		le16_to_cpu(left->e_leaf_clusters);
736 
737 	return (left_range == le32_to_cpu(right->e_cpos));
738 }
739 
740 static enum ocfs2_contig_type
741 	ocfs2_extent_contig(struct inode *inode,
742 			    struct ocfs2_extent_rec *ext,
743 			    struct ocfs2_extent_rec *insert_rec)
744 {
745 	u64 blkno = le64_to_cpu(insert_rec->e_blkno);
746 
747 	/*
748 	 * Refuse to coalesce extent records with different flag
749 	 * fields - we don't want to mix unwritten extents with user
750 	 * data.
751 	 */
752 	if (ext->e_flags != insert_rec->e_flags)
753 		return CONTIG_NONE;
754 
755 	if (ocfs2_extents_adjacent(ext, insert_rec) &&
756 	    ocfs2_block_extent_contig(inode->i_sb, ext, blkno))
757 			return CONTIG_RIGHT;
758 
759 	blkno = le64_to_cpu(ext->e_blkno);
760 	if (ocfs2_extents_adjacent(insert_rec, ext) &&
761 	    ocfs2_block_extent_contig(inode->i_sb, insert_rec, blkno))
762 		return CONTIG_LEFT;
763 
764 	return CONTIG_NONE;
765 }
766 
767 /*
768  * NOTE: We can have pretty much any combination of contiguousness and
769  * appending.
770  *
771  * The usefulness of APPEND_TAIL is more in that it lets us know that
772  * we'll have to update the path to that leaf.
773  */
774 enum ocfs2_append_type {
775 	APPEND_NONE = 0,
776 	APPEND_TAIL,
777 };
778 
779 enum ocfs2_split_type {
780 	SPLIT_NONE = 0,
781 	SPLIT_LEFT,
782 	SPLIT_RIGHT,
783 };
784 
785 struct ocfs2_insert_type {
786 	enum ocfs2_split_type	ins_split;
787 	enum ocfs2_append_type	ins_appending;
788 	enum ocfs2_contig_type	ins_contig;
789 	int			ins_contig_index;
790 	int			ins_tree_depth;
791 };
792 
793 struct ocfs2_merge_ctxt {
794 	enum ocfs2_contig_type	c_contig_type;
795 	int			c_has_empty_extent;
796 	int			c_split_covers_rec;
797 };
798 
799 static int ocfs2_validate_extent_block(struct super_block *sb,
800 				       struct buffer_head *bh)
801 {
802 	int rc;
803 	struct ocfs2_extent_block *eb =
804 		(struct ocfs2_extent_block *)bh->b_data;
805 
806 	mlog(0, "Validating extent block %llu\n",
807 	     (unsigned long long)bh->b_blocknr);
808 
809 	BUG_ON(!buffer_uptodate(bh));
810 
811 	/*
812 	 * If the ecc fails, we return the error but otherwise
813 	 * leave the filesystem running.  We know any error is
814 	 * local to this block.
815 	 */
816 	rc = ocfs2_validate_meta_ecc(sb, bh->b_data, &eb->h_check);
817 	if (rc) {
818 		mlog(ML_ERROR, "Checksum failed for extent block %llu\n",
819 		     (unsigned long long)bh->b_blocknr);
820 		return rc;
821 	}
822 
823 	/*
824 	 * Errors after here are fatal.
825 	 */
826 
827 	if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
828 		ocfs2_error(sb,
829 			    "Extent block #%llu has bad signature %.*s",
830 			    (unsigned long long)bh->b_blocknr, 7,
831 			    eb->h_signature);
832 		return -EINVAL;
833 	}
834 
835 	if (le64_to_cpu(eb->h_blkno) != bh->b_blocknr) {
836 		ocfs2_error(sb,
837 			    "Extent block #%llu has an invalid h_blkno "
838 			    "of %llu",
839 			    (unsigned long long)bh->b_blocknr,
840 			    (unsigned long long)le64_to_cpu(eb->h_blkno));
841 		return -EINVAL;
842 	}
843 
844 	if (le32_to_cpu(eb->h_fs_generation) != OCFS2_SB(sb)->fs_generation) {
845 		ocfs2_error(sb,
846 			    "Extent block #%llu has an invalid "
847 			    "h_fs_generation of #%u",
848 			    (unsigned long long)bh->b_blocknr,
849 			    le32_to_cpu(eb->h_fs_generation));
850 		return -EINVAL;
851 	}
852 
853 	return 0;
854 }
855 
856 int ocfs2_read_extent_block(struct inode *inode, u64 eb_blkno,
857 			    struct buffer_head **bh)
858 {
859 	int rc;
860 	struct buffer_head *tmp = *bh;
861 
862 	rc = ocfs2_read_block(INODE_CACHE(inode), eb_blkno, &tmp,
863 			      ocfs2_validate_extent_block);
864 
865 	/* If ocfs2_read_block() got us a new bh, pass it up. */
866 	if (!rc && !*bh)
867 		*bh = tmp;
868 
869 	return rc;
870 }
871 
872 
873 /*
874  * How many free extents have we got before we need more meta data?
875  */
876 int ocfs2_num_free_extents(struct ocfs2_super *osb,
877 			   struct inode *inode,
878 			   struct ocfs2_extent_tree *et)
879 {
880 	int retval;
881 	struct ocfs2_extent_list *el = NULL;
882 	struct ocfs2_extent_block *eb;
883 	struct buffer_head *eb_bh = NULL;
884 	u64 last_eb_blk = 0;
885 
886 	mlog_entry_void();
887 
888 	el = et->et_root_el;
889 	last_eb_blk = ocfs2_et_get_last_eb_blk(et);
890 
891 	if (last_eb_blk) {
892 		retval = ocfs2_read_extent_block(inode, last_eb_blk, &eb_bh);
893 		if (retval < 0) {
894 			mlog_errno(retval);
895 			goto bail;
896 		}
897 		eb = (struct ocfs2_extent_block *) eb_bh->b_data;
898 		el = &eb->h_list;
899 	}
900 
901 	BUG_ON(el->l_tree_depth != 0);
902 
903 	retval = le16_to_cpu(el->l_count) - le16_to_cpu(el->l_next_free_rec);
904 bail:
905 	brelse(eb_bh);
906 
907 	mlog_exit(retval);
908 	return retval;
909 }
910 
911 /* expects array to already be allocated
912  *
913  * sets h_signature, h_blkno, h_suballoc_bit, h_suballoc_slot, and
914  * l_count for you
915  */
916 static int ocfs2_create_new_meta_bhs(struct ocfs2_super *osb,
917 				     handle_t *handle,
918 				     struct inode *inode,
919 				     int wanted,
920 				     struct ocfs2_alloc_context *meta_ac,
921 				     struct buffer_head *bhs[])
922 {
923 	int count, status, i;
924 	u16 suballoc_bit_start;
925 	u32 num_got;
926 	u64 first_blkno;
927 	struct ocfs2_extent_block *eb;
928 
929 	mlog_entry_void();
930 
931 	count = 0;
932 	while (count < wanted) {
933 		status = ocfs2_claim_metadata(osb,
934 					      handle,
935 					      meta_ac,
936 					      wanted - count,
937 					      &suballoc_bit_start,
938 					      &num_got,
939 					      &first_blkno);
940 		if (status < 0) {
941 			mlog_errno(status);
942 			goto bail;
943 		}
944 
945 		for(i = count;  i < (num_got + count); i++) {
946 			bhs[i] = sb_getblk(osb->sb, first_blkno);
947 			if (bhs[i] == NULL) {
948 				status = -EIO;
949 				mlog_errno(status);
950 				goto bail;
951 			}
952 			ocfs2_set_new_buffer_uptodate(INODE_CACHE(inode),
953 						      bhs[i]);
954 
955 			status = ocfs2_journal_access_eb(handle, inode, bhs[i],
956 							 OCFS2_JOURNAL_ACCESS_CREATE);
957 			if (status < 0) {
958 				mlog_errno(status);
959 				goto bail;
960 			}
961 
962 			memset(bhs[i]->b_data, 0, osb->sb->s_blocksize);
963 			eb = (struct ocfs2_extent_block *) bhs[i]->b_data;
964 			/* Ok, setup the minimal stuff here. */
965 			strcpy(eb->h_signature, OCFS2_EXTENT_BLOCK_SIGNATURE);
966 			eb->h_blkno = cpu_to_le64(first_blkno);
967 			eb->h_fs_generation = cpu_to_le32(osb->fs_generation);
968 			eb->h_suballoc_slot = cpu_to_le16(osb->slot_num);
969 			eb->h_suballoc_bit = cpu_to_le16(suballoc_bit_start);
970 			eb->h_list.l_count =
971 				cpu_to_le16(ocfs2_extent_recs_per_eb(osb->sb));
972 
973 			suballoc_bit_start++;
974 			first_blkno++;
975 
976 			/* We'll also be dirtied by the caller, so
977 			 * this isn't absolutely necessary. */
978 			status = ocfs2_journal_dirty(handle, bhs[i]);
979 			if (status < 0) {
980 				mlog_errno(status);
981 				goto bail;
982 			}
983 		}
984 
985 		count += num_got;
986 	}
987 
988 	status = 0;
989 bail:
990 	if (status < 0) {
991 		for(i = 0; i < wanted; i++) {
992 			brelse(bhs[i]);
993 			bhs[i] = NULL;
994 		}
995 	}
996 	mlog_exit(status);
997 	return status;
998 }
999 
1000 /*
1001  * Helper function for ocfs2_add_branch() and ocfs2_shift_tree_depth().
1002  *
1003  * Returns the sum of the rightmost extent rec logical offset and
1004  * cluster count.
1005  *
1006  * ocfs2_add_branch() uses this to determine what logical cluster
1007  * value should be populated into the leftmost new branch records.
1008  *
1009  * ocfs2_shift_tree_depth() uses this to determine the # clusters
1010  * value for the new topmost tree record.
1011  */
1012 static inline u32 ocfs2_sum_rightmost_rec(struct ocfs2_extent_list  *el)
1013 {
1014 	int i;
1015 
1016 	i = le16_to_cpu(el->l_next_free_rec) - 1;
1017 
1018 	return le32_to_cpu(el->l_recs[i].e_cpos) +
1019 		ocfs2_rec_clusters(el, &el->l_recs[i]);
1020 }
1021 
1022 /*
1023  * Change range of the branches in the right most path according to the leaf
1024  * extent block's rightmost record.
1025  */
1026 static int ocfs2_adjust_rightmost_branch(handle_t *handle,
1027 					 struct inode *inode,
1028 					 struct ocfs2_extent_tree *et)
1029 {
1030 	int status;
1031 	struct ocfs2_path *path = NULL;
1032 	struct ocfs2_extent_list *el;
1033 	struct ocfs2_extent_rec *rec;
1034 
1035 	path = ocfs2_new_path_from_et(et);
1036 	if (!path) {
1037 		status = -ENOMEM;
1038 		return status;
1039 	}
1040 
1041 	status = ocfs2_find_path(inode, path, UINT_MAX);
1042 	if (status < 0) {
1043 		mlog_errno(status);
1044 		goto out;
1045 	}
1046 
1047 	status = ocfs2_extend_trans(handle, path_num_items(path) +
1048 				    handle->h_buffer_credits);
1049 	if (status < 0) {
1050 		mlog_errno(status);
1051 		goto out;
1052 	}
1053 
1054 	status = ocfs2_journal_access_path(inode, handle, path);
1055 	if (status < 0) {
1056 		mlog_errno(status);
1057 		goto out;
1058 	}
1059 
1060 	el = path_leaf_el(path);
1061 	rec = &el->l_recs[le32_to_cpu(el->l_next_free_rec) - 1];
1062 
1063 	ocfs2_adjust_rightmost_records(inode, handle, path, rec);
1064 
1065 out:
1066 	ocfs2_free_path(path);
1067 	return status;
1068 }
1069 
1070 /*
1071  * Add an entire tree branch to our inode. eb_bh is the extent block
1072  * to start at, if we don't want to start the branch at the dinode
1073  * structure.
1074  *
1075  * last_eb_bh is required as we have to update it's next_leaf pointer
1076  * for the new last extent block.
1077  *
1078  * the new branch will be 'empty' in the sense that every block will
1079  * contain a single record with cluster count == 0.
1080  */
1081 static int ocfs2_add_branch(struct ocfs2_super *osb,
1082 			    handle_t *handle,
1083 			    struct inode *inode,
1084 			    struct ocfs2_extent_tree *et,
1085 			    struct buffer_head *eb_bh,
1086 			    struct buffer_head **last_eb_bh,
1087 			    struct ocfs2_alloc_context *meta_ac)
1088 {
1089 	int status, new_blocks, i;
1090 	u64 next_blkno, new_last_eb_blk;
1091 	struct buffer_head *bh;
1092 	struct buffer_head **new_eb_bhs = NULL;
1093 	struct ocfs2_extent_block *eb;
1094 	struct ocfs2_extent_list  *eb_el;
1095 	struct ocfs2_extent_list  *el;
1096 	u32 new_cpos, root_end;
1097 
1098 	mlog_entry_void();
1099 
1100 	BUG_ON(!last_eb_bh || !*last_eb_bh);
1101 
1102 	if (eb_bh) {
1103 		eb = (struct ocfs2_extent_block *) eb_bh->b_data;
1104 		el = &eb->h_list;
1105 	} else
1106 		el = et->et_root_el;
1107 
1108 	/* we never add a branch to a leaf. */
1109 	BUG_ON(!el->l_tree_depth);
1110 
1111 	new_blocks = le16_to_cpu(el->l_tree_depth);
1112 
1113 	eb = (struct ocfs2_extent_block *)(*last_eb_bh)->b_data;
1114 	new_cpos = ocfs2_sum_rightmost_rec(&eb->h_list);
1115 	root_end = ocfs2_sum_rightmost_rec(et->et_root_el);
1116 
1117 	/*
1118 	 * If there is a gap before the root end and the real end
1119 	 * of the righmost leaf block, we need to remove the gap
1120 	 * between new_cpos and root_end first so that the tree
1121 	 * is consistent after we add a new branch(it will start
1122 	 * from new_cpos).
1123 	 */
1124 	if (root_end > new_cpos) {
1125 		mlog(0, "adjust the cluster end from %u to %u\n",
1126 		     root_end, new_cpos);
1127 		status = ocfs2_adjust_rightmost_branch(handle, inode, et);
1128 		if (status) {
1129 			mlog_errno(status);
1130 			goto bail;
1131 		}
1132 	}
1133 
1134 	/* allocate the number of new eb blocks we need */
1135 	new_eb_bhs = kcalloc(new_blocks, sizeof(struct buffer_head *),
1136 			     GFP_KERNEL);
1137 	if (!new_eb_bhs) {
1138 		status = -ENOMEM;
1139 		mlog_errno(status);
1140 		goto bail;
1141 	}
1142 
1143 	status = ocfs2_create_new_meta_bhs(osb, handle, inode, new_blocks,
1144 					   meta_ac, new_eb_bhs);
1145 	if (status < 0) {
1146 		mlog_errno(status);
1147 		goto bail;
1148 	}
1149 
1150 	/* Note: new_eb_bhs[new_blocks - 1] is the guy which will be
1151 	 * linked with the rest of the tree.
1152 	 * conversly, new_eb_bhs[0] is the new bottommost leaf.
1153 	 *
1154 	 * when we leave the loop, new_last_eb_blk will point to the
1155 	 * newest leaf, and next_blkno will point to the topmost extent
1156 	 * block. */
1157 	next_blkno = new_last_eb_blk = 0;
1158 	for(i = 0; i < new_blocks; i++) {
1159 		bh = new_eb_bhs[i];
1160 		eb = (struct ocfs2_extent_block *) bh->b_data;
1161 		/* ocfs2_create_new_meta_bhs() should create it right! */
1162 		BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb));
1163 		eb_el = &eb->h_list;
1164 
1165 		status = ocfs2_journal_access_eb(handle, inode, bh,
1166 						 OCFS2_JOURNAL_ACCESS_CREATE);
1167 		if (status < 0) {
1168 			mlog_errno(status);
1169 			goto bail;
1170 		}
1171 
1172 		eb->h_next_leaf_blk = 0;
1173 		eb_el->l_tree_depth = cpu_to_le16(i);
1174 		eb_el->l_next_free_rec = cpu_to_le16(1);
1175 		/*
1176 		 * This actually counts as an empty extent as
1177 		 * c_clusters == 0
1178 		 */
1179 		eb_el->l_recs[0].e_cpos = cpu_to_le32(new_cpos);
1180 		eb_el->l_recs[0].e_blkno = cpu_to_le64(next_blkno);
1181 		/*
1182 		 * eb_el isn't always an interior node, but even leaf
1183 		 * nodes want a zero'd flags and reserved field so
1184 		 * this gets the whole 32 bits regardless of use.
1185 		 */
1186 		eb_el->l_recs[0].e_int_clusters = cpu_to_le32(0);
1187 		if (!eb_el->l_tree_depth)
1188 			new_last_eb_blk = le64_to_cpu(eb->h_blkno);
1189 
1190 		status = ocfs2_journal_dirty(handle, bh);
1191 		if (status < 0) {
1192 			mlog_errno(status);
1193 			goto bail;
1194 		}
1195 
1196 		next_blkno = le64_to_cpu(eb->h_blkno);
1197 	}
1198 
1199 	/* This is a bit hairy. We want to update up to three blocks
1200 	 * here without leaving any of them in an inconsistent state
1201 	 * in case of error. We don't have to worry about
1202 	 * journal_dirty erroring as it won't unless we've aborted the
1203 	 * handle (in which case we would never be here) so reserving
1204 	 * the write with journal_access is all we need to do. */
1205 	status = ocfs2_journal_access_eb(handle, inode, *last_eb_bh,
1206 					 OCFS2_JOURNAL_ACCESS_WRITE);
1207 	if (status < 0) {
1208 		mlog_errno(status);
1209 		goto bail;
1210 	}
1211 	status = ocfs2_et_root_journal_access(handle, inode, et,
1212 					      OCFS2_JOURNAL_ACCESS_WRITE);
1213 	if (status < 0) {
1214 		mlog_errno(status);
1215 		goto bail;
1216 	}
1217 	if (eb_bh) {
1218 		status = ocfs2_journal_access_eb(handle, inode, eb_bh,
1219 						 OCFS2_JOURNAL_ACCESS_WRITE);
1220 		if (status < 0) {
1221 			mlog_errno(status);
1222 			goto bail;
1223 		}
1224 	}
1225 
1226 	/* Link the new branch into the rest of the tree (el will
1227 	 * either be on the root_bh, or the extent block passed in. */
1228 	i = le16_to_cpu(el->l_next_free_rec);
1229 	el->l_recs[i].e_blkno = cpu_to_le64(next_blkno);
1230 	el->l_recs[i].e_cpos = cpu_to_le32(new_cpos);
1231 	el->l_recs[i].e_int_clusters = 0;
1232 	le16_add_cpu(&el->l_next_free_rec, 1);
1233 
1234 	/* fe needs a new last extent block pointer, as does the
1235 	 * next_leaf on the previously last-extent-block. */
1236 	ocfs2_et_set_last_eb_blk(et, new_last_eb_blk);
1237 
1238 	eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data;
1239 	eb->h_next_leaf_blk = cpu_to_le64(new_last_eb_blk);
1240 
1241 	status = ocfs2_journal_dirty(handle, *last_eb_bh);
1242 	if (status < 0)
1243 		mlog_errno(status);
1244 	status = ocfs2_journal_dirty(handle, et->et_root_bh);
1245 	if (status < 0)
1246 		mlog_errno(status);
1247 	if (eb_bh) {
1248 		status = ocfs2_journal_dirty(handle, eb_bh);
1249 		if (status < 0)
1250 			mlog_errno(status);
1251 	}
1252 
1253 	/*
1254 	 * Some callers want to track the rightmost leaf so pass it
1255 	 * back here.
1256 	 */
1257 	brelse(*last_eb_bh);
1258 	get_bh(new_eb_bhs[0]);
1259 	*last_eb_bh = new_eb_bhs[0];
1260 
1261 	status = 0;
1262 bail:
1263 	if (new_eb_bhs) {
1264 		for (i = 0; i < new_blocks; i++)
1265 			brelse(new_eb_bhs[i]);
1266 		kfree(new_eb_bhs);
1267 	}
1268 
1269 	mlog_exit(status);
1270 	return status;
1271 }
1272 
1273 /*
1274  * adds another level to the allocation tree.
1275  * returns back the new extent block so you can add a branch to it
1276  * after this call.
1277  */
1278 static int ocfs2_shift_tree_depth(struct ocfs2_super *osb,
1279 				  handle_t *handle,
1280 				  struct inode *inode,
1281 				  struct ocfs2_extent_tree *et,
1282 				  struct ocfs2_alloc_context *meta_ac,
1283 				  struct buffer_head **ret_new_eb_bh)
1284 {
1285 	int status, i;
1286 	u32 new_clusters;
1287 	struct buffer_head *new_eb_bh = NULL;
1288 	struct ocfs2_extent_block *eb;
1289 	struct ocfs2_extent_list  *root_el;
1290 	struct ocfs2_extent_list  *eb_el;
1291 
1292 	mlog_entry_void();
1293 
1294 	status = ocfs2_create_new_meta_bhs(osb, handle, inode, 1, meta_ac,
1295 					   &new_eb_bh);
1296 	if (status < 0) {
1297 		mlog_errno(status);
1298 		goto bail;
1299 	}
1300 
1301 	eb = (struct ocfs2_extent_block *) new_eb_bh->b_data;
1302 	/* ocfs2_create_new_meta_bhs() should create it right! */
1303 	BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb));
1304 
1305 	eb_el = &eb->h_list;
1306 	root_el = et->et_root_el;
1307 
1308 	status = ocfs2_journal_access_eb(handle, inode, new_eb_bh,
1309 					 OCFS2_JOURNAL_ACCESS_CREATE);
1310 	if (status < 0) {
1311 		mlog_errno(status);
1312 		goto bail;
1313 	}
1314 
1315 	/* copy the root extent list data into the new extent block */
1316 	eb_el->l_tree_depth = root_el->l_tree_depth;
1317 	eb_el->l_next_free_rec = root_el->l_next_free_rec;
1318 	for (i = 0; i < le16_to_cpu(root_el->l_next_free_rec); i++)
1319 		eb_el->l_recs[i] = root_el->l_recs[i];
1320 
1321 	status = ocfs2_journal_dirty(handle, new_eb_bh);
1322 	if (status < 0) {
1323 		mlog_errno(status);
1324 		goto bail;
1325 	}
1326 
1327 	status = ocfs2_et_root_journal_access(handle, inode, et,
1328 					      OCFS2_JOURNAL_ACCESS_WRITE);
1329 	if (status < 0) {
1330 		mlog_errno(status);
1331 		goto bail;
1332 	}
1333 
1334 	new_clusters = ocfs2_sum_rightmost_rec(eb_el);
1335 
1336 	/* update root_bh now */
1337 	le16_add_cpu(&root_el->l_tree_depth, 1);
1338 	root_el->l_recs[0].e_cpos = 0;
1339 	root_el->l_recs[0].e_blkno = eb->h_blkno;
1340 	root_el->l_recs[0].e_int_clusters = cpu_to_le32(new_clusters);
1341 	for (i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++)
1342 		memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec));
1343 	root_el->l_next_free_rec = cpu_to_le16(1);
1344 
1345 	/* If this is our 1st tree depth shift, then last_eb_blk
1346 	 * becomes the allocated extent block */
1347 	if (root_el->l_tree_depth == cpu_to_le16(1))
1348 		ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
1349 
1350 	status = ocfs2_journal_dirty(handle, et->et_root_bh);
1351 	if (status < 0) {
1352 		mlog_errno(status);
1353 		goto bail;
1354 	}
1355 
1356 	*ret_new_eb_bh = new_eb_bh;
1357 	new_eb_bh = NULL;
1358 	status = 0;
1359 bail:
1360 	brelse(new_eb_bh);
1361 
1362 	mlog_exit(status);
1363 	return status;
1364 }
1365 
1366 /*
1367  * Should only be called when there is no space left in any of the
1368  * leaf nodes. What we want to do is find the lowest tree depth
1369  * non-leaf extent block with room for new records. There are three
1370  * valid results of this search:
1371  *
1372  * 1) a lowest extent block is found, then we pass it back in
1373  *    *lowest_eb_bh and return '0'
1374  *
1375  * 2) the search fails to find anything, but the root_el has room. We
1376  *    pass NULL back in *lowest_eb_bh, but still return '0'
1377  *
1378  * 3) the search fails to find anything AND the root_el is full, in
1379  *    which case we return > 0
1380  *
1381  * return status < 0 indicates an error.
1382  */
1383 static int ocfs2_find_branch_target(struct ocfs2_super *osb,
1384 				    struct inode *inode,
1385 				    struct ocfs2_extent_tree *et,
1386 				    struct buffer_head **target_bh)
1387 {
1388 	int status = 0, i;
1389 	u64 blkno;
1390 	struct ocfs2_extent_block *eb;
1391 	struct ocfs2_extent_list  *el;
1392 	struct buffer_head *bh = NULL;
1393 	struct buffer_head *lowest_bh = NULL;
1394 
1395 	mlog_entry_void();
1396 
1397 	*target_bh = NULL;
1398 
1399 	el = et->et_root_el;
1400 
1401 	while(le16_to_cpu(el->l_tree_depth) > 1) {
1402 		if (le16_to_cpu(el->l_next_free_rec) == 0) {
1403 			ocfs2_error(inode->i_sb, "Dinode %llu has empty "
1404 				    "extent list (next_free_rec == 0)",
1405 				    (unsigned long long)OCFS2_I(inode)->ip_blkno);
1406 			status = -EIO;
1407 			goto bail;
1408 		}
1409 		i = le16_to_cpu(el->l_next_free_rec) - 1;
1410 		blkno = le64_to_cpu(el->l_recs[i].e_blkno);
1411 		if (!blkno) {
1412 			ocfs2_error(inode->i_sb, "Dinode %llu has extent "
1413 				    "list where extent # %d has no physical "
1414 				    "block start",
1415 				    (unsigned long long)OCFS2_I(inode)->ip_blkno, i);
1416 			status = -EIO;
1417 			goto bail;
1418 		}
1419 
1420 		brelse(bh);
1421 		bh = NULL;
1422 
1423 		status = ocfs2_read_extent_block(inode, blkno, &bh);
1424 		if (status < 0) {
1425 			mlog_errno(status);
1426 			goto bail;
1427 		}
1428 
1429 		eb = (struct ocfs2_extent_block *) bh->b_data;
1430 		el = &eb->h_list;
1431 
1432 		if (le16_to_cpu(el->l_next_free_rec) <
1433 		    le16_to_cpu(el->l_count)) {
1434 			brelse(lowest_bh);
1435 			lowest_bh = bh;
1436 			get_bh(lowest_bh);
1437 		}
1438 	}
1439 
1440 	/* If we didn't find one and the fe doesn't have any room,
1441 	 * then return '1' */
1442 	el = et->et_root_el;
1443 	if (!lowest_bh && (el->l_next_free_rec == el->l_count))
1444 		status = 1;
1445 
1446 	*target_bh = lowest_bh;
1447 bail:
1448 	brelse(bh);
1449 
1450 	mlog_exit(status);
1451 	return status;
1452 }
1453 
1454 /*
1455  * Grow a b-tree so that it has more records.
1456  *
1457  * We might shift the tree depth in which case existing paths should
1458  * be considered invalid.
1459  *
1460  * Tree depth after the grow is returned via *final_depth.
1461  *
1462  * *last_eb_bh will be updated by ocfs2_add_branch().
1463  */
1464 static int ocfs2_grow_tree(struct inode *inode, handle_t *handle,
1465 			   struct ocfs2_extent_tree *et, int *final_depth,
1466 			   struct buffer_head **last_eb_bh,
1467 			   struct ocfs2_alloc_context *meta_ac)
1468 {
1469 	int ret, shift;
1470 	struct ocfs2_extent_list *el = et->et_root_el;
1471 	int depth = le16_to_cpu(el->l_tree_depth);
1472 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1473 	struct buffer_head *bh = NULL;
1474 
1475 	BUG_ON(meta_ac == NULL);
1476 
1477 	shift = ocfs2_find_branch_target(osb, inode, et, &bh);
1478 	if (shift < 0) {
1479 		ret = shift;
1480 		mlog_errno(ret);
1481 		goto out;
1482 	}
1483 
1484 	/* We traveled all the way to the bottom of the allocation tree
1485 	 * and didn't find room for any more extents - we need to add
1486 	 * another tree level */
1487 	if (shift) {
1488 		BUG_ON(bh);
1489 		mlog(0, "need to shift tree depth (current = %d)\n", depth);
1490 
1491 		/* ocfs2_shift_tree_depth will return us a buffer with
1492 		 * the new extent block (so we can pass that to
1493 		 * ocfs2_add_branch). */
1494 		ret = ocfs2_shift_tree_depth(osb, handle, inode, et,
1495 					     meta_ac, &bh);
1496 		if (ret < 0) {
1497 			mlog_errno(ret);
1498 			goto out;
1499 		}
1500 		depth++;
1501 		if (depth == 1) {
1502 			/*
1503 			 * Special case: we have room now if we shifted from
1504 			 * tree_depth 0, so no more work needs to be done.
1505 			 *
1506 			 * We won't be calling add_branch, so pass
1507 			 * back *last_eb_bh as the new leaf. At depth
1508 			 * zero, it should always be null so there's
1509 			 * no reason to brelse.
1510 			 */
1511 			BUG_ON(*last_eb_bh);
1512 			get_bh(bh);
1513 			*last_eb_bh = bh;
1514 			goto out;
1515 		}
1516 	}
1517 
1518 	/* call ocfs2_add_branch to add the final part of the tree with
1519 	 * the new data. */
1520 	mlog(0, "add branch. bh = %p\n", bh);
1521 	ret = ocfs2_add_branch(osb, handle, inode, et, bh, last_eb_bh,
1522 			       meta_ac);
1523 	if (ret < 0) {
1524 		mlog_errno(ret);
1525 		goto out;
1526 	}
1527 
1528 out:
1529 	if (final_depth)
1530 		*final_depth = depth;
1531 	brelse(bh);
1532 	return ret;
1533 }
1534 
1535 /*
1536  * This function will discard the rightmost extent record.
1537  */
1538 static void ocfs2_shift_records_right(struct ocfs2_extent_list *el)
1539 {
1540 	int next_free = le16_to_cpu(el->l_next_free_rec);
1541 	int count = le16_to_cpu(el->l_count);
1542 	unsigned int num_bytes;
1543 
1544 	BUG_ON(!next_free);
1545 	/* This will cause us to go off the end of our extent list. */
1546 	BUG_ON(next_free >= count);
1547 
1548 	num_bytes = sizeof(struct ocfs2_extent_rec) * next_free;
1549 
1550 	memmove(&el->l_recs[1], &el->l_recs[0], num_bytes);
1551 }
1552 
1553 static void ocfs2_rotate_leaf(struct ocfs2_extent_list *el,
1554 			      struct ocfs2_extent_rec *insert_rec)
1555 {
1556 	int i, insert_index, next_free, has_empty, num_bytes;
1557 	u32 insert_cpos = le32_to_cpu(insert_rec->e_cpos);
1558 	struct ocfs2_extent_rec *rec;
1559 
1560 	next_free = le16_to_cpu(el->l_next_free_rec);
1561 	has_empty = ocfs2_is_empty_extent(&el->l_recs[0]);
1562 
1563 	BUG_ON(!next_free);
1564 
1565 	/* The tree code before us didn't allow enough room in the leaf. */
1566 	BUG_ON(el->l_next_free_rec == el->l_count && !has_empty);
1567 
1568 	/*
1569 	 * The easiest way to approach this is to just remove the
1570 	 * empty extent and temporarily decrement next_free.
1571 	 */
1572 	if (has_empty) {
1573 		/*
1574 		 * If next_free was 1 (only an empty extent), this
1575 		 * loop won't execute, which is fine. We still want
1576 		 * the decrement above to happen.
1577 		 */
1578 		for(i = 0; i < (next_free - 1); i++)
1579 			el->l_recs[i] = el->l_recs[i+1];
1580 
1581 		next_free--;
1582 	}
1583 
1584 	/*
1585 	 * Figure out what the new record index should be.
1586 	 */
1587 	for(i = 0; i < next_free; i++) {
1588 		rec = &el->l_recs[i];
1589 
1590 		if (insert_cpos < le32_to_cpu(rec->e_cpos))
1591 			break;
1592 	}
1593 	insert_index = i;
1594 
1595 	mlog(0, "ins %u: index %d, has_empty %d, next_free %d, count %d\n",
1596 	     insert_cpos, insert_index, has_empty, next_free, le16_to_cpu(el->l_count));
1597 
1598 	BUG_ON(insert_index < 0);
1599 	BUG_ON(insert_index >= le16_to_cpu(el->l_count));
1600 	BUG_ON(insert_index > next_free);
1601 
1602 	/*
1603 	 * No need to memmove if we're just adding to the tail.
1604 	 */
1605 	if (insert_index != next_free) {
1606 		BUG_ON(next_free >= le16_to_cpu(el->l_count));
1607 
1608 		num_bytes = next_free - insert_index;
1609 		num_bytes *= sizeof(struct ocfs2_extent_rec);
1610 		memmove(&el->l_recs[insert_index + 1],
1611 			&el->l_recs[insert_index],
1612 			num_bytes);
1613 	}
1614 
1615 	/*
1616 	 * Either we had an empty extent, and need to re-increment or
1617 	 * there was no empty extent on a non full rightmost leaf node,
1618 	 * in which case we still need to increment.
1619 	 */
1620 	next_free++;
1621 	el->l_next_free_rec = cpu_to_le16(next_free);
1622 	/*
1623 	 * Make sure none of the math above just messed up our tree.
1624 	 */
1625 	BUG_ON(le16_to_cpu(el->l_next_free_rec) > le16_to_cpu(el->l_count));
1626 
1627 	el->l_recs[insert_index] = *insert_rec;
1628 
1629 }
1630 
1631 static void ocfs2_remove_empty_extent(struct ocfs2_extent_list *el)
1632 {
1633 	int size, num_recs = le16_to_cpu(el->l_next_free_rec);
1634 
1635 	BUG_ON(num_recs == 0);
1636 
1637 	if (ocfs2_is_empty_extent(&el->l_recs[0])) {
1638 		num_recs--;
1639 		size = num_recs * sizeof(struct ocfs2_extent_rec);
1640 		memmove(&el->l_recs[0], &el->l_recs[1], size);
1641 		memset(&el->l_recs[num_recs], 0,
1642 		       sizeof(struct ocfs2_extent_rec));
1643 		el->l_next_free_rec = cpu_to_le16(num_recs);
1644 	}
1645 }
1646 
1647 /*
1648  * Create an empty extent record .
1649  *
1650  * l_next_free_rec may be updated.
1651  *
1652  * If an empty extent already exists do nothing.
1653  */
1654 static void ocfs2_create_empty_extent(struct ocfs2_extent_list *el)
1655 {
1656 	int next_free = le16_to_cpu(el->l_next_free_rec);
1657 
1658 	BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
1659 
1660 	if (next_free == 0)
1661 		goto set_and_inc;
1662 
1663 	if (ocfs2_is_empty_extent(&el->l_recs[0]))
1664 		return;
1665 
1666 	mlog_bug_on_msg(el->l_count == el->l_next_free_rec,
1667 			"Asked to create an empty extent in a full list:\n"
1668 			"count = %u, tree depth = %u",
1669 			le16_to_cpu(el->l_count),
1670 			le16_to_cpu(el->l_tree_depth));
1671 
1672 	ocfs2_shift_records_right(el);
1673 
1674 set_and_inc:
1675 	le16_add_cpu(&el->l_next_free_rec, 1);
1676 	memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
1677 }
1678 
1679 /*
1680  * For a rotation which involves two leaf nodes, the "root node" is
1681  * the lowest level tree node which contains a path to both leafs. This
1682  * resulting set of information can be used to form a complete "subtree"
1683  *
1684  * This function is passed two full paths from the dinode down to a
1685  * pair of adjacent leaves. It's task is to figure out which path
1686  * index contains the subtree root - this can be the root index itself
1687  * in a worst-case rotation.
1688  *
1689  * The array index of the subtree root is passed back.
1690  */
1691 static int ocfs2_find_subtree_root(struct inode *inode,
1692 				   struct ocfs2_path *left,
1693 				   struct ocfs2_path *right)
1694 {
1695 	int i = 0;
1696 
1697 	/*
1698 	 * Check that the caller passed in two paths from the same tree.
1699 	 */
1700 	BUG_ON(path_root_bh(left) != path_root_bh(right));
1701 
1702 	do {
1703 		i++;
1704 
1705 		/*
1706 		 * The caller didn't pass two adjacent paths.
1707 		 */
1708 		mlog_bug_on_msg(i > left->p_tree_depth,
1709 				"Inode %lu, left depth %u, right depth %u\n"
1710 				"left leaf blk %llu, right leaf blk %llu\n",
1711 				inode->i_ino, left->p_tree_depth,
1712 				right->p_tree_depth,
1713 				(unsigned long long)path_leaf_bh(left)->b_blocknr,
1714 				(unsigned long long)path_leaf_bh(right)->b_blocknr);
1715 	} while (left->p_node[i].bh->b_blocknr ==
1716 		 right->p_node[i].bh->b_blocknr);
1717 
1718 	return i - 1;
1719 }
1720 
1721 typedef void (path_insert_t)(void *, struct buffer_head *);
1722 
1723 /*
1724  * Traverse a btree path in search of cpos, starting at root_el.
1725  *
1726  * This code can be called with a cpos larger than the tree, in which
1727  * case it will return the rightmost path.
1728  */
1729 static int __ocfs2_find_path(struct inode *inode,
1730 			     struct ocfs2_extent_list *root_el, u32 cpos,
1731 			     path_insert_t *func, void *data)
1732 {
1733 	int i, ret = 0;
1734 	u32 range;
1735 	u64 blkno;
1736 	struct buffer_head *bh = NULL;
1737 	struct ocfs2_extent_block *eb;
1738 	struct ocfs2_extent_list *el;
1739 	struct ocfs2_extent_rec *rec;
1740 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
1741 
1742 	el = root_el;
1743 	while (el->l_tree_depth) {
1744 		if (le16_to_cpu(el->l_next_free_rec) == 0) {
1745 			ocfs2_error(inode->i_sb,
1746 				    "Inode %llu has empty extent list at "
1747 				    "depth %u\n",
1748 				    (unsigned long long)oi->ip_blkno,
1749 				    le16_to_cpu(el->l_tree_depth));
1750 			ret = -EROFS;
1751 			goto out;
1752 
1753 		}
1754 
1755 		for(i = 0; i < le16_to_cpu(el->l_next_free_rec) - 1; i++) {
1756 			rec = &el->l_recs[i];
1757 
1758 			/*
1759 			 * In the case that cpos is off the allocation
1760 			 * tree, this should just wind up returning the
1761 			 * rightmost record.
1762 			 */
1763 			range = le32_to_cpu(rec->e_cpos) +
1764 				ocfs2_rec_clusters(el, rec);
1765 			if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range)
1766 			    break;
1767 		}
1768 
1769 		blkno = le64_to_cpu(el->l_recs[i].e_blkno);
1770 		if (blkno == 0) {
1771 			ocfs2_error(inode->i_sb,
1772 				    "Inode %llu has bad blkno in extent list "
1773 				    "at depth %u (index %d)\n",
1774 				    (unsigned long long)oi->ip_blkno,
1775 				    le16_to_cpu(el->l_tree_depth), i);
1776 			ret = -EROFS;
1777 			goto out;
1778 		}
1779 
1780 		brelse(bh);
1781 		bh = NULL;
1782 		ret = ocfs2_read_extent_block(inode, blkno, &bh);
1783 		if (ret) {
1784 			mlog_errno(ret);
1785 			goto out;
1786 		}
1787 
1788 		eb = (struct ocfs2_extent_block *) bh->b_data;
1789 		el = &eb->h_list;
1790 
1791 		if (le16_to_cpu(el->l_next_free_rec) >
1792 		    le16_to_cpu(el->l_count)) {
1793 			ocfs2_error(inode->i_sb,
1794 				    "Inode %llu has bad count in extent list "
1795 				    "at block %llu (next free=%u, count=%u)\n",
1796 				    (unsigned long long)oi->ip_blkno,
1797 				    (unsigned long long)bh->b_blocknr,
1798 				    le16_to_cpu(el->l_next_free_rec),
1799 				    le16_to_cpu(el->l_count));
1800 			ret = -EROFS;
1801 			goto out;
1802 		}
1803 
1804 		if (func)
1805 			func(data, bh);
1806 	}
1807 
1808 out:
1809 	/*
1810 	 * Catch any trailing bh that the loop didn't handle.
1811 	 */
1812 	brelse(bh);
1813 
1814 	return ret;
1815 }
1816 
1817 /*
1818  * Given an initialized path (that is, it has a valid root extent
1819  * list), this function will traverse the btree in search of the path
1820  * which would contain cpos.
1821  *
1822  * The path traveled is recorded in the path structure.
1823  *
1824  * Note that this will not do any comparisons on leaf node extent
1825  * records, so it will work fine in the case that we just added a tree
1826  * branch.
1827  */
1828 struct find_path_data {
1829 	int index;
1830 	struct ocfs2_path *path;
1831 };
1832 static void find_path_ins(void *data, struct buffer_head *bh)
1833 {
1834 	struct find_path_data *fp = data;
1835 
1836 	get_bh(bh);
1837 	ocfs2_path_insert_eb(fp->path, fp->index, bh);
1838 	fp->index++;
1839 }
1840 static int ocfs2_find_path(struct inode *inode, struct ocfs2_path *path,
1841 			   u32 cpos)
1842 {
1843 	struct find_path_data data;
1844 
1845 	data.index = 1;
1846 	data.path = path;
1847 	return __ocfs2_find_path(inode, path_root_el(path), cpos,
1848 				 find_path_ins, &data);
1849 }
1850 
1851 static void find_leaf_ins(void *data, struct buffer_head *bh)
1852 {
1853 	struct ocfs2_extent_block *eb =(struct ocfs2_extent_block *)bh->b_data;
1854 	struct ocfs2_extent_list *el = &eb->h_list;
1855 	struct buffer_head **ret = data;
1856 
1857 	/* We want to retain only the leaf block. */
1858 	if (le16_to_cpu(el->l_tree_depth) == 0) {
1859 		get_bh(bh);
1860 		*ret = bh;
1861 	}
1862 }
1863 /*
1864  * Find the leaf block in the tree which would contain cpos. No
1865  * checking of the actual leaf is done.
1866  *
1867  * Some paths want to call this instead of allocating a path structure
1868  * and calling ocfs2_find_path().
1869  *
1870  * This function doesn't handle non btree extent lists.
1871  */
1872 int ocfs2_find_leaf(struct inode *inode, struct ocfs2_extent_list *root_el,
1873 		    u32 cpos, struct buffer_head **leaf_bh)
1874 {
1875 	int ret;
1876 	struct buffer_head *bh = NULL;
1877 
1878 	ret = __ocfs2_find_path(inode, root_el, cpos, find_leaf_ins, &bh);
1879 	if (ret) {
1880 		mlog_errno(ret);
1881 		goto out;
1882 	}
1883 
1884 	*leaf_bh = bh;
1885 out:
1886 	return ret;
1887 }
1888 
1889 /*
1890  * Adjust the adjacent records (left_rec, right_rec) involved in a rotation.
1891  *
1892  * Basically, we've moved stuff around at the bottom of the tree and
1893  * we need to fix up the extent records above the changes to reflect
1894  * the new changes.
1895  *
1896  * left_rec: the record on the left.
1897  * left_child_el: is the child list pointed to by left_rec
1898  * right_rec: the record to the right of left_rec
1899  * right_child_el: is the child list pointed to by right_rec
1900  *
1901  * By definition, this only works on interior nodes.
1902  */
1903 static void ocfs2_adjust_adjacent_records(struct ocfs2_extent_rec *left_rec,
1904 				  struct ocfs2_extent_list *left_child_el,
1905 				  struct ocfs2_extent_rec *right_rec,
1906 				  struct ocfs2_extent_list *right_child_el)
1907 {
1908 	u32 left_clusters, right_end;
1909 
1910 	/*
1911 	 * Interior nodes never have holes. Their cpos is the cpos of
1912 	 * the leftmost record in their child list. Their cluster
1913 	 * count covers the full theoretical range of their child list
1914 	 * - the range between their cpos and the cpos of the record
1915 	 * immediately to their right.
1916 	 */
1917 	left_clusters = le32_to_cpu(right_child_el->l_recs[0].e_cpos);
1918 	if (!ocfs2_rec_clusters(right_child_el, &right_child_el->l_recs[0])) {
1919 		BUG_ON(right_child_el->l_tree_depth);
1920 		BUG_ON(le16_to_cpu(right_child_el->l_next_free_rec) <= 1);
1921 		left_clusters = le32_to_cpu(right_child_el->l_recs[1].e_cpos);
1922 	}
1923 	left_clusters -= le32_to_cpu(left_rec->e_cpos);
1924 	left_rec->e_int_clusters = cpu_to_le32(left_clusters);
1925 
1926 	/*
1927 	 * Calculate the rightmost cluster count boundary before
1928 	 * moving cpos - we will need to adjust clusters after
1929 	 * updating e_cpos to keep the same highest cluster count.
1930 	 */
1931 	right_end = le32_to_cpu(right_rec->e_cpos);
1932 	right_end += le32_to_cpu(right_rec->e_int_clusters);
1933 
1934 	right_rec->e_cpos = left_rec->e_cpos;
1935 	le32_add_cpu(&right_rec->e_cpos, left_clusters);
1936 
1937 	right_end -= le32_to_cpu(right_rec->e_cpos);
1938 	right_rec->e_int_clusters = cpu_to_le32(right_end);
1939 }
1940 
1941 /*
1942  * Adjust the adjacent root node records involved in a
1943  * rotation. left_el_blkno is passed in as a key so that we can easily
1944  * find it's index in the root list.
1945  */
1946 static void ocfs2_adjust_root_records(struct ocfs2_extent_list *root_el,
1947 				      struct ocfs2_extent_list *left_el,
1948 				      struct ocfs2_extent_list *right_el,
1949 				      u64 left_el_blkno)
1950 {
1951 	int i;
1952 
1953 	BUG_ON(le16_to_cpu(root_el->l_tree_depth) <=
1954 	       le16_to_cpu(left_el->l_tree_depth));
1955 
1956 	for(i = 0; i < le16_to_cpu(root_el->l_next_free_rec) - 1; i++) {
1957 		if (le64_to_cpu(root_el->l_recs[i].e_blkno) == left_el_blkno)
1958 			break;
1959 	}
1960 
1961 	/*
1962 	 * The path walking code should have never returned a root and
1963 	 * two paths which are not adjacent.
1964 	 */
1965 	BUG_ON(i >= (le16_to_cpu(root_el->l_next_free_rec) - 1));
1966 
1967 	ocfs2_adjust_adjacent_records(&root_el->l_recs[i], left_el,
1968 				      &root_el->l_recs[i + 1], right_el);
1969 }
1970 
1971 /*
1972  * We've changed a leaf block (in right_path) and need to reflect that
1973  * change back up the subtree.
1974  *
1975  * This happens in multiple places:
1976  *   - When we've moved an extent record from the left path leaf to the right
1977  *     path leaf to make room for an empty extent in the left path leaf.
1978  *   - When our insert into the right path leaf is at the leftmost edge
1979  *     and requires an update of the path immediately to it's left. This
1980  *     can occur at the end of some types of rotation and appending inserts.
1981  *   - When we've adjusted the last extent record in the left path leaf and the
1982  *     1st extent record in the right path leaf during cross extent block merge.
1983  */
1984 static void ocfs2_complete_edge_insert(struct inode *inode, handle_t *handle,
1985 				       struct ocfs2_path *left_path,
1986 				       struct ocfs2_path *right_path,
1987 				       int subtree_index)
1988 {
1989 	int ret, i, idx;
1990 	struct ocfs2_extent_list *el, *left_el, *right_el;
1991 	struct ocfs2_extent_rec *left_rec, *right_rec;
1992 	struct buffer_head *root_bh = left_path->p_node[subtree_index].bh;
1993 
1994 	/*
1995 	 * Update the counts and position values within all the
1996 	 * interior nodes to reflect the leaf rotation we just did.
1997 	 *
1998 	 * The root node is handled below the loop.
1999 	 *
2000 	 * We begin the loop with right_el and left_el pointing to the
2001 	 * leaf lists and work our way up.
2002 	 *
2003 	 * NOTE: within this loop, left_el and right_el always refer
2004 	 * to the *child* lists.
2005 	 */
2006 	left_el = path_leaf_el(left_path);
2007 	right_el = path_leaf_el(right_path);
2008 	for(i = left_path->p_tree_depth - 1; i > subtree_index; i--) {
2009 		mlog(0, "Adjust records at index %u\n", i);
2010 
2011 		/*
2012 		 * One nice property of knowing that all of these
2013 		 * nodes are below the root is that we only deal with
2014 		 * the leftmost right node record and the rightmost
2015 		 * left node record.
2016 		 */
2017 		el = left_path->p_node[i].el;
2018 		idx = le16_to_cpu(left_el->l_next_free_rec) - 1;
2019 		left_rec = &el->l_recs[idx];
2020 
2021 		el = right_path->p_node[i].el;
2022 		right_rec = &el->l_recs[0];
2023 
2024 		ocfs2_adjust_adjacent_records(left_rec, left_el, right_rec,
2025 					      right_el);
2026 
2027 		ret = ocfs2_journal_dirty(handle, left_path->p_node[i].bh);
2028 		if (ret)
2029 			mlog_errno(ret);
2030 
2031 		ret = ocfs2_journal_dirty(handle, right_path->p_node[i].bh);
2032 		if (ret)
2033 			mlog_errno(ret);
2034 
2035 		/*
2036 		 * Setup our list pointers now so that the current
2037 		 * parents become children in the next iteration.
2038 		 */
2039 		left_el = left_path->p_node[i].el;
2040 		right_el = right_path->p_node[i].el;
2041 	}
2042 
2043 	/*
2044 	 * At the root node, adjust the two adjacent records which
2045 	 * begin our path to the leaves.
2046 	 */
2047 
2048 	el = left_path->p_node[subtree_index].el;
2049 	left_el = left_path->p_node[subtree_index + 1].el;
2050 	right_el = right_path->p_node[subtree_index + 1].el;
2051 
2052 	ocfs2_adjust_root_records(el, left_el, right_el,
2053 				  left_path->p_node[subtree_index + 1].bh->b_blocknr);
2054 
2055 	root_bh = left_path->p_node[subtree_index].bh;
2056 
2057 	ret = ocfs2_journal_dirty(handle, root_bh);
2058 	if (ret)
2059 		mlog_errno(ret);
2060 }
2061 
2062 static int ocfs2_rotate_subtree_right(struct inode *inode,
2063 				      handle_t *handle,
2064 				      struct ocfs2_path *left_path,
2065 				      struct ocfs2_path *right_path,
2066 				      int subtree_index)
2067 {
2068 	int ret, i;
2069 	struct buffer_head *right_leaf_bh;
2070 	struct buffer_head *left_leaf_bh = NULL;
2071 	struct buffer_head *root_bh;
2072 	struct ocfs2_extent_list *right_el, *left_el;
2073 	struct ocfs2_extent_rec move_rec;
2074 
2075 	left_leaf_bh = path_leaf_bh(left_path);
2076 	left_el = path_leaf_el(left_path);
2077 
2078 	if (left_el->l_next_free_rec != left_el->l_count) {
2079 		ocfs2_error(inode->i_sb,
2080 			    "Inode %llu has non-full interior leaf node %llu"
2081 			    "(next free = %u)",
2082 			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
2083 			    (unsigned long long)left_leaf_bh->b_blocknr,
2084 			    le16_to_cpu(left_el->l_next_free_rec));
2085 		return -EROFS;
2086 	}
2087 
2088 	/*
2089 	 * This extent block may already have an empty record, so we
2090 	 * return early if so.
2091 	 */
2092 	if (ocfs2_is_empty_extent(&left_el->l_recs[0]))
2093 		return 0;
2094 
2095 	root_bh = left_path->p_node[subtree_index].bh;
2096 	BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
2097 
2098 	ret = ocfs2_path_bh_journal_access(handle, inode, right_path,
2099 					   subtree_index);
2100 	if (ret) {
2101 		mlog_errno(ret);
2102 		goto out;
2103 	}
2104 
2105 	for(i = subtree_index + 1; i < path_num_items(right_path); i++) {
2106 		ret = ocfs2_path_bh_journal_access(handle, inode,
2107 						   right_path, i);
2108 		if (ret) {
2109 			mlog_errno(ret);
2110 			goto out;
2111 		}
2112 
2113 		ret = ocfs2_path_bh_journal_access(handle, inode,
2114 						   left_path, i);
2115 		if (ret) {
2116 			mlog_errno(ret);
2117 			goto out;
2118 		}
2119 	}
2120 
2121 	right_leaf_bh = path_leaf_bh(right_path);
2122 	right_el = path_leaf_el(right_path);
2123 
2124 	/* This is a code error, not a disk corruption. */
2125 	mlog_bug_on_msg(!right_el->l_next_free_rec, "Inode %llu: Rotate fails "
2126 			"because rightmost leaf block %llu is empty\n",
2127 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
2128 			(unsigned long long)right_leaf_bh->b_blocknr);
2129 
2130 	ocfs2_create_empty_extent(right_el);
2131 
2132 	ret = ocfs2_journal_dirty(handle, right_leaf_bh);
2133 	if (ret) {
2134 		mlog_errno(ret);
2135 		goto out;
2136 	}
2137 
2138 	/* Do the copy now. */
2139 	i = le16_to_cpu(left_el->l_next_free_rec) - 1;
2140 	move_rec = left_el->l_recs[i];
2141 	right_el->l_recs[0] = move_rec;
2142 
2143 	/*
2144 	 * Clear out the record we just copied and shift everything
2145 	 * over, leaving an empty extent in the left leaf.
2146 	 *
2147 	 * We temporarily subtract from next_free_rec so that the
2148 	 * shift will lose the tail record (which is now defunct).
2149 	 */
2150 	le16_add_cpu(&left_el->l_next_free_rec, -1);
2151 	ocfs2_shift_records_right(left_el);
2152 	memset(&left_el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
2153 	le16_add_cpu(&left_el->l_next_free_rec, 1);
2154 
2155 	ret = ocfs2_journal_dirty(handle, left_leaf_bh);
2156 	if (ret) {
2157 		mlog_errno(ret);
2158 		goto out;
2159 	}
2160 
2161 	ocfs2_complete_edge_insert(inode, handle, left_path, right_path,
2162 				subtree_index);
2163 
2164 out:
2165 	return ret;
2166 }
2167 
2168 /*
2169  * Given a full path, determine what cpos value would return us a path
2170  * containing the leaf immediately to the left of the current one.
2171  *
2172  * Will return zero if the path passed in is already the leftmost path.
2173  */
2174 static int ocfs2_find_cpos_for_left_leaf(struct super_block *sb,
2175 					 struct ocfs2_path *path, u32 *cpos)
2176 {
2177 	int i, j, ret = 0;
2178 	u64 blkno;
2179 	struct ocfs2_extent_list *el;
2180 
2181 	BUG_ON(path->p_tree_depth == 0);
2182 
2183 	*cpos = 0;
2184 
2185 	blkno = path_leaf_bh(path)->b_blocknr;
2186 
2187 	/* Start at the tree node just above the leaf and work our way up. */
2188 	i = path->p_tree_depth - 1;
2189 	while (i >= 0) {
2190 		el = path->p_node[i].el;
2191 
2192 		/*
2193 		 * Find the extent record just before the one in our
2194 		 * path.
2195 		 */
2196 		for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) {
2197 			if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) {
2198 				if (j == 0) {
2199 					if (i == 0) {
2200 						/*
2201 						 * We've determined that the
2202 						 * path specified is already
2203 						 * the leftmost one - return a
2204 						 * cpos of zero.
2205 						 */
2206 						goto out;
2207 					}
2208 					/*
2209 					 * The leftmost record points to our
2210 					 * leaf - we need to travel up the
2211 					 * tree one level.
2212 					 */
2213 					goto next_node;
2214 				}
2215 
2216 				*cpos = le32_to_cpu(el->l_recs[j - 1].e_cpos);
2217 				*cpos = *cpos + ocfs2_rec_clusters(el,
2218 							   &el->l_recs[j - 1]);
2219 				*cpos = *cpos - 1;
2220 				goto out;
2221 			}
2222 		}
2223 
2224 		/*
2225 		 * If we got here, we never found a valid node where
2226 		 * the tree indicated one should be.
2227 		 */
2228 		ocfs2_error(sb,
2229 			    "Invalid extent tree at extent block %llu\n",
2230 			    (unsigned long long)blkno);
2231 		ret = -EROFS;
2232 		goto out;
2233 
2234 next_node:
2235 		blkno = path->p_node[i].bh->b_blocknr;
2236 		i--;
2237 	}
2238 
2239 out:
2240 	return ret;
2241 }
2242 
2243 /*
2244  * Extend the transaction by enough credits to complete the rotation,
2245  * and still leave at least the original number of credits allocated
2246  * to this transaction.
2247  */
2248 static int ocfs2_extend_rotate_transaction(handle_t *handle, int subtree_depth,
2249 					   int op_credits,
2250 					   struct ocfs2_path *path)
2251 {
2252 	int credits = (path->p_tree_depth - subtree_depth) * 2 + 1 + op_credits;
2253 
2254 	if (handle->h_buffer_credits < credits)
2255 		return ocfs2_extend_trans(handle, credits);
2256 
2257 	return 0;
2258 }
2259 
2260 /*
2261  * Trap the case where we're inserting into the theoretical range past
2262  * the _actual_ left leaf range. Otherwise, we'll rotate a record
2263  * whose cpos is less than ours into the right leaf.
2264  *
2265  * It's only necessary to look at the rightmost record of the left
2266  * leaf because the logic that calls us should ensure that the
2267  * theoretical ranges in the path components above the leaves are
2268  * correct.
2269  */
2270 static int ocfs2_rotate_requires_path_adjustment(struct ocfs2_path *left_path,
2271 						 u32 insert_cpos)
2272 {
2273 	struct ocfs2_extent_list *left_el;
2274 	struct ocfs2_extent_rec *rec;
2275 	int next_free;
2276 
2277 	left_el = path_leaf_el(left_path);
2278 	next_free = le16_to_cpu(left_el->l_next_free_rec);
2279 	rec = &left_el->l_recs[next_free - 1];
2280 
2281 	if (insert_cpos > le32_to_cpu(rec->e_cpos))
2282 		return 1;
2283 	return 0;
2284 }
2285 
2286 static int ocfs2_leftmost_rec_contains(struct ocfs2_extent_list *el, u32 cpos)
2287 {
2288 	int next_free = le16_to_cpu(el->l_next_free_rec);
2289 	unsigned int range;
2290 	struct ocfs2_extent_rec *rec;
2291 
2292 	if (next_free == 0)
2293 		return 0;
2294 
2295 	rec = &el->l_recs[0];
2296 	if (ocfs2_is_empty_extent(rec)) {
2297 		/* Empty list. */
2298 		if (next_free == 1)
2299 			return 0;
2300 		rec = &el->l_recs[1];
2301 	}
2302 
2303 	range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
2304 	if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range)
2305 		return 1;
2306 	return 0;
2307 }
2308 
2309 /*
2310  * Rotate all the records in a btree right one record, starting at insert_cpos.
2311  *
2312  * The path to the rightmost leaf should be passed in.
2313  *
2314  * The array is assumed to be large enough to hold an entire path (tree depth).
2315  *
2316  * Upon succesful return from this function:
2317  *
2318  * - The 'right_path' array will contain a path to the leaf block
2319  *   whose range contains e_cpos.
2320  * - That leaf block will have a single empty extent in list index 0.
2321  * - In the case that the rotation requires a post-insert update,
2322  *   *ret_left_path will contain a valid path which can be passed to
2323  *   ocfs2_insert_path().
2324  */
2325 static int ocfs2_rotate_tree_right(struct inode *inode,
2326 				   handle_t *handle,
2327 				   enum ocfs2_split_type split,
2328 				   u32 insert_cpos,
2329 				   struct ocfs2_path *right_path,
2330 				   struct ocfs2_path **ret_left_path)
2331 {
2332 	int ret, start, orig_credits = handle->h_buffer_credits;
2333 	u32 cpos;
2334 	struct ocfs2_path *left_path = NULL;
2335 
2336 	*ret_left_path = NULL;
2337 
2338 	left_path = ocfs2_new_path_from_path(right_path);
2339 	if (!left_path) {
2340 		ret = -ENOMEM;
2341 		mlog_errno(ret);
2342 		goto out;
2343 	}
2344 
2345 	ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path, &cpos);
2346 	if (ret) {
2347 		mlog_errno(ret);
2348 		goto out;
2349 	}
2350 
2351 	mlog(0, "Insert: %u, first left path cpos: %u\n", insert_cpos, cpos);
2352 
2353 	/*
2354 	 * What we want to do here is:
2355 	 *
2356 	 * 1) Start with the rightmost path.
2357 	 *
2358 	 * 2) Determine a path to the leaf block directly to the left
2359 	 *    of that leaf.
2360 	 *
2361 	 * 3) Determine the 'subtree root' - the lowest level tree node
2362 	 *    which contains a path to both leaves.
2363 	 *
2364 	 * 4) Rotate the subtree.
2365 	 *
2366 	 * 5) Find the next subtree by considering the left path to be
2367 	 *    the new right path.
2368 	 *
2369 	 * The check at the top of this while loop also accepts
2370 	 * insert_cpos == cpos because cpos is only a _theoretical_
2371 	 * value to get us the left path - insert_cpos might very well
2372 	 * be filling that hole.
2373 	 *
2374 	 * Stop at a cpos of '0' because we either started at the
2375 	 * leftmost branch (i.e., a tree with one branch and a
2376 	 * rotation inside of it), or we've gone as far as we can in
2377 	 * rotating subtrees.
2378 	 */
2379 	while (cpos && insert_cpos <= cpos) {
2380 		mlog(0, "Rotating a tree: ins. cpos: %u, left path cpos: %u\n",
2381 		     insert_cpos, cpos);
2382 
2383 		ret = ocfs2_find_path(inode, left_path, cpos);
2384 		if (ret) {
2385 			mlog_errno(ret);
2386 			goto out;
2387 		}
2388 
2389 		mlog_bug_on_msg(path_leaf_bh(left_path) ==
2390 				path_leaf_bh(right_path),
2391 				"Inode %lu: error during insert of %u "
2392 				"(left path cpos %u) results in two identical "
2393 				"paths ending at %llu\n",
2394 				inode->i_ino, insert_cpos, cpos,
2395 				(unsigned long long)
2396 				path_leaf_bh(left_path)->b_blocknr);
2397 
2398 		if (split == SPLIT_NONE &&
2399 		    ocfs2_rotate_requires_path_adjustment(left_path,
2400 							  insert_cpos)) {
2401 
2402 			/*
2403 			 * We've rotated the tree as much as we
2404 			 * should. The rest is up to
2405 			 * ocfs2_insert_path() to complete, after the
2406 			 * record insertion. We indicate this
2407 			 * situation by returning the left path.
2408 			 *
2409 			 * The reason we don't adjust the records here
2410 			 * before the record insert is that an error
2411 			 * later might break the rule where a parent
2412 			 * record e_cpos will reflect the actual
2413 			 * e_cpos of the 1st nonempty record of the
2414 			 * child list.
2415 			 */
2416 			*ret_left_path = left_path;
2417 			goto out_ret_path;
2418 		}
2419 
2420 		start = ocfs2_find_subtree_root(inode, left_path, right_path);
2421 
2422 		mlog(0, "Subtree root at index %d (blk %llu, depth %d)\n",
2423 		     start,
2424 		     (unsigned long long) right_path->p_node[start].bh->b_blocknr,
2425 		     right_path->p_tree_depth);
2426 
2427 		ret = ocfs2_extend_rotate_transaction(handle, start,
2428 						      orig_credits, right_path);
2429 		if (ret) {
2430 			mlog_errno(ret);
2431 			goto out;
2432 		}
2433 
2434 		ret = ocfs2_rotate_subtree_right(inode, handle, left_path,
2435 						 right_path, start);
2436 		if (ret) {
2437 			mlog_errno(ret);
2438 			goto out;
2439 		}
2440 
2441 		if (split != SPLIT_NONE &&
2442 		    ocfs2_leftmost_rec_contains(path_leaf_el(right_path),
2443 						insert_cpos)) {
2444 			/*
2445 			 * A rotate moves the rightmost left leaf
2446 			 * record over to the leftmost right leaf
2447 			 * slot. If we're doing an extent split
2448 			 * instead of a real insert, then we have to
2449 			 * check that the extent to be split wasn't
2450 			 * just moved over. If it was, then we can
2451 			 * exit here, passing left_path back -
2452 			 * ocfs2_split_extent() is smart enough to
2453 			 * search both leaves.
2454 			 */
2455 			*ret_left_path = left_path;
2456 			goto out_ret_path;
2457 		}
2458 
2459 		/*
2460 		 * There is no need to re-read the next right path
2461 		 * as we know that it'll be our current left
2462 		 * path. Optimize by copying values instead.
2463 		 */
2464 		ocfs2_mv_path(right_path, left_path);
2465 
2466 		ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path,
2467 						    &cpos);
2468 		if (ret) {
2469 			mlog_errno(ret);
2470 			goto out;
2471 		}
2472 	}
2473 
2474 out:
2475 	ocfs2_free_path(left_path);
2476 
2477 out_ret_path:
2478 	return ret;
2479 }
2480 
2481 static int ocfs2_update_edge_lengths(struct inode *inode, handle_t *handle,
2482 				     int subtree_index, struct ocfs2_path *path)
2483 {
2484 	int i, idx, ret;
2485 	struct ocfs2_extent_rec *rec;
2486 	struct ocfs2_extent_list *el;
2487 	struct ocfs2_extent_block *eb;
2488 	u32 range;
2489 
2490 	/*
2491 	 * In normal tree rotation process, we will never touch the
2492 	 * tree branch above subtree_index and ocfs2_extend_rotate_transaction
2493 	 * doesn't reserve the credits for them either.
2494 	 *
2495 	 * But we do have a special case here which will update the rightmost
2496 	 * records for all the bh in the path.
2497 	 * So we have to allocate extra credits and access them.
2498 	 */
2499 	ret = ocfs2_extend_trans(handle,
2500 				 handle->h_buffer_credits + subtree_index);
2501 	if (ret) {
2502 		mlog_errno(ret);
2503 		goto out;
2504 	}
2505 
2506 	ret = ocfs2_journal_access_path(inode, handle, path);
2507 	if (ret) {
2508 		mlog_errno(ret);
2509 		goto out;
2510 	}
2511 
2512 	/* Path should always be rightmost. */
2513 	eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
2514 	BUG_ON(eb->h_next_leaf_blk != 0ULL);
2515 
2516 	el = &eb->h_list;
2517 	BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0);
2518 	idx = le16_to_cpu(el->l_next_free_rec) - 1;
2519 	rec = &el->l_recs[idx];
2520 	range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
2521 
2522 	for (i = 0; i < path->p_tree_depth; i++) {
2523 		el = path->p_node[i].el;
2524 		idx = le16_to_cpu(el->l_next_free_rec) - 1;
2525 		rec = &el->l_recs[idx];
2526 
2527 		rec->e_int_clusters = cpu_to_le32(range);
2528 		le32_add_cpu(&rec->e_int_clusters, -le32_to_cpu(rec->e_cpos));
2529 
2530 		ocfs2_journal_dirty(handle, path->p_node[i].bh);
2531 	}
2532 out:
2533 	return ret;
2534 }
2535 
2536 static void ocfs2_unlink_path(struct inode *inode, handle_t *handle,
2537 			      struct ocfs2_cached_dealloc_ctxt *dealloc,
2538 			      struct ocfs2_path *path, int unlink_start)
2539 {
2540 	int ret, i;
2541 	struct ocfs2_extent_block *eb;
2542 	struct ocfs2_extent_list *el;
2543 	struct buffer_head *bh;
2544 
2545 	for(i = unlink_start; i < path_num_items(path); i++) {
2546 		bh = path->p_node[i].bh;
2547 
2548 		eb = (struct ocfs2_extent_block *)bh->b_data;
2549 		/*
2550 		 * Not all nodes might have had their final count
2551 		 * decremented by the caller - handle this here.
2552 		 */
2553 		el = &eb->h_list;
2554 		if (le16_to_cpu(el->l_next_free_rec) > 1) {
2555 			mlog(ML_ERROR,
2556 			     "Inode %llu, attempted to remove extent block "
2557 			     "%llu with %u records\n",
2558 			     (unsigned long long)OCFS2_I(inode)->ip_blkno,
2559 			     (unsigned long long)le64_to_cpu(eb->h_blkno),
2560 			     le16_to_cpu(el->l_next_free_rec));
2561 
2562 			ocfs2_journal_dirty(handle, bh);
2563 			ocfs2_remove_from_cache(INODE_CACHE(inode), bh);
2564 			continue;
2565 		}
2566 
2567 		el->l_next_free_rec = 0;
2568 		memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
2569 
2570 		ocfs2_journal_dirty(handle, bh);
2571 
2572 		ret = ocfs2_cache_extent_block_free(dealloc, eb);
2573 		if (ret)
2574 			mlog_errno(ret);
2575 
2576 		ocfs2_remove_from_cache(INODE_CACHE(inode), bh);
2577 	}
2578 }
2579 
2580 static void ocfs2_unlink_subtree(struct inode *inode, handle_t *handle,
2581 				 struct ocfs2_path *left_path,
2582 				 struct ocfs2_path *right_path,
2583 				 int subtree_index,
2584 				 struct ocfs2_cached_dealloc_ctxt *dealloc)
2585 {
2586 	int i;
2587 	struct buffer_head *root_bh = left_path->p_node[subtree_index].bh;
2588 	struct ocfs2_extent_list *root_el = left_path->p_node[subtree_index].el;
2589 	struct ocfs2_extent_list *el;
2590 	struct ocfs2_extent_block *eb;
2591 
2592 	el = path_leaf_el(left_path);
2593 
2594 	eb = (struct ocfs2_extent_block *)right_path->p_node[subtree_index + 1].bh->b_data;
2595 
2596 	for(i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++)
2597 		if (root_el->l_recs[i].e_blkno == eb->h_blkno)
2598 			break;
2599 
2600 	BUG_ON(i >= le16_to_cpu(root_el->l_next_free_rec));
2601 
2602 	memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec));
2603 	le16_add_cpu(&root_el->l_next_free_rec, -1);
2604 
2605 	eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
2606 	eb->h_next_leaf_blk = 0;
2607 
2608 	ocfs2_journal_dirty(handle, root_bh);
2609 	ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
2610 
2611 	ocfs2_unlink_path(inode, handle, dealloc, right_path,
2612 			  subtree_index + 1);
2613 }
2614 
2615 static int ocfs2_rotate_subtree_left(struct inode *inode, handle_t *handle,
2616 				     struct ocfs2_path *left_path,
2617 				     struct ocfs2_path *right_path,
2618 				     int subtree_index,
2619 				     struct ocfs2_cached_dealloc_ctxt *dealloc,
2620 				     int *deleted,
2621 				     struct ocfs2_extent_tree *et)
2622 {
2623 	int ret, i, del_right_subtree = 0, right_has_empty = 0;
2624 	struct buffer_head *root_bh, *et_root_bh = path_root_bh(right_path);
2625 	struct ocfs2_extent_list *right_leaf_el, *left_leaf_el;
2626 	struct ocfs2_extent_block *eb;
2627 
2628 	*deleted = 0;
2629 
2630 	right_leaf_el = path_leaf_el(right_path);
2631 	left_leaf_el = path_leaf_el(left_path);
2632 	root_bh = left_path->p_node[subtree_index].bh;
2633 	BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
2634 
2635 	if (!ocfs2_is_empty_extent(&left_leaf_el->l_recs[0]))
2636 		return 0;
2637 
2638 	eb = (struct ocfs2_extent_block *)path_leaf_bh(right_path)->b_data;
2639 	if (ocfs2_is_empty_extent(&right_leaf_el->l_recs[0])) {
2640 		/*
2641 		 * It's legal for us to proceed if the right leaf is
2642 		 * the rightmost one and it has an empty extent. There
2643 		 * are two cases to handle - whether the leaf will be
2644 		 * empty after removal or not. If the leaf isn't empty
2645 		 * then just remove the empty extent up front. The
2646 		 * next block will handle empty leaves by flagging
2647 		 * them for unlink.
2648 		 *
2649 		 * Non rightmost leaves will throw -EAGAIN and the
2650 		 * caller can manually move the subtree and retry.
2651 		 */
2652 
2653 		if (eb->h_next_leaf_blk != 0ULL)
2654 			return -EAGAIN;
2655 
2656 		if (le16_to_cpu(right_leaf_el->l_next_free_rec) > 1) {
2657 			ret = ocfs2_journal_access_eb(handle, inode,
2658 						      path_leaf_bh(right_path),
2659 						      OCFS2_JOURNAL_ACCESS_WRITE);
2660 			if (ret) {
2661 				mlog_errno(ret);
2662 				goto out;
2663 			}
2664 
2665 			ocfs2_remove_empty_extent(right_leaf_el);
2666 		} else
2667 			right_has_empty = 1;
2668 	}
2669 
2670 	if (eb->h_next_leaf_blk == 0ULL &&
2671 	    le16_to_cpu(right_leaf_el->l_next_free_rec) == 1) {
2672 		/*
2673 		 * We have to update i_last_eb_blk during the meta
2674 		 * data delete.
2675 		 */
2676 		ret = ocfs2_et_root_journal_access(handle, inode, et,
2677 						   OCFS2_JOURNAL_ACCESS_WRITE);
2678 		if (ret) {
2679 			mlog_errno(ret);
2680 			goto out;
2681 		}
2682 
2683 		del_right_subtree = 1;
2684 	}
2685 
2686 	/*
2687 	 * Getting here with an empty extent in the right path implies
2688 	 * that it's the rightmost path and will be deleted.
2689 	 */
2690 	BUG_ON(right_has_empty && !del_right_subtree);
2691 
2692 	ret = ocfs2_path_bh_journal_access(handle, inode, right_path,
2693 					   subtree_index);
2694 	if (ret) {
2695 		mlog_errno(ret);
2696 		goto out;
2697 	}
2698 
2699 	for(i = subtree_index + 1; i < path_num_items(right_path); i++) {
2700 		ret = ocfs2_path_bh_journal_access(handle, inode,
2701 						   right_path, i);
2702 		if (ret) {
2703 			mlog_errno(ret);
2704 			goto out;
2705 		}
2706 
2707 		ret = ocfs2_path_bh_journal_access(handle, inode,
2708 						   left_path, i);
2709 		if (ret) {
2710 			mlog_errno(ret);
2711 			goto out;
2712 		}
2713 	}
2714 
2715 	if (!right_has_empty) {
2716 		/*
2717 		 * Only do this if we're moving a real
2718 		 * record. Otherwise, the action is delayed until
2719 		 * after removal of the right path in which case we
2720 		 * can do a simple shift to remove the empty extent.
2721 		 */
2722 		ocfs2_rotate_leaf(left_leaf_el, &right_leaf_el->l_recs[0]);
2723 		memset(&right_leaf_el->l_recs[0], 0,
2724 		       sizeof(struct ocfs2_extent_rec));
2725 	}
2726 	if (eb->h_next_leaf_blk == 0ULL) {
2727 		/*
2728 		 * Move recs over to get rid of empty extent, decrease
2729 		 * next_free. This is allowed to remove the last
2730 		 * extent in our leaf (setting l_next_free_rec to
2731 		 * zero) - the delete code below won't care.
2732 		 */
2733 		ocfs2_remove_empty_extent(right_leaf_el);
2734 	}
2735 
2736 	ret = ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
2737 	if (ret)
2738 		mlog_errno(ret);
2739 	ret = ocfs2_journal_dirty(handle, path_leaf_bh(right_path));
2740 	if (ret)
2741 		mlog_errno(ret);
2742 
2743 	if (del_right_subtree) {
2744 		ocfs2_unlink_subtree(inode, handle, left_path, right_path,
2745 				     subtree_index, dealloc);
2746 		ret = ocfs2_update_edge_lengths(inode, handle, subtree_index,
2747 						left_path);
2748 		if (ret) {
2749 			mlog_errno(ret);
2750 			goto out;
2751 		}
2752 
2753 		eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
2754 		ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
2755 
2756 		/*
2757 		 * Removal of the extent in the left leaf was skipped
2758 		 * above so we could delete the right path
2759 		 * 1st.
2760 		 */
2761 		if (right_has_empty)
2762 			ocfs2_remove_empty_extent(left_leaf_el);
2763 
2764 		ret = ocfs2_journal_dirty(handle, et_root_bh);
2765 		if (ret)
2766 			mlog_errno(ret);
2767 
2768 		*deleted = 1;
2769 	} else
2770 		ocfs2_complete_edge_insert(inode, handle, left_path, right_path,
2771 					   subtree_index);
2772 
2773 out:
2774 	return ret;
2775 }
2776 
2777 /*
2778  * Given a full path, determine what cpos value would return us a path
2779  * containing the leaf immediately to the right of the current one.
2780  *
2781  * Will return zero if the path passed in is already the rightmost path.
2782  *
2783  * This looks similar, but is subtly different to
2784  * ocfs2_find_cpos_for_left_leaf().
2785  */
2786 static int ocfs2_find_cpos_for_right_leaf(struct super_block *sb,
2787 					  struct ocfs2_path *path, u32 *cpos)
2788 {
2789 	int i, j, ret = 0;
2790 	u64 blkno;
2791 	struct ocfs2_extent_list *el;
2792 
2793 	*cpos = 0;
2794 
2795 	if (path->p_tree_depth == 0)
2796 		return 0;
2797 
2798 	blkno = path_leaf_bh(path)->b_blocknr;
2799 
2800 	/* Start at the tree node just above the leaf and work our way up. */
2801 	i = path->p_tree_depth - 1;
2802 	while (i >= 0) {
2803 		int next_free;
2804 
2805 		el = path->p_node[i].el;
2806 
2807 		/*
2808 		 * Find the extent record just after the one in our
2809 		 * path.
2810 		 */
2811 		next_free = le16_to_cpu(el->l_next_free_rec);
2812 		for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) {
2813 			if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) {
2814 				if (j == (next_free - 1)) {
2815 					if (i == 0) {
2816 						/*
2817 						 * We've determined that the
2818 						 * path specified is already
2819 						 * the rightmost one - return a
2820 						 * cpos of zero.
2821 						 */
2822 						goto out;
2823 					}
2824 					/*
2825 					 * The rightmost record points to our
2826 					 * leaf - we need to travel up the
2827 					 * tree one level.
2828 					 */
2829 					goto next_node;
2830 				}
2831 
2832 				*cpos = le32_to_cpu(el->l_recs[j + 1].e_cpos);
2833 				goto out;
2834 			}
2835 		}
2836 
2837 		/*
2838 		 * If we got here, we never found a valid node where
2839 		 * the tree indicated one should be.
2840 		 */
2841 		ocfs2_error(sb,
2842 			    "Invalid extent tree at extent block %llu\n",
2843 			    (unsigned long long)blkno);
2844 		ret = -EROFS;
2845 		goto out;
2846 
2847 next_node:
2848 		blkno = path->p_node[i].bh->b_blocknr;
2849 		i--;
2850 	}
2851 
2852 out:
2853 	return ret;
2854 }
2855 
2856 static int ocfs2_rotate_rightmost_leaf_left(struct inode *inode,
2857 					    handle_t *handle,
2858 					    struct ocfs2_path *path)
2859 {
2860 	int ret;
2861 	struct buffer_head *bh = path_leaf_bh(path);
2862 	struct ocfs2_extent_list *el = path_leaf_el(path);
2863 
2864 	if (!ocfs2_is_empty_extent(&el->l_recs[0]))
2865 		return 0;
2866 
2867 	ret = ocfs2_path_bh_journal_access(handle, inode, path,
2868 					   path_num_items(path) - 1);
2869 	if (ret) {
2870 		mlog_errno(ret);
2871 		goto out;
2872 	}
2873 
2874 	ocfs2_remove_empty_extent(el);
2875 
2876 	ret = ocfs2_journal_dirty(handle, bh);
2877 	if (ret)
2878 		mlog_errno(ret);
2879 
2880 out:
2881 	return ret;
2882 }
2883 
2884 static int __ocfs2_rotate_tree_left(struct inode *inode,
2885 				    handle_t *handle, int orig_credits,
2886 				    struct ocfs2_path *path,
2887 				    struct ocfs2_cached_dealloc_ctxt *dealloc,
2888 				    struct ocfs2_path **empty_extent_path,
2889 				    struct ocfs2_extent_tree *et)
2890 {
2891 	int ret, subtree_root, deleted;
2892 	u32 right_cpos;
2893 	struct ocfs2_path *left_path = NULL;
2894 	struct ocfs2_path *right_path = NULL;
2895 
2896 	BUG_ON(!ocfs2_is_empty_extent(&(path_leaf_el(path)->l_recs[0])));
2897 
2898 	*empty_extent_path = NULL;
2899 
2900 	ret = ocfs2_find_cpos_for_right_leaf(inode->i_sb, path,
2901 					     &right_cpos);
2902 	if (ret) {
2903 		mlog_errno(ret);
2904 		goto out;
2905 	}
2906 
2907 	left_path = ocfs2_new_path_from_path(path);
2908 	if (!left_path) {
2909 		ret = -ENOMEM;
2910 		mlog_errno(ret);
2911 		goto out;
2912 	}
2913 
2914 	ocfs2_cp_path(left_path, path);
2915 
2916 	right_path = ocfs2_new_path_from_path(path);
2917 	if (!right_path) {
2918 		ret = -ENOMEM;
2919 		mlog_errno(ret);
2920 		goto out;
2921 	}
2922 
2923 	while (right_cpos) {
2924 		ret = ocfs2_find_path(inode, right_path, right_cpos);
2925 		if (ret) {
2926 			mlog_errno(ret);
2927 			goto out;
2928 		}
2929 
2930 		subtree_root = ocfs2_find_subtree_root(inode, left_path,
2931 						       right_path);
2932 
2933 		mlog(0, "Subtree root at index %d (blk %llu, depth %d)\n",
2934 		     subtree_root,
2935 		     (unsigned long long)
2936 		     right_path->p_node[subtree_root].bh->b_blocknr,
2937 		     right_path->p_tree_depth);
2938 
2939 		ret = ocfs2_extend_rotate_transaction(handle, subtree_root,
2940 						      orig_credits, left_path);
2941 		if (ret) {
2942 			mlog_errno(ret);
2943 			goto out;
2944 		}
2945 
2946 		/*
2947 		 * Caller might still want to make changes to the
2948 		 * tree root, so re-add it to the journal here.
2949 		 */
2950 		ret = ocfs2_path_bh_journal_access(handle, inode,
2951 						   left_path, 0);
2952 		if (ret) {
2953 			mlog_errno(ret);
2954 			goto out;
2955 		}
2956 
2957 		ret = ocfs2_rotate_subtree_left(inode, handle, left_path,
2958 						right_path, subtree_root,
2959 						dealloc, &deleted, et);
2960 		if (ret == -EAGAIN) {
2961 			/*
2962 			 * The rotation has to temporarily stop due to
2963 			 * the right subtree having an empty
2964 			 * extent. Pass it back to the caller for a
2965 			 * fixup.
2966 			 */
2967 			*empty_extent_path = right_path;
2968 			right_path = NULL;
2969 			goto out;
2970 		}
2971 		if (ret) {
2972 			mlog_errno(ret);
2973 			goto out;
2974 		}
2975 
2976 		/*
2977 		 * The subtree rotate might have removed records on
2978 		 * the rightmost edge. If so, then rotation is
2979 		 * complete.
2980 		 */
2981 		if (deleted)
2982 			break;
2983 
2984 		ocfs2_mv_path(left_path, right_path);
2985 
2986 		ret = ocfs2_find_cpos_for_right_leaf(inode->i_sb, left_path,
2987 						     &right_cpos);
2988 		if (ret) {
2989 			mlog_errno(ret);
2990 			goto out;
2991 		}
2992 	}
2993 
2994 out:
2995 	ocfs2_free_path(right_path);
2996 	ocfs2_free_path(left_path);
2997 
2998 	return ret;
2999 }
3000 
3001 static int ocfs2_remove_rightmost_path(struct inode *inode, handle_t *handle,
3002 				struct ocfs2_path *path,
3003 				struct ocfs2_cached_dealloc_ctxt *dealloc,
3004 				struct ocfs2_extent_tree *et)
3005 {
3006 	int ret, subtree_index;
3007 	u32 cpos;
3008 	struct ocfs2_path *left_path = NULL;
3009 	struct ocfs2_extent_block *eb;
3010 	struct ocfs2_extent_list *el;
3011 
3012 
3013 	ret = ocfs2_et_sanity_check(inode, et);
3014 	if (ret)
3015 		goto out;
3016 	/*
3017 	 * There's two ways we handle this depending on
3018 	 * whether path is the only existing one.
3019 	 */
3020 	ret = ocfs2_extend_rotate_transaction(handle, 0,
3021 					      handle->h_buffer_credits,
3022 					      path);
3023 	if (ret) {
3024 		mlog_errno(ret);
3025 		goto out;
3026 	}
3027 
3028 	ret = ocfs2_journal_access_path(inode, handle, path);
3029 	if (ret) {
3030 		mlog_errno(ret);
3031 		goto out;
3032 	}
3033 
3034 	ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path, &cpos);
3035 	if (ret) {
3036 		mlog_errno(ret);
3037 		goto out;
3038 	}
3039 
3040 	if (cpos) {
3041 		/*
3042 		 * We have a path to the left of this one - it needs
3043 		 * an update too.
3044 		 */
3045 		left_path = ocfs2_new_path_from_path(path);
3046 		if (!left_path) {
3047 			ret = -ENOMEM;
3048 			mlog_errno(ret);
3049 			goto out;
3050 		}
3051 
3052 		ret = ocfs2_find_path(inode, left_path, cpos);
3053 		if (ret) {
3054 			mlog_errno(ret);
3055 			goto out;
3056 		}
3057 
3058 		ret = ocfs2_journal_access_path(inode, handle, left_path);
3059 		if (ret) {
3060 			mlog_errno(ret);
3061 			goto out;
3062 		}
3063 
3064 		subtree_index = ocfs2_find_subtree_root(inode, left_path, path);
3065 
3066 		ocfs2_unlink_subtree(inode, handle, left_path, path,
3067 				     subtree_index, dealloc);
3068 		ret = ocfs2_update_edge_lengths(inode, handle, subtree_index,
3069 						left_path);
3070 		if (ret) {
3071 			mlog_errno(ret);
3072 			goto out;
3073 		}
3074 
3075 		eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
3076 		ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
3077 	} else {
3078 		/*
3079 		 * 'path' is also the leftmost path which
3080 		 * means it must be the only one. This gets
3081 		 * handled differently because we want to
3082 		 * revert the inode back to having extents
3083 		 * in-line.
3084 		 */
3085 		ocfs2_unlink_path(inode, handle, dealloc, path, 1);
3086 
3087 		el = et->et_root_el;
3088 		el->l_tree_depth = 0;
3089 		el->l_next_free_rec = 0;
3090 		memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
3091 
3092 		ocfs2_et_set_last_eb_blk(et, 0);
3093 	}
3094 
3095 	ocfs2_journal_dirty(handle, path_root_bh(path));
3096 
3097 out:
3098 	ocfs2_free_path(left_path);
3099 	return ret;
3100 }
3101 
3102 /*
3103  * Left rotation of btree records.
3104  *
3105  * In many ways, this is (unsurprisingly) the opposite of right
3106  * rotation. We start at some non-rightmost path containing an empty
3107  * extent in the leaf block. The code works its way to the rightmost
3108  * path by rotating records to the left in every subtree.
3109  *
3110  * This is used by any code which reduces the number of extent records
3111  * in a leaf. After removal, an empty record should be placed in the
3112  * leftmost list position.
3113  *
3114  * This won't handle a length update of the rightmost path records if
3115  * the rightmost tree leaf record is removed so the caller is
3116  * responsible for detecting and correcting that.
3117  */
3118 static int ocfs2_rotate_tree_left(struct inode *inode, handle_t *handle,
3119 				  struct ocfs2_path *path,
3120 				  struct ocfs2_cached_dealloc_ctxt *dealloc,
3121 				  struct ocfs2_extent_tree *et)
3122 {
3123 	int ret, orig_credits = handle->h_buffer_credits;
3124 	struct ocfs2_path *tmp_path = NULL, *restart_path = NULL;
3125 	struct ocfs2_extent_block *eb;
3126 	struct ocfs2_extent_list *el;
3127 
3128 	el = path_leaf_el(path);
3129 	if (!ocfs2_is_empty_extent(&el->l_recs[0]))
3130 		return 0;
3131 
3132 	if (path->p_tree_depth == 0) {
3133 rightmost_no_delete:
3134 		/*
3135 		 * Inline extents. This is trivially handled, so do
3136 		 * it up front.
3137 		 */
3138 		ret = ocfs2_rotate_rightmost_leaf_left(inode, handle,
3139 						       path);
3140 		if (ret)
3141 			mlog_errno(ret);
3142 		goto out;
3143 	}
3144 
3145 	/*
3146 	 * Handle rightmost branch now. There's several cases:
3147 	 *  1) simple rotation leaving records in there. That's trivial.
3148 	 *  2) rotation requiring a branch delete - there's no more
3149 	 *     records left. Two cases of this:
3150 	 *     a) There are branches to the left.
3151 	 *     b) This is also the leftmost (the only) branch.
3152 	 *
3153 	 *  1) is handled via ocfs2_rotate_rightmost_leaf_left()
3154 	 *  2a) we need the left branch so that we can update it with the unlink
3155 	 *  2b) we need to bring the inode back to inline extents.
3156 	 */
3157 
3158 	eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
3159 	el = &eb->h_list;
3160 	if (eb->h_next_leaf_blk == 0) {
3161 		/*
3162 		 * This gets a bit tricky if we're going to delete the
3163 		 * rightmost path. Get the other cases out of the way
3164 		 * 1st.
3165 		 */
3166 		if (le16_to_cpu(el->l_next_free_rec) > 1)
3167 			goto rightmost_no_delete;
3168 
3169 		if (le16_to_cpu(el->l_next_free_rec) == 0) {
3170 			ret = -EIO;
3171 			ocfs2_error(inode->i_sb,
3172 				    "Inode %llu has empty extent block at %llu",
3173 				    (unsigned long long)OCFS2_I(inode)->ip_blkno,
3174 				    (unsigned long long)le64_to_cpu(eb->h_blkno));
3175 			goto out;
3176 		}
3177 
3178 		/*
3179 		 * XXX: The caller can not trust "path" any more after
3180 		 * this as it will have been deleted. What do we do?
3181 		 *
3182 		 * In theory the rotate-for-merge code will never get
3183 		 * here because it'll always ask for a rotate in a
3184 		 * nonempty list.
3185 		 */
3186 
3187 		ret = ocfs2_remove_rightmost_path(inode, handle, path,
3188 						  dealloc, et);
3189 		if (ret)
3190 			mlog_errno(ret);
3191 		goto out;
3192 	}
3193 
3194 	/*
3195 	 * Now we can loop, remembering the path we get from -EAGAIN
3196 	 * and restarting from there.
3197 	 */
3198 try_rotate:
3199 	ret = __ocfs2_rotate_tree_left(inode, handle, orig_credits, path,
3200 				       dealloc, &restart_path, et);
3201 	if (ret && ret != -EAGAIN) {
3202 		mlog_errno(ret);
3203 		goto out;
3204 	}
3205 
3206 	while (ret == -EAGAIN) {
3207 		tmp_path = restart_path;
3208 		restart_path = NULL;
3209 
3210 		ret = __ocfs2_rotate_tree_left(inode, handle, orig_credits,
3211 					       tmp_path, dealloc,
3212 					       &restart_path, et);
3213 		if (ret && ret != -EAGAIN) {
3214 			mlog_errno(ret);
3215 			goto out;
3216 		}
3217 
3218 		ocfs2_free_path(tmp_path);
3219 		tmp_path = NULL;
3220 
3221 		if (ret == 0)
3222 			goto try_rotate;
3223 	}
3224 
3225 out:
3226 	ocfs2_free_path(tmp_path);
3227 	ocfs2_free_path(restart_path);
3228 	return ret;
3229 }
3230 
3231 static void ocfs2_cleanup_merge(struct ocfs2_extent_list *el,
3232 				int index)
3233 {
3234 	struct ocfs2_extent_rec *rec = &el->l_recs[index];
3235 	unsigned int size;
3236 
3237 	if (rec->e_leaf_clusters == 0) {
3238 		/*
3239 		 * We consumed all of the merged-from record. An empty
3240 		 * extent cannot exist anywhere but the 1st array
3241 		 * position, so move things over if the merged-from
3242 		 * record doesn't occupy that position.
3243 		 *
3244 		 * This creates a new empty extent so the caller
3245 		 * should be smart enough to have removed any existing
3246 		 * ones.
3247 		 */
3248 		if (index > 0) {
3249 			BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0]));
3250 			size = index * sizeof(struct ocfs2_extent_rec);
3251 			memmove(&el->l_recs[1], &el->l_recs[0], size);
3252 		}
3253 
3254 		/*
3255 		 * Always memset - the caller doesn't check whether it
3256 		 * created an empty extent, so there could be junk in
3257 		 * the other fields.
3258 		 */
3259 		memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
3260 	}
3261 }
3262 
3263 static int ocfs2_get_right_path(struct inode *inode,
3264 				struct ocfs2_path *left_path,
3265 				struct ocfs2_path **ret_right_path)
3266 {
3267 	int ret;
3268 	u32 right_cpos;
3269 	struct ocfs2_path *right_path = NULL;
3270 	struct ocfs2_extent_list *left_el;
3271 
3272 	*ret_right_path = NULL;
3273 
3274 	/* This function shouldn't be called for non-trees. */
3275 	BUG_ON(left_path->p_tree_depth == 0);
3276 
3277 	left_el = path_leaf_el(left_path);
3278 	BUG_ON(left_el->l_next_free_rec != left_el->l_count);
3279 
3280 	ret = ocfs2_find_cpos_for_right_leaf(inode->i_sb, left_path,
3281 					     &right_cpos);
3282 	if (ret) {
3283 		mlog_errno(ret);
3284 		goto out;
3285 	}
3286 
3287 	/* This function shouldn't be called for the rightmost leaf. */
3288 	BUG_ON(right_cpos == 0);
3289 
3290 	right_path = ocfs2_new_path_from_path(left_path);
3291 	if (!right_path) {
3292 		ret = -ENOMEM;
3293 		mlog_errno(ret);
3294 		goto out;
3295 	}
3296 
3297 	ret = ocfs2_find_path(inode, right_path, right_cpos);
3298 	if (ret) {
3299 		mlog_errno(ret);
3300 		goto out;
3301 	}
3302 
3303 	*ret_right_path = right_path;
3304 out:
3305 	if (ret)
3306 		ocfs2_free_path(right_path);
3307 	return ret;
3308 }
3309 
3310 /*
3311  * Remove split_rec clusters from the record at index and merge them
3312  * onto the beginning of the record "next" to it.
3313  * For index < l_count - 1, the next means the extent rec at index + 1.
3314  * For index == l_count - 1, the "next" means the 1st extent rec of the
3315  * next extent block.
3316  */
3317 static int ocfs2_merge_rec_right(struct inode *inode,
3318 				 struct ocfs2_path *left_path,
3319 				 handle_t *handle,
3320 				 struct ocfs2_extent_rec *split_rec,
3321 				 int index)
3322 {
3323 	int ret, next_free, i;
3324 	unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters);
3325 	struct ocfs2_extent_rec *left_rec;
3326 	struct ocfs2_extent_rec *right_rec;
3327 	struct ocfs2_extent_list *right_el;
3328 	struct ocfs2_path *right_path = NULL;
3329 	int subtree_index = 0;
3330 	struct ocfs2_extent_list *el = path_leaf_el(left_path);
3331 	struct buffer_head *bh = path_leaf_bh(left_path);
3332 	struct buffer_head *root_bh = NULL;
3333 
3334 	BUG_ON(index >= le16_to_cpu(el->l_next_free_rec));
3335 	left_rec = &el->l_recs[index];
3336 
3337 	if (index == le16_to_cpu(el->l_next_free_rec) - 1 &&
3338 	    le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count)) {
3339 		/* we meet with a cross extent block merge. */
3340 		ret = ocfs2_get_right_path(inode, left_path, &right_path);
3341 		if (ret) {
3342 			mlog_errno(ret);
3343 			goto out;
3344 		}
3345 
3346 		right_el = path_leaf_el(right_path);
3347 		next_free = le16_to_cpu(right_el->l_next_free_rec);
3348 		BUG_ON(next_free <= 0);
3349 		right_rec = &right_el->l_recs[0];
3350 		if (ocfs2_is_empty_extent(right_rec)) {
3351 			BUG_ON(next_free <= 1);
3352 			right_rec = &right_el->l_recs[1];
3353 		}
3354 
3355 		BUG_ON(le32_to_cpu(left_rec->e_cpos) +
3356 		       le16_to_cpu(left_rec->e_leaf_clusters) !=
3357 		       le32_to_cpu(right_rec->e_cpos));
3358 
3359 		subtree_index = ocfs2_find_subtree_root(inode,
3360 							left_path, right_path);
3361 
3362 		ret = ocfs2_extend_rotate_transaction(handle, subtree_index,
3363 						      handle->h_buffer_credits,
3364 						      right_path);
3365 		if (ret) {
3366 			mlog_errno(ret);
3367 			goto out;
3368 		}
3369 
3370 		root_bh = left_path->p_node[subtree_index].bh;
3371 		BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
3372 
3373 		ret = ocfs2_path_bh_journal_access(handle, inode, right_path,
3374 						   subtree_index);
3375 		if (ret) {
3376 			mlog_errno(ret);
3377 			goto out;
3378 		}
3379 
3380 		for (i = subtree_index + 1;
3381 		     i < path_num_items(right_path); i++) {
3382 			ret = ocfs2_path_bh_journal_access(handle, inode,
3383 							   right_path, i);
3384 			if (ret) {
3385 				mlog_errno(ret);
3386 				goto out;
3387 			}
3388 
3389 			ret = ocfs2_path_bh_journal_access(handle, inode,
3390 							   left_path, i);
3391 			if (ret) {
3392 				mlog_errno(ret);
3393 				goto out;
3394 			}
3395 		}
3396 
3397 	} else {
3398 		BUG_ON(index == le16_to_cpu(el->l_next_free_rec) - 1);
3399 		right_rec = &el->l_recs[index + 1];
3400 	}
3401 
3402 	ret = ocfs2_path_bh_journal_access(handle, inode, left_path,
3403 					   path_num_items(left_path) - 1);
3404 	if (ret) {
3405 		mlog_errno(ret);
3406 		goto out;
3407 	}
3408 
3409 	le16_add_cpu(&left_rec->e_leaf_clusters, -split_clusters);
3410 
3411 	le32_add_cpu(&right_rec->e_cpos, -split_clusters);
3412 	le64_add_cpu(&right_rec->e_blkno,
3413 		     -ocfs2_clusters_to_blocks(inode->i_sb, split_clusters));
3414 	le16_add_cpu(&right_rec->e_leaf_clusters, split_clusters);
3415 
3416 	ocfs2_cleanup_merge(el, index);
3417 
3418 	ret = ocfs2_journal_dirty(handle, bh);
3419 	if (ret)
3420 		mlog_errno(ret);
3421 
3422 	if (right_path) {
3423 		ret = ocfs2_journal_dirty(handle, path_leaf_bh(right_path));
3424 		if (ret)
3425 			mlog_errno(ret);
3426 
3427 		ocfs2_complete_edge_insert(inode, handle, left_path,
3428 					   right_path, subtree_index);
3429 	}
3430 out:
3431 	if (right_path)
3432 		ocfs2_free_path(right_path);
3433 	return ret;
3434 }
3435 
3436 static int ocfs2_get_left_path(struct inode *inode,
3437 			       struct ocfs2_path *right_path,
3438 			       struct ocfs2_path **ret_left_path)
3439 {
3440 	int ret;
3441 	u32 left_cpos;
3442 	struct ocfs2_path *left_path = NULL;
3443 
3444 	*ret_left_path = NULL;
3445 
3446 	/* This function shouldn't be called for non-trees. */
3447 	BUG_ON(right_path->p_tree_depth == 0);
3448 
3449 	ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb,
3450 					    right_path, &left_cpos);
3451 	if (ret) {
3452 		mlog_errno(ret);
3453 		goto out;
3454 	}
3455 
3456 	/* This function shouldn't be called for the leftmost leaf. */
3457 	BUG_ON(left_cpos == 0);
3458 
3459 	left_path = ocfs2_new_path_from_path(right_path);
3460 	if (!left_path) {
3461 		ret = -ENOMEM;
3462 		mlog_errno(ret);
3463 		goto out;
3464 	}
3465 
3466 	ret = ocfs2_find_path(inode, left_path, left_cpos);
3467 	if (ret) {
3468 		mlog_errno(ret);
3469 		goto out;
3470 	}
3471 
3472 	*ret_left_path = left_path;
3473 out:
3474 	if (ret)
3475 		ocfs2_free_path(left_path);
3476 	return ret;
3477 }
3478 
3479 /*
3480  * Remove split_rec clusters from the record at index and merge them
3481  * onto the tail of the record "before" it.
3482  * For index > 0, the "before" means the extent rec at index - 1.
3483  *
3484  * For index == 0, the "before" means the last record of the previous
3485  * extent block. And there is also a situation that we may need to
3486  * remove the rightmost leaf extent block in the right_path and change
3487  * the right path to indicate the new rightmost path.
3488  */
3489 static int ocfs2_merge_rec_left(struct inode *inode,
3490 				struct ocfs2_path *right_path,
3491 				handle_t *handle,
3492 				struct ocfs2_extent_rec *split_rec,
3493 				struct ocfs2_cached_dealloc_ctxt *dealloc,
3494 				struct ocfs2_extent_tree *et,
3495 				int index)
3496 {
3497 	int ret, i, subtree_index = 0, has_empty_extent = 0;
3498 	unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters);
3499 	struct ocfs2_extent_rec *left_rec;
3500 	struct ocfs2_extent_rec *right_rec;
3501 	struct ocfs2_extent_list *el = path_leaf_el(right_path);
3502 	struct buffer_head *bh = path_leaf_bh(right_path);
3503 	struct buffer_head *root_bh = NULL;
3504 	struct ocfs2_path *left_path = NULL;
3505 	struct ocfs2_extent_list *left_el;
3506 
3507 	BUG_ON(index < 0);
3508 
3509 	right_rec = &el->l_recs[index];
3510 	if (index == 0) {
3511 		/* we meet with a cross extent block merge. */
3512 		ret = ocfs2_get_left_path(inode, right_path, &left_path);
3513 		if (ret) {
3514 			mlog_errno(ret);
3515 			goto out;
3516 		}
3517 
3518 		left_el = path_leaf_el(left_path);
3519 		BUG_ON(le16_to_cpu(left_el->l_next_free_rec) !=
3520 		       le16_to_cpu(left_el->l_count));
3521 
3522 		left_rec = &left_el->l_recs[
3523 				le16_to_cpu(left_el->l_next_free_rec) - 1];
3524 		BUG_ON(le32_to_cpu(left_rec->e_cpos) +
3525 		       le16_to_cpu(left_rec->e_leaf_clusters) !=
3526 		       le32_to_cpu(split_rec->e_cpos));
3527 
3528 		subtree_index = ocfs2_find_subtree_root(inode,
3529 							left_path, right_path);
3530 
3531 		ret = ocfs2_extend_rotate_transaction(handle, subtree_index,
3532 						      handle->h_buffer_credits,
3533 						      left_path);
3534 		if (ret) {
3535 			mlog_errno(ret);
3536 			goto out;
3537 		}
3538 
3539 		root_bh = left_path->p_node[subtree_index].bh;
3540 		BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
3541 
3542 		ret = ocfs2_path_bh_journal_access(handle, inode, right_path,
3543 						   subtree_index);
3544 		if (ret) {
3545 			mlog_errno(ret);
3546 			goto out;
3547 		}
3548 
3549 		for (i = subtree_index + 1;
3550 		     i < path_num_items(right_path); i++) {
3551 			ret = ocfs2_path_bh_journal_access(handle, inode,
3552 							   right_path, i);
3553 			if (ret) {
3554 				mlog_errno(ret);
3555 				goto out;
3556 			}
3557 
3558 			ret = ocfs2_path_bh_journal_access(handle, inode,
3559 							   left_path, i);
3560 			if (ret) {
3561 				mlog_errno(ret);
3562 				goto out;
3563 			}
3564 		}
3565 	} else {
3566 		left_rec = &el->l_recs[index - 1];
3567 		if (ocfs2_is_empty_extent(&el->l_recs[0]))
3568 			has_empty_extent = 1;
3569 	}
3570 
3571 	ret = ocfs2_path_bh_journal_access(handle, inode, right_path,
3572 					   path_num_items(right_path) - 1);
3573 	if (ret) {
3574 		mlog_errno(ret);
3575 		goto out;
3576 	}
3577 
3578 	if (has_empty_extent && index == 1) {
3579 		/*
3580 		 * The easy case - we can just plop the record right in.
3581 		 */
3582 		*left_rec = *split_rec;
3583 
3584 		has_empty_extent = 0;
3585 	} else
3586 		le16_add_cpu(&left_rec->e_leaf_clusters, split_clusters);
3587 
3588 	le32_add_cpu(&right_rec->e_cpos, split_clusters);
3589 	le64_add_cpu(&right_rec->e_blkno,
3590 		     ocfs2_clusters_to_blocks(inode->i_sb, split_clusters));
3591 	le16_add_cpu(&right_rec->e_leaf_clusters, -split_clusters);
3592 
3593 	ocfs2_cleanup_merge(el, index);
3594 
3595 	ret = ocfs2_journal_dirty(handle, bh);
3596 	if (ret)
3597 		mlog_errno(ret);
3598 
3599 	if (left_path) {
3600 		ret = ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
3601 		if (ret)
3602 			mlog_errno(ret);
3603 
3604 		/*
3605 		 * In the situation that the right_rec is empty and the extent
3606 		 * block is empty also,  ocfs2_complete_edge_insert can't handle
3607 		 * it and we need to delete the right extent block.
3608 		 */
3609 		if (le16_to_cpu(right_rec->e_leaf_clusters) == 0 &&
3610 		    le16_to_cpu(el->l_next_free_rec) == 1) {
3611 
3612 			ret = ocfs2_remove_rightmost_path(inode, handle,
3613 							  right_path,
3614 							  dealloc, et);
3615 			if (ret) {
3616 				mlog_errno(ret);
3617 				goto out;
3618 			}
3619 
3620 			/* Now the rightmost extent block has been deleted.
3621 			 * So we use the new rightmost path.
3622 			 */
3623 			ocfs2_mv_path(right_path, left_path);
3624 			left_path = NULL;
3625 		} else
3626 			ocfs2_complete_edge_insert(inode, handle, left_path,
3627 						   right_path, subtree_index);
3628 	}
3629 out:
3630 	if (left_path)
3631 		ocfs2_free_path(left_path);
3632 	return ret;
3633 }
3634 
3635 static int ocfs2_try_to_merge_extent(struct inode *inode,
3636 				     handle_t *handle,
3637 				     struct ocfs2_path *path,
3638 				     int split_index,
3639 				     struct ocfs2_extent_rec *split_rec,
3640 				     struct ocfs2_cached_dealloc_ctxt *dealloc,
3641 				     struct ocfs2_merge_ctxt *ctxt,
3642 				     struct ocfs2_extent_tree *et)
3643 
3644 {
3645 	int ret = 0;
3646 	struct ocfs2_extent_list *el = path_leaf_el(path);
3647 	struct ocfs2_extent_rec *rec = &el->l_recs[split_index];
3648 
3649 	BUG_ON(ctxt->c_contig_type == CONTIG_NONE);
3650 
3651 	if (ctxt->c_split_covers_rec && ctxt->c_has_empty_extent) {
3652 		/*
3653 		 * The merge code will need to create an empty
3654 		 * extent to take the place of the newly
3655 		 * emptied slot. Remove any pre-existing empty
3656 		 * extents - having more than one in a leaf is
3657 		 * illegal.
3658 		 */
3659 		ret = ocfs2_rotate_tree_left(inode, handle, path,
3660 					     dealloc, et);
3661 		if (ret) {
3662 			mlog_errno(ret);
3663 			goto out;
3664 		}
3665 		split_index--;
3666 		rec = &el->l_recs[split_index];
3667 	}
3668 
3669 	if (ctxt->c_contig_type == CONTIG_LEFTRIGHT) {
3670 		/*
3671 		 * Left-right contig implies this.
3672 		 */
3673 		BUG_ON(!ctxt->c_split_covers_rec);
3674 
3675 		/*
3676 		 * Since the leftright insert always covers the entire
3677 		 * extent, this call will delete the insert record
3678 		 * entirely, resulting in an empty extent record added to
3679 		 * the extent block.
3680 		 *
3681 		 * Since the adding of an empty extent shifts
3682 		 * everything back to the right, there's no need to
3683 		 * update split_index here.
3684 		 *
3685 		 * When the split_index is zero, we need to merge it to the
3686 		 * prevoius extent block. It is more efficient and easier
3687 		 * if we do merge_right first and merge_left later.
3688 		 */
3689 		ret = ocfs2_merge_rec_right(inode, path,
3690 					    handle, split_rec,
3691 					    split_index);
3692 		if (ret) {
3693 			mlog_errno(ret);
3694 			goto out;
3695 		}
3696 
3697 		/*
3698 		 * We can only get this from logic error above.
3699 		 */
3700 		BUG_ON(!ocfs2_is_empty_extent(&el->l_recs[0]));
3701 
3702 		/* The merge left us with an empty extent, remove it. */
3703 		ret = ocfs2_rotate_tree_left(inode, handle, path,
3704 					     dealloc, et);
3705 		if (ret) {
3706 			mlog_errno(ret);
3707 			goto out;
3708 		}
3709 
3710 		rec = &el->l_recs[split_index];
3711 
3712 		/*
3713 		 * Note that we don't pass split_rec here on purpose -
3714 		 * we've merged it into the rec already.
3715 		 */
3716 		ret = ocfs2_merge_rec_left(inode, path,
3717 					   handle, rec,
3718 					   dealloc, et,
3719 					   split_index);
3720 
3721 		if (ret) {
3722 			mlog_errno(ret);
3723 			goto out;
3724 		}
3725 
3726 		ret = ocfs2_rotate_tree_left(inode, handle, path,
3727 					     dealloc, et);
3728 		/*
3729 		 * Error from this last rotate is not critical, so
3730 		 * print but don't bubble it up.
3731 		 */
3732 		if (ret)
3733 			mlog_errno(ret);
3734 		ret = 0;
3735 	} else {
3736 		/*
3737 		 * Merge a record to the left or right.
3738 		 *
3739 		 * 'contig_type' is relative to the existing record,
3740 		 * so for example, if we're "right contig", it's to
3741 		 * the record on the left (hence the left merge).
3742 		 */
3743 		if (ctxt->c_contig_type == CONTIG_RIGHT) {
3744 			ret = ocfs2_merge_rec_left(inode,
3745 						   path,
3746 						   handle, split_rec,
3747 						   dealloc, et,
3748 						   split_index);
3749 			if (ret) {
3750 				mlog_errno(ret);
3751 				goto out;
3752 			}
3753 		} else {
3754 			ret = ocfs2_merge_rec_right(inode,
3755 						    path,
3756 						    handle, split_rec,
3757 						    split_index);
3758 			if (ret) {
3759 				mlog_errno(ret);
3760 				goto out;
3761 			}
3762 		}
3763 
3764 		if (ctxt->c_split_covers_rec) {
3765 			/*
3766 			 * The merge may have left an empty extent in
3767 			 * our leaf. Try to rotate it away.
3768 			 */
3769 			ret = ocfs2_rotate_tree_left(inode, handle, path,
3770 						     dealloc, et);
3771 			if (ret)
3772 				mlog_errno(ret);
3773 			ret = 0;
3774 		}
3775 	}
3776 
3777 out:
3778 	return ret;
3779 }
3780 
3781 static void ocfs2_subtract_from_rec(struct super_block *sb,
3782 				    enum ocfs2_split_type split,
3783 				    struct ocfs2_extent_rec *rec,
3784 				    struct ocfs2_extent_rec *split_rec)
3785 {
3786 	u64 len_blocks;
3787 
3788 	len_blocks = ocfs2_clusters_to_blocks(sb,
3789 				le16_to_cpu(split_rec->e_leaf_clusters));
3790 
3791 	if (split == SPLIT_LEFT) {
3792 		/*
3793 		 * Region is on the left edge of the existing
3794 		 * record.
3795 		 */
3796 		le32_add_cpu(&rec->e_cpos,
3797 			     le16_to_cpu(split_rec->e_leaf_clusters));
3798 		le64_add_cpu(&rec->e_blkno, len_blocks);
3799 		le16_add_cpu(&rec->e_leaf_clusters,
3800 			     -le16_to_cpu(split_rec->e_leaf_clusters));
3801 	} else {
3802 		/*
3803 		 * Region is on the right edge of the existing
3804 		 * record.
3805 		 */
3806 		le16_add_cpu(&rec->e_leaf_clusters,
3807 			     -le16_to_cpu(split_rec->e_leaf_clusters));
3808 	}
3809 }
3810 
3811 /*
3812  * Do the final bits of extent record insertion at the target leaf
3813  * list. If this leaf is part of an allocation tree, it is assumed
3814  * that the tree above has been prepared.
3815  */
3816 static void ocfs2_insert_at_leaf(struct ocfs2_extent_rec *insert_rec,
3817 				 struct ocfs2_extent_list *el,
3818 				 struct ocfs2_insert_type *insert,
3819 				 struct inode *inode)
3820 {
3821 	int i = insert->ins_contig_index;
3822 	unsigned int range;
3823 	struct ocfs2_extent_rec *rec;
3824 
3825 	BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
3826 
3827 	if (insert->ins_split != SPLIT_NONE) {
3828 		i = ocfs2_search_extent_list(el, le32_to_cpu(insert_rec->e_cpos));
3829 		BUG_ON(i == -1);
3830 		rec = &el->l_recs[i];
3831 		ocfs2_subtract_from_rec(inode->i_sb, insert->ins_split, rec,
3832 					insert_rec);
3833 		goto rotate;
3834 	}
3835 
3836 	/*
3837 	 * Contiguous insert - either left or right.
3838 	 */
3839 	if (insert->ins_contig != CONTIG_NONE) {
3840 		rec = &el->l_recs[i];
3841 		if (insert->ins_contig == CONTIG_LEFT) {
3842 			rec->e_blkno = insert_rec->e_blkno;
3843 			rec->e_cpos = insert_rec->e_cpos;
3844 		}
3845 		le16_add_cpu(&rec->e_leaf_clusters,
3846 			     le16_to_cpu(insert_rec->e_leaf_clusters));
3847 		return;
3848 	}
3849 
3850 	/*
3851 	 * Handle insert into an empty leaf.
3852 	 */
3853 	if (le16_to_cpu(el->l_next_free_rec) == 0 ||
3854 	    ((le16_to_cpu(el->l_next_free_rec) == 1) &&
3855 	     ocfs2_is_empty_extent(&el->l_recs[0]))) {
3856 		el->l_recs[0] = *insert_rec;
3857 		el->l_next_free_rec = cpu_to_le16(1);
3858 		return;
3859 	}
3860 
3861 	/*
3862 	 * Appending insert.
3863 	 */
3864 	if (insert->ins_appending == APPEND_TAIL) {
3865 		i = le16_to_cpu(el->l_next_free_rec) - 1;
3866 		rec = &el->l_recs[i];
3867 		range = le32_to_cpu(rec->e_cpos)
3868 			+ le16_to_cpu(rec->e_leaf_clusters);
3869 		BUG_ON(le32_to_cpu(insert_rec->e_cpos) < range);
3870 
3871 		mlog_bug_on_msg(le16_to_cpu(el->l_next_free_rec) >=
3872 				le16_to_cpu(el->l_count),
3873 				"inode %lu, depth %u, count %u, next free %u, "
3874 				"rec.cpos %u, rec.clusters %u, "
3875 				"insert.cpos %u, insert.clusters %u\n",
3876 				inode->i_ino,
3877 				le16_to_cpu(el->l_tree_depth),
3878 				le16_to_cpu(el->l_count),
3879 				le16_to_cpu(el->l_next_free_rec),
3880 				le32_to_cpu(el->l_recs[i].e_cpos),
3881 				le16_to_cpu(el->l_recs[i].e_leaf_clusters),
3882 				le32_to_cpu(insert_rec->e_cpos),
3883 				le16_to_cpu(insert_rec->e_leaf_clusters));
3884 		i++;
3885 		el->l_recs[i] = *insert_rec;
3886 		le16_add_cpu(&el->l_next_free_rec, 1);
3887 		return;
3888 	}
3889 
3890 rotate:
3891 	/*
3892 	 * Ok, we have to rotate.
3893 	 *
3894 	 * At this point, it is safe to assume that inserting into an
3895 	 * empty leaf and appending to a leaf have both been handled
3896 	 * above.
3897 	 *
3898 	 * This leaf needs to have space, either by the empty 1st
3899 	 * extent record, or by virtue of an l_next_rec < l_count.
3900 	 */
3901 	ocfs2_rotate_leaf(el, insert_rec);
3902 }
3903 
3904 static void ocfs2_adjust_rightmost_records(struct inode *inode,
3905 					   handle_t *handle,
3906 					   struct ocfs2_path *path,
3907 					   struct ocfs2_extent_rec *insert_rec)
3908 {
3909 	int ret, i, next_free;
3910 	struct buffer_head *bh;
3911 	struct ocfs2_extent_list *el;
3912 	struct ocfs2_extent_rec *rec;
3913 
3914 	/*
3915 	 * Update everything except the leaf block.
3916 	 */
3917 	for (i = 0; i < path->p_tree_depth; i++) {
3918 		bh = path->p_node[i].bh;
3919 		el = path->p_node[i].el;
3920 
3921 		next_free = le16_to_cpu(el->l_next_free_rec);
3922 		if (next_free == 0) {
3923 			ocfs2_error(inode->i_sb,
3924 				    "Dinode %llu has a bad extent list",
3925 				    (unsigned long long)OCFS2_I(inode)->ip_blkno);
3926 			ret = -EIO;
3927 			return;
3928 		}
3929 
3930 		rec = &el->l_recs[next_free - 1];
3931 
3932 		rec->e_int_clusters = insert_rec->e_cpos;
3933 		le32_add_cpu(&rec->e_int_clusters,
3934 			     le16_to_cpu(insert_rec->e_leaf_clusters));
3935 		le32_add_cpu(&rec->e_int_clusters,
3936 			     -le32_to_cpu(rec->e_cpos));
3937 
3938 		ret = ocfs2_journal_dirty(handle, bh);
3939 		if (ret)
3940 			mlog_errno(ret);
3941 
3942 	}
3943 }
3944 
3945 static int ocfs2_append_rec_to_path(struct inode *inode, handle_t *handle,
3946 				    struct ocfs2_extent_rec *insert_rec,
3947 				    struct ocfs2_path *right_path,
3948 				    struct ocfs2_path **ret_left_path)
3949 {
3950 	int ret, next_free;
3951 	struct ocfs2_extent_list *el;
3952 	struct ocfs2_path *left_path = NULL;
3953 
3954 	*ret_left_path = NULL;
3955 
3956 	/*
3957 	 * This shouldn't happen for non-trees. The extent rec cluster
3958 	 * count manipulation below only works for interior nodes.
3959 	 */
3960 	BUG_ON(right_path->p_tree_depth == 0);
3961 
3962 	/*
3963 	 * If our appending insert is at the leftmost edge of a leaf,
3964 	 * then we might need to update the rightmost records of the
3965 	 * neighboring path.
3966 	 */
3967 	el = path_leaf_el(right_path);
3968 	next_free = le16_to_cpu(el->l_next_free_rec);
3969 	if (next_free == 0 ||
3970 	    (next_free == 1 && ocfs2_is_empty_extent(&el->l_recs[0]))) {
3971 		u32 left_cpos;
3972 
3973 		ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path,
3974 						    &left_cpos);
3975 		if (ret) {
3976 			mlog_errno(ret);
3977 			goto out;
3978 		}
3979 
3980 		mlog(0, "Append may need a left path update. cpos: %u, "
3981 		     "left_cpos: %u\n", le32_to_cpu(insert_rec->e_cpos),
3982 		     left_cpos);
3983 
3984 		/*
3985 		 * No need to worry if the append is already in the
3986 		 * leftmost leaf.
3987 		 */
3988 		if (left_cpos) {
3989 			left_path = ocfs2_new_path_from_path(right_path);
3990 			if (!left_path) {
3991 				ret = -ENOMEM;
3992 				mlog_errno(ret);
3993 				goto out;
3994 			}
3995 
3996 			ret = ocfs2_find_path(inode, left_path, left_cpos);
3997 			if (ret) {
3998 				mlog_errno(ret);
3999 				goto out;
4000 			}
4001 
4002 			/*
4003 			 * ocfs2_insert_path() will pass the left_path to the
4004 			 * journal for us.
4005 			 */
4006 		}
4007 	}
4008 
4009 	ret = ocfs2_journal_access_path(inode, handle, right_path);
4010 	if (ret) {
4011 		mlog_errno(ret);
4012 		goto out;
4013 	}
4014 
4015 	ocfs2_adjust_rightmost_records(inode, handle, right_path, insert_rec);
4016 
4017 	*ret_left_path = left_path;
4018 	ret = 0;
4019 out:
4020 	if (ret != 0)
4021 		ocfs2_free_path(left_path);
4022 
4023 	return ret;
4024 }
4025 
4026 static void ocfs2_split_record(struct inode *inode,
4027 			       struct ocfs2_path *left_path,
4028 			       struct ocfs2_path *right_path,
4029 			       struct ocfs2_extent_rec *split_rec,
4030 			       enum ocfs2_split_type split)
4031 {
4032 	int index;
4033 	u32 cpos = le32_to_cpu(split_rec->e_cpos);
4034 	struct ocfs2_extent_list *left_el = NULL, *right_el, *insert_el, *el;
4035 	struct ocfs2_extent_rec *rec, *tmprec;
4036 
4037 	right_el = path_leaf_el(right_path);
4038 	if (left_path)
4039 		left_el = path_leaf_el(left_path);
4040 
4041 	el = right_el;
4042 	insert_el = right_el;
4043 	index = ocfs2_search_extent_list(el, cpos);
4044 	if (index != -1) {
4045 		if (index == 0 && left_path) {
4046 			BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0]));
4047 
4048 			/*
4049 			 * This typically means that the record
4050 			 * started in the left path but moved to the
4051 			 * right as a result of rotation. We either
4052 			 * move the existing record to the left, or we
4053 			 * do the later insert there.
4054 			 *
4055 			 * In this case, the left path should always
4056 			 * exist as the rotate code will have passed
4057 			 * it back for a post-insert update.
4058 			 */
4059 
4060 			if (split == SPLIT_LEFT) {
4061 				/*
4062 				 * It's a left split. Since we know
4063 				 * that the rotate code gave us an
4064 				 * empty extent in the left path, we
4065 				 * can just do the insert there.
4066 				 */
4067 				insert_el = left_el;
4068 			} else {
4069 				/*
4070 				 * Right split - we have to move the
4071 				 * existing record over to the left
4072 				 * leaf. The insert will be into the
4073 				 * newly created empty extent in the
4074 				 * right leaf.
4075 				 */
4076 				tmprec = &right_el->l_recs[index];
4077 				ocfs2_rotate_leaf(left_el, tmprec);
4078 				el = left_el;
4079 
4080 				memset(tmprec, 0, sizeof(*tmprec));
4081 				index = ocfs2_search_extent_list(left_el, cpos);
4082 				BUG_ON(index == -1);
4083 			}
4084 		}
4085 	} else {
4086 		BUG_ON(!left_path);
4087 		BUG_ON(!ocfs2_is_empty_extent(&left_el->l_recs[0]));
4088 		/*
4089 		 * Left path is easy - we can just allow the insert to
4090 		 * happen.
4091 		 */
4092 		el = left_el;
4093 		insert_el = left_el;
4094 		index = ocfs2_search_extent_list(el, cpos);
4095 		BUG_ON(index == -1);
4096 	}
4097 
4098 	rec = &el->l_recs[index];
4099 	ocfs2_subtract_from_rec(inode->i_sb, split, rec, split_rec);
4100 	ocfs2_rotate_leaf(insert_el, split_rec);
4101 }
4102 
4103 /*
4104  * This function only does inserts on an allocation b-tree. For tree
4105  * depth = 0, ocfs2_insert_at_leaf() is called directly.
4106  *
4107  * right_path is the path we want to do the actual insert
4108  * in. left_path should only be passed in if we need to update that
4109  * portion of the tree after an edge insert.
4110  */
4111 static int ocfs2_insert_path(struct inode *inode,
4112 			     handle_t *handle,
4113 			     struct ocfs2_path *left_path,
4114 			     struct ocfs2_path *right_path,
4115 			     struct ocfs2_extent_rec *insert_rec,
4116 			     struct ocfs2_insert_type *insert)
4117 {
4118 	int ret, subtree_index;
4119 	struct buffer_head *leaf_bh = path_leaf_bh(right_path);
4120 
4121 	if (left_path) {
4122 		int credits = handle->h_buffer_credits;
4123 
4124 		/*
4125 		 * There's a chance that left_path got passed back to
4126 		 * us without being accounted for in the
4127 		 * journal. Extend our transaction here to be sure we
4128 		 * can change those blocks.
4129 		 */
4130 		credits += left_path->p_tree_depth;
4131 
4132 		ret = ocfs2_extend_trans(handle, credits);
4133 		if (ret < 0) {
4134 			mlog_errno(ret);
4135 			goto out;
4136 		}
4137 
4138 		ret = ocfs2_journal_access_path(inode, handle, left_path);
4139 		if (ret < 0) {
4140 			mlog_errno(ret);
4141 			goto out;
4142 		}
4143 	}
4144 
4145 	/*
4146 	 * Pass both paths to the journal. The majority of inserts
4147 	 * will be touching all components anyway.
4148 	 */
4149 	ret = ocfs2_journal_access_path(inode, handle, right_path);
4150 	if (ret < 0) {
4151 		mlog_errno(ret);
4152 		goto out;
4153 	}
4154 
4155 	if (insert->ins_split != SPLIT_NONE) {
4156 		/*
4157 		 * We could call ocfs2_insert_at_leaf() for some types
4158 		 * of splits, but it's easier to just let one separate
4159 		 * function sort it all out.
4160 		 */
4161 		ocfs2_split_record(inode, left_path, right_path,
4162 				   insert_rec, insert->ins_split);
4163 
4164 		/*
4165 		 * Split might have modified either leaf and we don't
4166 		 * have a guarantee that the later edge insert will
4167 		 * dirty this for us.
4168 		 */
4169 		if (left_path)
4170 			ret = ocfs2_journal_dirty(handle,
4171 						  path_leaf_bh(left_path));
4172 			if (ret)
4173 				mlog_errno(ret);
4174 	} else
4175 		ocfs2_insert_at_leaf(insert_rec, path_leaf_el(right_path),
4176 				     insert, inode);
4177 
4178 	ret = ocfs2_journal_dirty(handle, leaf_bh);
4179 	if (ret)
4180 		mlog_errno(ret);
4181 
4182 	if (left_path) {
4183 		/*
4184 		 * The rotate code has indicated that we need to fix
4185 		 * up portions of the tree after the insert.
4186 		 *
4187 		 * XXX: Should we extend the transaction here?
4188 		 */
4189 		subtree_index = ocfs2_find_subtree_root(inode, left_path,
4190 							right_path);
4191 		ocfs2_complete_edge_insert(inode, handle, left_path,
4192 					   right_path, subtree_index);
4193 	}
4194 
4195 	ret = 0;
4196 out:
4197 	return ret;
4198 }
4199 
4200 static int ocfs2_do_insert_extent(struct inode *inode,
4201 				  handle_t *handle,
4202 				  struct ocfs2_extent_tree *et,
4203 				  struct ocfs2_extent_rec *insert_rec,
4204 				  struct ocfs2_insert_type *type)
4205 {
4206 	int ret, rotate = 0;
4207 	u32 cpos;
4208 	struct ocfs2_path *right_path = NULL;
4209 	struct ocfs2_path *left_path = NULL;
4210 	struct ocfs2_extent_list *el;
4211 
4212 	el = et->et_root_el;
4213 
4214 	ret = ocfs2_et_root_journal_access(handle, inode, et,
4215 					   OCFS2_JOURNAL_ACCESS_WRITE);
4216 	if (ret) {
4217 		mlog_errno(ret);
4218 		goto out;
4219 	}
4220 
4221 	if (le16_to_cpu(el->l_tree_depth) == 0) {
4222 		ocfs2_insert_at_leaf(insert_rec, el, type, inode);
4223 		goto out_update_clusters;
4224 	}
4225 
4226 	right_path = ocfs2_new_path_from_et(et);
4227 	if (!right_path) {
4228 		ret = -ENOMEM;
4229 		mlog_errno(ret);
4230 		goto out;
4231 	}
4232 
4233 	/*
4234 	 * Determine the path to start with. Rotations need the
4235 	 * rightmost path, everything else can go directly to the
4236 	 * target leaf.
4237 	 */
4238 	cpos = le32_to_cpu(insert_rec->e_cpos);
4239 	if (type->ins_appending == APPEND_NONE &&
4240 	    type->ins_contig == CONTIG_NONE) {
4241 		rotate = 1;
4242 		cpos = UINT_MAX;
4243 	}
4244 
4245 	ret = ocfs2_find_path(inode, right_path, cpos);
4246 	if (ret) {
4247 		mlog_errno(ret);
4248 		goto out;
4249 	}
4250 
4251 	/*
4252 	 * Rotations and appends need special treatment - they modify
4253 	 * parts of the tree's above them.
4254 	 *
4255 	 * Both might pass back a path immediate to the left of the
4256 	 * one being inserted to. This will be cause
4257 	 * ocfs2_insert_path() to modify the rightmost records of
4258 	 * left_path to account for an edge insert.
4259 	 *
4260 	 * XXX: When modifying this code, keep in mind that an insert
4261 	 * can wind up skipping both of these two special cases...
4262 	 */
4263 	if (rotate) {
4264 		ret = ocfs2_rotate_tree_right(inode, handle, type->ins_split,
4265 					      le32_to_cpu(insert_rec->e_cpos),
4266 					      right_path, &left_path);
4267 		if (ret) {
4268 			mlog_errno(ret);
4269 			goto out;
4270 		}
4271 
4272 		/*
4273 		 * ocfs2_rotate_tree_right() might have extended the
4274 		 * transaction without re-journaling our tree root.
4275 		 */
4276 		ret = ocfs2_et_root_journal_access(handle, inode, et,
4277 						   OCFS2_JOURNAL_ACCESS_WRITE);
4278 		if (ret) {
4279 			mlog_errno(ret);
4280 			goto out;
4281 		}
4282 	} else if (type->ins_appending == APPEND_TAIL
4283 		   && type->ins_contig != CONTIG_LEFT) {
4284 		ret = ocfs2_append_rec_to_path(inode, handle, insert_rec,
4285 					       right_path, &left_path);
4286 		if (ret) {
4287 			mlog_errno(ret);
4288 			goto out;
4289 		}
4290 	}
4291 
4292 	ret = ocfs2_insert_path(inode, handle, left_path, right_path,
4293 				insert_rec, type);
4294 	if (ret) {
4295 		mlog_errno(ret);
4296 		goto out;
4297 	}
4298 
4299 out_update_clusters:
4300 	if (type->ins_split == SPLIT_NONE)
4301 		ocfs2_et_update_clusters(inode, et,
4302 					 le16_to_cpu(insert_rec->e_leaf_clusters));
4303 
4304 	ret = ocfs2_journal_dirty(handle, et->et_root_bh);
4305 	if (ret)
4306 		mlog_errno(ret);
4307 
4308 out:
4309 	ocfs2_free_path(left_path);
4310 	ocfs2_free_path(right_path);
4311 
4312 	return ret;
4313 }
4314 
4315 static enum ocfs2_contig_type
4316 ocfs2_figure_merge_contig_type(struct inode *inode, struct ocfs2_path *path,
4317 			       struct ocfs2_extent_list *el, int index,
4318 			       struct ocfs2_extent_rec *split_rec)
4319 {
4320 	int status;
4321 	enum ocfs2_contig_type ret = CONTIG_NONE;
4322 	u32 left_cpos, right_cpos;
4323 	struct ocfs2_extent_rec *rec = NULL;
4324 	struct ocfs2_extent_list *new_el;
4325 	struct ocfs2_path *left_path = NULL, *right_path = NULL;
4326 	struct buffer_head *bh;
4327 	struct ocfs2_extent_block *eb;
4328 
4329 	if (index > 0) {
4330 		rec = &el->l_recs[index - 1];
4331 	} else if (path->p_tree_depth > 0) {
4332 		status = ocfs2_find_cpos_for_left_leaf(inode->i_sb,
4333 						       path, &left_cpos);
4334 		if (status)
4335 			goto out;
4336 
4337 		if (left_cpos != 0) {
4338 			left_path = ocfs2_new_path_from_path(path);
4339 			if (!left_path)
4340 				goto out;
4341 
4342 			status = ocfs2_find_path(inode, left_path, left_cpos);
4343 			if (status)
4344 				goto out;
4345 
4346 			new_el = path_leaf_el(left_path);
4347 
4348 			if (le16_to_cpu(new_el->l_next_free_rec) !=
4349 			    le16_to_cpu(new_el->l_count)) {
4350 				bh = path_leaf_bh(left_path);
4351 				eb = (struct ocfs2_extent_block *)bh->b_data;
4352 				ocfs2_error(inode->i_sb,
4353 					    "Extent block #%llu has an "
4354 					    "invalid l_next_free_rec of "
4355 					    "%d.  It should have "
4356 					    "matched the l_count of %d",
4357 					    (unsigned long long)le64_to_cpu(eb->h_blkno),
4358 					    le16_to_cpu(new_el->l_next_free_rec),
4359 					    le16_to_cpu(new_el->l_count));
4360 				status = -EINVAL;
4361 				goto out;
4362 			}
4363 			rec = &new_el->l_recs[
4364 				le16_to_cpu(new_el->l_next_free_rec) - 1];
4365 		}
4366 	}
4367 
4368 	/*
4369 	 * We're careful to check for an empty extent record here -
4370 	 * the merge code will know what to do if it sees one.
4371 	 */
4372 	if (rec) {
4373 		if (index == 1 && ocfs2_is_empty_extent(rec)) {
4374 			if (split_rec->e_cpos == el->l_recs[index].e_cpos)
4375 				ret = CONTIG_RIGHT;
4376 		} else {
4377 			ret = ocfs2_extent_contig(inode, rec, split_rec);
4378 		}
4379 	}
4380 
4381 	rec = NULL;
4382 	if (index < (le16_to_cpu(el->l_next_free_rec) - 1))
4383 		rec = &el->l_recs[index + 1];
4384 	else if (le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count) &&
4385 		 path->p_tree_depth > 0) {
4386 		status = ocfs2_find_cpos_for_right_leaf(inode->i_sb,
4387 							path, &right_cpos);
4388 		if (status)
4389 			goto out;
4390 
4391 		if (right_cpos == 0)
4392 			goto out;
4393 
4394 		right_path = ocfs2_new_path_from_path(path);
4395 		if (!right_path)
4396 			goto out;
4397 
4398 		status = ocfs2_find_path(inode, right_path, right_cpos);
4399 		if (status)
4400 			goto out;
4401 
4402 		new_el = path_leaf_el(right_path);
4403 		rec = &new_el->l_recs[0];
4404 		if (ocfs2_is_empty_extent(rec)) {
4405 			if (le16_to_cpu(new_el->l_next_free_rec) <= 1) {
4406 				bh = path_leaf_bh(right_path);
4407 				eb = (struct ocfs2_extent_block *)bh->b_data;
4408 				ocfs2_error(inode->i_sb,
4409 					    "Extent block #%llu has an "
4410 					    "invalid l_next_free_rec of %d",
4411 					    (unsigned long long)le64_to_cpu(eb->h_blkno),
4412 					    le16_to_cpu(new_el->l_next_free_rec));
4413 				status = -EINVAL;
4414 				goto out;
4415 			}
4416 			rec = &new_el->l_recs[1];
4417 		}
4418 	}
4419 
4420 	if (rec) {
4421 		enum ocfs2_contig_type contig_type;
4422 
4423 		contig_type = ocfs2_extent_contig(inode, rec, split_rec);
4424 
4425 		if (contig_type == CONTIG_LEFT && ret == CONTIG_RIGHT)
4426 			ret = CONTIG_LEFTRIGHT;
4427 		else if (ret == CONTIG_NONE)
4428 			ret = contig_type;
4429 	}
4430 
4431 out:
4432 	if (left_path)
4433 		ocfs2_free_path(left_path);
4434 	if (right_path)
4435 		ocfs2_free_path(right_path);
4436 
4437 	return ret;
4438 }
4439 
4440 static void ocfs2_figure_contig_type(struct inode *inode,
4441 				     struct ocfs2_insert_type *insert,
4442 				     struct ocfs2_extent_list *el,
4443 				     struct ocfs2_extent_rec *insert_rec,
4444 				     struct ocfs2_extent_tree *et)
4445 {
4446 	int i;
4447 	enum ocfs2_contig_type contig_type = CONTIG_NONE;
4448 
4449 	BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
4450 
4451 	for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) {
4452 		contig_type = ocfs2_extent_contig(inode, &el->l_recs[i],
4453 						  insert_rec);
4454 		if (contig_type != CONTIG_NONE) {
4455 			insert->ins_contig_index = i;
4456 			break;
4457 		}
4458 	}
4459 	insert->ins_contig = contig_type;
4460 
4461 	if (insert->ins_contig != CONTIG_NONE) {
4462 		struct ocfs2_extent_rec *rec =
4463 				&el->l_recs[insert->ins_contig_index];
4464 		unsigned int len = le16_to_cpu(rec->e_leaf_clusters) +
4465 				   le16_to_cpu(insert_rec->e_leaf_clusters);
4466 
4467 		/*
4468 		 * Caller might want us to limit the size of extents, don't
4469 		 * calculate contiguousness if we might exceed that limit.
4470 		 */
4471 		if (et->et_max_leaf_clusters &&
4472 		    (len > et->et_max_leaf_clusters))
4473 			insert->ins_contig = CONTIG_NONE;
4474 	}
4475 }
4476 
4477 /*
4478  * This should only be called against the righmost leaf extent list.
4479  *
4480  * ocfs2_figure_appending_type() will figure out whether we'll have to
4481  * insert at the tail of the rightmost leaf.
4482  *
4483  * This should also work against the root extent list for tree's with 0
4484  * depth. If we consider the root extent list to be the rightmost leaf node
4485  * then the logic here makes sense.
4486  */
4487 static void ocfs2_figure_appending_type(struct ocfs2_insert_type *insert,
4488 					struct ocfs2_extent_list *el,
4489 					struct ocfs2_extent_rec *insert_rec)
4490 {
4491 	int i;
4492 	u32 cpos = le32_to_cpu(insert_rec->e_cpos);
4493 	struct ocfs2_extent_rec *rec;
4494 
4495 	insert->ins_appending = APPEND_NONE;
4496 
4497 	BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
4498 
4499 	if (!el->l_next_free_rec)
4500 		goto set_tail_append;
4501 
4502 	if (ocfs2_is_empty_extent(&el->l_recs[0])) {
4503 		/* Were all records empty? */
4504 		if (le16_to_cpu(el->l_next_free_rec) == 1)
4505 			goto set_tail_append;
4506 	}
4507 
4508 	i = le16_to_cpu(el->l_next_free_rec) - 1;
4509 	rec = &el->l_recs[i];
4510 
4511 	if (cpos >=
4512 	    (le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)))
4513 		goto set_tail_append;
4514 
4515 	return;
4516 
4517 set_tail_append:
4518 	insert->ins_appending = APPEND_TAIL;
4519 }
4520 
4521 /*
4522  * Helper function called at the begining of an insert.
4523  *
4524  * This computes a few things that are commonly used in the process of
4525  * inserting into the btree:
4526  *   - Whether the new extent is contiguous with an existing one.
4527  *   - The current tree depth.
4528  *   - Whether the insert is an appending one.
4529  *   - The total # of free records in the tree.
4530  *
4531  * All of the information is stored on the ocfs2_insert_type
4532  * structure.
4533  */
4534 static int ocfs2_figure_insert_type(struct inode *inode,
4535 				    struct ocfs2_extent_tree *et,
4536 				    struct buffer_head **last_eb_bh,
4537 				    struct ocfs2_extent_rec *insert_rec,
4538 				    int *free_records,
4539 				    struct ocfs2_insert_type *insert)
4540 {
4541 	int ret;
4542 	struct ocfs2_extent_block *eb;
4543 	struct ocfs2_extent_list *el;
4544 	struct ocfs2_path *path = NULL;
4545 	struct buffer_head *bh = NULL;
4546 
4547 	insert->ins_split = SPLIT_NONE;
4548 
4549 	el = et->et_root_el;
4550 	insert->ins_tree_depth = le16_to_cpu(el->l_tree_depth);
4551 
4552 	if (el->l_tree_depth) {
4553 		/*
4554 		 * If we have tree depth, we read in the
4555 		 * rightmost extent block ahead of time as
4556 		 * ocfs2_figure_insert_type() and ocfs2_add_branch()
4557 		 * may want it later.
4558 		 */
4559 		ret = ocfs2_read_extent_block(inode,
4560 					      ocfs2_et_get_last_eb_blk(et),
4561 					      &bh);
4562 		if (ret) {
4563 			mlog_exit(ret);
4564 			goto out;
4565 		}
4566 		eb = (struct ocfs2_extent_block *) bh->b_data;
4567 		el = &eb->h_list;
4568 	}
4569 
4570 	/*
4571 	 * Unless we have a contiguous insert, we'll need to know if
4572 	 * there is room left in our allocation tree for another
4573 	 * extent record.
4574 	 *
4575 	 * XXX: This test is simplistic, we can search for empty
4576 	 * extent records too.
4577 	 */
4578 	*free_records = le16_to_cpu(el->l_count) -
4579 		le16_to_cpu(el->l_next_free_rec);
4580 
4581 	if (!insert->ins_tree_depth) {
4582 		ocfs2_figure_contig_type(inode, insert, el, insert_rec, et);
4583 		ocfs2_figure_appending_type(insert, el, insert_rec);
4584 		return 0;
4585 	}
4586 
4587 	path = ocfs2_new_path_from_et(et);
4588 	if (!path) {
4589 		ret = -ENOMEM;
4590 		mlog_errno(ret);
4591 		goto out;
4592 	}
4593 
4594 	/*
4595 	 * In the case that we're inserting past what the tree
4596 	 * currently accounts for, ocfs2_find_path() will return for
4597 	 * us the rightmost tree path. This is accounted for below in
4598 	 * the appending code.
4599 	 */
4600 	ret = ocfs2_find_path(inode, path, le32_to_cpu(insert_rec->e_cpos));
4601 	if (ret) {
4602 		mlog_errno(ret);
4603 		goto out;
4604 	}
4605 
4606 	el = path_leaf_el(path);
4607 
4608 	/*
4609 	 * Now that we have the path, there's two things we want to determine:
4610 	 * 1) Contiguousness (also set contig_index if this is so)
4611 	 *
4612 	 * 2) Are we doing an append? We can trivially break this up
4613          *     into two types of appends: simple record append, or a
4614          *     rotate inside the tail leaf.
4615 	 */
4616 	ocfs2_figure_contig_type(inode, insert, el, insert_rec, et);
4617 
4618 	/*
4619 	 * The insert code isn't quite ready to deal with all cases of
4620 	 * left contiguousness. Specifically, if it's an insert into
4621 	 * the 1st record in a leaf, it will require the adjustment of
4622 	 * cluster count on the last record of the path directly to it's
4623 	 * left. For now, just catch that case and fool the layers
4624 	 * above us. This works just fine for tree_depth == 0, which
4625 	 * is why we allow that above.
4626 	 */
4627 	if (insert->ins_contig == CONTIG_LEFT &&
4628 	    insert->ins_contig_index == 0)
4629 		insert->ins_contig = CONTIG_NONE;
4630 
4631 	/*
4632 	 * Ok, so we can simply compare against last_eb to figure out
4633 	 * whether the path doesn't exist. This will only happen in
4634 	 * the case that we're doing a tail append, so maybe we can
4635 	 * take advantage of that information somehow.
4636 	 */
4637 	if (ocfs2_et_get_last_eb_blk(et) ==
4638 	    path_leaf_bh(path)->b_blocknr) {
4639 		/*
4640 		 * Ok, ocfs2_find_path() returned us the rightmost
4641 		 * tree path. This might be an appending insert. There are
4642 		 * two cases:
4643 		 *    1) We're doing a true append at the tail:
4644 		 *	-This might even be off the end of the leaf
4645 		 *    2) We're "appending" by rotating in the tail
4646 		 */
4647 		ocfs2_figure_appending_type(insert, el, insert_rec);
4648 	}
4649 
4650 out:
4651 	ocfs2_free_path(path);
4652 
4653 	if (ret == 0)
4654 		*last_eb_bh = bh;
4655 	else
4656 		brelse(bh);
4657 	return ret;
4658 }
4659 
4660 /*
4661  * Insert an extent into an inode btree.
4662  *
4663  * The caller needs to update fe->i_clusters
4664  */
4665 int ocfs2_insert_extent(struct ocfs2_super *osb,
4666 			handle_t *handle,
4667 			struct inode *inode,
4668 			struct ocfs2_extent_tree *et,
4669 			u32 cpos,
4670 			u64 start_blk,
4671 			u32 new_clusters,
4672 			u8 flags,
4673 			struct ocfs2_alloc_context *meta_ac)
4674 {
4675 	int status;
4676 	int uninitialized_var(free_records);
4677 	struct buffer_head *last_eb_bh = NULL;
4678 	struct ocfs2_insert_type insert = {0, };
4679 	struct ocfs2_extent_rec rec;
4680 
4681 	mlog(0, "add %u clusters at position %u to inode %llu\n",
4682 	     new_clusters, cpos, (unsigned long long)OCFS2_I(inode)->ip_blkno);
4683 
4684 	memset(&rec, 0, sizeof(rec));
4685 	rec.e_cpos = cpu_to_le32(cpos);
4686 	rec.e_blkno = cpu_to_le64(start_blk);
4687 	rec.e_leaf_clusters = cpu_to_le16(new_clusters);
4688 	rec.e_flags = flags;
4689 	status = ocfs2_et_insert_check(inode, et, &rec);
4690 	if (status) {
4691 		mlog_errno(status);
4692 		goto bail;
4693 	}
4694 
4695 	status = ocfs2_figure_insert_type(inode, et, &last_eb_bh, &rec,
4696 					  &free_records, &insert);
4697 	if (status < 0) {
4698 		mlog_errno(status);
4699 		goto bail;
4700 	}
4701 
4702 	mlog(0, "Insert.appending: %u, Insert.Contig: %u, "
4703 	     "Insert.contig_index: %d, Insert.free_records: %d, "
4704 	     "Insert.tree_depth: %d\n",
4705 	     insert.ins_appending, insert.ins_contig, insert.ins_contig_index,
4706 	     free_records, insert.ins_tree_depth);
4707 
4708 	if (insert.ins_contig == CONTIG_NONE && free_records == 0) {
4709 		status = ocfs2_grow_tree(inode, handle, et,
4710 					 &insert.ins_tree_depth, &last_eb_bh,
4711 					 meta_ac);
4712 		if (status) {
4713 			mlog_errno(status);
4714 			goto bail;
4715 		}
4716 	}
4717 
4718 	/* Finally, we can add clusters. This might rotate the tree for us. */
4719 	status = ocfs2_do_insert_extent(inode, handle, et, &rec, &insert);
4720 	if (status < 0)
4721 		mlog_errno(status);
4722 	else if (et->et_ops == &ocfs2_dinode_et_ops)
4723 		ocfs2_extent_map_insert_rec(inode, &rec);
4724 
4725 bail:
4726 	brelse(last_eb_bh);
4727 
4728 	mlog_exit(status);
4729 	return status;
4730 }
4731 
4732 /*
4733  * Allcate and add clusters into the extent b-tree.
4734  * The new clusters(clusters_to_add) will be inserted at logical_offset.
4735  * The extent b-tree's root is specified by et, and
4736  * it is not limited to the file storage. Any extent tree can use this
4737  * function if it implements the proper ocfs2_extent_tree.
4738  */
4739 int ocfs2_add_clusters_in_btree(struct ocfs2_super *osb,
4740 				struct inode *inode,
4741 				u32 *logical_offset,
4742 				u32 clusters_to_add,
4743 				int mark_unwritten,
4744 				struct ocfs2_extent_tree *et,
4745 				handle_t *handle,
4746 				struct ocfs2_alloc_context *data_ac,
4747 				struct ocfs2_alloc_context *meta_ac,
4748 				enum ocfs2_alloc_restarted *reason_ret)
4749 {
4750 	int status = 0;
4751 	int free_extents;
4752 	enum ocfs2_alloc_restarted reason = RESTART_NONE;
4753 	u32 bit_off, num_bits;
4754 	u64 block;
4755 	u8 flags = 0;
4756 
4757 	BUG_ON(!clusters_to_add);
4758 
4759 	if (mark_unwritten)
4760 		flags = OCFS2_EXT_UNWRITTEN;
4761 
4762 	free_extents = ocfs2_num_free_extents(osb, inode, et);
4763 	if (free_extents < 0) {
4764 		status = free_extents;
4765 		mlog_errno(status);
4766 		goto leave;
4767 	}
4768 
4769 	/* there are two cases which could cause us to EAGAIN in the
4770 	 * we-need-more-metadata case:
4771 	 * 1) we haven't reserved *any*
4772 	 * 2) we are so fragmented, we've needed to add metadata too
4773 	 *    many times. */
4774 	if (!free_extents && !meta_ac) {
4775 		mlog(0, "we haven't reserved any metadata!\n");
4776 		status = -EAGAIN;
4777 		reason = RESTART_META;
4778 		goto leave;
4779 	} else if ((!free_extents)
4780 		   && (ocfs2_alloc_context_bits_left(meta_ac)
4781 		       < ocfs2_extend_meta_needed(et->et_root_el))) {
4782 		mlog(0, "filesystem is really fragmented...\n");
4783 		status = -EAGAIN;
4784 		reason = RESTART_META;
4785 		goto leave;
4786 	}
4787 
4788 	status = __ocfs2_claim_clusters(osb, handle, data_ac, 1,
4789 					clusters_to_add, &bit_off, &num_bits);
4790 	if (status < 0) {
4791 		if (status != -ENOSPC)
4792 			mlog_errno(status);
4793 		goto leave;
4794 	}
4795 
4796 	BUG_ON(num_bits > clusters_to_add);
4797 
4798 	/* reserve our write early -- insert_extent may update the tree root */
4799 	status = ocfs2_et_root_journal_access(handle, inode, et,
4800 					      OCFS2_JOURNAL_ACCESS_WRITE);
4801 	if (status < 0) {
4802 		mlog_errno(status);
4803 		goto leave;
4804 	}
4805 
4806 	block = ocfs2_clusters_to_blocks(osb->sb, bit_off);
4807 	mlog(0, "Allocating %u clusters at block %u for inode %llu\n",
4808 	     num_bits, bit_off, (unsigned long long)OCFS2_I(inode)->ip_blkno);
4809 	status = ocfs2_insert_extent(osb, handle, inode, et,
4810 				     *logical_offset, block,
4811 				     num_bits, flags, meta_ac);
4812 	if (status < 0) {
4813 		mlog_errno(status);
4814 		goto leave;
4815 	}
4816 
4817 	status = ocfs2_journal_dirty(handle, et->et_root_bh);
4818 	if (status < 0) {
4819 		mlog_errno(status);
4820 		goto leave;
4821 	}
4822 
4823 	clusters_to_add -= num_bits;
4824 	*logical_offset += num_bits;
4825 
4826 	if (clusters_to_add) {
4827 		mlog(0, "need to alloc once more, wanted = %u\n",
4828 		     clusters_to_add);
4829 		status = -EAGAIN;
4830 		reason = RESTART_TRANS;
4831 	}
4832 
4833 leave:
4834 	mlog_exit(status);
4835 	if (reason_ret)
4836 		*reason_ret = reason;
4837 	return status;
4838 }
4839 
4840 static void ocfs2_make_right_split_rec(struct super_block *sb,
4841 				       struct ocfs2_extent_rec *split_rec,
4842 				       u32 cpos,
4843 				       struct ocfs2_extent_rec *rec)
4844 {
4845 	u32 rec_cpos = le32_to_cpu(rec->e_cpos);
4846 	u32 rec_range = rec_cpos + le16_to_cpu(rec->e_leaf_clusters);
4847 
4848 	memset(split_rec, 0, sizeof(struct ocfs2_extent_rec));
4849 
4850 	split_rec->e_cpos = cpu_to_le32(cpos);
4851 	split_rec->e_leaf_clusters = cpu_to_le16(rec_range - cpos);
4852 
4853 	split_rec->e_blkno = rec->e_blkno;
4854 	le64_add_cpu(&split_rec->e_blkno,
4855 		     ocfs2_clusters_to_blocks(sb, cpos - rec_cpos));
4856 
4857 	split_rec->e_flags = rec->e_flags;
4858 }
4859 
4860 static int ocfs2_split_and_insert(struct inode *inode,
4861 				  handle_t *handle,
4862 				  struct ocfs2_path *path,
4863 				  struct ocfs2_extent_tree *et,
4864 				  struct buffer_head **last_eb_bh,
4865 				  int split_index,
4866 				  struct ocfs2_extent_rec *orig_split_rec,
4867 				  struct ocfs2_alloc_context *meta_ac)
4868 {
4869 	int ret = 0, depth;
4870 	unsigned int insert_range, rec_range, do_leftright = 0;
4871 	struct ocfs2_extent_rec tmprec;
4872 	struct ocfs2_extent_list *rightmost_el;
4873 	struct ocfs2_extent_rec rec;
4874 	struct ocfs2_extent_rec split_rec = *orig_split_rec;
4875 	struct ocfs2_insert_type insert;
4876 	struct ocfs2_extent_block *eb;
4877 
4878 leftright:
4879 	/*
4880 	 * Store a copy of the record on the stack - it might move
4881 	 * around as the tree is manipulated below.
4882 	 */
4883 	rec = path_leaf_el(path)->l_recs[split_index];
4884 
4885 	rightmost_el = et->et_root_el;
4886 
4887 	depth = le16_to_cpu(rightmost_el->l_tree_depth);
4888 	if (depth) {
4889 		BUG_ON(!(*last_eb_bh));
4890 		eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data;
4891 		rightmost_el = &eb->h_list;
4892 	}
4893 
4894 	if (le16_to_cpu(rightmost_el->l_next_free_rec) ==
4895 	    le16_to_cpu(rightmost_el->l_count)) {
4896 		ret = ocfs2_grow_tree(inode, handle, et,
4897 				      &depth, last_eb_bh, meta_ac);
4898 		if (ret) {
4899 			mlog_errno(ret);
4900 			goto out;
4901 		}
4902 	}
4903 
4904 	memset(&insert, 0, sizeof(struct ocfs2_insert_type));
4905 	insert.ins_appending = APPEND_NONE;
4906 	insert.ins_contig = CONTIG_NONE;
4907 	insert.ins_tree_depth = depth;
4908 
4909 	insert_range = le32_to_cpu(split_rec.e_cpos) +
4910 		le16_to_cpu(split_rec.e_leaf_clusters);
4911 	rec_range = le32_to_cpu(rec.e_cpos) +
4912 		le16_to_cpu(rec.e_leaf_clusters);
4913 
4914 	if (split_rec.e_cpos == rec.e_cpos) {
4915 		insert.ins_split = SPLIT_LEFT;
4916 	} else if (insert_range == rec_range) {
4917 		insert.ins_split = SPLIT_RIGHT;
4918 	} else {
4919 		/*
4920 		 * Left/right split. We fake this as a right split
4921 		 * first and then make a second pass as a left split.
4922 		 */
4923 		insert.ins_split = SPLIT_RIGHT;
4924 
4925 		ocfs2_make_right_split_rec(inode->i_sb, &tmprec, insert_range,
4926 					   &rec);
4927 
4928 		split_rec = tmprec;
4929 
4930 		BUG_ON(do_leftright);
4931 		do_leftright = 1;
4932 	}
4933 
4934 	ret = ocfs2_do_insert_extent(inode, handle, et, &split_rec, &insert);
4935 	if (ret) {
4936 		mlog_errno(ret);
4937 		goto out;
4938 	}
4939 
4940 	if (do_leftright == 1) {
4941 		u32 cpos;
4942 		struct ocfs2_extent_list *el;
4943 
4944 		do_leftright++;
4945 		split_rec = *orig_split_rec;
4946 
4947 		ocfs2_reinit_path(path, 1);
4948 
4949 		cpos = le32_to_cpu(split_rec.e_cpos);
4950 		ret = ocfs2_find_path(inode, path, cpos);
4951 		if (ret) {
4952 			mlog_errno(ret);
4953 			goto out;
4954 		}
4955 
4956 		el = path_leaf_el(path);
4957 		split_index = ocfs2_search_extent_list(el, cpos);
4958 		goto leftright;
4959 	}
4960 out:
4961 
4962 	return ret;
4963 }
4964 
4965 static int ocfs2_replace_extent_rec(struct inode *inode,
4966 				    handle_t *handle,
4967 				    struct ocfs2_path *path,
4968 				    struct ocfs2_extent_list *el,
4969 				    int split_index,
4970 				    struct ocfs2_extent_rec *split_rec)
4971 {
4972 	int ret;
4973 
4974 	ret = ocfs2_path_bh_journal_access(handle, inode, path,
4975 					   path_num_items(path) - 1);
4976 	if (ret) {
4977 		mlog_errno(ret);
4978 		goto out;
4979 	}
4980 
4981 	el->l_recs[split_index] = *split_rec;
4982 
4983 	ocfs2_journal_dirty(handle, path_leaf_bh(path));
4984 out:
4985 	return ret;
4986 }
4987 
4988 /*
4989  * Mark part or all of the extent record at split_index in the leaf
4990  * pointed to by path as written. This removes the unwritten
4991  * extent flag.
4992  *
4993  * Care is taken to handle contiguousness so as to not grow the tree.
4994  *
4995  * meta_ac is not strictly necessary - we only truly need it if growth
4996  * of the tree is required. All other cases will degrade into a less
4997  * optimal tree layout.
4998  *
4999  * last_eb_bh should be the rightmost leaf block for any extent
5000  * btree. Since a split may grow the tree or a merge might shrink it,
5001  * the caller cannot trust the contents of that buffer after this call.
5002  *
5003  * This code is optimized for readability - several passes might be
5004  * made over certain portions of the tree. All of those blocks will
5005  * have been brought into cache (and pinned via the journal), so the
5006  * extra overhead is not expressed in terms of disk reads.
5007  */
5008 static int __ocfs2_mark_extent_written(struct inode *inode,
5009 				       struct ocfs2_extent_tree *et,
5010 				       handle_t *handle,
5011 				       struct ocfs2_path *path,
5012 				       int split_index,
5013 				       struct ocfs2_extent_rec *split_rec,
5014 				       struct ocfs2_alloc_context *meta_ac,
5015 				       struct ocfs2_cached_dealloc_ctxt *dealloc)
5016 {
5017 	int ret = 0;
5018 	struct ocfs2_extent_list *el = path_leaf_el(path);
5019 	struct buffer_head *last_eb_bh = NULL;
5020 	struct ocfs2_extent_rec *rec = &el->l_recs[split_index];
5021 	struct ocfs2_merge_ctxt ctxt;
5022 	struct ocfs2_extent_list *rightmost_el;
5023 
5024 	if (!(rec->e_flags & OCFS2_EXT_UNWRITTEN)) {
5025 		ret = -EIO;
5026 		mlog_errno(ret);
5027 		goto out;
5028 	}
5029 
5030 	if (le32_to_cpu(rec->e_cpos) > le32_to_cpu(split_rec->e_cpos) ||
5031 	    ((le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)) <
5032 	     (le32_to_cpu(split_rec->e_cpos) + le16_to_cpu(split_rec->e_leaf_clusters)))) {
5033 		ret = -EIO;
5034 		mlog_errno(ret);
5035 		goto out;
5036 	}
5037 
5038 	ctxt.c_contig_type = ocfs2_figure_merge_contig_type(inode, path, el,
5039 							    split_index,
5040 							    split_rec);
5041 
5042 	/*
5043 	 * The core merge / split code wants to know how much room is
5044 	 * left in this inodes allocation tree, so we pass the
5045 	 * rightmost extent list.
5046 	 */
5047 	if (path->p_tree_depth) {
5048 		struct ocfs2_extent_block *eb;
5049 
5050 		ret = ocfs2_read_extent_block(inode,
5051 					      ocfs2_et_get_last_eb_blk(et),
5052 					      &last_eb_bh);
5053 		if (ret) {
5054 			mlog_exit(ret);
5055 			goto out;
5056 		}
5057 
5058 		eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
5059 		rightmost_el = &eb->h_list;
5060 	} else
5061 		rightmost_el = path_root_el(path);
5062 
5063 	if (rec->e_cpos == split_rec->e_cpos &&
5064 	    rec->e_leaf_clusters == split_rec->e_leaf_clusters)
5065 		ctxt.c_split_covers_rec = 1;
5066 	else
5067 		ctxt.c_split_covers_rec = 0;
5068 
5069 	ctxt.c_has_empty_extent = ocfs2_is_empty_extent(&el->l_recs[0]);
5070 
5071 	mlog(0, "index: %d, contig: %u, has_empty: %u, split_covers: %u\n",
5072 	     split_index, ctxt.c_contig_type, ctxt.c_has_empty_extent,
5073 	     ctxt.c_split_covers_rec);
5074 
5075 	if (ctxt.c_contig_type == CONTIG_NONE) {
5076 		if (ctxt.c_split_covers_rec)
5077 			ret = ocfs2_replace_extent_rec(inode, handle,
5078 						       path, el,
5079 						       split_index, split_rec);
5080 		else
5081 			ret = ocfs2_split_and_insert(inode, handle, path, et,
5082 						     &last_eb_bh, split_index,
5083 						     split_rec, meta_ac);
5084 		if (ret)
5085 			mlog_errno(ret);
5086 	} else {
5087 		ret = ocfs2_try_to_merge_extent(inode, handle, path,
5088 						split_index, split_rec,
5089 						dealloc, &ctxt, et);
5090 		if (ret)
5091 			mlog_errno(ret);
5092 	}
5093 
5094 out:
5095 	brelse(last_eb_bh);
5096 	return ret;
5097 }
5098 
5099 /*
5100  * Mark the already-existing extent at cpos as written for len clusters.
5101  *
5102  * If the existing extent is larger than the request, initiate a
5103  * split. An attempt will be made at merging with adjacent extents.
5104  *
5105  * The caller is responsible for passing down meta_ac if we'll need it.
5106  */
5107 int ocfs2_mark_extent_written(struct inode *inode,
5108 			      struct ocfs2_extent_tree *et,
5109 			      handle_t *handle, u32 cpos, u32 len, u32 phys,
5110 			      struct ocfs2_alloc_context *meta_ac,
5111 			      struct ocfs2_cached_dealloc_ctxt *dealloc)
5112 {
5113 	int ret, index;
5114 	u64 start_blkno = ocfs2_clusters_to_blocks(inode->i_sb, phys);
5115 	struct ocfs2_extent_rec split_rec;
5116 	struct ocfs2_path *left_path = NULL;
5117 	struct ocfs2_extent_list *el;
5118 
5119 	mlog(0, "Inode %lu cpos %u, len %u, phys %u (%llu)\n",
5120 	     inode->i_ino, cpos, len, phys, (unsigned long long)start_blkno);
5121 
5122 	if (!ocfs2_writes_unwritten_extents(OCFS2_SB(inode->i_sb))) {
5123 		ocfs2_error(inode->i_sb, "Inode %llu has unwritten extents "
5124 			    "that are being written to, but the feature bit "
5125 			    "is not set in the super block.",
5126 			    (unsigned long long)OCFS2_I(inode)->ip_blkno);
5127 		ret = -EROFS;
5128 		goto out;
5129 	}
5130 
5131 	/*
5132 	 * XXX: This should be fixed up so that we just re-insert the
5133 	 * next extent records.
5134 	 *
5135 	 * XXX: This is a hack on the extent tree, maybe it should be
5136 	 * an op?
5137 	 */
5138 	if (et->et_ops == &ocfs2_dinode_et_ops)
5139 		ocfs2_extent_map_trunc(inode, 0);
5140 
5141 	left_path = ocfs2_new_path_from_et(et);
5142 	if (!left_path) {
5143 		ret = -ENOMEM;
5144 		mlog_errno(ret);
5145 		goto out;
5146 	}
5147 
5148 	ret = ocfs2_find_path(inode, left_path, cpos);
5149 	if (ret) {
5150 		mlog_errno(ret);
5151 		goto out;
5152 	}
5153 	el = path_leaf_el(left_path);
5154 
5155 	index = ocfs2_search_extent_list(el, cpos);
5156 	if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) {
5157 		ocfs2_error(inode->i_sb,
5158 			    "Inode %llu has an extent at cpos %u which can no "
5159 			    "longer be found.\n",
5160 			    (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos);
5161 		ret = -EROFS;
5162 		goto out;
5163 	}
5164 
5165 	memset(&split_rec, 0, sizeof(struct ocfs2_extent_rec));
5166 	split_rec.e_cpos = cpu_to_le32(cpos);
5167 	split_rec.e_leaf_clusters = cpu_to_le16(len);
5168 	split_rec.e_blkno = cpu_to_le64(start_blkno);
5169 	split_rec.e_flags = path_leaf_el(left_path)->l_recs[index].e_flags;
5170 	split_rec.e_flags &= ~OCFS2_EXT_UNWRITTEN;
5171 
5172 	ret = __ocfs2_mark_extent_written(inode, et, handle, left_path,
5173 					  index, &split_rec, meta_ac,
5174 					  dealloc);
5175 	if (ret)
5176 		mlog_errno(ret);
5177 
5178 out:
5179 	ocfs2_free_path(left_path);
5180 	return ret;
5181 }
5182 
5183 static int ocfs2_split_tree(struct inode *inode, struct ocfs2_extent_tree *et,
5184 			    handle_t *handle, struct ocfs2_path *path,
5185 			    int index, u32 new_range,
5186 			    struct ocfs2_alloc_context *meta_ac)
5187 {
5188 	int ret, depth, credits = handle->h_buffer_credits;
5189 	struct buffer_head *last_eb_bh = NULL;
5190 	struct ocfs2_extent_block *eb;
5191 	struct ocfs2_extent_list *rightmost_el, *el;
5192 	struct ocfs2_extent_rec split_rec;
5193 	struct ocfs2_extent_rec *rec;
5194 	struct ocfs2_insert_type insert;
5195 
5196 	/*
5197 	 * Setup the record to split before we grow the tree.
5198 	 */
5199 	el = path_leaf_el(path);
5200 	rec = &el->l_recs[index];
5201 	ocfs2_make_right_split_rec(inode->i_sb, &split_rec, new_range, rec);
5202 
5203 	depth = path->p_tree_depth;
5204 	if (depth > 0) {
5205 		ret = ocfs2_read_extent_block(inode,
5206 					      ocfs2_et_get_last_eb_blk(et),
5207 					      &last_eb_bh);
5208 		if (ret < 0) {
5209 			mlog_errno(ret);
5210 			goto out;
5211 		}
5212 
5213 		eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
5214 		rightmost_el = &eb->h_list;
5215 	} else
5216 		rightmost_el = path_leaf_el(path);
5217 
5218 	credits += path->p_tree_depth +
5219 		   ocfs2_extend_meta_needed(et->et_root_el);
5220 	ret = ocfs2_extend_trans(handle, credits);
5221 	if (ret) {
5222 		mlog_errno(ret);
5223 		goto out;
5224 	}
5225 
5226 	if (le16_to_cpu(rightmost_el->l_next_free_rec) ==
5227 	    le16_to_cpu(rightmost_el->l_count)) {
5228 		ret = ocfs2_grow_tree(inode, handle, et, &depth, &last_eb_bh,
5229 				      meta_ac);
5230 		if (ret) {
5231 			mlog_errno(ret);
5232 			goto out;
5233 		}
5234 	}
5235 
5236 	memset(&insert, 0, sizeof(struct ocfs2_insert_type));
5237 	insert.ins_appending = APPEND_NONE;
5238 	insert.ins_contig = CONTIG_NONE;
5239 	insert.ins_split = SPLIT_RIGHT;
5240 	insert.ins_tree_depth = depth;
5241 
5242 	ret = ocfs2_do_insert_extent(inode, handle, et, &split_rec, &insert);
5243 	if (ret)
5244 		mlog_errno(ret);
5245 
5246 out:
5247 	brelse(last_eb_bh);
5248 	return ret;
5249 }
5250 
5251 static int ocfs2_truncate_rec(struct inode *inode, handle_t *handle,
5252 			      struct ocfs2_path *path, int index,
5253 			      struct ocfs2_cached_dealloc_ctxt *dealloc,
5254 			      u32 cpos, u32 len,
5255 			      struct ocfs2_extent_tree *et)
5256 {
5257 	int ret;
5258 	u32 left_cpos, rec_range, trunc_range;
5259 	int wants_rotate = 0, is_rightmost_tree_rec = 0;
5260 	struct super_block *sb = inode->i_sb;
5261 	struct ocfs2_path *left_path = NULL;
5262 	struct ocfs2_extent_list *el = path_leaf_el(path);
5263 	struct ocfs2_extent_rec *rec;
5264 	struct ocfs2_extent_block *eb;
5265 
5266 	if (ocfs2_is_empty_extent(&el->l_recs[0]) && index > 0) {
5267 		ret = ocfs2_rotate_tree_left(inode, handle, path, dealloc, et);
5268 		if (ret) {
5269 			mlog_errno(ret);
5270 			goto out;
5271 		}
5272 
5273 		index--;
5274 	}
5275 
5276 	if (index == (le16_to_cpu(el->l_next_free_rec) - 1) &&
5277 	    path->p_tree_depth) {
5278 		/*
5279 		 * Check whether this is the rightmost tree record. If
5280 		 * we remove all of this record or part of its right
5281 		 * edge then an update of the record lengths above it
5282 		 * will be required.
5283 		 */
5284 		eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
5285 		if (eb->h_next_leaf_blk == 0)
5286 			is_rightmost_tree_rec = 1;
5287 	}
5288 
5289 	rec = &el->l_recs[index];
5290 	if (index == 0 && path->p_tree_depth &&
5291 	    le32_to_cpu(rec->e_cpos) == cpos) {
5292 		/*
5293 		 * Changing the leftmost offset (via partial or whole
5294 		 * record truncate) of an interior (or rightmost) path
5295 		 * means we have to update the subtree that is formed
5296 		 * by this leaf and the one to it's left.
5297 		 *
5298 		 * There are two cases we can skip:
5299 		 *   1) Path is the leftmost one in our inode tree.
5300 		 *   2) The leaf is rightmost and will be empty after
5301 		 *      we remove the extent record - the rotate code
5302 		 *      knows how to update the newly formed edge.
5303 		 */
5304 
5305 		ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path,
5306 						    &left_cpos);
5307 		if (ret) {
5308 			mlog_errno(ret);
5309 			goto out;
5310 		}
5311 
5312 		if (left_cpos && le16_to_cpu(el->l_next_free_rec) > 1) {
5313 			left_path = ocfs2_new_path_from_path(path);
5314 			if (!left_path) {
5315 				ret = -ENOMEM;
5316 				mlog_errno(ret);
5317 				goto out;
5318 			}
5319 
5320 			ret = ocfs2_find_path(inode, left_path, left_cpos);
5321 			if (ret) {
5322 				mlog_errno(ret);
5323 				goto out;
5324 			}
5325 		}
5326 	}
5327 
5328 	ret = ocfs2_extend_rotate_transaction(handle, 0,
5329 					      handle->h_buffer_credits,
5330 					      path);
5331 	if (ret) {
5332 		mlog_errno(ret);
5333 		goto out;
5334 	}
5335 
5336 	ret = ocfs2_journal_access_path(inode, handle, path);
5337 	if (ret) {
5338 		mlog_errno(ret);
5339 		goto out;
5340 	}
5341 
5342 	ret = ocfs2_journal_access_path(inode, handle, left_path);
5343 	if (ret) {
5344 		mlog_errno(ret);
5345 		goto out;
5346 	}
5347 
5348 	rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
5349 	trunc_range = cpos + len;
5350 
5351 	if (le32_to_cpu(rec->e_cpos) == cpos && rec_range == trunc_range) {
5352 		int next_free;
5353 
5354 		memset(rec, 0, sizeof(*rec));
5355 		ocfs2_cleanup_merge(el, index);
5356 		wants_rotate = 1;
5357 
5358 		next_free = le16_to_cpu(el->l_next_free_rec);
5359 		if (is_rightmost_tree_rec && next_free > 1) {
5360 			/*
5361 			 * We skip the edge update if this path will
5362 			 * be deleted by the rotate code.
5363 			 */
5364 			rec = &el->l_recs[next_free - 1];
5365 			ocfs2_adjust_rightmost_records(inode, handle, path,
5366 						       rec);
5367 		}
5368 	} else if (le32_to_cpu(rec->e_cpos) == cpos) {
5369 		/* Remove leftmost portion of the record. */
5370 		le32_add_cpu(&rec->e_cpos, len);
5371 		le64_add_cpu(&rec->e_blkno, ocfs2_clusters_to_blocks(sb, len));
5372 		le16_add_cpu(&rec->e_leaf_clusters, -len);
5373 	} else if (rec_range == trunc_range) {
5374 		/* Remove rightmost portion of the record */
5375 		le16_add_cpu(&rec->e_leaf_clusters, -len);
5376 		if (is_rightmost_tree_rec)
5377 			ocfs2_adjust_rightmost_records(inode, handle, path, rec);
5378 	} else {
5379 		/* Caller should have trapped this. */
5380 		mlog(ML_ERROR, "Inode %llu: Invalid record truncate: (%u, %u) "
5381 		     "(%u, %u)\n", (unsigned long long)OCFS2_I(inode)->ip_blkno,
5382 		     le32_to_cpu(rec->e_cpos),
5383 		     le16_to_cpu(rec->e_leaf_clusters), cpos, len);
5384 		BUG();
5385 	}
5386 
5387 	if (left_path) {
5388 		int subtree_index;
5389 
5390 		subtree_index = ocfs2_find_subtree_root(inode, left_path, path);
5391 		ocfs2_complete_edge_insert(inode, handle, left_path, path,
5392 					   subtree_index);
5393 	}
5394 
5395 	ocfs2_journal_dirty(handle, path_leaf_bh(path));
5396 
5397 	ret = ocfs2_rotate_tree_left(inode, handle, path, dealloc, et);
5398 	if (ret) {
5399 		mlog_errno(ret);
5400 		goto out;
5401 	}
5402 
5403 out:
5404 	ocfs2_free_path(left_path);
5405 	return ret;
5406 }
5407 
5408 int ocfs2_remove_extent(struct inode *inode,
5409 			struct ocfs2_extent_tree *et,
5410 			u32 cpos, u32 len, handle_t *handle,
5411 			struct ocfs2_alloc_context *meta_ac,
5412 			struct ocfs2_cached_dealloc_ctxt *dealloc)
5413 {
5414 	int ret, index;
5415 	u32 rec_range, trunc_range;
5416 	struct ocfs2_extent_rec *rec;
5417 	struct ocfs2_extent_list *el;
5418 	struct ocfs2_path *path = NULL;
5419 
5420 	ocfs2_extent_map_trunc(inode, 0);
5421 
5422 	path = ocfs2_new_path_from_et(et);
5423 	if (!path) {
5424 		ret = -ENOMEM;
5425 		mlog_errno(ret);
5426 		goto out;
5427 	}
5428 
5429 	ret = ocfs2_find_path(inode, path, cpos);
5430 	if (ret) {
5431 		mlog_errno(ret);
5432 		goto out;
5433 	}
5434 
5435 	el = path_leaf_el(path);
5436 	index = ocfs2_search_extent_list(el, cpos);
5437 	if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) {
5438 		ocfs2_error(inode->i_sb,
5439 			    "Inode %llu has an extent at cpos %u which can no "
5440 			    "longer be found.\n",
5441 			    (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos);
5442 		ret = -EROFS;
5443 		goto out;
5444 	}
5445 
5446 	/*
5447 	 * We have 3 cases of extent removal:
5448 	 *   1) Range covers the entire extent rec
5449 	 *   2) Range begins or ends on one edge of the extent rec
5450 	 *   3) Range is in the middle of the extent rec (no shared edges)
5451 	 *
5452 	 * For case 1 we remove the extent rec and left rotate to
5453 	 * fill the hole.
5454 	 *
5455 	 * For case 2 we just shrink the existing extent rec, with a
5456 	 * tree update if the shrinking edge is also the edge of an
5457 	 * extent block.
5458 	 *
5459 	 * For case 3 we do a right split to turn the extent rec into
5460 	 * something case 2 can handle.
5461 	 */
5462 	rec = &el->l_recs[index];
5463 	rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
5464 	trunc_range = cpos + len;
5465 
5466 	BUG_ON(cpos < le32_to_cpu(rec->e_cpos) || trunc_range > rec_range);
5467 
5468 	mlog(0, "Inode %llu, remove (cpos %u, len %u). Existing index %d "
5469 	     "(cpos %u, len %u)\n",
5470 	     (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos, len, index,
5471 	     le32_to_cpu(rec->e_cpos), ocfs2_rec_clusters(el, rec));
5472 
5473 	if (le32_to_cpu(rec->e_cpos) == cpos || rec_range == trunc_range) {
5474 		ret = ocfs2_truncate_rec(inode, handle, path, index, dealloc,
5475 					 cpos, len, et);
5476 		if (ret) {
5477 			mlog_errno(ret);
5478 			goto out;
5479 		}
5480 	} else {
5481 		ret = ocfs2_split_tree(inode, et, handle, path, index,
5482 				       trunc_range, meta_ac);
5483 		if (ret) {
5484 			mlog_errno(ret);
5485 			goto out;
5486 		}
5487 
5488 		/*
5489 		 * The split could have manipulated the tree enough to
5490 		 * move the record location, so we have to look for it again.
5491 		 */
5492 		ocfs2_reinit_path(path, 1);
5493 
5494 		ret = ocfs2_find_path(inode, path, cpos);
5495 		if (ret) {
5496 			mlog_errno(ret);
5497 			goto out;
5498 		}
5499 
5500 		el = path_leaf_el(path);
5501 		index = ocfs2_search_extent_list(el, cpos);
5502 		if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) {
5503 			ocfs2_error(inode->i_sb,
5504 				    "Inode %llu: split at cpos %u lost record.",
5505 				    (unsigned long long)OCFS2_I(inode)->ip_blkno,
5506 				    cpos);
5507 			ret = -EROFS;
5508 			goto out;
5509 		}
5510 
5511 		/*
5512 		 * Double check our values here. If anything is fishy,
5513 		 * it's easier to catch it at the top level.
5514 		 */
5515 		rec = &el->l_recs[index];
5516 		rec_range = le32_to_cpu(rec->e_cpos) +
5517 			ocfs2_rec_clusters(el, rec);
5518 		if (rec_range != trunc_range) {
5519 			ocfs2_error(inode->i_sb,
5520 				    "Inode %llu: error after split at cpos %u"
5521 				    "trunc len %u, existing record is (%u,%u)",
5522 				    (unsigned long long)OCFS2_I(inode)->ip_blkno,
5523 				    cpos, len, le32_to_cpu(rec->e_cpos),
5524 				    ocfs2_rec_clusters(el, rec));
5525 			ret = -EROFS;
5526 			goto out;
5527 		}
5528 
5529 		ret = ocfs2_truncate_rec(inode, handle, path, index, dealloc,
5530 					 cpos, len, et);
5531 		if (ret) {
5532 			mlog_errno(ret);
5533 			goto out;
5534 		}
5535 	}
5536 
5537 out:
5538 	ocfs2_free_path(path);
5539 	return ret;
5540 }
5541 
5542 int ocfs2_remove_btree_range(struct inode *inode,
5543 			     struct ocfs2_extent_tree *et,
5544 			     u32 cpos, u32 phys_cpos, u32 len,
5545 			     struct ocfs2_cached_dealloc_ctxt *dealloc)
5546 {
5547 	int ret;
5548 	u64 phys_blkno = ocfs2_clusters_to_blocks(inode->i_sb, phys_cpos);
5549 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
5550 	struct inode *tl_inode = osb->osb_tl_inode;
5551 	handle_t *handle;
5552 	struct ocfs2_alloc_context *meta_ac = NULL;
5553 
5554 	ret = ocfs2_lock_allocators(inode, et, 0, 1, NULL, &meta_ac);
5555 	if (ret) {
5556 		mlog_errno(ret);
5557 		return ret;
5558 	}
5559 
5560 	mutex_lock(&tl_inode->i_mutex);
5561 
5562 	if (ocfs2_truncate_log_needs_flush(osb)) {
5563 		ret = __ocfs2_flush_truncate_log(osb);
5564 		if (ret < 0) {
5565 			mlog_errno(ret);
5566 			goto out;
5567 		}
5568 	}
5569 
5570 	handle = ocfs2_start_trans(osb, ocfs2_remove_extent_credits(osb->sb));
5571 	if (IS_ERR(handle)) {
5572 		ret = PTR_ERR(handle);
5573 		mlog_errno(ret);
5574 		goto out;
5575 	}
5576 
5577 	ret = ocfs2_et_root_journal_access(handle, inode, et,
5578 					   OCFS2_JOURNAL_ACCESS_WRITE);
5579 	if (ret) {
5580 		mlog_errno(ret);
5581 		goto out;
5582 	}
5583 
5584 	vfs_dq_free_space_nodirty(inode,
5585 				  ocfs2_clusters_to_bytes(inode->i_sb, len));
5586 
5587 	ret = ocfs2_remove_extent(inode, et, cpos, len, handle, meta_ac,
5588 				  dealloc);
5589 	if (ret) {
5590 		mlog_errno(ret);
5591 		goto out_commit;
5592 	}
5593 
5594 	ocfs2_et_update_clusters(inode, et, -len);
5595 
5596 	ret = ocfs2_journal_dirty(handle, et->et_root_bh);
5597 	if (ret) {
5598 		mlog_errno(ret);
5599 		goto out_commit;
5600 	}
5601 
5602 	ret = ocfs2_truncate_log_append(osb, handle, phys_blkno, len);
5603 	if (ret)
5604 		mlog_errno(ret);
5605 
5606 out_commit:
5607 	ocfs2_commit_trans(osb, handle);
5608 out:
5609 	mutex_unlock(&tl_inode->i_mutex);
5610 
5611 	if (meta_ac)
5612 		ocfs2_free_alloc_context(meta_ac);
5613 
5614 	return ret;
5615 }
5616 
5617 int ocfs2_truncate_log_needs_flush(struct ocfs2_super *osb)
5618 {
5619 	struct buffer_head *tl_bh = osb->osb_tl_bh;
5620 	struct ocfs2_dinode *di;
5621 	struct ocfs2_truncate_log *tl;
5622 
5623 	di = (struct ocfs2_dinode *) tl_bh->b_data;
5624 	tl = &di->id2.i_dealloc;
5625 
5626 	mlog_bug_on_msg(le16_to_cpu(tl->tl_used) > le16_to_cpu(tl->tl_count),
5627 			"slot %d, invalid truncate log parameters: used = "
5628 			"%u, count = %u\n", osb->slot_num,
5629 			le16_to_cpu(tl->tl_used), le16_to_cpu(tl->tl_count));
5630 	return le16_to_cpu(tl->tl_used) == le16_to_cpu(tl->tl_count);
5631 }
5632 
5633 static int ocfs2_truncate_log_can_coalesce(struct ocfs2_truncate_log *tl,
5634 					   unsigned int new_start)
5635 {
5636 	unsigned int tail_index;
5637 	unsigned int current_tail;
5638 
5639 	/* No records, nothing to coalesce */
5640 	if (!le16_to_cpu(tl->tl_used))
5641 		return 0;
5642 
5643 	tail_index = le16_to_cpu(tl->tl_used) - 1;
5644 	current_tail = le32_to_cpu(tl->tl_recs[tail_index].t_start);
5645 	current_tail += le32_to_cpu(tl->tl_recs[tail_index].t_clusters);
5646 
5647 	return current_tail == new_start;
5648 }
5649 
5650 int ocfs2_truncate_log_append(struct ocfs2_super *osb,
5651 			      handle_t *handle,
5652 			      u64 start_blk,
5653 			      unsigned int num_clusters)
5654 {
5655 	int status, index;
5656 	unsigned int start_cluster, tl_count;
5657 	struct inode *tl_inode = osb->osb_tl_inode;
5658 	struct buffer_head *tl_bh = osb->osb_tl_bh;
5659 	struct ocfs2_dinode *di;
5660 	struct ocfs2_truncate_log *tl;
5661 
5662 	mlog_entry("start_blk = %llu, num_clusters = %u\n",
5663 		   (unsigned long long)start_blk, num_clusters);
5664 
5665 	BUG_ON(mutex_trylock(&tl_inode->i_mutex));
5666 
5667 	start_cluster = ocfs2_blocks_to_clusters(osb->sb, start_blk);
5668 
5669 	di = (struct ocfs2_dinode *) tl_bh->b_data;
5670 
5671 	/* tl_bh is loaded from ocfs2_truncate_log_init().  It's validated
5672 	 * by the underlying call to ocfs2_read_inode_block(), so any
5673 	 * corruption is a code bug */
5674 	BUG_ON(!OCFS2_IS_VALID_DINODE(di));
5675 
5676 	tl = &di->id2.i_dealloc;
5677 	tl_count = le16_to_cpu(tl->tl_count);
5678 	mlog_bug_on_msg(tl_count > ocfs2_truncate_recs_per_inode(osb->sb) ||
5679 			tl_count == 0,
5680 			"Truncate record count on #%llu invalid "
5681 			"wanted %u, actual %u\n",
5682 			(unsigned long long)OCFS2_I(tl_inode)->ip_blkno,
5683 			ocfs2_truncate_recs_per_inode(osb->sb),
5684 			le16_to_cpu(tl->tl_count));
5685 
5686 	/* Caller should have known to flush before calling us. */
5687 	index = le16_to_cpu(tl->tl_used);
5688 	if (index >= tl_count) {
5689 		status = -ENOSPC;
5690 		mlog_errno(status);
5691 		goto bail;
5692 	}
5693 
5694 	status = ocfs2_journal_access_di(handle, tl_inode, tl_bh,
5695 					 OCFS2_JOURNAL_ACCESS_WRITE);
5696 	if (status < 0) {
5697 		mlog_errno(status);
5698 		goto bail;
5699 	}
5700 
5701 	mlog(0, "Log truncate of %u clusters starting at cluster %u to "
5702 	     "%llu (index = %d)\n", num_clusters, start_cluster,
5703 	     (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, index);
5704 
5705 	if (ocfs2_truncate_log_can_coalesce(tl, start_cluster)) {
5706 		/*
5707 		 * Move index back to the record we are coalescing with.
5708 		 * ocfs2_truncate_log_can_coalesce() guarantees nonzero
5709 		 */
5710 		index--;
5711 
5712 		num_clusters += le32_to_cpu(tl->tl_recs[index].t_clusters);
5713 		mlog(0, "Coalesce with index %u (start = %u, clusters = %u)\n",
5714 		     index, le32_to_cpu(tl->tl_recs[index].t_start),
5715 		     num_clusters);
5716 	} else {
5717 		tl->tl_recs[index].t_start = cpu_to_le32(start_cluster);
5718 		tl->tl_used = cpu_to_le16(index + 1);
5719 	}
5720 	tl->tl_recs[index].t_clusters = cpu_to_le32(num_clusters);
5721 
5722 	status = ocfs2_journal_dirty(handle, tl_bh);
5723 	if (status < 0) {
5724 		mlog_errno(status);
5725 		goto bail;
5726 	}
5727 
5728 bail:
5729 	mlog_exit(status);
5730 	return status;
5731 }
5732 
5733 static int ocfs2_replay_truncate_records(struct ocfs2_super *osb,
5734 					 handle_t *handle,
5735 					 struct inode *data_alloc_inode,
5736 					 struct buffer_head *data_alloc_bh)
5737 {
5738 	int status = 0;
5739 	int i;
5740 	unsigned int num_clusters;
5741 	u64 start_blk;
5742 	struct ocfs2_truncate_rec rec;
5743 	struct ocfs2_dinode *di;
5744 	struct ocfs2_truncate_log *tl;
5745 	struct inode *tl_inode = osb->osb_tl_inode;
5746 	struct buffer_head *tl_bh = osb->osb_tl_bh;
5747 
5748 	mlog_entry_void();
5749 
5750 	di = (struct ocfs2_dinode *) tl_bh->b_data;
5751 	tl = &di->id2.i_dealloc;
5752 	i = le16_to_cpu(tl->tl_used) - 1;
5753 	while (i >= 0) {
5754 		/* Caller has given us at least enough credits to
5755 		 * update the truncate log dinode */
5756 		status = ocfs2_journal_access_di(handle, tl_inode, tl_bh,
5757 						 OCFS2_JOURNAL_ACCESS_WRITE);
5758 		if (status < 0) {
5759 			mlog_errno(status);
5760 			goto bail;
5761 		}
5762 
5763 		tl->tl_used = cpu_to_le16(i);
5764 
5765 		status = ocfs2_journal_dirty(handle, tl_bh);
5766 		if (status < 0) {
5767 			mlog_errno(status);
5768 			goto bail;
5769 		}
5770 
5771 		/* TODO: Perhaps we can calculate the bulk of the
5772 		 * credits up front rather than extending like
5773 		 * this. */
5774 		status = ocfs2_extend_trans(handle,
5775 					    OCFS2_TRUNCATE_LOG_FLUSH_ONE_REC);
5776 		if (status < 0) {
5777 			mlog_errno(status);
5778 			goto bail;
5779 		}
5780 
5781 		rec = tl->tl_recs[i];
5782 		start_blk = ocfs2_clusters_to_blocks(data_alloc_inode->i_sb,
5783 						    le32_to_cpu(rec.t_start));
5784 		num_clusters = le32_to_cpu(rec.t_clusters);
5785 
5786 		/* if start_blk is not set, we ignore the record as
5787 		 * invalid. */
5788 		if (start_blk) {
5789 			mlog(0, "free record %d, start = %u, clusters = %u\n",
5790 			     i, le32_to_cpu(rec.t_start), num_clusters);
5791 
5792 			status = ocfs2_free_clusters(handle, data_alloc_inode,
5793 						     data_alloc_bh, start_blk,
5794 						     num_clusters);
5795 			if (status < 0) {
5796 				mlog_errno(status);
5797 				goto bail;
5798 			}
5799 		}
5800 		i--;
5801 	}
5802 
5803 bail:
5804 	mlog_exit(status);
5805 	return status;
5806 }
5807 
5808 /* Expects you to already be holding tl_inode->i_mutex */
5809 int __ocfs2_flush_truncate_log(struct ocfs2_super *osb)
5810 {
5811 	int status;
5812 	unsigned int num_to_flush;
5813 	handle_t *handle;
5814 	struct inode *tl_inode = osb->osb_tl_inode;
5815 	struct inode *data_alloc_inode = NULL;
5816 	struct buffer_head *tl_bh = osb->osb_tl_bh;
5817 	struct buffer_head *data_alloc_bh = NULL;
5818 	struct ocfs2_dinode *di;
5819 	struct ocfs2_truncate_log *tl;
5820 
5821 	mlog_entry_void();
5822 
5823 	BUG_ON(mutex_trylock(&tl_inode->i_mutex));
5824 
5825 	di = (struct ocfs2_dinode *) tl_bh->b_data;
5826 
5827 	/* tl_bh is loaded from ocfs2_truncate_log_init().  It's validated
5828 	 * by the underlying call to ocfs2_read_inode_block(), so any
5829 	 * corruption is a code bug */
5830 	BUG_ON(!OCFS2_IS_VALID_DINODE(di));
5831 
5832 	tl = &di->id2.i_dealloc;
5833 	num_to_flush = le16_to_cpu(tl->tl_used);
5834 	mlog(0, "Flush %u records from truncate log #%llu\n",
5835 	     num_to_flush, (unsigned long long)OCFS2_I(tl_inode)->ip_blkno);
5836 	if (!num_to_flush) {
5837 		status = 0;
5838 		goto out;
5839 	}
5840 
5841 	data_alloc_inode = ocfs2_get_system_file_inode(osb,
5842 						       GLOBAL_BITMAP_SYSTEM_INODE,
5843 						       OCFS2_INVALID_SLOT);
5844 	if (!data_alloc_inode) {
5845 		status = -EINVAL;
5846 		mlog(ML_ERROR, "Could not get bitmap inode!\n");
5847 		goto out;
5848 	}
5849 
5850 	mutex_lock(&data_alloc_inode->i_mutex);
5851 
5852 	status = ocfs2_inode_lock(data_alloc_inode, &data_alloc_bh, 1);
5853 	if (status < 0) {
5854 		mlog_errno(status);
5855 		goto out_mutex;
5856 	}
5857 
5858 	handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
5859 	if (IS_ERR(handle)) {
5860 		status = PTR_ERR(handle);
5861 		mlog_errno(status);
5862 		goto out_unlock;
5863 	}
5864 
5865 	status = ocfs2_replay_truncate_records(osb, handle, data_alloc_inode,
5866 					       data_alloc_bh);
5867 	if (status < 0)
5868 		mlog_errno(status);
5869 
5870 	ocfs2_commit_trans(osb, handle);
5871 
5872 out_unlock:
5873 	brelse(data_alloc_bh);
5874 	ocfs2_inode_unlock(data_alloc_inode, 1);
5875 
5876 out_mutex:
5877 	mutex_unlock(&data_alloc_inode->i_mutex);
5878 	iput(data_alloc_inode);
5879 
5880 out:
5881 	mlog_exit(status);
5882 	return status;
5883 }
5884 
5885 int ocfs2_flush_truncate_log(struct ocfs2_super *osb)
5886 {
5887 	int status;
5888 	struct inode *tl_inode = osb->osb_tl_inode;
5889 
5890 	mutex_lock(&tl_inode->i_mutex);
5891 	status = __ocfs2_flush_truncate_log(osb);
5892 	mutex_unlock(&tl_inode->i_mutex);
5893 
5894 	return status;
5895 }
5896 
5897 static void ocfs2_truncate_log_worker(struct work_struct *work)
5898 {
5899 	int status;
5900 	struct ocfs2_super *osb =
5901 		container_of(work, struct ocfs2_super,
5902 			     osb_truncate_log_wq.work);
5903 
5904 	mlog_entry_void();
5905 
5906 	status = ocfs2_flush_truncate_log(osb);
5907 	if (status < 0)
5908 		mlog_errno(status);
5909 	else
5910 		ocfs2_init_inode_steal_slot(osb);
5911 
5912 	mlog_exit(status);
5913 }
5914 
5915 #define OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL (2 * HZ)
5916 void ocfs2_schedule_truncate_log_flush(struct ocfs2_super *osb,
5917 				       int cancel)
5918 {
5919 	if (osb->osb_tl_inode) {
5920 		/* We want to push off log flushes while truncates are
5921 		 * still running. */
5922 		if (cancel)
5923 			cancel_delayed_work(&osb->osb_truncate_log_wq);
5924 
5925 		queue_delayed_work(ocfs2_wq, &osb->osb_truncate_log_wq,
5926 				   OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL);
5927 	}
5928 }
5929 
5930 static int ocfs2_get_truncate_log_info(struct ocfs2_super *osb,
5931 				       int slot_num,
5932 				       struct inode **tl_inode,
5933 				       struct buffer_head **tl_bh)
5934 {
5935 	int status;
5936 	struct inode *inode = NULL;
5937 	struct buffer_head *bh = NULL;
5938 
5939 	inode = ocfs2_get_system_file_inode(osb,
5940 					   TRUNCATE_LOG_SYSTEM_INODE,
5941 					   slot_num);
5942 	if (!inode) {
5943 		status = -EINVAL;
5944 		mlog(ML_ERROR, "Could not get load truncate log inode!\n");
5945 		goto bail;
5946 	}
5947 
5948 	status = ocfs2_read_inode_block(inode, &bh);
5949 	if (status < 0) {
5950 		iput(inode);
5951 		mlog_errno(status);
5952 		goto bail;
5953 	}
5954 
5955 	*tl_inode = inode;
5956 	*tl_bh    = bh;
5957 bail:
5958 	mlog_exit(status);
5959 	return status;
5960 }
5961 
5962 /* called during the 1st stage of node recovery. we stamp a clean
5963  * truncate log and pass back a copy for processing later. if the
5964  * truncate log does not require processing, a *tl_copy is set to
5965  * NULL. */
5966 int ocfs2_begin_truncate_log_recovery(struct ocfs2_super *osb,
5967 				      int slot_num,
5968 				      struct ocfs2_dinode **tl_copy)
5969 {
5970 	int status;
5971 	struct inode *tl_inode = NULL;
5972 	struct buffer_head *tl_bh = NULL;
5973 	struct ocfs2_dinode *di;
5974 	struct ocfs2_truncate_log *tl;
5975 
5976 	*tl_copy = NULL;
5977 
5978 	mlog(0, "recover truncate log from slot %d\n", slot_num);
5979 
5980 	status = ocfs2_get_truncate_log_info(osb, slot_num, &tl_inode, &tl_bh);
5981 	if (status < 0) {
5982 		mlog_errno(status);
5983 		goto bail;
5984 	}
5985 
5986 	di = (struct ocfs2_dinode *) tl_bh->b_data;
5987 
5988 	/* tl_bh is loaded from ocfs2_get_truncate_log_info().  It's
5989 	 * validated by the underlying call to ocfs2_read_inode_block(),
5990 	 * so any corruption is a code bug */
5991 	BUG_ON(!OCFS2_IS_VALID_DINODE(di));
5992 
5993 	tl = &di->id2.i_dealloc;
5994 	if (le16_to_cpu(tl->tl_used)) {
5995 		mlog(0, "We'll have %u logs to recover\n",
5996 		     le16_to_cpu(tl->tl_used));
5997 
5998 		*tl_copy = kmalloc(tl_bh->b_size, GFP_KERNEL);
5999 		if (!(*tl_copy)) {
6000 			status = -ENOMEM;
6001 			mlog_errno(status);
6002 			goto bail;
6003 		}
6004 
6005 		/* Assuming the write-out below goes well, this copy
6006 		 * will be passed back to recovery for processing. */
6007 		memcpy(*tl_copy, tl_bh->b_data, tl_bh->b_size);
6008 
6009 		/* All we need to do to clear the truncate log is set
6010 		 * tl_used. */
6011 		tl->tl_used = 0;
6012 
6013 		ocfs2_compute_meta_ecc(osb->sb, tl_bh->b_data, &di->i_check);
6014 		status = ocfs2_write_block(osb, tl_bh, INODE_CACHE(tl_inode));
6015 		if (status < 0) {
6016 			mlog_errno(status);
6017 			goto bail;
6018 		}
6019 	}
6020 
6021 bail:
6022 	if (tl_inode)
6023 		iput(tl_inode);
6024 	brelse(tl_bh);
6025 
6026 	if (status < 0 && (*tl_copy)) {
6027 		kfree(*tl_copy);
6028 		*tl_copy = NULL;
6029 	}
6030 
6031 	mlog_exit(status);
6032 	return status;
6033 }
6034 
6035 int ocfs2_complete_truncate_log_recovery(struct ocfs2_super *osb,
6036 					 struct ocfs2_dinode *tl_copy)
6037 {
6038 	int status = 0;
6039 	int i;
6040 	unsigned int clusters, num_recs, start_cluster;
6041 	u64 start_blk;
6042 	handle_t *handle;
6043 	struct inode *tl_inode = osb->osb_tl_inode;
6044 	struct ocfs2_truncate_log *tl;
6045 
6046 	mlog_entry_void();
6047 
6048 	if (OCFS2_I(tl_inode)->ip_blkno == le64_to_cpu(tl_copy->i_blkno)) {
6049 		mlog(ML_ERROR, "Asked to recover my own truncate log!\n");
6050 		return -EINVAL;
6051 	}
6052 
6053 	tl = &tl_copy->id2.i_dealloc;
6054 	num_recs = le16_to_cpu(tl->tl_used);
6055 	mlog(0, "cleanup %u records from %llu\n", num_recs,
6056 	     (unsigned long long)le64_to_cpu(tl_copy->i_blkno));
6057 
6058 	mutex_lock(&tl_inode->i_mutex);
6059 	for(i = 0; i < num_recs; i++) {
6060 		if (ocfs2_truncate_log_needs_flush(osb)) {
6061 			status = __ocfs2_flush_truncate_log(osb);
6062 			if (status < 0) {
6063 				mlog_errno(status);
6064 				goto bail_up;
6065 			}
6066 		}
6067 
6068 		handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
6069 		if (IS_ERR(handle)) {
6070 			status = PTR_ERR(handle);
6071 			mlog_errno(status);
6072 			goto bail_up;
6073 		}
6074 
6075 		clusters = le32_to_cpu(tl->tl_recs[i].t_clusters);
6076 		start_cluster = le32_to_cpu(tl->tl_recs[i].t_start);
6077 		start_blk = ocfs2_clusters_to_blocks(osb->sb, start_cluster);
6078 
6079 		status = ocfs2_truncate_log_append(osb, handle,
6080 						   start_blk, clusters);
6081 		ocfs2_commit_trans(osb, handle);
6082 		if (status < 0) {
6083 			mlog_errno(status);
6084 			goto bail_up;
6085 		}
6086 	}
6087 
6088 bail_up:
6089 	mutex_unlock(&tl_inode->i_mutex);
6090 
6091 	mlog_exit(status);
6092 	return status;
6093 }
6094 
6095 void ocfs2_truncate_log_shutdown(struct ocfs2_super *osb)
6096 {
6097 	int status;
6098 	struct inode *tl_inode = osb->osb_tl_inode;
6099 
6100 	mlog_entry_void();
6101 
6102 	if (tl_inode) {
6103 		cancel_delayed_work(&osb->osb_truncate_log_wq);
6104 		flush_workqueue(ocfs2_wq);
6105 
6106 		status = ocfs2_flush_truncate_log(osb);
6107 		if (status < 0)
6108 			mlog_errno(status);
6109 
6110 		brelse(osb->osb_tl_bh);
6111 		iput(osb->osb_tl_inode);
6112 	}
6113 
6114 	mlog_exit_void();
6115 }
6116 
6117 int ocfs2_truncate_log_init(struct ocfs2_super *osb)
6118 {
6119 	int status;
6120 	struct inode *tl_inode = NULL;
6121 	struct buffer_head *tl_bh = NULL;
6122 
6123 	mlog_entry_void();
6124 
6125 	status = ocfs2_get_truncate_log_info(osb,
6126 					     osb->slot_num,
6127 					     &tl_inode,
6128 					     &tl_bh);
6129 	if (status < 0)
6130 		mlog_errno(status);
6131 
6132 	/* ocfs2_truncate_log_shutdown keys on the existence of
6133 	 * osb->osb_tl_inode so we don't set any of the osb variables
6134 	 * until we're sure all is well. */
6135 	INIT_DELAYED_WORK(&osb->osb_truncate_log_wq,
6136 			  ocfs2_truncate_log_worker);
6137 	osb->osb_tl_bh    = tl_bh;
6138 	osb->osb_tl_inode = tl_inode;
6139 
6140 	mlog_exit(status);
6141 	return status;
6142 }
6143 
6144 /*
6145  * Delayed de-allocation of suballocator blocks.
6146  *
6147  * Some sets of block de-allocations might involve multiple suballocator inodes.
6148  *
6149  * The locking for this can get extremely complicated, especially when
6150  * the suballocator inodes to delete from aren't known until deep
6151  * within an unrelated codepath.
6152  *
6153  * ocfs2_extent_block structures are a good example of this - an inode
6154  * btree could have been grown by any number of nodes each allocating
6155  * out of their own suballoc inode.
6156  *
6157  * These structures allow the delay of block de-allocation until a
6158  * later time, when locking of multiple cluster inodes won't cause
6159  * deadlock.
6160  */
6161 
6162 /*
6163  * Describe a single bit freed from a suballocator.  For the block
6164  * suballocators, it represents one block.  For the global cluster
6165  * allocator, it represents some clusters and free_bit indicates
6166  * clusters number.
6167  */
6168 struct ocfs2_cached_block_free {
6169 	struct ocfs2_cached_block_free		*free_next;
6170 	u64					free_blk;
6171 	unsigned int				free_bit;
6172 };
6173 
6174 struct ocfs2_per_slot_free_list {
6175 	struct ocfs2_per_slot_free_list		*f_next_suballocator;
6176 	int					f_inode_type;
6177 	int					f_slot;
6178 	struct ocfs2_cached_block_free		*f_first;
6179 };
6180 
6181 static int ocfs2_free_cached_blocks(struct ocfs2_super *osb,
6182 				    int sysfile_type,
6183 				    int slot,
6184 				    struct ocfs2_cached_block_free *head)
6185 {
6186 	int ret;
6187 	u64 bg_blkno;
6188 	handle_t *handle;
6189 	struct inode *inode;
6190 	struct buffer_head *di_bh = NULL;
6191 	struct ocfs2_cached_block_free *tmp;
6192 
6193 	inode = ocfs2_get_system_file_inode(osb, sysfile_type, slot);
6194 	if (!inode) {
6195 		ret = -EINVAL;
6196 		mlog_errno(ret);
6197 		goto out;
6198 	}
6199 
6200 	mutex_lock(&inode->i_mutex);
6201 
6202 	ret = ocfs2_inode_lock(inode, &di_bh, 1);
6203 	if (ret) {
6204 		mlog_errno(ret);
6205 		goto out_mutex;
6206 	}
6207 
6208 	handle = ocfs2_start_trans(osb, OCFS2_SUBALLOC_FREE);
6209 	if (IS_ERR(handle)) {
6210 		ret = PTR_ERR(handle);
6211 		mlog_errno(ret);
6212 		goto out_unlock;
6213 	}
6214 
6215 	while (head) {
6216 		bg_blkno = ocfs2_which_suballoc_group(head->free_blk,
6217 						      head->free_bit);
6218 		mlog(0, "Free bit: (bit %u, blkno %llu)\n",
6219 		     head->free_bit, (unsigned long long)head->free_blk);
6220 
6221 		ret = ocfs2_free_suballoc_bits(handle, inode, di_bh,
6222 					       head->free_bit, bg_blkno, 1);
6223 		if (ret) {
6224 			mlog_errno(ret);
6225 			goto out_journal;
6226 		}
6227 
6228 		ret = ocfs2_extend_trans(handle, OCFS2_SUBALLOC_FREE);
6229 		if (ret) {
6230 			mlog_errno(ret);
6231 			goto out_journal;
6232 		}
6233 
6234 		tmp = head;
6235 		head = head->free_next;
6236 		kfree(tmp);
6237 	}
6238 
6239 out_journal:
6240 	ocfs2_commit_trans(osb, handle);
6241 
6242 out_unlock:
6243 	ocfs2_inode_unlock(inode, 1);
6244 	brelse(di_bh);
6245 out_mutex:
6246 	mutex_unlock(&inode->i_mutex);
6247 	iput(inode);
6248 out:
6249 	while(head) {
6250 		/* Premature exit may have left some dangling items. */
6251 		tmp = head;
6252 		head = head->free_next;
6253 		kfree(tmp);
6254 	}
6255 
6256 	return ret;
6257 }
6258 
6259 int ocfs2_cache_cluster_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt,
6260 				u64 blkno, unsigned int bit)
6261 {
6262 	int ret = 0;
6263 	struct ocfs2_cached_block_free *item;
6264 
6265 	item = kmalloc(sizeof(*item), GFP_NOFS);
6266 	if (item == NULL) {
6267 		ret = -ENOMEM;
6268 		mlog_errno(ret);
6269 		return ret;
6270 	}
6271 
6272 	mlog(0, "Insert clusters: (bit %u, blk %llu)\n",
6273 	     bit, (unsigned long long)blkno);
6274 
6275 	item->free_blk = blkno;
6276 	item->free_bit = bit;
6277 	item->free_next = ctxt->c_global_allocator;
6278 
6279 	ctxt->c_global_allocator = item;
6280 	return ret;
6281 }
6282 
6283 static int ocfs2_free_cached_clusters(struct ocfs2_super *osb,
6284 				      struct ocfs2_cached_block_free *head)
6285 {
6286 	struct ocfs2_cached_block_free *tmp;
6287 	struct inode *tl_inode = osb->osb_tl_inode;
6288 	handle_t *handle;
6289 	int ret = 0;
6290 
6291 	mutex_lock(&tl_inode->i_mutex);
6292 
6293 	while (head) {
6294 		if (ocfs2_truncate_log_needs_flush(osb)) {
6295 			ret = __ocfs2_flush_truncate_log(osb);
6296 			if (ret < 0) {
6297 				mlog_errno(ret);
6298 				break;
6299 			}
6300 		}
6301 
6302 		handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
6303 		if (IS_ERR(handle)) {
6304 			ret = PTR_ERR(handle);
6305 			mlog_errno(ret);
6306 			break;
6307 		}
6308 
6309 		ret = ocfs2_truncate_log_append(osb, handle, head->free_blk,
6310 						head->free_bit);
6311 
6312 		ocfs2_commit_trans(osb, handle);
6313 		tmp = head;
6314 		head = head->free_next;
6315 		kfree(tmp);
6316 
6317 		if (ret < 0) {
6318 			mlog_errno(ret);
6319 			break;
6320 		}
6321 	}
6322 
6323 	mutex_unlock(&tl_inode->i_mutex);
6324 
6325 	while (head) {
6326 		/* Premature exit may have left some dangling items. */
6327 		tmp = head;
6328 		head = head->free_next;
6329 		kfree(tmp);
6330 	}
6331 
6332 	return ret;
6333 }
6334 
6335 int ocfs2_run_deallocs(struct ocfs2_super *osb,
6336 		       struct ocfs2_cached_dealloc_ctxt *ctxt)
6337 {
6338 	int ret = 0, ret2;
6339 	struct ocfs2_per_slot_free_list *fl;
6340 
6341 	if (!ctxt)
6342 		return 0;
6343 
6344 	while (ctxt->c_first_suballocator) {
6345 		fl = ctxt->c_first_suballocator;
6346 
6347 		if (fl->f_first) {
6348 			mlog(0, "Free items: (type %u, slot %d)\n",
6349 			     fl->f_inode_type, fl->f_slot);
6350 			ret2 = ocfs2_free_cached_blocks(osb,
6351 							fl->f_inode_type,
6352 							fl->f_slot,
6353 							fl->f_first);
6354 			if (ret2)
6355 				mlog_errno(ret2);
6356 			if (!ret)
6357 				ret = ret2;
6358 		}
6359 
6360 		ctxt->c_first_suballocator = fl->f_next_suballocator;
6361 		kfree(fl);
6362 	}
6363 
6364 	if (ctxt->c_global_allocator) {
6365 		ret2 = ocfs2_free_cached_clusters(osb,
6366 						  ctxt->c_global_allocator);
6367 		if (ret2)
6368 			mlog_errno(ret2);
6369 		if (!ret)
6370 			ret = ret2;
6371 
6372 		ctxt->c_global_allocator = NULL;
6373 	}
6374 
6375 	return ret;
6376 }
6377 
6378 static struct ocfs2_per_slot_free_list *
6379 ocfs2_find_per_slot_free_list(int type,
6380 			      int slot,
6381 			      struct ocfs2_cached_dealloc_ctxt *ctxt)
6382 {
6383 	struct ocfs2_per_slot_free_list *fl = ctxt->c_first_suballocator;
6384 
6385 	while (fl) {
6386 		if (fl->f_inode_type == type && fl->f_slot == slot)
6387 			return fl;
6388 
6389 		fl = fl->f_next_suballocator;
6390 	}
6391 
6392 	fl = kmalloc(sizeof(*fl), GFP_NOFS);
6393 	if (fl) {
6394 		fl->f_inode_type = type;
6395 		fl->f_slot = slot;
6396 		fl->f_first = NULL;
6397 		fl->f_next_suballocator = ctxt->c_first_suballocator;
6398 
6399 		ctxt->c_first_suballocator = fl;
6400 	}
6401 	return fl;
6402 }
6403 
6404 static int ocfs2_cache_block_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt,
6405 				     int type, int slot, u64 blkno,
6406 				     unsigned int bit)
6407 {
6408 	int ret;
6409 	struct ocfs2_per_slot_free_list *fl;
6410 	struct ocfs2_cached_block_free *item;
6411 
6412 	fl = ocfs2_find_per_slot_free_list(type, slot, ctxt);
6413 	if (fl == NULL) {
6414 		ret = -ENOMEM;
6415 		mlog_errno(ret);
6416 		goto out;
6417 	}
6418 
6419 	item = kmalloc(sizeof(*item), GFP_NOFS);
6420 	if (item == NULL) {
6421 		ret = -ENOMEM;
6422 		mlog_errno(ret);
6423 		goto out;
6424 	}
6425 
6426 	mlog(0, "Insert: (type %d, slot %u, bit %u, blk %llu)\n",
6427 	     type, slot, bit, (unsigned long long)blkno);
6428 
6429 	item->free_blk = blkno;
6430 	item->free_bit = bit;
6431 	item->free_next = fl->f_first;
6432 
6433 	fl->f_first = item;
6434 
6435 	ret = 0;
6436 out:
6437 	return ret;
6438 }
6439 
6440 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt,
6441 					 struct ocfs2_extent_block *eb)
6442 {
6443 	return ocfs2_cache_block_dealloc(ctxt, EXTENT_ALLOC_SYSTEM_INODE,
6444 					 le16_to_cpu(eb->h_suballoc_slot),
6445 					 le64_to_cpu(eb->h_blkno),
6446 					 le16_to_cpu(eb->h_suballoc_bit));
6447 }
6448 
6449 /* This function will figure out whether the currently last extent
6450  * block will be deleted, and if it will, what the new last extent
6451  * block will be so we can update his h_next_leaf_blk field, as well
6452  * as the dinodes i_last_eb_blk */
6453 static int ocfs2_find_new_last_ext_blk(struct inode *inode,
6454 				       unsigned int clusters_to_del,
6455 				       struct ocfs2_path *path,
6456 				       struct buffer_head **new_last_eb)
6457 {
6458 	int next_free, ret = 0;
6459 	u32 cpos;
6460 	struct ocfs2_extent_rec *rec;
6461 	struct ocfs2_extent_block *eb;
6462 	struct ocfs2_extent_list *el;
6463 	struct buffer_head *bh = NULL;
6464 
6465 	*new_last_eb = NULL;
6466 
6467 	/* we have no tree, so of course, no last_eb. */
6468 	if (!path->p_tree_depth)
6469 		goto out;
6470 
6471 	/* trunc to zero special case - this makes tree_depth = 0
6472 	 * regardless of what it is.  */
6473 	if (OCFS2_I(inode)->ip_clusters == clusters_to_del)
6474 		goto out;
6475 
6476 	el = path_leaf_el(path);
6477 	BUG_ON(!el->l_next_free_rec);
6478 
6479 	/*
6480 	 * Make sure that this extent list will actually be empty
6481 	 * after we clear away the data. We can shortcut out if
6482 	 * there's more than one non-empty extent in the
6483 	 * list. Otherwise, a check of the remaining extent is
6484 	 * necessary.
6485 	 */
6486 	next_free = le16_to_cpu(el->l_next_free_rec);
6487 	rec = NULL;
6488 	if (ocfs2_is_empty_extent(&el->l_recs[0])) {
6489 		if (next_free > 2)
6490 			goto out;
6491 
6492 		/* We may have a valid extent in index 1, check it. */
6493 		if (next_free == 2)
6494 			rec = &el->l_recs[1];
6495 
6496 		/*
6497 		 * Fall through - no more nonempty extents, so we want
6498 		 * to delete this leaf.
6499 		 */
6500 	} else {
6501 		if (next_free > 1)
6502 			goto out;
6503 
6504 		rec = &el->l_recs[0];
6505 	}
6506 
6507 	if (rec) {
6508 		/*
6509 		 * Check it we'll only be trimming off the end of this
6510 		 * cluster.
6511 		 */
6512 		if (le16_to_cpu(rec->e_leaf_clusters) > clusters_to_del)
6513 			goto out;
6514 	}
6515 
6516 	ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path, &cpos);
6517 	if (ret) {
6518 		mlog_errno(ret);
6519 		goto out;
6520 	}
6521 
6522 	ret = ocfs2_find_leaf(inode, path_root_el(path), cpos, &bh);
6523 	if (ret) {
6524 		mlog_errno(ret);
6525 		goto out;
6526 	}
6527 
6528 	eb = (struct ocfs2_extent_block *) bh->b_data;
6529 	el = &eb->h_list;
6530 
6531 	/* ocfs2_find_leaf() gets the eb from ocfs2_read_extent_block().
6532 	 * Any corruption is a code bug. */
6533 	BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb));
6534 
6535 	*new_last_eb = bh;
6536 	get_bh(*new_last_eb);
6537 	mlog(0, "returning block %llu, (cpos: %u)\n",
6538 	     (unsigned long long)le64_to_cpu(eb->h_blkno), cpos);
6539 out:
6540 	brelse(bh);
6541 
6542 	return ret;
6543 }
6544 
6545 /*
6546  * Trim some clusters off the rightmost edge of a tree. Only called
6547  * during truncate.
6548  *
6549  * The caller needs to:
6550  *   - start journaling of each path component.
6551  *   - compute and fully set up any new last ext block
6552  */
6553 static int ocfs2_trim_tree(struct inode *inode, struct ocfs2_path *path,
6554 			   handle_t *handle, struct ocfs2_truncate_context *tc,
6555 			   u32 clusters_to_del, u64 *delete_start)
6556 {
6557 	int ret, i, index = path->p_tree_depth;
6558 	u32 new_edge = 0;
6559 	u64 deleted_eb = 0;
6560 	struct buffer_head *bh;
6561 	struct ocfs2_extent_list *el;
6562 	struct ocfs2_extent_rec *rec;
6563 
6564 	*delete_start = 0;
6565 
6566 	while (index >= 0) {
6567 		bh = path->p_node[index].bh;
6568 		el = path->p_node[index].el;
6569 
6570 		mlog(0, "traveling tree (index = %d, block = %llu)\n",
6571 		     index,  (unsigned long long)bh->b_blocknr);
6572 
6573 		BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0);
6574 
6575 		if (index !=
6576 		    (path->p_tree_depth - le16_to_cpu(el->l_tree_depth))) {
6577 			ocfs2_error(inode->i_sb,
6578 				    "Inode %lu has invalid ext. block %llu",
6579 				    inode->i_ino,
6580 				    (unsigned long long)bh->b_blocknr);
6581 			ret = -EROFS;
6582 			goto out;
6583 		}
6584 
6585 find_tail_record:
6586 		i = le16_to_cpu(el->l_next_free_rec) - 1;
6587 		rec = &el->l_recs[i];
6588 
6589 		mlog(0, "Extent list before: record %d: (%u, %u, %llu), "
6590 		     "next = %u\n", i, le32_to_cpu(rec->e_cpos),
6591 		     ocfs2_rec_clusters(el, rec),
6592 		     (unsigned long long)le64_to_cpu(rec->e_blkno),
6593 		     le16_to_cpu(el->l_next_free_rec));
6594 
6595 		BUG_ON(ocfs2_rec_clusters(el, rec) < clusters_to_del);
6596 
6597 		if (le16_to_cpu(el->l_tree_depth) == 0) {
6598 			/*
6599 			 * If the leaf block contains a single empty
6600 			 * extent and no records, we can just remove
6601 			 * the block.
6602 			 */
6603 			if (i == 0 && ocfs2_is_empty_extent(rec)) {
6604 				memset(rec, 0,
6605 				       sizeof(struct ocfs2_extent_rec));
6606 				el->l_next_free_rec = cpu_to_le16(0);
6607 
6608 				goto delete;
6609 			}
6610 
6611 			/*
6612 			 * Remove any empty extents by shifting things
6613 			 * left. That should make life much easier on
6614 			 * the code below. This condition is rare
6615 			 * enough that we shouldn't see a performance
6616 			 * hit.
6617 			 */
6618 			if (ocfs2_is_empty_extent(&el->l_recs[0])) {
6619 				le16_add_cpu(&el->l_next_free_rec, -1);
6620 
6621 				for(i = 0;
6622 				    i < le16_to_cpu(el->l_next_free_rec); i++)
6623 					el->l_recs[i] = el->l_recs[i + 1];
6624 
6625 				memset(&el->l_recs[i], 0,
6626 				       sizeof(struct ocfs2_extent_rec));
6627 
6628 				/*
6629 				 * We've modified our extent list. The
6630 				 * simplest way to handle this change
6631 				 * is to being the search from the
6632 				 * start again.
6633 				 */
6634 				goto find_tail_record;
6635 			}
6636 
6637 			le16_add_cpu(&rec->e_leaf_clusters, -clusters_to_del);
6638 
6639 			/*
6640 			 * We'll use "new_edge" on our way back up the
6641 			 * tree to know what our rightmost cpos is.
6642 			 */
6643 			new_edge = le16_to_cpu(rec->e_leaf_clusters);
6644 			new_edge += le32_to_cpu(rec->e_cpos);
6645 
6646 			/*
6647 			 * The caller will use this to delete data blocks.
6648 			 */
6649 			*delete_start = le64_to_cpu(rec->e_blkno)
6650 				+ ocfs2_clusters_to_blocks(inode->i_sb,
6651 					le16_to_cpu(rec->e_leaf_clusters));
6652 
6653 			/*
6654 			 * If it's now empty, remove this record.
6655 			 */
6656 			if (le16_to_cpu(rec->e_leaf_clusters) == 0) {
6657 				memset(rec, 0,
6658 				       sizeof(struct ocfs2_extent_rec));
6659 				le16_add_cpu(&el->l_next_free_rec, -1);
6660 			}
6661 		} else {
6662 			if (le64_to_cpu(rec->e_blkno) == deleted_eb) {
6663 				memset(rec, 0,
6664 				       sizeof(struct ocfs2_extent_rec));
6665 				le16_add_cpu(&el->l_next_free_rec, -1);
6666 
6667 				goto delete;
6668 			}
6669 
6670 			/* Can this actually happen? */
6671 			if (le16_to_cpu(el->l_next_free_rec) == 0)
6672 				goto delete;
6673 
6674 			/*
6675 			 * We never actually deleted any clusters
6676 			 * because our leaf was empty. There's no
6677 			 * reason to adjust the rightmost edge then.
6678 			 */
6679 			if (new_edge == 0)
6680 				goto delete;
6681 
6682 			rec->e_int_clusters = cpu_to_le32(new_edge);
6683 			le32_add_cpu(&rec->e_int_clusters,
6684 				     -le32_to_cpu(rec->e_cpos));
6685 
6686 			 /*
6687 			  * A deleted child record should have been
6688 			  * caught above.
6689 			  */
6690 			 BUG_ON(le32_to_cpu(rec->e_int_clusters) == 0);
6691 		}
6692 
6693 delete:
6694 		ret = ocfs2_journal_dirty(handle, bh);
6695 		if (ret) {
6696 			mlog_errno(ret);
6697 			goto out;
6698 		}
6699 
6700 		mlog(0, "extent list container %llu, after: record %d: "
6701 		     "(%u, %u, %llu), next = %u.\n",
6702 		     (unsigned long long)bh->b_blocknr, i,
6703 		     le32_to_cpu(rec->e_cpos), ocfs2_rec_clusters(el, rec),
6704 		     (unsigned long long)le64_to_cpu(rec->e_blkno),
6705 		     le16_to_cpu(el->l_next_free_rec));
6706 
6707 		/*
6708 		 * We must be careful to only attempt delete of an
6709 		 * extent block (and not the root inode block).
6710 		 */
6711 		if (index > 0 && le16_to_cpu(el->l_next_free_rec) == 0) {
6712 			struct ocfs2_extent_block *eb =
6713 				(struct ocfs2_extent_block *)bh->b_data;
6714 
6715 			/*
6716 			 * Save this for use when processing the
6717 			 * parent block.
6718 			 */
6719 			deleted_eb = le64_to_cpu(eb->h_blkno);
6720 
6721 			mlog(0, "deleting this extent block.\n");
6722 
6723 			ocfs2_remove_from_cache(INODE_CACHE(inode), bh);
6724 
6725 			BUG_ON(ocfs2_rec_clusters(el, &el->l_recs[0]));
6726 			BUG_ON(le32_to_cpu(el->l_recs[0].e_cpos));
6727 			BUG_ON(le64_to_cpu(el->l_recs[0].e_blkno));
6728 
6729 			ret = ocfs2_cache_extent_block_free(&tc->tc_dealloc, eb);
6730 			/* An error here is not fatal. */
6731 			if (ret < 0)
6732 				mlog_errno(ret);
6733 		} else {
6734 			deleted_eb = 0;
6735 		}
6736 
6737 		index--;
6738 	}
6739 
6740 	ret = 0;
6741 out:
6742 	return ret;
6743 }
6744 
6745 static int ocfs2_do_truncate(struct ocfs2_super *osb,
6746 			     unsigned int clusters_to_del,
6747 			     struct inode *inode,
6748 			     struct buffer_head *fe_bh,
6749 			     handle_t *handle,
6750 			     struct ocfs2_truncate_context *tc,
6751 			     struct ocfs2_path *path)
6752 {
6753 	int status;
6754 	struct ocfs2_dinode *fe;
6755 	struct ocfs2_extent_block *last_eb = NULL;
6756 	struct ocfs2_extent_list *el;
6757 	struct buffer_head *last_eb_bh = NULL;
6758 	u64 delete_blk = 0;
6759 
6760 	fe = (struct ocfs2_dinode *) fe_bh->b_data;
6761 
6762 	status = ocfs2_find_new_last_ext_blk(inode, clusters_to_del,
6763 					     path, &last_eb_bh);
6764 	if (status < 0) {
6765 		mlog_errno(status);
6766 		goto bail;
6767 	}
6768 
6769 	/*
6770 	 * Each component will be touched, so we might as well journal
6771 	 * here to avoid having to handle errors later.
6772 	 */
6773 	status = ocfs2_journal_access_path(inode, handle, path);
6774 	if (status < 0) {
6775 		mlog_errno(status);
6776 		goto bail;
6777 	}
6778 
6779 	if (last_eb_bh) {
6780 		status = ocfs2_journal_access_eb(handle, inode, last_eb_bh,
6781 						 OCFS2_JOURNAL_ACCESS_WRITE);
6782 		if (status < 0) {
6783 			mlog_errno(status);
6784 			goto bail;
6785 		}
6786 
6787 		last_eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
6788 	}
6789 
6790 	el = &(fe->id2.i_list);
6791 
6792 	/*
6793 	 * Lower levels depend on this never happening, but it's best
6794 	 * to check it up here before changing the tree.
6795 	 */
6796 	if (el->l_tree_depth && el->l_recs[0].e_int_clusters == 0) {
6797 		ocfs2_error(inode->i_sb,
6798 			    "Inode %lu has an empty extent record, depth %u\n",
6799 			    inode->i_ino, le16_to_cpu(el->l_tree_depth));
6800 		status = -EROFS;
6801 		goto bail;
6802 	}
6803 
6804 	vfs_dq_free_space_nodirty(inode,
6805 			ocfs2_clusters_to_bytes(osb->sb, clusters_to_del));
6806 	spin_lock(&OCFS2_I(inode)->ip_lock);
6807 	OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters) -
6808 				      clusters_to_del;
6809 	spin_unlock(&OCFS2_I(inode)->ip_lock);
6810 	le32_add_cpu(&fe->i_clusters, -clusters_to_del);
6811 	inode->i_blocks = ocfs2_inode_sector_count(inode);
6812 
6813 	status = ocfs2_trim_tree(inode, path, handle, tc,
6814 				 clusters_to_del, &delete_blk);
6815 	if (status) {
6816 		mlog_errno(status);
6817 		goto bail;
6818 	}
6819 
6820 	if (le32_to_cpu(fe->i_clusters) == 0) {
6821 		/* trunc to zero is a special case. */
6822 		el->l_tree_depth = 0;
6823 		fe->i_last_eb_blk = 0;
6824 	} else if (last_eb)
6825 		fe->i_last_eb_blk = last_eb->h_blkno;
6826 
6827 	status = ocfs2_journal_dirty(handle, fe_bh);
6828 	if (status < 0) {
6829 		mlog_errno(status);
6830 		goto bail;
6831 	}
6832 
6833 	if (last_eb) {
6834 		/* If there will be a new last extent block, then by
6835 		 * definition, there cannot be any leaves to the right of
6836 		 * him. */
6837 		last_eb->h_next_leaf_blk = 0;
6838 		status = ocfs2_journal_dirty(handle, last_eb_bh);
6839 		if (status < 0) {
6840 			mlog_errno(status);
6841 			goto bail;
6842 		}
6843 	}
6844 
6845 	if (delete_blk) {
6846 		status = ocfs2_truncate_log_append(osb, handle, delete_blk,
6847 						   clusters_to_del);
6848 		if (status < 0) {
6849 			mlog_errno(status);
6850 			goto bail;
6851 		}
6852 	}
6853 	status = 0;
6854 bail:
6855 	brelse(last_eb_bh);
6856 	mlog_exit(status);
6857 	return status;
6858 }
6859 
6860 static int ocfs2_zero_func(handle_t *handle, struct buffer_head *bh)
6861 {
6862 	set_buffer_uptodate(bh);
6863 	mark_buffer_dirty(bh);
6864 	return 0;
6865 }
6866 
6867 static void ocfs2_map_and_dirty_page(struct inode *inode, handle_t *handle,
6868 				     unsigned int from, unsigned int to,
6869 				     struct page *page, int zero, u64 *phys)
6870 {
6871 	int ret, partial = 0;
6872 
6873 	ret = ocfs2_map_page_blocks(page, phys, inode, from, to, 0);
6874 	if (ret)
6875 		mlog_errno(ret);
6876 
6877 	if (zero)
6878 		zero_user_segment(page, from, to);
6879 
6880 	/*
6881 	 * Need to set the buffers we zero'd into uptodate
6882 	 * here if they aren't - ocfs2_map_page_blocks()
6883 	 * might've skipped some
6884 	 */
6885 	ret = walk_page_buffers(handle, page_buffers(page),
6886 				from, to, &partial,
6887 				ocfs2_zero_func);
6888 	if (ret < 0)
6889 		mlog_errno(ret);
6890 	else if (ocfs2_should_order_data(inode)) {
6891 		ret = ocfs2_jbd2_file_inode(handle, inode);
6892 		if (ret < 0)
6893 			mlog_errno(ret);
6894 	}
6895 
6896 	if (!partial)
6897 		SetPageUptodate(page);
6898 
6899 	flush_dcache_page(page);
6900 }
6901 
6902 static void ocfs2_zero_cluster_pages(struct inode *inode, loff_t start,
6903 				     loff_t end, struct page **pages,
6904 				     int numpages, u64 phys, handle_t *handle)
6905 {
6906 	int i;
6907 	struct page *page;
6908 	unsigned int from, to = PAGE_CACHE_SIZE;
6909 	struct super_block *sb = inode->i_sb;
6910 
6911 	BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(sb)));
6912 
6913 	if (numpages == 0)
6914 		goto out;
6915 
6916 	to = PAGE_CACHE_SIZE;
6917 	for(i = 0; i < numpages; i++) {
6918 		page = pages[i];
6919 
6920 		from = start & (PAGE_CACHE_SIZE - 1);
6921 		if ((end >> PAGE_CACHE_SHIFT) == page->index)
6922 			to = end & (PAGE_CACHE_SIZE - 1);
6923 
6924 		BUG_ON(from > PAGE_CACHE_SIZE);
6925 		BUG_ON(to > PAGE_CACHE_SIZE);
6926 
6927 		ocfs2_map_and_dirty_page(inode, handle, from, to, page, 1,
6928 					 &phys);
6929 
6930 		start = (page->index + 1) << PAGE_CACHE_SHIFT;
6931 	}
6932 out:
6933 	if (pages)
6934 		ocfs2_unlock_and_free_pages(pages, numpages);
6935 }
6936 
6937 static int ocfs2_grab_eof_pages(struct inode *inode, loff_t start, loff_t end,
6938 				struct page **pages, int *num)
6939 {
6940 	int numpages, ret = 0;
6941 	struct super_block *sb = inode->i_sb;
6942 	struct address_space *mapping = inode->i_mapping;
6943 	unsigned long index;
6944 	loff_t last_page_bytes;
6945 
6946 	BUG_ON(start > end);
6947 
6948 	BUG_ON(start >> OCFS2_SB(sb)->s_clustersize_bits !=
6949 	       (end - 1) >> OCFS2_SB(sb)->s_clustersize_bits);
6950 
6951 	numpages = 0;
6952 	last_page_bytes = PAGE_ALIGN(end);
6953 	index = start >> PAGE_CACHE_SHIFT;
6954 	do {
6955 		pages[numpages] = grab_cache_page(mapping, index);
6956 		if (!pages[numpages]) {
6957 			ret = -ENOMEM;
6958 			mlog_errno(ret);
6959 			goto out;
6960 		}
6961 
6962 		numpages++;
6963 		index++;
6964 	} while (index < (last_page_bytes >> PAGE_CACHE_SHIFT));
6965 
6966 out:
6967 	if (ret != 0) {
6968 		if (pages)
6969 			ocfs2_unlock_and_free_pages(pages, numpages);
6970 		numpages = 0;
6971 	}
6972 
6973 	*num = numpages;
6974 
6975 	return ret;
6976 }
6977 
6978 /*
6979  * Zero the area past i_size but still within an allocated
6980  * cluster. This avoids exposing nonzero data on subsequent file
6981  * extends.
6982  *
6983  * We need to call this before i_size is updated on the inode because
6984  * otherwise block_write_full_page() will skip writeout of pages past
6985  * i_size. The new_i_size parameter is passed for this reason.
6986  */
6987 int ocfs2_zero_range_for_truncate(struct inode *inode, handle_t *handle,
6988 				  u64 range_start, u64 range_end)
6989 {
6990 	int ret = 0, numpages;
6991 	struct page **pages = NULL;
6992 	u64 phys;
6993 	unsigned int ext_flags;
6994 	struct super_block *sb = inode->i_sb;
6995 
6996 	/*
6997 	 * File systems which don't support sparse files zero on every
6998 	 * extend.
6999 	 */
7000 	if (!ocfs2_sparse_alloc(OCFS2_SB(sb)))
7001 		return 0;
7002 
7003 	pages = kcalloc(ocfs2_pages_per_cluster(sb),
7004 			sizeof(struct page *), GFP_NOFS);
7005 	if (pages == NULL) {
7006 		ret = -ENOMEM;
7007 		mlog_errno(ret);
7008 		goto out;
7009 	}
7010 
7011 	if (range_start == range_end)
7012 		goto out;
7013 
7014 	ret = ocfs2_extent_map_get_blocks(inode,
7015 					  range_start >> sb->s_blocksize_bits,
7016 					  &phys, NULL, &ext_flags);
7017 	if (ret) {
7018 		mlog_errno(ret);
7019 		goto out;
7020 	}
7021 
7022 	/*
7023 	 * Tail is a hole, or is marked unwritten. In either case, we
7024 	 * can count on read and write to return/push zero's.
7025 	 */
7026 	if (phys == 0 || ext_flags & OCFS2_EXT_UNWRITTEN)
7027 		goto out;
7028 
7029 	ret = ocfs2_grab_eof_pages(inode, range_start, range_end, pages,
7030 				   &numpages);
7031 	if (ret) {
7032 		mlog_errno(ret);
7033 		goto out;
7034 	}
7035 
7036 	ocfs2_zero_cluster_pages(inode, range_start, range_end, pages,
7037 				 numpages, phys, handle);
7038 
7039 	/*
7040 	 * Initiate writeout of the pages we zero'd here. We don't
7041 	 * wait on them - the truncate_inode_pages() call later will
7042 	 * do that for us.
7043 	 */
7044 	ret = do_sync_mapping_range(inode->i_mapping, range_start,
7045 				    range_end - 1, SYNC_FILE_RANGE_WRITE);
7046 	if (ret)
7047 		mlog_errno(ret);
7048 
7049 out:
7050 	if (pages)
7051 		kfree(pages);
7052 
7053 	return ret;
7054 }
7055 
7056 static void ocfs2_zero_dinode_id2_with_xattr(struct inode *inode,
7057 					     struct ocfs2_dinode *di)
7058 {
7059 	unsigned int blocksize = 1 << inode->i_sb->s_blocksize_bits;
7060 	unsigned int xattrsize = le16_to_cpu(di->i_xattr_inline_size);
7061 
7062 	if (le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_XATTR_FL)
7063 		memset(&di->id2, 0, blocksize -
7064 				    offsetof(struct ocfs2_dinode, id2) -
7065 				    xattrsize);
7066 	else
7067 		memset(&di->id2, 0, blocksize -
7068 				    offsetof(struct ocfs2_dinode, id2));
7069 }
7070 
7071 void ocfs2_dinode_new_extent_list(struct inode *inode,
7072 				  struct ocfs2_dinode *di)
7073 {
7074 	ocfs2_zero_dinode_id2_with_xattr(inode, di);
7075 	di->id2.i_list.l_tree_depth = 0;
7076 	di->id2.i_list.l_next_free_rec = 0;
7077 	di->id2.i_list.l_count = cpu_to_le16(
7078 		ocfs2_extent_recs_per_inode_with_xattr(inode->i_sb, di));
7079 }
7080 
7081 void ocfs2_set_inode_data_inline(struct inode *inode, struct ocfs2_dinode *di)
7082 {
7083 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
7084 	struct ocfs2_inline_data *idata = &di->id2.i_data;
7085 
7086 	spin_lock(&oi->ip_lock);
7087 	oi->ip_dyn_features |= OCFS2_INLINE_DATA_FL;
7088 	di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features);
7089 	spin_unlock(&oi->ip_lock);
7090 
7091 	/*
7092 	 * We clear the entire i_data structure here so that all
7093 	 * fields can be properly initialized.
7094 	 */
7095 	ocfs2_zero_dinode_id2_with_xattr(inode, di);
7096 
7097 	idata->id_count = cpu_to_le16(
7098 			ocfs2_max_inline_data_with_xattr(inode->i_sb, di));
7099 }
7100 
7101 int ocfs2_convert_inline_data_to_extents(struct inode *inode,
7102 					 struct buffer_head *di_bh)
7103 {
7104 	int ret, i, has_data, num_pages = 0;
7105 	handle_t *handle;
7106 	u64 uninitialized_var(block);
7107 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
7108 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
7109 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
7110 	struct ocfs2_alloc_context *data_ac = NULL;
7111 	struct page **pages = NULL;
7112 	loff_t end = osb->s_clustersize;
7113 	struct ocfs2_extent_tree et;
7114 	int did_quota = 0;
7115 
7116 	has_data = i_size_read(inode) ? 1 : 0;
7117 
7118 	if (has_data) {
7119 		pages = kcalloc(ocfs2_pages_per_cluster(osb->sb),
7120 				sizeof(struct page *), GFP_NOFS);
7121 		if (pages == NULL) {
7122 			ret = -ENOMEM;
7123 			mlog_errno(ret);
7124 			goto out;
7125 		}
7126 
7127 		ret = ocfs2_reserve_clusters(osb, 1, &data_ac);
7128 		if (ret) {
7129 			mlog_errno(ret);
7130 			goto out;
7131 		}
7132 	}
7133 
7134 	handle = ocfs2_start_trans(osb,
7135 				   ocfs2_inline_to_extents_credits(osb->sb));
7136 	if (IS_ERR(handle)) {
7137 		ret = PTR_ERR(handle);
7138 		mlog_errno(ret);
7139 		goto out_unlock;
7140 	}
7141 
7142 	ret = ocfs2_journal_access_di(handle, inode, di_bh,
7143 				      OCFS2_JOURNAL_ACCESS_WRITE);
7144 	if (ret) {
7145 		mlog_errno(ret);
7146 		goto out_commit;
7147 	}
7148 
7149 	if (has_data) {
7150 		u32 bit_off, num;
7151 		unsigned int page_end;
7152 		u64 phys;
7153 
7154 		if (vfs_dq_alloc_space_nodirty(inode,
7155 				       ocfs2_clusters_to_bytes(osb->sb, 1))) {
7156 			ret = -EDQUOT;
7157 			goto out_commit;
7158 		}
7159 		did_quota = 1;
7160 
7161 		ret = ocfs2_claim_clusters(osb, handle, data_ac, 1, &bit_off,
7162 					   &num);
7163 		if (ret) {
7164 			mlog_errno(ret);
7165 			goto out_commit;
7166 		}
7167 
7168 		/*
7169 		 * Save two copies, one for insert, and one that can
7170 		 * be changed by ocfs2_map_and_dirty_page() below.
7171 		 */
7172 		block = phys = ocfs2_clusters_to_blocks(inode->i_sb, bit_off);
7173 
7174 		/*
7175 		 * Non sparse file systems zero on extend, so no need
7176 		 * to do that now.
7177 		 */
7178 		if (!ocfs2_sparse_alloc(osb) &&
7179 		    PAGE_CACHE_SIZE < osb->s_clustersize)
7180 			end = PAGE_CACHE_SIZE;
7181 
7182 		ret = ocfs2_grab_eof_pages(inode, 0, end, pages, &num_pages);
7183 		if (ret) {
7184 			mlog_errno(ret);
7185 			goto out_commit;
7186 		}
7187 
7188 		/*
7189 		 * This should populate the 1st page for us and mark
7190 		 * it up to date.
7191 		 */
7192 		ret = ocfs2_read_inline_data(inode, pages[0], di_bh);
7193 		if (ret) {
7194 			mlog_errno(ret);
7195 			goto out_commit;
7196 		}
7197 
7198 		page_end = PAGE_CACHE_SIZE;
7199 		if (PAGE_CACHE_SIZE > osb->s_clustersize)
7200 			page_end = osb->s_clustersize;
7201 
7202 		for (i = 0; i < num_pages; i++)
7203 			ocfs2_map_and_dirty_page(inode, handle, 0, page_end,
7204 						 pages[i], i > 0, &phys);
7205 	}
7206 
7207 	spin_lock(&oi->ip_lock);
7208 	oi->ip_dyn_features &= ~OCFS2_INLINE_DATA_FL;
7209 	di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features);
7210 	spin_unlock(&oi->ip_lock);
7211 
7212 	ocfs2_dinode_new_extent_list(inode, di);
7213 
7214 	ocfs2_journal_dirty(handle, di_bh);
7215 
7216 	if (has_data) {
7217 		/*
7218 		 * An error at this point should be extremely rare. If
7219 		 * this proves to be false, we could always re-build
7220 		 * the in-inode data from our pages.
7221 		 */
7222 		ocfs2_init_dinode_extent_tree(&et, inode, di_bh);
7223 		ret = ocfs2_insert_extent(osb, handle, inode, &et,
7224 					  0, block, 1, 0, NULL);
7225 		if (ret) {
7226 			mlog_errno(ret);
7227 			goto out_commit;
7228 		}
7229 
7230 		inode->i_blocks = ocfs2_inode_sector_count(inode);
7231 	}
7232 
7233 out_commit:
7234 	if (ret < 0 && did_quota)
7235 		vfs_dq_free_space_nodirty(inode,
7236 					  ocfs2_clusters_to_bytes(osb->sb, 1));
7237 
7238 	ocfs2_commit_trans(osb, handle);
7239 
7240 out_unlock:
7241 	if (data_ac)
7242 		ocfs2_free_alloc_context(data_ac);
7243 
7244 out:
7245 	if (pages) {
7246 		ocfs2_unlock_and_free_pages(pages, num_pages);
7247 		kfree(pages);
7248 	}
7249 
7250 	return ret;
7251 }
7252 
7253 /*
7254  * It is expected, that by the time you call this function,
7255  * inode->i_size and fe->i_size have been adjusted.
7256  *
7257  * WARNING: This will kfree the truncate context
7258  */
7259 int ocfs2_commit_truncate(struct ocfs2_super *osb,
7260 			  struct inode *inode,
7261 			  struct buffer_head *fe_bh,
7262 			  struct ocfs2_truncate_context *tc)
7263 {
7264 	int status, i, credits, tl_sem = 0;
7265 	u32 clusters_to_del, new_highest_cpos, range;
7266 	struct ocfs2_extent_list *el;
7267 	handle_t *handle = NULL;
7268 	struct inode *tl_inode = osb->osb_tl_inode;
7269 	struct ocfs2_path *path = NULL;
7270 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)fe_bh->b_data;
7271 
7272 	mlog_entry_void();
7273 
7274 	new_highest_cpos = ocfs2_clusters_for_bytes(osb->sb,
7275 						     i_size_read(inode));
7276 
7277 	path = ocfs2_new_path(fe_bh, &di->id2.i_list,
7278 			      ocfs2_journal_access_di);
7279 	if (!path) {
7280 		status = -ENOMEM;
7281 		mlog_errno(status);
7282 		goto bail;
7283 	}
7284 
7285 	ocfs2_extent_map_trunc(inode, new_highest_cpos);
7286 
7287 start:
7288 	/*
7289 	 * Check that we still have allocation to delete.
7290 	 */
7291 	if (OCFS2_I(inode)->ip_clusters == 0) {
7292 		status = 0;
7293 		goto bail;
7294 	}
7295 
7296 	/*
7297 	 * Truncate always works against the rightmost tree branch.
7298 	 */
7299 	status = ocfs2_find_path(inode, path, UINT_MAX);
7300 	if (status) {
7301 		mlog_errno(status);
7302 		goto bail;
7303 	}
7304 
7305 	mlog(0, "inode->ip_clusters = %u, tree_depth = %u\n",
7306 	     OCFS2_I(inode)->ip_clusters, path->p_tree_depth);
7307 
7308 	/*
7309 	 * By now, el will point to the extent list on the bottom most
7310 	 * portion of this tree. Only the tail record is considered in
7311 	 * each pass.
7312 	 *
7313 	 * We handle the following cases, in order:
7314 	 * - empty extent: delete the remaining branch
7315 	 * - remove the entire record
7316 	 * - remove a partial record
7317 	 * - no record needs to be removed (truncate has completed)
7318 	 */
7319 	el = path_leaf_el(path);
7320 	if (le16_to_cpu(el->l_next_free_rec) == 0) {
7321 		ocfs2_error(inode->i_sb,
7322 			    "Inode %llu has empty extent block at %llu\n",
7323 			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
7324 			    (unsigned long long)path_leaf_bh(path)->b_blocknr);
7325 		status = -EROFS;
7326 		goto bail;
7327 	}
7328 
7329 	i = le16_to_cpu(el->l_next_free_rec) - 1;
7330 	range = le32_to_cpu(el->l_recs[i].e_cpos) +
7331 		ocfs2_rec_clusters(el, &el->l_recs[i]);
7332 	if (i == 0 && ocfs2_is_empty_extent(&el->l_recs[i])) {
7333 		clusters_to_del = 0;
7334 	} else if (le32_to_cpu(el->l_recs[i].e_cpos) >= new_highest_cpos) {
7335 		clusters_to_del = ocfs2_rec_clusters(el, &el->l_recs[i]);
7336 	} else if (range > new_highest_cpos) {
7337 		clusters_to_del = (ocfs2_rec_clusters(el, &el->l_recs[i]) +
7338 				   le32_to_cpu(el->l_recs[i].e_cpos)) -
7339 				  new_highest_cpos;
7340 	} else {
7341 		status = 0;
7342 		goto bail;
7343 	}
7344 
7345 	mlog(0, "clusters_to_del = %u in this pass, tail blk=%llu\n",
7346 	     clusters_to_del, (unsigned long long)path_leaf_bh(path)->b_blocknr);
7347 
7348 	mutex_lock(&tl_inode->i_mutex);
7349 	tl_sem = 1;
7350 	/* ocfs2_truncate_log_needs_flush guarantees us at least one
7351 	 * record is free for use. If there isn't any, we flush to get
7352 	 * an empty truncate log.  */
7353 	if (ocfs2_truncate_log_needs_flush(osb)) {
7354 		status = __ocfs2_flush_truncate_log(osb);
7355 		if (status < 0) {
7356 			mlog_errno(status);
7357 			goto bail;
7358 		}
7359 	}
7360 
7361 	credits = ocfs2_calc_tree_trunc_credits(osb->sb, clusters_to_del,
7362 						(struct ocfs2_dinode *)fe_bh->b_data,
7363 						el);
7364 	handle = ocfs2_start_trans(osb, credits);
7365 	if (IS_ERR(handle)) {
7366 		status = PTR_ERR(handle);
7367 		handle = NULL;
7368 		mlog_errno(status);
7369 		goto bail;
7370 	}
7371 
7372 	status = ocfs2_do_truncate(osb, clusters_to_del, inode, fe_bh, handle,
7373 				   tc, path);
7374 	if (status < 0) {
7375 		mlog_errno(status);
7376 		goto bail;
7377 	}
7378 
7379 	mutex_unlock(&tl_inode->i_mutex);
7380 	tl_sem = 0;
7381 
7382 	ocfs2_commit_trans(osb, handle);
7383 	handle = NULL;
7384 
7385 	ocfs2_reinit_path(path, 1);
7386 
7387 	/*
7388 	 * The check above will catch the case where we've truncated
7389 	 * away all allocation.
7390 	 */
7391 	goto start;
7392 
7393 bail:
7394 
7395 	ocfs2_schedule_truncate_log_flush(osb, 1);
7396 
7397 	if (tl_sem)
7398 		mutex_unlock(&tl_inode->i_mutex);
7399 
7400 	if (handle)
7401 		ocfs2_commit_trans(osb, handle);
7402 
7403 	ocfs2_run_deallocs(osb, &tc->tc_dealloc);
7404 
7405 	ocfs2_free_path(path);
7406 
7407 	/* This will drop the ext_alloc cluster lock for us */
7408 	ocfs2_free_truncate_context(tc);
7409 
7410 	mlog_exit(status);
7411 	return status;
7412 }
7413 
7414 /*
7415  * Expects the inode to already be locked.
7416  */
7417 int ocfs2_prepare_truncate(struct ocfs2_super *osb,
7418 			   struct inode *inode,
7419 			   struct buffer_head *fe_bh,
7420 			   struct ocfs2_truncate_context **tc)
7421 {
7422 	int status;
7423 	unsigned int new_i_clusters;
7424 	struct ocfs2_dinode *fe;
7425 	struct ocfs2_extent_block *eb;
7426 	struct buffer_head *last_eb_bh = NULL;
7427 
7428 	mlog_entry_void();
7429 
7430 	*tc = NULL;
7431 
7432 	new_i_clusters = ocfs2_clusters_for_bytes(osb->sb,
7433 						  i_size_read(inode));
7434 	fe = (struct ocfs2_dinode *) fe_bh->b_data;
7435 
7436 	mlog(0, "fe->i_clusters = %u, new_i_clusters = %u, fe->i_size ="
7437 	     "%llu\n", le32_to_cpu(fe->i_clusters), new_i_clusters,
7438 	     (unsigned long long)le64_to_cpu(fe->i_size));
7439 
7440 	*tc = kzalloc(sizeof(struct ocfs2_truncate_context), GFP_KERNEL);
7441 	if (!(*tc)) {
7442 		status = -ENOMEM;
7443 		mlog_errno(status);
7444 		goto bail;
7445 	}
7446 	ocfs2_init_dealloc_ctxt(&(*tc)->tc_dealloc);
7447 
7448 	if (fe->id2.i_list.l_tree_depth) {
7449 		status = ocfs2_read_extent_block(inode,
7450 						 le64_to_cpu(fe->i_last_eb_blk),
7451 						 &last_eb_bh);
7452 		if (status < 0) {
7453 			mlog_errno(status);
7454 			goto bail;
7455 		}
7456 		eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
7457 	}
7458 
7459 	(*tc)->tc_last_eb_bh = last_eb_bh;
7460 
7461 	status = 0;
7462 bail:
7463 	if (status < 0) {
7464 		if (*tc)
7465 			ocfs2_free_truncate_context(*tc);
7466 		*tc = NULL;
7467 	}
7468 	mlog_exit_void();
7469 	return status;
7470 }
7471 
7472 /*
7473  * 'start' is inclusive, 'end' is not.
7474  */
7475 int ocfs2_truncate_inline(struct inode *inode, struct buffer_head *di_bh,
7476 			  unsigned int start, unsigned int end, int trunc)
7477 {
7478 	int ret;
7479 	unsigned int numbytes;
7480 	handle_t *handle;
7481 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
7482 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
7483 	struct ocfs2_inline_data *idata = &di->id2.i_data;
7484 
7485 	if (end > i_size_read(inode))
7486 		end = i_size_read(inode);
7487 
7488 	BUG_ON(start >= end);
7489 
7490 	if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) ||
7491 	    !(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL) ||
7492 	    !ocfs2_supports_inline_data(osb)) {
7493 		ocfs2_error(inode->i_sb,
7494 			    "Inline data flags for inode %llu don't agree! "
7495 			    "Disk: 0x%x, Memory: 0x%x, Superblock: 0x%x\n",
7496 			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
7497 			    le16_to_cpu(di->i_dyn_features),
7498 			    OCFS2_I(inode)->ip_dyn_features,
7499 			    osb->s_feature_incompat);
7500 		ret = -EROFS;
7501 		goto out;
7502 	}
7503 
7504 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
7505 	if (IS_ERR(handle)) {
7506 		ret = PTR_ERR(handle);
7507 		mlog_errno(ret);
7508 		goto out;
7509 	}
7510 
7511 	ret = ocfs2_journal_access_di(handle, inode, di_bh,
7512 				      OCFS2_JOURNAL_ACCESS_WRITE);
7513 	if (ret) {
7514 		mlog_errno(ret);
7515 		goto out_commit;
7516 	}
7517 
7518 	numbytes = end - start;
7519 	memset(idata->id_data + start, 0, numbytes);
7520 
7521 	/*
7522 	 * No need to worry about the data page here - it's been
7523 	 * truncated already and inline data doesn't need it for
7524 	 * pushing zero's to disk, so we'll let readpage pick it up
7525 	 * later.
7526 	 */
7527 	if (trunc) {
7528 		i_size_write(inode, start);
7529 		di->i_size = cpu_to_le64(start);
7530 	}
7531 
7532 	inode->i_blocks = ocfs2_inode_sector_count(inode);
7533 	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
7534 
7535 	di->i_ctime = di->i_mtime = cpu_to_le64(inode->i_ctime.tv_sec);
7536 	di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
7537 
7538 	ocfs2_journal_dirty(handle, di_bh);
7539 
7540 out_commit:
7541 	ocfs2_commit_trans(osb, handle);
7542 
7543 out:
7544 	return ret;
7545 }
7546 
7547 static void ocfs2_free_truncate_context(struct ocfs2_truncate_context *tc)
7548 {
7549 	/*
7550 	 * The caller is responsible for completing deallocation
7551 	 * before freeing the context.
7552 	 */
7553 	if (tc->tc_dealloc.c_first_suballocator != NULL)
7554 		mlog(ML_NOTICE,
7555 		     "Truncate completion has non-empty dealloc context\n");
7556 
7557 	brelse(tc->tc_last_eb_bh);
7558 
7559 	kfree(tc);
7560 }
7561