xref: /openbmc/linux/fs/ocfs2/alloc.c (revision 695a461296e5df148c99ac087b9e1cb380f4db15)
1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * alloc.c
5  *
6  * Extent allocs and frees
7  *
8  * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public
12  * License as published by the Free Software Foundation; either
13  * version 2 of the License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public
21  * License along with this program; if not, write to the
22  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23  * Boston, MA 021110-1307, USA.
24  */
25 
26 #include <linux/fs.h>
27 #include <linux/types.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/swap.h>
31 #include <linux/quotaops.h>
32 
33 #define MLOG_MASK_PREFIX ML_DISK_ALLOC
34 #include <cluster/masklog.h>
35 
36 #include "ocfs2.h"
37 
38 #include "alloc.h"
39 #include "aops.h"
40 #include "blockcheck.h"
41 #include "dlmglue.h"
42 #include "extent_map.h"
43 #include "inode.h"
44 #include "journal.h"
45 #include "localalloc.h"
46 #include "suballoc.h"
47 #include "sysfile.h"
48 #include "file.h"
49 #include "super.h"
50 #include "uptodate.h"
51 #include "xattr.h"
52 
53 #include "buffer_head_io.h"
54 
55 
56 /*
57  * Operations for a specific extent tree type.
58  *
59  * To implement an on-disk btree (extent tree) type in ocfs2, add
60  * an ocfs2_extent_tree_operations structure and the matching
61  * ocfs2_init_<thingy>_extent_tree() function.  That's pretty much it
62  * for the allocation portion of the extent tree.
63  */
64 struct ocfs2_extent_tree_operations {
65 	/*
66 	 * last_eb_blk is the block number of the right most leaf extent
67 	 * block.  Most on-disk structures containing an extent tree store
68 	 * this value for fast access.  The ->eo_set_last_eb_blk() and
69 	 * ->eo_get_last_eb_blk() operations access this value.  They are
70 	 *  both required.
71 	 */
72 	void (*eo_set_last_eb_blk)(struct ocfs2_extent_tree *et,
73 				   u64 blkno);
74 	u64 (*eo_get_last_eb_blk)(struct ocfs2_extent_tree *et);
75 
76 	/*
77 	 * The on-disk structure usually keeps track of how many total
78 	 * clusters are stored in this extent tree.  This function updates
79 	 * that value.  new_clusters is the delta, and must be
80 	 * added to the total.  Required.
81 	 */
82 	void (*eo_update_clusters)(struct inode *inode,
83 				   struct ocfs2_extent_tree *et,
84 				   u32 new_clusters);
85 
86 	/*
87 	 * If ->eo_insert_check() exists, it is called before rec is
88 	 * inserted into the extent tree.  It is optional.
89 	 */
90 	int (*eo_insert_check)(struct inode *inode,
91 			       struct ocfs2_extent_tree *et,
92 			       struct ocfs2_extent_rec *rec);
93 	int (*eo_sanity_check)(struct inode *inode, struct ocfs2_extent_tree *et);
94 
95 	/*
96 	 * --------------------------------------------------------------
97 	 * The remaining are internal to ocfs2_extent_tree and don't have
98 	 * accessor functions
99 	 */
100 
101 	/*
102 	 * ->eo_fill_root_el() takes et->et_object and sets et->et_root_el.
103 	 * It is required.
104 	 */
105 	void (*eo_fill_root_el)(struct ocfs2_extent_tree *et);
106 
107 	/*
108 	 * ->eo_fill_max_leaf_clusters sets et->et_max_leaf_clusters if
109 	 * it exists.  If it does not, et->et_max_leaf_clusters is set
110 	 * to 0 (unlimited).  Optional.
111 	 */
112 	void (*eo_fill_max_leaf_clusters)(struct inode *inode,
113 					  struct ocfs2_extent_tree *et);
114 };
115 
116 
117 /*
118  * Pre-declare ocfs2_dinode_et_ops so we can use it as a sanity check
119  * in the methods.
120  */
121 static u64 ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree *et);
122 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree *et,
123 					 u64 blkno);
124 static void ocfs2_dinode_update_clusters(struct inode *inode,
125 					 struct ocfs2_extent_tree *et,
126 					 u32 clusters);
127 static int ocfs2_dinode_insert_check(struct inode *inode,
128 				     struct ocfs2_extent_tree *et,
129 				     struct ocfs2_extent_rec *rec);
130 static int ocfs2_dinode_sanity_check(struct inode *inode,
131 				     struct ocfs2_extent_tree *et);
132 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree *et);
133 static struct ocfs2_extent_tree_operations ocfs2_dinode_et_ops = {
134 	.eo_set_last_eb_blk	= ocfs2_dinode_set_last_eb_blk,
135 	.eo_get_last_eb_blk	= ocfs2_dinode_get_last_eb_blk,
136 	.eo_update_clusters	= ocfs2_dinode_update_clusters,
137 	.eo_insert_check	= ocfs2_dinode_insert_check,
138 	.eo_sanity_check	= ocfs2_dinode_sanity_check,
139 	.eo_fill_root_el	= ocfs2_dinode_fill_root_el,
140 };
141 
142 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree *et,
143 					 u64 blkno)
144 {
145 	struct ocfs2_dinode *di = et->et_object;
146 
147 	BUG_ON(et->et_ops != &ocfs2_dinode_et_ops);
148 	di->i_last_eb_blk = cpu_to_le64(blkno);
149 }
150 
151 static u64 ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree *et)
152 {
153 	struct ocfs2_dinode *di = et->et_object;
154 
155 	BUG_ON(et->et_ops != &ocfs2_dinode_et_ops);
156 	return le64_to_cpu(di->i_last_eb_blk);
157 }
158 
159 static void ocfs2_dinode_update_clusters(struct inode *inode,
160 					 struct ocfs2_extent_tree *et,
161 					 u32 clusters)
162 {
163 	struct ocfs2_dinode *di = et->et_object;
164 
165 	le32_add_cpu(&di->i_clusters, clusters);
166 	spin_lock(&OCFS2_I(inode)->ip_lock);
167 	OCFS2_I(inode)->ip_clusters = le32_to_cpu(di->i_clusters);
168 	spin_unlock(&OCFS2_I(inode)->ip_lock);
169 }
170 
171 static int ocfs2_dinode_insert_check(struct inode *inode,
172 				     struct ocfs2_extent_tree *et,
173 				     struct ocfs2_extent_rec *rec)
174 {
175 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
176 
177 	BUG_ON(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL);
178 	mlog_bug_on_msg(!ocfs2_sparse_alloc(osb) &&
179 			(OCFS2_I(inode)->ip_clusters !=
180 			 le32_to_cpu(rec->e_cpos)),
181 			"Device %s, asking for sparse allocation: inode %llu, "
182 			"cpos %u, clusters %u\n",
183 			osb->dev_str,
184 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
185 			rec->e_cpos,
186 			OCFS2_I(inode)->ip_clusters);
187 
188 	return 0;
189 }
190 
191 static int ocfs2_dinode_sanity_check(struct inode *inode,
192 				     struct ocfs2_extent_tree *et)
193 {
194 	struct ocfs2_dinode *di = et->et_object;
195 
196 	BUG_ON(et->et_ops != &ocfs2_dinode_et_ops);
197 	BUG_ON(!OCFS2_IS_VALID_DINODE(di));
198 
199 	return 0;
200 }
201 
202 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree *et)
203 {
204 	struct ocfs2_dinode *di = et->et_object;
205 
206 	et->et_root_el = &di->id2.i_list;
207 }
208 
209 
210 static void ocfs2_xattr_value_fill_root_el(struct ocfs2_extent_tree *et)
211 {
212 	struct ocfs2_xattr_value_buf *vb = et->et_object;
213 
214 	et->et_root_el = &vb->vb_xv->xr_list;
215 }
216 
217 static void ocfs2_xattr_value_set_last_eb_blk(struct ocfs2_extent_tree *et,
218 					      u64 blkno)
219 {
220 	struct ocfs2_xattr_value_buf *vb = et->et_object;
221 
222 	vb->vb_xv->xr_last_eb_blk = cpu_to_le64(blkno);
223 }
224 
225 static u64 ocfs2_xattr_value_get_last_eb_blk(struct ocfs2_extent_tree *et)
226 {
227 	struct ocfs2_xattr_value_buf *vb = et->et_object;
228 
229 	return le64_to_cpu(vb->vb_xv->xr_last_eb_blk);
230 }
231 
232 static void ocfs2_xattr_value_update_clusters(struct inode *inode,
233 					      struct ocfs2_extent_tree *et,
234 					      u32 clusters)
235 {
236 	struct ocfs2_xattr_value_buf *vb = et->et_object;
237 
238 	le32_add_cpu(&vb->vb_xv->xr_clusters, clusters);
239 }
240 
241 static struct ocfs2_extent_tree_operations ocfs2_xattr_value_et_ops = {
242 	.eo_set_last_eb_blk	= ocfs2_xattr_value_set_last_eb_blk,
243 	.eo_get_last_eb_blk	= ocfs2_xattr_value_get_last_eb_blk,
244 	.eo_update_clusters	= ocfs2_xattr_value_update_clusters,
245 	.eo_fill_root_el	= ocfs2_xattr_value_fill_root_el,
246 };
247 
248 static void ocfs2_xattr_tree_fill_root_el(struct ocfs2_extent_tree *et)
249 {
250 	struct ocfs2_xattr_block *xb = et->et_object;
251 
252 	et->et_root_el = &xb->xb_attrs.xb_root.xt_list;
253 }
254 
255 static void ocfs2_xattr_tree_fill_max_leaf_clusters(struct inode *inode,
256 						    struct ocfs2_extent_tree *et)
257 {
258 	et->et_max_leaf_clusters =
259 		ocfs2_clusters_for_bytes(inode->i_sb,
260 					 OCFS2_MAX_XATTR_TREE_LEAF_SIZE);
261 }
262 
263 static void ocfs2_xattr_tree_set_last_eb_blk(struct ocfs2_extent_tree *et,
264 					     u64 blkno)
265 {
266 	struct ocfs2_xattr_block *xb = et->et_object;
267 	struct ocfs2_xattr_tree_root *xt = &xb->xb_attrs.xb_root;
268 
269 	xt->xt_last_eb_blk = cpu_to_le64(blkno);
270 }
271 
272 static u64 ocfs2_xattr_tree_get_last_eb_blk(struct ocfs2_extent_tree *et)
273 {
274 	struct ocfs2_xattr_block *xb = et->et_object;
275 	struct ocfs2_xattr_tree_root *xt = &xb->xb_attrs.xb_root;
276 
277 	return le64_to_cpu(xt->xt_last_eb_blk);
278 }
279 
280 static void ocfs2_xattr_tree_update_clusters(struct inode *inode,
281 					     struct ocfs2_extent_tree *et,
282 					     u32 clusters)
283 {
284 	struct ocfs2_xattr_block *xb = et->et_object;
285 
286 	le32_add_cpu(&xb->xb_attrs.xb_root.xt_clusters, clusters);
287 }
288 
289 static struct ocfs2_extent_tree_operations ocfs2_xattr_tree_et_ops = {
290 	.eo_set_last_eb_blk	= ocfs2_xattr_tree_set_last_eb_blk,
291 	.eo_get_last_eb_blk	= ocfs2_xattr_tree_get_last_eb_blk,
292 	.eo_update_clusters	= ocfs2_xattr_tree_update_clusters,
293 	.eo_fill_root_el	= ocfs2_xattr_tree_fill_root_el,
294 	.eo_fill_max_leaf_clusters = ocfs2_xattr_tree_fill_max_leaf_clusters,
295 };
296 
297 static void ocfs2_dx_root_set_last_eb_blk(struct ocfs2_extent_tree *et,
298 					  u64 blkno)
299 {
300 	struct ocfs2_dx_root_block *dx_root = et->et_object;
301 
302 	dx_root->dr_last_eb_blk = cpu_to_le64(blkno);
303 }
304 
305 static u64 ocfs2_dx_root_get_last_eb_blk(struct ocfs2_extent_tree *et)
306 {
307 	struct ocfs2_dx_root_block *dx_root = et->et_object;
308 
309 	return le64_to_cpu(dx_root->dr_last_eb_blk);
310 }
311 
312 static void ocfs2_dx_root_update_clusters(struct inode *inode,
313 					  struct ocfs2_extent_tree *et,
314 					  u32 clusters)
315 {
316 	struct ocfs2_dx_root_block *dx_root = et->et_object;
317 
318 	le32_add_cpu(&dx_root->dr_clusters, clusters);
319 }
320 
321 static int ocfs2_dx_root_sanity_check(struct inode *inode,
322 				      struct ocfs2_extent_tree *et)
323 {
324 	struct ocfs2_dx_root_block *dx_root = et->et_object;
325 
326 	BUG_ON(!OCFS2_IS_VALID_DX_ROOT(dx_root));
327 
328 	return 0;
329 }
330 
331 static void ocfs2_dx_root_fill_root_el(struct ocfs2_extent_tree *et)
332 {
333 	struct ocfs2_dx_root_block *dx_root = et->et_object;
334 
335 	et->et_root_el = &dx_root->dr_list;
336 }
337 
338 static struct ocfs2_extent_tree_operations ocfs2_dx_root_et_ops = {
339 	.eo_set_last_eb_blk	= ocfs2_dx_root_set_last_eb_blk,
340 	.eo_get_last_eb_blk	= ocfs2_dx_root_get_last_eb_blk,
341 	.eo_update_clusters	= ocfs2_dx_root_update_clusters,
342 	.eo_sanity_check	= ocfs2_dx_root_sanity_check,
343 	.eo_fill_root_el	= ocfs2_dx_root_fill_root_el,
344 };
345 
346 static void __ocfs2_init_extent_tree(struct ocfs2_extent_tree *et,
347 				     struct inode *inode,
348 				     struct buffer_head *bh,
349 				     ocfs2_journal_access_func access,
350 				     void *obj,
351 				     struct ocfs2_extent_tree_operations *ops)
352 {
353 	et->et_ops = ops;
354 	et->et_root_bh = bh;
355 	et->et_root_journal_access = access;
356 	if (!obj)
357 		obj = (void *)bh->b_data;
358 	et->et_object = obj;
359 
360 	et->et_ops->eo_fill_root_el(et);
361 	if (!et->et_ops->eo_fill_max_leaf_clusters)
362 		et->et_max_leaf_clusters = 0;
363 	else
364 		et->et_ops->eo_fill_max_leaf_clusters(inode, et);
365 }
366 
367 void ocfs2_init_dinode_extent_tree(struct ocfs2_extent_tree *et,
368 				   struct inode *inode,
369 				   struct buffer_head *bh)
370 {
371 	__ocfs2_init_extent_tree(et, inode, bh, ocfs2_journal_access_di,
372 				 NULL, &ocfs2_dinode_et_ops);
373 }
374 
375 void ocfs2_init_xattr_tree_extent_tree(struct ocfs2_extent_tree *et,
376 				       struct inode *inode,
377 				       struct buffer_head *bh)
378 {
379 	__ocfs2_init_extent_tree(et, inode, bh, ocfs2_journal_access_xb,
380 				 NULL, &ocfs2_xattr_tree_et_ops);
381 }
382 
383 void ocfs2_init_xattr_value_extent_tree(struct ocfs2_extent_tree *et,
384 					struct inode *inode,
385 					struct ocfs2_xattr_value_buf *vb)
386 {
387 	__ocfs2_init_extent_tree(et, inode, vb->vb_bh, vb->vb_access, vb,
388 				 &ocfs2_xattr_value_et_ops);
389 }
390 
391 void ocfs2_init_dx_root_extent_tree(struct ocfs2_extent_tree *et,
392 				    struct inode *inode,
393 				    struct buffer_head *bh)
394 {
395 	__ocfs2_init_extent_tree(et, inode, bh, ocfs2_journal_access_dr,
396 				 NULL, &ocfs2_dx_root_et_ops);
397 }
398 
399 static inline void ocfs2_et_set_last_eb_blk(struct ocfs2_extent_tree *et,
400 					    u64 new_last_eb_blk)
401 {
402 	et->et_ops->eo_set_last_eb_blk(et, new_last_eb_blk);
403 }
404 
405 static inline u64 ocfs2_et_get_last_eb_blk(struct ocfs2_extent_tree *et)
406 {
407 	return et->et_ops->eo_get_last_eb_blk(et);
408 }
409 
410 static inline void ocfs2_et_update_clusters(struct inode *inode,
411 					    struct ocfs2_extent_tree *et,
412 					    u32 clusters)
413 {
414 	et->et_ops->eo_update_clusters(inode, et, clusters);
415 }
416 
417 static inline int ocfs2_et_root_journal_access(handle_t *handle,
418 					       struct inode *inode,
419 					       struct ocfs2_extent_tree *et,
420 					       int type)
421 {
422 	return et->et_root_journal_access(handle, inode, et->et_root_bh,
423 					  type);
424 }
425 
426 static inline int ocfs2_et_insert_check(struct inode *inode,
427 					struct ocfs2_extent_tree *et,
428 					struct ocfs2_extent_rec *rec)
429 {
430 	int ret = 0;
431 
432 	if (et->et_ops->eo_insert_check)
433 		ret = et->et_ops->eo_insert_check(inode, et, rec);
434 	return ret;
435 }
436 
437 static inline int ocfs2_et_sanity_check(struct inode *inode,
438 					struct ocfs2_extent_tree *et)
439 {
440 	int ret = 0;
441 
442 	if (et->et_ops->eo_sanity_check)
443 		ret = et->et_ops->eo_sanity_check(inode, et);
444 	return ret;
445 }
446 
447 static void ocfs2_free_truncate_context(struct ocfs2_truncate_context *tc);
448 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt,
449 					 struct ocfs2_extent_block *eb);
450 
451 /*
452  * Structures which describe a path through a btree, and functions to
453  * manipulate them.
454  *
455  * The idea here is to be as generic as possible with the tree
456  * manipulation code.
457  */
458 struct ocfs2_path_item {
459 	struct buffer_head		*bh;
460 	struct ocfs2_extent_list	*el;
461 };
462 
463 #define OCFS2_MAX_PATH_DEPTH	5
464 
465 struct ocfs2_path {
466 	int				p_tree_depth;
467 	ocfs2_journal_access_func	p_root_access;
468 	struct ocfs2_path_item		p_node[OCFS2_MAX_PATH_DEPTH];
469 };
470 
471 #define path_root_bh(_path) ((_path)->p_node[0].bh)
472 #define path_root_el(_path) ((_path)->p_node[0].el)
473 #define path_root_access(_path)((_path)->p_root_access)
474 #define path_leaf_bh(_path) ((_path)->p_node[(_path)->p_tree_depth].bh)
475 #define path_leaf_el(_path) ((_path)->p_node[(_path)->p_tree_depth].el)
476 #define path_num_items(_path) ((_path)->p_tree_depth + 1)
477 
478 static int ocfs2_find_path(struct inode *inode, struct ocfs2_path *path,
479 			   u32 cpos);
480 static void ocfs2_adjust_rightmost_records(struct inode *inode,
481 					   handle_t *handle,
482 					   struct ocfs2_path *path,
483 					   struct ocfs2_extent_rec *insert_rec);
484 /*
485  * Reset the actual path elements so that we can re-use the structure
486  * to build another path. Generally, this involves freeing the buffer
487  * heads.
488  */
489 static void ocfs2_reinit_path(struct ocfs2_path *path, int keep_root)
490 {
491 	int i, start = 0, depth = 0;
492 	struct ocfs2_path_item *node;
493 
494 	if (keep_root)
495 		start = 1;
496 
497 	for(i = start; i < path_num_items(path); i++) {
498 		node = &path->p_node[i];
499 
500 		brelse(node->bh);
501 		node->bh = NULL;
502 		node->el = NULL;
503 	}
504 
505 	/*
506 	 * Tree depth may change during truncate, or insert. If we're
507 	 * keeping the root extent list, then make sure that our path
508 	 * structure reflects the proper depth.
509 	 */
510 	if (keep_root)
511 		depth = le16_to_cpu(path_root_el(path)->l_tree_depth);
512 	else
513 		path_root_access(path) = NULL;
514 
515 	path->p_tree_depth = depth;
516 }
517 
518 static void ocfs2_free_path(struct ocfs2_path *path)
519 {
520 	if (path) {
521 		ocfs2_reinit_path(path, 0);
522 		kfree(path);
523 	}
524 }
525 
526 /*
527  * All the elements of src into dest. After this call, src could be freed
528  * without affecting dest.
529  *
530  * Both paths should have the same root. Any non-root elements of dest
531  * will be freed.
532  */
533 static void ocfs2_cp_path(struct ocfs2_path *dest, struct ocfs2_path *src)
534 {
535 	int i;
536 
537 	BUG_ON(path_root_bh(dest) != path_root_bh(src));
538 	BUG_ON(path_root_el(dest) != path_root_el(src));
539 	BUG_ON(path_root_access(dest) != path_root_access(src));
540 
541 	ocfs2_reinit_path(dest, 1);
542 
543 	for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) {
544 		dest->p_node[i].bh = src->p_node[i].bh;
545 		dest->p_node[i].el = src->p_node[i].el;
546 
547 		if (dest->p_node[i].bh)
548 			get_bh(dest->p_node[i].bh);
549 	}
550 }
551 
552 /*
553  * Make the *dest path the same as src and re-initialize src path to
554  * have a root only.
555  */
556 static void ocfs2_mv_path(struct ocfs2_path *dest, struct ocfs2_path *src)
557 {
558 	int i;
559 
560 	BUG_ON(path_root_bh(dest) != path_root_bh(src));
561 	BUG_ON(path_root_access(dest) != path_root_access(src));
562 
563 	for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) {
564 		brelse(dest->p_node[i].bh);
565 
566 		dest->p_node[i].bh = src->p_node[i].bh;
567 		dest->p_node[i].el = src->p_node[i].el;
568 
569 		src->p_node[i].bh = NULL;
570 		src->p_node[i].el = NULL;
571 	}
572 }
573 
574 /*
575  * Insert an extent block at given index.
576  *
577  * This will not take an additional reference on eb_bh.
578  */
579 static inline void ocfs2_path_insert_eb(struct ocfs2_path *path, int index,
580 					struct buffer_head *eb_bh)
581 {
582 	struct ocfs2_extent_block *eb = (struct ocfs2_extent_block *)eb_bh->b_data;
583 
584 	/*
585 	 * Right now, no root bh is an extent block, so this helps
586 	 * catch code errors with dinode trees. The assertion can be
587 	 * safely removed if we ever need to insert extent block
588 	 * structures at the root.
589 	 */
590 	BUG_ON(index == 0);
591 
592 	path->p_node[index].bh = eb_bh;
593 	path->p_node[index].el = &eb->h_list;
594 }
595 
596 static struct ocfs2_path *ocfs2_new_path(struct buffer_head *root_bh,
597 					 struct ocfs2_extent_list *root_el,
598 					 ocfs2_journal_access_func access)
599 {
600 	struct ocfs2_path *path;
601 
602 	BUG_ON(le16_to_cpu(root_el->l_tree_depth) >= OCFS2_MAX_PATH_DEPTH);
603 
604 	path = kzalloc(sizeof(*path), GFP_NOFS);
605 	if (path) {
606 		path->p_tree_depth = le16_to_cpu(root_el->l_tree_depth);
607 		get_bh(root_bh);
608 		path_root_bh(path) = root_bh;
609 		path_root_el(path) = root_el;
610 		path_root_access(path) = access;
611 	}
612 
613 	return path;
614 }
615 
616 static struct ocfs2_path *ocfs2_new_path_from_path(struct ocfs2_path *path)
617 {
618 	return ocfs2_new_path(path_root_bh(path), path_root_el(path),
619 			      path_root_access(path));
620 }
621 
622 static struct ocfs2_path *ocfs2_new_path_from_et(struct ocfs2_extent_tree *et)
623 {
624 	return ocfs2_new_path(et->et_root_bh, et->et_root_el,
625 			      et->et_root_journal_access);
626 }
627 
628 /*
629  * Journal the buffer at depth idx.  All idx>0 are extent_blocks,
630  * otherwise it's the root_access function.
631  *
632  * I don't like the way this function's name looks next to
633  * ocfs2_journal_access_path(), but I don't have a better one.
634  */
635 static int ocfs2_path_bh_journal_access(handle_t *handle,
636 					struct inode *inode,
637 					struct ocfs2_path *path,
638 					int idx)
639 {
640 	ocfs2_journal_access_func access = path_root_access(path);
641 
642 	if (!access)
643 		access = ocfs2_journal_access;
644 
645 	if (idx)
646 		access = ocfs2_journal_access_eb;
647 
648 	return access(handle, inode, path->p_node[idx].bh,
649 		      OCFS2_JOURNAL_ACCESS_WRITE);
650 }
651 
652 /*
653  * Convenience function to journal all components in a path.
654  */
655 static int ocfs2_journal_access_path(struct inode *inode, handle_t *handle,
656 				     struct ocfs2_path *path)
657 {
658 	int i, ret = 0;
659 
660 	if (!path)
661 		goto out;
662 
663 	for(i = 0; i < path_num_items(path); i++) {
664 		ret = ocfs2_path_bh_journal_access(handle, inode, path, i);
665 		if (ret < 0) {
666 			mlog_errno(ret);
667 			goto out;
668 		}
669 	}
670 
671 out:
672 	return ret;
673 }
674 
675 /*
676  * Return the index of the extent record which contains cluster #v_cluster.
677  * -1 is returned if it was not found.
678  *
679  * Should work fine on interior and exterior nodes.
680  */
681 int ocfs2_search_extent_list(struct ocfs2_extent_list *el, u32 v_cluster)
682 {
683 	int ret = -1;
684 	int i;
685 	struct ocfs2_extent_rec *rec;
686 	u32 rec_end, rec_start, clusters;
687 
688 	for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) {
689 		rec = &el->l_recs[i];
690 
691 		rec_start = le32_to_cpu(rec->e_cpos);
692 		clusters = ocfs2_rec_clusters(el, rec);
693 
694 		rec_end = rec_start + clusters;
695 
696 		if (v_cluster >= rec_start && v_cluster < rec_end) {
697 			ret = i;
698 			break;
699 		}
700 	}
701 
702 	return ret;
703 }
704 
705 enum ocfs2_contig_type {
706 	CONTIG_NONE = 0,
707 	CONTIG_LEFT,
708 	CONTIG_RIGHT,
709 	CONTIG_LEFTRIGHT,
710 };
711 
712 
713 /*
714  * NOTE: ocfs2_block_extent_contig(), ocfs2_extents_adjacent() and
715  * ocfs2_extent_contig only work properly against leaf nodes!
716  */
717 static int ocfs2_block_extent_contig(struct super_block *sb,
718 				     struct ocfs2_extent_rec *ext,
719 				     u64 blkno)
720 {
721 	u64 blk_end = le64_to_cpu(ext->e_blkno);
722 
723 	blk_end += ocfs2_clusters_to_blocks(sb,
724 				    le16_to_cpu(ext->e_leaf_clusters));
725 
726 	return blkno == blk_end;
727 }
728 
729 static int ocfs2_extents_adjacent(struct ocfs2_extent_rec *left,
730 				  struct ocfs2_extent_rec *right)
731 {
732 	u32 left_range;
733 
734 	left_range = le32_to_cpu(left->e_cpos) +
735 		le16_to_cpu(left->e_leaf_clusters);
736 
737 	return (left_range == le32_to_cpu(right->e_cpos));
738 }
739 
740 static enum ocfs2_contig_type
741 	ocfs2_extent_contig(struct inode *inode,
742 			    struct ocfs2_extent_rec *ext,
743 			    struct ocfs2_extent_rec *insert_rec)
744 {
745 	u64 blkno = le64_to_cpu(insert_rec->e_blkno);
746 
747 	/*
748 	 * Refuse to coalesce extent records with different flag
749 	 * fields - we don't want to mix unwritten extents with user
750 	 * data.
751 	 */
752 	if (ext->e_flags != insert_rec->e_flags)
753 		return CONTIG_NONE;
754 
755 	if (ocfs2_extents_adjacent(ext, insert_rec) &&
756 	    ocfs2_block_extent_contig(inode->i_sb, ext, blkno))
757 			return CONTIG_RIGHT;
758 
759 	blkno = le64_to_cpu(ext->e_blkno);
760 	if (ocfs2_extents_adjacent(insert_rec, ext) &&
761 	    ocfs2_block_extent_contig(inode->i_sb, insert_rec, blkno))
762 		return CONTIG_LEFT;
763 
764 	return CONTIG_NONE;
765 }
766 
767 /*
768  * NOTE: We can have pretty much any combination of contiguousness and
769  * appending.
770  *
771  * The usefulness of APPEND_TAIL is more in that it lets us know that
772  * we'll have to update the path to that leaf.
773  */
774 enum ocfs2_append_type {
775 	APPEND_NONE = 0,
776 	APPEND_TAIL,
777 };
778 
779 enum ocfs2_split_type {
780 	SPLIT_NONE = 0,
781 	SPLIT_LEFT,
782 	SPLIT_RIGHT,
783 };
784 
785 struct ocfs2_insert_type {
786 	enum ocfs2_split_type	ins_split;
787 	enum ocfs2_append_type	ins_appending;
788 	enum ocfs2_contig_type	ins_contig;
789 	int			ins_contig_index;
790 	int			ins_tree_depth;
791 };
792 
793 struct ocfs2_merge_ctxt {
794 	enum ocfs2_contig_type	c_contig_type;
795 	int			c_has_empty_extent;
796 	int			c_split_covers_rec;
797 };
798 
799 static int ocfs2_validate_extent_block(struct super_block *sb,
800 				       struct buffer_head *bh)
801 {
802 	int rc;
803 	struct ocfs2_extent_block *eb =
804 		(struct ocfs2_extent_block *)bh->b_data;
805 
806 	mlog(0, "Validating extent block %llu\n",
807 	     (unsigned long long)bh->b_blocknr);
808 
809 	BUG_ON(!buffer_uptodate(bh));
810 
811 	/*
812 	 * If the ecc fails, we return the error but otherwise
813 	 * leave the filesystem running.  We know any error is
814 	 * local to this block.
815 	 */
816 	rc = ocfs2_validate_meta_ecc(sb, bh->b_data, &eb->h_check);
817 	if (rc) {
818 		mlog(ML_ERROR, "Checksum failed for extent block %llu\n",
819 		     (unsigned long long)bh->b_blocknr);
820 		return rc;
821 	}
822 
823 	/*
824 	 * Errors after here are fatal.
825 	 */
826 
827 	if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
828 		ocfs2_error(sb,
829 			    "Extent block #%llu has bad signature %.*s",
830 			    (unsigned long long)bh->b_blocknr, 7,
831 			    eb->h_signature);
832 		return -EINVAL;
833 	}
834 
835 	if (le64_to_cpu(eb->h_blkno) != bh->b_blocknr) {
836 		ocfs2_error(sb,
837 			    "Extent block #%llu has an invalid h_blkno "
838 			    "of %llu",
839 			    (unsigned long long)bh->b_blocknr,
840 			    (unsigned long long)le64_to_cpu(eb->h_blkno));
841 		return -EINVAL;
842 	}
843 
844 	if (le32_to_cpu(eb->h_fs_generation) != OCFS2_SB(sb)->fs_generation) {
845 		ocfs2_error(sb,
846 			    "Extent block #%llu has an invalid "
847 			    "h_fs_generation of #%u",
848 			    (unsigned long long)bh->b_blocknr,
849 			    le32_to_cpu(eb->h_fs_generation));
850 		return -EINVAL;
851 	}
852 
853 	return 0;
854 }
855 
856 int ocfs2_read_extent_block(struct inode *inode, u64 eb_blkno,
857 			    struct buffer_head **bh)
858 {
859 	int rc;
860 	struct buffer_head *tmp = *bh;
861 
862 	rc = ocfs2_read_block(inode, eb_blkno, &tmp,
863 			      ocfs2_validate_extent_block);
864 
865 	/* If ocfs2_read_block() got us a new bh, pass it up. */
866 	if (!rc && !*bh)
867 		*bh = tmp;
868 
869 	return rc;
870 }
871 
872 
873 /*
874  * How many free extents have we got before we need more meta data?
875  */
876 int ocfs2_num_free_extents(struct ocfs2_super *osb,
877 			   struct inode *inode,
878 			   struct ocfs2_extent_tree *et)
879 {
880 	int retval;
881 	struct ocfs2_extent_list *el = NULL;
882 	struct ocfs2_extent_block *eb;
883 	struct buffer_head *eb_bh = NULL;
884 	u64 last_eb_blk = 0;
885 
886 	mlog_entry_void();
887 
888 	el = et->et_root_el;
889 	last_eb_blk = ocfs2_et_get_last_eb_blk(et);
890 
891 	if (last_eb_blk) {
892 		retval = ocfs2_read_extent_block(inode, last_eb_blk, &eb_bh);
893 		if (retval < 0) {
894 			mlog_errno(retval);
895 			goto bail;
896 		}
897 		eb = (struct ocfs2_extent_block *) eb_bh->b_data;
898 		el = &eb->h_list;
899 	}
900 
901 	BUG_ON(el->l_tree_depth != 0);
902 
903 	retval = le16_to_cpu(el->l_count) - le16_to_cpu(el->l_next_free_rec);
904 bail:
905 	brelse(eb_bh);
906 
907 	mlog_exit(retval);
908 	return retval;
909 }
910 
911 /* expects array to already be allocated
912  *
913  * sets h_signature, h_blkno, h_suballoc_bit, h_suballoc_slot, and
914  * l_count for you
915  */
916 static int ocfs2_create_new_meta_bhs(struct ocfs2_super *osb,
917 				     handle_t *handle,
918 				     struct inode *inode,
919 				     int wanted,
920 				     struct ocfs2_alloc_context *meta_ac,
921 				     struct buffer_head *bhs[])
922 {
923 	int count, status, i;
924 	u16 suballoc_bit_start;
925 	u32 num_got;
926 	u64 first_blkno;
927 	struct ocfs2_extent_block *eb;
928 
929 	mlog_entry_void();
930 
931 	count = 0;
932 	while (count < wanted) {
933 		status = ocfs2_claim_metadata(osb,
934 					      handle,
935 					      meta_ac,
936 					      wanted - count,
937 					      &suballoc_bit_start,
938 					      &num_got,
939 					      &first_blkno);
940 		if (status < 0) {
941 			mlog_errno(status);
942 			goto bail;
943 		}
944 
945 		for(i = count;  i < (num_got + count); i++) {
946 			bhs[i] = sb_getblk(osb->sb, first_blkno);
947 			if (bhs[i] == NULL) {
948 				status = -EIO;
949 				mlog_errno(status);
950 				goto bail;
951 			}
952 			ocfs2_set_new_buffer_uptodate(inode, bhs[i]);
953 
954 			status = ocfs2_journal_access_eb(handle, inode, bhs[i],
955 							 OCFS2_JOURNAL_ACCESS_CREATE);
956 			if (status < 0) {
957 				mlog_errno(status);
958 				goto bail;
959 			}
960 
961 			memset(bhs[i]->b_data, 0, osb->sb->s_blocksize);
962 			eb = (struct ocfs2_extent_block *) bhs[i]->b_data;
963 			/* Ok, setup the minimal stuff here. */
964 			strcpy(eb->h_signature, OCFS2_EXTENT_BLOCK_SIGNATURE);
965 			eb->h_blkno = cpu_to_le64(first_blkno);
966 			eb->h_fs_generation = cpu_to_le32(osb->fs_generation);
967 			eb->h_suballoc_slot = cpu_to_le16(osb->slot_num);
968 			eb->h_suballoc_bit = cpu_to_le16(suballoc_bit_start);
969 			eb->h_list.l_count =
970 				cpu_to_le16(ocfs2_extent_recs_per_eb(osb->sb));
971 
972 			suballoc_bit_start++;
973 			first_blkno++;
974 
975 			/* We'll also be dirtied by the caller, so
976 			 * this isn't absolutely necessary. */
977 			status = ocfs2_journal_dirty(handle, bhs[i]);
978 			if (status < 0) {
979 				mlog_errno(status);
980 				goto bail;
981 			}
982 		}
983 
984 		count += num_got;
985 	}
986 
987 	status = 0;
988 bail:
989 	if (status < 0) {
990 		for(i = 0; i < wanted; i++) {
991 			brelse(bhs[i]);
992 			bhs[i] = NULL;
993 		}
994 	}
995 	mlog_exit(status);
996 	return status;
997 }
998 
999 /*
1000  * Helper function for ocfs2_add_branch() and ocfs2_shift_tree_depth().
1001  *
1002  * Returns the sum of the rightmost extent rec logical offset and
1003  * cluster count.
1004  *
1005  * ocfs2_add_branch() uses this to determine what logical cluster
1006  * value should be populated into the leftmost new branch records.
1007  *
1008  * ocfs2_shift_tree_depth() uses this to determine the # clusters
1009  * value for the new topmost tree record.
1010  */
1011 static inline u32 ocfs2_sum_rightmost_rec(struct ocfs2_extent_list  *el)
1012 {
1013 	int i;
1014 
1015 	i = le16_to_cpu(el->l_next_free_rec) - 1;
1016 
1017 	return le32_to_cpu(el->l_recs[i].e_cpos) +
1018 		ocfs2_rec_clusters(el, &el->l_recs[i]);
1019 }
1020 
1021 /*
1022  * Change range of the branches in the right most path according to the leaf
1023  * extent block's rightmost record.
1024  */
1025 static int ocfs2_adjust_rightmost_branch(handle_t *handle,
1026 					 struct inode *inode,
1027 					 struct ocfs2_extent_tree *et)
1028 {
1029 	int status;
1030 	struct ocfs2_path *path = NULL;
1031 	struct ocfs2_extent_list *el;
1032 	struct ocfs2_extent_rec *rec;
1033 
1034 	path = ocfs2_new_path_from_et(et);
1035 	if (!path) {
1036 		status = -ENOMEM;
1037 		return status;
1038 	}
1039 
1040 	status = ocfs2_find_path(inode, path, UINT_MAX);
1041 	if (status < 0) {
1042 		mlog_errno(status);
1043 		goto out;
1044 	}
1045 
1046 	status = ocfs2_extend_trans(handle, path_num_items(path) +
1047 				    handle->h_buffer_credits);
1048 	if (status < 0) {
1049 		mlog_errno(status);
1050 		goto out;
1051 	}
1052 
1053 	status = ocfs2_journal_access_path(inode, handle, path);
1054 	if (status < 0) {
1055 		mlog_errno(status);
1056 		goto out;
1057 	}
1058 
1059 	el = path_leaf_el(path);
1060 	rec = &el->l_recs[le32_to_cpu(el->l_next_free_rec) - 1];
1061 
1062 	ocfs2_adjust_rightmost_records(inode, handle, path, rec);
1063 
1064 out:
1065 	ocfs2_free_path(path);
1066 	return status;
1067 }
1068 
1069 /*
1070  * Add an entire tree branch to our inode. eb_bh is the extent block
1071  * to start at, if we don't want to start the branch at the dinode
1072  * structure.
1073  *
1074  * last_eb_bh is required as we have to update it's next_leaf pointer
1075  * for the new last extent block.
1076  *
1077  * the new branch will be 'empty' in the sense that every block will
1078  * contain a single record with cluster count == 0.
1079  */
1080 static int ocfs2_add_branch(struct ocfs2_super *osb,
1081 			    handle_t *handle,
1082 			    struct inode *inode,
1083 			    struct ocfs2_extent_tree *et,
1084 			    struct buffer_head *eb_bh,
1085 			    struct buffer_head **last_eb_bh,
1086 			    struct ocfs2_alloc_context *meta_ac)
1087 {
1088 	int status, new_blocks, i;
1089 	u64 next_blkno, new_last_eb_blk;
1090 	struct buffer_head *bh;
1091 	struct buffer_head **new_eb_bhs = NULL;
1092 	struct ocfs2_extent_block *eb;
1093 	struct ocfs2_extent_list  *eb_el;
1094 	struct ocfs2_extent_list  *el;
1095 	u32 new_cpos, root_end;
1096 
1097 	mlog_entry_void();
1098 
1099 	BUG_ON(!last_eb_bh || !*last_eb_bh);
1100 
1101 	if (eb_bh) {
1102 		eb = (struct ocfs2_extent_block *) eb_bh->b_data;
1103 		el = &eb->h_list;
1104 	} else
1105 		el = et->et_root_el;
1106 
1107 	/* we never add a branch to a leaf. */
1108 	BUG_ON(!el->l_tree_depth);
1109 
1110 	new_blocks = le16_to_cpu(el->l_tree_depth);
1111 
1112 	eb = (struct ocfs2_extent_block *)(*last_eb_bh)->b_data;
1113 	new_cpos = ocfs2_sum_rightmost_rec(&eb->h_list);
1114 	root_end = ocfs2_sum_rightmost_rec(et->et_root_el);
1115 
1116 	/*
1117 	 * If there is a gap before the root end and the real end
1118 	 * of the righmost leaf block, we need to remove the gap
1119 	 * between new_cpos and root_end first so that the tree
1120 	 * is consistent after we add a new branch(it will start
1121 	 * from new_cpos).
1122 	 */
1123 	if (root_end > new_cpos) {
1124 		mlog(0, "adjust the cluster end from %u to %u\n",
1125 		     root_end, new_cpos);
1126 		status = ocfs2_adjust_rightmost_branch(handle, inode, et);
1127 		if (status) {
1128 			mlog_errno(status);
1129 			goto bail;
1130 		}
1131 	}
1132 
1133 	/* allocate the number of new eb blocks we need */
1134 	new_eb_bhs = kcalloc(new_blocks, sizeof(struct buffer_head *),
1135 			     GFP_KERNEL);
1136 	if (!new_eb_bhs) {
1137 		status = -ENOMEM;
1138 		mlog_errno(status);
1139 		goto bail;
1140 	}
1141 
1142 	status = ocfs2_create_new_meta_bhs(osb, handle, inode, new_blocks,
1143 					   meta_ac, new_eb_bhs);
1144 	if (status < 0) {
1145 		mlog_errno(status);
1146 		goto bail;
1147 	}
1148 
1149 	/* Note: new_eb_bhs[new_blocks - 1] is the guy which will be
1150 	 * linked with the rest of the tree.
1151 	 * conversly, new_eb_bhs[0] is the new bottommost leaf.
1152 	 *
1153 	 * when we leave the loop, new_last_eb_blk will point to the
1154 	 * newest leaf, and next_blkno will point to the topmost extent
1155 	 * block. */
1156 	next_blkno = new_last_eb_blk = 0;
1157 	for(i = 0; i < new_blocks; i++) {
1158 		bh = new_eb_bhs[i];
1159 		eb = (struct ocfs2_extent_block *) bh->b_data;
1160 		/* ocfs2_create_new_meta_bhs() should create it right! */
1161 		BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb));
1162 		eb_el = &eb->h_list;
1163 
1164 		status = ocfs2_journal_access_eb(handle, inode, bh,
1165 						 OCFS2_JOURNAL_ACCESS_CREATE);
1166 		if (status < 0) {
1167 			mlog_errno(status);
1168 			goto bail;
1169 		}
1170 
1171 		eb->h_next_leaf_blk = 0;
1172 		eb_el->l_tree_depth = cpu_to_le16(i);
1173 		eb_el->l_next_free_rec = cpu_to_le16(1);
1174 		/*
1175 		 * This actually counts as an empty extent as
1176 		 * c_clusters == 0
1177 		 */
1178 		eb_el->l_recs[0].e_cpos = cpu_to_le32(new_cpos);
1179 		eb_el->l_recs[0].e_blkno = cpu_to_le64(next_blkno);
1180 		/*
1181 		 * eb_el isn't always an interior node, but even leaf
1182 		 * nodes want a zero'd flags and reserved field so
1183 		 * this gets the whole 32 bits regardless of use.
1184 		 */
1185 		eb_el->l_recs[0].e_int_clusters = cpu_to_le32(0);
1186 		if (!eb_el->l_tree_depth)
1187 			new_last_eb_blk = le64_to_cpu(eb->h_blkno);
1188 
1189 		status = ocfs2_journal_dirty(handle, bh);
1190 		if (status < 0) {
1191 			mlog_errno(status);
1192 			goto bail;
1193 		}
1194 
1195 		next_blkno = le64_to_cpu(eb->h_blkno);
1196 	}
1197 
1198 	/* This is a bit hairy. We want to update up to three blocks
1199 	 * here without leaving any of them in an inconsistent state
1200 	 * in case of error. We don't have to worry about
1201 	 * journal_dirty erroring as it won't unless we've aborted the
1202 	 * handle (in which case we would never be here) so reserving
1203 	 * the write with journal_access is all we need to do. */
1204 	status = ocfs2_journal_access_eb(handle, inode, *last_eb_bh,
1205 					 OCFS2_JOURNAL_ACCESS_WRITE);
1206 	if (status < 0) {
1207 		mlog_errno(status);
1208 		goto bail;
1209 	}
1210 	status = ocfs2_et_root_journal_access(handle, inode, et,
1211 					      OCFS2_JOURNAL_ACCESS_WRITE);
1212 	if (status < 0) {
1213 		mlog_errno(status);
1214 		goto bail;
1215 	}
1216 	if (eb_bh) {
1217 		status = ocfs2_journal_access_eb(handle, inode, eb_bh,
1218 						 OCFS2_JOURNAL_ACCESS_WRITE);
1219 		if (status < 0) {
1220 			mlog_errno(status);
1221 			goto bail;
1222 		}
1223 	}
1224 
1225 	/* Link the new branch into the rest of the tree (el will
1226 	 * either be on the root_bh, or the extent block passed in. */
1227 	i = le16_to_cpu(el->l_next_free_rec);
1228 	el->l_recs[i].e_blkno = cpu_to_le64(next_blkno);
1229 	el->l_recs[i].e_cpos = cpu_to_le32(new_cpos);
1230 	el->l_recs[i].e_int_clusters = 0;
1231 	le16_add_cpu(&el->l_next_free_rec, 1);
1232 
1233 	/* fe needs a new last extent block pointer, as does the
1234 	 * next_leaf on the previously last-extent-block. */
1235 	ocfs2_et_set_last_eb_blk(et, new_last_eb_blk);
1236 
1237 	eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data;
1238 	eb->h_next_leaf_blk = cpu_to_le64(new_last_eb_blk);
1239 
1240 	status = ocfs2_journal_dirty(handle, *last_eb_bh);
1241 	if (status < 0)
1242 		mlog_errno(status);
1243 	status = ocfs2_journal_dirty(handle, et->et_root_bh);
1244 	if (status < 0)
1245 		mlog_errno(status);
1246 	if (eb_bh) {
1247 		status = ocfs2_journal_dirty(handle, eb_bh);
1248 		if (status < 0)
1249 			mlog_errno(status);
1250 	}
1251 
1252 	/*
1253 	 * Some callers want to track the rightmost leaf so pass it
1254 	 * back here.
1255 	 */
1256 	brelse(*last_eb_bh);
1257 	get_bh(new_eb_bhs[0]);
1258 	*last_eb_bh = new_eb_bhs[0];
1259 
1260 	status = 0;
1261 bail:
1262 	if (new_eb_bhs) {
1263 		for (i = 0; i < new_blocks; i++)
1264 			brelse(new_eb_bhs[i]);
1265 		kfree(new_eb_bhs);
1266 	}
1267 
1268 	mlog_exit(status);
1269 	return status;
1270 }
1271 
1272 /*
1273  * adds another level to the allocation tree.
1274  * returns back the new extent block so you can add a branch to it
1275  * after this call.
1276  */
1277 static int ocfs2_shift_tree_depth(struct ocfs2_super *osb,
1278 				  handle_t *handle,
1279 				  struct inode *inode,
1280 				  struct ocfs2_extent_tree *et,
1281 				  struct ocfs2_alloc_context *meta_ac,
1282 				  struct buffer_head **ret_new_eb_bh)
1283 {
1284 	int status, i;
1285 	u32 new_clusters;
1286 	struct buffer_head *new_eb_bh = NULL;
1287 	struct ocfs2_extent_block *eb;
1288 	struct ocfs2_extent_list  *root_el;
1289 	struct ocfs2_extent_list  *eb_el;
1290 
1291 	mlog_entry_void();
1292 
1293 	status = ocfs2_create_new_meta_bhs(osb, handle, inode, 1, meta_ac,
1294 					   &new_eb_bh);
1295 	if (status < 0) {
1296 		mlog_errno(status);
1297 		goto bail;
1298 	}
1299 
1300 	eb = (struct ocfs2_extent_block *) new_eb_bh->b_data;
1301 	/* ocfs2_create_new_meta_bhs() should create it right! */
1302 	BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb));
1303 
1304 	eb_el = &eb->h_list;
1305 	root_el = et->et_root_el;
1306 
1307 	status = ocfs2_journal_access_eb(handle, inode, new_eb_bh,
1308 					 OCFS2_JOURNAL_ACCESS_CREATE);
1309 	if (status < 0) {
1310 		mlog_errno(status);
1311 		goto bail;
1312 	}
1313 
1314 	/* copy the root extent list data into the new extent block */
1315 	eb_el->l_tree_depth = root_el->l_tree_depth;
1316 	eb_el->l_next_free_rec = root_el->l_next_free_rec;
1317 	for (i = 0; i < le16_to_cpu(root_el->l_next_free_rec); i++)
1318 		eb_el->l_recs[i] = root_el->l_recs[i];
1319 
1320 	status = ocfs2_journal_dirty(handle, new_eb_bh);
1321 	if (status < 0) {
1322 		mlog_errno(status);
1323 		goto bail;
1324 	}
1325 
1326 	status = ocfs2_et_root_journal_access(handle, inode, et,
1327 					      OCFS2_JOURNAL_ACCESS_WRITE);
1328 	if (status < 0) {
1329 		mlog_errno(status);
1330 		goto bail;
1331 	}
1332 
1333 	new_clusters = ocfs2_sum_rightmost_rec(eb_el);
1334 
1335 	/* update root_bh now */
1336 	le16_add_cpu(&root_el->l_tree_depth, 1);
1337 	root_el->l_recs[0].e_cpos = 0;
1338 	root_el->l_recs[0].e_blkno = eb->h_blkno;
1339 	root_el->l_recs[0].e_int_clusters = cpu_to_le32(new_clusters);
1340 	for (i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++)
1341 		memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec));
1342 	root_el->l_next_free_rec = cpu_to_le16(1);
1343 
1344 	/* If this is our 1st tree depth shift, then last_eb_blk
1345 	 * becomes the allocated extent block */
1346 	if (root_el->l_tree_depth == cpu_to_le16(1))
1347 		ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
1348 
1349 	status = ocfs2_journal_dirty(handle, et->et_root_bh);
1350 	if (status < 0) {
1351 		mlog_errno(status);
1352 		goto bail;
1353 	}
1354 
1355 	*ret_new_eb_bh = new_eb_bh;
1356 	new_eb_bh = NULL;
1357 	status = 0;
1358 bail:
1359 	brelse(new_eb_bh);
1360 
1361 	mlog_exit(status);
1362 	return status;
1363 }
1364 
1365 /*
1366  * Should only be called when there is no space left in any of the
1367  * leaf nodes. What we want to do is find the lowest tree depth
1368  * non-leaf extent block with room for new records. There are three
1369  * valid results of this search:
1370  *
1371  * 1) a lowest extent block is found, then we pass it back in
1372  *    *lowest_eb_bh and return '0'
1373  *
1374  * 2) the search fails to find anything, but the root_el has room. We
1375  *    pass NULL back in *lowest_eb_bh, but still return '0'
1376  *
1377  * 3) the search fails to find anything AND the root_el is full, in
1378  *    which case we return > 0
1379  *
1380  * return status < 0 indicates an error.
1381  */
1382 static int ocfs2_find_branch_target(struct ocfs2_super *osb,
1383 				    struct inode *inode,
1384 				    struct ocfs2_extent_tree *et,
1385 				    struct buffer_head **target_bh)
1386 {
1387 	int status = 0, i;
1388 	u64 blkno;
1389 	struct ocfs2_extent_block *eb;
1390 	struct ocfs2_extent_list  *el;
1391 	struct buffer_head *bh = NULL;
1392 	struct buffer_head *lowest_bh = NULL;
1393 
1394 	mlog_entry_void();
1395 
1396 	*target_bh = NULL;
1397 
1398 	el = et->et_root_el;
1399 
1400 	while(le16_to_cpu(el->l_tree_depth) > 1) {
1401 		if (le16_to_cpu(el->l_next_free_rec) == 0) {
1402 			ocfs2_error(inode->i_sb, "Dinode %llu has empty "
1403 				    "extent list (next_free_rec == 0)",
1404 				    (unsigned long long)OCFS2_I(inode)->ip_blkno);
1405 			status = -EIO;
1406 			goto bail;
1407 		}
1408 		i = le16_to_cpu(el->l_next_free_rec) - 1;
1409 		blkno = le64_to_cpu(el->l_recs[i].e_blkno);
1410 		if (!blkno) {
1411 			ocfs2_error(inode->i_sb, "Dinode %llu has extent "
1412 				    "list where extent # %d has no physical "
1413 				    "block start",
1414 				    (unsigned long long)OCFS2_I(inode)->ip_blkno, i);
1415 			status = -EIO;
1416 			goto bail;
1417 		}
1418 
1419 		brelse(bh);
1420 		bh = NULL;
1421 
1422 		status = ocfs2_read_extent_block(inode, blkno, &bh);
1423 		if (status < 0) {
1424 			mlog_errno(status);
1425 			goto bail;
1426 		}
1427 
1428 		eb = (struct ocfs2_extent_block *) bh->b_data;
1429 		el = &eb->h_list;
1430 
1431 		if (le16_to_cpu(el->l_next_free_rec) <
1432 		    le16_to_cpu(el->l_count)) {
1433 			brelse(lowest_bh);
1434 			lowest_bh = bh;
1435 			get_bh(lowest_bh);
1436 		}
1437 	}
1438 
1439 	/* If we didn't find one and the fe doesn't have any room,
1440 	 * then return '1' */
1441 	el = et->et_root_el;
1442 	if (!lowest_bh && (el->l_next_free_rec == el->l_count))
1443 		status = 1;
1444 
1445 	*target_bh = lowest_bh;
1446 bail:
1447 	brelse(bh);
1448 
1449 	mlog_exit(status);
1450 	return status;
1451 }
1452 
1453 /*
1454  * Grow a b-tree so that it has more records.
1455  *
1456  * We might shift the tree depth in which case existing paths should
1457  * be considered invalid.
1458  *
1459  * Tree depth after the grow is returned via *final_depth.
1460  *
1461  * *last_eb_bh will be updated by ocfs2_add_branch().
1462  */
1463 static int ocfs2_grow_tree(struct inode *inode, handle_t *handle,
1464 			   struct ocfs2_extent_tree *et, int *final_depth,
1465 			   struct buffer_head **last_eb_bh,
1466 			   struct ocfs2_alloc_context *meta_ac)
1467 {
1468 	int ret, shift;
1469 	struct ocfs2_extent_list *el = et->et_root_el;
1470 	int depth = le16_to_cpu(el->l_tree_depth);
1471 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1472 	struct buffer_head *bh = NULL;
1473 
1474 	BUG_ON(meta_ac == NULL);
1475 
1476 	shift = ocfs2_find_branch_target(osb, inode, et, &bh);
1477 	if (shift < 0) {
1478 		ret = shift;
1479 		mlog_errno(ret);
1480 		goto out;
1481 	}
1482 
1483 	/* We traveled all the way to the bottom of the allocation tree
1484 	 * and didn't find room for any more extents - we need to add
1485 	 * another tree level */
1486 	if (shift) {
1487 		BUG_ON(bh);
1488 		mlog(0, "need to shift tree depth (current = %d)\n", depth);
1489 
1490 		/* ocfs2_shift_tree_depth will return us a buffer with
1491 		 * the new extent block (so we can pass that to
1492 		 * ocfs2_add_branch). */
1493 		ret = ocfs2_shift_tree_depth(osb, handle, inode, et,
1494 					     meta_ac, &bh);
1495 		if (ret < 0) {
1496 			mlog_errno(ret);
1497 			goto out;
1498 		}
1499 		depth++;
1500 		if (depth == 1) {
1501 			/*
1502 			 * Special case: we have room now if we shifted from
1503 			 * tree_depth 0, so no more work needs to be done.
1504 			 *
1505 			 * We won't be calling add_branch, so pass
1506 			 * back *last_eb_bh as the new leaf. At depth
1507 			 * zero, it should always be null so there's
1508 			 * no reason to brelse.
1509 			 */
1510 			BUG_ON(*last_eb_bh);
1511 			get_bh(bh);
1512 			*last_eb_bh = bh;
1513 			goto out;
1514 		}
1515 	}
1516 
1517 	/* call ocfs2_add_branch to add the final part of the tree with
1518 	 * the new data. */
1519 	mlog(0, "add branch. bh = %p\n", bh);
1520 	ret = ocfs2_add_branch(osb, handle, inode, et, bh, last_eb_bh,
1521 			       meta_ac);
1522 	if (ret < 0) {
1523 		mlog_errno(ret);
1524 		goto out;
1525 	}
1526 
1527 out:
1528 	if (final_depth)
1529 		*final_depth = depth;
1530 	brelse(bh);
1531 	return ret;
1532 }
1533 
1534 /*
1535  * This function will discard the rightmost extent record.
1536  */
1537 static void ocfs2_shift_records_right(struct ocfs2_extent_list *el)
1538 {
1539 	int next_free = le16_to_cpu(el->l_next_free_rec);
1540 	int count = le16_to_cpu(el->l_count);
1541 	unsigned int num_bytes;
1542 
1543 	BUG_ON(!next_free);
1544 	/* This will cause us to go off the end of our extent list. */
1545 	BUG_ON(next_free >= count);
1546 
1547 	num_bytes = sizeof(struct ocfs2_extent_rec) * next_free;
1548 
1549 	memmove(&el->l_recs[1], &el->l_recs[0], num_bytes);
1550 }
1551 
1552 static void ocfs2_rotate_leaf(struct ocfs2_extent_list *el,
1553 			      struct ocfs2_extent_rec *insert_rec)
1554 {
1555 	int i, insert_index, next_free, has_empty, num_bytes;
1556 	u32 insert_cpos = le32_to_cpu(insert_rec->e_cpos);
1557 	struct ocfs2_extent_rec *rec;
1558 
1559 	next_free = le16_to_cpu(el->l_next_free_rec);
1560 	has_empty = ocfs2_is_empty_extent(&el->l_recs[0]);
1561 
1562 	BUG_ON(!next_free);
1563 
1564 	/* The tree code before us didn't allow enough room in the leaf. */
1565 	BUG_ON(el->l_next_free_rec == el->l_count && !has_empty);
1566 
1567 	/*
1568 	 * The easiest way to approach this is to just remove the
1569 	 * empty extent and temporarily decrement next_free.
1570 	 */
1571 	if (has_empty) {
1572 		/*
1573 		 * If next_free was 1 (only an empty extent), this
1574 		 * loop won't execute, which is fine. We still want
1575 		 * the decrement above to happen.
1576 		 */
1577 		for(i = 0; i < (next_free - 1); i++)
1578 			el->l_recs[i] = el->l_recs[i+1];
1579 
1580 		next_free--;
1581 	}
1582 
1583 	/*
1584 	 * Figure out what the new record index should be.
1585 	 */
1586 	for(i = 0; i < next_free; i++) {
1587 		rec = &el->l_recs[i];
1588 
1589 		if (insert_cpos < le32_to_cpu(rec->e_cpos))
1590 			break;
1591 	}
1592 	insert_index = i;
1593 
1594 	mlog(0, "ins %u: index %d, has_empty %d, next_free %d, count %d\n",
1595 	     insert_cpos, insert_index, has_empty, next_free, le16_to_cpu(el->l_count));
1596 
1597 	BUG_ON(insert_index < 0);
1598 	BUG_ON(insert_index >= le16_to_cpu(el->l_count));
1599 	BUG_ON(insert_index > next_free);
1600 
1601 	/*
1602 	 * No need to memmove if we're just adding to the tail.
1603 	 */
1604 	if (insert_index != next_free) {
1605 		BUG_ON(next_free >= le16_to_cpu(el->l_count));
1606 
1607 		num_bytes = next_free - insert_index;
1608 		num_bytes *= sizeof(struct ocfs2_extent_rec);
1609 		memmove(&el->l_recs[insert_index + 1],
1610 			&el->l_recs[insert_index],
1611 			num_bytes);
1612 	}
1613 
1614 	/*
1615 	 * Either we had an empty extent, and need to re-increment or
1616 	 * there was no empty extent on a non full rightmost leaf node,
1617 	 * in which case we still need to increment.
1618 	 */
1619 	next_free++;
1620 	el->l_next_free_rec = cpu_to_le16(next_free);
1621 	/*
1622 	 * Make sure none of the math above just messed up our tree.
1623 	 */
1624 	BUG_ON(le16_to_cpu(el->l_next_free_rec) > le16_to_cpu(el->l_count));
1625 
1626 	el->l_recs[insert_index] = *insert_rec;
1627 
1628 }
1629 
1630 static void ocfs2_remove_empty_extent(struct ocfs2_extent_list *el)
1631 {
1632 	int size, num_recs = le16_to_cpu(el->l_next_free_rec);
1633 
1634 	BUG_ON(num_recs == 0);
1635 
1636 	if (ocfs2_is_empty_extent(&el->l_recs[0])) {
1637 		num_recs--;
1638 		size = num_recs * sizeof(struct ocfs2_extent_rec);
1639 		memmove(&el->l_recs[0], &el->l_recs[1], size);
1640 		memset(&el->l_recs[num_recs], 0,
1641 		       sizeof(struct ocfs2_extent_rec));
1642 		el->l_next_free_rec = cpu_to_le16(num_recs);
1643 	}
1644 }
1645 
1646 /*
1647  * Create an empty extent record .
1648  *
1649  * l_next_free_rec may be updated.
1650  *
1651  * If an empty extent already exists do nothing.
1652  */
1653 static void ocfs2_create_empty_extent(struct ocfs2_extent_list *el)
1654 {
1655 	int next_free = le16_to_cpu(el->l_next_free_rec);
1656 
1657 	BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
1658 
1659 	if (next_free == 0)
1660 		goto set_and_inc;
1661 
1662 	if (ocfs2_is_empty_extent(&el->l_recs[0]))
1663 		return;
1664 
1665 	mlog_bug_on_msg(el->l_count == el->l_next_free_rec,
1666 			"Asked to create an empty extent in a full list:\n"
1667 			"count = %u, tree depth = %u",
1668 			le16_to_cpu(el->l_count),
1669 			le16_to_cpu(el->l_tree_depth));
1670 
1671 	ocfs2_shift_records_right(el);
1672 
1673 set_and_inc:
1674 	le16_add_cpu(&el->l_next_free_rec, 1);
1675 	memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
1676 }
1677 
1678 /*
1679  * For a rotation which involves two leaf nodes, the "root node" is
1680  * the lowest level tree node which contains a path to both leafs. This
1681  * resulting set of information can be used to form a complete "subtree"
1682  *
1683  * This function is passed two full paths from the dinode down to a
1684  * pair of adjacent leaves. It's task is to figure out which path
1685  * index contains the subtree root - this can be the root index itself
1686  * in a worst-case rotation.
1687  *
1688  * The array index of the subtree root is passed back.
1689  */
1690 static int ocfs2_find_subtree_root(struct inode *inode,
1691 				   struct ocfs2_path *left,
1692 				   struct ocfs2_path *right)
1693 {
1694 	int i = 0;
1695 
1696 	/*
1697 	 * Check that the caller passed in two paths from the same tree.
1698 	 */
1699 	BUG_ON(path_root_bh(left) != path_root_bh(right));
1700 
1701 	do {
1702 		i++;
1703 
1704 		/*
1705 		 * The caller didn't pass two adjacent paths.
1706 		 */
1707 		mlog_bug_on_msg(i > left->p_tree_depth,
1708 				"Inode %lu, left depth %u, right depth %u\n"
1709 				"left leaf blk %llu, right leaf blk %llu\n",
1710 				inode->i_ino, left->p_tree_depth,
1711 				right->p_tree_depth,
1712 				(unsigned long long)path_leaf_bh(left)->b_blocknr,
1713 				(unsigned long long)path_leaf_bh(right)->b_blocknr);
1714 	} while (left->p_node[i].bh->b_blocknr ==
1715 		 right->p_node[i].bh->b_blocknr);
1716 
1717 	return i - 1;
1718 }
1719 
1720 typedef void (path_insert_t)(void *, struct buffer_head *);
1721 
1722 /*
1723  * Traverse a btree path in search of cpos, starting at root_el.
1724  *
1725  * This code can be called with a cpos larger than the tree, in which
1726  * case it will return the rightmost path.
1727  */
1728 static int __ocfs2_find_path(struct inode *inode,
1729 			     struct ocfs2_extent_list *root_el, u32 cpos,
1730 			     path_insert_t *func, void *data)
1731 {
1732 	int i, ret = 0;
1733 	u32 range;
1734 	u64 blkno;
1735 	struct buffer_head *bh = NULL;
1736 	struct ocfs2_extent_block *eb;
1737 	struct ocfs2_extent_list *el;
1738 	struct ocfs2_extent_rec *rec;
1739 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
1740 
1741 	el = root_el;
1742 	while (el->l_tree_depth) {
1743 		if (le16_to_cpu(el->l_next_free_rec) == 0) {
1744 			ocfs2_error(inode->i_sb,
1745 				    "Inode %llu has empty extent list at "
1746 				    "depth %u\n",
1747 				    (unsigned long long)oi->ip_blkno,
1748 				    le16_to_cpu(el->l_tree_depth));
1749 			ret = -EROFS;
1750 			goto out;
1751 
1752 		}
1753 
1754 		for(i = 0; i < le16_to_cpu(el->l_next_free_rec) - 1; i++) {
1755 			rec = &el->l_recs[i];
1756 
1757 			/*
1758 			 * In the case that cpos is off the allocation
1759 			 * tree, this should just wind up returning the
1760 			 * rightmost record.
1761 			 */
1762 			range = le32_to_cpu(rec->e_cpos) +
1763 				ocfs2_rec_clusters(el, rec);
1764 			if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range)
1765 			    break;
1766 		}
1767 
1768 		blkno = le64_to_cpu(el->l_recs[i].e_blkno);
1769 		if (blkno == 0) {
1770 			ocfs2_error(inode->i_sb,
1771 				    "Inode %llu has bad blkno in extent list "
1772 				    "at depth %u (index %d)\n",
1773 				    (unsigned long long)oi->ip_blkno,
1774 				    le16_to_cpu(el->l_tree_depth), i);
1775 			ret = -EROFS;
1776 			goto out;
1777 		}
1778 
1779 		brelse(bh);
1780 		bh = NULL;
1781 		ret = ocfs2_read_extent_block(inode, blkno, &bh);
1782 		if (ret) {
1783 			mlog_errno(ret);
1784 			goto out;
1785 		}
1786 
1787 		eb = (struct ocfs2_extent_block *) bh->b_data;
1788 		el = &eb->h_list;
1789 
1790 		if (le16_to_cpu(el->l_next_free_rec) >
1791 		    le16_to_cpu(el->l_count)) {
1792 			ocfs2_error(inode->i_sb,
1793 				    "Inode %llu has bad count in extent list "
1794 				    "at block %llu (next free=%u, count=%u)\n",
1795 				    (unsigned long long)oi->ip_blkno,
1796 				    (unsigned long long)bh->b_blocknr,
1797 				    le16_to_cpu(el->l_next_free_rec),
1798 				    le16_to_cpu(el->l_count));
1799 			ret = -EROFS;
1800 			goto out;
1801 		}
1802 
1803 		if (func)
1804 			func(data, bh);
1805 	}
1806 
1807 out:
1808 	/*
1809 	 * Catch any trailing bh that the loop didn't handle.
1810 	 */
1811 	brelse(bh);
1812 
1813 	return ret;
1814 }
1815 
1816 /*
1817  * Given an initialized path (that is, it has a valid root extent
1818  * list), this function will traverse the btree in search of the path
1819  * which would contain cpos.
1820  *
1821  * The path traveled is recorded in the path structure.
1822  *
1823  * Note that this will not do any comparisons on leaf node extent
1824  * records, so it will work fine in the case that we just added a tree
1825  * branch.
1826  */
1827 struct find_path_data {
1828 	int index;
1829 	struct ocfs2_path *path;
1830 };
1831 static void find_path_ins(void *data, struct buffer_head *bh)
1832 {
1833 	struct find_path_data *fp = data;
1834 
1835 	get_bh(bh);
1836 	ocfs2_path_insert_eb(fp->path, fp->index, bh);
1837 	fp->index++;
1838 }
1839 static int ocfs2_find_path(struct inode *inode, struct ocfs2_path *path,
1840 			   u32 cpos)
1841 {
1842 	struct find_path_data data;
1843 
1844 	data.index = 1;
1845 	data.path = path;
1846 	return __ocfs2_find_path(inode, path_root_el(path), cpos,
1847 				 find_path_ins, &data);
1848 }
1849 
1850 static void find_leaf_ins(void *data, struct buffer_head *bh)
1851 {
1852 	struct ocfs2_extent_block *eb =(struct ocfs2_extent_block *)bh->b_data;
1853 	struct ocfs2_extent_list *el = &eb->h_list;
1854 	struct buffer_head **ret = data;
1855 
1856 	/* We want to retain only the leaf block. */
1857 	if (le16_to_cpu(el->l_tree_depth) == 0) {
1858 		get_bh(bh);
1859 		*ret = bh;
1860 	}
1861 }
1862 /*
1863  * Find the leaf block in the tree which would contain cpos. No
1864  * checking of the actual leaf is done.
1865  *
1866  * Some paths want to call this instead of allocating a path structure
1867  * and calling ocfs2_find_path().
1868  *
1869  * This function doesn't handle non btree extent lists.
1870  */
1871 int ocfs2_find_leaf(struct inode *inode, struct ocfs2_extent_list *root_el,
1872 		    u32 cpos, struct buffer_head **leaf_bh)
1873 {
1874 	int ret;
1875 	struct buffer_head *bh = NULL;
1876 
1877 	ret = __ocfs2_find_path(inode, root_el, cpos, find_leaf_ins, &bh);
1878 	if (ret) {
1879 		mlog_errno(ret);
1880 		goto out;
1881 	}
1882 
1883 	*leaf_bh = bh;
1884 out:
1885 	return ret;
1886 }
1887 
1888 /*
1889  * Adjust the adjacent records (left_rec, right_rec) involved in a rotation.
1890  *
1891  * Basically, we've moved stuff around at the bottom of the tree and
1892  * we need to fix up the extent records above the changes to reflect
1893  * the new changes.
1894  *
1895  * left_rec: the record on the left.
1896  * left_child_el: is the child list pointed to by left_rec
1897  * right_rec: the record to the right of left_rec
1898  * right_child_el: is the child list pointed to by right_rec
1899  *
1900  * By definition, this only works on interior nodes.
1901  */
1902 static void ocfs2_adjust_adjacent_records(struct ocfs2_extent_rec *left_rec,
1903 				  struct ocfs2_extent_list *left_child_el,
1904 				  struct ocfs2_extent_rec *right_rec,
1905 				  struct ocfs2_extent_list *right_child_el)
1906 {
1907 	u32 left_clusters, right_end;
1908 
1909 	/*
1910 	 * Interior nodes never have holes. Their cpos is the cpos of
1911 	 * the leftmost record in their child list. Their cluster
1912 	 * count covers the full theoretical range of their child list
1913 	 * - the range between their cpos and the cpos of the record
1914 	 * immediately to their right.
1915 	 */
1916 	left_clusters = le32_to_cpu(right_child_el->l_recs[0].e_cpos);
1917 	if (!ocfs2_rec_clusters(right_child_el, &right_child_el->l_recs[0])) {
1918 		BUG_ON(right_child_el->l_tree_depth);
1919 		BUG_ON(le16_to_cpu(right_child_el->l_next_free_rec) <= 1);
1920 		left_clusters = le32_to_cpu(right_child_el->l_recs[1].e_cpos);
1921 	}
1922 	left_clusters -= le32_to_cpu(left_rec->e_cpos);
1923 	left_rec->e_int_clusters = cpu_to_le32(left_clusters);
1924 
1925 	/*
1926 	 * Calculate the rightmost cluster count boundary before
1927 	 * moving cpos - we will need to adjust clusters after
1928 	 * updating e_cpos to keep the same highest cluster count.
1929 	 */
1930 	right_end = le32_to_cpu(right_rec->e_cpos);
1931 	right_end += le32_to_cpu(right_rec->e_int_clusters);
1932 
1933 	right_rec->e_cpos = left_rec->e_cpos;
1934 	le32_add_cpu(&right_rec->e_cpos, left_clusters);
1935 
1936 	right_end -= le32_to_cpu(right_rec->e_cpos);
1937 	right_rec->e_int_clusters = cpu_to_le32(right_end);
1938 }
1939 
1940 /*
1941  * Adjust the adjacent root node records involved in a
1942  * rotation. left_el_blkno is passed in as a key so that we can easily
1943  * find it's index in the root list.
1944  */
1945 static void ocfs2_adjust_root_records(struct ocfs2_extent_list *root_el,
1946 				      struct ocfs2_extent_list *left_el,
1947 				      struct ocfs2_extent_list *right_el,
1948 				      u64 left_el_blkno)
1949 {
1950 	int i;
1951 
1952 	BUG_ON(le16_to_cpu(root_el->l_tree_depth) <=
1953 	       le16_to_cpu(left_el->l_tree_depth));
1954 
1955 	for(i = 0; i < le16_to_cpu(root_el->l_next_free_rec) - 1; i++) {
1956 		if (le64_to_cpu(root_el->l_recs[i].e_blkno) == left_el_blkno)
1957 			break;
1958 	}
1959 
1960 	/*
1961 	 * The path walking code should have never returned a root and
1962 	 * two paths which are not adjacent.
1963 	 */
1964 	BUG_ON(i >= (le16_to_cpu(root_el->l_next_free_rec) - 1));
1965 
1966 	ocfs2_adjust_adjacent_records(&root_el->l_recs[i], left_el,
1967 				      &root_el->l_recs[i + 1], right_el);
1968 }
1969 
1970 /*
1971  * We've changed a leaf block (in right_path) and need to reflect that
1972  * change back up the subtree.
1973  *
1974  * This happens in multiple places:
1975  *   - When we've moved an extent record from the left path leaf to the right
1976  *     path leaf to make room for an empty extent in the left path leaf.
1977  *   - When our insert into the right path leaf is at the leftmost edge
1978  *     and requires an update of the path immediately to it's left. This
1979  *     can occur at the end of some types of rotation and appending inserts.
1980  *   - When we've adjusted the last extent record in the left path leaf and the
1981  *     1st extent record in the right path leaf during cross extent block merge.
1982  */
1983 static void ocfs2_complete_edge_insert(struct inode *inode, handle_t *handle,
1984 				       struct ocfs2_path *left_path,
1985 				       struct ocfs2_path *right_path,
1986 				       int subtree_index)
1987 {
1988 	int ret, i, idx;
1989 	struct ocfs2_extent_list *el, *left_el, *right_el;
1990 	struct ocfs2_extent_rec *left_rec, *right_rec;
1991 	struct buffer_head *root_bh = left_path->p_node[subtree_index].bh;
1992 
1993 	/*
1994 	 * Update the counts and position values within all the
1995 	 * interior nodes to reflect the leaf rotation we just did.
1996 	 *
1997 	 * The root node is handled below the loop.
1998 	 *
1999 	 * We begin the loop with right_el and left_el pointing to the
2000 	 * leaf lists and work our way up.
2001 	 *
2002 	 * NOTE: within this loop, left_el and right_el always refer
2003 	 * to the *child* lists.
2004 	 */
2005 	left_el = path_leaf_el(left_path);
2006 	right_el = path_leaf_el(right_path);
2007 	for(i = left_path->p_tree_depth - 1; i > subtree_index; i--) {
2008 		mlog(0, "Adjust records at index %u\n", i);
2009 
2010 		/*
2011 		 * One nice property of knowing that all of these
2012 		 * nodes are below the root is that we only deal with
2013 		 * the leftmost right node record and the rightmost
2014 		 * left node record.
2015 		 */
2016 		el = left_path->p_node[i].el;
2017 		idx = le16_to_cpu(left_el->l_next_free_rec) - 1;
2018 		left_rec = &el->l_recs[idx];
2019 
2020 		el = right_path->p_node[i].el;
2021 		right_rec = &el->l_recs[0];
2022 
2023 		ocfs2_adjust_adjacent_records(left_rec, left_el, right_rec,
2024 					      right_el);
2025 
2026 		ret = ocfs2_journal_dirty(handle, left_path->p_node[i].bh);
2027 		if (ret)
2028 			mlog_errno(ret);
2029 
2030 		ret = ocfs2_journal_dirty(handle, right_path->p_node[i].bh);
2031 		if (ret)
2032 			mlog_errno(ret);
2033 
2034 		/*
2035 		 * Setup our list pointers now so that the current
2036 		 * parents become children in the next iteration.
2037 		 */
2038 		left_el = left_path->p_node[i].el;
2039 		right_el = right_path->p_node[i].el;
2040 	}
2041 
2042 	/*
2043 	 * At the root node, adjust the two adjacent records which
2044 	 * begin our path to the leaves.
2045 	 */
2046 
2047 	el = left_path->p_node[subtree_index].el;
2048 	left_el = left_path->p_node[subtree_index + 1].el;
2049 	right_el = right_path->p_node[subtree_index + 1].el;
2050 
2051 	ocfs2_adjust_root_records(el, left_el, right_el,
2052 				  left_path->p_node[subtree_index + 1].bh->b_blocknr);
2053 
2054 	root_bh = left_path->p_node[subtree_index].bh;
2055 
2056 	ret = ocfs2_journal_dirty(handle, root_bh);
2057 	if (ret)
2058 		mlog_errno(ret);
2059 }
2060 
2061 static int ocfs2_rotate_subtree_right(struct inode *inode,
2062 				      handle_t *handle,
2063 				      struct ocfs2_path *left_path,
2064 				      struct ocfs2_path *right_path,
2065 				      int subtree_index)
2066 {
2067 	int ret, i;
2068 	struct buffer_head *right_leaf_bh;
2069 	struct buffer_head *left_leaf_bh = NULL;
2070 	struct buffer_head *root_bh;
2071 	struct ocfs2_extent_list *right_el, *left_el;
2072 	struct ocfs2_extent_rec move_rec;
2073 
2074 	left_leaf_bh = path_leaf_bh(left_path);
2075 	left_el = path_leaf_el(left_path);
2076 
2077 	if (left_el->l_next_free_rec != left_el->l_count) {
2078 		ocfs2_error(inode->i_sb,
2079 			    "Inode %llu has non-full interior leaf node %llu"
2080 			    "(next free = %u)",
2081 			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
2082 			    (unsigned long long)left_leaf_bh->b_blocknr,
2083 			    le16_to_cpu(left_el->l_next_free_rec));
2084 		return -EROFS;
2085 	}
2086 
2087 	/*
2088 	 * This extent block may already have an empty record, so we
2089 	 * return early if so.
2090 	 */
2091 	if (ocfs2_is_empty_extent(&left_el->l_recs[0]))
2092 		return 0;
2093 
2094 	root_bh = left_path->p_node[subtree_index].bh;
2095 	BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
2096 
2097 	ret = ocfs2_path_bh_journal_access(handle, inode, right_path,
2098 					   subtree_index);
2099 	if (ret) {
2100 		mlog_errno(ret);
2101 		goto out;
2102 	}
2103 
2104 	for(i = subtree_index + 1; i < path_num_items(right_path); i++) {
2105 		ret = ocfs2_path_bh_journal_access(handle, inode,
2106 						   right_path, i);
2107 		if (ret) {
2108 			mlog_errno(ret);
2109 			goto out;
2110 		}
2111 
2112 		ret = ocfs2_path_bh_journal_access(handle, inode,
2113 						   left_path, i);
2114 		if (ret) {
2115 			mlog_errno(ret);
2116 			goto out;
2117 		}
2118 	}
2119 
2120 	right_leaf_bh = path_leaf_bh(right_path);
2121 	right_el = path_leaf_el(right_path);
2122 
2123 	/* This is a code error, not a disk corruption. */
2124 	mlog_bug_on_msg(!right_el->l_next_free_rec, "Inode %llu: Rotate fails "
2125 			"because rightmost leaf block %llu is empty\n",
2126 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
2127 			(unsigned long long)right_leaf_bh->b_blocknr);
2128 
2129 	ocfs2_create_empty_extent(right_el);
2130 
2131 	ret = ocfs2_journal_dirty(handle, right_leaf_bh);
2132 	if (ret) {
2133 		mlog_errno(ret);
2134 		goto out;
2135 	}
2136 
2137 	/* Do the copy now. */
2138 	i = le16_to_cpu(left_el->l_next_free_rec) - 1;
2139 	move_rec = left_el->l_recs[i];
2140 	right_el->l_recs[0] = move_rec;
2141 
2142 	/*
2143 	 * Clear out the record we just copied and shift everything
2144 	 * over, leaving an empty extent in the left leaf.
2145 	 *
2146 	 * We temporarily subtract from next_free_rec so that the
2147 	 * shift will lose the tail record (which is now defunct).
2148 	 */
2149 	le16_add_cpu(&left_el->l_next_free_rec, -1);
2150 	ocfs2_shift_records_right(left_el);
2151 	memset(&left_el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
2152 	le16_add_cpu(&left_el->l_next_free_rec, 1);
2153 
2154 	ret = ocfs2_journal_dirty(handle, left_leaf_bh);
2155 	if (ret) {
2156 		mlog_errno(ret);
2157 		goto out;
2158 	}
2159 
2160 	ocfs2_complete_edge_insert(inode, handle, left_path, right_path,
2161 				subtree_index);
2162 
2163 out:
2164 	return ret;
2165 }
2166 
2167 /*
2168  * Given a full path, determine what cpos value would return us a path
2169  * containing the leaf immediately to the left of the current one.
2170  *
2171  * Will return zero if the path passed in is already the leftmost path.
2172  */
2173 static int ocfs2_find_cpos_for_left_leaf(struct super_block *sb,
2174 					 struct ocfs2_path *path, u32 *cpos)
2175 {
2176 	int i, j, ret = 0;
2177 	u64 blkno;
2178 	struct ocfs2_extent_list *el;
2179 
2180 	BUG_ON(path->p_tree_depth == 0);
2181 
2182 	*cpos = 0;
2183 
2184 	blkno = path_leaf_bh(path)->b_blocknr;
2185 
2186 	/* Start at the tree node just above the leaf and work our way up. */
2187 	i = path->p_tree_depth - 1;
2188 	while (i >= 0) {
2189 		el = path->p_node[i].el;
2190 
2191 		/*
2192 		 * Find the extent record just before the one in our
2193 		 * path.
2194 		 */
2195 		for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) {
2196 			if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) {
2197 				if (j == 0) {
2198 					if (i == 0) {
2199 						/*
2200 						 * We've determined that the
2201 						 * path specified is already
2202 						 * the leftmost one - return a
2203 						 * cpos of zero.
2204 						 */
2205 						goto out;
2206 					}
2207 					/*
2208 					 * The leftmost record points to our
2209 					 * leaf - we need to travel up the
2210 					 * tree one level.
2211 					 */
2212 					goto next_node;
2213 				}
2214 
2215 				*cpos = le32_to_cpu(el->l_recs[j - 1].e_cpos);
2216 				*cpos = *cpos + ocfs2_rec_clusters(el,
2217 							   &el->l_recs[j - 1]);
2218 				*cpos = *cpos - 1;
2219 				goto out;
2220 			}
2221 		}
2222 
2223 		/*
2224 		 * If we got here, we never found a valid node where
2225 		 * the tree indicated one should be.
2226 		 */
2227 		ocfs2_error(sb,
2228 			    "Invalid extent tree at extent block %llu\n",
2229 			    (unsigned long long)blkno);
2230 		ret = -EROFS;
2231 		goto out;
2232 
2233 next_node:
2234 		blkno = path->p_node[i].bh->b_blocknr;
2235 		i--;
2236 	}
2237 
2238 out:
2239 	return ret;
2240 }
2241 
2242 /*
2243  * Extend the transaction by enough credits to complete the rotation,
2244  * and still leave at least the original number of credits allocated
2245  * to this transaction.
2246  */
2247 static int ocfs2_extend_rotate_transaction(handle_t *handle, int subtree_depth,
2248 					   int op_credits,
2249 					   struct ocfs2_path *path)
2250 {
2251 	int credits = (path->p_tree_depth - subtree_depth) * 2 + 1 + op_credits;
2252 
2253 	if (handle->h_buffer_credits < credits)
2254 		return ocfs2_extend_trans(handle, credits);
2255 
2256 	return 0;
2257 }
2258 
2259 /*
2260  * Trap the case where we're inserting into the theoretical range past
2261  * the _actual_ left leaf range. Otherwise, we'll rotate a record
2262  * whose cpos is less than ours into the right leaf.
2263  *
2264  * It's only necessary to look at the rightmost record of the left
2265  * leaf because the logic that calls us should ensure that the
2266  * theoretical ranges in the path components above the leaves are
2267  * correct.
2268  */
2269 static int ocfs2_rotate_requires_path_adjustment(struct ocfs2_path *left_path,
2270 						 u32 insert_cpos)
2271 {
2272 	struct ocfs2_extent_list *left_el;
2273 	struct ocfs2_extent_rec *rec;
2274 	int next_free;
2275 
2276 	left_el = path_leaf_el(left_path);
2277 	next_free = le16_to_cpu(left_el->l_next_free_rec);
2278 	rec = &left_el->l_recs[next_free - 1];
2279 
2280 	if (insert_cpos > le32_to_cpu(rec->e_cpos))
2281 		return 1;
2282 	return 0;
2283 }
2284 
2285 static int ocfs2_leftmost_rec_contains(struct ocfs2_extent_list *el, u32 cpos)
2286 {
2287 	int next_free = le16_to_cpu(el->l_next_free_rec);
2288 	unsigned int range;
2289 	struct ocfs2_extent_rec *rec;
2290 
2291 	if (next_free == 0)
2292 		return 0;
2293 
2294 	rec = &el->l_recs[0];
2295 	if (ocfs2_is_empty_extent(rec)) {
2296 		/* Empty list. */
2297 		if (next_free == 1)
2298 			return 0;
2299 		rec = &el->l_recs[1];
2300 	}
2301 
2302 	range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
2303 	if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range)
2304 		return 1;
2305 	return 0;
2306 }
2307 
2308 /*
2309  * Rotate all the records in a btree right one record, starting at insert_cpos.
2310  *
2311  * The path to the rightmost leaf should be passed in.
2312  *
2313  * The array is assumed to be large enough to hold an entire path (tree depth).
2314  *
2315  * Upon succesful return from this function:
2316  *
2317  * - The 'right_path' array will contain a path to the leaf block
2318  *   whose range contains e_cpos.
2319  * - That leaf block will have a single empty extent in list index 0.
2320  * - In the case that the rotation requires a post-insert update,
2321  *   *ret_left_path will contain a valid path which can be passed to
2322  *   ocfs2_insert_path().
2323  */
2324 static int ocfs2_rotate_tree_right(struct inode *inode,
2325 				   handle_t *handle,
2326 				   enum ocfs2_split_type split,
2327 				   u32 insert_cpos,
2328 				   struct ocfs2_path *right_path,
2329 				   struct ocfs2_path **ret_left_path)
2330 {
2331 	int ret, start, orig_credits = handle->h_buffer_credits;
2332 	u32 cpos;
2333 	struct ocfs2_path *left_path = NULL;
2334 
2335 	*ret_left_path = NULL;
2336 
2337 	left_path = ocfs2_new_path_from_path(right_path);
2338 	if (!left_path) {
2339 		ret = -ENOMEM;
2340 		mlog_errno(ret);
2341 		goto out;
2342 	}
2343 
2344 	ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path, &cpos);
2345 	if (ret) {
2346 		mlog_errno(ret);
2347 		goto out;
2348 	}
2349 
2350 	mlog(0, "Insert: %u, first left path cpos: %u\n", insert_cpos, cpos);
2351 
2352 	/*
2353 	 * What we want to do here is:
2354 	 *
2355 	 * 1) Start with the rightmost path.
2356 	 *
2357 	 * 2) Determine a path to the leaf block directly to the left
2358 	 *    of that leaf.
2359 	 *
2360 	 * 3) Determine the 'subtree root' - the lowest level tree node
2361 	 *    which contains a path to both leaves.
2362 	 *
2363 	 * 4) Rotate the subtree.
2364 	 *
2365 	 * 5) Find the next subtree by considering the left path to be
2366 	 *    the new right path.
2367 	 *
2368 	 * The check at the top of this while loop also accepts
2369 	 * insert_cpos == cpos because cpos is only a _theoretical_
2370 	 * value to get us the left path - insert_cpos might very well
2371 	 * be filling that hole.
2372 	 *
2373 	 * Stop at a cpos of '0' because we either started at the
2374 	 * leftmost branch (i.e., a tree with one branch and a
2375 	 * rotation inside of it), or we've gone as far as we can in
2376 	 * rotating subtrees.
2377 	 */
2378 	while (cpos && insert_cpos <= cpos) {
2379 		mlog(0, "Rotating a tree: ins. cpos: %u, left path cpos: %u\n",
2380 		     insert_cpos, cpos);
2381 
2382 		ret = ocfs2_find_path(inode, left_path, cpos);
2383 		if (ret) {
2384 			mlog_errno(ret);
2385 			goto out;
2386 		}
2387 
2388 		mlog_bug_on_msg(path_leaf_bh(left_path) ==
2389 				path_leaf_bh(right_path),
2390 				"Inode %lu: error during insert of %u "
2391 				"(left path cpos %u) results in two identical "
2392 				"paths ending at %llu\n",
2393 				inode->i_ino, insert_cpos, cpos,
2394 				(unsigned long long)
2395 				path_leaf_bh(left_path)->b_blocknr);
2396 
2397 		if (split == SPLIT_NONE &&
2398 		    ocfs2_rotate_requires_path_adjustment(left_path,
2399 							  insert_cpos)) {
2400 
2401 			/*
2402 			 * We've rotated the tree as much as we
2403 			 * should. The rest is up to
2404 			 * ocfs2_insert_path() to complete, after the
2405 			 * record insertion. We indicate this
2406 			 * situation by returning the left path.
2407 			 *
2408 			 * The reason we don't adjust the records here
2409 			 * before the record insert is that an error
2410 			 * later might break the rule where a parent
2411 			 * record e_cpos will reflect the actual
2412 			 * e_cpos of the 1st nonempty record of the
2413 			 * child list.
2414 			 */
2415 			*ret_left_path = left_path;
2416 			goto out_ret_path;
2417 		}
2418 
2419 		start = ocfs2_find_subtree_root(inode, left_path, right_path);
2420 
2421 		mlog(0, "Subtree root at index %d (blk %llu, depth %d)\n",
2422 		     start,
2423 		     (unsigned long long) right_path->p_node[start].bh->b_blocknr,
2424 		     right_path->p_tree_depth);
2425 
2426 		ret = ocfs2_extend_rotate_transaction(handle, start,
2427 						      orig_credits, right_path);
2428 		if (ret) {
2429 			mlog_errno(ret);
2430 			goto out;
2431 		}
2432 
2433 		ret = ocfs2_rotate_subtree_right(inode, handle, left_path,
2434 						 right_path, start);
2435 		if (ret) {
2436 			mlog_errno(ret);
2437 			goto out;
2438 		}
2439 
2440 		if (split != SPLIT_NONE &&
2441 		    ocfs2_leftmost_rec_contains(path_leaf_el(right_path),
2442 						insert_cpos)) {
2443 			/*
2444 			 * A rotate moves the rightmost left leaf
2445 			 * record over to the leftmost right leaf
2446 			 * slot. If we're doing an extent split
2447 			 * instead of a real insert, then we have to
2448 			 * check that the extent to be split wasn't
2449 			 * just moved over. If it was, then we can
2450 			 * exit here, passing left_path back -
2451 			 * ocfs2_split_extent() is smart enough to
2452 			 * search both leaves.
2453 			 */
2454 			*ret_left_path = left_path;
2455 			goto out_ret_path;
2456 		}
2457 
2458 		/*
2459 		 * There is no need to re-read the next right path
2460 		 * as we know that it'll be our current left
2461 		 * path. Optimize by copying values instead.
2462 		 */
2463 		ocfs2_mv_path(right_path, left_path);
2464 
2465 		ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path,
2466 						    &cpos);
2467 		if (ret) {
2468 			mlog_errno(ret);
2469 			goto out;
2470 		}
2471 	}
2472 
2473 out:
2474 	ocfs2_free_path(left_path);
2475 
2476 out_ret_path:
2477 	return ret;
2478 }
2479 
2480 static int ocfs2_update_edge_lengths(struct inode *inode, handle_t *handle,
2481 				     int subtree_index, struct ocfs2_path *path)
2482 {
2483 	int i, idx, ret;
2484 	struct ocfs2_extent_rec *rec;
2485 	struct ocfs2_extent_list *el;
2486 	struct ocfs2_extent_block *eb;
2487 	u32 range;
2488 
2489 	/*
2490 	 * In normal tree rotation process, we will never touch the
2491 	 * tree branch above subtree_index and ocfs2_extend_rotate_transaction
2492 	 * doesn't reserve the credits for them either.
2493 	 *
2494 	 * But we do have a special case here which will update the rightmost
2495 	 * records for all the bh in the path.
2496 	 * So we have to allocate extra credits and access them.
2497 	 */
2498 	ret = ocfs2_extend_trans(handle,
2499 				 handle->h_buffer_credits + subtree_index);
2500 	if (ret) {
2501 		mlog_errno(ret);
2502 		goto out;
2503 	}
2504 
2505 	ret = ocfs2_journal_access_path(inode, handle, path);
2506 	if (ret) {
2507 		mlog_errno(ret);
2508 		goto out;
2509 	}
2510 
2511 	/* Path should always be rightmost. */
2512 	eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
2513 	BUG_ON(eb->h_next_leaf_blk != 0ULL);
2514 
2515 	el = &eb->h_list;
2516 	BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0);
2517 	idx = le16_to_cpu(el->l_next_free_rec) - 1;
2518 	rec = &el->l_recs[idx];
2519 	range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
2520 
2521 	for (i = 0; i < path->p_tree_depth; i++) {
2522 		el = path->p_node[i].el;
2523 		idx = le16_to_cpu(el->l_next_free_rec) - 1;
2524 		rec = &el->l_recs[idx];
2525 
2526 		rec->e_int_clusters = cpu_to_le32(range);
2527 		le32_add_cpu(&rec->e_int_clusters, -le32_to_cpu(rec->e_cpos));
2528 
2529 		ocfs2_journal_dirty(handle, path->p_node[i].bh);
2530 	}
2531 out:
2532 	return ret;
2533 }
2534 
2535 static void ocfs2_unlink_path(struct inode *inode, handle_t *handle,
2536 			      struct ocfs2_cached_dealloc_ctxt *dealloc,
2537 			      struct ocfs2_path *path, int unlink_start)
2538 {
2539 	int ret, i;
2540 	struct ocfs2_extent_block *eb;
2541 	struct ocfs2_extent_list *el;
2542 	struct buffer_head *bh;
2543 
2544 	for(i = unlink_start; i < path_num_items(path); i++) {
2545 		bh = path->p_node[i].bh;
2546 
2547 		eb = (struct ocfs2_extent_block *)bh->b_data;
2548 		/*
2549 		 * Not all nodes might have had their final count
2550 		 * decremented by the caller - handle this here.
2551 		 */
2552 		el = &eb->h_list;
2553 		if (le16_to_cpu(el->l_next_free_rec) > 1) {
2554 			mlog(ML_ERROR,
2555 			     "Inode %llu, attempted to remove extent block "
2556 			     "%llu with %u records\n",
2557 			     (unsigned long long)OCFS2_I(inode)->ip_blkno,
2558 			     (unsigned long long)le64_to_cpu(eb->h_blkno),
2559 			     le16_to_cpu(el->l_next_free_rec));
2560 
2561 			ocfs2_journal_dirty(handle, bh);
2562 			ocfs2_remove_from_cache(inode, bh);
2563 			continue;
2564 		}
2565 
2566 		el->l_next_free_rec = 0;
2567 		memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
2568 
2569 		ocfs2_journal_dirty(handle, bh);
2570 
2571 		ret = ocfs2_cache_extent_block_free(dealloc, eb);
2572 		if (ret)
2573 			mlog_errno(ret);
2574 
2575 		ocfs2_remove_from_cache(inode, bh);
2576 	}
2577 }
2578 
2579 static void ocfs2_unlink_subtree(struct inode *inode, handle_t *handle,
2580 				 struct ocfs2_path *left_path,
2581 				 struct ocfs2_path *right_path,
2582 				 int subtree_index,
2583 				 struct ocfs2_cached_dealloc_ctxt *dealloc)
2584 {
2585 	int i;
2586 	struct buffer_head *root_bh = left_path->p_node[subtree_index].bh;
2587 	struct ocfs2_extent_list *root_el = left_path->p_node[subtree_index].el;
2588 	struct ocfs2_extent_list *el;
2589 	struct ocfs2_extent_block *eb;
2590 
2591 	el = path_leaf_el(left_path);
2592 
2593 	eb = (struct ocfs2_extent_block *)right_path->p_node[subtree_index + 1].bh->b_data;
2594 
2595 	for(i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++)
2596 		if (root_el->l_recs[i].e_blkno == eb->h_blkno)
2597 			break;
2598 
2599 	BUG_ON(i >= le16_to_cpu(root_el->l_next_free_rec));
2600 
2601 	memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec));
2602 	le16_add_cpu(&root_el->l_next_free_rec, -1);
2603 
2604 	eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
2605 	eb->h_next_leaf_blk = 0;
2606 
2607 	ocfs2_journal_dirty(handle, root_bh);
2608 	ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
2609 
2610 	ocfs2_unlink_path(inode, handle, dealloc, right_path,
2611 			  subtree_index + 1);
2612 }
2613 
2614 static int ocfs2_rotate_subtree_left(struct inode *inode, handle_t *handle,
2615 				     struct ocfs2_path *left_path,
2616 				     struct ocfs2_path *right_path,
2617 				     int subtree_index,
2618 				     struct ocfs2_cached_dealloc_ctxt *dealloc,
2619 				     int *deleted,
2620 				     struct ocfs2_extent_tree *et)
2621 {
2622 	int ret, i, del_right_subtree = 0, right_has_empty = 0;
2623 	struct buffer_head *root_bh, *et_root_bh = path_root_bh(right_path);
2624 	struct ocfs2_extent_list *right_leaf_el, *left_leaf_el;
2625 	struct ocfs2_extent_block *eb;
2626 
2627 	*deleted = 0;
2628 
2629 	right_leaf_el = path_leaf_el(right_path);
2630 	left_leaf_el = path_leaf_el(left_path);
2631 	root_bh = left_path->p_node[subtree_index].bh;
2632 	BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
2633 
2634 	if (!ocfs2_is_empty_extent(&left_leaf_el->l_recs[0]))
2635 		return 0;
2636 
2637 	eb = (struct ocfs2_extent_block *)path_leaf_bh(right_path)->b_data;
2638 	if (ocfs2_is_empty_extent(&right_leaf_el->l_recs[0])) {
2639 		/*
2640 		 * It's legal for us to proceed if the right leaf is
2641 		 * the rightmost one and it has an empty extent. There
2642 		 * are two cases to handle - whether the leaf will be
2643 		 * empty after removal or not. If the leaf isn't empty
2644 		 * then just remove the empty extent up front. The
2645 		 * next block will handle empty leaves by flagging
2646 		 * them for unlink.
2647 		 *
2648 		 * Non rightmost leaves will throw -EAGAIN and the
2649 		 * caller can manually move the subtree and retry.
2650 		 */
2651 
2652 		if (eb->h_next_leaf_blk != 0ULL)
2653 			return -EAGAIN;
2654 
2655 		if (le16_to_cpu(right_leaf_el->l_next_free_rec) > 1) {
2656 			ret = ocfs2_journal_access_eb(handle, inode,
2657 						      path_leaf_bh(right_path),
2658 						      OCFS2_JOURNAL_ACCESS_WRITE);
2659 			if (ret) {
2660 				mlog_errno(ret);
2661 				goto out;
2662 			}
2663 
2664 			ocfs2_remove_empty_extent(right_leaf_el);
2665 		} else
2666 			right_has_empty = 1;
2667 	}
2668 
2669 	if (eb->h_next_leaf_blk == 0ULL &&
2670 	    le16_to_cpu(right_leaf_el->l_next_free_rec) == 1) {
2671 		/*
2672 		 * We have to update i_last_eb_blk during the meta
2673 		 * data delete.
2674 		 */
2675 		ret = ocfs2_et_root_journal_access(handle, inode, et,
2676 						   OCFS2_JOURNAL_ACCESS_WRITE);
2677 		if (ret) {
2678 			mlog_errno(ret);
2679 			goto out;
2680 		}
2681 
2682 		del_right_subtree = 1;
2683 	}
2684 
2685 	/*
2686 	 * Getting here with an empty extent in the right path implies
2687 	 * that it's the rightmost path and will be deleted.
2688 	 */
2689 	BUG_ON(right_has_empty && !del_right_subtree);
2690 
2691 	ret = ocfs2_path_bh_journal_access(handle, inode, right_path,
2692 					   subtree_index);
2693 	if (ret) {
2694 		mlog_errno(ret);
2695 		goto out;
2696 	}
2697 
2698 	for(i = subtree_index + 1; i < path_num_items(right_path); i++) {
2699 		ret = ocfs2_path_bh_journal_access(handle, inode,
2700 						   right_path, i);
2701 		if (ret) {
2702 			mlog_errno(ret);
2703 			goto out;
2704 		}
2705 
2706 		ret = ocfs2_path_bh_journal_access(handle, inode,
2707 						   left_path, i);
2708 		if (ret) {
2709 			mlog_errno(ret);
2710 			goto out;
2711 		}
2712 	}
2713 
2714 	if (!right_has_empty) {
2715 		/*
2716 		 * Only do this if we're moving a real
2717 		 * record. Otherwise, the action is delayed until
2718 		 * after removal of the right path in which case we
2719 		 * can do a simple shift to remove the empty extent.
2720 		 */
2721 		ocfs2_rotate_leaf(left_leaf_el, &right_leaf_el->l_recs[0]);
2722 		memset(&right_leaf_el->l_recs[0], 0,
2723 		       sizeof(struct ocfs2_extent_rec));
2724 	}
2725 	if (eb->h_next_leaf_blk == 0ULL) {
2726 		/*
2727 		 * Move recs over to get rid of empty extent, decrease
2728 		 * next_free. This is allowed to remove the last
2729 		 * extent in our leaf (setting l_next_free_rec to
2730 		 * zero) - the delete code below won't care.
2731 		 */
2732 		ocfs2_remove_empty_extent(right_leaf_el);
2733 	}
2734 
2735 	ret = ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
2736 	if (ret)
2737 		mlog_errno(ret);
2738 	ret = ocfs2_journal_dirty(handle, path_leaf_bh(right_path));
2739 	if (ret)
2740 		mlog_errno(ret);
2741 
2742 	if (del_right_subtree) {
2743 		ocfs2_unlink_subtree(inode, handle, left_path, right_path,
2744 				     subtree_index, dealloc);
2745 		ret = ocfs2_update_edge_lengths(inode, handle, subtree_index,
2746 						left_path);
2747 		if (ret) {
2748 			mlog_errno(ret);
2749 			goto out;
2750 		}
2751 
2752 		eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
2753 		ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
2754 
2755 		/*
2756 		 * Removal of the extent in the left leaf was skipped
2757 		 * above so we could delete the right path
2758 		 * 1st.
2759 		 */
2760 		if (right_has_empty)
2761 			ocfs2_remove_empty_extent(left_leaf_el);
2762 
2763 		ret = ocfs2_journal_dirty(handle, et_root_bh);
2764 		if (ret)
2765 			mlog_errno(ret);
2766 
2767 		*deleted = 1;
2768 	} else
2769 		ocfs2_complete_edge_insert(inode, handle, left_path, right_path,
2770 					   subtree_index);
2771 
2772 out:
2773 	return ret;
2774 }
2775 
2776 /*
2777  * Given a full path, determine what cpos value would return us a path
2778  * containing the leaf immediately to the right of the current one.
2779  *
2780  * Will return zero if the path passed in is already the rightmost path.
2781  *
2782  * This looks similar, but is subtly different to
2783  * ocfs2_find_cpos_for_left_leaf().
2784  */
2785 static int ocfs2_find_cpos_for_right_leaf(struct super_block *sb,
2786 					  struct ocfs2_path *path, u32 *cpos)
2787 {
2788 	int i, j, ret = 0;
2789 	u64 blkno;
2790 	struct ocfs2_extent_list *el;
2791 
2792 	*cpos = 0;
2793 
2794 	if (path->p_tree_depth == 0)
2795 		return 0;
2796 
2797 	blkno = path_leaf_bh(path)->b_blocknr;
2798 
2799 	/* Start at the tree node just above the leaf and work our way up. */
2800 	i = path->p_tree_depth - 1;
2801 	while (i >= 0) {
2802 		int next_free;
2803 
2804 		el = path->p_node[i].el;
2805 
2806 		/*
2807 		 * Find the extent record just after the one in our
2808 		 * path.
2809 		 */
2810 		next_free = le16_to_cpu(el->l_next_free_rec);
2811 		for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) {
2812 			if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) {
2813 				if (j == (next_free - 1)) {
2814 					if (i == 0) {
2815 						/*
2816 						 * We've determined that the
2817 						 * path specified is already
2818 						 * the rightmost one - return a
2819 						 * cpos of zero.
2820 						 */
2821 						goto out;
2822 					}
2823 					/*
2824 					 * The rightmost record points to our
2825 					 * leaf - we need to travel up the
2826 					 * tree one level.
2827 					 */
2828 					goto next_node;
2829 				}
2830 
2831 				*cpos = le32_to_cpu(el->l_recs[j + 1].e_cpos);
2832 				goto out;
2833 			}
2834 		}
2835 
2836 		/*
2837 		 * If we got here, we never found a valid node where
2838 		 * the tree indicated one should be.
2839 		 */
2840 		ocfs2_error(sb,
2841 			    "Invalid extent tree at extent block %llu\n",
2842 			    (unsigned long long)blkno);
2843 		ret = -EROFS;
2844 		goto out;
2845 
2846 next_node:
2847 		blkno = path->p_node[i].bh->b_blocknr;
2848 		i--;
2849 	}
2850 
2851 out:
2852 	return ret;
2853 }
2854 
2855 static int ocfs2_rotate_rightmost_leaf_left(struct inode *inode,
2856 					    handle_t *handle,
2857 					    struct ocfs2_path *path)
2858 {
2859 	int ret;
2860 	struct buffer_head *bh = path_leaf_bh(path);
2861 	struct ocfs2_extent_list *el = path_leaf_el(path);
2862 
2863 	if (!ocfs2_is_empty_extent(&el->l_recs[0]))
2864 		return 0;
2865 
2866 	ret = ocfs2_path_bh_journal_access(handle, inode, path,
2867 					   path_num_items(path) - 1);
2868 	if (ret) {
2869 		mlog_errno(ret);
2870 		goto out;
2871 	}
2872 
2873 	ocfs2_remove_empty_extent(el);
2874 
2875 	ret = ocfs2_journal_dirty(handle, bh);
2876 	if (ret)
2877 		mlog_errno(ret);
2878 
2879 out:
2880 	return ret;
2881 }
2882 
2883 static int __ocfs2_rotate_tree_left(struct inode *inode,
2884 				    handle_t *handle, int orig_credits,
2885 				    struct ocfs2_path *path,
2886 				    struct ocfs2_cached_dealloc_ctxt *dealloc,
2887 				    struct ocfs2_path **empty_extent_path,
2888 				    struct ocfs2_extent_tree *et)
2889 {
2890 	int ret, subtree_root, deleted;
2891 	u32 right_cpos;
2892 	struct ocfs2_path *left_path = NULL;
2893 	struct ocfs2_path *right_path = NULL;
2894 
2895 	BUG_ON(!ocfs2_is_empty_extent(&(path_leaf_el(path)->l_recs[0])));
2896 
2897 	*empty_extent_path = NULL;
2898 
2899 	ret = ocfs2_find_cpos_for_right_leaf(inode->i_sb, path,
2900 					     &right_cpos);
2901 	if (ret) {
2902 		mlog_errno(ret);
2903 		goto out;
2904 	}
2905 
2906 	left_path = ocfs2_new_path_from_path(path);
2907 	if (!left_path) {
2908 		ret = -ENOMEM;
2909 		mlog_errno(ret);
2910 		goto out;
2911 	}
2912 
2913 	ocfs2_cp_path(left_path, path);
2914 
2915 	right_path = ocfs2_new_path_from_path(path);
2916 	if (!right_path) {
2917 		ret = -ENOMEM;
2918 		mlog_errno(ret);
2919 		goto out;
2920 	}
2921 
2922 	while (right_cpos) {
2923 		ret = ocfs2_find_path(inode, right_path, right_cpos);
2924 		if (ret) {
2925 			mlog_errno(ret);
2926 			goto out;
2927 		}
2928 
2929 		subtree_root = ocfs2_find_subtree_root(inode, left_path,
2930 						       right_path);
2931 
2932 		mlog(0, "Subtree root at index %d (blk %llu, depth %d)\n",
2933 		     subtree_root,
2934 		     (unsigned long long)
2935 		     right_path->p_node[subtree_root].bh->b_blocknr,
2936 		     right_path->p_tree_depth);
2937 
2938 		ret = ocfs2_extend_rotate_transaction(handle, subtree_root,
2939 						      orig_credits, left_path);
2940 		if (ret) {
2941 			mlog_errno(ret);
2942 			goto out;
2943 		}
2944 
2945 		/*
2946 		 * Caller might still want to make changes to the
2947 		 * tree root, so re-add it to the journal here.
2948 		 */
2949 		ret = ocfs2_path_bh_journal_access(handle, inode,
2950 						   left_path, 0);
2951 		if (ret) {
2952 			mlog_errno(ret);
2953 			goto out;
2954 		}
2955 
2956 		ret = ocfs2_rotate_subtree_left(inode, handle, left_path,
2957 						right_path, subtree_root,
2958 						dealloc, &deleted, et);
2959 		if (ret == -EAGAIN) {
2960 			/*
2961 			 * The rotation has to temporarily stop due to
2962 			 * the right subtree having an empty
2963 			 * extent. Pass it back to the caller for a
2964 			 * fixup.
2965 			 */
2966 			*empty_extent_path = right_path;
2967 			right_path = NULL;
2968 			goto out;
2969 		}
2970 		if (ret) {
2971 			mlog_errno(ret);
2972 			goto out;
2973 		}
2974 
2975 		/*
2976 		 * The subtree rotate might have removed records on
2977 		 * the rightmost edge. If so, then rotation is
2978 		 * complete.
2979 		 */
2980 		if (deleted)
2981 			break;
2982 
2983 		ocfs2_mv_path(left_path, right_path);
2984 
2985 		ret = ocfs2_find_cpos_for_right_leaf(inode->i_sb, left_path,
2986 						     &right_cpos);
2987 		if (ret) {
2988 			mlog_errno(ret);
2989 			goto out;
2990 		}
2991 	}
2992 
2993 out:
2994 	ocfs2_free_path(right_path);
2995 	ocfs2_free_path(left_path);
2996 
2997 	return ret;
2998 }
2999 
3000 static int ocfs2_remove_rightmost_path(struct inode *inode, handle_t *handle,
3001 				struct ocfs2_path *path,
3002 				struct ocfs2_cached_dealloc_ctxt *dealloc,
3003 				struct ocfs2_extent_tree *et)
3004 {
3005 	int ret, subtree_index;
3006 	u32 cpos;
3007 	struct ocfs2_path *left_path = NULL;
3008 	struct ocfs2_extent_block *eb;
3009 	struct ocfs2_extent_list *el;
3010 
3011 
3012 	ret = ocfs2_et_sanity_check(inode, et);
3013 	if (ret)
3014 		goto out;
3015 	/*
3016 	 * There's two ways we handle this depending on
3017 	 * whether path is the only existing one.
3018 	 */
3019 	ret = ocfs2_extend_rotate_transaction(handle, 0,
3020 					      handle->h_buffer_credits,
3021 					      path);
3022 	if (ret) {
3023 		mlog_errno(ret);
3024 		goto out;
3025 	}
3026 
3027 	ret = ocfs2_journal_access_path(inode, handle, path);
3028 	if (ret) {
3029 		mlog_errno(ret);
3030 		goto out;
3031 	}
3032 
3033 	ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path, &cpos);
3034 	if (ret) {
3035 		mlog_errno(ret);
3036 		goto out;
3037 	}
3038 
3039 	if (cpos) {
3040 		/*
3041 		 * We have a path to the left of this one - it needs
3042 		 * an update too.
3043 		 */
3044 		left_path = ocfs2_new_path_from_path(path);
3045 		if (!left_path) {
3046 			ret = -ENOMEM;
3047 			mlog_errno(ret);
3048 			goto out;
3049 		}
3050 
3051 		ret = ocfs2_find_path(inode, left_path, cpos);
3052 		if (ret) {
3053 			mlog_errno(ret);
3054 			goto out;
3055 		}
3056 
3057 		ret = ocfs2_journal_access_path(inode, handle, left_path);
3058 		if (ret) {
3059 			mlog_errno(ret);
3060 			goto out;
3061 		}
3062 
3063 		subtree_index = ocfs2_find_subtree_root(inode, left_path, path);
3064 
3065 		ocfs2_unlink_subtree(inode, handle, left_path, path,
3066 				     subtree_index, dealloc);
3067 		ret = ocfs2_update_edge_lengths(inode, handle, subtree_index,
3068 						left_path);
3069 		if (ret) {
3070 			mlog_errno(ret);
3071 			goto out;
3072 		}
3073 
3074 		eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
3075 		ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
3076 	} else {
3077 		/*
3078 		 * 'path' is also the leftmost path which
3079 		 * means it must be the only one. This gets
3080 		 * handled differently because we want to
3081 		 * revert the inode back to having extents
3082 		 * in-line.
3083 		 */
3084 		ocfs2_unlink_path(inode, handle, dealloc, path, 1);
3085 
3086 		el = et->et_root_el;
3087 		el->l_tree_depth = 0;
3088 		el->l_next_free_rec = 0;
3089 		memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
3090 
3091 		ocfs2_et_set_last_eb_blk(et, 0);
3092 	}
3093 
3094 	ocfs2_journal_dirty(handle, path_root_bh(path));
3095 
3096 out:
3097 	ocfs2_free_path(left_path);
3098 	return ret;
3099 }
3100 
3101 /*
3102  * Left rotation of btree records.
3103  *
3104  * In many ways, this is (unsurprisingly) the opposite of right
3105  * rotation. We start at some non-rightmost path containing an empty
3106  * extent in the leaf block. The code works its way to the rightmost
3107  * path by rotating records to the left in every subtree.
3108  *
3109  * This is used by any code which reduces the number of extent records
3110  * in a leaf. After removal, an empty record should be placed in the
3111  * leftmost list position.
3112  *
3113  * This won't handle a length update of the rightmost path records if
3114  * the rightmost tree leaf record is removed so the caller is
3115  * responsible for detecting and correcting that.
3116  */
3117 static int ocfs2_rotate_tree_left(struct inode *inode, handle_t *handle,
3118 				  struct ocfs2_path *path,
3119 				  struct ocfs2_cached_dealloc_ctxt *dealloc,
3120 				  struct ocfs2_extent_tree *et)
3121 {
3122 	int ret, orig_credits = handle->h_buffer_credits;
3123 	struct ocfs2_path *tmp_path = NULL, *restart_path = NULL;
3124 	struct ocfs2_extent_block *eb;
3125 	struct ocfs2_extent_list *el;
3126 
3127 	el = path_leaf_el(path);
3128 	if (!ocfs2_is_empty_extent(&el->l_recs[0]))
3129 		return 0;
3130 
3131 	if (path->p_tree_depth == 0) {
3132 rightmost_no_delete:
3133 		/*
3134 		 * Inline extents. This is trivially handled, so do
3135 		 * it up front.
3136 		 */
3137 		ret = ocfs2_rotate_rightmost_leaf_left(inode, handle,
3138 						       path);
3139 		if (ret)
3140 			mlog_errno(ret);
3141 		goto out;
3142 	}
3143 
3144 	/*
3145 	 * Handle rightmost branch now. There's several cases:
3146 	 *  1) simple rotation leaving records in there. That's trivial.
3147 	 *  2) rotation requiring a branch delete - there's no more
3148 	 *     records left. Two cases of this:
3149 	 *     a) There are branches to the left.
3150 	 *     b) This is also the leftmost (the only) branch.
3151 	 *
3152 	 *  1) is handled via ocfs2_rotate_rightmost_leaf_left()
3153 	 *  2a) we need the left branch so that we can update it with the unlink
3154 	 *  2b) we need to bring the inode back to inline extents.
3155 	 */
3156 
3157 	eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
3158 	el = &eb->h_list;
3159 	if (eb->h_next_leaf_blk == 0) {
3160 		/*
3161 		 * This gets a bit tricky if we're going to delete the
3162 		 * rightmost path. Get the other cases out of the way
3163 		 * 1st.
3164 		 */
3165 		if (le16_to_cpu(el->l_next_free_rec) > 1)
3166 			goto rightmost_no_delete;
3167 
3168 		if (le16_to_cpu(el->l_next_free_rec) == 0) {
3169 			ret = -EIO;
3170 			ocfs2_error(inode->i_sb,
3171 				    "Inode %llu has empty extent block at %llu",
3172 				    (unsigned long long)OCFS2_I(inode)->ip_blkno,
3173 				    (unsigned long long)le64_to_cpu(eb->h_blkno));
3174 			goto out;
3175 		}
3176 
3177 		/*
3178 		 * XXX: The caller can not trust "path" any more after
3179 		 * this as it will have been deleted. What do we do?
3180 		 *
3181 		 * In theory the rotate-for-merge code will never get
3182 		 * here because it'll always ask for a rotate in a
3183 		 * nonempty list.
3184 		 */
3185 
3186 		ret = ocfs2_remove_rightmost_path(inode, handle, path,
3187 						  dealloc, et);
3188 		if (ret)
3189 			mlog_errno(ret);
3190 		goto out;
3191 	}
3192 
3193 	/*
3194 	 * Now we can loop, remembering the path we get from -EAGAIN
3195 	 * and restarting from there.
3196 	 */
3197 try_rotate:
3198 	ret = __ocfs2_rotate_tree_left(inode, handle, orig_credits, path,
3199 				       dealloc, &restart_path, et);
3200 	if (ret && ret != -EAGAIN) {
3201 		mlog_errno(ret);
3202 		goto out;
3203 	}
3204 
3205 	while (ret == -EAGAIN) {
3206 		tmp_path = restart_path;
3207 		restart_path = NULL;
3208 
3209 		ret = __ocfs2_rotate_tree_left(inode, handle, orig_credits,
3210 					       tmp_path, dealloc,
3211 					       &restart_path, et);
3212 		if (ret && ret != -EAGAIN) {
3213 			mlog_errno(ret);
3214 			goto out;
3215 		}
3216 
3217 		ocfs2_free_path(tmp_path);
3218 		tmp_path = NULL;
3219 
3220 		if (ret == 0)
3221 			goto try_rotate;
3222 	}
3223 
3224 out:
3225 	ocfs2_free_path(tmp_path);
3226 	ocfs2_free_path(restart_path);
3227 	return ret;
3228 }
3229 
3230 static void ocfs2_cleanup_merge(struct ocfs2_extent_list *el,
3231 				int index)
3232 {
3233 	struct ocfs2_extent_rec *rec = &el->l_recs[index];
3234 	unsigned int size;
3235 
3236 	if (rec->e_leaf_clusters == 0) {
3237 		/*
3238 		 * We consumed all of the merged-from record. An empty
3239 		 * extent cannot exist anywhere but the 1st array
3240 		 * position, so move things over if the merged-from
3241 		 * record doesn't occupy that position.
3242 		 *
3243 		 * This creates a new empty extent so the caller
3244 		 * should be smart enough to have removed any existing
3245 		 * ones.
3246 		 */
3247 		if (index > 0) {
3248 			BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0]));
3249 			size = index * sizeof(struct ocfs2_extent_rec);
3250 			memmove(&el->l_recs[1], &el->l_recs[0], size);
3251 		}
3252 
3253 		/*
3254 		 * Always memset - the caller doesn't check whether it
3255 		 * created an empty extent, so there could be junk in
3256 		 * the other fields.
3257 		 */
3258 		memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
3259 	}
3260 }
3261 
3262 static int ocfs2_get_right_path(struct inode *inode,
3263 				struct ocfs2_path *left_path,
3264 				struct ocfs2_path **ret_right_path)
3265 {
3266 	int ret;
3267 	u32 right_cpos;
3268 	struct ocfs2_path *right_path = NULL;
3269 	struct ocfs2_extent_list *left_el;
3270 
3271 	*ret_right_path = NULL;
3272 
3273 	/* This function shouldn't be called for non-trees. */
3274 	BUG_ON(left_path->p_tree_depth == 0);
3275 
3276 	left_el = path_leaf_el(left_path);
3277 	BUG_ON(left_el->l_next_free_rec != left_el->l_count);
3278 
3279 	ret = ocfs2_find_cpos_for_right_leaf(inode->i_sb, left_path,
3280 					     &right_cpos);
3281 	if (ret) {
3282 		mlog_errno(ret);
3283 		goto out;
3284 	}
3285 
3286 	/* This function shouldn't be called for the rightmost leaf. */
3287 	BUG_ON(right_cpos == 0);
3288 
3289 	right_path = ocfs2_new_path_from_path(left_path);
3290 	if (!right_path) {
3291 		ret = -ENOMEM;
3292 		mlog_errno(ret);
3293 		goto out;
3294 	}
3295 
3296 	ret = ocfs2_find_path(inode, right_path, right_cpos);
3297 	if (ret) {
3298 		mlog_errno(ret);
3299 		goto out;
3300 	}
3301 
3302 	*ret_right_path = right_path;
3303 out:
3304 	if (ret)
3305 		ocfs2_free_path(right_path);
3306 	return ret;
3307 }
3308 
3309 /*
3310  * Remove split_rec clusters from the record at index and merge them
3311  * onto the beginning of the record "next" to it.
3312  * For index < l_count - 1, the next means the extent rec at index + 1.
3313  * For index == l_count - 1, the "next" means the 1st extent rec of the
3314  * next extent block.
3315  */
3316 static int ocfs2_merge_rec_right(struct inode *inode,
3317 				 struct ocfs2_path *left_path,
3318 				 handle_t *handle,
3319 				 struct ocfs2_extent_rec *split_rec,
3320 				 int index)
3321 {
3322 	int ret, next_free, i;
3323 	unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters);
3324 	struct ocfs2_extent_rec *left_rec;
3325 	struct ocfs2_extent_rec *right_rec;
3326 	struct ocfs2_extent_list *right_el;
3327 	struct ocfs2_path *right_path = NULL;
3328 	int subtree_index = 0;
3329 	struct ocfs2_extent_list *el = path_leaf_el(left_path);
3330 	struct buffer_head *bh = path_leaf_bh(left_path);
3331 	struct buffer_head *root_bh = NULL;
3332 
3333 	BUG_ON(index >= le16_to_cpu(el->l_next_free_rec));
3334 	left_rec = &el->l_recs[index];
3335 
3336 	if (index == le16_to_cpu(el->l_next_free_rec) - 1 &&
3337 	    le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count)) {
3338 		/* we meet with a cross extent block merge. */
3339 		ret = ocfs2_get_right_path(inode, left_path, &right_path);
3340 		if (ret) {
3341 			mlog_errno(ret);
3342 			goto out;
3343 		}
3344 
3345 		right_el = path_leaf_el(right_path);
3346 		next_free = le16_to_cpu(right_el->l_next_free_rec);
3347 		BUG_ON(next_free <= 0);
3348 		right_rec = &right_el->l_recs[0];
3349 		if (ocfs2_is_empty_extent(right_rec)) {
3350 			BUG_ON(next_free <= 1);
3351 			right_rec = &right_el->l_recs[1];
3352 		}
3353 
3354 		BUG_ON(le32_to_cpu(left_rec->e_cpos) +
3355 		       le16_to_cpu(left_rec->e_leaf_clusters) !=
3356 		       le32_to_cpu(right_rec->e_cpos));
3357 
3358 		subtree_index = ocfs2_find_subtree_root(inode,
3359 							left_path, right_path);
3360 
3361 		ret = ocfs2_extend_rotate_transaction(handle, subtree_index,
3362 						      handle->h_buffer_credits,
3363 						      right_path);
3364 		if (ret) {
3365 			mlog_errno(ret);
3366 			goto out;
3367 		}
3368 
3369 		root_bh = left_path->p_node[subtree_index].bh;
3370 		BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
3371 
3372 		ret = ocfs2_path_bh_journal_access(handle, inode, right_path,
3373 						   subtree_index);
3374 		if (ret) {
3375 			mlog_errno(ret);
3376 			goto out;
3377 		}
3378 
3379 		for (i = subtree_index + 1;
3380 		     i < path_num_items(right_path); i++) {
3381 			ret = ocfs2_path_bh_journal_access(handle, inode,
3382 							   right_path, i);
3383 			if (ret) {
3384 				mlog_errno(ret);
3385 				goto out;
3386 			}
3387 
3388 			ret = ocfs2_path_bh_journal_access(handle, inode,
3389 							   left_path, i);
3390 			if (ret) {
3391 				mlog_errno(ret);
3392 				goto out;
3393 			}
3394 		}
3395 
3396 	} else {
3397 		BUG_ON(index == le16_to_cpu(el->l_next_free_rec) - 1);
3398 		right_rec = &el->l_recs[index + 1];
3399 	}
3400 
3401 	ret = ocfs2_path_bh_journal_access(handle, inode, left_path,
3402 					   path_num_items(left_path) - 1);
3403 	if (ret) {
3404 		mlog_errno(ret);
3405 		goto out;
3406 	}
3407 
3408 	le16_add_cpu(&left_rec->e_leaf_clusters, -split_clusters);
3409 
3410 	le32_add_cpu(&right_rec->e_cpos, -split_clusters);
3411 	le64_add_cpu(&right_rec->e_blkno,
3412 		     -ocfs2_clusters_to_blocks(inode->i_sb, split_clusters));
3413 	le16_add_cpu(&right_rec->e_leaf_clusters, split_clusters);
3414 
3415 	ocfs2_cleanup_merge(el, index);
3416 
3417 	ret = ocfs2_journal_dirty(handle, bh);
3418 	if (ret)
3419 		mlog_errno(ret);
3420 
3421 	if (right_path) {
3422 		ret = ocfs2_journal_dirty(handle, path_leaf_bh(right_path));
3423 		if (ret)
3424 			mlog_errno(ret);
3425 
3426 		ocfs2_complete_edge_insert(inode, handle, left_path,
3427 					   right_path, subtree_index);
3428 	}
3429 out:
3430 	if (right_path)
3431 		ocfs2_free_path(right_path);
3432 	return ret;
3433 }
3434 
3435 static int ocfs2_get_left_path(struct inode *inode,
3436 			       struct ocfs2_path *right_path,
3437 			       struct ocfs2_path **ret_left_path)
3438 {
3439 	int ret;
3440 	u32 left_cpos;
3441 	struct ocfs2_path *left_path = NULL;
3442 
3443 	*ret_left_path = NULL;
3444 
3445 	/* This function shouldn't be called for non-trees. */
3446 	BUG_ON(right_path->p_tree_depth == 0);
3447 
3448 	ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb,
3449 					    right_path, &left_cpos);
3450 	if (ret) {
3451 		mlog_errno(ret);
3452 		goto out;
3453 	}
3454 
3455 	/* This function shouldn't be called for the leftmost leaf. */
3456 	BUG_ON(left_cpos == 0);
3457 
3458 	left_path = ocfs2_new_path_from_path(right_path);
3459 	if (!left_path) {
3460 		ret = -ENOMEM;
3461 		mlog_errno(ret);
3462 		goto out;
3463 	}
3464 
3465 	ret = ocfs2_find_path(inode, left_path, left_cpos);
3466 	if (ret) {
3467 		mlog_errno(ret);
3468 		goto out;
3469 	}
3470 
3471 	*ret_left_path = left_path;
3472 out:
3473 	if (ret)
3474 		ocfs2_free_path(left_path);
3475 	return ret;
3476 }
3477 
3478 /*
3479  * Remove split_rec clusters from the record at index and merge them
3480  * onto the tail of the record "before" it.
3481  * For index > 0, the "before" means the extent rec at index - 1.
3482  *
3483  * For index == 0, the "before" means the last record of the previous
3484  * extent block. And there is also a situation that we may need to
3485  * remove the rightmost leaf extent block in the right_path and change
3486  * the right path to indicate the new rightmost path.
3487  */
3488 static int ocfs2_merge_rec_left(struct inode *inode,
3489 				struct ocfs2_path *right_path,
3490 				handle_t *handle,
3491 				struct ocfs2_extent_rec *split_rec,
3492 				struct ocfs2_cached_dealloc_ctxt *dealloc,
3493 				struct ocfs2_extent_tree *et,
3494 				int index)
3495 {
3496 	int ret, i, subtree_index = 0, has_empty_extent = 0;
3497 	unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters);
3498 	struct ocfs2_extent_rec *left_rec;
3499 	struct ocfs2_extent_rec *right_rec;
3500 	struct ocfs2_extent_list *el = path_leaf_el(right_path);
3501 	struct buffer_head *bh = path_leaf_bh(right_path);
3502 	struct buffer_head *root_bh = NULL;
3503 	struct ocfs2_path *left_path = NULL;
3504 	struct ocfs2_extent_list *left_el;
3505 
3506 	BUG_ON(index < 0);
3507 
3508 	right_rec = &el->l_recs[index];
3509 	if (index == 0) {
3510 		/* we meet with a cross extent block merge. */
3511 		ret = ocfs2_get_left_path(inode, right_path, &left_path);
3512 		if (ret) {
3513 			mlog_errno(ret);
3514 			goto out;
3515 		}
3516 
3517 		left_el = path_leaf_el(left_path);
3518 		BUG_ON(le16_to_cpu(left_el->l_next_free_rec) !=
3519 		       le16_to_cpu(left_el->l_count));
3520 
3521 		left_rec = &left_el->l_recs[
3522 				le16_to_cpu(left_el->l_next_free_rec) - 1];
3523 		BUG_ON(le32_to_cpu(left_rec->e_cpos) +
3524 		       le16_to_cpu(left_rec->e_leaf_clusters) !=
3525 		       le32_to_cpu(split_rec->e_cpos));
3526 
3527 		subtree_index = ocfs2_find_subtree_root(inode,
3528 							left_path, right_path);
3529 
3530 		ret = ocfs2_extend_rotate_transaction(handle, subtree_index,
3531 						      handle->h_buffer_credits,
3532 						      left_path);
3533 		if (ret) {
3534 			mlog_errno(ret);
3535 			goto out;
3536 		}
3537 
3538 		root_bh = left_path->p_node[subtree_index].bh;
3539 		BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
3540 
3541 		ret = ocfs2_path_bh_journal_access(handle, inode, right_path,
3542 						   subtree_index);
3543 		if (ret) {
3544 			mlog_errno(ret);
3545 			goto out;
3546 		}
3547 
3548 		for (i = subtree_index + 1;
3549 		     i < path_num_items(right_path); i++) {
3550 			ret = ocfs2_path_bh_journal_access(handle, inode,
3551 							   right_path, i);
3552 			if (ret) {
3553 				mlog_errno(ret);
3554 				goto out;
3555 			}
3556 
3557 			ret = ocfs2_path_bh_journal_access(handle, inode,
3558 							   left_path, i);
3559 			if (ret) {
3560 				mlog_errno(ret);
3561 				goto out;
3562 			}
3563 		}
3564 	} else {
3565 		left_rec = &el->l_recs[index - 1];
3566 		if (ocfs2_is_empty_extent(&el->l_recs[0]))
3567 			has_empty_extent = 1;
3568 	}
3569 
3570 	ret = ocfs2_path_bh_journal_access(handle, inode, right_path,
3571 					   path_num_items(right_path) - 1);
3572 	if (ret) {
3573 		mlog_errno(ret);
3574 		goto out;
3575 	}
3576 
3577 	if (has_empty_extent && index == 1) {
3578 		/*
3579 		 * The easy case - we can just plop the record right in.
3580 		 */
3581 		*left_rec = *split_rec;
3582 
3583 		has_empty_extent = 0;
3584 	} else
3585 		le16_add_cpu(&left_rec->e_leaf_clusters, split_clusters);
3586 
3587 	le32_add_cpu(&right_rec->e_cpos, split_clusters);
3588 	le64_add_cpu(&right_rec->e_blkno,
3589 		     ocfs2_clusters_to_blocks(inode->i_sb, split_clusters));
3590 	le16_add_cpu(&right_rec->e_leaf_clusters, -split_clusters);
3591 
3592 	ocfs2_cleanup_merge(el, index);
3593 
3594 	ret = ocfs2_journal_dirty(handle, bh);
3595 	if (ret)
3596 		mlog_errno(ret);
3597 
3598 	if (left_path) {
3599 		ret = ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
3600 		if (ret)
3601 			mlog_errno(ret);
3602 
3603 		/*
3604 		 * In the situation that the right_rec is empty and the extent
3605 		 * block is empty also,  ocfs2_complete_edge_insert can't handle
3606 		 * it and we need to delete the right extent block.
3607 		 */
3608 		if (le16_to_cpu(right_rec->e_leaf_clusters) == 0 &&
3609 		    le16_to_cpu(el->l_next_free_rec) == 1) {
3610 
3611 			ret = ocfs2_remove_rightmost_path(inode, handle,
3612 							  right_path,
3613 							  dealloc, et);
3614 			if (ret) {
3615 				mlog_errno(ret);
3616 				goto out;
3617 			}
3618 
3619 			/* Now the rightmost extent block has been deleted.
3620 			 * So we use the new rightmost path.
3621 			 */
3622 			ocfs2_mv_path(right_path, left_path);
3623 			left_path = NULL;
3624 		} else
3625 			ocfs2_complete_edge_insert(inode, handle, left_path,
3626 						   right_path, subtree_index);
3627 	}
3628 out:
3629 	if (left_path)
3630 		ocfs2_free_path(left_path);
3631 	return ret;
3632 }
3633 
3634 static int ocfs2_try_to_merge_extent(struct inode *inode,
3635 				     handle_t *handle,
3636 				     struct ocfs2_path *path,
3637 				     int split_index,
3638 				     struct ocfs2_extent_rec *split_rec,
3639 				     struct ocfs2_cached_dealloc_ctxt *dealloc,
3640 				     struct ocfs2_merge_ctxt *ctxt,
3641 				     struct ocfs2_extent_tree *et)
3642 
3643 {
3644 	int ret = 0;
3645 	struct ocfs2_extent_list *el = path_leaf_el(path);
3646 	struct ocfs2_extent_rec *rec = &el->l_recs[split_index];
3647 
3648 	BUG_ON(ctxt->c_contig_type == CONTIG_NONE);
3649 
3650 	if (ctxt->c_split_covers_rec && ctxt->c_has_empty_extent) {
3651 		/*
3652 		 * The merge code will need to create an empty
3653 		 * extent to take the place of the newly
3654 		 * emptied slot. Remove any pre-existing empty
3655 		 * extents - having more than one in a leaf is
3656 		 * illegal.
3657 		 */
3658 		ret = ocfs2_rotate_tree_left(inode, handle, path,
3659 					     dealloc, et);
3660 		if (ret) {
3661 			mlog_errno(ret);
3662 			goto out;
3663 		}
3664 		split_index--;
3665 		rec = &el->l_recs[split_index];
3666 	}
3667 
3668 	if (ctxt->c_contig_type == CONTIG_LEFTRIGHT) {
3669 		/*
3670 		 * Left-right contig implies this.
3671 		 */
3672 		BUG_ON(!ctxt->c_split_covers_rec);
3673 
3674 		/*
3675 		 * Since the leftright insert always covers the entire
3676 		 * extent, this call will delete the insert record
3677 		 * entirely, resulting in an empty extent record added to
3678 		 * the extent block.
3679 		 *
3680 		 * Since the adding of an empty extent shifts
3681 		 * everything back to the right, there's no need to
3682 		 * update split_index here.
3683 		 *
3684 		 * When the split_index is zero, we need to merge it to the
3685 		 * prevoius extent block. It is more efficient and easier
3686 		 * if we do merge_right first and merge_left later.
3687 		 */
3688 		ret = ocfs2_merge_rec_right(inode, path,
3689 					    handle, split_rec,
3690 					    split_index);
3691 		if (ret) {
3692 			mlog_errno(ret);
3693 			goto out;
3694 		}
3695 
3696 		/*
3697 		 * We can only get this from logic error above.
3698 		 */
3699 		BUG_ON(!ocfs2_is_empty_extent(&el->l_recs[0]));
3700 
3701 		/* The merge left us with an empty extent, remove it. */
3702 		ret = ocfs2_rotate_tree_left(inode, handle, path,
3703 					     dealloc, et);
3704 		if (ret) {
3705 			mlog_errno(ret);
3706 			goto out;
3707 		}
3708 
3709 		rec = &el->l_recs[split_index];
3710 
3711 		/*
3712 		 * Note that we don't pass split_rec here on purpose -
3713 		 * we've merged it into the rec already.
3714 		 */
3715 		ret = ocfs2_merge_rec_left(inode, path,
3716 					   handle, rec,
3717 					   dealloc, et,
3718 					   split_index);
3719 
3720 		if (ret) {
3721 			mlog_errno(ret);
3722 			goto out;
3723 		}
3724 
3725 		ret = ocfs2_rotate_tree_left(inode, handle, path,
3726 					     dealloc, et);
3727 		/*
3728 		 * Error from this last rotate is not critical, so
3729 		 * print but don't bubble it up.
3730 		 */
3731 		if (ret)
3732 			mlog_errno(ret);
3733 		ret = 0;
3734 	} else {
3735 		/*
3736 		 * Merge a record to the left or right.
3737 		 *
3738 		 * 'contig_type' is relative to the existing record,
3739 		 * so for example, if we're "right contig", it's to
3740 		 * the record on the left (hence the left merge).
3741 		 */
3742 		if (ctxt->c_contig_type == CONTIG_RIGHT) {
3743 			ret = ocfs2_merge_rec_left(inode,
3744 						   path,
3745 						   handle, split_rec,
3746 						   dealloc, et,
3747 						   split_index);
3748 			if (ret) {
3749 				mlog_errno(ret);
3750 				goto out;
3751 			}
3752 		} else {
3753 			ret = ocfs2_merge_rec_right(inode,
3754 						    path,
3755 						    handle, split_rec,
3756 						    split_index);
3757 			if (ret) {
3758 				mlog_errno(ret);
3759 				goto out;
3760 			}
3761 		}
3762 
3763 		if (ctxt->c_split_covers_rec) {
3764 			/*
3765 			 * The merge may have left an empty extent in
3766 			 * our leaf. Try to rotate it away.
3767 			 */
3768 			ret = ocfs2_rotate_tree_left(inode, handle, path,
3769 						     dealloc, et);
3770 			if (ret)
3771 				mlog_errno(ret);
3772 			ret = 0;
3773 		}
3774 	}
3775 
3776 out:
3777 	return ret;
3778 }
3779 
3780 static void ocfs2_subtract_from_rec(struct super_block *sb,
3781 				    enum ocfs2_split_type split,
3782 				    struct ocfs2_extent_rec *rec,
3783 				    struct ocfs2_extent_rec *split_rec)
3784 {
3785 	u64 len_blocks;
3786 
3787 	len_blocks = ocfs2_clusters_to_blocks(sb,
3788 				le16_to_cpu(split_rec->e_leaf_clusters));
3789 
3790 	if (split == SPLIT_LEFT) {
3791 		/*
3792 		 * Region is on the left edge of the existing
3793 		 * record.
3794 		 */
3795 		le32_add_cpu(&rec->e_cpos,
3796 			     le16_to_cpu(split_rec->e_leaf_clusters));
3797 		le64_add_cpu(&rec->e_blkno, len_blocks);
3798 		le16_add_cpu(&rec->e_leaf_clusters,
3799 			     -le16_to_cpu(split_rec->e_leaf_clusters));
3800 	} else {
3801 		/*
3802 		 * Region is on the right edge of the existing
3803 		 * record.
3804 		 */
3805 		le16_add_cpu(&rec->e_leaf_clusters,
3806 			     -le16_to_cpu(split_rec->e_leaf_clusters));
3807 	}
3808 }
3809 
3810 /*
3811  * Do the final bits of extent record insertion at the target leaf
3812  * list. If this leaf is part of an allocation tree, it is assumed
3813  * that the tree above has been prepared.
3814  */
3815 static void ocfs2_insert_at_leaf(struct ocfs2_extent_rec *insert_rec,
3816 				 struct ocfs2_extent_list *el,
3817 				 struct ocfs2_insert_type *insert,
3818 				 struct inode *inode)
3819 {
3820 	int i = insert->ins_contig_index;
3821 	unsigned int range;
3822 	struct ocfs2_extent_rec *rec;
3823 
3824 	BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
3825 
3826 	if (insert->ins_split != SPLIT_NONE) {
3827 		i = ocfs2_search_extent_list(el, le32_to_cpu(insert_rec->e_cpos));
3828 		BUG_ON(i == -1);
3829 		rec = &el->l_recs[i];
3830 		ocfs2_subtract_from_rec(inode->i_sb, insert->ins_split, rec,
3831 					insert_rec);
3832 		goto rotate;
3833 	}
3834 
3835 	/*
3836 	 * Contiguous insert - either left or right.
3837 	 */
3838 	if (insert->ins_contig != CONTIG_NONE) {
3839 		rec = &el->l_recs[i];
3840 		if (insert->ins_contig == CONTIG_LEFT) {
3841 			rec->e_blkno = insert_rec->e_blkno;
3842 			rec->e_cpos = insert_rec->e_cpos;
3843 		}
3844 		le16_add_cpu(&rec->e_leaf_clusters,
3845 			     le16_to_cpu(insert_rec->e_leaf_clusters));
3846 		return;
3847 	}
3848 
3849 	/*
3850 	 * Handle insert into an empty leaf.
3851 	 */
3852 	if (le16_to_cpu(el->l_next_free_rec) == 0 ||
3853 	    ((le16_to_cpu(el->l_next_free_rec) == 1) &&
3854 	     ocfs2_is_empty_extent(&el->l_recs[0]))) {
3855 		el->l_recs[0] = *insert_rec;
3856 		el->l_next_free_rec = cpu_to_le16(1);
3857 		return;
3858 	}
3859 
3860 	/*
3861 	 * Appending insert.
3862 	 */
3863 	if (insert->ins_appending == APPEND_TAIL) {
3864 		i = le16_to_cpu(el->l_next_free_rec) - 1;
3865 		rec = &el->l_recs[i];
3866 		range = le32_to_cpu(rec->e_cpos)
3867 			+ le16_to_cpu(rec->e_leaf_clusters);
3868 		BUG_ON(le32_to_cpu(insert_rec->e_cpos) < range);
3869 
3870 		mlog_bug_on_msg(le16_to_cpu(el->l_next_free_rec) >=
3871 				le16_to_cpu(el->l_count),
3872 				"inode %lu, depth %u, count %u, next free %u, "
3873 				"rec.cpos %u, rec.clusters %u, "
3874 				"insert.cpos %u, insert.clusters %u\n",
3875 				inode->i_ino,
3876 				le16_to_cpu(el->l_tree_depth),
3877 				le16_to_cpu(el->l_count),
3878 				le16_to_cpu(el->l_next_free_rec),
3879 				le32_to_cpu(el->l_recs[i].e_cpos),
3880 				le16_to_cpu(el->l_recs[i].e_leaf_clusters),
3881 				le32_to_cpu(insert_rec->e_cpos),
3882 				le16_to_cpu(insert_rec->e_leaf_clusters));
3883 		i++;
3884 		el->l_recs[i] = *insert_rec;
3885 		le16_add_cpu(&el->l_next_free_rec, 1);
3886 		return;
3887 	}
3888 
3889 rotate:
3890 	/*
3891 	 * Ok, we have to rotate.
3892 	 *
3893 	 * At this point, it is safe to assume that inserting into an
3894 	 * empty leaf and appending to a leaf have both been handled
3895 	 * above.
3896 	 *
3897 	 * This leaf needs to have space, either by the empty 1st
3898 	 * extent record, or by virtue of an l_next_rec < l_count.
3899 	 */
3900 	ocfs2_rotate_leaf(el, insert_rec);
3901 }
3902 
3903 static void ocfs2_adjust_rightmost_records(struct inode *inode,
3904 					   handle_t *handle,
3905 					   struct ocfs2_path *path,
3906 					   struct ocfs2_extent_rec *insert_rec)
3907 {
3908 	int ret, i, next_free;
3909 	struct buffer_head *bh;
3910 	struct ocfs2_extent_list *el;
3911 	struct ocfs2_extent_rec *rec;
3912 
3913 	/*
3914 	 * Update everything except the leaf block.
3915 	 */
3916 	for (i = 0; i < path->p_tree_depth; i++) {
3917 		bh = path->p_node[i].bh;
3918 		el = path->p_node[i].el;
3919 
3920 		next_free = le16_to_cpu(el->l_next_free_rec);
3921 		if (next_free == 0) {
3922 			ocfs2_error(inode->i_sb,
3923 				    "Dinode %llu has a bad extent list",
3924 				    (unsigned long long)OCFS2_I(inode)->ip_blkno);
3925 			ret = -EIO;
3926 			return;
3927 		}
3928 
3929 		rec = &el->l_recs[next_free - 1];
3930 
3931 		rec->e_int_clusters = insert_rec->e_cpos;
3932 		le32_add_cpu(&rec->e_int_clusters,
3933 			     le16_to_cpu(insert_rec->e_leaf_clusters));
3934 		le32_add_cpu(&rec->e_int_clusters,
3935 			     -le32_to_cpu(rec->e_cpos));
3936 
3937 		ret = ocfs2_journal_dirty(handle, bh);
3938 		if (ret)
3939 			mlog_errno(ret);
3940 
3941 	}
3942 }
3943 
3944 static int ocfs2_append_rec_to_path(struct inode *inode, handle_t *handle,
3945 				    struct ocfs2_extent_rec *insert_rec,
3946 				    struct ocfs2_path *right_path,
3947 				    struct ocfs2_path **ret_left_path)
3948 {
3949 	int ret, next_free;
3950 	struct ocfs2_extent_list *el;
3951 	struct ocfs2_path *left_path = NULL;
3952 
3953 	*ret_left_path = NULL;
3954 
3955 	/*
3956 	 * This shouldn't happen for non-trees. The extent rec cluster
3957 	 * count manipulation below only works for interior nodes.
3958 	 */
3959 	BUG_ON(right_path->p_tree_depth == 0);
3960 
3961 	/*
3962 	 * If our appending insert is at the leftmost edge of a leaf,
3963 	 * then we might need to update the rightmost records of the
3964 	 * neighboring path.
3965 	 */
3966 	el = path_leaf_el(right_path);
3967 	next_free = le16_to_cpu(el->l_next_free_rec);
3968 	if (next_free == 0 ||
3969 	    (next_free == 1 && ocfs2_is_empty_extent(&el->l_recs[0]))) {
3970 		u32 left_cpos;
3971 
3972 		ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path,
3973 						    &left_cpos);
3974 		if (ret) {
3975 			mlog_errno(ret);
3976 			goto out;
3977 		}
3978 
3979 		mlog(0, "Append may need a left path update. cpos: %u, "
3980 		     "left_cpos: %u\n", le32_to_cpu(insert_rec->e_cpos),
3981 		     left_cpos);
3982 
3983 		/*
3984 		 * No need to worry if the append is already in the
3985 		 * leftmost leaf.
3986 		 */
3987 		if (left_cpos) {
3988 			left_path = ocfs2_new_path_from_path(right_path);
3989 			if (!left_path) {
3990 				ret = -ENOMEM;
3991 				mlog_errno(ret);
3992 				goto out;
3993 			}
3994 
3995 			ret = ocfs2_find_path(inode, left_path, left_cpos);
3996 			if (ret) {
3997 				mlog_errno(ret);
3998 				goto out;
3999 			}
4000 
4001 			/*
4002 			 * ocfs2_insert_path() will pass the left_path to the
4003 			 * journal for us.
4004 			 */
4005 		}
4006 	}
4007 
4008 	ret = ocfs2_journal_access_path(inode, handle, right_path);
4009 	if (ret) {
4010 		mlog_errno(ret);
4011 		goto out;
4012 	}
4013 
4014 	ocfs2_adjust_rightmost_records(inode, handle, right_path, insert_rec);
4015 
4016 	*ret_left_path = left_path;
4017 	ret = 0;
4018 out:
4019 	if (ret != 0)
4020 		ocfs2_free_path(left_path);
4021 
4022 	return ret;
4023 }
4024 
4025 static void ocfs2_split_record(struct inode *inode,
4026 			       struct ocfs2_path *left_path,
4027 			       struct ocfs2_path *right_path,
4028 			       struct ocfs2_extent_rec *split_rec,
4029 			       enum ocfs2_split_type split)
4030 {
4031 	int index;
4032 	u32 cpos = le32_to_cpu(split_rec->e_cpos);
4033 	struct ocfs2_extent_list *left_el = NULL, *right_el, *insert_el, *el;
4034 	struct ocfs2_extent_rec *rec, *tmprec;
4035 
4036 	right_el = path_leaf_el(right_path);
4037 	if (left_path)
4038 		left_el = path_leaf_el(left_path);
4039 
4040 	el = right_el;
4041 	insert_el = right_el;
4042 	index = ocfs2_search_extent_list(el, cpos);
4043 	if (index != -1) {
4044 		if (index == 0 && left_path) {
4045 			BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0]));
4046 
4047 			/*
4048 			 * This typically means that the record
4049 			 * started in the left path but moved to the
4050 			 * right as a result of rotation. We either
4051 			 * move the existing record to the left, or we
4052 			 * do the later insert there.
4053 			 *
4054 			 * In this case, the left path should always
4055 			 * exist as the rotate code will have passed
4056 			 * it back for a post-insert update.
4057 			 */
4058 
4059 			if (split == SPLIT_LEFT) {
4060 				/*
4061 				 * It's a left split. Since we know
4062 				 * that the rotate code gave us an
4063 				 * empty extent in the left path, we
4064 				 * can just do the insert there.
4065 				 */
4066 				insert_el = left_el;
4067 			} else {
4068 				/*
4069 				 * Right split - we have to move the
4070 				 * existing record over to the left
4071 				 * leaf. The insert will be into the
4072 				 * newly created empty extent in the
4073 				 * right leaf.
4074 				 */
4075 				tmprec = &right_el->l_recs[index];
4076 				ocfs2_rotate_leaf(left_el, tmprec);
4077 				el = left_el;
4078 
4079 				memset(tmprec, 0, sizeof(*tmprec));
4080 				index = ocfs2_search_extent_list(left_el, cpos);
4081 				BUG_ON(index == -1);
4082 			}
4083 		}
4084 	} else {
4085 		BUG_ON(!left_path);
4086 		BUG_ON(!ocfs2_is_empty_extent(&left_el->l_recs[0]));
4087 		/*
4088 		 * Left path is easy - we can just allow the insert to
4089 		 * happen.
4090 		 */
4091 		el = left_el;
4092 		insert_el = left_el;
4093 		index = ocfs2_search_extent_list(el, cpos);
4094 		BUG_ON(index == -1);
4095 	}
4096 
4097 	rec = &el->l_recs[index];
4098 	ocfs2_subtract_from_rec(inode->i_sb, split, rec, split_rec);
4099 	ocfs2_rotate_leaf(insert_el, split_rec);
4100 }
4101 
4102 /*
4103  * This function only does inserts on an allocation b-tree. For tree
4104  * depth = 0, ocfs2_insert_at_leaf() is called directly.
4105  *
4106  * right_path is the path we want to do the actual insert
4107  * in. left_path should only be passed in if we need to update that
4108  * portion of the tree after an edge insert.
4109  */
4110 static int ocfs2_insert_path(struct inode *inode,
4111 			     handle_t *handle,
4112 			     struct ocfs2_path *left_path,
4113 			     struct ocfs2_path *right_path,
4114 			     struct ocfs2_extent_rec *insert_rec,
4115 			     struct ocfs2_insert_type *insert)
4116 {
4117 	int ret, subtree_index;
4118 	struct buffer_head *leaf_bh = path_leaf_bh(right_path);
4119 
4120 	if (left_path) {
4121 		int credits = handle->h_buffer_credits;
4122 
4123 		/*
4124 		 * There's a chance that left_path got passed back to
4125 		 * us without being accounted for in the
4126 		 * journal. Extend our transaction here to be sure we
4127 		 * can change those blocks.
4128 		 */
4129 		credits += left_path->p_tree_depth;
4130 
4131 		ret = ocfs2_extend_trans(handle, credits);
4132 		if (ret < 0) {
4133 			mlog_errno(ret);
4134 			goto out;
4135 		}
4136 
4137 		ret = ocfs2_journal_access_path(inode, handle, left_path);
4138 		if (ret < 0) {
4139 			mlog_errno(ret);
4140 			goto out;
4141 		}
4142 	}
4143 
4144 	/*
4145 	 * Pass both paths to the journal. The majority of inserts
4146 	 * will be touching all components anyway.
4147 	 */
4148 	ret = ocfs2_journal_access_path(inode, handle, right_path);
4149 	if (ret < 0) {
4150 		mlog_errno(ret);
4151 		goto out;
4152 	}
4153 
4154 	if (insert->ins_split != SPLIT_NONE) {
4155 		/*
4156 		 * We could call ocfs2_insert_at_leaf() for some types
4157 		 * of splits, but it's easier to just let one separate
4158 		 * function sort it all out.
4159 		 */
4160 		ocfs2_split_record(inode, left_path, right_path,
4161 				   insert_rec, insert->ins_split);
4162 
4163 		/*
4164 		 * Split might have modified either leaf and we don't
4165 		 * have a guarantee that the later edge insert will
4166 		 * dirty this for us.
4167 		 */
4168 		if (left_path)
4169 			ret = ocfs2_journal_dirty(handle,
4170 						  path_leaf_bh(left_path));
4171 			if (ret)
4172 				mlog_errno(ret);
4173 	} else
4174 		ocfs2_insert_at_leaf(insert_rec, path_leaf_el(right_path),
4175 				     insert, inode);
4176 
4177 	ret = ocfs2_journal_dirty(handle, leaf_bh);
4178 	if (ret)
4179 		mlog_errno(ret);
4180 
4181 	if (left_path) {
4182 		/*
4183 		 * The rotate code has indicated that we need to fix
4184 		 * up portions of the tree after the insert.
4185 		 *
4186 		 * XXX: Should we extend the transaction here?
4187 		 */
4188 		subtree_index = ocfs2_find_subtree_root(inode, left_path,
4189 							right_path);
4190 		ocfs2_complete_edge_insert(inode, handle, left_path,
4191 					   right_path, subtree_index);
4192 	}
4193 
4194 	ret = 0;
4195 out:
4196 	return ret;
4197 }
4198 
4199 static int ocfs2_do_insert_extent(struct inode *inode,
4200 				  handle_t *handle,
4201 				  struct ocfs2_extent_tree *et,
4202 				  struct ocfs2_extent_rec *insert_rec,
4203 				  struct ocfs2_insert_type *type)
4204 {
4205 	int ret, rotate = 0;
4206 	u32 cpos;
4207 	struct ocfs2_path *right_path = NULL;
4208 	struct ocfs2_path *left_path = NULL;
4209 	struct ocfs2_extent_list *el;
4210 
4211 	el = et->et_root_el;
4212 
4213 	ret = ocfs2_et_root_journal_access(handle, inode, et,
4214 					   OCFS2_JOURNAL_ACCESS_WRITE);
4215 	if (ret) {
4216 		mlog_errno(ret);
4217 		goto out;
4218 	}
4219 
4220 	if (le16_to_cpu(el->l_tree_depth) == 0) {
4221 		ocfs2_insert_at_leaf(insert_rec, el, type, inode);
4222 		goto out_update_clusters;
4223 	}
4224 
4225 	right_path = ocfs2_new_path_from_et(et);
4226 	if (!right_path) {
4227 		ret = -ENOMEM;
4228 		mlog_errno(ret);
4229 		goto out;
4230 	}
4231 
4232 	/*
4233 	 * Determine the path to start with. Rotations need the
4234 	 * rightmost path, everything else can go directly to the
4235 	 * target leaf.
4236 	 */
4237 	cpos = le32_to_cpu(insert_rec->e_cpos);
4238 	if (type->ins_appending == APPEND_NONE &&
4239 	    type->ins_contig == CONTIG_NONE) {
4240 		rotate = 1;
4241 		cpos = UINT_MAX;
4242 	}
4243 
4244 	ret = ocfs2_find_path(inode, right_path, cpos);
4245 	if (ret) {
4246 		mlog_errno(ret);
4247 		goto out;
4248 	}
4249 
4250 	/*
4251 	 * Rotations and appends need special treatment - they modify
4252 	 * parts of the tree's above them.
4253 	 *
4254 	 * Both might pass back a path immediate to the left of the
4255 	 * one being inserted to. This will be cause
4256 	 * ocfs2_insert_path() to modify the rightmost records of
4257 	 * left_path to account for an edge insert.
4258 	 *
4259 	 * XXX: When modifying this code, keep in mind that an insert
4260 	 * can wind up skipping both of these two special cases...
4261 	 */
4262 	if (rotate) {
4263 		ret = ocfs2_rotate_tree_right(inode, handle, type->ins_split,
4264 					      le32_to_cpu(insert_rec->e_cpos),
4265 					      right_path, &left_path);
4266 		if (ret) {
4267 			mlog_errno(ret);
4268 			goto out;
4269 		}
4270 
4271 		/*
4272 		 * ocfs2_rotate_tree_right() might have extended the
4273 		 * transaction without re-journaling our tree root.
4274 		 */
4275 		ret = ocfs2_et_root_journal_access(handle, inode, et,
4276 						   OCFS2_JOURNAL_ACCESS_WRITE);
4277 		if (ret) {
4278 			mlog_errno(ret);
4279 			goto out;
4280 		}
4281 	} else if (type->ins_appending == APPEND_TAIL
4282 		   && type->ins_contig != CONTIG_LEFT) {
4283 		ret = ocfs2_append_rec_to_path(inode, handle, insert_rec,
4284 					       right_path, &left_path);
4285 		if (ret) {
4286 			mlog_errno(ret);
4287 			goto out;
4288 		}
4289 	}
4290 
4291 	ret = ocfs2_insert_path(inode, handle, left_path, right_path,
4292 				insert_rec, type);
4293 	if (ret) {
4294 		mlog_errno(ret);
4295 		goto out;
4296 	}
4297 
4298 out_update_clusters:
4299 	if (type->ins_split == SPLIT_NONE)
4300 		ocfs2_et_update_clusters(inode, et,
4301 					 le16_to_cpu(insert_rec->e_leaf_clusters));
4302 
4303 	ret = ocfs2_journal_dirty(handle, et->et_root_bh);
4304 	if (ret)
4305 		mlog_errno(ret);
4306 
4307 out:
4308 	ocfs2_free_path(left_path);
4309 	ocfs2_free_path(right_path);
4310 
4311 	return ret;
4312 }
4313 
4314 static enum ocfs2_contig_type
4315 ocfs2_figure_merge_contig_type(struct inode *inode, struct ocfs2_path *path,
4316 			       struct ocfs2_extent_list *el, int index,
4317 			       struct ocfs2_extent_rec *split_rec)
4318 {
4319 	int status;
4320 	enum ocfs2_contig_type ret = CONTIG_NONE;
4321 	u32 left_cpos, right_cpos;
4322 	struct ocfs2_extent_rec *rec = NULL;
4323 	struct ocfs2_extent_list *new_el;
4324 	struct ocfs2_path *left_path = NULL, *right_path = NULL;
4325 	struct buffer_head *bh;
4326 	struct ocfs2_extent_block *eb;
4327 
4328 	if (index > 0) {
4329 		rec = &el->l_recs[index - 1];
4330 	} else if (path->p_tree_depth > 0) {
4331 		status = ocfs2_find_cpos_for_left_leaf(inode->i_sb,
4332 						       path, &left_cpos);
4333 		if (status)
4334 			goto out;
4335 
4336 		if (left_cpos != 0) {
4337 			left_path = ocfs2_new_path_from_path(path);
4338 			if (!left_path)
4339 				goto out;
4340 
4341 			status = ocfs2_find_path(inode, left_path, left_cpos);
4342 			if (status)
4343 				goto out;
4344 
4345 			new_el = path_leaf_el(left_path);
4346 
4347 			if (le16_to_cpu(new_el->l_next_free_rec) !=
4348 			    le16_to_cpu(new_el->l_count)) {
4349 				bh = path_leaf_bh(left_path);
4350 				eb = (struct ocfs2_extent_block *)bh->b_data;
4351 				ocfs2_error(inode->i_sb,
4352 					    "Extent block #%llu has an "
4353 					    "invalid l_next_free_rec of "
4354 					    "%d.  It should have "
4355 					    "matched the l_count of %d",
4356 					    (unsigned long long)le64_to_cpu(eb->h_blkno),
4357 					    le16_to_cpu(new_el->l_next_free_rec),
4358 					    le16_to_cpu(new_el->l_count));
4359 				status = -EINVAL;
4360 				goto out;
4361 			}
4362 			rec = &new_el->l_recs[
4363 				le16_to_cpu(new_el->l_next_free_rec) - 1];
4364 		}
4365 	}
4366 
4367 	/*
4368 	 * We're careful to check for an empty extent record here -
4369 	 * the merge code will know what to do if it sees one.
4370 	 */
4371 	if (rec) {
4372 		if (index == 1 && ocfs2_is_empty_extent(rec)) {
4373 			if (split_rec->e_cpos == el->l_recs[index].e_cpos)
4374 				ret = CONTIG_RIGHT;
4375 		} else {
4376 			ret = ocfs2_extent_contig(inode, rec, split_rec);
4377 		}
4378 	}
4379 
4380 	rec = NULL;
4381 	if (index < (le16_to_cpu(el->l_next_free_rec) - 1))
4382 		rec = &el->l_recs[index + 1];
4383 	else if (le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count) &&
4384 		 path->p_tree_depth > 0) {
4385 		status = ocfs2_find_cpos_for_right_leaf(inode->i_sb,
4386 							path, &right_cpos);
4387 		if (status)
4388 			goto out;
4389 
4390 		if (right_cpos == 0)
4391 			goto out;
4392 
4393 		right_path = ocfs2_new_path_from_path(path);
4394 		if (!right_path)
4395 			goto out;
4396 
4397 		status = ocfs2_find_path(inode, right_path, right_cpos);
4398 		if (status)
4399 			goto out;
4400 
4401 		new_el = path_leaf_el(right_path);
4402 		rec = &new_el->l_recs[0];
4403 		if (ocfs2_is_empty_extent(rec)) {
4404 			if (le16_to_cpu(new_el->l_next_free_rec) <= 1) {
4405 				bh = path_leaf_bh(right_path);
4406 				eb = (struct ocfs2_extent_block *)bh->b_data;
4407 				ocfs2_error(inode->i_sb,
4408 					    "Extent block #%llu has an "
4409 					    "invalid l_next_free_rec of %d",
4410 					    (unsigned long long)le64_to_cpu(eb->h_blkno),
4411 					    le16_to_cpu(new_el->l_next_free_rec));
4412 				status = -EINVAL;
4413 				goto out;
4414 			}
4415 			rec = &new_el->l_recs[1];
4416 		}
4417 	}
4418 
4419 	if (rec) {
4420 		enum ocfs2_contig_type contig_type;
4421 
4422 		contig_type = ocfs2_extent_contig(inode, rec, split_rec);
4423 
4424 		if (contig_type == CONTIG_LEFT && ret == CONTIG_RIGHT)
4425 			ret = CONTIG_LEFTRIGHT;
4426 		else if (ret == CONTIG_NONE)
4427 			ret = contig_type;
4428 	}
4429 
4430 out:
4431 	if (left_path)
4432 		ocfs2_free_path(left_path);
4433 	if (right_path)
4434 		ocfs2_free_path(right_path);
4435 
4436 	return ret;
4437 }
4438 
4439 static void ocfs2_figure_contig_type(struct inode *inode,
4440 				     struct ocfs2_insert_type *insert,
4441 				     struct ocfs2_extent_list *el,
4442 				     struct ocfs2_extent_rec *insert_rec,
4443 				     struct ocfs2_extent_tree *et)
4444 {
4445 	int i;
4446 	enum ocfs2_contig_type contig_type = CONTIG_NONE;
4447 
4448 	BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
4449 
4450 	for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) {
4451 		contig_type = ocfs2_extent_contig(inode, &el->l_recs[i],
4452 						  insert_rec);
4453 		if (contig_type != CONTIG_NONE) {
4454 			insert->ins_contig_index = i;
4455 			break;
4456 		}
4457 	}
4458 	insert->ins_contig = contig_type;
4459 
4460 	if (insert->ins_contig != CONTIG_NONE) {
4461 		struct ocfs2_extent_rec *rec =
4462 				&el->l_recs[insert->ins_contig_index];
4463 		unsigned int len = le16_to_cpu(rec->e_leaf_clusters) +
4464 				   le16_to_cpu(insert_rec->e_leaf_clusters);
4465 
4466 		/*
4467 		 * Caller might want us to limit the size of extents, don't
4468 		 * calculate contiguousness if we might exceed that limit.
4469 		 */
4470 		if (et->et_max_leaf_clusters &&
4471 		    (len > et->et_max_leaf_clusters))
4472 			insert->ins_contig = CONTIG_NONE;
4473 	}
4474 }
4475 
4476 /*
4477  * This should only be called against the righmost leaf extent list.
4478  *
4479  * ocfs2_figure_appending_type() will figure out whether we'll have to
4480  * insert at the tail of the rightmost leaf.
4481  *
4482  * This should also work against the root extent list for tree's with 0
4483  * depth. If we consider the root extent list to be the rightmost leaf node
4484  * then the logic here makes sense.
4485  */
4486 static void ocfs2_figure_appending_type(struct ocfs2_insert_type *insert,
4487 					struct ocfs2_extent_list *el,
4488 					struct ocfs2_extent_rec *insert_rec)
4489 {
4490 	int i;
4491 	u32 cpos = le32_to_cpu(insert_rec->e_cpos);
4492 	struct ocfs2_extent_rec *rec;
4493 
4494 	insert->ins_appending = APPEND_NONE;
4495 
4496 	BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
4497 
4498 	if (!el->l_next_free_rec)
4499 		goto set_tail_append;
4500 
4501 	if (ocfs2_is_empty_extent(&el->l_recs[0])) {
4502 		/* Were all records empty? */
4503 		if (le16_to_cpu(el->l_next_free_rec) == 1)
4504 			goto set_tail_append;
4505 	}
4506 
4507 	i = le16_to_cpu(el->l_next_free_rec) - 1;
4508 	rec = &el->l_recs[i];
4509 
4510 	if (cpos >=
4511 	    (le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)))
4512 		goto set_tail_append;
4513 
4514 	return;
4515 
4516 set_tail_append:
4517 	insert->ins_appending = APPEND_TAIL;
4518 }
4519 
4520 /*
4521  * Helper function called at the begining of an insert.
4522  *
4523  * This computes a few things that are commonly used in the process of
4524  * inserting into the btree:
4525  *   - Whether the new extent is contiguous with an existing one.
4526  *   - The current tree depth.
4527  *   - Whether the insert is an appending one.
4528  *   - The total # of free records in the tree.
4529  *
4530  * All of the information is stored on the ocfs2_insert_type
4531  * structure.
4532  */
4533 static int ocfs2_figure_insert_type(struct inode *inode,
4534 				    struct ocfs2_extent_tree *et,
4535 				    struct buffer_head **last_eb_bh,
4536 				    struct ocfs2_extent_rec *insert_rec,
4537 				    int *free_records,
4538 				    struct ocfs2_insert_type *insert)
4539 {
4540 	int ret;
4541 	struct ocfs2_extent_block *eb;
4542 	struct ocfs2_extent_list *el;
4543 	struct ocfs2_path *path = NULL;
4544 	struct buffer_head *bh = NULL;
4545 
4546 	insert->ins_split = SPLIT_NONE;
4547 
4548 	el = et->et_root_el;
4549 	insert->ins_tree_depth = le16_to_cpu(el->l_tree_depth);
4550 
4551 	if (el->l_tree_depth) {
4552 		/*
4553 		 * If we have tree depth, we read in the
4554 		 * rightmost extent block ahead of time as
4555 		 * ocfs2_figure_insert_type() and ocfs2_add_branch()
4556 		 * may want it later.
4557 		 */
4558 		ret = ocfs2_read_extent_block(inode,
4559 					      ocfs2_et_get_last_eb_blk(et),
4560 					      &bh);
4561 		if (ret) {
4562 			mlog_exit(ret);
4563 			goto out;
4564 		}
4565 		eb = (struct ocfs2_extent_block *) bh->b_data;
4566 		el = &eb->h_list;
4567 	}
4568 
4569 	/*
4570 	 * Unless we have a contiguous insert, we'll need to know if
4571 	 * there is room left in our allocation tree for another
4572 	 * extent record.
4573 	 *
4574 	 * XXX: This test is simplistic, we can search for empty
4575 	 * extent records too.
4576 	 */
4577 	*free_records = le16_to_cpu(el->l_count) -
4578 		le16_to_cpu(el->l_next_free_rec);
4579 
4580 	if (!insert->ins_tree_depth) {
4581 		ocfs2_figure_contig_type(inode, insert, el, insert_rec, et);
4582 		ocfs2_figure_appending_type(insert, el, insert_rec);
4583 		return 0;
4584 	}
4585 
4586 	path = ocfs2_new_path_from_et(et);
4587 	if (!path) {
4588 		ret = -ENOMEM;
4589 		mlog_errno(ret);
4590 		goto out;
4591 	}
4592 
4593 	/*
4594 	 * In the case that we're inserting past what the tree
4595 	 * currently accounts for, ocfs2_find_path() will return for
4596 	 * us the rightmost tree path. This is accounted for below in
4597 	 * the appending code.
4598 	 */
4599 	ret = ocfs2_find_path(inode, path, le32_to_cpu(insert_rec->e_cpos));
4600 	if (ret) {
4601 		mlog_errno(ret);
4602 		goto out;
4603 	}
4604 
4605 	el = path_leaf_el(path);
4606 
4607 	/*
4608 	 * Now that we have the path, there's two things we want to determine:
4609 	 * 1) Contiguousness (also set contig_index if this is so)
4610 	 *
4611 	 * 2) Are we doing an append? We can trivially break this up
4612          *     into two types of appends: simple record append, or a
4613          *     rotate inside the tail leaf.
4614 	 */
4615 	ocfs2_figure_contig_type(inode, insert, el, insert_rec, et);
4616 
4617 	/*
4618 	 * The insert code isn't quite ready to deal with all cases of
4619 	 * left contiguousness. Specifically, if it's an insert into
4620 	 * the 1st record in a leaf, it will require the adjustment of
4621 	 * cluster count on the last record of the path directly to it's
4622 	 * left. For now, just catch that case and fool the layers
4623 	 * above us. This works just fine for tree_depth == 0, which
4624 	 * is why we allow that above.
4625 	 */
4626 	if (insert->ins_contig == CONTIG_LEFT &&
4627 	    insert->ins_contig_index == 0)
4628 		insert->ins_contig = CONTIG_NONE;
4629 
4630 	/*
4631 	 * Ok, so we can simply compare against last_eb to figure out
4632 	 * whether the path doesn't exist. This will only happen in
4633 	 * the case that we're doing a tail append, so maybe we can
4634 	 * take advantage of that information somehow.
4635 	 */
4636 	if (ocfs2_et_get_last_eb_blk(et) ==
4637 	    path_leaf_bh(path)->b_blocknr) {
4638 		/*
4639 		 * Ok, ocfs2_find_path() returned us the rightmost
4640 		 * tree path. This might be an appending insert. There are
4641 		 * two cases:
4642 		 *    1) We're doing a true append at the tail:
4643 		 *	-This might even be off the end of the leaf
4644 		 *    2) We're "appending" by rotating in the tail
4645 		 */
4646 		ocfs2_figure_appending_type(insert, el, insert_rec);
4647 	}
4648 
4649 out:
4650 	ocfs2_free_path(path);
4651 
4652 	if (ret == 0)
4653 		*last_eb_bh = bh;
4654 	else
4655 		brelse(bh);
4656 	return ret;
4657 }
4658 
4659 /*
4660  * Insert an extent into an inode btree.
4661  *
4662  * The caller needs to update fe->i_clusters
4663  */
4664 int ocfs2_insert_extent(struct ocfs2_super *osb,
4665 			handle_t *handle,
4666 			struct inode *inode,
4667 			struct ocfs2_extent_tree *et,
4668 			u32 cpos,
4669 			u64 start_blk,
4670 			u32 new_clusters,
4671 			u8 flags,
4672 			struct ocfs2_alloc_context *meta_ac)
4673 {
4674 	int status;
4675 	int uninitialized_var(free_records);
4676 	struct buffer_head *last_eb_bh = NULL;
4677 	struct ocfs2_insert_type insert = {0, };
4678 	struct ocfs2_extent_rec rec;
4679 
4680 	mlog(0, "add %u clusters at position %u to inode %llu\n",
4681 	     new_clusters, cpos, (unsigned long long)OCFS2_I(inode)->ip_blkno);
4682 
4683 	memset(&rec, 0, sizeof(rec));
4684 	rec.e_cpos = cpu_to_le32(cpos);
4685 	rec.e_blkno = cpu_to_le64(start_blk);
4686 	rec.e_leaf_clusters = cpu_to_le16(new_clusters);
4687 	rec.e_flags = flags;
4688 	status = ocfs2_et_insert_check(inode, et, &rec);
4689 	if (status) {
4690 		mlog_errno(status);
4691 		goto bail;
4692 	}
4693 
4694 	status = ocfs2_figure_insert_type(inode, et, &last_eb_bh, &rec,
4695 					  &free_records, &insert);
4696 	if (status < 0) {
4697 		mlog_errno(status);
4698 		goto bail;
4699 	}
4700 
4701 	mlog(0, "Insert.appending: %u, Insert.Contig: %u, "
4702 	     "Insert.contig_index: %d, Insert.free_records: %d, "
4703 	     "Insert.tree_depth: %d\n",
4704 	     insert.ins_appending, insert.ins_contig, insert.ins_contig_index,
4705 	     free_records, insert.ins_tree_depth);
4706 
4707 	if (insert.ins_contig == CONTIG_NONE && free_records == 0) {
4708 		status = ocfs2_grow_tree(inode, handle, et,
4709 					 &insert.ins_tree_depth, &last_eb_bh,
4710 					 meta_ac);
4711 		if (status) {
4712 			mlog_errno(status);
4713 			goto bail;
4714 		}
4715 	}
4716 
4717 	/* Finally, we can add clusters. This might rotate the tree for us. */
4718 	status = ocfs2_do_insert_extent(inode, handle, et, &rec, &insert);
4719 	if (status < 0)
4720 		mlog_errno(status);
4721 	else if (et->et_ops == &ocfs2_dinode_et_ops)
4722 		ocfs2_extent_map_insert_rec(inode, &rec);
4723 
4724 bail:
4725 	brelse(last_eb_bh);
4726 
4727 	mlog_exit(status);
4728 	return status;
4729 }
4730 
4731 /*
4732  * Allcate and add clusters into the extent b-tree.
4733  * The new clusters(clusters_to_add) will be inserted at logical_offset.
4734  * The extent b-tree's root is specified by et, and
4735  * it is not limited to the file storage. Any extent tree can use this
4736  * function if it implements the proper ocfs2_extent_tree.
4737  */
4738 int ocfs2_add_clusters_in_btree(struct ocfs2_super *osb,
4739 				struct inode *inode,
4740 				u32 *logical_offset,
4741 				u32 clusters_to_add,
4742 				int mark_unwritten,
4743 				struct ocfs2_extent_tree *et,
4744 				handle_t *handle,
4745 				struct ocfs2_alloc_context *data_ac,
4746 				struct ocfs2_alloc_context *meta_ac,
4747 				enum ocfs2_alloc_restarted *reason_ret)
4748 {
4749 	int status = 0;
4750 	int free_extents;
4751 	enum ocfs2_alloc_restarted reason = RESTART_NONE;
4752 	u32 bit_off, num_bits;
4753 	u64 block;
4754 	u8 flags = 0;
4755 
4756 	BUG_ON(!clusters_to_add);
4757 
4758 	if (mark_unwritten)
4759 		flags = OCFS2_EXT_UNWRITTEN;
4760 
4761 	free_extents = ocfs2_num_free_extents(osb, inode, et);
4762 	if (free_extents < 0) {
4763 		status = free_extents;
4764 		mlog_errno(status);
4765 		goto leave;
4766 	}
4767 
4768 	/* there are two cases which could cause us to EAGAIN in the
4769 	 * we-need-more-metadata case:
4770 	 * 1) we haven't reserved *any*
4771 	 * 2) we are so fragmented, we've needed to add metadata too
4772 	 *    many times. */
4773 	if (!free_extents && !meta_ac) {
4774 		mlog(0, "we haven't reserved any metadata!\n");
4775 		status = -EAGAIN;
4776 		reason = RESTART_META;
4777 		goto leave;
4778 	} else if ((!free_extents)
4779 		   && (ocfs2_alloc_context_bits_left(meta_ac)
4780 		       < ocfs2_extend_meta_needed(et->et_root_el))) {
4781 		mlog(0, "filesystem is really fragmented...\n");
4782 		status = -EAGAIN;
4783 		reason = RESTART_META;
4784 		goto leave;
4785 	}
4786 
4787 	status = __ocfs2_claim_clusters(osb, handle, data_ac, 1,
4788 					clusters_to_add, &bit_off, &num_bits);
4789 	if (status < 0) {
4790 		if (status != -ENOSPC)
4791 			mlog_errno(status);
4792 		goto leave;
4793 	}
4794 
4795 	BUG_ON(num_bits > clusters_to_add);
4796 
4797 	/* reserve our write early -- insert_extent may update the tree root */
4798 	status = ocfs2_et_root_journal_access(handle, inode, et,
4799 					      OCFS2_JOURNAL_ACCESS_WRITE);
4800 	if (status < 0) {
4801 		mlog_errno(status);
4802 		goto leave;
4803 	}
4804 
4805 	block = ocfs2_clusters_to_blocks(osb->sb, bit_off);
4806 	mlog(0, "Allocating %u clusters at block %u for inode %llu\n",
4807 	     num_bits, bit_off, (unsigned long long)OCFS2_I(inode)->ip_blkno);
4808 	status = ocfs2_insert_extent(osb, handle, inode, et,
4809 				     *logical_offset, block,
4810 				     num_bits, flags, meta_ac);
4811 	if (status < 0) {
4812 		mlog_errno(status);
4813 		goto leave;
4814 	}
4815 
4816 	status = ocfs2_journal_dirty(handle, et->et_root_bh);
4817 	if (status < 0) {
4818 		mlog_errno(status);
4819 		goto leave;
4820 	}
4821 
4822 	clusters_to_add -= num_bits;
4823 	*logical_offset += num_bits;
4824 
4825 	if (clusters_to_add) {
4826 		mlog(0, "need to alloc once more, wanted = %u\n",
4827 		     clusters_to_add);
4828 		status = -EAGAIN;
4829 		reason = RESTART_TRANS;
4830 	}
4831 
4832 leave:
4833 	mlog_exit(status);
4834 	if (reason_ret)
4835 		*reason_ret = reason;
4836 	return status;
4837 }
4838 
4839 static void ocfs2_make_right_split_rec(struct super_block *sb,
4840 				       struct ocfs2_extent_rec *split_rec,
4841 				       u32 cpos,
4842 				       struct ocfs2_extent_rec *rec)
4843 {
4844 	u32 rec_cpos = le32_to_cpu(rec->e_cpos);
4845 	u32 rec_range = rec_cpos + le16_to_cpu(rec->e_leaf_clusters);
4846 
4847 	memset(split_rec, 0, sizeof(struct ocfs2_extent_rec));
4848 
4849 	split_rec->e_cpos = cpu_to_le32(cpos);
4850 	split_rec->e_leaf_clusters = cpu_to_le16(rec_range - cpos);
4851 
4852 	split_rec->e_blkno = rec->e_blkno;
4853 	le64_add_cpu(&split_rec->e_blkno,
4854 		     ocfs2_clusters_to_blocks(sb, cpos - rec_cpos));
4855 
4856 	split_rec->e_flags = rec->e_flags;
4857 }
4858 
4859 static int ocfs2_split_and_insert(struct inode *inode,
4860 				  handle_t *handle,
4861 				  struct ocfs2_path *path,
4862 				  struct ocfs2_extent_tree *et,
4863 				  struct buffer_head **last_eb_bh,
4864 				  int split_index,
4865 				  struct ocfs2_extent_rec *orig_split_rec,
4866 				  struct ocfs2_alloc_context *meta_ac)
4867 {
4868 	int ret = 0, depth;
4869 	unsigned int insert_range, rec_range, do_leftright = 0;
4870 	struct ocfs2_extent_rec tmprec;
4871 	struct ocfs2_extent_list *rightmost_el;
4872 	struct ocfs2_extent_rec rec;
4873 	struct ocfs2_extent_rec split_rec = *orig_split_rec;
4874 	struct ocfs2_insert_type insert;
4875 	struct ocfs2_extent_block *eb;
4876 
4877 leftright:
4878 	/*
4879 	 * Store a copy of the record on the stack - it might move
4880 	 * around as the tree is manipulated below.
4881 	 */
4882 	rec = path_leaf_el(path)->l_recs[split_index];
4883 
4884 	rightmost_el = et->et_root_el;
4885 
4886 	depth = le16_to_cpu(rightmost_el->l_tree_depth);
4887 	if (depth) {
4888 		BUG_ON(!(*last_eb_bh));
4889 		eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data;
4890 		rightmost_el = &eb->h_list;
4891 	}
4892 
4893 	if (le16_to_cpu(rightmost_el->l_next_free_rec) ==
4894 	    le16_to_cpu(rightmost_el->l_count)) {
4895 		ret = ocfs2_grow_tree(inode, handle, et,
4896 				      &depth, last_eb_bh, meta_ac);
4897 		if (ret) {
4898 			mlog_errno(ret);
4899 			goto out;
4900 		}
4901 	}
4902 
4903 	memset(&insert, 0, sizeof(struct ocfs2_insert_type));
4904 	insert.ins_appending = APPEND_NONE;
4905 	insert.ins_contig = CONTIG_NONE;
4906 	insert.ins_tree_depth = depth;
4907 
4908 	insert_range = le32_to_cpu(split_rec.e_cpos) +
4909 		le16_to_cpu(split_rec.e_leaf_clusters);
4910 	rec_range = le32_to_cpu(rec.e_cpos) +
4911 		le16_to_cpu(rec.e_leaf_clusters);
4912 
4913 	if (split_rec.e_cpos == rec.e_cpos) {
4914 		insert.ins_split = SPLIT_LEFT;
4915 	} else if (insert_range == rec_range) {
4916 		insert.ins_split = SPLIT_RIGHT;
4917 	} else {
4918 		/*
4919 		 * Left/right split. We fake this as a right split
4920 		 * first and then make a second pass as a left split.
4921 		 */
4922 		insert.ins_split = SPLIT_RIGHT;
4923 
4924 		ocfs2_make_right_split_rec(inode->i_sb, &tmprec, insert_range,
4925 					   &rec);
4926 
4927 		split_rec = tmprec;
4928 
4929 		BUG_ON(do_leftright);
4930 		do_leftright = 1;
4931 	}
4932 
4933 	ret = ocfs2_do_insert_extent(inode, handle, et, &split_rec, &insert);
4934 	if (ret) {
4935 		mlog_errno(ret);
4936 		goto out;
4937 	}
4938 
4939 	if (do_leftright == 1) {
4940 		u32 cpos;
4941 		struct ocfs2_extent_list *el;
4942 
4943 		do_leftright++;
4944 		split_rec = *orig_split_rec;
4945 
4946 		ocfs2_reinit_path(path, 1);
4947 
4948 		cpos = le32_to_cpu(split_rec.e_cpos);
4949 		ret = ocfs2_find_path(inode, path, cpos);
4950 		if (ret) {
4951 			mlog_errno(ret);
4952 			goto out;
4953 		}
4954 
4955 		el = path_leaf_el(path);
4956 		split_index = ocfs2_search_extent_list(el, cpos);
4957 		goto leftright;
4958 	}
4959 out:
4960 
4961 	return ret;
4962 }
4963 
4964 static int ocfs2_replace_extent_rec(struct inode *inode,
4965 				    handle_t *handle,
4966 				    struct ocfs2_path *path,
4967 				    struct ocfs2_extent_list *el,
4968 				    int split_index,
4969 				    struct ocfs2_extent_rec *split_rec)
4970 {
4971 	int ret;
4972 
4973 	ret = ocfs2_path_bh_journal_access(handle, inode, path,
4974 					   path_num_items(path) - 1);
4975 	if (ret) {
4976 		mlog_errno(ret);
4977 		goto out;
4978 	}
4979 
4980 	el->l_recs[split_index] = *split_rec;
4981 
4982 	ocfs2_journal_dirty(handle, path_leaf_bh(path));
4983 out:
4984 	return ret;
4985 }
4986 
4987 /*
4988  * Mark part or all of the extent record at split_index in the leaf
4989  * pointed to by path as written. This removes the unwritten
4990  * extent flag.
4991  *
4992  * Care is taken to handle contiguousness so as to not grow the tree.
4993  *
4994  * meta_ac is not strictly necessary - we only truly need it if growth
4995  * of the tree is required. All other cases will degrade into a less
4996  * optimal tree layout.
4997  *
4998  * last_eb_bh should be the rightmost leaf block for any extent
4999  * btree. Since a split may grow the tree or a merge might shrink it,
5000  * the caller cannot trust the contents of that buffer after this call.
5001  *
5002  * This code is optimized for readability - several passes might be
5003  * made over certain portions of the tree. All of those blocks will
5004  * have been brought into cache (and pinned via the journal), so the
5005  * extra overhead is not expressed in terms of disk reads.
5006  */
5007 static int __ocfs2_mark_extent_written(struct inode *inode,
5008 				       struct ocfs2_extent_tree *et,
5009 				       handle_t *handle,
5010 				       struct ocfs2_path *path,
5011 				       int split_index,
5012 				       struct ocfs2_extent_rec *split_rec,
5013 				       struct ocfs2_alloc_context *meta_ac,
5014 				       struct ocfs2_cached_dealloc_ctxt *dealloc)
5015 {
5016 	int ret = 0;
5017 	struct ocfs2_extent_list *el = path_leaf_el(path);
5018 	struct buffer_head *last_eb_bh = NULL;
5019 	struct ocfs2_extent_rec *rec = &el->l_recs[split_index];
5020 	struct ocfs2_merge_ctxt ctxt;
5021 	struct ocfs2_extent_list *rightmost_el;
5022 
5023 	if (!(rec->e_flags & OCFS2_EXT_UNWRITTEN)) {
5024 		ret = -EIO;
5025 		mlog_errno(ret);
5026 		goto out;
5027 	}
5028 
5029 	if (le32_to_cpu(rec->e_cpos) > le32_to_cpu(split_rec->e_cpos) ||
5030 	    ((le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)) <
5031 	     (le32_to_cpu(split_rec->e_cpos) + le16_to_cpu(split_rec->e_leaf_clusters)))) {
5032 		ret = -EIO;
5033 		mlog_errno(ret);
5034 		goto out;
5035 	}
5036 
5037 	ctxt.c_contig_type = ocfs2_figure_merge_contig_type(inode, path, el,
5038 							    split_index,
5039 							    split_rec);
5040 
5041 	/*
5042 	 * The core merge / split code wants to know how much room is
5043 	 * left in this inodes allocation tree, so we pass the
5044 	 * rightmost extent list.
5045 	 */
5046 	if (path->p_tree_depth) {
5047 		struct ocfs2_extent_block *eb;
5048 
5049 		ret = ocfs2_read_extent_block(inode,
5050 					      ocfs2_et_get_last_eb_blk(et),
5051 					      &last_eb_bh);
5052 		if (ret) {
5053 			mlog_exit(ret);
5054 			goto out;
5055 		}
5056 
5057 		eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
5058 		rightmost_el = &eb->h_list;
5059 	} else
5060 		rightmost_el = path_root_el(path);
5061 
5062 	if (rec->e_cpos == split_rec->e_cpos &&
5063 	    rec->e_leaf_clusters == split_rec->e_leaf_clusters)
5064 		ctxt.c_split_covers_rec = 1;
5065 	else
5066 		ctxt.c_split_covers_rec = 0;
5067 
5068 	ctxt.c_has_empty_extent = ocfs2_is_empty_extent(&el->l_recs[0]);
5069 
5070 	mlog(0, "index: %d, contig: %u, has_empty: %u, split_covers: %u\n",
5071 	     split_index, ctxt.c_contig_type, ctxt.c_has_empty_extent,
5072 	     ctxt.c_split_covers_rec);
5073 
5074 	if (ctxt.c_contig_type == CONTIG_NONE) {
5075 		if (ctxt.c_split_covers_rec)
5076 			ret = ocfs2_replace_extent_rec(inode, handle,
5077 						       path, el,
5078 						       split_index, split_rec);
5079 		else
5080 			ret = ocfs2_split_and_insert(inode, handle, path, et,
5081 						     &last_eb_bh, split_index,
5082 						     split_rec, meta_ac);
5083 		if (ret)
5084 			mlog_errno(ret);
5085 	} else {
5086 		ret = ocfs2_try_to_merge_extent(inode, handle, path,
5087 						split_index, split_rec,
5088 						dealloc, &ctxt, et);
5089 		if (ret)
5090 			mlog_errno(ret);
5091 	}
5092 
5093 out:
5094 	brelse(last_eb_bh);
5095 	return ret;
5096 }
5097 
5098 /*
5099  * Mark the already-existing extent at cpos as written for len clusters.
5100  *
5101  * If the existing extent is larger than the request, initiate a
5102  * split. An attempt will be made at merging with adjacent extents.
5103  *
5104  * The caller is responsible for passing down meta_ac if we'll need it.
5105  */
5106 int ocfs2_mark_extent_written(struct inode *inode,
5107 			      struct ocfs2_extent_tree *et,
5108 			      handle_t *handle, u32 cpos, u32 len, u32 phys,
5109 			      struct ocfs2_alloc_context *meta_ac,
5110 			      struct ocfs2_cached_dealloc_ctxt *dealloc)
5111 {
5112 	int ret, index;
5113 	u64 start_blkno = ocfs2_clusters_to_blocks(inode->i_sb, phys);
5114 	struct ocfs2_extent_rec split_rec;
5115 	struct ocfs2_path *left_path = NULL;
5116 	struct ocfs2_extent_list *el;
5117 
5118 	mlog(0, "Inode %lu cpos %u, len %u, phys %u (%llu)\n",
5119 	     inode->i_ino, cpos, len, phys, (unsigned long long)start_blkno);
5120 
5121 	if (!ocfs2_writes_unwritten_extents(OCFS2_SB(inode->i_sb))) {
5122 		ocfs2_error(inode->i_sb, "Inode %llu has unwritten extents "
5123 			    "that are being written to, but the feature bit "
5124 			    "is not set in the super block.",
5125 			    (unsigned long long)OCFS2_I(inode)->ip_blkno);
5126 		ret = -EROFS;
5127 		goto out;
5128 	}
5129 
5130 	/*
5131 	 * XXX: This should be fixed up so that we just re-insert the
5132 	 * next extent records.
5133 	 *
5134 	 * XXX: This is a hack on the extent tree, maybe it should be
5135 	 * an op?
5136 	 */
5137 	if (et->et_ops == &ocfs2_dinode_et_ops)
5138 		ocfs2_extent_map_trunc(inode, 0);
5139 
5140 	left_path = ocfs2_new_path_from_et(et);
5141 	if (!left_path) {
5142 		ret = -ENOMEM;
5143 		mlog_errno(ret);
5144 		goto out;
5145 	}
5146 
5147 	ret = ocfs2_find_path(inode, left_path, cpos);
5148 	if (ret) {
5149 		mlog_errno(ret);
5150 		goto out;
5151 	}
5152 	el = path_leaf_el(left_path);
5153 
5154 	index = ocfs2_search_extent_list(el, cpos);
5155 	if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) {
5156 		ocfs2_error(inode->i_sb,
5157 			    "Inode %llu has an extent at cpos %u which can no "
5158 			    "longer be found.\n",
5159 			    (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos);
5160 		ret = -EROFS;
5161 		goto out;
5162 	}
5163 
5164 	memset(&split_rec, 0, sizeof(struct ocfs2_extent_rec));
5165 	split_rec.e_cpos = cpu_to_le32(cpos);
5166 	split_rec.e_leaf_clusters = cpu_to_le16(len);
5167 	split_rec.e_blkno = cpu_to_le64(start_blkno);
5168 	split_rec.e_flags = path_leaf_el(left_path)->l_recs[index].e_flags;
5169 	split_rec.e_flags &= ~OCFS2_EXT_UNWRITTEN;
5170 
5171 	ret = __ocfs2_mark_extent_written(inode, et, handle, left_path,
5172 					  index, &split_rec, meta_ac,
5173 					  dealloc);
5174 	if (ret)
5175 		mlog_errno(ret);
5176 
5177 out:
5178 	ocfs2_free_path(left_path);
5179 	return ret;
5180 }
5181 
5182 static int ocfs2_split_tree(struct inode *inode, struct ocfs2_extent_tree *et,
5183 			    handle_t *handle, struct ocfs2_path *path,
5184 			    int index, u32 new_range,
5185 			    struct ocfs2_alloc_context *meta_ac)
5186 {
5187 	int ret, depth, credits = handle->h_buffer_credits;
5188 	struct buffer_head *last_eb_bh = NULL;
5189 	struct ocfs2_extent_block *eb;
5190 	struct ocfs2_extent_list *rightmost_el, *el;
5191 	struct ocfs2_extent_rec split_rec;
5192 	struct ocfs2_extent_rec *rec;
5193 	struct ocfs2_insert_type insert;
5194 
5195 	/*
5196 	 * Setup the record to split before we grow the tree.
5197 	 */
5198 	el = path_leaf_el(path);
5199 	rec = &el->l_recs[index];
5200 	ocfs2_make_right_split_rec(inode->i_sb, &split_rec, new_range, rec);
5201 
5202 	depth = path->p_tree_depth;
5203 	if (depth > 0) {
5204 		ret = ocfs2_read_extent_block(inode,
5205 					      ocfs2_et_get_last_eb_blk(et),
5206 					      &last_eb_bh);
5207 		if (ret < 0) {
5208 			mlog_errno(ret);
5209 			goto out;
5210 		}
5211 
5212 		eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
5213 		rightmost_el = &eb->h_list;
5214 	} else
5215 		rightmost_el = path_leaf_el(path);
5216 
5217 	credits += path->p_tree_depth +
5218 		   ocfs2_extend_meta_needed(et->et_root_el);
5219 	ret = ocfs2_extend_trans(handle, credits);
5220 	if (ret) {
5221 		mlog_errno(ret);
5222 		goto out;
5223 	}
5224 
5225 	if (le16_to_cpu(rightmost_el->l_next_free_rec) ==
5226 	    le16_to_cpu(rightmost_el->l_count)) {
5227 		ret = ocfs2_grow_tree(inode, handle, et, &depth, &last_eb_bh,
5228 				      meta_ac);
5229 		if (ret) {
5230 			mlog_errno(ret);
5231 			goto out;
5232 		}
5233 	}
5234 
5235 	memset(&insert, 0, sizeof(struct ocfs2_insert_type));
5236 	insert.ins_appending = APPEND_NONE;
5237 	insert.ins_contig = CONTIG_NONE;
5238 	insert.ins_split = SPLIT_RIGHT;
5239 	insert.ins_tree_depth = depth;
5240 
5241 	ret = ocfs2_do_insert_extent(inode, handle, et, &split_rec, &insert);
5242 	if (ret)
5243 		mlog_errno(ret);
5244 
5245 out:
5246 	brelse(last_eb_bh);
5247 	return ret;
5248 }
5249 
5250 static int ocfs2_truncate_rec(struct inode *inode, handle_t *handle,
5251 			      struct ocfs2_path *path, int index,
5252 			      struct ocfs2_cached_dealloc_ctxt *dealloc,
5253 			      u32 cpos, u32 len,
5254 			      struct ocfs2_extent_tree *et)
5255 {
5256 	int ret;
5257 	u32 left_cpos, rec_range, trunc_range;
5258 	int wants_rotate = 0, is_rightmost_tree_rec = 0;
5259 	struct super_block *sb = inode->i_sb;
5260 	struct ocfs2_path *left_path = NULL;
5261 	struct ocfs2_extent_list *el = path_leaf_el(path);
5262 	struct ocfs2_extent_rec *rec;
5263 	struct ocfs2_extent_block *eb;
5264 
5265 	if (ocfs2_is_empty_extent(&el->l_recs[0]) && index > 0) {
5266 		ret = ocfs2_rotate_tree_left(inode, handle, path, dealloc, et);
5267 		if (ret) {
5268 			mlog_errno(ret);
5269 			goto out;
5270 		}
5271 
5272 		index--;
5273 	}
5274 
5275 	if (index == (le16_to_cpu(el->l_next_free_rec) - 1) &&
5276 	    path->p_tree_depth) {
5277 		/*
5278 		 * Check whether this is the rightmost tree record. If
5279 		 * we remove all of this record or part of its right
5280 		 * edge then an update of the record lengths above it
5281 		 * will be required.
5282 		 */
5283 		eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
5284 		if (eb->h_next_leaf_blk == 0)
5285 			is_rightmost_tree_rec = 1;
5286 	}
5287 
5288 	rec = &el->l_recs[index];
5289 	if (index == 0 && path->p_tree_depth &&
5290 	    le32_to_cpu(rec->e_cpos) == cpos) {
5291 		/*
5292 		 * Changing the leftmost offset (via partial or whole
5293 		 * record truncate) of an interior (or rightmost) path
5294 		 * means we have to update the subtree that is formed
5295 		 * by this leaf and the one to it's left.
5296 		 *
5297 		 * There are two cases we can skip:
5298 		 *   1) Path is the leftmost one in our inode tree.
5299 		 *   2) The leaf is rightmost and will be empty after
5300 		 *      we remove the extent record - the rotate code
5301 		 *      knows how to update the newly formed edge.
5302 		 */
5303 
5304 		ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path,
5305 						    &left_cpos);
5306 		if (ret) {
5307 			mlog_errno(ret);
5308 			goto out;
5309 		}
5310 
5311 		if (left_cpos && le16_to_cpu(el->l_next_free_rec) > 1) {
5312 			left_path = ocfs2_new_path_from_path(path);
5313 			if (!left_path) {
5314 				ret = -ENOMEM;
5315 				mlog_errno(ret);
5316 				goto out;
5317 			}
5318 
5319 			ret = ocfs2_find_path(inode, left_path, left_cpos);
5320 			if (ret) {
5321 				mlog_errno(ret);
5322 				goto out;
5323 			}
5324 		}
5325 	}
5326 
5327 	ret = ocfs2_extend_rotate_transaction(handle, 0,
5328 					      handle->h_buffer_credits,
5329 					      path);
5330 	if (ret) {
5331 		mlog_errno(ret);
5332 		goto out;
5333 	}
5334 
5335 	ret = ocfs2_journal_access_path(inode, handle, path);
5336 	if (ret) {
5337 		mlog_errno(ret);
5338 		goto out;
5339 	}
5340 
5341 	ret = ocfs2_journal_access_path(inode, handle, left_path);
5342 	if (ret) {
5343 		mlog_errno(ret);
5344 		goto out;
5345 	}
5346 
5347 	rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
5348 	trunc_range = cpos + len;
5349 
5350 	if (le32_to_cpu(rec->e_cpos) == cpos && rec_range == trunc_range) {
5351 		int next_free;
5352 
5353 		memset(rec, 0, sizeof(*rec));
5354 		ocfs2_cleanup_merge(el, index);
5355 		wants_rotate = 1;
5356 
5357 		next_free = le16_to_cpu(el->l_next_free_rec);
5358 		if (is_rightmost_tree_rec && next_free > 1) {
5359 			/*
5360 			 * We skip the edge update if this path will
5361 			 * be deleted by the rotate code.
5362 			 */
5363 			rec = &el->l_recs[next_free - 1];
5364 			ocfs2_adjust_rightmost_records(inode, handle, path,
5365 						       rec);
5366 		}
5367 	} else if (le32_to_cpu(rec->e_cpos) == cpos) {
5368 		/* Remove leftmost portion of the record. */
5369 		le32_add_cpu(&rec->e_cpos, len);
5370 		le64_add_cpu(&rec->e_blkno, ocfs2_clusters_to_blocks(sb, len));
5371 		le16_add_cpu(&rec->e_leaf_clusters, -len);
5372 	} else if (rec_range == trunc_range) {
5373 		/* Remove rightmost portion of the record */
5374 		le16_add_cpu(&rec->e_leaf_clusters, -len);
5375 		if (is_rightmost_tree_rec)
5376 			ocfs2_adjust_rightmost_records(inode, handle, path, rec);
5377 	} else {
5378 		/* Caller should have trapped this. */
5379 		mlog(ML_ERROR, "Inode %llu: Invalid record truncate: (%u, %u) "
5380 		     "(%u, %u)\n", (unsigned long long)OCFS2_I(inode)->ip_blkno,
5381 		     le32_to_cpu(rec->e_cpos),
5382 		     le16_to_cpu(rec->e_leaf_clusters), cpos, len);
5383 		BUG();
5384 	}
5385 
5386 	if (left_path) {
5387 		int subtree_index;
5388 
5389 		subtree_index = ocfs2_find_subtree_root(inode, left_path, path);
5390 		ocfs2_complete_edge_insert(inode, handle, left_path, path,
5391 					   subtree_index);
5392 	}
5393 
5394 	ocfs2_journal_dirty(handle, path_leaf_bh(path));
5395 
5396 	ret = ocfs2_rotate_tree_left(inode, handle, path, dealloc, et);
5397 	if (ret) {
5398 		mlog_errno(ret);
5399 		goto out;
5400 	}
5401 
5402 out:
5403 	ocfs2_free_path(left_path);
5404 	return ret;
5405 }
5406 
5407 int ocfs2_remove_extent(struct inode *inode,
5408 			struct ocfs2_extent_tree *et,
5409 			u32 cpos, u32 len, handle_t *handle,
5410 			struct ocfs2_alloc_context *meta_ac,
5411 			struct ocfs2_cached_dealloc_ctxt *dealloc)
5412 {
5413 	int ret, index;
5414 	u32 rec_range, trunc_range;
5415 	struct ocfs2_extent_rec *rec;
5416 	struct ocfs2_extent_list *el;
5417 	struct ocfs2_path *path = NULL;
5418 
5419 	ocfs2_extent_map_trunc(inode, 0);
5420 
5421 	path = ocfs2_new_path_from_et(et);
5422 	if (!path) {
5423 		ret = -ENOMEM;
5424 		mlog_errno(ret);
5425 		goto out;
5426 	}
5427 
5428 	ret = ocfs2_find_path(inode, path, cpos);
5429 	if (ret) {
5430 		mlog_errno(ret);
5431 		goto out;
5432 	}
5433 
5434 	el = path_leaf_el(path);
5435 	index = ocfs2_search_extent_list(el, cpos);
5436 	if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) {
5437 		ocfs2_error(inode->i_sb,
5438 			    "Inode %llu has an extent at cpos %u which can no "
5439 			    "longer be found.\n",
5440 			    (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos);
5441 		ret = -EROFS;
5442 		goto out;
5443 	}
5444 
5445 	/*
5446 	 * We have 3 cases of extent removal:
5447 	 *   1) Range covers the entire extent rec
5448 	 *   2) Range begins or ends on one edge of the extent rec
5449 	 *   3) Range is in the middle of the extent rec (no shared edges)
5450 	 *
5451 	 * For case 1 we remove the extent rec and left rotate to
5452 	 * fill the hole.
5453 	 *
5454 	 * For case 2 we just shrink the existing extent rec, with a
5455 	 * tree update if the shrinking edge is also the edge of an
5456 	 * extent block.
5457 	 *
5458 	 * For case 3 we do a right split to turn the extent rec into
5459 	 * something case 2 can handle.
5460 	 */
5461 	rec = &el->l_recs[index];
5462 	rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
5463 	trunc_range = cpos + len;
5464 
5465 	BUG_ON(cpos < le32_to_cpu(rec->e_cpos) || trunc_range > rec_range);
5466 
5467 	mlog(0, "Inode %llu, remove (cpos %u, len %u). Existing index %d "
5468 	     "(cpos %u, len %u)\n",
5469 	     (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos, len, index,
5470 	     le32_to_cpu(rec->e_cpos), ocfs2_rec_clusters(el, rec));
5471 
5472 	if (le32_to_cpu(rec->e_cpos) == cpos || rec_range == trunc_range) {
5473 		ret = ocfs2_truncate_rec(inode, handle, path, index, dealloc,
5474 					 cpos, len, et);
5475 		if (ret) {
5476 			mlog_errno(ret);
5477 			goto out;
5478 		}
5479 	} else {
5480 		ret = ocfs2_split_tree(inode, et, handle, path, index,
5481 				       trunc_range, meta_ac);
5482 		if (ret) {
5483 			mlog_errno(ret);
5484 			goto out;
5485 		}
5486 
5487 		/*
5488 		 * The split could have manipulated the tree enough to
5489 		 * move the record location, so we have to look for it again.
5490 		 */
5491 		ocfs2_reinit_path(path, 1);
5492 
5493 		ret = ocfs2_find_path(inode, path, cpos);
5494 		if (ret) {
5495 			mlog_errno(ret);
5496 			goto out;
5497 		}
5498 
5499 		el = path_leaf_el(path);
5500 		index = ocfs2_search_extent_list(el, cpos);
5501 		if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) {
5502 			ocfs2_error(inode->i_sb,
5503 				    "Inode %llu: split at cpos %u lost record.",
5504 				    (unsigned long long)OCFS2_I(inode)->ip_blkno,
5505 				    cpos);
5506 			ret = -EROFS;
5507 			goto out;
5508 		}
5509 
5510 		/*
5511 		 * Double check our values here. If anything is fishy,
5512 		 * it's easier to catch it at the top level.
5513 		 */
5514 		rec = &el->l_recs[index];
5515 		rec_range = le32_to_cpu(rec->e_cpos) +
5516 			ocfs2_rec_clusters(el, rec);
5517 		if (rec_range != trunc_range) {
5518 			ocfs2_error(inode->i_sb,
5519 				    "Inode %llu: error after split at cpos %u"
5520 				    "trunc len %u, existing record is (%u,%u)",
5521 				    (unsigned long long)OCFS2_I(inode)->ip_blkno,
5522 				    cpos, len, le32_to_cpu(rec->e_cpos),
5523 				    ocfs2_rec_clusters(el, rec));
5524 			ret = -EROFS;
5525 			goto out;
5526 		}
5527 
5528 		ret = ocfs2_truncate_rec(inode, handle, path, index, dealloc,
5529 					 cpos, len, et);
5530 		if (ret) {
5531 			mlog_errno(ret);
5532 			goto out;
5533 		}
5534 	}
5535 
5536 out:
5537 	ocfs2_free_path(path);
5538 	return ret;
5539 }
5540 
5541 int ocfs2_remove_btree_range(struct inode *inode,
5542 			     struct ocfs2_extent_tree *et,
5543 			     u32 cpos, u32 phys_cpos, u32 len,
5544 			     struct ocfs2_cached_dealloc_ctxt *dealloc)
5545 {
5546 	int ret;
5547 	u64 phys_blkno = ocfs2_clusters_to_blocks(inode->i_sb, phys_cpos);
5548 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
5549 	struct inode *tl_inode = osb->osb_tl_inode;
5550 	handle_t *handle;
5551 	struct ocfs2_alloc_context *meta_ac = NULL;
5552 
5553 	ret = ocfs2_lock_allocators(inode, et, 0, 1, NULL, &meta_ac);
5554 	if (ret) {
5555 		mlog_errno(ret);
5556 		return ret;
5557 	}
5558 
5559 	mutex_lock(&tl_inode->i_mutex);
5560 
5561 	if (ocfs2_truncate_log_needs_flush(osb)) {
5562 		ret = __ocfs2_flush_truncate_log(osb);
5563 		if (ret < 0) {
5564 			mlog_errno(ret);
5565 			goto out;
5566 		}
5567 	}
5568 
5569 	handle = ocfs2_start_trans(osb, ocfs2_remove_extent_credits(osb->sb));
5570 	if (IS_ERR(handle)) {
5571 		ret = PTR_ERR(handle);
5572 		mlog_errno(ret);
5573 		goto out;
5574 	}
5575 
5576 	ret = ocfs2_et_root_journal_access(handle, inode, et,
5577 					   OCFS2_JOURNAL_ACCESS_WRITE);
5578 	if (ret) {
5579 		mlog_errno(ret);
5580 		goto out;
5581 	}
5582 
5583 	vfs_dq_free_space_nodirty(inode,
5584 				  ocfs2_clusters_to_bytes(inode->i_sb, len));
5585 
5586 	ret = ocfs2_remove_extent(inode, et, cpos, len, handle, meta_ac,
5587 				  dealloc);
5588 	if (ret) {
5589 		mlog_errno(ret);
5590 		goto out_commit;
5591 	}
5592 
5593 	ocfs2_et_update_clusters(inode, et, -len);
5594 
5595 	ret = ocfs2_journal_dirty(handle, et->et_root_bh);
5596 	if (ret) {
5597 		mlog_errno(ret);
5598 		goto out_commit;
5599 	}
5600 
5601 	ret = ocfs2_truncate_log_append(osb, handle, phys_blkno, len);
5602 	if (ret)
5603 		mlog_errno(ret);
5604 
5605 out_commit:
5606 	ocfs2_commit_trans(osb, handle);
5607 out:
5608 	mutex_unlock(&tl_inode->i_mutex);
5609 
5610 	if (meta_ac)
5611 		ocfs2_free_alloc_context(meta_ac);
5612 
5613 	return ret;
5614 }
5615 
5616 int ocfs2_truncate_log_needs_flush(struct ocfs2_super *osb)
5617 {
5618 	struct buffer_head *tl_bh = osb->osb_tl_bh;
5619 	struct ocfs2_dinode *di;
5620 	struct ocfs2_truncate_log *tl;
5621 
5622 	di = (struct ocfs2_dinode *) tl_bh->b_data;
5623 	tl = &di->id2.i_dealloc;
5624 
5625 	mlog_bug_on_msg(le16_to_cpu(tl->tl_used) > le16_to_cpu(tl->tl_count),
5626 			"slot %d, invalid truncate log parameters: used = "
5627 			"%u, count = %u\n", osb->slot_num,
5628 			le16_to_cpu(tl->tl_used), le16_to_cpu(tl->tl_count));
5629 	return le16_to_cpu(tl->tl_used) == le16_to_cpu(tl->tl_count);
5630 }
5631 
5632 static int ocfs2_truncate_log_can_coalesce(struct ocfs2_truncate_log *tl,
5633 					   unsigned int new_start)
5634 {
5635 	unsigned int tail_index;
5636 	unsigned int current_tail;
5637 
5638 	/* No records, nothing to coalesce */
5639 	if (!le16_to_cpu(tl->tl_used))
5640 		return 0;
5641 
5642 	tail_index = le16_to_cpu(tl->tl_used) - 1;
5643 	current_tail = le32_to_cpu(tl->tl_recs[tail_index].t_start);
5644 	current_tail += le32_to_cpu(tl->tl_recs[tail_index].t_clusters);
5645 
5646 	return current_tail == new_start;
5647 }
5648 
5649 int ocfs2_truncate_log_append(struct ocfs2_super *osb,
5650 			      handle_t *handle,
5651 			      u64 start_blk,
5652 			      unsigned int num_clusters)
5653 {
5654 	int status, index;
5655 	unsigned int start_cluster, tl_count;
5656 	struct inode *tl_inode = osb->osb_tl_inode;
5657 	struct buffer_head *tl_bh = osb->osb_tl_bh;
5658 	struct ocfs2_dinode *di;
5659 	struct ocfs2_truncate_log *tl;
5660 
5661 	mlog_entry("start_blk = %llu, num_clusters = %u\n",
5662 		   (unsigned long long)start_blk, num_clusters);
5663 
5664 	BUG_ON(mutex_trylock(&tl_inode->i_mutex));
5665 
5666 	start_cluster = ocfs2_blocks_to_clusters(osb->sb, start_blk);
5667 
5668 	di = (struct ocfs2_dinode *) tl_bh->b_data;
5669 
5670 	/* tl_bh is loaded from ocfs2_truncate_log_init().  It's validated
5671 	 * by the underlying call to ocfs2_read_inode_block(), so any
5672 	 * corruption is a code bug */
5673 	BUG_ON(!OCFS2_IS_VALID_DINODE(di));
5674 
5675 	tl = &di->id2.i_dealloc;
5676 	tl_count = le16_to_cpu(tl->tl_count);
5677 	mlog_bug_on_msg(tl_count > ocfs2_truncate_recs_per_inode(osb->sb) ||
5678 			tl_count == 0,
5679 			"Truncate record count on #%llu invalid "
5680 			"wanted %u, actual %u\n",
5681 			(unsigned long long)OCFS2_I(tl_inode)->ip_blkno,
5682 			ocfs2_truncate_recs_per_inode(osb->sb),
5683 			le16_to_cpu(tl->tl_count));
5684 
5685 	/* Caller should have known to flush before calling us. */
5686 	index = le16_to_cpu(tl->tl_used);
5687 	if (index >= tl_count) {
5688 		status = -ENOSPC;
5689 		mlog_errno(status);
5690 		goto bail;
5691 	}
5692 
5693 	status = ocfs2_journal_access_di(handle, tl_inode, tl_bh,
5694 					 OCFS2_JOURNAL_ACCESS_WRITE);
5695 	if (status < 0) {
5696 		mlog_errno(status);
5697 		goto bail;
5698 	}
5699 
5700 	mlog(0, "Log truncate of %u clusters starting at cluster %u to "
5701 	     "%llu (index = %d)\n", num_clusters, start_cluster,
5702 	     (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, index);
5703 
5704 	if (ocfs2_truncate_log_can_coalesce(tl, start_cluster)) {
5705 		/*
5706 		 * Move index back to the record we are coalescing with.
5707 		 * ocfs2_truncate_log_can_coalesce() guarantees nonzero
5708 		 */
5709 		index--;
5710 
5711 		num_clusters += le32_to_cpu(tl->tl_recs[index].t_clusters);
5712 		mlog(0, "Coalesce with index %u (start = %u, clusters = %u)\n",
5713 		     index, le32_to_cpu(tl->tl_recs[index].t_start),
5714 		     num_clusters);
5715 	} else {
5716 		tl->tl_recs[index].t_start = cpu_to_le32(start_cluster);
5717 		tl->tl_used = cpu_to_le16(index + 1);
5718 	}
5719 	tl->tl_recs[index].t_clusters = cpu_to_le32(num_clusters);
5720 
5721 	status = ocfs2_journal_dirty(handle, tl_bh);
5722 	if (status < 0) {
5723 		mlog_errno(status);
5724 		goto bail;
5725 	}
5726 
5727 bail:
5728 	mlog_exit(status);
5729 	return status;
5730 }
5731 
5732 static int ocfs2_replay_truncate_records(struct ocfs2_super *osb,
5733 					 handle_t *handle,
5734 					 struct inode *data_alloc_inode,
5735 					 struct buffer_head *data_alloc_bh)
5736 {
5737 	int status = 0;
5738 	int i;
5739 	unsigned int num_clusters;
5740 	u64 start_blk;
5741 	struct ocfs2_truncate_rec rec;
5742 	struct ocfs2_dinode *di;
5743 	struct ocfs2_truncate_log *tl;
5744 	struct inode *tl_inode = osb->osb_tl_inode;
5745 	struct buffer_head *tl_bh = osb->osb_tl_bh;
5746 
5747 	mlog_entry_void();
5748 
5749 	di = (struct ocfs2_dinode *) tl_bh->b_data;
5750 	tl = &di->id2.i_dealloc;
5751 	i = le16_to_cpu(tl->tl_used) - 1;
5752 	while (i >= 0) {
5753 		/* Caller has given us at least enough credits to
5754 		 * update the truncate log dinode */
5755 		status = ocfs2_journal_access_di(handle, tl_inode, tl_bh,
5756 						 OCFS2_JOURNAL_ACCESS_WRITE);
5757 		if (status < 0) {
5758 			mlog_errno(status);
5759 			goto bail;
5760 		}
5761 
5762 		tl->tl_used = cpu_to_le16(i);
5763 
5764 		status = ocfs2_journal_dirty(handle, tl_bh);
5765 		if (status < 0) {
5766 			mlog_errno(status);
5767 			goto bail;
5768 		}
5769 
5770 		/* TODO: Perhaps we can calculate the bulk of the
5771 		 * credits up front rather than extending like
5772 		 * this. */
5773 		status = ocfs2_extend_trans(handle,
5774 					    OCFS2_TRUNCATE_LOG_FLUSH_ONE_REC);
5775 		if (status < 0) {
5776 			mlog_errno(status);
5777 			goto bail;
5778 		}
5779 
5780 		rec = tl->tl_recs[i];
5781 		start_blk = ocfs2_clusters_to_blocks(data_alloc_inode->i_sb,
5782 						    le32_to_cpu(rec.t_start));
5783 		num_clusters = le32_to_cpu(rec.t_clusters);
5784 
5785 		/* if start_blk is not set, we ignore the record as
5786 		 * invalid. */
5787 		if (start_blk) {
5788 			mlog(0, "free record %d, start = %u, clusters = %u\n",
5789 			     i, le32_to_cpu(rec.t_start), num_clusters);
5790 
5791 			status = ocfs2_free_clusters(handle, data_alloc_inode,
5792 						     data_alloc_bh, start_blk,
5793 						     num_clusters);
5794 			if (status < 0) {
5795 				mlog_errno(status);
5796 				goto bail;
5797 			}
5798 		}
5799 		i--;
5800 	}
5801 
5802 bail:
5803 	mlog_exit(status);
5804 	return status;
5805 }
5806 
5807 /* Expects you to already be holding tl_inode->i_mutex */
5808 int __ocfs2_flush_truncate_log(struct ocfs2_super *osb)
5809 {
5810 	int status;
5811 	unsigned int num_to_flush;
5812 	handle_t *handle;
5813 	struct inode *tl_inode = osb->osb_tl_inode;
5814 	struct inode *data_alloc_inode = NULL;
5815 	struct buffer_head *tl_bh = osb->osb_tl_bh;
5816 	struct buffer_head *data_alloc_bh = NULL;
5817 	struct ocfs2_dinode *di;
5818 	struct ocfs2_truncate_log *tl;
5819 
5820 	mlog_entry_void();
5821 
5822 	BUG_ON(mutex_trylock(&tl_inode->i_mutex));
5823 
5824 	di = (struct ocfs2_dinode *) tl_bh->b_data;
5825 
5826 	/* tl_bh is loaded from ocfs2_truncate_log_init().  It's validated
5827 	 * by the underlying call to ocfs2_read_inode_block(), so any
5828 	 * corruption is a code bug */
5829 	BUG_ON(!OCFS2_IS_VALID_DINODE(di));
5830 
5831 	tl = &di->id2.i_dealloc;
5832 	num_to_flush = le16_to_cpu(tl->tl_used);
5833 	mlog(0, "Flush %u records from truncate log #%llu\n",
5834 	     num_to_flush, (unsigned long long)OCFS2_I(tl_inode)->ip_blkno);
5835 	if (!num_to_flush) {
5836 		status = 0;
5837 		goto out;
5838 	}
5839 
5840 	data_alloc_inode = ocfs2_get_system_file_inode(osb,
5841 						       GLOBAL_BITMAP_SYSTEM_INODE,
5842 						       OCFS2_INVALID_SLOT);
5843 	if (!data_alloc_inode) {
5844 		status = -EINVAL;
5845 		mlog(ML_ERROR, "Could not get bitmap inode!\n");
5846 		goto out;
5847 	}
5848 
5849 	mutex_lock(&data_alloc_inode->i_mutex);
5850 
5851 	status = ocfs2_inode_lock(data_alloc_inode, &data_alloc_bh, 1);
5852 	if (status < 0) {
5853 		mlog_errno(status);
5854 		goto out_mutex;
5855 	}
5856 
5857 	handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
5858 	if (IS_ERR(handle)) {
5859 		status = PTR_ERR(handle);
5860 		mlog_errno(status);
5861 		goto out_unlock;
5862 	}
5863 
5864 	status = ocfs2_replay_truncate_records(osb, handle, data_alloc_inode,
5865 					       data_alloc_bh);
5866 	if (status < 0)
5867 		mlog_errno(status);
5868 
5869 	ocfs2_commit_trans(osb, handle);
5870 
5871 out_unlock:
5872 	brelse(data_alloc_bh);
5873 	ocfs2_inode_unlock(data_alloc_inode, 1);
5874 
5875 out_mutex:
5876 	mutex_unlock(&data_alloc_inode->i_mutex);
5877 	iput(data_alloc_inode);
5878 
5879 out:
5880 	mlog_exit(status);
5881 	return status;
5882 }
5883 
5884 int ocfs2_flush_truncate_log(struct ocfs2_super *osb)
5885 {
5886 	int status;
5887 	struct inode *tl_inode = osb->osb_tl_inode;
5888 
5889 	mutex_lock(&tl_inode->i_mutex);
5890 	status = __ocfs2_flush_truncate_log(osb);
5891 	mutex_unlock(&tl_inode->i_mutex);
5892 
5893 	return status;
5894 }
5895 
5896 static void ocfs2_truncate_log_worker(struct work_struct *work)
5897 {
5898 	int status;
5899 	struct ocfs2_super *osb =
5900 		container_of(work, struct ocfs2_super,
5901 			     osb_truncate_log_wq.work);
5902 
5903 	mlog_entry_void();
5904 
5905 	status = ocfs2_flush_truncate_log(osb);
5906 	if (status < 0)
5907 		mlog_errno(status);
5908 	else
5909 		ocfs2_init_inode_steal_slot(osb);
5910 
5911 	mlog_exit(status);
5912 }
5913 
5914 #define OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL (2 * HZ)
5915 void ocfs2_schedule_truncate_log_flush(struct ocfs2_super *osb,
5916 				       int cancel)
5917 {
5918 	if (osb->osb_tl_inode) {
5919 		/* We want to push off log flushes while truncates are
5920 		 * still running. */
5921 		if (cancel)
5922 			cancel_delayed_work(&osb->osb_truncate_log_wq);
5923 
5924 		queue_delayed_work(ocfs2_wq, &osb->osb_truncate_log_wq,
5925 				   OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL);
5926 	}
5927 }
5928 
5929 static int ocfs2_get_truncate_log_info(struct ocfs2_super *osb,
5930 				       int slot_num,
5931 				       struct inode **tl_inode,
5932 				       struct buffer_head **tl_bh)
5933 {
5934 	int status;
5935 	struct inode *inode = NULL;
5936 	struct buffer_head *bh = NULL;
5937 
5938 	inode = ocfs2_get_system_file_inode(osb,
5939 					   TRUNCATE_LOG_SYSTEM_INODE,
5940 					   slot_num);
5941 	if (!inode) {
5942 		status = -EINVAL;
5943 		mlog(ML_ERROR, "Could not get load truncate log inode!\n");
5944 		goto bail;
5945 	}
5946 
5947 	status = ocfs2_read_inode_block(inode, &bh);
5948 	if (status < 0) {
5949 		iput(inode);
5950 		mlog_errno(status);
5951 		goto bail;
5952 	}
5953 
5954 	*tl_inode = inode;
5955 	*tl_bh    = bh;
5956 bail:
5957 	mlog_exit(status);
5958 	return status;
5959 }
5960 
5961 /* called during the 1st stage of node recovery. we stamp a clean
5962  * truncate log and pass back a copy for processing later. if the
5963  * truncate log does not require processing, a *tl_copy is set to
5964  * NULL. */
5965 int ocfs2_begin_truncate_log_recovery(struct ocfs2_super *osb,
5966 				      int slot_num,
5967 				      struct ocfs2_dinode **tl_copy)
5968 {
5969 	int status;
5970 	struct inode *tl_inode = NULL;
5971 	struct buffer_head *tl_bh = NULL;
5972 	struct ocfs2_dinode *di;
5973 	struct ocfs2_truncate_log *tl;
5974 
5975 	*tl_copy = NULL;
5976 
5977 	mlog(0, "recover truncate log from slot %d\n", slot_num);
5978 
5979 	status = ocfs2_get_truncate_log_info(osb, slot_num, &tl_inode, &tl_bh);
5980 	if (status < 0) {
5981 		mlog_errno(status);
5982 		goto bail;
5983 	}
5984 
5985 	di = (struct ocfs2_dinode *) tl_bh->b_data;
5986 
5987 	/* tl_bh is loaded from ocfs2_get_truncate_log_info().  It's
5988 	 * validated by the underlying call to ocfs2_read_inode_block(),
5989 	 * so any corruption is a code bug */
5990 	BUG_ON(!OCFS2_IS_VALID_DINODE(di));
5991 
5992 	tl = &di->id2.i_dealloc;
5993 	if (le16_to_cpu(tl->tl_used)) {
5994 		mlog(0, "We'll have %u logs to recover\n",
5995 		     le16_to_cpu(tl->tl_used));
5996 
5997 		*tl_copy = kmalloc(tl_bh->b_size, GFP_KERNEL);
5998 		if (!(*tl_copy)) {
5999 			status = -ENOMEM;
6000 			mlog_errno(status);
6001 			goto bail;
6002 		}
6003 
6004 		/* Assuming the write-out below goes well, this copy
6005 		 * will be passed back to recovery for processing. */
6006 		memcpy(*tl_copy, tl_bh->b_data, tl_bh->b_size);
6007 
6008 		/* All we need to do to clear the truncate log is set
6009 		 * tl_used. */
6010 		tl->tl_used = 0;
6011 
6012 		ocfs2_compute_meta_ecc(osb->sb, tl_bh->b_data, &di->i_check);
6013 		status = ocfs2_write_block(osb, tl_bh, tl_inode);
6014 		if (status < 0) {
6015 			mlog_errno(status);
6016 			goto bail;
6017 		}
6018 	}
6019 
6020 bail:
6021 	if (tl_inode)
6022 		iput(tl_inode);
6023 	brelse(tl_bh);
6024 
6025 	if (status < 0 && (*tl_copy)) {
6026 		kfree(*tl_copy);
6027 		*tl_copy = NULL;
6028 	}
6029 
6030 	mlog_exit(status);
6031 	return status;
6032 }
6033 
6034 int ocfs2_complete_truncate_log_recovery(struct ocfs2_super *osb,
6035 					 struct ocfs2_dinode *tl_copy)
6036 {
6037 	int status = 0;
6038 	int i;
6039 	unsigned int clusters, num_recs, start_cluster;
6040 	u64 start_blk;
6041 	handle_t *handle;
6042 	struct inode *tl_inode = osb->osb_tl_inode;
6043 	struct ocfs2_truncate_log *tl;
6044 
6045 	mlog_entry_void();
6046 
6047 	if (OCFS2_I(tl_inode)->ip_blkno == le64_to_cpu(tl_copy->i_blkno)) {
6048 		mlog(ML_ERROR, "Asked to recover my own truncate log!\n");
6049 		return -EINVAL;
6050 	}
6051 
6052 	tl = &tl_copy->id2.i_dealloc;
6053 	num_recs = le16_to_cpu(tl->tl_used);
6054 	mlog(0, "cleanup %u records from %llu\n", num_recs,
6055 	     (unsigned long long)le64_to_cpu(tl_copy->i_blkno));
6056 
6057 	mutex_lock(&tl_inode->i_mutex);
6058 	for(i = 0; i < num_recs; i++) {
6059 		if (ocfs2_truncate_log_needs_flush(osb)) {
6060 			status = __ocfs2_flush_truncate_log(osb);
6061 			if (status < 0) {
6062 				mlog_errno(status);
6063 				goto bail_up;
6064 			}
6065 		}
6066 
6067 		handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
6068 		if (IS_ERR(handle)) {
6069 			status = PTR_ERR(handle);
6070 			mlog_errno(status);
6071 			goto bail_up;
6072 		}
6073 
6074 		clusters = le32_to_cpu(tl->tl_recs[i].t_clusters);
6075 		start_cluster = le32_to_cpu(tl->tl_recs[i].t_start);
6076 		start_blk = ocfs2_clusters_to_blocks(osb->sb, start_cluster);
6077 
6078 		status = ocfs2_truncate_log_append(osb, handle,
6079 						   start_blk, clusters);
6080 		ocfs2_commit_trans(osb, handle);
6081 		if (status < 0) {
6082 			mlog_errno(status);
6083 			goto bail_up;
6084 		}
6085 	}
6086 
6087 bail_up:
6088 	mutex_unlock(&tl_inode->i_mutex);
6089 
6090 	mlog_exit(status);
6091 	return status;
6092 }
6093 
6094 void ocfs2_truncate_log_shutdown(struct ocfs2_super *osb)
6095 {
6096 	int status;
6097 	struct inode *tl_inode = osb->osb_tl_inode;
6098 
6099 	mlog_entry_void();
6100 
6101 	if (tl_inode) {
6102 		cancel_delayed_work(&osb->osb_truncate_log_wq);
6103 		flush_workqueue(ocfs2_wq);
6104 
6105 		status = ocfs2_flush_truncate_log(osb);
6106 		if (status < 0)
6107 			mlog_errno(status);
6108 
6109 		brelse(osb->osb_tl_bh);
6110 		iput(osb->osb_tl_inode);
6111 	}
6112 
6113 	mlog_exit_void();
6114 }
6115 
6116 int ocfs2_truncate_log_init(struct ocfs2_super *osb)
6117 {
6118 	int status;
6119 	struct inode *tl_inode = NULL;
6120 	struct buffer_head *tl_bh = NULL;
6121 
6122 	mlog_entry_void();
6123 
6124 	status = ocfs2_get_truncate_log_info(osb,
6125 					     osb->slot_num,
6126 					     &tl_inode,
6127 					     &tl_bh);
6128 	if (status < 0)
6129 		mlog_errno(status);
6130 
6131 	/* ocfs2_truncate_log_shutdown keys on the existence of
6132 	 * osb->osb_tl_inode so we don't set any of the osb variables
6133 	 * until we're sure all is well. */
6134 	INIT_DELAYED_WORK(&osb->osb_truncate_log_wq,
6135 			  ocfs2_truncate_log_worker);
6136 	osb->osb_tl_bh    = tl_bh;
6137 	osb->osb_tl_inode = tl_inode;
6138 
6139 	mlog_exit(status);
6140 	return status;
6141 }
6142 
6143 /*
6144  * Delayed de-allocation of suballocator blocks.
6145  *
6146  * Some sets of block de-allocations might involve multiple suballocator inodes.
6147  *
6148  * The locking for this can get extremely complicated, especially when
6149  * the suballocator inodes to delete from aren't known until deep
6150  * within an unrelated codepath.
6151  *
6152  * ocfs2_extent_block structures are a good example of this - an inode
6153  * btree could have been grown by any number of nodes each allocating
6154  * out of their own suballoc inode.
6155  *
6156  * These structures allow the delay of block de-allocation until a
6157  * later time, when locking of multiple cluster inodes won't cause
6158  * deadlock.
6159  */
6160 
6161 /*
6162  * Describe a single bit freed from a suballocator.  For the block
6163  * suballocators, it represents one block.  For the global cluster
6164  * allocator, it represents some clusters and free_bit indicates
6165  * clusters number.
6166  */
6167 struct ocfs2_cached_block_free {
6168 	struct ocfs2_cached_block_free		*free_next;
6169 	u64					free_blk;
6170 	unsigned int				free_bit;
6171 };
6172 
6173 struct ocfs2_per_slot_free_list {
6174 	struct ocfs2_per_slot_free_list		*f_next_suballocator;
6175 	int					f_inode_type;
6176 	int					f_slot;
6177 	struct ocfs2_cached_block_free		*f_first;
6178 };
6179 
6180 static int ocfs2_free_cached_blocks(struct ocfs2_super *osb,
6181 				    int sysfile_type,
6182 				    int slot,
6183 				    struct ocfs2_cached_block_free *head)
6184 {
6185 	int ret;
6186 	u64 bg_blkno;
6187 	handle_t *handle;
6188 	struct inode *inode;
6189 	struct buffer_head *di_bh = NULL;
6190 	struct ocfs2_cached_block_free *tmp;
6191 
6192 	inode = ocfs2_get_system_file_inode(osb, sysfile_type, slot);
6193 	if (!inode) {
6194 		ret = -EINVAL;
6195 		mlog_errno(ret);
6196 		goto out;
6197 	}
6198 
6199 	mutex_lock(&inode->i_mutex);
6200 
6201 	ret = ocfs2_inode_lock(inode, &di_bh, 1);
6202 	if (ret) {
6203 		mlog_errno(ret);
6204 		goto out_mutex;
6205 	}
6206 
6207 	handle = ocfs2_start_trans(osb, OCFS2_SUBALLOC_FREE);
6208 	if (IS_ERR(handle)) {
6209 		ret = PTR_ERR(handle);
6210 		mlog_errno(ret);
6211 		goto out_unlock;
6212 	}
6213 
6214 	while (head) {
6215 		bg_blkno = ocfs2_which_suballoc_group(head->free_blk,
6216 						      head->free_bit);
6217 		mlog(0, "Free bit: (bit %u, blkno %llu)\n",
6218 		     head->free_bit, (unsigned long long)head->free_blk);
6219 
6220 		ret = ocfs2_free_suballoc_bits(handle, inode, di_bh,
6221 					       head->free_bit, bg_blkno, 1);
6222 		if (ret) {
6223 			mlog_errno(ret);
6224 			goto out_journal;
6225 		}
6226 
6227 		ret = ocfs2_extend_trans(handle, OCFS2_SUBALLOC_FREE);
6228 		if (ret) {
6229 			mlog_errno(ret);
6230 			goto out_journal;
6231 		}
6232 
6233 		tmp = head;
6234 		head = head->free_next;
6235 		kfree(tmp);
6236 	}
6237 
6238 out_journal:
6239 	ocfs2_commit_trans(osb, handle);
6240 
6241 out_unlock:
6242 	ocfs2_inode_unlock(inode, 1);
6243 	brelse(di_bh);
6244 out_mutex:
6245 	mutex_unlock(&inode->i_mutex);
6246 	iput(inode);
6247 out:
6248 	while(head) {
6249 		/* Premature exit may have left some dangling items. */
6250 		tmp = head;
6251 		head = head->free_next;
6252 		kfree(tmp);
6253 	}
6254 
6255 	return ret;
6256 }
6257 
6258 int ocfs2_cache_cluster_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt,
6259 				u64 blkno, unsigned int bit)
6260 {
6261 	int ret = 0;
6262 	struct ocfs2_cached_block_free *item;
6263 
6264 	item = kmalloc(sizeof(*item), GFP_NOFS);
6265 	if (item == NULL) {
6266 		ret = -ENOMEM;
6267 		mlog_errno(ret);
6268 		return ret;
6269 	}
6270 
6271 	mlog(0, "Insert clusters: (bit %u, blk %llu)\n",
6272 	     bit, (unsigned long long)blkno);
6273 
6274 	item->free_blk = blkno;
6275 	item->free_bit = bit;
6276 	item->free_next = ctxt->c_global_allocator;
6277 
6278 	ctxt->c_global_allocator = item;
6279 	return ret;
6280 }
6281 
6282 static int ocfs2_free_cached_clusters(struct ocfs2_super *osb,
6283 				      struct ocfs2_cached_block_free *head)
6284 {
6285 	struct ocfs2_cached_block_free *tmp;
6286 	struct inode *tl_inode = osb->osb_tl_inode;
6287 	handle_t *handle;
6288 	int ret = 0;
6289 
6290 	mutex_lock(&tl_inode->i_mutex);
6291 
6292 	while (head) {
6293 		if (ocfs2_truncate_log_needs_flush(osb)) {
6294 			ret = __ocfs2_flush_truncate_log(osb);
6295 			if (ret < 0) {
6296 				mlog_errno(ret);
6297 				break;
6298 			}
6299 		}
6300 
6301 		handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
6302 		if (IS_ERR(handle)) {
6303 			ret = PTR_ERR(handle);
6304 			mlog_errno(ret);
6305 			break;
6306 		}
6307 
6308 		ret = ocfs2_truncate_log_append(osb, handle, head->free_blk,
6309 						head->free_bit);
6310 
6311 		ocfs2_commit_trans(osb, handle);
6312 		tmp = head;
6313 		head = head->free_next;
6314 		kfree(tmp);
6315 
6316 		if (ret < 0) {
6317 			mlog_errno(ret);
6318 			break;
6319 		}
6320 	}
6321 
6322 	mutex_unlock(&tl_inode->i_mutex);
6323 
6324 	while (head) {
6325 		/* Premature exit may have left some dangling items. */
6326 		tmp = head;
6327 		head = head->free_next;
6328 		kfree(tmp);
6329 	}
6330 
6331 	return ret;
6332 }
6333 
6334 int ocfs2_run_deallocs(struct ocfs2_super *osb,
6335 		       struct ocfs2_cached_dealloc_ctxt *ctxt)
6336 {
6337 	int ret = 0, ret2;
6338 	struct ocfs2_per_slot_free_list *fl;
6339 
6340 	if (!ctxt)
6341 		return 0;
6342 
6343 	while (ctxt->c_first_suballocator) {
6344 		fl = ctxt->c_first_suballocator;
6345 
6346 		if (fl->f_first) {
6347 			mlog(0, "Free items: (type %u, slot %d)\n",
6348 			     fl->f_inode_type, fl->f_slot);
6349 			ret2 = ocfs2_free_cached_blocks(osb,
6350 							fl->f_inode_type,
6351 							fl->f_slot,
6352 							fl->f_first);
6353 			if (ret2)
6354 				mlog_errno(ret2);
6355 			if (!ret)
6356 				ret = ret2;
6357 		}
6358 
6359 		ctxt->c_first_suballocator = fl->f_next_suballocator;
6360 		kfree(fl);
6361 	}
6362 
6363 	if (ctxt->c_global_allocator) {
6364 		ret2 = ocfs2_free_cached_clusters(osb,
6365 						  ctxt->c_global_allocator);
6366 		if (ret2)
6367 			mlog_errno(ret2);
6368 		if (!ret)
6369 			ret = ret2;
6370 
6371 		ctxt->c_global_allocator = NULL;
6372 	}
6373 
6374 	return ret;
6375 }
6376 
6377 static struct ocfs2_per_slot_free_list *
6378 ocfs2_find_per_slot_free_list(int type,
6379 			      int slot,
6380 			      struct ocfs2_cached_dealloc_ctxt *ctxt)
6381 {
6382 	struct ocfs2_per_slot_free_list *fl = ctxt->c_first_suballocator;
6383 
6384 	while (fl) {
6385 		if (fl->f_inode_type == type && fl->f_slot == slot)
6386 			return fl;
6387 
6388 		fl = fl->f_next_suballocator;
6389 	}
6390 
6391 	fl = kmalloc(sizeof(*fl), GFP_NOFS);
6392 	if (fl) {
6393 		fl->f_inode_type = type;
6394 		fl->f_slot = slot;
6395 		fl->f_first = NULL;
6396 		fl->f_next_suballocator = ctxt->c_first_suballocator;
6397 
6398 		ctxt->c_first_suballocator = fl;
6399 	}
6400 	return fl;
6401 }
6402 
6403 static int ocfs2_cache_block_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt,
6404 				     int type, int slot, u64 blkno,
6405 				     unsigned int bit)
6406 {
6407 	int ret;
6408 	struct ocfs2_per_slot_free_list *fl;
6409 	struct ocfs2_cached_block_free *item;
6410 
6411 	fl = ocfs2_find_per_slot_free_list(type, slot, ctxt);
6412 	if (fl == NULL) {
6413 		ret = -ENOMEM;
6414 		mlog_errno(ret);
6415 		goto out;
6416 	}
6417 
6418 	item = kmalloc(sizeof(*item), GFP_NOFS);
6419 	if (item == NULL) {
6420 		ret = -ENOMEM;
6421 		mlog_errno(ret);
6422 		goto out;
6423 	}
6424 
6425 	mlog(0, "Insert: (type %d, slot %u, bit %u, blk %llu)\n",
6426 	     type, slot, bit, (unsigned long long)blkno);
6427 
6428 	item->free_blk = blkno;
6429 	item->free_bit = bit;
6430 	item->free_next = fl->f_first;
6431 
6432 	fl->f_first = item;
6433 
6434 	ret = 0;
6435 out:
6436 	return ret;
6437 }
6438 
6439 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt,
6440 					 struct ocfs2_extent_block *eb)
6441 {
6442 	return ocfs2_cache_block_dealloc(ctxt, EXTENT_ALLOC_SYSTEM_INODE,
6443 					 le16_to_cpu(eb->h_suballoc_slot),
6444 					 le64_to_cpu(eb->h_blkno),
6445 					 le16_to_cpu(eb->h_suballoc_bit));
6446 }
6447 
6448 /* This function will figure out whether the currently last extent
6449  * block will be deleted, and if it will, what the new last extent
6450  * block will be so we can update his h_next_leaf_blk field, as well
6451  * as the dinodes i_last_eb_blk */
6452 static int ocfs2_find_new_last_ext_blk(struct inode *inode,
6453 				       unsigned int clusters_to_del,
6454 				       struct ocfs2_path *path,
6455 				       struct buffer_head **new_last_eb)
6456 {
6457 	int next_free, ret = 0;
6458 	u32 cpos;
6459 	struct ocfs2_extent_rec *rec;
6460 	struct ocfs2_extent_block *eb;
6461 	struct ocfs2_extent_list *el;
6462 	struct buffer_head *bh = NULL;
6463 
6464 	*new_last_eb = NULL;
6465 
6466 	/* we have no tree, so of course, no last_eb. */
6467 	if (!path->p_tree_depth)
6468 		goto out;
6469 
6470 	/* trunc to zero special case - this makes tree_depth = 0
6471 	 * regardless of what it is.  */
6472 	if (OCFS2_I(inode)->ip_clusters == clusters_to_del)
6473 		goto out;
6474 
6475 	el = path_leaf_el(path);
6476 	BUG_ON(!el->l_next_free_rec);
6477 
6478 	/*
6479 	 * Make sure that this extent list will actually be empty
6480 	 * after we clear away the data. We can shortcut out if
6481 	 * there's more than one non-empty extent in the
6482 	 * list. Otherwise, a check of the remaining extent is
6483 	 * necessary.
6484 	 */
6485 	next_free = le16_to_cpu(el->l_next_free_rec);
6486 	rec = NULL;
6487 	if (ocfs2_is_empty_extent(&el->l_recs[0])) {
6488 		if (next_free > 2)
6489 			goto out;
6490 
6491 		/* We may have a valid extent in index 1, check it. */
6492 		if (next_free == 2)
6493 			rec = &el->l_recs[1];
6494 
6495 		/*
6496 		 * Fall through - no more nonempty extents, so we want
6497 		 * to delete this leaf.
6498 		 */
6499 	} else {
6500 		if (next_free > 1)
6501 			goto out;
6502 
6503 		rec = &el->l_recs[0];
6504 	}
6505 
6506 	if (rec) {
6507 		/*
6508 		 * Check it we'll only be trimming off the end of this
6509 		 * cluster.
6510 		 */
6511 		if (le16_to_cpu(rec->e_leaf_clusters) > clusters_to_del)
6512 			goto out;
6513 	}
6514 
6515 	ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path, &cpos);
6516 	if (ret) {
6517 		mlog_errno(ret);
6518 		goto out;
6519 	}
6520 
6521 	ret = ocfs2_find_leaf(inode, path_root_el(path), cpos, &bh);
6522 	if (ret) {
6523 		mlog_errno(ret);
6524 		goto out;
6525 	}
6526 
6527 	eb = (struct ocfs2_extent_block *) bh->b_data;
6528 	el = &eb->h_list;
6529 
6530 	/* ocfs2_find_leaf() gets the eb from ocfs2_read_extent_block().
6531 	 * Any corruption is a code bug. */
6532 	BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb));
6533 
6534 	*new_last_eb = bh;
6535 	get_bh(*new_last_eb);
6536 	mlog(0, "returning block %llu, (cpos: %u)\n",
6537 	     (unsigned long long)le64_to_cpu(eb->h_blkno), cpos);
6538 out:
6539 	brelse(bh);
6540 
6541 	return ret;
6542 }
6543 
6544 /*
6545  * Trim some clusters off the rightmost edge of a tree. Only called
6546  * during truncate.
6547  *
6548  * The caller needs to:
6549  *   - start journaling of each path component.
6550  *   - compute and fully set up any new last ext block
6551  */
6552 static int ocfs2_trim_tree(struct inode *inode, struct ocfs2_path *path,
6553 			   handle_t *handle, struct ocfs2_truncate_context *tc,
6554 			   u32 clusters_to_del, u64 *delete_start)
6555 {
6556 	int ret, i, index = path->p_tree_depth;
6557 	u32 new_edge = 0;
6558 	u64 deleted_eb = 0;
6559 	struct buffer_head *bh;
6560 	struct ocfs2_extent_list *el;
6561 	struct ocfs2_extent_rec *rec;
6562 
6563 	*delete_start = 0;
6564 
6565 	while (index >= 0) {
6566 		bh = path->p_node[index].bh;
6567 		el = path->p_node[index].el;
6568 
6569 		mlog(0, "traveling tree (index = %d, block = %llu)\n",
6570 		     index,  (unsigned long long)bh->b_blocknr);
6571 
6572 		BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0);
6573 
6574 		if (index !=
6575 		    (path->p_tree_depth - le16_to_cpu(el->l_tree_depth))) {
6576 			ocfs2_error(inode->i_sb,
6577 				    "Inode %lu has invalid ext. block %llu",
6578 				    inode->i_ino,
6579 				    (unsigned long long)bh->b_blocknr);
6580 			ret = -EROFS;
6581 			goto out;
6582 		}
6583 
6584 find_tail_record:
6585 		i = le16_to_cpu(el->l_next_free_rec) - 1;
6586 		rec = &el->l_recs[i];
6587 
6588 		mlog(0, "Extent list before: record %d: (%u, %u, %llu), "
6589 		     "next = %u\n", i, le32_to_cpu(rec->e_cpos),
6590 		     ocfs2_rec_clusters(el, rec),
6591 		     (unsigned long long)le64_to_cpu(rec->e_blkno),
6592 		     le16_to_cpu(el->l_next_free_rec));
6593 
6594 		BUG_ON(ocfs2_rec_clusters(el, rec) < clusters_to_del);
6595 
6596 		if (le16_to_cpu(el->l_tree_depth) == 0) {
6597 			/*
6598 			 * If the leaf block contains a single empty
6599 			 * extent and no records, we can just remove
6600 			 * the block.
6601 			 */
6602 			if (i == 0 && ocfs2_is_empty_extent(rec)) {
6603 				memset(rec, 0,
6604 				       sizeof(struct ocfs2_extent_rec));
6605 				el->l_next_free_rec = cpu_to_le16(0);
6606 
6607 				goto delete;
6608 			}
6609 
6610 			/*
6611 			 * Remove any empty extents by shifting things
6612 			 * left. That should make life much easier on
6613 			 * the code below. This condition is rare
6614 			 * enough that we shouldn't see a performance
6615 			 * hit.
6616 			 */
6617 			if (ocfs2_is_empty_extent(&el->l_recs[0])) {
6618 				le16_add_cpu(&el->l_next_free_rec, -1);
6619 
6620 				for(i = 0;
6621 				    i < le16_to_cpu(el->l_next_free_rec); i++)
6622 					el->l_recs[i] = el->l_recs[i + 1];
6623 
6624 				memset(&el->l_recs[i], 0,
6625 				       sizeof(struct ocfs2_extent_rec));
6626 
6627 				/*
6628 				 * We've modified our extent list. The
6629 				 * simplest way to handle this change
6630 				 * is to being the search from the
6631 				 * start again.
6632 				 */
6633 				goto find_tail_record;
6634 			}
6635 
6636 			le16_add_cpu(&rec->e_leaf_clusters, -clusters_to_del);
6637 
6638 			/*
6639 			 * We'll use "new_edge" on our way back up the
6640 			 * tree to know what our rightmost cpos is.
6641 			 */
6642 			new_edge = le16_to_cpu(rec->e_leaf_clusters);
6643 			new_edge += le32_to_cpu(rec->e_cpos);
6644 
6645 			/*
6646 			 * The caller will use this to delete data blocks.
6647 			 */
6648 			*delete_start = le64_to_cpu(rec->e_blkno)
6649 				+ ocfs2_clusters_to_blocks(inode->i_sb,
6650 					le16_to_cpu(rec->e_leaf_clusters));
6651 
6652 			/*
6653 			 * If it's now empty, remove this record.
6654 			 */
6655 			if (le16_to_cpu(rec->e_leaf_clusters) == 0) {
6656 				memset(rec, 0,
6657 				       sizeof(struct ocfs2_extent_rec));
6658 				le16_add_cpu(&el->l_next_free_rec, -1);
6659 			}
6660 		} else {
6661 			if (le64_to_cpu(rec->e_blkno) == deleted_eb) {
6662 				memset(rec, 0,
6663 				       sizeof(struct ocfs2_extent_rec));
6664 				le16_add_cpu(&el->l_next_free_rec, -1);
6665 
6666 				goto delete;
6667 			}
6668 
6669 			/* Can this actually happen? */
6670 			if (le16_to_cpu(el->l_next_free_rec) == 0)
6671 				goto delete;
6672 
6673 			/*
6674 			 * We never actually deleted any clusters
6675 			 * because our leaf was empty. There's no
6676 			 * reason to adjust the rightmost edge then.
6677 			 */
6678 			if (new_edge == 0)
6679 				goto delete;
6680 
6681 			rec->e_int_clusters = cpu_to_le32(new_edge);
6682 			le32_add_cpu(&rec->e_int_clusters,
6683 				     -le32_to_cpu(rec->e_cpos));
6684 
6685 			 /*
6686 			  * A deleted child record should have been
6687 			  * caught above.
6688 			  */
6689 			 BUG_ON(le32_to_cpu(rec->e_int_clusters) == 0);
6690 		}
6691 
6692 delete:
6693 		ret = ocfs2_journal_dirty(handle, bh);
6694 		if (ret) {
6695 			mlog_errno(ret);
6696 			goto out;
6697 		}
6698 
6699 		mlog(0, "extent list container %llu, after: record %d: "
6700 		     "(%u, %u, %llu), next = %u.\n",
6701 		     (unsigned long long)bh->b_blocknr, i,
6702 		     le32_to_cpu(rec->e_cpos), ocfs2_rec_clusters(el, rec),
6703 		     (unsigned long long)le64_to_cpu(rec->e_blkno),
6704 		     le16_to_cpu(el->l_next_free_rec));
6705 
6706 		/*
6707 		 * We must be careful to only attempt delete of an
6708 		 * extent block (and not the root inode block).
6709 		 */
6710 		if (index > 0 && le16_to_cpu(el->l_next_free_rec) == 0) {
6711 			struct ocfs2_extent_block *eb =
6712 				(struct ocfs2_extent_block *)bh->b_data;
6713 
6714 			/*
6715 			 * Save this for use when processing the
6716 			 * parent block.
6717 			 */
6718 			deleted_eb = le64_to_cpu(eb->h_blkno);
6719 
6720 			mlog(0, "deleting this extent block.\n");
6721 
6722 			ocfs2_remove_from_cache(inode, bh);
6723 
6724 			BUG_ON(ocfs2_rec_clusters(el, &el->l_recs[0]));
6725 			BUG_ON(le32_to_cpu(el->l_recs[0].e_cpos));
6726 			BUG_ON(le64_to_cpu(el->l_recs[0].e_blkno));
6727 
6728 			ret = ocfs2_cache_extent_block_free(&tc->tc_dealloc, eb);
6729 			/* An error here is not fatal. */
6730 			if (ret < 0)
6731 				mlog_errno(ret);
6732 		} else {
6733 			deleted_eb = 0;
6734 		}
6735 
6736 		index--;
6737 	}
6738 
6739 	ret = 0;
6740 out:
6741 	return ret;
6742 }
6743 
6744 static int ocfs2_do_truncate(struct ocfs2_super *osb,
6745 			     unsigned int clusters_to_del,
6746 			     struct inode *inode,
6747 			     struct buffer_head *fe_bh,
6748 			     handle_t *handle,
6749 			     struct ocfs2_truncate_context *tc,
6750 			     struct ocfs2_path *path)
6751 {
6752 	int status;
6753 	struct ocfs2_dinode *fe;
6754 	struct ocfs2_extent_block *last_eb = NULL;
6755 	struct ocfs2_extent_list *el;
6756 	struct buffer_head *last_eb_bh = NULL;
6757 	u64 delete_blk = 0;
6758 
6759 	fe = (struct ocfs2_dinode *) fe_bh->b_data;
6760 
6761 	status = ocfs2_find_new_last_ext_blk(inode, clusters_to_del,
6762 					     path, &last_eb_bh);
6763 	if (status < 0) {
6764 		mlog_errno(status);
6765 		goto bail;
6766 	}
6767 
6768 	/*
6769 	 * Each component will be touched, so we might as well journal
6770 	 * here to avoid having to handle errors later.
6771 	 */
6772 	status = ocfs2_journal_access_path(inode, handle, path);
6773 	if (status < 0) {
6774 		mlog_errno(status);
6775 		goto bail;
6776 	}
6777 
6778 	if (last_eb_bh) {
6779 		status = ocfs2_journal_access_eb(handle, inode, last_eb_bh,
6780 						 OCFS2_JOURNAL_ACCESS_WRITE);
6781 		if (status < 0) {
6782 			mlog_errno(status);
6783 			goto bail;
6784 		}
6785 
6786 		last_eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
6787 	}
6788 
6789 	el = &(fe->id2.i_list);
6790 
6791 	/*
6792 	 * Lower levels depend on this never happening, but it's best
6793 	 * to check it up here before changing the tree.
6794 	 */
6795 	if (el->l_tree_depth && el->l_recs[0].e_int_clusters == 0) {
6796 		ocfs2_error(inode->i_sb,
6797 			    "Inode %lu has an empty extent record, depth %u\n",
6798 			    inode->i_ino, le16_to_cpu(el->l_tree_depth));
6799 		status = -EROFS;
6800 		goto bail;
6801 	}
6802 
6803 	vfs_dq_free_space_nodirty(inode,
6804 			ocfs2_clusters_to_bytes(osb->sb, clusters_to_del));
6805 	spin_lock(&OCFS2_I(inode)->ip_lock);
6806 	OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters) -
6807 				      clusters_to_del;
6808 	spin_unlock(&OCFS2_I(inode)->ip_lock);
6809 	le32_add_cpu(&fe->i_clusters, -clusters_to_del);
6810 	inode->i_blocks = ocfs2_inode_sector_count(inode);
6811 
6812 	status = ocfs2_trim_tree(inode, path, handle, tc,
6813 				 clusters_to_del, &delete_blk);
6814 	if (status) {
6815 		mlog_errno(status);
6816 		goto bail;
6817 	}
6818 
6819 	if (le32_to_cpu(fe->i_clusters) == 0) {
6820 		/* trunc to zero is a special case. */
6821 		el->l_tree_depth = 0;
6822 		fe->i_last_eb_blk = 0;
6823 	} else if (last_eb)
6824 		fe->i_last_eb_blk = last_eb->h_blkno;
6825 
6826 	status = ocfs2_journal_dirty(handle, fe_bh);
6827 	if (status < 0) {
6828 		mlog_errno(status);
6829 		goto bail;
6830 	}
6831 
6832 	if (last_eb) {
6833 		/* If there will be a new last extent block, then by
6834 		 * definition, there cannot be any leaves to the right of
6835 		 * him. */
6836 		last_eb->h_next_leaf_blk = 0;
6837 		status = ocfs2_journal_dirty(handle, last_eb_bh);
6838 		if (status < 0) {
6839 			mlog_errno(status);
6840 			goto bail;
6841 		}
6842 	}
6843 
6844 	if (delete_blk) {
6845 		status = ocfs2_truncate_log_append(osb, handle, delete_blk,
6846 						   clusters_to_del);
6847 		if (status < 0) {
6848 			mlog_errno(status);
6849 			goto bail;
6850 		}
6851 	}
6852 	status = 0;
6853 bail:
6854 	brelse(last_eb_bh);
6855 	mlog_exit(status);
6856 	return status;
6857 }
6858 
6859 static int ocfs2_zero_func(handle_t *handle, struct buffer_head *bh)
6860 {
6861 	set_buffer_uptodate(bh);
6862 	mark_buffer_dirty(bh);
6863 	return 0;
6864 }
6865 
6866 static void ocfs2_map_and_dirty_page(struct inode *inode, handle_t *handle,
6867 				     unsigned int from, unsigned int to,
6868 				     struct page *page, int zero, u64 *phys)
6869 {
6870 	int ret, partial = 0;
6871 
6872 	ret = ocfs2_map_page_blocks(page, phys, inode, from, to, 0);
6873 	if (ret)
6874 		mlog_errno(ret);
6875 
6876 	if (zero)
6877 		zero_user_segment(page, from, to);
6878 
6879 	/*
6880 	 * Need to set the buffers we zero'd into uptodate
6881 	 * here if they aren't - ocfs2_map_page_blocks()
6882 	 * might've skipped some
6883 	 */
6884 	ret = walk_page_buffers(handle, page_buffers(page),
6885 				from, to, &partial,
6886 				ocfs2_zero_func);
6887 	if (ret < 0)
6888 		mlog_errno(ret);
6889 	else if (ocfs2_should_order_data(inode)) {
6890 		ret = ocfs2_jbd2_file_inode(handle, inode);
6891 		if (ret < 0)
6892 			mlog_errno(ret);
6893 	}
6894 
6895 	if (!partial)
6896 		SetPageUptodate(page);
6897 
6898 	flush_dcache_page(page);
6899 }
6900 
6901 static void ocfs2_zero_cluster_pages(struct inode *inode, loff_t start,
6902 				     loff_t end, struct page **pages,
6903 				     int numpages, u64 phys, handle_t *handle)
6904 {
6905 	int i;
6906 	struct page *page;
6907 	unsigned int from, to = PAGE_CACHE_SIZE;
6908 	struct super_block *sb = inode->i_sb;
6909 
6910 	BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(sb)));
6911 
6912 	if (numpages == 0)
6913 		goto out;
6914 
6915 	to = PAGE_CACHE_SIZE;
6916 	for(i = 0; i < numpages; i++) {
6917 		page = pages[i];
6918 
6919 		from = start & (PAGE_CACHE_SIZE - 1);
6920 		if ((end >> PAGE_CACHE_SHIFT) == page->index)
6921 			to = end & (PAGE_CACHE_SIZE - 1);
6922 
6923 		BUG_ON(from > PAGE_CACHE_SIZE);
6924 		BUG_ON(to > PAGE_CACHE_SIZE);
6925 
6926 		ocfs2_map_and_dirty_page(inode, handle, from, to, page, 1,
6927 					 &phys);
6928 
6929 		start = (page->index + 1) << PAGE_CACHE_SHIFT;
6930 	}
6931 out:
6932 	if (pages)
6933 		ocfs2_unlock_and_free_pages(pages, numpages);
6934 }
6935 
6936 static int ocfs2_grab_eof_pages(struct inode *inode, loff_t start, loff_t end,
6937 				struct page **pages, int *num)
6938 {
6939 	int numpages, ret = 0;
6940 	struct super_block *sb = inode->i_sb;
6941 	struct address_space *mapping = inode->i_mapping;
6942 	unsigned long index;
6943 	loff_t last_page_bytes;
6944 
6945 	BUG_ON(start > end);
6946 
6947 	BUG_ON(start >> OCFS2_SB(sb)->s_clustersize_bits !=
6948 	       (end - 1) >> OCFS2_SB(sb)->s_clustersize_bits);
6949 
6950 	numpages = 0;
6951 	last_page_bytes = PAGE_ALIGN(end);
6952 	index = start >> PAGE_CACHE_SHIFT;
6953 	do {
6954 		pages[numpages] = grab_cache_page(mapping, index);
6955 		if (!pages[numpages]) {
6956 			ret = -ENOMEM;
6957 			mlog_errno(ret);
6958 			goto out;
6959 		}
6960 
6961 		numpages++;
6962 		index++;
6963 	} while (index < (last_page_bytes >> PAGE_CACHE_SHIFT));
6964 
6965 out:
6966 	if (ret != 0) {
6967 		if (pages)
6968 			ocfs2_unlock_and_free_pages(pages, numpages);
6969 		numpages = 0;
6970 	}
6971 
6972 	*num = numpages;
6973 
6974 	return ret;
6975 }
6976 
6977 /*
6978  * Zero the area past i_size but still within an allocated
6979  * cluster. This avoids exposing nonzero data on subsequent file
6980  * extends.
6981  *
6982  * We need to call this before i_size is updated on the inode because
6983  * otherwise block_write_full_page() will skip writeout of pages past
6984  * i_size. The new_i_size parameter is passed for this reason.
6985  */
6986 int ocfs2_zero_range_for_truncate(struct inode *inode, handle_t *handle,
6987 				  u64 range_start, u64 range_end)
6988 {
6989 	int ret = 0, numpages;
6990 	struct page **pages = NULL;
6991 	u64 phys;
6992 	unsigned int ext_flags;
6993 	struct super_block *sb = inode->i_sb;
6994 
6995 	/*
6996 	 * File systems which don't support sparse files zero on every
6997 	 * extend.
6998 	 */
6999 	if (!ocfs2_sparse_alloc(OCFS2_SB(sb)))
7000 		return 0;
7001 
7002 	pages = kcalloc(ocfs2_pages_per_cluster(sb),
7003 			sizeof(struct page *), GFP_NOFS);
7004 	if (pages == NULL) {
7005 		ret = -ENOMEM;
7006 		mlog_errno(ret);
7007 		goto out;
7008 	}
7009 
7010 	if (range_start == range_end)
7011 		goto out;
7012 
7013 	ret = ocfs2_extent_map_get_blocks(inode,
7014 					  range_start >> sb->s_blocksize_bits,
7015 					  &phys, NULL, &ext_flags);
7016 	if (ret) {
7017 		mlog_errno(ret);
7018 		goto out;
7019 	}
7020 
7021 	/*
7022 	 * Tail is a hole, or is marked unwritten. In either case, we
7023 	 * can count on read and write to return/push zero's.
7024 	 */
7025 	if (phys == 0 || ext_flags & OCFS2_EXT_UNWRITTEN)
7026 		goto out;
7027 
7028 	ret = ocfs2_grab_eof_pages(inode, range_start, range_end, pages,
7029 				   &numpages);
7030 	if (ret) {
7031 		mlog_errno(ret);
7032 		goto out;
7033 	}
7034 
7035 	ocfs2_zero_cluster_pages(inode, range_start, range_end, pages,
7036 				 numpages, phys, handle);
7037 
7038 	/*
7039 	 * Initiate writeout of the pages we zero'd here. We don't
7040 	 * wait on them - the truncate_inode_pages() call later will
7041 	 * do that for us.
7042 	 */
7043 	ret = do_sync_mapping_range(inode->i_mapping, range_start,
7044 				    range_end - 1, SYNC_FILE_RANGE_WRITE);
7045 	if (ret)
7046 		mlog_errno(ret);
7047 
7048 out:
7049 	if (pages)
7050 		kfree(pages);
7051 
7052 	return ret;
7053 }
7054 
7055 static void ocfs2_zero_dinode_id2_with_xattr(struct inode *inode,
7056 					     struct ocfs2_dinode *di)
7057 {
7058 	unsigned int blocksize = 1 << inode->i_sb->s_blocksize_bits;
7059 	unsigned int xattrsize = le16_to_cpu(di->i_xattr_inline_size);
7060 
7061 	if (le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_XATTR_FL)
7062 		memset(&di->id2, 0, blocksize -
7063 				    offsetof(struct ocfs2_dinode, id2) -
7064 				    xattrsize);
7065 	else
7066 		memset(&di->id2, 0, blocksize -
7067 				    offsetof(struct ocfs2_dinode, id2));
7068 }
7069 
7070 void ocfs2_dinode_new_extent_list(struct inode *inode,
7071 				  struct ocfs2_dinode *di)
7072 {
7073 	ocfs2_zero_dinode_id2_with_xattr(inode, di);
7074 	di->id2.i_list.l_tree_depth = 0;
7075 	di->id2.i_list.l_next_free_rec = 0;
7076 	di->id2.i_list.l_count = cpu_to_le16(
7077 		ocfs2_extent_recs_per_inode_with_xattr(inode->i_sb, di));
7078 }
7079 
7080 void ocfs2_set_inode_data_inline(struct inode *inode, struct ocfs2_dinode *di)
7081 {
7082 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
7083 	struct ocfs2_inline_data *idata = &di->id2.i_data;
7084 
7085 	spin_lock(&oi->ip_lock);
7086 	oi->ip_dyn_features |= OCFS2_INLINE_DATA_FL;
7087 	di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features);
7088 	spin_unlock(&oi->ip_lock);
7089 
7090 	/*
7091 	 * We clear the entire i_data structure here so that all
7092 	 * fields can be properly initialized.
7093 	 */
7094 	ocfs2_zero_dinode_id2_with_xattr(inode, di);
7095 
7096 	idata->id_count = cpu_to_le16(
7097 			ocfs2_max_inline_data_with_xattr(inode->i_sb, di));
7098 }
7099 
7100 int ocfs2_convert_inline_data_to_extents(struct inode *inode,
7101 					 struct buffer_head *di_bh)
7102 {
7103 	int ret, i, has_data, num_pages = 0;
7104 	handle_t *handle;
7105 	u64 uninitialized_var(block);
7106 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
7107 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
7108 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
7109 	struct ocfs2_alloc_context *data_ac = NULL;
7110 	struct page **pages = NULL;
7111 	loff_t end = osb->s_clustersize;
7112 	struct ocfs2_extent_tree et;
7113 	int did_quota = 0;
7114 
7115 	has_data = i_size_read(inode) ? 1 : 0;
7116 
7117 	if (has_data) {
7118 		pages = kcalloc(ocfs2_pages_per_cluster(osb->sb),
7119 				sizeof(struct page *), GFP_NOFS);
7120 		if (pages == NULL) {
7121 			ret = -ENOMEM;
7122 			mlog_errno(ret);
7123 			goto out;
7124 		}
7125 
7126 		ret = ocfs2_reserve_clusters(osb, 1, &data_ac);
7127 		if (ret) {
7128 			mlog_errno(ret);
7129 			goto out;
7130 		}
7131 	}
7132 
7133 	handle = ocfs2_start_trans(osb,
7134 				   ocfs2_inline_to_extents_credits(osb->sb));
7135 	if (IS_ERR(handle)) {
7136 		ret = PTR_ERR(handle);
7137 		mlog_errno(ret);
7138 		goto out_unlock;
7139 	}
7140 
7141 	ret = ocfs2_journal_access_di(handle, inode, di_bh,
7142 				      OCFS2_JOURNAL_ACCESS_WRITE);
7143 	if (ret) {
7144 		mlog_errno(ret);
7145 		goto out_commit;
7146 	}
7147 
7148 	if (has_data) {
7149 		u32 bit_off, num;
7150 		unsigned int page_end;
7151 		u64 phys;
7152 
7153 		if (vfs_dq_alloc_space_nodirty(inode,
7154 				       ocfs2_clusters_to_bytes(osb->sb, 1))) {
7155 			ret = -EDQUOT;
7156 			goto out_commit;
7157 		}
7158 		did_quota = 1;
7159 
7160 		ret = ocfs2_claim_clusters(osb, handle, data_ac, 1, &bit_off,
7161 					   &num);
7162 		if (ret) {
7163 			mlog_errno(ret);
7164 			goto out_commit;
7165 		}
7166 
7167 		/*
7168 		 * Save two copies, one for insert, and one that can
7169 		 * be changed by ocfs2_map_and_dirty_page() below.
7170 		 */
7171 		block = phys = ocfs2_clusters_to_blocks(inode->i_sb, bit_off);
7172 
7173 		/*
7174 		 * Non sparse file systems zero on extend, so no need
7175 		 * to do that now.
7176 		 */
7177 		if (!ocfs2_sparse_alloc(osb) &&
7178 		    PAGE_CACHE_SIZE < osb->s_clustersize)
7179 			end = PAGE_CACHE_SIZE;
7180 
7181 		ret = ocfs2_grab_eof_pages(inode, 0, end, pages, &num_pages);
7182 		if (ret) {
7183 			mlog_errno(ret);
7184 			goto out_commit;
7185 		}
7186 
7187 		/*
7188 		 * This should populate the 1st page for us and mark
7189 		 * it up to date.
7190 		 */
7191 		ret = ocfs2_read_inline_data(inode, pages[0], di_bh);
7192 		if (ret) {
7193 			mlog_errno(ret);
7194 			goto out_commit;
7195 		}
7196 
7197 		page_end = PAGE_CACHE_SIZE;
7198 		if (PAGE_CACHE_SIZE > osb->s_clustersize)
7199 			page_end = osb->s_clustersize;
7200 
7201 		for (i = 0; i < num_pages; i++)
7202 			ocfs2_map_and_dirty_page(inode, handle, 0, page_end,
7203 						 pages[i], i > 0, &phys);
7204 	}
7205 
7206 	spin_lock(&oi->ip_lock);
7207 	oi->ip_dyn_features &= ~OCFS2_INLINE_DATA_FL;
7208 	di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features);
7209 	spin_unlock(&oi->ip_lock);
7210 
7211 	ocfs2_dinode_new_extent_list(inode, di);
7212 
7213 	ocfs2_journal_dirty(handle, di_bh);
7214 
7215 	if (has_data) {
7216 		/*
7217 		 * An error at this point should be extremely rare. If
7218 		 * this proves to be false, we could always re-build
7219 		 * the in-inode data from our pages.
7220 		 */
7221 		ocfs2_init_dinode_extent_tree(&et, inode, di_bh);
7222 		ret = ocfs2_insert_extent(osb, handle, inode, &et,
7223 					  0, block, 1, 0, NULL);
7224 		if (ret) {
7225 			mlog_errno(ret);
7226 			goto out_commit;
7227 		}
7228 
7229 		inode->i_blocks = ocfs2_inode_sector_count(inode);
7230 	}
7231 
7232 out_commit:
7233 	if (ret < 0 && did_quota)
7234 		vfs_dq_free_space_nodirty(inode,
7235 					  ocfs2_clusters_to_bytes(osb->sb, 1));
7236 
7237 	ocfs2_commit_trans(osb, handle);
7238 
7239 out_unlock:
7240 	if (data_ac)
7241 		ocfs2_free_alloc_context(data_ac);
7242 
7243 out:
7244 	if (pages) {
7245 		ocfs2_unlock_and_free_pages(pages, num_pages);
7246 		kfree(pages);
7247 	}
7248 
7249 	return ret;
7250 }
7251 
7252 /*
7253  * It is expected, that by the time you call this function,
7254  * inode->i_size and fe->i_size have been adjusted.
7255  *
7256  * WARNING: This will kfree the truncate context
7257  */
7258 int ocfs2_commit_truncate(struct ocfs2_super *osb,
7259 			  struct inode *inode,
7260 			  struct buffer_head *fe_bh,
7261 			  struct ocfs2_truncate_context *tc)
7262 {
7263 	int status, i, credits, tl_sem = 0;
7264 	u32 clusters_to_del, new_highest_cpos, range;
7265 	struct ocfs2_extent_list *el;
7266 	handle_t *handle = NULL;
7267 	struct inode *tl_inode = osb->osb_tl_inode;
7268 	struct ocfs2_path *path = NULL;
7269 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)fe_bh->b_data;
7270 
7271 	mlog_entry_void();
7272 
7273 	new_highest_cpos = ocfs2_clusters_for_bytes(osb->sb,
7274 						     i_size_read(inode));
7275 
7276 	path = ocfs2_new_path(fe_bh, &di->id2.i_list,
7277 			      ocfs2_journal_access_di);
7278 	if (!path) {
7279 		status = -ENOMEM;
7280 		mlog_errno(status);
7281 		goto bail;
7282 	}
7283 
7284 	ocfs2_extent_map_trunc(inode, new_highest_cpos);
7285 
7286 start:
7287 	/*
7288 	 * Check that we still have allocation to delete.
7289 	 */
7290 	if (OCFS2_I(inode)->ip_clusters == 0) {
7291 		status = 0;
7292 		goto bail;
7293 	}
7294 
7295 	/*
7296 	 * Truncate always works against the rightmost tree branch.
7297 	 */
7298 	status = ocfs2_find_path(inode, path, UINT_MAX);
7299 	if (status) {
7300 		mlog_errno(status);
7301 		goto bail;
7302 	}
7303 
7304 	mlog(0, "inode->ip_clusters = %u, tree_depth = %u\n",
7305 	     OCFS2_I(inode)->ip_clusters, path->p_tree_depth);
7306 
7307 	/*
7308 	 * By now, el will point to the extent list on the bottom most
7309 	 * portion of this tree. Only the tail record is considered in
7310 	 * each pass.
7311 	 *
7312 	 * We handle the following cases, in order:
7313 	 * - empty extent: delete the remaining branch
7314 	 * - remove the entire record
7315 	 * - remove a partial record
7316 	 * - no record needs to be removed (truncate has completed)
7317 	 */
7318 	el = path_leaf_el(path);
7319 	if (le16_to_cpu(el->l_next_free_rec) == 0) {
7320 		ocfs2_error(inode->i_sb,
7321 			    "Inode %llu has empty extent block at %llu\n",
7322 			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
7323 			    (unsigned long long)path_leaf_bh(path)->b_blocknr);
7324 		status = -EROFS;
7325 		goto bail;
7326 	}
7327 
7328 	i = le16_to_cpu(el->l_next_free_rec) - 1;
7329 	range = le32_to_cpu(el->l_recs[i].e_cpos) +
7330 		ocfs2_rec_clusters(el, &el->l_recs[i]);
7331 	if (i == 0 && ocfs2_is_empty_extent(&el->l_recs[i])) {
7332 		clusters_to_del = 0;
7333 	} else if (le32_to_cpu(el->l_recs[i].e_cpos) >= new_highest_cpos) {
7334 		clusters_to_del = ocfs2_rec_clusters(el, &el->l_recs[i]);
7335 	} else if (range > new_highest_cpos) {
7336 		clusters_to_del = (ocfs2_rec_clusters(el, &el->l_recs[i]) +
7337 				   le32_to_cpu(el->l_recs[i].e_cpos)) -
7338 				  new_highest_cpos;
7339 	} else {
7340 		status = 0;
7341 		goto bail;
7342 	}
7343 
7344 	mlog(0, "clusters_to_del = %u in this pass, tail blk=%llu\n",
7345 	     clusters_to_del, (unsigned long long)path_leaf_bh(path)->b_blocknr);
7346 
7347 	mutex_lock(&tl_inode->i_mutex);
7348 	tl_sem = 1;
7349 	/* ocfs2_truncate_log_needs_flush guarantees us at least one
7350 	 * record is free for use. If there isn't any, we flush to get
7351 	 * an empty truncate log.  */
7352 	if (ocfs2_truncate_log_needs_flush(osb)) {
7353 		status = __ocfs2_flush_truncate_log(osb);
7354 		if (status < 0) {
7355 			mlog_errno(status);
7356 			goto bail;
7357 		}
7358 	}
7359 
7360 	credits = ocfs2_calc_tree_trunc_credits(osb->sb, clusters_to_del,
7361 						(struct ocfs2_dinode *)fe_bh->b_data,
7362 						el);
7363 	handle = ocfs2_start_trans(osb, credits);
7364 	if (IS_ERR(handle)) {
7365 		status = PTR_ERR(handle);
7366 		handle = NULL;
7367 		mlog_errno(status);
7368 		goto bail;
7369 	}
7370 
7371 	status = ocfs2_do_truncate(osb, clusters_to_del, inode, fe_bh, handle,
7372 				   tc, path);
7373 	if (status < 0) {
7374 		mlog_errno(status);
7375 		goto bail;
7376 	}
7377 
7378 	mutex_unlock(&tl_inode->i_mutex);
7379 	tl_sem = 0;
7380 
7381 	ocfs2_commit_trans(osb, handle);
7382 	handle = NULL;
7383 
7384 	ocfs2_reinit_path(path, 1);
7385 
7386 	/*
7387 	 * The check above will catch the case where we've truncated
7388 	 * away all allocation.
7389 	 */
7390 	goto start;
7391 
7392 bail:
7393 
7394 	ocfs2_schedule_truncate_log_flush(osb, 1);
7395 
7396 	if (tl_sem)
7397 		mutex_unlock(&tl_inode->i_mutex);
7398 
7399 	if (handle)
7400 		ocfs2_commit_trans(osb, handle);
7401 
7402 	ocfs2_run_deallocs(osb, &tc->tc_dealloc);
7403 
7404 	ocfs2_free_path(path);
7405 
7406 	/* This will drop the ext_alloc cluster lock for us */
7407 	ocfs2_free_truncate_context(tc);
7408 
7409 	mlog_exit(status);
7410 	return status;
7411 }
7412 
7413 /*
7414  * Expects the inode to already be locked.
7415  */
7416 int ocfs2_prepare_truncate(struct ocfs2_super *osb,
7417 			   struct inode *inode,
7418 			   struct buffer_head *fe_bh,
7419 			   struct ocfs2_truncate_context **tc)
7420 {
7421 	int status;
7422 	unsigned int new_i_clusters;
7423 	struct ocfs2_dinode *fe;
7424 	struct ocfs2_extent_block *eb;
7425 	struct buffer_head *last_eb_bh = NULL;
7426 
7427 	mlog_entry_void();
7428 
7429 	*tc = NULL;
7430 
7431 	new_i_clusters = ocfs2_clusters_for_bytes(osb->sb,
7432 						  i_size_read(inode));
7433 	fe = (struct ocfs2_dinode *) fe_bh->b_data;
7434 
7435 	mlog(0, "fe->i_clusters = %u, new_i_clusters = %u, fe->i_size ="
7436 	     "%llu\n", le32_to_cpu(fe->i_clusters), new_i_clusters,
7437 	     (unsigned long long)le64_to_cpu(fe->i_size));
7438 
7439 	*tc = kzalloc(sizeof(struct ocfs2_truncate_context), GFP_KERNEL);
7440 	if (!(*tc)) {
7441 		status = -ENOMEM;
7442 		mlog_errno(status);
7443 		goto bail;
7444 	}
7445 	ocfs2_init_dealloc_ctxt(&(*tc)->tc_dealloc);
7446 
7447 	if (fe->id2.i_list.l_tree_depth) {
7448 		status = ocfs2_read_extent_block(inode,
7449 						 le64_to_cpu(fe->i_last_eb_blk),
7450 						 &last_eb_bh);
7451 		if (status < 0) {
7452 			mlog_errno(status);
7453 			goto bail;
7454 		}
7455 		eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
7456 	}
7457 
7458 	(*tc)->tc_last_eb_bh = last_eb_bh;
7459 
7460 	status = 0;
7461 bail:
7462 	if (status < 0) {
7463 		if (*tc)
7464 			ocfs2_free_truncate_context(*tc);
7465 		*tc = NULL;
7466 	}
7467 	mlog_exit_void();
7468 	return status;
7469 }
7470 
7471 /*
7472  * 'start' is inclusive, 'end' is not.
7473  */
7474 int ocfs2_truncate_inline(struct inode *inode, struct buffer_head *di_bh,
7475 			  unsigned int start, unsigned int end, int trunc)
7476 {
7477 	int ret;
7478 	unsigned int numbytes;
7479 	handle_t *handle;
7480 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
7481 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
7482 	struct ocfs2_inline_data *idata = &di->id2.i_data;
7483 
7484 	if (end > i_size_read(inode))
7485 		end = i_size_read(inode);
7486 
7487 	BUG_ON(start >= end);
7488 
7489 	if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) ||
7490 	    !(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL) ||
7491 	    !ocfs2_supports_inline_data(osb)) {
7492 		ocfs2_error(inode->i_sb,
7493 			    "Inline data flags for inode %llu don't agree! "
7494 			    "Disk: 0x%x, Memory: 0x%x, Superblock: 0x%x\n",
7495 			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
7496 			    le16_to_cpu(di->i_dyn_features),
7497 			    OCFS2_I(inode)->ip_dyn_features,
7498 			    osb->s_feature_incompat);
7499 		ret = -EROFS;
7500 		goto out;
7501 	}
7502 
7503 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
7504 	if (IS_ERR(handle)) {
7505 		ret = PTR_ERR(handle);
7506 		mlog_errno(ret);
7507 		goto out;
7508 	}
7509 
7510 	ret = ocfs2_journal_access_di(handle, inode, di_bh,
7511 				      OCFS2_JOURNAL_ACCESS_WRITE);
7512 	if (ret) {
7513 		mlog_errno(ret);
7514 		goto out_commit;
7515 	}
7516 
7517 	numbytes = end - start;
7518 	memset(idata->id_data + start, 0, numbytes);
7519 
7520 	/*
7521 	 * No need to worry about the data page here - it's been
7522 	 * truncated already and inline data doesn't need it for
7523 	 * pushing zero's to disk, so we'll let readpage pick it up
7524 	 * later.
7525 	 */
7526 	if (trunc) {
7527 		i_size_write(inode, start);
7528 		di->i_size = cpu_to_le64(start);
7529 	}
7530 
7531 	inode->i_blocks = ocfs2_inode_sector_count(inode);
7532 	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
7533 
7534 	di->i_ctime = di->i_mtime = cpu_to_le64(inode->i_ctime.tv_sec);
7535 	di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
7536 
7537 	ocfs2_journal_dirty(handle, di_bh);
7538 
7539 out_commit:
7540 	ocfs2_commit_trans(osb, handle);
7541 
7542 out:
7543 	return ret;
7544 }
7545 
7546 static void ocfs2_free_truncate_context(struct ocfs2_truncate_context *tc)
7547 {
7548 	/*
7549 	 * The caller is responsible for completing deallocation
7550 	 * before freeing the context.
7551 	 */
7552 	if (tc->tc_dealloc.c_first_suballocator != NULL)
7553 		mlog(ML_NOTICE,
7554 		     "Truncate completion has non-empty dealloc context\n");
7555 
7556 	brelse(tc->tc_last_eb_bh);
7557 
7558 	kfree(tc);
7559 }
7560