1 /* -*- mode: c; c-basic-offset: 8; -*- 2 * vim: noexpandtab sw=8 ts=8 sts=0: 3 * 4 * alloc.c 5 * 6 * Extent allocs and frees 7 * 8 * Copyright (C) 2002, 2004 Oracle. All rights reserved. 9 * 10 * This program is free software; you can redistribute it and/or 11 * modify it under the terms of the GNU General Public 12 * License as published by the Free Software Foundation; either 13 * version 2 of the License, or (at your option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, 16 * but WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 18 * General Public License for more details. 19 * 20 * You should have received a copy of the GNU General Public 21 * License along with this program; if not, write to the 22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 23 * Boston, MA 021110-1307, USA. 24 */ 25 26 #include <linux/fs.h> 27 #include <linux/types.h> 28 #include <linux/slab.h> 29 #include <linux/highmem.h> 30 #include <linux/swap.h> 31 #include <linux/quotaops.h> 32 33 #define MLOG_MASK_PREFIX ML_DISK_ALLOC 34 #include <cluster/masklog.h> 35 36 #include "ocfs2.h" 37 38 #include "alloc.h" 39 #include "aops.h" 40 #include "blockcheck.h" 41 #include "dlmglue.h" 42 #include "extent_map.h" 43 #include "inode.h" 44 #include "journal.h" 45 #include "localalloc.h" 46 #include "suballoc.h" 47 #include "sysfile.h" 48 #include "file.h" 49 #include "super.h" 50 #include "uptodate.h" 51 #include "xattr.h" 52 53 #include "buffer_head_io.h" 54 55 56 /* 57 * Operations for a specific extent tree type. 58 * 59 * To implement an on-disk btree (extent tree) type in ocfs2, add 60 * an ocfs2_extent_tree_operations structure and the matching 61 * ocfs2_init_<thingy>_extent_tree() function. That's pretty much it 62 * for the allocation portion of the extent tree. 63 */ 64 struct ocfs2_extent_tree_operations { 65 /* 66 * last_eb_blk is the block number of the right most leaf extent 67 * block. Most on-disk structures containing an extent tree store 68 * this value for fast access. The ->eo_set_last_eb_blk() and 69 * ->eo_get_last_eb_blk() operations access this value. They are 70 * both required. 71 */ 72 void (*eo_set_last_eb_blk)(struct ocfs2_extent_tree *et, 73 u64 blkno); 74 u64 (*eo_get_last_eb_blk)(struct ocfs2_extent_tree *et); 75 76 /* 77 * The on-disk structure usually keeps track of how many total 78 * clusters are stored in this extent tree. This function updates 79 * that value. new_clusters is the delta, and must be 80 * added to the total. Required. 81 */ 82 void (*eo_update_clusters)(struct inode *inode, 83 struct ocfs2_extent_tree *et, 84 u32 new_clusters); 85 86 /* 87 * If ->eo_insert_check() exists, it is called before rec is 88 * inserted into the extent tree. It is optional. 89 */ 90 int (*eo_insert_check)(struct inode *inode, 91 struct ocfs2_extent_tree *et, 92 struct ocfs2_extent_rec *rec); 93 int (*eo_sanity_check)(struct inode *inode, struct ocfs2_extent_tree *et); 94 95 /* 96 * -------------------------------------------------------------- 97 * The remaining are internal to ocfs2_extent_tree and don't have 98 * accessor functions 99 */ 100 101 /* 102 * ->eo_fill_root_el() takes et->et_object and sets et->et_root_el. 103 * It is required. 104 */ 105 void (*eo_fill_root_el)(struct ocfs2_extent_tree *et); 106 107 /* 108 * ->eo_fill_max_leaf_clusters sets et->et_max_leaf_clusters if 109 * it exists. If it does not, et->et_max_leaf_clusters is set 110 * to 0 (unlimited). Optional. 111 */ 112 void (*eo_fill_max_leaf_clusters)(struct inode *inode, 113 struct ocfs2_extent_tree *et); 114 }; 115 116 117 /* 118 * Pre-declare ocfs2_dinode_et_ops so we can use it as a sanity check 119 * in the methods. 120 */ 121 static u64 ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree *et); 122 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree *et, 123 u64 blkno); 124 static void ocfs2_dinode_update_clusters(struct inode *inode, 125 struct ocfs2_extent_tree *et, 126 u32 clusters); 127 static int ocfs2_dinode_insert_check(struct inode *inode, 128 struct ocfs2_extent_tree *et, 129 struct ocfs2_extent_rec *rec); 130 static int ocfs2_dinode_sanity_check(struct inode *inode, 131 struct ocfs2_extent_tree *et); 132 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree *et); 133 static struct ocfs2_extent_tree_operations ocfs2_dinode_et_ops = { 134 .eo_set_last_eb_blk = ocfs2_dinode_set_last_eb_blk, 135 .eo_get_last_eb_blk = ocfs2_dinode_get_last_eb_blk, 136 .eo_update_clusters = ocfs2_dinode_update_clusters, 137 .eo_insert_check = ocfs2_dinode_insert_check, 138 .eo_sanity_check = ocfs2_dinode_sanity_check, 139 .eo_fill_root_el = ocfs2_dinode_fill_root_el, 140 }; 141 142 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree *et, 143 u64 blkno) 144 { 145 struct ocfs2_dinode *di = et->et_object; 146 147 BUG_ON(et->et_ops != &ocfs2_dinode_et_ops); 148 di->i_last_eb_blk = cpu_to_le64(blkno); 149 } 150 151 static u64 ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree *et) 152 { 153 struct ocfs2_dinode *di = et->et_object; 154 155 BUG_ON(et->et_ops != &ocfs2_dinode_et_ops); 156 return le64_to_cpu(di->i_last_eb_blk); 157 } 158 159 static void ocfs2_dinode_update_clusters(struct inode *inode, 160 struct ocfs2_extent_tree *et, 161 u32 clusters) 162 { 163 struct ocfs2_dinode *di = et->et_object; 164 165 le32_add_cpu(&di->i_clusters, clusters); 166 spin_lock(&OCFS2_I(inode)->ip_lock); 167 OCFS2_I(inode)->ip_clusters = le32_to_cpu(di->i_clusters); 168 spin_unlock(&OCFS2_I(inode)->ip_lock); 169 } 170 171 static int ocfs2_dinode_insert_check(struct inode *inode, 172 struct ocfs2_extent_tree *et, 173 struct ocfs2_extent_rec *rec) 174 { 175 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 176 177 BUG_ON(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL); 178 mlog_bug_on_msg(!ocfs2_sparse_alloc(osb) && 179 (OCFS2_I(inode)->ip_clusters != 180 le32_to_cpu(rec->e_cpos)), 181 "Device %s, asking for sparse allocation: inode %llu, " 182 "cpos %u, clusters %u\n", 183 osb->dev_str, 184 (unsigned long long)OCFS2_I(inode)->ip_blkno, 185 rec->e_cpos, 186 OCFS2_I(inode)->ip_clusters); 187 188 return 0; 189 } 190 191 static int ocfs2_dinode_sanity_check(struct inode *inode, 192 struct ocfs2_extent_tree *et) 193 { 194 struct ocfs2_dinode *di = et->et_object; 195 196 BUG_ON(et->et_ops != &ocfs2_dinode_et_ops); 197 BUG_ON(!OCFS2_IS_VALID_DINODE(di)); 198 199 return 0; 200 } 201 202 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree *et) 203 { 204 struct ocfs2_dinode *di = et->et_object; 205 206 et->et_root_el = &di->id2.i_list; 207 } 208 209 210 static void ocfs2_xattr_value_fill_root_el(struct ocfs2_extent_tree *et) 211 { 212 struct ocfs2_xattr_value_buf *vb = et->et_object; 213 214 et->et_root_el = &vb->vb_xv->xr_list; 215 } 216 217 static void ocfs2_xattr_value_set_last_eb_blk(struct ocfs2_extent_tree *et, 218 u64 blkno) 219 { 220 struct ocfs2_xattr_value_buf *vb = et->et_object; 221 222 vb->vb_xv->xr_last_eb_blk = cpu_to_le64(blkno); 223 } 224 225 static u64 ocfs2_xattr_value_get_last_eb_blk(struct ocfs2_extent_tree *et) 226 { 227 struct ocfs2_xattr_value_buf *vb = et->et_object; 228 229 return le64_to_cpu(vb->vb_xv->xr_last_eb_blk); 230 } 231 232 static void ocfs2_xattr_value_update_clusters(struct inode *inode, 233 struct ocfs2_extent_tree *et, 234 u32 clusters) 235 { 236 struct ocfs2_xattr_value_buf *vb = et->et_object; 237 238 le32_add_cpu(&vb->vb_xv->xr_clusters, clusters); 239 } 240 241 static struct ocfs2_extent_tree_operations ocfs2_xattr_value_et_ops = { 242 .eo_set_last_eb_blk = ocfs2_xattr_value_set_last_eb_blk, 243 .eo_get_last_eb_blk = ocfs2_xattr_value_get_last_eb_blk, 244 .eo_update_clusters = ocfs2_xattr_value_update_clusters, 245 .eo_fill_root_el = ocfs2_xattr_value_fill_root_el, 246 }; 247 248 static void ocfs2_xattr_tree_fill_root_el(struct ocfs2_extent_tree *et) 249 { 250 struct ocfs2_xattr_block *xb = et->et_object; 251 252 et->et_root_el = &xb->xb_attrs.xb_root.xt_list; 253 } 254 255 static void ocfs2_xattr_tree_fill_max_leaf_clusters(struct inode *inode, 256 struct ocfs2_extent_tree *et) 257 { 258 et->et_max_leaf_clusters = 259 ocfs2_clusters_for_bytes(inode->i_sb, 260 OCFS2_MAX_XATTR_TREE_LEAF_SIZE); 261 } 262 263 static void ocfs2_xattr_tree_set_last_eb_blk(struct ocfs2_extent_tree *et, 264 u64 blkno) 265 { 266 struct ocfs2_xattr_block *xb = et->et_object; 267 struct ocfs2_xattr_tree_root *xt = &xb->xb_attrs.xb_root; 268 269 xt->xt_last_eb_blk = cpu_to_le64(blkno); 270 } 271 272 static u64 ocfs2_xattr_tree_get_last_eb_blk(struct ocfs2_extent_tree *et) 273 { 274 struct ocfs2_xattr_block *xb = et->et_object; 275 struct ocfs2_xattr_tree_root *xt = &xb->xb_attrs.xb_root; 276 277 return le64_to_cpu(xt->xt_last_eb_blk); 278 } 279 280 static void ocfs2_xattr_tree_update_clusters(struct inode *inode, 281 struct ocfs2_extent_tree *et, 282 u32 clusters) 283 { 284 struct ocfs2_xattr_block *xb = et->et_object; 285 286 le32_add_cpu(&xb->xb_attrs.xb_root.xt_clusters, clusters); 287 } 288 289 static struct ocfs2_extent_tree_operations ocfs2_xattr_tree_et_ops = { 290 .eo_set_last_eb_blk = ocfs2_xattr_tree_set_last_eb_blk, 291 .eo_get_last_eb_blk = ocfs2_xattr_tree_get_last_eb_blk, 292 .eo_update_clusters = ocfs2_xattr_tree_update_clusters, 293 .eo_fill_root_el = ocfs2_xattr_tree_fill_root_el, 294 .eo_fill_max_leaf_clusters = ocfs2_xattr_tree_fill_max_leaf_clusters, 295 }; 296 297 static void ocfs2_dx_root_set_last_eb_blk(struct ocfs2_extent_tree *et, 298 u64 blkno) 299 { 300 struct ocfs2_dx_root_block *dx_root = et->et_object; 301 302 dx_root->dr_last_eb_blk = cpu_to_le64(blkno); 303 } 304 305 static u64 ocfs2_dx_root_get_last_eb_blk(struct ocfs2_extent_tree *et) 306 { 307 struct ocfs2_dx_root_block *dx_root = et->et_object; 308 309 return le64_to_cpu(dx_root->dr_last_eb_blk); 310 } 311 312 static void ocfs2_dx_root_update_clusters(struct inode *inode, 313 struct ocfs2_extent_tree *et, 314 u32 clusters) 315 { 316 struct ocfs2_dx_root_block *dx_root = et->et_object; 317 318 le32_add_cpu(&dx_root->dr_clusters, clusters); 319 } 320 321 static int ocfs2_dx_root_sanity_check(struct inode *inode, 322 struct ocfs2_extent_tree *et) 323 { 324 struct ocfs2_dx_root_block *dx_root = et->et_object; 325 326 BUG_ON(!OCFS2_IS_VALID_DX_ROOT(dx_root)); 327 328 return 0; 329 } 330 331 static void ocfs2_dx_root_fill_root_el(struct ocfs2_extent_tree *et) 332 { 333 struct ocfs2_dx_root_block *dx_root = et->et_object; 334 335 et->et_root_el = &dx_root->dr_list; 336 } 337 338 static struct ocfs2_extent_tree_operations ocfs2_dx_root_et_ops = { 339 .eo_set_last_eb_blk = ocfs2_dx_root_set_last_eb_blk, 340 .eo_get_last_eb_blk = ocfs2_dx_root_get_last_eb_blk, 341 .eo_update_clusters = ocfs2_dx_root_update_clusters, 342 .eo_sanity_check = ocfs2_dx_root_sanity_check, 343 .eo_fill_root_el = ocfs2_dx_root_fill_root_el, 344 }; 345 346 static void __ocfs2_init_extent_tree(struct ocfs2_extent_tree *et, 347 struct inode *inode, 348 struct buffer_head *bh, 349 ocfs2_journal_access_func access, 350 void *obj, 351 struct ocfs2_extent_tree_operations *ops) 352 { 353 et->et_ops = ops; 354 et->et_root_bh = bh; 355 et->et_root_journal_access = access; 356 if (!obj) 357 obj = (void *)bh->b_data; 358 et->et_object = obj; 359 360 et->et_ops->eo_fill_root_el(et); 361 if (!et->et_ops->eo_fill_max_leaf_clusters) 362 et->et_max_leaf_clusters = 0; 363 else 364 et->et_ops->eo_fill_max_leaf_clusters(inode, et); 365 } 366 367 void ocfs2_init_dinode_extent_tree(struct ocfs2_extent_tree *et, 368 struct inode *inode, 369 struct buffer_head *bh) 370 { 371 __ocfs2_init_extent_tree(et, inode, bh, ocfs2_journal_access_di, 372 NULL, &ocfs2_dinode_et_ops); 373 } 374 375 void ocfs2_init_xattr_tree_extent_tree(struct ocfs2_extent_tree *et, 376 struct inode *inode, 377 struct buffer_head *bh) 378 { 379 __ocfs2_init_extent_tree(et, inode, bh, ocfs2_journal_access_xb, 380 NULL, &ocfs2_xattr_tree_et_ops); 381 } 382 383 void ocfs2_init_xattr_value_extent_tree(struct ocfs2_extent_tree *et, 384 struct inode *inode, 385 struct ocfs2_xattr_value_buf *vb) 386 { 387 __ocfs2_init_extent_tree(et, inode, vb->vb_bh, vb->vb_access, vb, 388 &ocfs2_xattr_value_et_ops); 389 } 390 391 void ocfs2_init_dx_root_extent_tree(struct ocfs2_extent_tree *et, 392 struct inode *inode, 393 struct buffer_head *bh) 394 { 395 __ocfs2_init_extent_tree(et, inode, bh, ocfs2_journal_access_dr, 396 NULL, &ocfs2_dx_root_et_ops); 397 } 398 399 static inline void ocfs2_et_set_last_eb_blk(struct ocfs2_extent_tree *et, 400 u64 new_last_eb_blk) 401 { 402 et->et_ops->eo_set_last_eb_blk(et, new_last_eb_blk); 403 } 404 405 static inline u64 ocfs2_et_get_last_eb_blk(struct ocfs2_extent_tree *et) 406 { 407 return et->et_ops->eo_get_last_eb_blk(et); 408 } 409 410 static inline void ocfs2_et_update_clusters(struct inode *inode, 411 struct ocfs2_extent_tree *et, 412 u32 clusters) 413 { 414 et->et_ops->eo_update_clusters(inode, et, clusters); 415 } 416 417 static inline int ocfs2_et_root_journal_access(handle_t *handle, 418 struct inode *inode, 419 struct ocfs2_extent_tree *et, 420 int type) 421 { 422 return et->et_root_journal_access(handle, inode, et->et_root_bh, 423 type); 424 } 425 426 static inline int ocfs2_et_insert_check(struct inode *inode, 427 struct ocfs2_extent_tree *et, 428 struct ocfs2_extent_rec *rec) 429 { 430 int ret = 0; 431 432 if (et->et_ops->eo_insert_check) 433 ret = et->et_ops->eo_insert_check(inode, et, rec); 434 return ret; 435 } 436 437 static inline int ocfs2_et_sanity_check(struct inode *inode, 438 struct ocfs2_extent_tree *et) 439 { 440 int ret = 0; 441 442 if (et->et_ops->eo_sanity_check) 443 ret = et->et_ops->eo_sanity_check(inode, et); 444 return ret; 445 } 446 447 static void ocfs2_free_truncate_context(struct ocfs2_truncate_context *tc); 448 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt, 449 struct ocfs2_extent_block *eb); 450 451 /* 452 * Structures which describe a path through a btree, and functions to 453 * manipulate them. 454 * 455 * The idea here is to be as generic as possible with the tree 456 * manipulation code. 457 */ 458 struct ocfs2_path_item { 459 struct buffer_head *bh; 460 struct ocfs2_extent_list *el; 461 }; 462 463 #define OCFS2_MAX_PATH_DEPTH 5 464 465 struct ocfs2_path { 466 int p_tree_depth; 467 ocfs2_journal_access_func p_root_access; 468 struct ocfs2_path_item p_node[OCFS2_MAX_PATH_DEPTH]; 469 }; 470 471 #define path_root_bh(_path) ((_path)->p_node[0].bh) 472 #define path_root_el(_path) ((_path)->p_node[0].el) 473 #define path_root_access(_path)((_path)->p_root_access) 474 #define path_leaf_bh(_path) ((_path)->p_node[(_path)->p_tree_depth].bh) 475 #define path_leaf_el(_path) ((_path)->p_node[(_path)->p_tree_depth].el) 476 #define path_num_items(_path) ((_path)->p_tree_depth + 1) 477 478 static int ocfs2_find_path(struct inode *inode, struct ocfs2_path *path, 479 u32 cpos); 480 static void ocfs2_adjust_rightmost_records(struct inode *inode, 481 handle_t *handle, 482 struct ocfs2_path *path, 483 struct ocfs2_extent_rec *insert_rec); 484 /* 485 * Reset the actual path elements so that we can re-use the structure 486 * to build another path. Generally, this involves freeing the buffer 487 * heads. 488 */ 489 static void ocfs2_reinit_path(struct ocfs2_path *path, int keep_root) 490 { 491 int i, start = 0, depth = 0; 492 struct ocfs2_path_item *node; 493 494 if (keep_root) 495 start = 1; 496 497 for(i = start; i < path_num_items(path); i++) { 498 node = &path->p_node[i]; 499 500 brelse(node->bh); 501 node->bh = NULL; 502 node->el = NULL; 503 } 504 505 /* 506 * Tree depth may change during truncate, or insert. If we're 507 * keeping the root extent list, then make sure that our path 508 * structure reflects the proper depth. 509 */ 510 if (keep_root) 511 depth = le16_to_cpu(path_root_el(path)->l_tree_depth); 512 else 513 path_root_access(path) = NULL; 514 515 path->p_tree_depth = depth; 516 } 517 518 static void ocfs2_free_path(struct ocfs2_path *path) 519 { 520 if (path) { 521 ocfs2_reinit_path(path, 0); 522 kfree(path); 523 } 524 } 525 526 /* 527 * All the elements of src into dest. After this call, src could be freed 528 * without affecting dest. 529 * 530 * Both paths should have the same root. Any non-root elements of dest 531 * will be freed. 532 */ 533 static void ocfs2_cp_path(struct ocfs2_path *dest, struct ocfs2_path *src) 534 { 535 int i; 536 537 BUG_ON(path_root_bh(dest) != path_root_bh(src)); 538 BUG_ON(path_root_el(dest) != path_root_el(src)); 539 BUG_ON(path_root_access(dest) != path_root_access(src)); 540 541 ocfs2_reinit_path(dest, 1); 542 543 for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) { 544 dest->p_node[i].bh = src->p_node[i].bh; 545 dest->p_node[i].el = src->p_node[i].el; 546 547 if (dest->p_node[i].bh) 548 get_bh(dest->p_node[i].bh); 549 } 550 } 551 552 /* 553 * Make the *dest path the same as src and re-initialize src path to 554 * have a root only. 555 */ 556 static void ocfs2_mv_path(struct ocfs2_path *dest, struct ocfs2_path *src) 557 { 558 int i; 559 560 BUG_ON(path_root_bh(dest) != path_root_bh(src)); 561 BUG_ON(path_root_access(dest) != path_root_access(src)); 562 563 for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) { 564 brelse(dest->p_node[i].bh); 565 566 dest->p_node[i].bh = src->p_node[i].bh; 567 dest->p_node[i].el = src->p_node[i].el; 568 569 src->p_node[i].bh = NULL; 570 src->p_node[i].el = NULL; 571 } 572 } 573 574 /* 575 * Insert an extent block at given index. 576 * 577 * This will not take an additional reference on eb_bh. 578 */ 579 static inline void ocfs2_path_insert_eb(struct ocfs2_path *path, int index, 580 struct buffer_head *eb_bh) 581 { 582 struct ocfs2_extent_block *eb = (struct ocfs2_extent_block *)eb_bh->b_data; 583 584 /* 585 * Right now, no root bh is an extent block, so this helps 586 * catch code errors with dinode trees. The assertion can be 587 * safely removed if we ever need to insert extent block 588 * structures at the root. 589 */ 590 BUG_ON(index == 0); 591 592 path->p_node[index].bh = eb_bh; 593 path->p_node[index].el = &eb->h_list; 594 } 595 596 static struct ocfs2_path *ocfs2_new_path(struct buffer_head *root_bh, 597 struct ocfs2_extent_list *root_el, 598 ocfs2_journal_access_func access) 599 { 600 struct ocfs2_path *path; 601 602 BUG_ON(le16_to_cpu(root_el->l_tree_depth) >= OCFS2_MAX_PATH_DEPTH); 603 604 path = kzalloc(sizeof(*path), GFP_NOFS); 605 if (path) { 606 path->p_tree_depth = le16_to_cpu(root_el->l_tree_depth); 607 get_bh(root_bh); 608 path_root_bh(path) = root_bh; 609 path_root_el(path) = root_el; 610 path_root_access(path) = access; 611 } 612 613 return path; 614 } 615 616 static struct ocfs2_path *ocfs2_new_path_from_path(struct ocfs2_path *path) 617 { 618 return ocfs2_new_path(path_root_bh(path), path_root_el(path), 619 path_root_access(path)); 620 } 621 622 static struct ocfs2_path *ocfs2_new_path_from_et(struct ocfs2_extent_tree *et) 623 { 624 return ocfs2_new_path(et->et_root_bh, et->et_root_el, 625 et->et_root_journal_access); 626 } 627 628 /* 629 * Journal the buffer at depth idx. All idx>0 are extent_blocks, 630 * otherwise it's the root_access function. 631 * 632 * I don't like the way this function's name looks next to 633 * ocfs2_journal_access_path(), but I don't have a better one. 634 */ 635 static int ocfs2_path_bh_journal_access(handle_t *handle, 636 struct inode *inode, 637 struct ocfs2_path *path, 638 int idx) 639 { 640 ocfs2_journal_access_func access = path_root_access(path); 641 642 if (!access) 643 access = ocfs2_journal_access; 644 645 if (idx) 646 access = ocfs2_journal_access_eb; 647 648 return access(handle, inode, path->p_node[idx].bh, 649 OCFS2_JOURNAL_ACCESS_WRITE); 650 } 651 652 /* 653 * Convenience function to journal all components in a path. 654 */ 655 static int ocfs2_journal_access_path(struct inode *inode, handle_t *handle, 656 struct ocfs2_path *path) 657 { 658 int i, ret = 0; 659 660 if (!path) 661 goto out; 662 663 for(i = 0; i < path_num_items(path); i++) { 664 ret = ocfs2_path_bh_journal_access(handle, inode, path, i); 665 if (ret < 0) { 666 mlog_errno(ret); 667 goto out; 668 } 669 } 670 671 out: 672 return ret; 673 } 674 675 /* 676 * Return the index of the extent record which contains cluster #v_cluster. 677 * -1 is returned if it was not found. 678 * 679 * Should work fine on interior and exterior nodes. 680 */ 681 int ocfs2_search_extent_list(struct ocfs2_extent_list *el, u32 v_cluster) 682 { 683 int ret = -1; 684 int i; 685 struct ocfs2_extent_rec *rec; 686 u32 rec_end, rec_start, clusters; 687 688 for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) { 689 rec = &el->l_recs[i]; 690 691 rec_start = le32_to_cpu(rec->e_cpos); 692 clusters = ocfs2_rec_clusters(el, rec); 693 694 rec_end = rec_start + clusters; 695 696 if (v_cluster >= rec_start && v_cluster < rec_end) { 697 ret = i; 698 break; 699 } 700 } 701 702 return ret; 703 } 704 705 enum ocfs2_contig_type { 706 CONTIG_NONE = 0, 707 CONTIG_LEFT, 708 CONTIG_RIGHT, 709 CONTIG_LEFTRIGHT, 710 }; 711 712 713 /* 714 * NOTE: ocfs2_block_extent_contig(), ocfs2_extents_adjacent() and 715 * ocfs2_extent_contig only work properly against leaf nodes! 716 */ 717 static int ocfs2_block_extent_contig(struct super_block *sb, 718 struct ocfs2_extent_rec *ext, 719 u64 blkno) 720 { 721 u64 blk_end = le64_to_cpu(ext->e_blkno); 722 723 blk_end += ocfs2_clusters_to_blocks(sb, 724 le16_to_cpu(ext->e_leaf_clusters)); 725 726 return blkno == blk_end; 727 } 728 729 static int ocfs2_extents_adjacent(struct ocfs2_extent_rec *left, 730 struct ocfs2_extent_rec *right) 731 { 732 u32 left_range; 733 734 left_range = le32_to_cpu(left->e_cpos) + 735 le16_to_cpu(left->e_leaf_clusters); 736 737 return (left_range == le32_to_cpu(right->e_cpos)); 738 } 739 740 static enum ocfs2_contig_type 741 ocfs2_extent_contig(struct inode *inode, 742 struct ocfs2_extent_rec *ext, 743 struct ocfs2_extent_rec *insert_rec) 744 { 745 u64 blkno = le64_to_cpu(insert_rec->e_blkno); 746 747 /* 748 * Refuse to coalesce extent records with different flag 749 * fields - we don't want to mix unwritten extents with user 750 * data. 751 */ 752 if (ext->e_flags != insert_rec->e_flags) 753 return CONTIG_NONE; 754 755 if (ocfs2_extents_adjacent(ext, insert_rec) && 756 ocfs2_block_extent_contig(inode->i_sb, ext, blkno)) 757 return CONTIG_RIGHT; 758 759 blkno = le64_to_cpu(ext->e_blkno); 760 if (ocfs2_extents_adjacent(insert_rec, ext) && 761 ocfs2_block_extent_contig(inode->i_sb, insert_rec, blkno)) 762 return CONTIG_LEFT; 763 764 return CONTIG_NONE; 765 } 766 767 /* 768 * NOTE: We can have pretty much any combination of contiguousness and 769 * appending. 770 * 771 * The usefulness of APPEND_TAIL is more in that it lets us know that 772 * we'll have to update the path to that leaf. 773 */ 774 enum ocfs2_append_type { 775 APPEND_NONE = 0, 776 APPEND_TAIL, 777 }; 778 779 enum ocfs2_split_type { 780 SPLIT_NONE = 0, 781 SPLIT_LEFT, 782 SPLIT_RIGHT, 783 }; 784 785 struct ocfs2_insert_type { 786 enum ocfs2_split_type ins_split; 787 enum ocfs2_append_type ins_appending; 788 enum ocfs2_contig_type ins_contig; 789 int ins_contig_index; 790 int ins_tree_depth; 791 }; 792 793 struct ocfs2_merge_ctxt { 794 enum ocfs2_contig_type c_contig_type; 795 int c_has_empty_extent; 796 int c_split_covers_rec; 797 }; 798 799 static int ocfs2_validate_extent_block(struct super_block *sb, 800 struct buffer_head *bh) 801 { 802 int rc; 803 struct ocfs2_extent_block *eb = 804 (struct ocfs2_extent_block *)bh->b_data; 805 806 mlog(0, "Validating extent block %llu\n", 807 (unsigned long long)bh->b_blocknr); 808 809 BUG_ON(!buffer_uptodate(bh)); 810 811 /* 812 * If the ecc fails, we return the error but otherwise 813 * leave the filesystem running. We know any error is 814 * local to this block. 815 */ 816 rc = ocfs2_validate_meta_ecc(sb, bh->b_data, &eb->h_check); 817 if (rc) { 818 mlog(ML_ERROR, "Checksum failed for extent block %llu\n", 819 (unsigned long long)bh->b_blocknr); 820 return rc; 821 } 822 823 /* 824 * Errors after here are fatal. 825 */ 826 827 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) { 828 ocfs2_error(sb, 829 "Extent block #%llu has bad signature %.*s", 830 (unsigned long long)bh->b_blocknr, 7, 831 eb->h_signature); 832 return -EINVAL; 833 } 834 835 if (le64_to_cpu(eb->h_blkno) != bh->b_blocknr) { 836 ocfs2_error(sb, 837 "Extent block #%llu has an invalid h_blkno " 838 "of %llu", 839 (unsigned long long)bh->b_blocknr, 840 (unsigned long long)le64_to_cpu(eb->h_blkno)); 841 return -EINVAL; 842 } 843 844 if (le32_to_cpu(eb->h_fs_generation) != OCFS2_SB(sb)->fs_generation) { 845 ocfs2_error(sb, 846 "Extent block #%llu has an invalid " 847 "h_fs_generation of #%u", 848 (unsigned long long)bh->b_blocknr, 849 le32_to_cpu(eb->h_fs_generation)); 850 return -EINVAL; 851 } 852 853 return 0; 854 } 855 856 int ocfs2_read_extent_block(struct inode *inode, u64 eb_blkno, 857 struct buffer_head **bh) 858 { 859 int rc; 860 struct buffer_head *tmp = *bh; 861 862 rc = ocfs2_read_block(inode, eb_blkno, &tmp, 863 ocfs2_validate_extent_block); 864 865 /* If ocfs2_read_block() got us a new bh, pass it up. */ 866 if (!rc && !*bh) 867 *bh = tmp; 868 869 return rc; 870 } 871 872 873 /* 874 * How many free extents have we got before we need more meta data? 875 */ 876 int ocfs2_num_free_extents(struct ocfs2_super *osb, 877 struct inode *inode, 878 struct ocfs2_extent_tree *et) 879 { 880 int retval; 881 struct ocfs2_extent_list *el = NULL; 882 struct ocfs2_extent_block *eb; 883 struct buffer_head *eb_bh = NULL; 884 u64 last_eb_blk = 0; 885 886 mlog_entry_void(); 887 888 el = et->et_root_el; 889 last_eb_blk = ocfs2_et_get_last_eb_blk(et); 890 891 if (last_eb_blk) { 892 retval = ocfs2_read_extent_block(inode, last_eb_blk, &eb_bh); 893 if (retval < 0) { 894 mlog_errno(retval); 895 goto bail; 896 } 897 eb = (struct ocfs2_extent_block *) eb_bh->b_data; 898 el = &eb->h_list; 899 } 900 901 BUG_ON(el->l_tree_depth != 0); 902 903 retval = le16_to_cpu(el->l_count) - le16_to_cpu(el->l_next_free_rec); 904 bail: 905 brelse(eb_bh); 906 907 mlog_exit(retval); 908 return retval; 909 } 910 911 /* expects array to already be allocated 912 * 913 * sets h_signature, h_blkno, h_suballoc_bit, h_suballoc_slot, and 914 * l_count for you 915 */ 916 static int ocfs2_create_new_meta_bhs(struct ocfs2_super *osb, 917 handle_t *handle, 918 struct inode *inode, 919 int wanted, 920 struct ocfs2_alloc_context *meta_ac, 921 struct buffer_head *bhs[]) 922 { 923 int count, status, i; 924 u16 suballoc_bit_start; 925 u32 num_got; 926 u64 first_blkno; 927 struct ocfs2_extent_block *eb; 928 929 mlog_entry_void(); 930 931 count = 0; 932 while (count < wanted) { 933 status = ocfs2_claim_metadata(osb, 934 handle, 935 meta_ac, 936 wanted - count, 937 &suballoc_bit_start, 938 &num_got, 939 &first_blkno); 940 if (status < 0) { 941 mlog_errno(status); 942 goto bail; 943 } 944 945 for(i = count; i < (num_got + count); i++) { 946 bhs[i] = sb_getblk(osb->sb, first_blkno); 947 if (bhs[i] == NULL) { 948 status = -EIO; 949 mlog_errno(status); 950 goto bail; 951 } 952 ocfs2_set_new_buffer_uptodate(inode, bhs[i]); 953 954 status = ocfs2_journal_access_eb(handle, inode, bhs[i], 955 OCFS2_JOURNAL_ACCESS_CREATE); 956 if (status < 0) { 957 mlog_errno(status); 958 goto bail; 959 } 960 961 memset(bhs[i]->b_data, 0, osb->sb->s_blocksize); 962 eb = (struct ocfs2_extent_block *) bhs[i]->b_data; 963 /* Ok, setup the minimal stuff here. */ 964 strcpy(eb->h_signature, OCFS2_EXTENT_BLOCK_SIGNATURE); 965 eb->h_blkno = cpu_to_le64(first_blkno); 966 eb->h_fs_generation = cpu_to_le32(osb->fs_generation); 967 eb->h_suballoc_slot = cpu_to_le16(osb->slot_num); 968 eb->h_suballoc_bit = cpu_to_le16(suballoc_bit_start); 969 eb->h_list.l_count = 970 cpu_to_le16(ocfs2_extent_recs_per_eb(osb->sb)); 971 972 suballoc_bit_start++; 973 first_blkno++; 974 975 /* We'll also be dirtied by the caller, so 976 * this isn't absolutely necessary. */ 977 status = ocfs2_journal_dirty(handle, bhs[i]); 978 if (status < 0) { 979 mlog_errno(status); 980 goto bail; 981 } 982 } 983 984 count += num_got; 985 } 986 987 status = 0; 988 bail: 989 if (status < 0) { 990 for(i = 0; i < wanted; i++) { 991 brelse(bhs[i]); 992 bhs[i] = NULL; 993 } 994 } 995 mlog_exit(status); 996 return status; 997 } 998 999 /* 1000 * Helper function for ocfs2_add_branch() and ocfs2_shift_tree_depth(). 1001 * 1002 * Returns the sum of the rightmost extent rec logical offset and 1003 * cluster count. 1004 * 1005 * ocfs2_add_branch() uses this to determine what logical cluster 1006 * value should be populated into the leftmost new branch records. 1007 * 1008 * ocfs2_shift_tree_depth() uses this to determine the # clusters 1009 * value for the new topmost tree record. 1010 */ 1011 static inline u32 ocfs2_sum_rightmost_rec(struct ocfs2_extent_list *el) 1012 { 1013 int i; 1014 1015 i = le16_to_cpu(el->l_next_free_rec) - 1; 1016 1017 return le32_to_cpu(el->l_recs[i].e_cpos) + 1018 ocfs2_rec_clusters(el, &el->l_recs[i]); 1019 } 1020 1021 /* 1022 * Change range of the branches in the right most path according to the leaf 1023 * extent block's rightmost record. 1024 */ 1025 static int ocfs2_adjust_rightmost_branch(handle_t *handle, 1026 struct inode *inode, 1027 struct ocfs2_extent_tree *et) 1028 { 1029 int status; 1030 struct ocfs2_path *path = NULL; 1031 struct ocfs2_extent_list *el; 1032 struct ocfs2_extent_rec *rec; 1033 1034 path = ocfs2_new_path_from_et(et); 1035 if (!path) { 1036 status = -ENOMEM; 1037 return status; 1038 } 1039 1040 status = ocfs2_find_path(inode, path, UINT_MAX); 1041 if (status < 0) { 1042 mlog_errno(status); 1043 goto out; 1044 } 1045 1046 status = ocfs2_extend_trans(handle, path_num_items(path) + 1047 handle->h_buffer_credits); 1048 if (status < 0) { 1049 mlog_errno(status); 1050 goto out; 1051 } 1052 1053 status = ocfs2_journal_access_path(inode, handle, path); 1054 if (status < 0) { 1055 mlog_errno(status); 1056 goto out; 1057 } 1058 1059 el = path_leaf_el(path); 1060 rec = &el->l_recs[le32_to_cpu(el->l_next_free_rec) - 1]; 1061 1062 ocfs2_adjust_rightmost_records(inode, handle, path, rec); 1063 1064 out: 1065 ocfs2_free_path(path); 1066 return status; 1067 } 1068 1069 /* 1070 * Add an entire tree branch to our inode. eb_bh is the extent block 1071 * to start at, if we don't want to start the branch at the dinode 1072 * structure. 1073 * 1074 * last_eb_bh is required as we have to update it's next_leaf pointer 1075 * for the new last extent block. 1076 * 1077 * the new branch will be 'empty' in the sense that every block will 1078 * contain a single record with cluster count == 0. 1079 */ 1080 static int ocfs2_add_branch(struct ocfs2_super *osb, 1081 handle_t *handle, 1082 struct inode *inode, 1083 struct ocfs2_extent_tree *et, 1084 struct buffer_head *eb_bh, 1085 struct buffer_head **last_eb_bh, 1086 struct ocfs2_alloc_context *meta_ac) 1087 { 1088 int status, new_blocks, i; 1089 u64 next_blkno, new_last_eb_blk; 1090 struct buffer_head *bh; 1091 struct buffer_head **new_eb_bhs = NULL; 1092 struct ocfs2_extent_block *eb; 1093 struct ocfs2_extent_list *eb_el; 1094 struct ocfs2_extent_list *el; 1095 u32 new_cpos, root_end; 1096 1097 mlog_entry_void(); 1098 1099 BUG_ON(!last_eb_bh || !*last_eb_bh); 1100 1101 if (eb_bh) { 1102 eb = (struct ocfs2_extent_block *) eb_bh->b_data; 1103 el = &eb->h_list; 1104 } else 1105 el = et->et_root_el; 1106 1107 /* we never add a branch to a leaf. */ 1108 BUG_ON(!el->l_tree_depth); 1109 1110 new_blocks = le16_to_cpu(el->l_tree_depth); 1111 1112 eb = (struct ocfs2_extent_block *)(*last_eb_bh)->b_data; 1113 new_cpos = ocfs2_sum_rightmost_rec(&eb->h_list); 1114 root_end = ocfs2_sum_rightmost_rec(et->et_root_el); 1115 1116 /* 1117 * If there is a gap before the root end and the real end 1118 * of the righmost leaf block, we need to remove the gap 1119 * between new_cpos and root_end first so that the tree 1120 * is consistent after we add a new branch(it will start 1121 * from new_cpos). 1122 */ 1123 if (root_end > new_cpos) { 1124 mlog(0, "adjust the cluster end from %u to %u\n", 1125 root_end, new_cpos); 1126 status = ocfs2_adjust_rightmost_branch(handle, inode, et); 1127 if (status) { 1128 mlog_errno(status); 1129 goto bail; 1130 } 1131 } 1132 1133 /* allocate the number of new eb blocks we need */ 1134 new_eb_bhs = kcalloc(new_blocks, sizeof(struct buffer_head *), 1135 GFP_KERNEL); 1136 if (!new_eb_bhs) { 1137 status = -ENOMEM; 1138 mlog_errno(status); 1139 goto bail; 1140 } 1141 1142 status = ocfs2_create_new_meta_bhs(osb, handle, inode, new_blocks, 1143 meta_ac, new_eb_bhs); 1144 if (status < 0) { 1145 mlog_errno(status); 1146 goto bail; 1147 } 1148 1149 /* Note: new_eb_bhs[new_blocks - 1] is the guy which will be 1150 * linked with the rest of the tree. 1151 * conversly, new_eb_bhs[0] is the new bottommost leaf. 1152 * 1153 * when we leave the loop, new_last_eb_blk will point to the 1154 * newest leaf, and next_blkno will point to the topmost extent 1155 * block. */ 1156 next_blkno = new_last_eb_blk = 0; 1157 for(i = 0; i < new_blocks; i++) { 1158 bh = new_eb_bhs[i]; 1159 eb = (struct ocfs2_extent_block *) bh->b_data; 1160 /* ocfs2_create_new_meta_bhs() should create it right! */ 1161 BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb)); 1162 eb_el = &eb->h_list; 1163 1164 status = ocfs2_journal_access_eb(handle, inode, bh, 1165 OCFS2_JOURNAL_ACCESS_CREATE); 1166 if (status < 0) { 1167 mlog_errno(status); 1168 goto bail; 1169 } 1170 1171 eb->h_next_leaf_blk = 0; 1172 eb_el->l_tree_depth = cpu_to_le16(i); 1173 eb_el->l_next_free_rec = cpu_to_le16(1); 1174 /* 1175 * This actually counts as an empty extent as 1176 * c_clusters == 0 1177 */ 1178 eb_el->l_recs[0].e_cpos = cpu_to_le32(new_cpos); 1179 eb_el->l_recs[0].e_blkno = cpu_to_le64(next_blkno); 1180 /* 1181 * eb_el isn't always an interior node, but even leaf 1182 * nodes want a zero'd flags and reserved field so 1183 * this gets the whole 32 bits regardless of use. 1184 */ 1185 eb_el->l_recs[0].e_int_clusters = cpu_to_le32(0); 1186 if (!eb_el->l_tree_depth) 1187 new_last_eb_blk = le64_to_cpu(eb->h_blkno); 1188 1189 status = ocfs2_journal_dirty(handle, bh); 1190 if (status < 0) { 1191 mlog_errno(status); 1192 goto bail; 1193 } 1194 1195 next_blkno = le64_to_cpu(eb->h_blkno); 1196 } 1197 1198 /* This is a bit hairy. We want to update up to three blocks 1199 * here without leaving any of them in an inconsistent state 1200 * in case of error. We don't have to worry about 1201 * journal_dirty erroring as it won't unless we've aborted the 1202 * handle (in which case we would never be here) so reserving 1203 * the write with journal_access is all we need to do. */ 1204 status = ocfs2_journal_access_eb(handle, inode, *last_eb_bh, 1205 OCFS2_JOURNAL_ACCESS_WRITE); 1206 if (status < 0) { 1207 mlog_errno(status); 1208 goto bail; 1209 } 1210 status = ocfs2_et_root_journal_access(handle, inode, et, 1211 OCFS2_JOURNAL_ACCESS_WRITE); 1212 if (status < 0) { 1213 mlog_errno(status); 1214 goto bail; 1215 } 1216 if (eb_bh) { 1217 status = ocfs2_journal_access_eb(handle, inode, eb_bh, 1218 OCFS2_JOURNAL_ACCESS_WRITE); 1219 if (status < 0) { 1220 mlog_errno(status); 1221 goto bail; 1222 } 1223 } 1224 1225 /* Link the new branch into the rest of the tree (el will 1226 * either be on the root_bh, or the extent block passed in. */ 1227 i = le16_to_cpu(el->l_next_free_rec); 1228 el->l_recs[i].e_blkno = cpu_to_le64(next_blkno); 1229 el->l_recs[i].e_cpos = cpu_to_le32(new_cpos); 1230 el->l_recs[i].e_int_clusters = 0; 1231 le16_add_cpu(&el->l_next_free_rec, 1); 1232 1233 /* fe needs a new last extent block pointer, as does the 1234 * next_leaf on the previously last-extent-block. */ 1235 ocfs2_et_set_last_eb_blk(et, new_last_eb_blk); 1236 1237 eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data; 1238 eb->h_next_leaf_blk = cpu_to_le64(new_last_eb_blk); 1239 1240 status = ocfs2_journal_dirty(handle, *last_eb_bh); 1241 if (status < 0) 1242 mlog_errno(status); 1243 status = ocfs2_journal_dirty(handle, et->et_root_bh); 1244 if (status < 0) 1245 mlog_errno(status); 1246 if (eb_bh) { 1247 status = ocfs2_journal_dirty(handle, eb_bh); 1248 if (status < 0) 1249 mlog_errno(status); 1250 } 1251 1252 /* 1253 * Some callers want to track the rightmost leaf so pass it 1254 * back here. 1255 */ 1256 brelse(*last_eb_bh); 1257 get_bh(new_eb_bhs[0]); 1258 *last_eb_bh = new_eb_bhs[0]; 1259 1260 status = 0; 1261 bail: 1262 if (new_eb_bhs) { 1263 for (i = 0; i < new_blocks; i++) 1264 brelse(new_eb_bhs[i]); 1265 kfree(new_eb_bhs); 1266 } 1267 1268 mlog_exit(status); 1269 return status; 1270 } 1271 1272 /* 1273 * adds another level to the allocation tree. 1274 * returns back the new extent block so you can add a branch to it 1275 * after this call. 1276 */ 1277 static int ocfs2_shift_tree_depth(struct ocfs2_super *osb, 1278 handle_t *handle, 1279 struct inode *inode, 1280 struct ocfs2_extent_tree *et, 1281 struct ocfs2_alloc_context *meta_ac, 1282 struct buffer_head **ret_new_eb_bh) 1283 { 1284 int status, i; 1285 u32 new_clusters; 1286 struct buffer_head *new_eb_bh = NULL; 1287 struct ocfs2_extent_block *eb; 1288 struct ocfs2_extent_list *root_el; 1289 struct ocfs2_extent_list *eb_el; 1290 1291 mlog_entry_void(); 1292 1293 status = ocfs2_create_new_meta_bhs(osb, handle, inode, 1, meta_ac, 1294 &new_eb_bh); 1295 if (status < 0) { 1296 mlog_errno(status); 1297 goto bail; 1298 } 1299 1300 eb = (struct ocfs2_extent_block *) new_eb_bh->b_data; 1301 /* ocfs2_create_new_meta_bhs() should create it right! */ 1302 BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb)); 1303 1304 eb_el = &eb->h_list; 1305 root_el = et->et_root_el; 1306 1307 status = ocfs2_journal_access_eb(handle, inode, new_eb_bh, 1308 OCFS2_JOURNAL_ACCESS_CREATE); 1309 if (status < 0) { 1310 mlog_errno(status); 1311 goto bail; 1312 } 1313 1314 /* copy the root extent list data into the new extent block */ 1315 eb_el->l_tree_depth = root_el->l_tree_depth; 1316 eb_el->l_next_free_rec = root_el->l_next_free_rec; 1317 for (i = 0; i < le16_to_cpu(root_el->l_next_free_rec); i++) 1318 eb_el->l_recs[i] = root_el->l_recs[i]; 1319 1320 status = ocfs2_journal_dirty(handle, new_eb_bh); 1321 if (status < 0) { 1322 mlog_errno(status); 1323 goto bail; 1324 } 1325 1326 status = ocfs2_et_root_journal_access(handle, inode, et, 1327 OCFS2_JOURNAL_ACCESS_WRITE); 1328 if (status < 0) { 1329 mlog_errno(status); 1330 goto bail; 1331 } 1332 1333 new_clusters = ocfs2_sum_rightmost_rec(eb_el); 1334 1335 /* update root_bh now */ 1336 le16_add_cpu(&root_el->l_tree_depth, 1); 1337 root_el->l_recs[0].e_cpos = 0; 1338 root_el->l_recs[0].e_blkno = eb->h_blkno; 1339 root_el->l_recs[0].e_int_clusters = cpu_to_le32(new_clusters); 1340 for (i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++) 1341 memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec)); 1342 root_el->l_next_free_rec = cpu_to_le16(1); 1343 1344 /* If this is our 1st tree depth shift, then last_eb_blk 1345 * becomes the allocated extent block */ 1346 if (root_el->l_tree_depth == cpu_to_le16(1)) 1347 ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno)); 1348 1349 status = ocfs2_journal_dirty(handle, et->et_root_bh); 1350 if (status < 0) { 1351 mlog_errno(status); 1352 goto bail; 1353 } 1354 1355 *ret_new_eb_bh = new_eb_bh; 1356 new_eb_bh = NULL; 1357 status = 0; 1358 bail: 1359 brelse(new_eb_bh); 1360 1361 mlog_exit(status); 1362 return status; 1363 } 1364 1365 /* 1366 * Should only be called when there is no space left in any of the 1367 * leaf nodes. What we want to do is find the lowest tree depth 1368 * non-leaf extent block with room for new records. There are three 1369 * valid results of this search: 1370 * 1371 * 1) a lowest extent block is found, then we pass it back in 1372 * *lowest_eb_bh and return '0' 1373 * 1374 * 2) the search fails to find anything, but the root_el has room. We 1375 * pass NULL back in *lowest_eb_bh, but still return '0' 1376 * 1377 * 3) the search fails to find anything AND the root_el is full, in 1378 * which case we return > 0 1379 * 1380 * return status < 0 indicates an error. 1381 */ 1382 static int ocfs2_find_branch_target(struct ocfs2_super *osb, 1383 struct inode *inode, 1384 struct ocfs2_extent_tree *et, 1385 struct buffer_head **target_bh) 1386 { 1387 int status = 0, i; 1388 u64 blkno; 1389 struct ocfs2_extent_block *eb; 1390 struct ocfs2_extent_list *el; 1391 struct buffer_head *bh = NULL; 1392 struct buffer_head *lowest_bh = NULL; 1393 1394 mlog_entry_void(); 1395 1396 *target_bh = NULL; 1397 1398 el = et->et_root_el; 1399 1400 while(le16_to_cpu(el->l_tree_depth) > 1) { 1401 if (le16_to_cpu(el->l_next_free_rec) == 0) { 1402 ocfs2_error(inode->i_sb, "Dinode %llu has empty " 1403 "extent list (next_free_rec == 0)", 1404 (unsigned long long)OCFS2_I(inode)->ip_blkno); 1405 status = -EIO; 1406 goto bail; 1407 } 1408 i = le16_to_cpu(el->l_next_free_rec) - 1; 1409 blkno = le64_to_cpu(el->l_recs[i].e_blkno); 1410 if (!blkno) { 1411 ocfs2_error(inode->i_sb, "Dinode %llu has extent " 1412 "list where extent # %d has no physical " 1413 "block start", 1414 (unsigned long long)OCFS2_I(inode)->ip_blkno, i); 1415 status = -EIO; 1416 goto bail; 1417 } 1418 1419 brelse(bh); 1420 bh = NULL; 1421 1422 status = ocfs2_read_extent_block(inode, blkno, &bh); 1423 if (status < 0) { 1424 mlog_errno(status); 1425 goto bail; 1426 } 1427 1428 eb = (struct ocfs2_extent_block *) bh->b_data; 1429 el = &eb->h_list; 1430 1431 if (le16_to_cpu(el->l_next_free_rec) < 1432 le16_to_cpu(el->l_count)) { 1433 brelse(lowest_bh); 1434 lowest_bh = bh; 1435 get_bh(lowest_bh); 1436 } 1437 } 1438 1439 /* If we didn't find one and the fe doesn't have any room, 1440 * then return '1' */ 1441 el = et->et_root_el; 1442 if (!lowest_bh && (el->l_next_free_rec == el->l_count)) 1443 status = 1; 1444 1445 *target_bh = lowest_bh; 1446 bail: 1447 brelse(bh); 1448 1449 mlog_exit(status); 1450 return status; 1451 } 1452 1453 /* 1454 * Grow a b-tree so that it has more records. 1455 * 1456 * We might shift the tree depth in which case existing paths should 1457 * be considered invalid. 1458 * 1459 * Tree depth after the grow is returned via *final_depth. 1460 * 1461 * *last_eb_bh will be updated by ocfs2_add_branch(). 1462 */ 1463 static int ocfs2_grow_tree(struct inode *inode, handle_t *handle, 1464 struct ocfs2_extent_tree *et, int *final_depth, 1465 struct buffer_head **last_eb_bh, 1466 struct ocfs2_alloc_context *meta_ac) 1467 { 1468 int ret, shift; 1469 struct ocfs2_extent_list *el = et->et_root_el; 1470 int depth = le16_to_cpu(el->l_tree_depth); 1471 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1472 struct buffer_head *bh = NULL; 1473 1474 BUG_ON(meta_ac == NULL); 1475 1476 shift = ocfs2_find_branch_target(osb, inode, et, &bh); 1477 if (shift < 0) { 1478 ret = shift; 1479 mlog_errno(ret); 1480 goto out; 1481 } 1482 1483 /* We traveled all the way to the bottom of the allocation tree 1484 * and didn't find room for any more extents - we need to add 1485 * another tree level */ 1486 if (shift) { 1487 BUG_ON(bh); 1488 mlog(0, "need to shift tree depth (current = %d)\n", depth); 1489 1490 /* ocfs2_shift_tree_depth will return us a buffer with 1491 * the new extent block (so we can pass that to 1492 * ocfs2_add_branch). */ 1493 ret = ocfs2_shift_tree_depth(osb, handle, inode, et, 1494 meta_ac, &bh); 1495 if (ret < 0) { 1496 mlog_errno(ret); 1497 goto out; 1498 } 1499 depth++; 1500 if (depth == 1) { 1501 /* 1502 * Special case: we have room now if we shifted from 1503 * tree_depth 0, so no more work needs to be done. 1504 * 1505 * We won't be calling add_branch, so pass 1506 * back *last_eb_bh as the new leaf. At depth 1507 * zero, it should always be null so there's 1508 * no reason to brelse. 1509 */ 1510 BUG_ON(*last_eb_bh); 1511 get_bh(bh); 1512 *last_eb_bh = bh; 1513 goto out; 1514 } 1515 } 1516 1517 /* call ocfs2_add_branch to add the final part of the tree with 1518 * the new data. */ 1519 mlog(0, "add branch. bh = %p\n", bh); 1520 ret = ocfs2_add_branch(osb, handle, inode, et, bh, last_eb_bh, 1521 meta_ac); 1522 if (ret < 0) { 1523 mlog_errno(ret); 1524 goto out; 1525 } 1526 1527 out: 1528 if (final_depth) 1529 *final_depth = depth; 1530 brelse(bh); 1531 return ret; 1532 } 1533 1534 /* 1535 * This function will discard the rightmost extent record. 1536 */ 1537 static void ocfs2_shift_records_right(struct ocfs2_extent_list *el) 1538 { 1539 int next_free = le16_to_cpu(el->l_next_free_rec); 1540 int count = le16_to_cpu(el->l_count); 1541 unsigned int num_bytes; 1542 1543 BUG_ON(!next_free); 1544 /* This will cause us to go off the end of our extent list. */ 1545 BUG_ON(next_free >= count); 1546 1547 num_bytes = sizeof(struct ocfs2_extent_rec) * next_free; 1548 1549 memmove(&el->l_recs[1], &el->l_recs[0], num_bytes); 1550 } 1551 1552 static void ocfs2_rotate_leaf(struct ocfs2_extent_list *el, 1553 struct ocfs2_extent_rec *insert_rec) 1554 { 1555 int i, insert_index, next_free, has_empty, num_bytes; 1556 u32 insert_cpos = le32_to_cpu(insert_rec->e_cpos); 1557 struct ocfs2_extent_rec *rec; 1558 1559 next_free = le16_to_cpu(el->l_next_free_rec); 1560 has_empty = ocfs2_is_empty_extent(&el->l_recs[0]); 1561 1562 BUG_ON(!next_free); 1563 1564 /* The tree code before us didn't allow enough room in the leaf. */ 1565 BUG_ON(el->l_next_free_rec == el->l_count && !has_empty); 1566 1567 /* 1568 * The easiest way to approach this is to just remove the 1569 * empty extent and temporarily decrement next_free. 1570 */ 1571 if (has_empty) { 1572 /* 1573 * If next_free was 1 (only an empty extent), this 1574 * loop won't execute, which is fine. We still want 1575 * the decrement above to happen. 1576 */ 1577 for(i = 0; i < (next_free - 1); i++) 1578 el->l_recs[i] = el->l_recs[i+1]; 1579 1580 next_free--; 1581 } 1582 1583 /* 1584 * Figure out what the new record index should be. 1585 */ 1586 for(i = 0; i < next_free; i++) { 1587 rec = &el->l_recs[i]; 1588 1589 if (insert_cpos < le32_to_cpu(rec->e_cpos)) 1590 break; 1591 } 1592 insert_index = i; 1593 1594 mlog(0, "ins %u: index %d, has_empty %d, next_free %d, count %d\n", 1595 insert_cpos, insert_index, has_empty, next_free, le16_to_cpu(el->l_count)); 1596 1597 BUG_ON(insert_index < 0); 1598 BUG_ON(insert_index >= le16_to_cpu(el->l_count)); 1599 BUG_ON(insert_index > next_free); 1600 1601 /* 1602 * No need to memmove if we're just adding to the tail. 1603 */ 1604 if (insert_index != next_free) { 1605 BUG_ON(next_free >= le16_to_cpu(el->l_count)); 1606 1607 num_bytes = next_free - insert_index; 1608 num_bytes *= sizeof(struct ocfs2_extent_rec); 1609 memmove(&el->l_recs[insert_index + 1], 1610 &el->l_recs[insert_index], 1611 num_bytes); 1612 } 1613 1614 /* 1615 * Either we had an empty extent, and need to re-increment or 1616 * there was no empty extent on a non full rightmost leaf node, 1617 * in which case we still need to increment. 1618 */ 1619 next_free++; 1620 el->l_next_free_rec = cpu_to_le16(next_free); 1621 /* 1622 * Make sure none of the math above just messed up our tree. 1623 */ 1624 BUG_ON(le16_to_cpu(el->l_next_free_rec) > le16_to_cpu(el->l_count)); 1625 1626 el->l_recs[insert_index] = *insert_rec; 1627 1628 } 1629 1630 static void ocfs2_remove_empty_extent(struct ocfs2_extent_list *el) 1631 { 1632 int size, num_recs = le16_to_cpu(el->l_next_free_rec); 1633 1634 BUG_ON(num_recs == 0); 1635 1636 if (ocfs2_is_empty_extent(&el->l_recs[0])) { 1637 num_recs--; 1638 size = num_recs * sizeof(struct ocfs2_extent_rec); 1639 memmove(&el->l_recs[0], &el->l_recs[1], size); 1640 memset(&el->l_recs[num_recs], 0, 1641 sizeof(struct ocfs2_extent_rec)); 1642 el->l_next_free_rec = cpu_to_le16(num_recs); 1643 } 1644 } 1645 1646 /* 1647 * Create an empty extent record . 1648 * 1649 * l_next_free_rec may be updated. 1650 * 1651 * If an empty extent already exists do nothing. 1652 */ 1653 static void ocfs2_create_empty_extent(struct ocfs2_extent_list *el) 1654 { 1655 int next_free = le16_to_cpu(el->l_next_free_rec); 1656 1657 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0); 1658 1659 if (next_free == 0) 1660 goto set_and_inc; 1661 1662 if (ocfs2_is_empty_extent(&el->l_recs[0])) 1663 return; 1664 1665 mlog_bug_on_msg(el->l_count == el->l_next_free_rec, 1666 "Asked to create an empty extent in a full list:\n" 1667 "count = %u, tree depth = %u", 1668 le16_to_cpu(el->l_count), 1669 le16_to_cpu(el->l_tree_depth)); 1670 1671 ocfs2_shift_records_right(el); 1672 1673 set_and_inc: 1674 le16_add_cpu(&el->l_next_free_rec, 1); 1675 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec)); 1676 } 1677 1678 /* 1679 * For a rotation which involves two leaf nodes, the "root node" is 1680 * the lowest level tree node which contains a path to both leafs. This 1681 * resulting set of information can be used to form a complete "subtree" 1682 * 1683 * This function is passed two full paths from the dinode down to a 1684 * pair of adjacent leaves. It's task is to figure out which path 1685 * index contains the subtree root - this can be the root index itself 1686 * in a worst-case rotation. 1687 * 1688 * The array index of the subtree root is passed back. 1689 */ 1690 static int ocfs2_find_subtree_root(struct inode *inode, 1691 struct ocfs2_path *left, 1692 struct ocfs2_path *right) 1693 { 1694 int i = 0; 1695 1696 /* 1697 * Check that the caller passed in two paths from the same tree. 1698 */ 1699 BUG_ON(path_root_bh(left) != path_root_bh(right)); 1700 1701 do { 1702 i++; 1703 1704 /* 1705 * The caller didn't pass two adjacent paths. 1706 */ 1707 mlog_bug_on_msg(i > left->p_tree_depth, 1708 "Inode %lu, left depth %u, right depth %u\n" 1709 "left leaf blk %llu, right leaf blk %llu\n", 1710 inode->i_ino, left->p_tree_depth, 1711 right->p_tree_depth, 1712 (unsigned long long)path_leaf_bh(left)->b_blocknr, 1713 (unsigned long long)path_leaf_bh(right)->b_blocknr); 1714 } while (left->p_node[i].bh->b_blocknr == 1715 right->p_node[i].bh->b_blocknr); 1716 1717 return i - 1; 1718 } 1719 1720 typedef void (path_insert_t)(void *, struct buffer_head *); 1721 1722 /* 1723 * Traverse a btree path in search of cpos, starting at root_el. 1724 * 1725 * This code can be called with a cpos larger than the tree, in which 1726 * case it will return the rightmost path. 1727 */ 1728 static int __ocfs2_find_path(struct inode *inode, 1729 struct ocfs2_extent_list *root_el, u32 cpos, 1730 path_insert_t *func, void *data) 1731 { 1732 int i, ret = 0; 1733 u32 range; 1734 u64 blkno; 1735 struct buffer_head *bh = NULL; 1736 struct ocfs2_extent_block *eb; 1737 struct ocfs2_extent_list *el; 1738 struct ocfs2_extent_rec *rec; 1739 struct ocfs2_inode_info *oi = OCFS2_I(inode); 1740 1741 el = root_el; 1742 while (el->l_tree_depth) { 1743 if (le16_to_cpu(el->l_next_free_rec) == 0) { 1744 ocfs2_error(inode->i_sb, 1745 "Inode %llu has empty extent list at " 1746 "depth %u\n", 1747 (unsigned long long)oi->ip_blkno, 1748 le16_to_cpu(el->l_tree_depth)); 1749 ret = -EROFS; 1750 goto out; 1751 1752 } 1753 1754 for(i = 0; i < le16_to_cpu(el->l_next_free_rec) - 1; i++) { 1755 rec = &el->l_recs[i]; 1756 1757 /* 1758 * In the case that cpos is off the allocation 1759 * tree, this should just wind up returning the 1760 * rightmost record. 1761 */ 1762 range = le32_to_cpu(rec->e_cpos) + 1763 ocfs2_rec_clusters(el, rec); 1764 if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range) 1765 break; 1766 } 1767 1768 blkno = le64_to_cpu(el->l_recs[i].e_blkno); 1769 if (blkno == 0) { 1770 ocfs2_error(inode->i_sb, 1771 "Inode %llu has bad blkno in extent list " 1772 "at depth %u (index %d)\n", 1773 (unsigned long long)oi->ip_blkno, 1774 le16_to_cpu(el->l_tree_depth), i); 1775 ret = -EROFS; 1776 goto out; 1777 } 1778 1779 brelse(bh); 1780 bh = NULL; 1781 ret = ocfs2_read_extent_block(inode, blkno, &bh); 1782 if (ret) { 1783 mlog_errno(ret); 1784 goto out; 1785 } 1786 1787 eb = (struct ocfs2_extent_block *) bh->b_data; 1788 el = &eb->h_list; 1789 1790 if (le16_to_cpu(el->l_next_free_rec) > 1791 le16_to_cpu(el->l_count)) { 1792 ocfs2_error(inode->i_sb, 1793 "Inode %llu has bad count in extent list " 1794 "at block %llu (next free=%u, count=%u)\n", 1795 (unsigned long long)oi->ip_blkno, 1796 (unsigned long long)bh->b_blocknr, 1797 le16_to_cpu(el->l_next_free_rec), 1798 le16_to_cpu(el->l_count)); 1799 ret = -EROFS; 1800 goto out; 1801 } 1802 1803 if (func) 1804 func(data, bh); 1805 } 1806 1807 out: 1808 /* 1809 * Catch any trailing bh that the loop didn't handle. 1810 */ 1811 brelse(bh); 1812 1813 return ret; 1814 } 1815 1816 /* 1817 * Given an initialized path (that is, it has a valid root extent 1818 * list), this function will traverse the btree in search of the path 1819 * which would contain cpos. 1820 * 1821 * The path traveled is recorded in the path structure. 1822 * 1823 * Note that this will not do any comparisons on leaf node extent 1824 * records, so it will work fine in the case that we just added a tree 1825 * branch. 1826 */ 1827 struct find_path_data { 1828 int index; 1829 struct ocfs2_path *path; 1830 }; 1831 static void find_path_ins(void *data, struct buffer_head *bh) 1832 { 1833 struct find_path_data *fp = data; 1834 1835 get_bh(bh); 1836 ocfs2_path_insert_eb(fp->path, fp->index, bh); 1837 fp->index++; 1838 } 1839 static int ocfs2_find_path(struct inode *inode, struct ocfs2_path *path, 1840 u32 cpos) 1841 { 1842 struct find_path_data data; 1843 1844 data.index = 1; 1845 data.path = path; 1846 return __ocfs2_find_path(inode, path_root_el(path), cpos, 1847 find_path_ins, &data); 1848 } 1849 1850 static void find_leaf_ins(void *data, struct buffer_head *bh) 1851 { 1852 struct ocfs2_extent_block *eb =(struct ocfs2_extent_block *)bh->b_data; 1853 struct ocfs2_extent_list *el = &eb->h_list; 1854 struct buffer_head **ret = data; 1855 1856 /* We want to retain only the leaf block. */ 1857 if (le16_to_cpu(el->l_tree_depth) == 0) { 1858 get_bh(bh); 1859 *ret = bh; 1860 } 1861 } 1862 /* 1863 * Find the leaf block in the tree which would contain cpos. No 1864 * checking of the actual leaf is done. 1865 * 1866 * Some paths want to call this instead of allocating a path structure 1867 * and calling ocfs2_find_path(). 1868 * 1869 * This function doesn't handle non btree extent lists. 1870 */ 1871 int ocfs2_find_leaf(struct inode *inode, struct ocfs2_extent_list *root_el, 1872 u32 cpos, struct buffer_head **leaf_bh) 1873 { 1874 int ret; 1875 struct buffer_head *bh = NULL; 1876 1877 ret = __ocfs2_find_path(inode, root_el, cpos, find_leaf_ins, &bh); 1878 if (ret) { 1879 mlog_errno(ret); 1880 goto out; 1881 } 1882 1883 *leaf_bh = bh; 1884 out: 1885 return ret; 1886 } 1887 1888 /* 1889 * Adjust the adjacent records (left_rec, right_rec) involved in a rotation. 1890 * 1891 * Basically, we've moved stuff around at the bottom of the tree and 1892 * we need to fix up the extent records above the changes to reflect 1893 * the new changes. 1894 * 1895 * left_rec: the record on the left. 1896 * left_child_el: is the child list pointed to by left_rec 1897 * right_rec: the record to the right of left_rec 1898 * right_child_el: is the child list pointed to by right_rec 1899 * 1900 * By definition, this only works on interior nodes. 1901 */ 1902 static void ocfs2_adjust_adjacent_records(struct ocfs2_extent_rec *left_rec, 1903 struct ocfs2_extent_list *left_child_el, 1904 struct ocfs2_extent_rec *right_rec, 1905 struct ocfs2_extent_list *right_child_el) 1906 { 1907 u32 left_clusters, right_end; 1908 1909 /* 1910 * Interior nodes never have holes. Their cpos is the cpos of 1911 * the leftmost record in their child list. Their cluster 1912 * count covers the full theoretical range of their child list 1913 * - the range between their cpos and the cpos of the record 1914 * immediately to their right. 1915 */ 1916 left_clusters = le32_to_cpu(right_child_el->l_recs[0].e_cpos); 1917 if (ocfs2_is_empty_extent(&right_child_el->l_recs[0])) { 1918 BUG_ON(le16_to_cpu(right_child_el->l_next_free_rec) <= 1); 1919 left_clusters = le32_to_cpu(right_child_el->l_recs[1].e_cpos); 1920 } 1921 left_clusters -= le32_to_cpu(left_rec->e_cpos); 1922 left_rec->e_int_clusters = cpu_to_le32(left_clusters); 1923 1924 /* 1925 * Calculate the rightmost cluster count boundary before 1926 * moving cpos - we will need to adjust clusters after 1927 * updating e_cpos to keep the same highest cluster count. 1928 */ 1929 right_end = le32_to_cpu(right_rec->e_cpos); 1930 right_end += le32_to_cpu(right_rec->e_int_clusters); 1931 1932 right_rec->e_cpos = left_rec->e_cpos; 1933 le32_add_cpu(&right_rec->e_cpos, left_clusters); 1934 1935 right_end -= le32_to_cpu(right_rec->e_cpos); 1936 right_rec->e_int_clusters = cpu_to_le32(right_end); 1937 } 1938 1939 /* 1940 * Adjust the adjacent root node records involved in a 1941 * rotation. left_el_blkno is passed in as a key so that we can easily 1942 * find it's index in the root list. 1943 */ 1944 static void ocfs2_adjust_root_records(struct ocfs2_extent_list *root_el, 1945 struct ocfs2_extent_list *left_el, 1946 struct ocfs2_extent_list *right_el, 1947 u64 left_el_blkno) 1948 { 1949 int i; 1950 1951 BUG_ON(le16_to_cpu(root_el->l_tree_depth) <= 1952 le16_to_cpu(left_el->l_tree_depth)); 1953 1954 for(i = 0; i < le16_to_cpu(root_el->l_next_free_rec) - 1; i++) { 1955 if (le64_to_cpu(root_el->l_recs[i].e_blkno) == left_el_blkno) 1956 break; 1957 } 1958 1959 /* 1960 * The path walking code should have never returned a root and 1961 * two paths which are not adjacent. 1962 */ 1963 BUG_ON(i >= (le16_to_cpu(root_el->l_next_free_rec) - 1)); 1964 1965 ocfs2_adjust_adjacent_records(&root_el->l_recs[i], left_el, 1966 &root_el->l_recs[i + 1], right_el); 1967 } 1968 1969 /* 1970 * We've changed a leaf block (in right_path) and need to reflect that 1971 * change back up the subtree. 1972 * 1973 * This happens in multiple places: 1974 * - When we've moved an extent record from the left path leaf to the right 1975 * path leaf to make room for an empty extent in the left path leaf. 1976 * - When our insert into the right path leaf is at the leftmost edge 1977 * and requires an update of the path immediately to it's left. This 1978 * can occur at the end of some types of rotation and appending inserts. 1979 * - When we've adjusted the last extent record in the left path leaf and the 1980 * 1st extent record in the right path leaf during cross extent block merge. 1981 */ 1982 static void ocfs2_complete_edge_insert(struct inode *inode, handle_t *handle, 1983 struct ocfs2_path *left_path, 1984 struct ocfs2_path *right_path, 1985 int subtree_index) 1986 { 1987 int ret, i, idx; 1988 struct ocfs2_extent_list *el, *left_el, *right_el; 1989 struct ocfs2_extent_rec *left_rec, *right_rec; 1990 struct buffer_head *root_bh = left_path->p_node[subtree_index].bh; 1991 1992 /* 1993 * Update the counts and position values within all the 1994 * interior nodes to reflect the leaf rotation we just did. 1995 * 1996 * The root node is handled below the loop. 1997 * 1998 * We begin the loop with right_el and left_el pointing to the 1999 * leaf lists and work our way up. 2000 * 2001 * NOTE: within this loop, left_el and right_el always refer 2002 * to the *child* lists. 2003 */ 2004 left_el = path_leaf_el(left_path); 2005 right_el = path_leaf_el(right_path); 2006 for(i = left_path->p_tree_depth - 1; i > subtree_index; i--) { 2007 mlog(0, "Adjust records at index %u\n", i); 2008 2009 /* 2010 * One nice property of knowing that all of these 2011 * nodes are below the root is that we only deal with 2012 * the leftmost right node record and the rightmost 2013 * left node record. 2014 */ 2015 el = left_path->p_node[i].el; 2016 idx = le16_to_cpu(left_el->l_next_free_rec) - 1; 2017 left_rec = &el->l_recs[idx]; 2018 2019 el = right_path->p_node[i].el; 2020 right_rec = &el->l_recs[0]; 2021 2022 ocfs2_adjust_adjacent_records(left_rec, left_el, right_rec, 2023 right_el); 2024 2025 ret = ocfs2_journal_dirty(handle, left_path->p_node[i].bh); 2026 if (ret) 2027 mlog_errno(ret); 2028 2029 ret = ocfs2_journal_dirty(handle, right_path->p_node[i].bh); 2030 if (ret) 2031 mlog_errno(ret); 2032 2033 /* 2034 * Setup our list pointers now so that the current 2035 * parents become children in the next iteration. 2036 */ 2037 left_el = left_path->p_node[i].el; 2038 right_el = right_path->p_node[i].el; 2039 } 2040 2041 /* 2042 * At the root node, adjust the two adjacent records which 2043 * begin our path to the leaves. 2044 */ 2045 2046 el = left_path->p_node[subtree_index].el; 2047 left_el = left_path->p_node[subtree_index + 1].el; 2048 right_el = right_path->p_node[subtree_index + 1].el; 2049 2050 ocfs2_adjust_root_records(el, left_el, right_el, 2051 left_path->p_node[subtree_index + 1].bh->b_blocknr); 2052 2053 root_bh = left_path->p_node[subtree_index].bh; 2054 2055 ret = ocfs2_journal_dirty(handle, root_bh); 2056 if (ret) 2057 mlog_errno(ret); 2058 } 2059 2060 static int ocfs2_rotate_subtree_right(struct inode *inode, 2061 handle_t *handle, 2062 struct ocfs2_path *left_path, 2063 struct ocfs2_path *right_path, 2064 int subtree_index) 2065 { 2066 int ret, i; 2067 struct buffer_head *right_leaf_bh; 2068 struct buffer_head *left_leaf_bh = NULL; 2069 struct buffer_head *root_bh; 2070 struct ocfs2_extent_list *right_el, *left_el; 2071 struct ocfs2_extent_rec move_rec; 2072 2073 left_leaf_bh = path_leaf_bh(left_path); 2074 left_el = path_leaf_el(left_path); 2075 2076 if (left_el->l_next_free_rec != left_el->l_count) { 2077 ocfs2_error(inode->i_sb, 2078 "Inode %llu has non-full interior leaf node %llu" 2079 "(next free = %u)", 2080 (unsigned long long)OCFS2_I(inode)->ip_blkno, 2081 (unsigned long long)left_leaf_bh->b_blocknr, 2082 le16_to_cpu(left_el->l_next_free_rec)); 2083 return -EROFS; 2084 } 2085 2086 /* 2087 * This extent block may already have an empty record, so we 2088 * return early if so. 2089 */ 2090 if (ocfs2_is_empty_extent(&left_el->l_recs[0])) 2091 return 0; 2092 2093 root_bh = left_path->p_node[subtree_index].bh; 2094 BUG_ON(root_bh != right_path->p_node[subtree_index].bh); 2095 2096 ret = ocfs2_path_bh_journal_access(handle, inode, right_path, 2097 subtree_index); 2098 if (ret) { 2099 mlog_errno(ret); 2100 goto out; 2101 } 2102 2103 for(i = subtree_index + 1; i < path_num_items(right_path); i++) { 2104 ret = ocfs2_path_bh_journal_access(handle, inode, 2105 right_path, i); 2106 if (ret) { 2107 mlog_errno(ret); 2108 goto out; 2109 } 2110 2111 ret = ocfs2_path_bh_journal_access(handle, inode, 2112 left_path, i); 2113 if (ret) { 2114 mlog_errno(ret); 2115 goto out; 2116 } 2117 } 2118 2119 right_leaf_bh = path_leaf_bh(right_path); 2120 right_el = path_leaf_el(right_path); 2121 2122 /* This is a code error, not a disk corruption. */ 2123 mlog_bug_on_msg(!right_el->l_next_free_rec, "Inode %llu: Rotate fails " 2124 "because rightmost leaf block %llu is empty\n", 2125 (unsigned long long)OCFS2_I(inode)->ip_blkno, 2126 (unsigned long long)right_leaf_bh->b_blocknr); 2127 2128 ocfs2_create_empty_extent(right_el); 2129 2130 ret = ocfs2_journal_dirty(handle, right_leaf_bh); 2131 if (ret) { 2132 mlog_errno(ret); 2133 goto out; 2134 } 2135 2136 /* Do the copy now. */ 2137 i = le16_to_cpu(left_el->l_next_free_rec) - 1; 2138 move_rec = left_el->l_recs[i]; 2139 right_el->l_recs[0] = move_rec; 2140 2141 /* 2142 * Clear out the record we just copied and shift everything 2143 * over, leaving an empty extent in the left leaf. 2144 * 2145 * We temporarily subtract from next_free_rec so that the 2146 * shift will lose the tail record (which is now defunct). 2147 */ 2148 le16_add_cpu(&left_el->l_next_free_rec, -1); 2149 ocfs2_shift_records_right(left_el); 2150 memset(&left_el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec)); 2151 le16_add_cpu(&left_el->l_next_free_rec, 1); 2152 2153 ret = ocfs2_journal_dirty(handle, left_leaf_bh); 2154 if (ret) { 2155 mlog_errno(ret); 2156 goto out; 2157 } 2158 2159 ocfs2_complete_edge_insert(inode, handle, left_path, right_path, 2160 subtree_index); 2161 2162 out: 2163 return ret; 2164 } 2165 2166 /* 2167 * Given a full path, determine what cpos value would return us a path 2168 * containing the leaf immediately to the left of the current one. 2169 * 2170 * Will return zero if the path passed in is already the leftmost path. 2171 */ 2172 static int ocfs2_find_cpos_for_left_leaf(struct super_block *sb, 2173 struct ocfs2_path *path, u32 *cpos) 2174 { 2175 int i, j, ret = 0; 2176 u64 blkno; 2177 struct ocfs2_extent_list *el; 2178 2179 BUG_ON(path->p_tree_depth == 0); 2180 2181 *cpos = 0; 2182 2183 blkno = path_leaf_bh(path)->b_blocknr; 2184 2185 /* Start at the tree node just above the leaf and work our way up. */ 2186 i = path->p_tree_depth - 1; 2187 while (i >= 0) { 2188 el = path->p_node[i].el; 2189 2190 /* 2191 * Find the extent record just before the one in our 2192 * path. 2193 */ 2194 for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) { 2195 if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) { 2196 if (j == 0) { 2197 if (i == 0) { 2198 /* 2199 * We've determined that the 2200 * path specified is already 2201 * the leftmost one - return a 2202 * cpos of zero. 2203 */ 2204 goto out; 2205 } 2206 /* 2207 * The leftmost record points to our 2208 * leaf - we need to travel up the 2209 * tree one level. 2210 */ 2211 goto next_node; 2212 } 2213 2214 *cpos = le32_to_cpu(el->l_recs[j - 1].e_cpos); 2215 *cpos = *cpos + ocfs2_rec_clusters(el, 2216 &el->l_recs[j - 1]); 2217 *cpos = *cpos - 1; 2218 goto out; 2219 } 2220 } 2221 2222 /* 2223 * If we got here, we never found a valid node where 2224 * the tree indicated one should be. 2225 */ 2226 ocfs2_error(sb, 2227 "Invalid extent tree at extent block %llu\n", 2228 (unsigned long long)blkno); 2229 ret = -EROFS; 2230 goto out; 2231 2232 next_node: 2233 blkno = path->p_node[i].bh->b_blocknr; 2234 i--; 2235 } 2236 2237 out: 2238 return ret; 2239 } 2240 2241 /* 2242 * Extend the transaction by enough credits to complete the rotation, 2243 * and still leave at least the original number of credits allocated 2244 * to this transaction. 2245 */ 2246 static int ocfs2_extend_rotate_transaction(handle_t *handle, int subtree_depth, 2247 int op_credits, 2248 struct ocfs2_path *path) 2249 { 2250 int credits = (path->p_tree_depth - subtree_depth) * 2 + 1 + op_credits; 2251 2252 if (handle->h_buffer_credits < credits) 2253 return ocfs2_extend_trans(handle, credits); 2254 2255 return 0; 2256 } 2257 2258 /* 2259 * Trap the case where we're inserting into the theoretical range past 2260 * the _actual_ left leaf range. Otherwise, we'll rotate a record 2261 * whose cpos is less than ours into the right leaf. 2262 * 2263 * It's only necessary to look at the rightmost record of the left 2264 * leaf because the logic that calls us should ensure that the 2265 * theoretical ranges in the path components above the leaves are 2266 * correct. 2267 */ 2268 static int ocfs2_rotate_requires_path_adjustment(struct ocfs2_path *left_path, 2269 u32 insert_cpos) 2270 { 2271 struct ocfs2_extent_list *left_el; 2272 struct ocfs2_extent_rec *rec; 2273 int next_free; 2274 2275 left_el = path_leaf_el(left_path); 2276 next_free = le16_to_cpu(left_el->l_next_free_rec); 2277 rec = &left_el->l_recs[next_free - 1]; 2278 2279 if (insert_cpos > le32_to_cpu(rec->e_cpos)) 2280 return 1; 2281 return 0; 2282 } 2283 2284 static int ocfs2_leftmost_rec_contains(struct ocfs2_extent_list *el, u32 cpos) 2285 { 2286 int next_free = le16_to_cpu(el->l_next_free_rec); 2287 unsigned int range; 2288 struct ocfs2_extent_rec *rec; 2289 2290 if (next_free == 0) 2291 return 0; 2292 2293 rec = &el->l_recs[0]; 2294 if (ocfs2_is_empty_extent(rec)) { 2295 /* Empty list. */ 2296 if (next_free == 1) 2297 return 0; 2298 rec = &el->l_recs[1]; 2299 } 2300 2301 range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); 2302 if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range) 2303 return 1; 2304 return 0; 2305 } 2306 2307 /* 2308 * Rotate all the records in a btree right one record, starting at insert_cpos. 2309 * 2310 * The path to the rightmost leaf should be passed in. 2311 * 2312 * The array is assumed to be large enough to hold an entire path (tree depth). 2313 * 2314 * Upon succesful return from this function: 2315 * 2316 * - The 'right_path' array will contain a path to the leaf block 2317 * whose range contains e_cpos. 2318 * - That leaf block will have a single empty extent in list index 0. 2319 * - In the case that the rotation requires a post-insert update, 2320 * *ret_left_path will contain a valid path which can be passed to 2321 * ocfs2_insert_path(). 2322 */ 2323 static int ocfs2_rotate_tree_right(struct inode *inode, 2324 handle_t *handle, 2325 enum ocfs2_split_type split, 2326 u32 insert_cpos, 2327 struct ocfs2_path *right_path, 2328 struct ocfs2_path **ret_left_path) 2329 { 2330 int ret, start, orig_credits = handle->h_buffer_credits; 2331 u32 cpos; 2332 struct ocfs2_path *left_path = NULL; 2333 2334 *ret_left_path = NULL; 2335 2336 left_path = ocfs2_new_path_from_path(right_path); 2337 if (!left_path) { 2338 ret = -ENOMEM; 2339 mlog_errno(ret); 2340 goto out; 2341 } 2342 2343 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path, &cpos); 2344 if (ret) { 2345 mlog_errno(ret); 2346 goto out; 2347 } 2348 2349 mlog(0, "Insert: %u, first left path cpos: %u\n", insert_cpos, cpos); 2350 2351 /* 2352 * What we want to do here is: 2353 * 2354 * 1) Start with the rightmost path. 2355 * 2356 * 2) Determine a path to the leaf block directly to the left 2357 * of that leaf. 2358 * 2359 * 3) Determine the 'subtree root' - the lowest level tree node 2360 * which contains a path to both leaves. 2361 * 2362 * 4) Rotate the subtree. 2363 * 2364 * 5) Find the next subtree by considering the left path to be 2365 * the new right path. 2366 * 2367 * The check at the top of this while loop also accepts 2368 * insert_cpos == cpos because cpos is only a _theoretical_ 2369 * value to get us the left path - insert_cpos might very well 2370 * be filling that hole. 2371 * 2372 * Stop at a cpos of '0' because we either started at the 2373 * leftmost branch (i.e., a tree with one branch and a 2374 * rotation inside of it), or we've gone as far as we can in 2375 * rotating subtrees. 2376 */ 2377 while (cpos && insert_cpos <= cpos) { 2378 mlog(0, "Rotating a tree: ins. cpos: %u, left path cpos: %u\n", 2379 insert_cpos, cpos); 2380 2381 ret = ocfs2_find_path(inode, left_path, cpos); 2382 if (ret) { 2383 mlog_errno(ret); 2384 goto out; 2385 } 2386 2387 mlog_bug_on_msg(path_leaf_bh(left_path) == 2388 path_leaf_bh(right_path), 2389 "Inode %lu: error during insert of %u " 2390 "(left path cpos %u) results in two identical " 2391 "paths ending at %llu\n", 2392 inode->i_ino, insert_cpos, cpos, 2393 (unsigned long long) 2394 path_leaf_bh(left_path)->b_blocknr); 2395 2396 if (split == SPLIT_NONE && 2397 ocfs2_rotate_requires_path_adjustment(left_path, 2398 insert_cpos)) { 2399 2400 /* 2401 * We've rotated the tree as much as we 2402 * should. The rest is up to 2403 * ocfs2_insert_path() to complete, after the 2404 * record insertion. We indicate this 2405 * situation by returning the left path. 2406 * 2407 * The reason we don't adjust the records here 2408 * before the record insert is that an error 2409 * later might break the rule where a parent 2410 * record e_cpos will reflect the actual 2411 * e_cpos of the 1st nonempty record of the 2412 * child list. 2413 */ 2414 *ret_left_path = left_path; 2415 goto out_ret_path; 2416 } 2417 2418 start = ocfs2_find_subtree_root(inode, left_path, right_path); 2419 2420 mlog(0, "Subtree root at index %d (blk %llu, depth %d)\n", 2421 start, 2422 (unsigned long long) right_path->p_node[start].bh->b_blocknr, 2423 right_path->p_tree_depth); 2424 2425 ret = ocfs2_extend_rotate_transaction(handle, start, 2426 orig_credits, right_path); 2427 if (ret) { 2428 mlog_errno(ret); 2429 goto out; 2430 } 2431 2432 ret = ocfs2_rotate_subtree_right(inode, handle, left_path, 2433 right_path, start); 2434 if (ret) { 2435 mlog_errno(ret); 2436 goto out; 2437 } 2438 2439 if (split != SPLIT_NONE && 2440 ocfs2_leftmost_rec_contains(path_leaf_el(right_path), 2441 insert_cpos)) { 2442 /* 2443 * A rotate moves the rightmost left leaf 2444 * record over to the leftmost right leaf 2445 * slot. If we're doing an extent split 2446 * instead of a real insert, then we have to 2447 * check that the extent to be split wasn't 2448 * just moved over. If it was, then we can 2449 * exit here, passing left_path back - 2450 * ocfs2_split_extent() is smart enough to 2451 * search both leaves. 2452 */ 2453 *ret_left_path = left_path; 2454 goto out_ret_path; 2455 } 2456 2457 /* 2458 * There is no need to re-read the next right path 2459 * as we know that it'll be our current left 2460 * path. Optimize by copying values instead. 2461 */ 2462 ocfs2_mv_path(right_path, left_path); 2463 2464 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path, 2465 &cpos); 2466 if (ret) { 2467 mlog_errno(ret); 2468 goto out; 2469 } 2470 } 2471 2472 out: 2473 ocfs2_free_path(left_path); 2474 2475 out_ret_path: 2476 return ret; 2477 } 2478 2479 static int ocfs2_update_edge_lengths(struct inode *inode, handle_t *handle, 2480 int subtree_index, struct ocfs2_path *path) 2481 { 2482 int i, idx, ret; 2483 struct ocfs2_extent_rec *rec; 2484 struct ocfs2_extent_list *el; 2485 struct ocfs2_extent_block *eb; 2486 u32 range; 2487 2488 /* 2489 * In normal tree rotation process, we will never touch the 2490 * tree branch above subtree_index and ocfs2_extend_rotate_transaction 2491 * doesn't reserve the credits for them either. 2492 * 2493 * But we do have a special case here which will update the rightmost 2494 * records for all the bh in the path. 2495 * So we have to allocate extra credits and access them. 2496 */ 2497 ret = ocfs2_extend_trans(handle, 2498 handle->h_buffer_credits + subtree_index); 2499 if (ret) { 2500 mlog_errno(ret); 2501 goto out; 2502 } 2503 2504 ret = ocfs2_journal_access_path(inode, handle, path); 2505 if (ret) { 2506 mlog_errno(ret); 2507 goto out; 2508 } 2509 2510 /* Path should always be rightmost. */ 2511 eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data; 2512 BUG_ON(eb->h_next_leaf_blk != 0ULL); 2513 2514 el = &eb->h_list; 2515 BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0); 2516 idx = le16_to_cpu(el->l_next_free_rec) - 1; 2517 rec = &el->l_recs[idx]; 2518 range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); 2519 2520 for (i = 0; i < path->p_tree_depth; i++) { 2521 el = path->p_node[i].el; 2522 idx = le16_to_cpu(el->l_next_free_rec) - 1; 2523 rec = &el->l_recs[idx]; 2524 2525 rec->e_int_clusters = cpu_to_le32(range); 2526 le32_add_cpu(&rec->e_int_clusters, -le32_to_cpu(rec->e_cpos)); 2527 2528 ocfs2_journal_dirty(handle, path->p_node[i].bh); 2529 } 2530 out: 2531 return ret; 2532 } 2533 2534 static void ocfs2_unlink_path(struct inode *inode, handle_t *handle, 2535 struct ocfs2_cached_dealloc_ctxt *dealloc, 2536 struct ocfs2_path *path, int unlink_start) 2537 { 2538 int ret, i; 2539 struct ocfs2_extent_block *eb; 2540 struct ocfs2_extent_list *el; 2541 struct buffer_head *bh; 2542 2543 for(i = unlink_start; i < path_num_items(path); i++) { 2544 bh = path->p_node[i].bh; 2545 2546 eb = (struct ocfs2_extent_block *)bh->b_data; 2547 /* 2548 * Not all nodes might have had their final count 2549 * decremented by the caller - handle this here. 2550 */ 2551 el = &eb->h_list; 2552 if (le16_to_cpu(el->l_next_free_rec) > 1) { 2553 mlog(ML_ERROR, 2554 "Inode %llu, attempted to remove extent block " 2555 "%llu with %u records\n", 2556 (unsigned long long)OCFS2_I(inode)->ip_blkno, 2557 (unsigned long long)le64_to_cpu(eb->h_blkno), 2558 le16_to_cpu(el->l_next_free_rec)); 2559 2560 ocfs2_journal_dirty(handle, bh); 2561 ocfs2_remove_from_cache(inode, bh); 2562 continue; 2563 } 2564 2565 el->l_next_free_rec = 0; 2566 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec)); 2567 2568 ocfs2_journal_dirty(handle, bh); 2569 2570 ret = ocfs2_cache_extent_block_free(dealloc, eb); 2571 if (ret) 2572 mlog_errno(ret); 2573 2574 ocfs2_remove_from_cache(inode, bh); 2575 } 2576 } 2577 2578 static void ocfs2_unlink_subtree(struct inode *inode, handle_t *handle, 2579 struct ocfs2_path *left_path, 2580 struct ocfs2_path *right_path, 2581 int subtree_index, 2582 struct ocfs2_cached_dealloc_ctxt *dealloc) 2583 { 2584 int i; 2585 struct buffer_head *root_bh = left_path->p_node[subtree_index].bh; 2586 struct ocfs2_extent_list *root_el = left_path->p_node[subtree_index].el; 2587 struct ocfs2_extent_list *el; 2588 struct ocfs2_extent_block *eb; 2589 2590 el = path_leaf_el(left_path); 2591 2592 eb = (struct ocfs2_extent_block *)right_path->p_node[subtree_index + 1].bh->b_data; 2593 2594 for(i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++) 2595 if (root_el->l_recs[i].e_blkno == eb->h_blkno) 2596 break; 2597 2598 BUG_ON(i >= le16_to_cpu(root_el->l_next_free_rec)); 2599 2600 memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec)); 2601 le16_add_cpu(&root_el->l_next_free_rec, -1); 2602 2603 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data; 2604 eb->h_next_leaf_blk = 0; 2605 2606 ocfs2_journal_dirty(handle, root_bh); 2607 ocfs2_journal_dirty(handle, path_leaf_bh(left_path)); 2608 2609 ocfs2_unlink_path(inode, handle, dealloc, right_path, 2610 subtree_index + 1); 2611 } 2612 2613 static int ocfs2_rotate_subtree_left(struct inode *inode, handle_t *handle, 2614 struct ocfs2_path *left_path, 2615 struct ocfs2_path *right_path, 2616 int subtree_index, 2617 struct ocfs2_cached_dealloc_ctxt *dealloc, 2618 int *deleted, 2619 struct ocfs2_extent_tree *et) 2620 { 2621 int ret, i, del_right_subtree = 0, right_has_empty = 0; 2622 struct buffer_head *root_bh, *et_root_bh = path_root_bh(right_path); 2623 struct ocfs2_extent_list *right_leaf_el, *left_leaf_el; 2624 struct ocfs2_extent_block *eb; 2625 2626 *deleted = 0; 2627 2628 right_leaf_el = path_leaf_el(right_path); 2629 left_leaf_el = path_leaf_el(left_path); 2630 root_bh = left_path->p_node[subtree_index].bh; 2631 BUG_ON(root_bh != right_path->p_node[subtree_index].bh); 2632 2633 if (!ocfs2_is_empty_extent(&left_leaf_el->l_recs[0])) 2634 return 0; 2635 2636 eb = (struct ocfs2_extent_block *)path_leaf_bh(right_path)->b_data; 2637 if (ocfs2_is_empty_extent(&right_leaf_el->l_recs[0])) { 2638 /* 2639 * It's legal for us to proceed if the right leaf is 2640 * the rightmost one and it has an empty extent. There 2641 * are two cases to handle - whether the leaf will be 2642 * empty after removal or not. If the leaf isn't empty 2643 * then just remove the empty extent up front. The 2644 * next block will handle empty leaves by flagging 2645 * them for unlink. 2646 * 2647 * Non rightmost leaves will throw -EAGAIN and the 2648 * caller can manually move the subtree and retry. 2649 */ 2650 2651 if (eb->h_next_leaf_blk != 0ULL) 2652 return -EAGAIN; 2653 2654 if (le16_to_cpu(right_leaf_el->l_next_free_rec) > 1) { 2655 ret = ocfs2_journal_access_eb(handle, inode, 2656 path_leaf_bh(right_path), 2657 OCFS2_JOURNAL_ACCESS_WRITE); 2658 if (ret) { 2659 mlog_errno(ret); 2660 goto out; 2661 } 2662 2663 ocfs2_remove_empty_extent(right_leaf_el); 2664 } else 2665 right_has_empty = 1; 2666 } 2667 2668 if (eb->h_next_leaf_blk == 0ULL && 2669 le16_to_cpu(right_leaf_el->l_next_free_rec) == 1) { 2670 /* 2671 * We have to update i_last_eb_blk during the meta 2672 * data delete. 2673 */ 2674 ret = ocfs2_et_root_journal_access(handle, inode, et, 2675 OCFS2_JOURNAL_ACCESS_WRITE); 2676 if (ret) { 2677 mlog_errno(ret); 2678 goto out; 2679 } 2680 2681 del_right_subtree = 1; 2682 } 2683 2684 /* 2685 * Getting here with an empty extent in the right path implies 2686 * that it's the rightmost path and will be deleted. 2687 */ 2688 BUG_ON(right_has_empty && !del_right_subtree); 2689 2690 ret = ocfs2_path_bh_journal_access(handle, inode, right_path, 2691 subtree_index); 2692 if (ret) { 2693 mlog_errno(ret); 2694 goto out; 2695 } 2696 2697 for(i = subtree_index + 1; i < path_num_items(right_path); i++) { 2698 ret = ocfs2_path_bh_journal_access(handle, inode, 2699 right_path, i); 2700 if (ret) { 2701 mlog_errno(ret); 2702 goto out; 2703 } 2704 2705 ret = ocfs2_path_bh_journal_access(handle, inode, 2706 left_path, i); 2707 if (ret) { 2708 mlog_errno(ret); 2709 goto out; 2710 } 2711 } 2712 2713 if (!right_has_empty) { 2714 /* 2715 * Only do this if we're moving a real 2716 * record. Otherwise, the action is delayed until 2717 * after removal of the right path in which case we 2718 * can do a simple shift to remove the empty extent. 2719 */ 2720 ocfs2_rotate_leaf(left_leaf_el, &right_leaf_el->l_recs[0]); 2721 memset(&right_leaf_el->l_recs[0], 0, 2722 sizeof(struct ocfs2_extent_rec)); 2723 } 2724 if (eb->h_next_leaf_blk == 0ULL) { 2725 /* 2726 * Move recs over to get rid of empty extent, decrease 2727 * next_free. This is allowed to remove the last 2728 * extent in our leaf (setting l_next_free_rec to 2729 * zero) - the delete code below won't care. 2730 */ 2731 ocfs2_remove_empty_extent(right_leaf_el); 2732 } 2733 2734 ret = ocfs2_journal_dirty(handle, path_leaf_bh(left_path)); 2735 if (ret) 2736 mlog_errno(ret); 2737 ret = ocfs2_journal_dirty(handle, path_leaf_bh(right_path)); 2738 if (ret) 2739 mlog_errno(ret); 2740 2741 if (del_right_subtree) { 2742 ocfs2_unlink_subtree(inode, handle, left_path, right_path, 2743 subtree_index, dealloc); 2744 ret = ocfs2_update_edge_lengths(inode, handle, subtree_index, 2745 left_path); 2746 if (ret) { 2747 mlog_errno(ret); 2748 goto out; 2749 } 2750 2751 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data; 2752 ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno)); 2753 2754 /* 2755 * Removal of the extent in the left leaf was skipped 2756 * above so we could delete the right path 2757 * 1st. 2758 */ 2759 if (right_has_empty) 2760 ocfs2_remove_empty_extent(left_leaf_el); 2761 2762 ret = ocfs2_journal_dirty(handle, et_root_bh); 2763 if (ret) 2764 mlog_errno(ret); 2765 2766 *deleted = 1; 2767 } else 2768 ocfs2_complete_edge_insert(inode, handle, left_path, right_path, 2769 subtree_index); 2770 2771 out: 2772 return ret; 2773 } 2774 2775 /* 2776 * Given a full path, determine what cpos value would return us a path 2777 * containing the leaf immediately to the right of the current one. 2778 * 2779 * Will return zero if the path passed in is already the rightmost path. 2780 * 2781 * This looks similar, but is subtly different to 2782 * ocfs2_find_cpos_for_left_leaf(). 2783 */ 2784 static int ocfs2_find_cpos_for_right_leaf(struct super_block *sb, 2785 struct ocfs2_path *path, u32 *cpos) 2786 { 2787 int i, j, ret = 0; 2788 u64 blkno; 2789 struct ocfs2_extent_list *el; 2790 2791 *cpos = 0; 2792 2793 if (path->p_tree_depth == 0) 2794 return 0; 2795 2796 blkno = path_leaf_bh(path)->b_blocknr; 2797 2798 /* Start at the tree node just above the leaf and work our way up. */ 2799 i = path->p_tree_depth - 1; 2800 while (i >= 0) { 2801 int next_free; 2802 2803 el = path->p_node[i].el; 2804 2805 /* 2806 * Find the extent record just after the one in our 2807 * path. 2808 */ 2809 next_free = le16_to_cpu(el->l_next_free_rec); 2810 for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) { 2811 if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) { 2812 if (j == (next_free - 1)) { 2813 if (i == 0) { 2814 /* 2815 * We've determined that the 2816 * path specified is already 2817 * the rightmost one - return a 2818 * cpos of zero. 2819 */ 2820 goto out; 2821 } 2822 /* 2823 * The rightmost record points to our 2824 * leaf - we need to travel up the 2825 * tree one level. 2826 */ 2827 goto next_node; 2828 } 2829 2830 *cpos = le32_to_cpu(el->l_recs[j + 1].e_cpos); 2831 goto out; 2832 } 2833 } 2834 2835 /* 2836 * If we got here, we never found a valid node where 2837 * the tree indicated one should be. 2838 */ 2839 ocfs2_error(sb, 2840 "Invalid extent tree at extent block %llu\n", 2841 (unsigned long long)blkno); 2842 ret = -EROFS; 2843 goto out; 2844 2845 next_node: 2846 blkno = path->p_node[i].bh->b_blocknr; 2847 i--; 2848 } 2849 2850 out: 2851 return ret; 2852 } 2853 2854 static int ocfs2_rotate_rightmost_leaf_left(struct inode *inode, 2855 handle_t *handle, 2856 struct ocfs2_path *path) 2857 { 2858 int ret; 2859 struct buffer_head *bh = path_leaf_bh(path); 2860 struct ocfs2_extent_list *el = path_leaf_el(path); 2861 2862 if (!ocfs2_is_empty_extent(&el->l_recs[0])) 2863 return 0; 2864 2865 ret = ocfs2_path_bh_journal_access(handle, inode, path, 2866 path_num_items(path) - 1); 2867 if (ret) { 2868 mlog_errno(ret); 2869 goto out; 2870 } 2871 2872 ocfs2_remove_empty_extent(el); 2873 2874 ret = ocfs2_journal_dirty(handle, bh); 2875 if (ret) 2876 mlog_errno(ret); 2877 2878 out: 2879 return ret; 2880 } 2881 2882 static int __ocfs2_rotate_tree_left(struct inode *inode, 2883 handle_t *handle, int orig_credits, 2884 struct ocfs2_path *path, 2885 struct ocfs2_cached_dealloc_ctxt *dealloc, 2886 struct ocfs2_path **empty_extent_path, 2887 struct ocfs2_extent_tree *et) 2888 { 2889 int ret, subtree_root, deleted; 2890 u32 right_cpos; 2891 struct ocfs2_path *left_path = NULL; 2892 struct ocfs2_path *right_path = NULL; 2893 2894 BUG_ON(!ocfs2_is_empty_extent(&(path_leaf_el(path)->l_recs[0]))); 2895 2896 *empty_extent_path = NULL; 2897 2898 ret = ocfs2_find_cpos_for_right_leaf(inode->i_sb, path, 2899 &right_cpos); 2900 if (ret) { 2901 mlog_errno(ret); 2902 goto out; 2903 } 2904 2905 left_path = ocfs2_new_path_from_path(path); 2906 if (!left_path) { 2907 ret = -ENOMEM; 2908 mlog_errno(ret); 2909 goto out; 2910 } 2911 2912 ocfs2_cp_path(left_path, path); 2913 2914 right_path = ocfs2_new_path_from_path(path); 2915 if (!right_path) { 2916 ret = -ENOMEM; 2917 mlog_errno(ret); 2918 goto out; 2919 } 2920 2921 while (right_cpos) { 2922 ret = ocfs2_find_path(inode, right_path, right_cpos); 2923 if (ret) { 2924 mlog_errno(ret); 2925 goto out; 2926 } 2927 2928 subtree_root = ocfs2_find_subtree_root(inode, left_path, 2929 right_path); 2930 2931 mlog(0, "Subtree root at index %d (blk %llu, depth %d)\n", 2932 subtree_root, 2933 (unsigned long long) 2934 right_path->p_node[subtree_root].bh->b_blocknr, 2935 right_path->p_tree_depth); 2936 2937 ret = ocfs2_extend_rotate_transaction(handle, subtree_root, 2938 orig_credits, left_path); 2939 if (ret) { 2940 mlog_errno(ret); 2941 goto out; 2942 } 2943 2944 /* 2945 * Caller might still want to make changes to the 2946 * tree root, so re-add it to the journal here. 2947 */ 2948 ret = ocfs2_path_bh_journal_access(handle, inode, 2949 left_path, 0); 2950 if (ret) { 2951 mlog_errno(ret); 2952 goto out; 2953 } 2954 2955 ret = ocfs2_rotate_subtree_left(inode, handle, left_path, 2956 right_path, subtree_root, 2957 dealloc, &deleted, et); 2958 if (ret == -EAGAIN) { 2959 /* 2960 * The rotation has to temporarily stop due to 2961 * the right subtree having an empty 2962 * extent. Pass it back to the caller for a 2963 * fixup. 2964 */ 2965 *empty_extent_path = right_path; 2966 right_path = NULL; 2967 goto out; 2968 } 2969 if (ret) { 2970 mlog_errno(ret); 2971 goto out; 2972 } 2973 2974 /* 2975 * The subtree rotate might have removed records on 2976 * the rightmost edge. If so, then rotation is 2977 * complete. 2978 */ 2979 if (deleted) 2980 break; 2981 2982 ocfs2_mv_path(left_path, right_path); 2983 2984 ret = ocfs2_find_cpos_for_right_leaf(inode->i_sb, left_path, 2985 &right_cpos); 2986 if (ret) { 2987 mlog_errno(ret); 2988 goto out; 2989 } 2990 } 2991 2992 out: 2993 ocfs2_free_path(right_path); 2994 ocfs2_free_path(left_path); 2995 2996 return ret; 2997 } 2998 2999 static int ocfs2_remove_rightmost_path(struct inode *inode, handle_t *handle, 3000 struct ocfs2_path *path, 3001 struct ocfs2_cached_dealloc_ctxt *dealloc, 3002 struct ocfs2_extent_tree *et) 3003 { 3004 int ret, subtree_index; 3005 u32 cpos; 3006 struct ocfs2_path *left_path = NULL; 3007 struct ocfs2_extent_block *eb; 3008 struct ocfs2_extent_list *el; 3009 3010 3011 ret = ocfs2_et_sanity_check(inode, et); 3012 if (ret) 3013 goto out; 3014 /* 3015 * There's two ways we handle this depending on 3016 * whether path is the only existing one. 3017 */ 3018 ret = ocfs2_extend_rotate_transaction(handle, 0, 3019 handle->h_buffer_credits, 3020 path); 3021 if (ret) { 3022 mlog_errno(ret); 3023 goto out; 3024 } 3025 3026 ret = ocfs2_journal_access_path(inode, handle, path); 3027 if (ret) { 3028 mlog_errno(ret); 3029 goto out; 3030 } 3031 3032 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path, &cpos); 3033 if (ret) { 3034 mlog_errno(ret); 3035 goto out; 3036 } 3037 3038 if (cpos) { 3039 /* 3040 * We have a path to the left of this one - it needs 3041 * an update too. 3042 */ 3043 left_path = ocfs2_new_path_from_path(path); 3044 if (!left_path) { 3045 ret = -ENOMEM; 3046 mlog_errno(ret); 3047 goto out; 3048 } 3049 3050 ret = ocfs2_find_path(inode, left_path, cpos); 3051 if (ret) { 3052 mlog_errno(ret); 3053 goto out; 3054 } 3055 3056 ret = ocfs2_journal_access_path(inode, handle, left_path); 3057 if (ret) { 3058 mlog_errno(ret); 3059 goto out; 3060 } 3061 3062 subtree_index = ocfs2_find_subtree_root(inode, left_path, path); 3063 3064 ocfs2_unlink_subtree(inode, handle, left_path, path, 3065 subtree_index, dealloc); 3066 ret = ocfs2_update_edge_lengths(inode, handle, subtree_index, 3067 left_path); 3068 if (ret) { 3069 mlog_errno(ret); 3070 goto out; 3071 } 3072 3073 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data; 3074 ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno)); 3075 } else { 3076 /* 3077 * 'path' is also the leftmost path which 3078 * means it must be the only one. This gets 3079 * handled differently because we want to 3080 * revert the inode back to having extents 3081 * in-line. 3082 */ 3083 ocfs2_unlink_path(inode, handle, dealloc, path, 1); 3084 3085 el = et->et_root_el; 3086 el->l_tree_depth = 0; 3087 el->l_next_free_rec = 0; 3088 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec)); 3089 3090 ocfs2_et_set_last_eb_blk(et, 0); 3091 } 3092 3093 ocfs2_journal_dirty(handle, path_root_bh(path)); 3094 3095 out: 3096 ocfs2_free_path(left_path); 3097 return ret; 3098 } 3099 3100 /* 3101 * Left rotation of btree records. 3102 * 3103 * In many ways, this is (unsurprisingly) the opposite of right 3104 * rotation. We start at some non-rightmost path containing an empty 3105 * extent in the leaf block. The code works its way to the rightmost 3106 * path by rotating records to the left in every subtree. 3107 * 3108 * This is used by any code which reduces the number of extent records 3109 * in a leaf. After removal, an empty record should be placed in the 3110 * leftmost list position. 3111 * 3112 * This won't handle a length update of the rightmost path records if 3113 * the rightmost tree leaf record is removed so the caller is 3114 * responsible for detecting and correcting that. 3115 */ 3116 static int ocfs2_rotate_tree_left(struct inode *inode, handle_t *handle, 3117 struct ocfs2_path *path, 3118 struct ocfs2_cached_dealloc_ctxt *dealloc, 3119 struct ocfs2_extent_tree *et) 3120 { 3121 int ret, orig_credits = handle->h_buffer_credits; 3122 struct ocfs2_path *tmp_path = NULL, *restart_path = NULL; 3123 struct ocfs2_extent_block *eb; 3124 struct ocfs2_extent_list *el; 3125 3126 el = path_leaf_el(path); 3127 if (!ocfs2_is_empty_extent(&el->l_recs[0])) 3128 return 0; 3129 3130 if (path->p_tree_depth == 0) { 3131 rightmost_no_delete: 3132 /* 3133 * Inline extents. This is trivially handled, so do 3134 * it up front. 3135 */ 3136 ret = ocfs2_rotate_rightmost_leaf_left(inode, handle, 3137 path); 3138 if (ret) 3139 mlog_errno(ret); 3140 goto out; 3141 } 3142 3143 /* 3144 * Handle rightmost branch now. There's several cases: 3145 * 1) simple rotation leaving records in there. That's trivial. 3146 * 2) rotation requiring a branch delete - there's no more 3147 * records left. Two cases of this: 3148 * a) There are branches to the left. 3149 * b) This is also the leftmost (the only) branch. 3150 * 3151 * 1) is handled via ocfs2_rotate_rightmost_leaf_left() 3152 * 2a) we need the left branch so that we can update it with the unlink 3153 * 2b) we need to bring the inode back to inline extents. 3154 */ 3155 3156 eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data; 3157 el = &eb->h_list; 3158 if (eb->h_next_leaf_blk == 0) { 3159 /* 3160 * This gets a bit tricky if we're going to delete the 3161 * rightmost path. Get the other cases out of the way 3162 * 1st. 3163 */ 3164 if (le16_to_cpu(el->l_next_free_rec) > 1) 3165 goto rightmost_no_delete; 3166 3167 if (le16_to_cpu(el->l_next_free_rec) == 0) { 3168 ret = -EIO; 3169 ocfs2_error(inode->i_sb, 3170 "Inode %llu has empty extent block at %llu", 3171 (unsigned long long)OCFS2_I(inode)->ip_blkno, 3172 (unsigned long long)le64_to_cpu(eb->h_blkno)); 3173 goto out; 3174 } 3175 3176 /* 3177 * XXX: The caller can not trust "path" any more after 3178 * this as it will have been deleted. What do we do? 3179 * 3180 * In theory the rotate-for-merge code will never get 3181 * here because it'll always ask for a rotate in a 3182 * nonempty list. 3183 */ 3184 3185 ret = ocfs2_remove_rightmost_path(inode, handle, path, 3186 dealloc, et); 3187 if (ret) 3188 mlog_errno(ret); 3189 goto out; 3190 } 3191 3192 /* 3193 * Now we can loop, remembering the path we get from -EAGAIN 3194 * and restarting from there. 3195 */ 3196 try_rotate: 3197 ret = __ocfs2_rotate_tree_left(inode, handle, orig_credits, path, 3198 dealloc, &restart_path, et); 3199 if (ret && ret != -EAGAIN) { 3200 mlog_errno(ret); 3201 goto out; 3202 } 3203 3204 while (ret == -EAGAIN) { 3205 tmp_path = restart_path; 3206 restart_path = NULL; 3207 3208 ret = __ocfs2_rotate_tree_left(inode, handle, orig_credits, 3209 tmp_path, dealloc, 3210 &restart_path, et); 3211 if (ret && ret != -EAGAIN) { 3212 mlog_errno(ret); 3213 goto out; 3214 } 3215 3216 ocfs2_free_path(tmp_path); 3217 tmp_path = NULL; 3218 3219 if (ret == 0) 3220 goto try_rotate; 3221 } 3222 3223 out: 3224 ocfs2_free_path(tmp_path); 3225 ocfs2_free_path(restart_path); 3226 return ret; 3227 } 3228 3229 static void ocfs2_cleanup_merge(struct ocfs2_extent_list *el, 3230 int index) 3231 { 3232 struct ocfs2_extent_rec *rec = &el->l_recs[index]; 3233 unsigned int size; 3234 3235 if (rec->e_leaf_clusters == 0) { 3236 /* 3237 * We consumed all of the merged-from record. An empty 3238 * extent cannot exist anywhere but the 1st array 3239 * position, so move things over if the merged-from 3240 * record doesn't occupy that position. 3241 * 3242 * This creates a new empty extent so the caller 3243 * should be smart enough to have removed any existing 3244 * ones. 3245 */ 3246 if (index > 0) { 3247 BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0])); 3248 size = index * sizeof(struct ocfs2_extent_rec); 3249 memmove(&el->l_recs[1], &el->l_recs[0], size); 3250 } 3251 3252 /* 3253 * Always memset - the caller doesn't check whether it 3254 * created an empty extent, so there could be junk in 3255 * the other fields. 3256 */ 3257 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec)); 3258 } 3259 } 3260 3261 static int ocfs2_get_right_path(struct inode *inode, 3262 struct ocfs2_path *left_path, 3263 struct ocfs2_path **ret_right_path) 3264 { 3265 int ret; 3266 u32 right_cpos; 3267 struct ocfs2_path *right_path = NULL; 3268 struct ocfs2_extent_list *left_el; 3269 3270 *ret_right_path = NULL; 3271 3272 /* This function shouldn't be called for non-trees. */ 3273 BUG_ON(left_path->p_tree_depth == 0); 3274 3275 left_el = path_leaf_el(left_path); 3276 BUG_ON(left_el->l_next_free_rec != left_el->l_count); 3277 3278 ret = ocfs2_find_cpos_for_right_leaf(inode->i_sb, left_path, 3279 &right_cpos); 3280 if (ret) { 3281 mlog_errno(ret); 3282 goto out; 3283 } 3284 3285 /* This function shouldn't be called for the rightmost leaf. */ 3286 BUG_ON(right_cpos == 0); 3287 3288 right_path = ocfs2_new_path_from_path(left_path); 3289 if (!right_path) { 3290 ret = -ENOMEM; 3291 mlog_errno(ret); 3292 goto out; 3293 } 3294 3295 ret = ocfs2_find_path(inode, right_path, right_cpos); 3296 if (ret) { 3297 mlog_errno(ret); 3298 goto out; 3299 } 3300 3301 *ret_right_path = right_path; 3302 out: 3303 if (ret) 3304 ocfs2_free_path(right_path); 3305 return ret; 3306 } 3307 3308 /* 3309 * Remove split_rec clusters from the record at index and merge them 3310 * onto the beginning of the record "next" to it. 3311 * For index < l_count - 1, the next means the extent rec at index + 1. 3312 * For index == l_count - 1, the "next" means the 1st extent rec of the 3313 * next extent block. 3314 */ 3315 static int ocfs2_merge_rec_right(struct inode *inode, 3316 struct ocfs2_path *left_path, 3317 handle_t *handle, 3318 struct ocfs2_extent_rec *split_rec, 3319 int index) 3320 { 3321 int ret, next_free, i; 3322 unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters); 3323 struct ocfs2_extent_rec *left_rec; 3324 struct ocfs2_extent_rec *right_rec; 3325 struct ocfs2_extent_list *right_el; 3326 struct ocfs2_path *right_path = NULL; 3327 int subtree_index = 0; 3328 struct ocfs2_extent_list *el = path_leaf_el(left_path); 3329 struct buffer_head *bh = path_leaf_bh(left_path); 3330 struct buffer_head *root_bh = NULL; 3331 3332 BUG_ON(index >= le16_to_cpu(el->l_next_free_rec)); 3333 left_rec = &el->l_recs[index]; 3334 3335 if (index == le16_to_cpu(el->l_next_free_rec) - 1 && 3336 le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count)) { 3337 /* we meet with a cross extent block merge. */ 3338 ret = ocfs2_get_right_path(inode, left_path, &right_path); 3339 if (ret) { 3340 mlog_errno(ret); 3341 goto out; 3342 } 3343 3344 right_el = path_leaf_el(right_path); 3345 next_free = le16_to_cpu(right_el->l_next_free_rec); 3346 BUG_ON(next_free <= 0); 3347 right_rec = &right_el->l_recs[0]; 3348 if (ocfs2_is_empty_extent(right_rec)) { 3349 BUG_ON(next_free <= 1); 3350 right_rec = &right_el->l_recs[1]; 3351 } 3352 3353 BUG_ON(le32_to_cpu(left_rec->e_cpos) + 3354 le16_to_cpu(left_rec->e_leaf_clusters) != 3355 le32_to_cpu(right_rec->e_cpos)); 3356 3357 subtree_index = ocfs2_find_subtree_root(inode, 3358 left_path, right_path); 3359 3360 ret = ocfs2_extend_rotate_transaction(handle, subtree_index, 3361 handle->h_buffer_credits, 3362 right_path); 3363 if (ret) { 3364 mlog_errno(ret); 3365 goto out; 3366 } 3367 3368 root_bh = left_path->p_node[subtree_index].bh; 3369 BUG_ON(root_bh != right_path->p_node[subtree_index].bh); 3370 3371 ret = ocfs2_path_bh_journal_access(handle, inode, right_path, 3372 subtree_index); 3373 if (ret) { 3374 mlog_errno(ret); 3375 goto out; 3376 } 3377 3378 for (i = subtree_index + 1; 3379 i < path_num_items(right_path); i++) { 3380 ret = ocfs2_path_bh_journal_access(handle, inode, 3381 right_path, i); 3382 if (ret) { 3383 mlog_errno(ret); 3384 goto out; 3385 } 3386 3387 ret = ocfs2_path_bh_journal_access(handle, inode, 3388 left_path, i); 3389 if (ret) { 3390 mlog_errno(ret); 3391 goto out; 3392 } 3393 } 3394 3395 } else { 3396 BUG_ON(index == le16_to_cpu(el->l_next_free_rec) - 1); 3397 right_rec = &el->l_recs[index + 1]; 3398 } 3399 3400 ret = ocfs2_path_bh_journal_access(handle, inode, left_path, 3401 path_num_items(left_path) - 1); 3402 if (ret) { 3403 mlog_errno(ret); 3404 goto out; 3405 } 3406 3407 le16_add_cpu(&left_rec->e_leaf_clusters, -split_clusters); 3408 3409 le32_add_cpu(&right_rec->e_cpos, -split_clusters); 3410 le64_add_cpu(&right_rec->e_blkno, 3411 -ocfs2_clusters_to_blocks(inode->i_sb, split_clusters)); 3412 le16_add_cpu(&right_rec->e_leaf_clusters, split_clusters); 3413 3414 ocfs2_cleanup_merge(el, index); 3415 3416 ret = ocfs2_journal_dirty(handle, bh); 3417 if (ret) 3418 mlog_errno(ret); 3419 3420 if (right_path) { 3421 ret = ocfs2_journal_dirty(handle, path_leaf_bh(right_path)); 3422 if (ret) 3423 mlog_errno(ret); 3424 3425 ocfs2_complete_edge_insert(inode, handle, left_path, 3426 right_path, subtree_index); 3427 } 3428 out: 3429 if (right_path) 3430 ocfs2_free_path(right_path); 3431 return ret; 3432 } 3433 3434 static int ocfs2_get_left_path(struct inode *inode, 3435 struct ocfs2_path *right_path, 3436 struct ocfs2_path **ret_left_path) 3437 { 3438 int ret; 3439 u32 left_cpos; 3440 struct ocfs2_path *left_path = NULL; 3441 3442 *ret_left_path = NULL; 3443 3444 /* This function shouldn't be called for non-trees. */ 3445 BUG_ON(right_path->p_tree_depth == 0); 3446 3447 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, 3448 right_path, &left_cpos); 3449 if (ret) { 3450 mlog_errno(ret); 3451 goto out; 3452 } 3453 3454 /* This function shouldn't be called for the leftmost leaf. */ 3455 BUG_ON(left_cpos == 0); 3456 3457 left_path = ocfs2_new_path_from_path(right_path); 3458 if (!left_path) { 3459 ret = -ENOMEM; 3460 mlog_errno(ret); 3461 goto out; 3462 } 3463 3464 ret = ocfs2_find_path(inode, left_path, left_cpos); 3465 if (ret) { 3466 mlog_errno(ret); 3467 goto out; 3468 } 3469 3470 *ret_left_path = left_path; 3471 out: 3472 if (ret) 3473 ocfs2_free_path(left_path); 3474 return ret; 3475 } 3476 3477 /* 3478 * Remove split_rec clusters from the record at index and merge them 3479 * onto the tail of the record "before" it. 3480 * For index > 0, the "before" means the extent rec at index - 1. 3481 * 3482 * For index == 0, the "before" means the last record of the previous 3483 * extent block. And there is also a situation that we may need to 3484 * remove the rightmost leaf extent block in the right_path and change 3485 * the right path to indicate the new rightmost path. 3486 */ 3487 static int ocfs2_merge_rec_left(struct inode *inode, 3488 struct ocfs2_path *right_path, 3489 handle_t *handle, 3490 struct ocfs2_extent_rec *split_rec, 3491 struct ocfs2_cached_dealloc_ctxt *dealloc, 3492 struct ocfs2_extent_tree *et, 3493 int index) 3494 { 3495 int ret, i, subtree_index = 0, has_empty_extent = 0; 3496 unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters); 3497 struct ocfs2_extent_rec *left_rec; 3498 struct ocfs2_extent_rec *right_rec; 3499 struct ocfs2_extent_list *el = path_leaf_el(right_path); 3500 struct buffer_head *bh = path_leaf_bh(right_path); 3501 struct buffer_head *root_bh = NULL; 3502 struct ocfs2_path *left_path = NULL; 3503 struct ocfs2_extent_list *left_el; 3504 3505 BUG_ON(index < 0); 3506 3507 right_rec = &el->l_recs[index]; 3508 if (index == 0) { 3509 /* we meet with a cross extent block merge. */ 3510 ret = ocfs2_get_left_path(inode, right_path, &left_path); 3511 if (ret) { 3512 mlog_errno(ret); 3513 goto out; 3514 } 3515 3516 left_el = path_leaf_el(left_path); 3517 BUG_ON(le16_to_cpu(left_el->l_next_free_rec) != 3518 le16_to_cpu(left_el->l_count)); 3519 3520 left_rec = &left_el->l_recs[ 3521 le16_to_cpu(left_el->l_next_free_rec) - 1]; 3522 BUG_ON(le32_to_cpu(left_rec->e_cpos) + 3523 le16_to_cpu(left_rec->e_leaf_clusters) != 3524 le32_to_cpu(split_rec->e_cpos)); 3525 3526 subtree_index = ocfs2_find_subtree_root(inode, 3527 left_path, right_path); 3528 3529 ret = ocfs2_extend_rotate_transaction(handle, subtree_index, 3530 handle->h_buffer_credits, 3531 left_path); 3532 if (ret) { 3533 mlog_errno(ret); 3534 goto out; 3535 } 3536 3537 root_bh = left_path->p_node[subtree_index].bh; 3538 BUG_ON(root_bh != right_path->p_node[subtree_index].bh); 3539 3540 ret = ocfs2_path_bh_journal_access(handle, inode, right_path, 3541 subtree_index); 3542 if (ret) { 3543 mlog_errno(ret); 3544 goto out; 3545 } 3546 3547 for (i = subtree_index + 1; 3548 i < path_num_items(right_path); i++) { 3549 ret = ocfs2_path_bh_journal_access(handle, inode, 3550 right_path, i); 3551 if (ret) { 3552 mlog_errno(ret); 3553 goto out; 3554 } 3555 3556 ret = ocfs2_path_bh_journal_access(handle, inode, 3557 left_path, i); 3558 if (ret) { 3559 mlog_errno(ret); 3560 goto out; 3561 } 3562 } 3563 } else { 3564 left_rec = &el->l_recs[index - 1]; 3565 if (ocfs2_is_empty_extent(&el->l_recs[0])) 3566 has_empty_extent = 1; 3567 } 3568 3569 ret = ocfs2_path_bh_journal_access(handle, inode, right_path, 3570 path_num_items(right_path) - 1); 3571 if (ret) { 3572 mlog_errno(ret); 3573 goto out; 3574 } 3575 3576 if (has_empty_extent && index == 1) { 3577 /* 3578 * The easy case - we can just plop the record right in. 3579 */ 3580 *left_rec = *split_rec; 3581 3582 has_empty_extent = 0; 3583 } else 3584 le16_add_cpu(&left_rec->e_leaf_clusters, split_clusters); 3585 3586 le32_add_cpu(&right_rec->e_cpos, split_clusters); 3587 le64_add_cpu(&right_rec->e_blkno, 3588 ocfs2_clusters_to_blocks(inode->i_sb, split_clusters)); 3589 le16_add_cpu(&right_rec->e_leaf_clusters, -split_clusters); 3590 3591 ocfs2_cleanup_merge(el, index); 3592 3593 ret = ocfs2_journal_dirty(handle, bh); 3594 if (ret) 3595 mlog_errno(ret); 3596 3597 if (left_path) { 3598 ret = ocfs2_journal_dirty(handle, path_leaf_bh(left_path)); 3599 if (ret) 3600 mlog_errno(ret); 3601 3602 /* 3603 * In the situation that the right_rec is empty and the extent 3604 * block is empty also, ocfs2_complete_edge_insert can't handle 3605 * it and we need to delete the right extent block. 3606 */ 3607 if (le16_to_cpu(right_rec->e_leaf_clusters) == 0 && 3608 le16_to_cpu(el->l_next_free_rec) == 1) { 3609 3610 ret = ocfs2_remove_rightmost_path(inode, handle, 3611 right_path, 3612 dealloc, et); 3613 if (ret) { 3614 mlog_errno(ret); 3615 goto out; 3616 } 3617 3618 /* Now the rightmost extent block has been deleted. 3619 * So we use the new rightmost path. 3620 */ 3621 ocfs2_mv_path(right_path, left_path); 3622 left_path = NULL; 3623 } else 3624 ocfs2_complete_edge_insert(inode, handle, left_path, 3625 right_path, subtree_index); 3626 } 3627 out: 3628 if (left_path) 3629 ocfs2_free_path(left_path); 3630 return ret; 3631 } 3632 3633 static int ocfs2_try_to_merge_extent(struct inode *inode, 3634 handle_t *handle, 3635 struct ocfs2_path *path, 3636 int split_index, 3637 struct ocfs2_extent_rec *split_rec, 3638 struct ocfs2_cached_dealloc_ctxt *dealloc, 3639 struct ocfs2_merge_ctxt *ctxt, 3640 struct ocfs2_extent_tree *et) 3641 3642 { 3643 int ret = 0; 3644 struct ocfs2_extent_list *el = path_leaf_el(path); 3645 struct ocfs2_extent_rec *rec = &el->l_recs[split_index]; 3646 3647 BUG_ON(ctxt->c_contig_type == CONTIG_NONE); 3648 3649 if (ctxt->c_split_covers_rec && ctxt->c_has_empty_extent) { 3650 /* 3651 * The merge code will need to create an empty 3652 * extent to take the place of the newly 3653 * emptied slot. Remove any pre-existing empty 3654 * extents - having more than one in a leaf is 3655 * illegal. 3656 */ 3657 ret = ocfs2_rotate_tree_left(inode, handle, path, 3658 dealloc, et); 3659 if (ret) { 3660 mlog_errno(ret); 3661 goto out; 3662 } 3663 split_index--; 3664 rec = &el->l_recs[split_index]; 3665 } 3666 3667 if (ctxt->c_contig_type == CONTIG_LEFTRIGHT) { 3668 /* 3669 * Left-right contig implies this. 3670 */ 3671 BUG_ON(!ctxt->c_split_covers_rec); 3672 3673 /* 3674 * Since the leftright insert always covers the entire 3675 * extent, this call will delete the insert record 3676 * entirely, resulting in an empty extent record added to 3677 * the extent block. 3678 * 3679 * Since the adding of an empty extent shifts 3680 * everything back to the right, there's no need to 3681 * update split_index here. 3682 * 3683 * When the split_index is zero, we need to merge it to the 3684 * prevoius extent block. It is more efficient and easier 3685 * if we do merge_right first and merge_left later. 3686 */ 3687 ret = ocfs2_merge_rec_right(inode, path, 3688 handle, split_rec, 3689 split_index); 3690 if (ret) { 3691 mlog_errno(ret); 3692 goto out; 3693 } 3694 3695 /* 3696 * We can only get this from logic error above. 3697 */ 3698 BUG_ON(!ocfs2_is_empty_extent(&el->l_recs[0])); 3699 3700 /* The merge left us with an empty extent, remove it. */ 3701 ret = ocfs2_rotate_tree_left(inode, handle, path, 3702 dealloc, et); 3703 if (ret) { 3704 mlog_errno(ret); 3705 goto out; 3706 } 3707 3708 rec = &el->l_recs[split_index]; 3709 3710 /* 3711 * Note that we don't pass split_rec here on purpose - 3712 * we've merged it into the rec already. 3713 */ 3714 ret = ocfs2_merge_rec_left(inode, path, 3715 handle, rec, 3716 dealloc, et, 3717 split_index); 3718 3719 if (ret) { 3720 mlog_errno(ret); 3721 goto out; 3722 } 3723 3724 ret = ocfs2_rotate_tree_left(inode, handle, path, 3725 dealloc, et); 3726 /* 3727 * Error from this last rotate is not critical, so 3728 * print but don't bubble it up. 3729 */ 3730 if (ret) 3731 mlog_errno(ret); 3732 ret = 0; 3733 } else { 3734 /* 3735 * Merge a record to the left or right. 3736 * 3737 * 'contig_type' is relative to the existing record, 3738 * so for example, if we're "right contig", it's to 3739 * the record on the left (hence the left merge). 3740 */ 3741 if (ctxt->c_contig_type == CONTIG_RIGHT) { 3742 ret = ocfs2_merge_rec_left(inode, 3743 path, 3744 handle, split_rec, 3745 dealloc, et, 3746 split_index); 3747 if (ret) { 3748 mlog_errno(ret); 3749 goto out; 3750 } 3751 } else { 3752 ret = ocfs2_merge_rec_right(inode, 3753 path, 3754 handle, split_rec, 3755 split_index); 3756 if (ret) { 3757 mlog_errno(ret); 3758 goto out; 3759 } 3760 } 3761 3762 if (ctxt->c_split_covers_rec) { 3763 /* 3764 * The merge may have left an empty extent in 3765 * our leaf. Try to rotate it away. 3766 */ 3767 ret = ocfs2_rotate_tree_left(inode, handle, path, 3768 dealloc, et); 3769 if (ret) 3770 mlog_errno(ret); 3771 ret = 0; 3772 } 3773 } 3774 3775 out: 3776 return ret; 3777 } 3778 3779 static void ocfs2_subtract_from_rec(struct super_block *sb, 3780 enum ocfs2_split_type split, 3781 struct ocfs2_extent_rec *rec, 3782 struct ocfs2_extent_rec *split_rec) 3783 { 3784 u64 len_blocks; 3785 3786 len_blocks = ocfs2_clusters_to_blocks(sb, 3787 le16_to_cpu(split_rec->e_leaf_clusters)); 3788 3789 if (split == SPLIT_LEFT) { 3790 /* 3791 * Region is on the left edge of the existing 3792 * record. 3793 */ 3794 le32_add_cpu(&rec->e_cpos, 3795 le16_to_cpu(split_rec->e_leaf_clusters)); 3796 le64_add_cpu(&rec->e_blkno, len_blocks); 3797 le16_add_cpu(&rec->e_leaf_clusters, 3798 -le16_to_cpu(split_rec->e_leaf_clusters)); 3799 } else { 3800 /* 3801 * Region is on the right edge of the existing 3802 * record. 3803 */ 3804 le16_add_cpu(&rec->e_leaf_clusters, 3805 -le16_to_cpu(split_rec->e_leaf_clusters)); 3806 } 3807 } 3808 3809 /* 3810 * Do the final bits of extent record insertion at the target leaf 3811 * list. If this leaf is part of an allocation tree, it is assumed 3812 * that the tree above has been prepared. 3813 */ 3814 static void ocfs2_insert_at_leaf(struct ocfs2_extent_rec *insert_rec, 3815 struct ocfs2_extent_list *el, 3816 struct ocfs2_insert_type *insert, 3817 struct inode *inode) 3818 { 3819 int i = insert->ins_contig_index; 3820 unsigned int range; 3821 struct ocfs2_extent_rec *rec; 3822 3823 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0); 3824 3825 if (insert->ins_split != SPLIT_NONE) { 3826 i = ocfs2_search_extent_list(el, le32_to_cpu(insert_rec->e_cpos)); 3827 BUG_ON(i == -1); 3828 rec = &el->l_recs[i]; 3829 ocfs2_subtract_from_rec(inode->i_sb, insert->ins_split, rec, 3830 insert_rec); 3831 goto rotate; 3832 } 3833 3834 /* 3835 * Contiguous insert - either left or right. 3836 */ 3837 if (insert->ins_contig != CONTIG_NONE) { 3838 rec = &el->l_recs[i]; 3839 if (insert->ins_contig == CONTIG_LEFT) { 3840 rec->e_blkno = insert_rec->e_blkno; 3841 rec->e_cpos = insert_rec->e_cpos; 3842 } 3843 le16_add_cpu(&rec->e_leaf_clusters, 3844 le16_to_cpu(insert_rec->e_leaf_clusters)); 3845 return; 3846 } 3847 3848 /* 3849 * Handle insert into an empty leaf. 3850 */ 3851 if (le16_to_cpu(el->l_next_free_rec) == 0 || 3852 ((le16_to_cpu(el->l_next_free_rec) == 1) && 3853 ocfs2_is_empty_extent(&el->l_recs[0]))) { 3854 el->l_recs[0] = *insert_rec; 3855 el->l_next_free_rec = cpu_to_le16(1); 3856 return; 3857 } 3858 3859 /* 3860 * Appending insert. 3861 */ 3862 if (insert->ins_appending == APPEND_TAIL) { 3863 i = le16_to_cpu(el->l_next_free_rec) - 1; 3864 rec = &el->l_recs[i]; 3865 range = le32_to_cpu(rec->e_cpos) 3866 + le16_to_cpu(rec->e_leaf_clusters); 3867 BUG_ON(le32_to_cpu(insert_rec->e_cpos) < range); 3868 3869 mlog_bug_on_msg(le16_to_cpu(el->l_next_free_rec) >= 3870 le16_to_cpu(el->l_count), 3871 "inode %lu, depth %u, count %u, next free %u, " 3872 "rec.cpos %u, rec.clusters %u, " 3873 "insert.cpos %u, insert.clusters %u\n", 3874 inode->i_ino, 3875 le16_to_cpu(el->l_tree_depth), 3876 le16_to_cpu(el->l_count), 3877 le16_to_cpu(el->l_next_free_rec), 3878 le32_to_cpu(el->l_recs[i].e_cpos), 3879 le16_to_cpu(el->l_recs[i].e_leaf_clusters), 3880 le32_to_cpu(insert_rec->e_cpos), 3881 le16_to_cpu(insert_rec->e_leaf_clusters)); 3882 i++; 3883 el->l_recs[i] = *insert_rec; 3884 le16_add_cpu(&el->l_next_free_rec, 1); 3885 return; 3886 } 3887 3888 rotate: 3889 /* 3890 * Ok, we have to rotate. 3891 * 3892 * At this point, it is safe to assume that inserting into an 3893 * empty leaf and appending to a leaf have both been handled 3894 * above. 3895 * 3896 * This leaf needs to have space, either by the empty 1st 3897 * extent record, or by virtue of an l_next_rec < l_count. 3898 */ 3899 ocfs2_rotate_leaf(el, insert_rec); 3900 } 3901 3902 static void ocfs2_adjust_rightmost_records(struct inode *inode, 3903 handle_t *handle, 3904 struct ocfs2_path *path, 3905 struct ocfs2_extent_rec *insert_rec) 3906 { 3907 int ret, i, next_free; 3908 struct buffer_head *bh; 3909 struct ocfs2_extent_list *el; 3910 struct ocfs2_extent_rec *rec; 3911 3912 /* 3913 * Update everything except the leaf block. 3914 */ 3915 for (i = 0; i < path->p_tree_depth; i++) { 3916 bh = path->p_node[i].bh; 3917 el = path->p_node[i].el; 3918 3919 next_free = le16_to_cpu(el->l_next_free_rec); 3920 if (next_free == 0) { 3921 ocfs2_error(inode->i_sb, 3922 "Dinode %llu has a bad extent list", 3923 (unsigned long long)OCFS2_I(inode)->ip_blkno); 3924 ret = -EIO; 3925 return; 3926 } 3927 3928 rec = &el->l_recs[next_free - 1]; 3929 3930 rec->e_int_clusters = insert_rec->e_cpos; 3931 le32_add_cpu(&rec->e_int_clusters, 3932 le16_to_cpu(insert_rec->e_leaf_clusters)); 3933 le32_add_cpu(&rec->e_int_clusters, 3934 -le32_to_cpu(rec->e_cpos)); 3935 3936 ret = ocfs2_journal_dirty(handle, bh); 3937 if (ret) 3938 mlog_errno(ret); 3939 3940 } 3941 } 3942 3943 static int ocfs2_append_rec_to_path(struct inode *inode, handle_t *handle, 3944 struct ocfs2_extent_rec *insert_rec, 3945 struct ocfs2_path *right_path, 3946 struct ocfs2_path **ret_left_path) 3947 { 3948 int ret, next_free; 3949 struct ocfs2_extent_list *el; 3950 struct ocfs2_path *left_path = NULL; 3951 3952 *ret_left_path = NULL; 3953 3954 /* 3955 * This shouldn't happen for non-trees. The extent rec cluster 3956 * count manipulation below only works for interior nodes. 3957 */ 3958 BUG_ON(right_path->p_tree_depth == 0); 3959 3960 /* 3961 * If our appending insert is at the leftmost edge of a leaf, 3962 * then we might need to update the rightmost records of the 3963 * neighboring path. 3964 */ 3965 el = path_leaf_el(right_path); 3966 next_free = le16_to_cpu(el->l_next_free_rec); 3967 if (next_free == 0 || 3968 (next_free == 1 && ocfs2_is_empty_extent(&el->l_recs[0]))) { 3969 u32 left_cpos; 3970 3971 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path, 3972 &left_cpos); 3973 if (ret) { 3974 mlog_errno(ret); 3975 goto out; 3976 } 3977 3978 mlog(0, "Append may need a left path update. cpos: %u, " 3979 "left_cpos: %u\n", le32_to_cpu(insert_rec->e_cpos), 3980 left_cpos); 3981 3982 /* 3983 * No need to worry if the append is already in the 3984 * leftmost leaf. 3985 */ 3986 if (left_cpos) { 3987 left_path = ocfs2_new_path_from_path(right_path); 3988 if (!left_path) { 3989 ret = -ENOMEM; 3990 mlog_errno(ret); 3991 goto out; 3992 } 3993 3994 ret = ocfs2_find_path(inode, left_path, left_cpos); 3995 if (ret) { 3996 mlog_errno(ret); 3997 goto out; 3998 } 3999 4000 /* 4001 * ocfs2_insert_path() will pass the left_path to the 4002 * journal for us. 4003 */ 4004 } 4005 } 4006 4007 ret = ocfs2_journal_access_path(inode, handle, right_path); 4008 if (ret) { 4009 mlog_errno(ret); 4010 goto out; 4011 } 4012 4013 ocfs2_adjust_rightmost_records(inode, handle, right_path, insert_rec); 4014 4015 *ret_left_path = left_path; 4016 ret = 0; 4017 out: 4018 if (ret != 0) 4019 ocfs2_free_path(left_path); 4020 4021 return ret; 4022 } 4023 4024 static void ocfs2_split_record(struct inode *inode, 4025 struct ocfs2_path *left_path, 4026 struct ocfs2_path *right_path, 4027 struct ocfs2_extent_rec *split_rec, 4028 enum ocfs2_split_type split) 4029 { 4030 int index; 4031 u32 cpos = le32_to_cpu(split_rec->e_cpos); 4032 struct ocfs2_extent_list *left_el = NULL, *right_el, *insert_el, *el; 4033 struct ocfs2_extent_rec *rec, *tmprec; 4034 4035 right_el = path_leaf_el(right_path); 4036 if (left_path) 4037 left_el = path_leaf_el(left_path); 4038 4039 el = right_el; 4040 insert_el = right_el; 4041 index = ocfs2_search_extent_list(el, cpos); 4042 if (index != -1) { 4043 if (index == 0 && left_path) { 4044 BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0])); 4045 4046 /* 4047 * This typically means that the record 4048 * started in the left path but moved to the 4049 * right as a result of rotation. We either 4050 * move the existing record to the left, or we 4051 * do the later insert there. 4052 * 4053 * In this case, the left path should always 4054 * exist as the rotate code will have passed 4055 * it back for a post-insert update. 4056 */ 4057 4058 if (split == SPLIT_LEFT) { 4059 /* 4060 * It's a left split. Since we know 4061 * that the rotate code gave us an 4062 * empty extent in the left path, we 4063 * can just do the insert there. 4064 */ 4065 insert_el = left_el; 4066 } else { 4067 /* 4068 * Right split - we have to move the 4069 * existing record over to the left 4070 * leaf. The insert will be into the 4071 * newly created empty extent in the 4072 * right leaf. 4073 */ 4074 tmprec = &right_el->l_recs[index]; 4075 ocfs2_rotate_leaf(left_el, tmprec); 4076 el = left_el; 4077 4078 memset(tmprec, 0, sizeof(*tmprec)); 4079 index = ocfs2_search_extent_list(left_el, cpos); 4080 BUG_ON(index == -1); 4081 } 4082 } 4083 } else { 4084 BUG_ON(!left_path); 4085 BUG_ON(!ocfs2_is_empty_extent(&left_el->l_recs[0])); 4086 /* 4087 * Left path is easy - we can just allow the insert to 4088 * happen. 4089 */ 4090 el = left_el; 4091 insert_el = left_el; 4092 index = ocfs2_search_extent_list(el, cpos); 4093 BUG_ON(index == -1); 4094 } 4095 4096 rec = &el->l_recs[index]; 4097 ocfs2_subtract_from_rec(inode->i_sb, split, rec, split_rec); 4098 ocfs2_rotate_leaf(insert_el, split_rec); 4099 } 4100 4101 /* 4102 * This function only does inserts on an allocation b-tree. For tree 4103 * depth = 0, ocfs2_insert_at_leaf() is called directly. 4104 * 4105 * right_path is the path we want to do the actual insert 4106 * in. left_path should only be passed in if we need to update that 4107 * portion of the tree after an edge insert. 4108 */ 4109 static int ocfs2_insert_path(struct inode *inode, 4110 handle_t *handle, 4111 struct ocfs2_path *left_path, 4112 struct ocfs2_path *right_path, 4113 struct ocfs2_extent_rec *insert_rec, 4114 struct ocfs2_insert_type *insert) 4115 { 4116 int ret, subtree_index; 4117 struct buffer_head *leaf_bh = path_leaf_bh(right_path); 4118 4119 if (left_path) { 4120 int credits = handle->h_buffer_credits; 4121 4122 /* 4123 * There's a chance that left_path got passed back to 4124 * us without being accounted for in the 4125 * journal. Extend our transaction here to be sure we 4126 * can change those blocks. 4127 */ 4128 credits += left_path->p_tree_depth; 4129 4130 ret = ocfs2_extend_trans(handle, credits); 4131 if (ret < 0) { 4132 mlog_errno(ret); 4133 goto out; 4134 } 4135 4136 ret = ocfs2_journal_access_path(inode, handle, left_path); 4137 if (ret < 0) { 4138 mlog_errno(ret); 4139 goto out; 4140 } 4141 } 4142 4143 /* 4144 * Pass both paths to the journal. The majority of inserts 4145 * will be touching all components anyway. 4146 */ 4147 ret = ocfs2_journal_access_path(inode, handle, right_path); 4148 if (ret < 0) { 4149 mlog_errno(ret); 4150 goto out; 4151 } 4152 4153 if (insert->ins_split != SPLIT_NONE) { 4154 /* 4155 * We could call ocfs2_insert_at_leaf() for some types 4156 * of splits, but it's easier to just let one separate 4157 * function sort it all out. 4158 */ 4159 ocfs2_split_record(inode, left_path, right_path, 4160 insert_rec, insert->ins_split); 4161 4162 /* 4163 * Split might have modified either leaf and we don't 4164 * have a guarantee that the later edge insert will 4165 * dirty this for us. 4166 */ 4167 if (left_path) 4168 ret = ocfs2_journal_dirty(handle, 4169 path_leaf_bh(left_path)); 4170 if (ret) 4171 mlog_errno(ret); 4172 } else 4173 ocfs2_insert_at_leaf(insert_rec, path_leaf_el(right_path), 4174 insert, inode); 4175 4176 ret = ocfs2_journal_dirty(handle, leaf_bh); 4177 if (ret) 4178 mlog_errno(ret); 4179 4180 if (left_path) { 4181 /* 4182 * The rotate code has indicated that we need to fix 4183 * up portions of the tree after the insert. 4184 * 4185 * XXX: Should we extend the transaction here? 4186 */ 4187 subtree_index = ocfs2_find_subtree_root(inode, left_path, 4188 right_path); 4189 ocfs2_complete_edge_insert(inode, handle, left_path, 4190 right_path, subtree_index); 4191 } 4192 4193 ret = 0; 4194 out: 4195 return ret; 4196 } 4197 4198 static int ocfs2_do_insert_extent(struct inode *inode, 4199 handle_t *handle, 4200 struct ocfs2_extent_tree *et, 4201 struct ocfs2_extent_rec *insert_rec, 4202 struct ocfs2_insert_type *type) 4203 { 4204 int ret, rotate = 0; 4205 u32 cpos; 4206 struct ocfs2_path *right_path = NULL; 4207 struct ocfs2_path *left_path = NULL; 4208 struct ocfs2_extent_list *el; 4209 4210 el = et->et_root_el; 4211 4212 ret = ocfs2_et_root_journal_access(handle, inode, et, 4213 OCFS2_JOURNAL_ACCESS_WRITE); 4214 if (ret) { 4215 mlog_errno(ret); 4216 goto out; 4217 } 4218 4219 if (le16_to_cpu(el->l_tree_depth) == 0) { 4220 ocfs2_insert_at_leaf(insert_rec, el, type, inode); 4221 goto out_update_clusters; 4222 } 4223 4224 right_path = ocfs2_new_path_from_et(et); 4225 if (!right_path) { 4226 ret = -ENOMEM; 4227 mlog_errno(ret); 4228 goto out; 4229 } 4230 4231 /* 4232 * Determine the path to start with. Rotations need the 4233 * rightmost path, everything else can go directly to the 4234 * target leaf. 4235 */ 4236 cpos = le32_to_cpu(insert_rec->e_cpos); 4237 if (type->ins_appending == APPEND_NONE && 4238 type->ins_contig == CONTIG_NONE) { 4239 rotate = 1; 4240 cpos = UINT_MAX; 4241 } 4242 4243 ret = ocfs2_find_path(inode, right_path, cpos); 4244 if (ret) { 4245 mlog_errno(ret); 4246 goto out; 4247 } 4248 4249 /* 4250 * Rotations and appends need special treatment - they modify 4251 * parts of the tree's above them. 4252 * 4253 * Both might pass back a path immediate to the left of the 4254 * one being inserted to. This will be cause 4255 * ocfs2_insert_path() to modify the rightmost records of 4256 * left_path to account for an edge insert. 4257 * 4258 * XXX: When modifying this code, keep in mind that an insert 4259 * can wind up skipping both of these two special cases... 4260 */ 4261 if (rotate) { 4262 ret = ocfs2_rotate_tree_right(inode, handle, type->ins_split, 4263 le32_to_cpu(insert_rec->e_cpos), 4264 right_path, &left_path); 4265 if (ret) { 4266 mlog_errno(ret); 4267 goto out; 4268 } 4269 4270 /* 4271 * ocfs2_rotate_tree_right() might have extended the 4272 * transaction without re-journaling our tree root. 4273 */ 4274 ret = ocfs2_et_root_journal_access(handle, inode, et, 4275 OCFS2_JOURNAL_ACCESS_WRITE); 4276 if (ret) { 4277 mlog_errno(ret); 4278 goto out; 4279 } 4280 } else if (type->ins_appending == APPEND_TAIL 4281 && type->ins_contig != CONTIG_LEFT) { 4282 ret = ocfs2_append_rec_to_path(inode, handle, insert_rec, 4283 right_path, &left_path); 4284 if (ret) { 4285 mlog_errno(ret); 4286 goto out; 4287 } 4288 } 4289 4290 ret = ocfs2_insert_path(inode, handle, left_path, right_path, 4291 insert_rec, type); 4292 if (ret) { 4293 mlog_errno(ret); 4294 goto out; 4295 } 4296 4297 out_update_clusters: 4298 if (type->ins_split == SPLIT_NONE) 4299 ocfs2_et_update_clusters(inode, et, 4300 le16_to_cpu(insert_rec->e_leaf_clusters)); 4301 4302 ret = ocfs2_journal_dirty(handle, et->et_root_bh); 4303 if (ret) 4304 mlog_errno(ret); 4305 4306 out: 4307 ocfs2_free_path(left_path); 4308 ocfs2_free_path(right_path); 4309 4310 return ret; 4311 } 4312 4313 static enum ocfs2_contig_type 4314 ocfs2_figure_merge_contig_type(struct inode *inode, struct ocfs2_path *path, 4315 struct ocfs2_extent_list *el, int index, 4316 struct ocfs2_extent_rec *split_rec) 4317 { 4318 int status; 4319 enum ocfs2_contig_type ret = CONTIG_NONE; 4320 u32 left_cpos, right_cpos; 4321 struct ocfs2_extent_rec *rec = NULL; 4322 struct ocfs2_extent_list *new_el; 4323 struct ocfs2_path *left_path = NULL, *right_path = NULL; 4324 struct buffer_head *bh; 4325 struct ocfs2_extent_block *eb; 4326 4327 if (index > 0) { 4328 rec = &el->l_recs[index - 1]; 4329 } else if (path->p_tree_depth > 0) { 4330 status = ocfs2_find_cpos_for_left_leaf(inode->i_sb, 4331 path, &left_cpos); 4332 if (status) 4333 goto out; 4334 4335 if (left_cpos != 0) { 4336 left_path = ocfs2_new_path_from_path(path); 4337 if (!left_path) 4338 goto out; 4339 4340 status = ocfs2_find_path(inode, left_path, left_cpos); 4341 if (status) 4342 goto out; 4343 4344 new_el = path_leaf_el(left_path); 4345 4346 if (le16_to_cpu(new_el->l_next_free_rec) != 4347 le16_to_cpu(new_el->l_count)) { 4348 bh = path_leaf_bh(left_path); 4349 eb = (struct ocfs2_extent_block *)bh->b_data; 4350 ocfs2_error(inode->i_sb, 4351 "Extent block #%llu has an " 4352 "invalid l_next_free_rec of " 4353 "%d. It should have " 4354 "matched the l_count of %d", 4355 (unsigned long long)le64_to_cpu(eb->h_blkno), 4356 le16_to_cpu(new_el->l_next_free_rec), 4357 le16_to_cpu(new_el->l_count)); 4358 status = -EINVAL; 4359 goto out; 4360 } 4361 rec = &new_el->l_recs[ 4362 le16_to_cpu(new_el->l_next_free_rec) - 1]; 4363 } 4364 } 4365 4366 /* 4367 * We're careful to check for an empty extent record here - 4368 * the merge code will know what to do if it sees one. 4369 */ 4370 if (rec) { 4371 if (index == 1 && ocfs2_is_empty_extent(rec)) { 4372 if (split_rec->e_cpos == el->l_recs[index].e_cpos) 4373 ret = CONTIG_RIGHT; 4374 } else { 4375 ret = ocfs2_extent_contig(inode, rec, split_rec); 4376 } 4377 } 4378 4379 rec = NULL; 4380 if (index < (le16_to_cpu(el->l_next_free_rec) - 1)) 4381 rec = &el->l_recs[index + 1]; 4382 else if (le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count) && 4383 path->p_tree_depth > 0) { 4384 status = ocfs2_find_cpos_for_right_leaf(inode->i_sb, 4385 path, &right_cpos); 4386 if (status) 4387 goto out; 4388 4389 if (right_cpos == 0) 4390 goto out; 4391 4392 right_path = ocfs2_new_path_from_path(path); 4393 if (!right_path) 4394 goto out; 4395 4396 status = ocfs2_find_path(inode, right_path, right_cpos); 4397 if (status) 4398 goto out; 4399 4400 new_el = path_leaf_el(right_path); 4401 rec = &new_el->l_recs[0]; 4402 if (ocfs2_is_empty_extent(rec)) { 4403 if (le16_to_cpu(new_el->l_next_free_rec) <= 1) { 4404 bh = path_leaf_bh(right_path); 4405 eb = (struct ocfs2_extent_block *)bh->b_data; 4406 ocfs2_error(inode->i_sb, 4407 "Extent block #%llu has an " 4408 "invalid l_next_free_rec of %d", 4409 (unsigned long long)le64_to_cpu(eb->h_blkno), 4410 le16_to_cpu(new_el->l_next_free_rec)); 4411 status = -EINVAL; 4412 goto out; 4413 } 4414 rec = &new_el->l_recs[1]; 4415 } 4416 } 4417 4418 if (rec) { 4419 enum ocfs2_contig_type contig_type; 4420 4421 contig_type = ocfs2_extent_contig(inode, rec, split_rec); 4422 4423 if (contig_type == CONTIG_LEFT && ret == CONTIG_RIGHT) 4424 ret = CONTIG_LEFTRIGHT; 4425 else if (ret == CONTIG_NONE) 4426 ret = contig_type; 4427 } 4428 4429 out: 4430 if (left_path) 4431 ocfs2_free_path(left_path); 4432 if (right_path) 4433 ocfs2_free_path(right_path); 4434 4435 return ret; 4436 } 4437 4438 static void ocfs2_figure_contig_type(struct inode *inode, 4439 struct ocfs2_insert_type *insert, 4440 struct ocfs2_extent_list *el, 4441 struct ocfs2_extent_rec *insert_rec, 4442 struct ocfs2_extent_tree *et) 4443 { 4444 int i; 4445 enum ocfs2_contig_type contig_type = CONTIG_NONE; 4446 4447 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0); 4448 4449 for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) { 4450 contig_type = ocfs2_extent_contig(inode, &el->l_recs[i], 4451 insert_rec); 4452 if (contig_type != CONTIG_NONE) { 4453 insert->ins_contig_index = i; 4454 break; 4455 } 4456 } 4457 insert->ins_contig = contig_type; 4458 4459 if (insert->ins_contig != CONTIG_NONE) { 4460 struct ocfs2_extent_rec *rec = 4461 &el->l_recs[insert->ins_contig_index]; 4462 unsigned int len = le16_to_cpu(rec->e_leaf_clusters) + 4463 le16_to_cpu(insert_rec->e_leaf_clusters); 4464 4465 /* 4466 * Caller might want us to limit the size of extents, don't 4467 * calculate contiguousness if we might exceed that limit. 4468 */ 4469 if (et->et_max_leaf_clusters && 4470 (len > et->et_max_leaf_clusters)) 4471 insert->ins_contig = CONTIG_NONE; 4472 } 4473 } 4474 4475 /* 4476 * This should only be called against the righmost leaf extent list. 4477 * 4478 * ocfs2_figure_appending_type() will figure out whether we'll have to 4479 * insert at the tail of the rightmost leaf. 4480 * 4481 * This should also work against the root extent list for tree's with 0 4482 * depth. If we consider the root extent list to be the rightmost leaf node 4483 * then the logic here makes sense. 4484 */ 4485 static void ocfs2_figure_appending_type(struct ocfs2_insert_type *insert, 4486 struct ocfs2_extent_list *el, 4487 struct ocfs2_extent_rec *insert_rec) 4488 { 4489 int i; 4490 u32 cpos = le32_to_cpu(insert_rec->e_cpos); 4491 struct ocfs2_extent_rec *rec; 4492 4493 insert->ins_appending = APPEND_NONE; 4494 4495 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0); 4496 4497 if (!el->l_next_free_rec) 4498 goto set_tail_append; 4499 4500 if (ocfs2_is_empty_extent(&el->l_recs[0])) { 4501 /* Were all records empty? */ 4502 if (le16_to_cpu(el->l_next_free_rec) == 1) 4503 goto set_tail_append; 4504 } 4505 4506 i = le16_to_cpu(el->l_next_free_rec) - 1; 4507 rec = &el->l_recs[i]; 4508 4509 if (cpos >= 4510 (le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters))) 4511 goto set_tail_append; 4512 4513 return; 4514 4515 set_tail_append: 4516 insert->ins_appending = APPEND_TAIL; 4517 } 4518 4519 /* 4520 * Helper function called at the begining of an insert. 4521 * 4522 * This computes a few things that are commonly used in the process of 4523 * inserting into the btree: 4524 * - Whether the new extent is contiguous with an existing one. 4525 * - The current tree depth. 4526 * - Whether the insert is an appending one. 4527 * - The total # of free records in the tree. 4528 * 4529 * All of the information is stored on the ocfs2_insert_type 4530 * structure. 4531 */ 4532 static int ocfs2_figure_insert_type(struct inode *inode, 4533 struct ocfs2_extent_tree *et, 4534 struct buffer_head **last_eb_bh, 4535 struct ocfs2_extent_rec *insert_rec, 4536 int *free_records, 4537 struct ocfs2_insert_type *insert) 4538 { 4539 int ret; 4540 struct ocfs2_extent_block *eb; 4541 struct ocfs2_extent_list *el; 4542 struct ocfs2_path *path = NULL; 4543 struct buffer_head *bh = NULL; 4544 4545 insert->ins_split = SPLIT_NONE; 4546 4547 el = et->et_root_el; 4548 insert->ins_tree_depth = le16_to_cpu(el->l_tree_depth); 4549 4550 if (el->l_tree_depth) { 4551 /* 4552 * If we have tree depth, we read in the 4553 * rightmost extent block ahead of time as 4554 * ocfs2_figure_insert_type() and ocfs2_add_branch() 4555 * may want it later. 4556 */ 4557 ret = ocfs2_read_extent_block(inode, 4558 ocfs2_et_get_last_eb_blk(et), 4559 &bh); 4560 if (ret) { 4561 mlog_exit(ret); 4562 goto out; 4563 } 4564 eb = (struct ocfs2_extent_block *) bh->b_data; 4565 el = &eb->h_list; 4566 } 4567 4568 /* 4569 * Unless we have a contiguous insert, we'll need to know if 4570 * there is room left in our allocation tree for another 4571 * extent record. 4572 * 4573 * XXX: This test is simplistic, we can search for empty 4574 * extent records too. 4575 */ 4576 *free_records = le16_to_cpu(el->l_count) - 4577 le16_to_cpu(el->l_next_free_rec); 4578 4579 if (!insert->ins_tree_depth) { 4580 ocfs2_figure_contig_type(inode, insert, el, insert_rec, et); 4581 ocfs2_figure_appending_type(insert, el, insert_rec); 4582 return 0; 4583 } 4584 4585 path = ocfs2_new_path_from_et(et); 4586 if (!path) { 4587 ret = -ENOMEM; 4588 mlog_errno(ret); 4589 goto out; 4590 } 4591 4592 /* 4593 * In the case that we're inserting past what the tree 4594 * currently accounts for, ocfs2_find_path() will return for 4595 * us the rightmost tree path. This is accounted for below in 4596 * the appending code. 4597 */ 4598 ret = ocfs2_find_path(inode, path, le32_to_cpu(insert_rec->e_cpos)); 4599 if (ret) { 4600 mlog_errno(ret); 4601 goto out; 4602 } 4603 4604 el = path_leaf_el(path); 4605 4606 /* 4607 * Now that we have the path, there's two things we want to determine: 4608 * 1) Contiguousness (also set contig_index if this is so) 4609 * 4610 * 2) Are we doing an append? We can trivially break this up 4611 * into two types of appends: simple record append, or a 4612 * rotate inside the tail leaf. 4613 */ 4614 ocfs2_figure_contig_type(inode, insert, el, insert_rec, et); 4615 4616 /* 4617 * The insert code isn't quite ready to deal with all cases of 4618 * left contiguousness. Specifically, if it's an insert into 4619 * the 1st record in a leaf, it will require the adjustment of 4620 * cluster count on the last record of the path directly to it's 4621 * left. For now, just catch that case and fool the layers 4622 * above us. This works just fine for tree_depth == 0, which 4623 * is why we allow that above. 4624 */ 4625 if (insert->ins_contig == CONTIG_LEFT && 4626 insert->ins_contig_index == 0) 4627 insert->ins_contig = CONTIG_NONE; 4628 4629 /* 4630 * Ok, so we can simply compare against last_eb to figure out 4631 * whether the path doesn't exist. This will only happen in 4632 * the case that we're doing a tail append, so maybe we can 4633 * take advantage of that information somehow. 4634 */ 4635 if (ocfs2_et_get_last_eb_blk(et) == 4636 path_leaf_bh(path)->b_blocknr) { 4637 /* 4638 * Ok, ocfs2_find_path() returned us the rightmost 4639 * tree path. This might be an appending insert. There are 4640 * two cases: 4641 * 1) We're doing a true append at the tail: 4642 * -This might even be off the end of the leaf 4643 * 2) We're "appending" by rotating in the tail 4644 */ 4645 ocfs2_figure_appending_type(insert, el, insert_rec); 4646 } 4647 4648 out: 4649 ocfs2_free_path(path); 4650 4651 if (ret == 0) 4652 *last_eb_bh = bh; 4653 else 4654 brelse(bh); 4655 return ret; 4656 } 4657 4658 /* 4659 * Insert an extent into an inode btree. 4660 * 4661 * The caller needs to update fe->i_clusters 4662 */ 4663 int ocfs2_insert_extent(struct ocfs2_super *osb, 4664 handle_t *handle, 4665 struct inode *inode, 4666 struct ocfs2_extent_tree *et, 4667 u32 cpos, 4668 u64 start_blk, 4669 u32 new_clusters, 4670 u8 flags, 4671 struct ocfs2_alloc_context *meta_ac) 4672 { 4673 int status; 4674 int uninitialized_var(free_records); 4675 struct buffer_head *last_eb_bh = NULL; 4676 struct ocfs2_insert_type insert = {0, }; 4677 struct ocfs2_extent_rec rec; 4678 4679 mlog(0, "add %u clusters at position %u to inode %llu\n", 4680 new_clusters, cpos, (unsigned long long)OCFS2_I(inode)->ip_blkno); 4681 4682 memset(&rec, 0, sizeof(rec)); 4683 rec.e_cpos = cpu_to_le32(cpos); 4684 rec.e_blkno = cpu_to_le64(start_blk); 4685 rec.e_leaf_clusters = cpu_to_le16(new_clusters); 4686 rec.e_flags = flags; 4687 status = ocfs2_et_insert_check(inode, et, &rec); 4688 if (status) { 4689 mlog_errno(status); 4690 goto bail; 4691 } 4692 4693 status = ocfs2_figure_insert_type(inode, et, &last_eb_bh, &rec, 4694 &free_records, &insert); 4695 if (status < 0) { 4696 mlog_errno(status); 4697 goto bail; 4698 } 4699 4700 mlog(0, "Insert.appending: %u, Insert.Contig: %u, " 4701 "Insert.contig_index: %d, Insert.free_records: %d, " 4702 "Insert.tree_depth: %d\n", 4703 insert.ins_appending, insert.ins_contig, insert.ins_contig_index, 4704 free_records, insert.ins_tree_depth); 4705 4706 if (insert.ins_contig == CONTIG_NONE && free_records == 0) { 4707 status = ocfs2_grow_tree(inode, handle, et, 4708 &insert.ins_tree_depth, &last_eb_bh, 4709 meta_ac); 4710 if (status) { 4711 mlog_errno(status); 4712 goto bail; 4713 } 4714 } 4715 4716 /* Finally, we can add clusters. This might rotate the tree for us. */ 4717 status = ocfs2_do_insert_extent(inode, handle, et, &rec, &insert); 4718 if (status < 0) 4719 mlog_errno(status); 4720 else if (et->et_ops == &ocfs2_dinode_et_ops) 4721 ocfs2_extent_map_insert_rec(inode, &rec); 4722 4723 bail: 4724 brelse(last_eb_bh); 4725 4726 mlog_exit(status); 4727 return status; 4728 } 4729 4730 /* 4731 * Allcate and add clusters into the extent b-tree. 4732 * The new clusters(clusters_to_add) will be inserted at logical_offset. 4733 * The extent b-tree's root is specified by et, and 4734 * it is not limited to the file storage. Any extent tree can use this 4735 * function if it implements the proper ocfs2_extent_tree. 4736 */ 4737 int ocfs2_add_clusters_in_btree(struct ocfs2_super *osb, 4738 struct inode *inode, 4739 u32 *logical_offset, 4740 u32 clusters_to_add, 4741 int mark_unwritten, 4742 struct ocfs2_extent_tree *et, 4743 handle_t *handle, 4744 struct ocfs2_alloc_context *data_ac, 4745 struct ocfs2_alloc_context *meta_ac, 4746 enum ocfs2_alloc_restarted *reason_ret) 4747 { 4748 int status = 0; 4749 int free_extents; 4750 enum ocfs2_alloc_restarted reason = RESTART_NONE; 4751 u32 bit_off, num_bits; 4752 u64 block; 4753 u8 flags = 0; 4754 4755 BUG_ON(!clusters_to_add); 4756 4757 if (mark_unwritten) 4758 flags = OCFS2_EXT_UNWRITTEN; 4759 4760 free_extents = ocfs2_num_free_extents(osb, inode, et); 4761 if (free_extents < 0) { 4762 status = free_extents; 4763 mlog_errno(status); 4764 goto leave; 4765 } 4766 4767 /* there are two cases which could cause us to EAGAIN in the 4768 * we-need-more-metadata case: 4769 * 1) we haven't reserved *any* 4770 * 2) we are so fragmented, we've needed to add metadata too 4771 * many times. */ 4772 if (!free_extents && !meta_ac) { 4773 mlog(0, "we haven't reserved any metadata!\n"); 4774 status = -EAGAIN; 4775 reason = RESTART_META; 4776 goto leave; 4777 } else if ((!free_extents) 4778 && (ocfs2_alloc_context_bits_left(meta_ac) 4779 < ocfs2_extend_meta_needed(et->et_root_el))) { 4780 mlog(0, "filesystem is really fragmented...\n"); 4781 status = -EAGAIN; 4782 reason = RESTART_META; 4783 goto leave; 4784 } 4785 4786 status = __ocfs2_claim_clusters(osb, handle, data_ac, 1, 4787 clusters_to_add, &bit_off, &num_bits); 4788 if (status < 0) { 4789 if (status != -ENOSPC) 4790 mlog_errno(status); 4791 goto leave; 4792 } 4793 4794 BUG_ON(num_bits > clusters_to_add); 4795 4796 /* reserve our write early -- insert_extent may update the tree root */ 4797 status = ocfs2_et_root_journal_access(handle, inode, et, 4798 OCFS2_JOURNAL_ACCESS_WRITE); 4799 if (status < 0) { 4800 mlog_errno(status); 4801 goto leave; 4802 } 4803 4804 block = ocfs2_clusters_to_blocks(osb->sb, bit_off); 4805 mlog(0, "Allocating %u clusters at block %u for inode %llu\n", 4806 num_bits, bit_off, (unsigned long long)OCFS2_I(inode)->ip_blkno); 4807 status = ocfs2_insert_extent(osb, handle, inode, et, 4808 *logical_offset, block, 4809 num_bits, flags, meta_ac); 4810 if (status < 0) { 4811 mlog_errno(status); 4812 goto leave; 4813 } 4814 4815 status = ocfs2_journal_dirty(handle, et->et_root_bh); 4816 if (status < 0) { 4817 mlog_errno(status); 4818 goto leave; 4819 } 4820 4821 clusters_to_add -= num_bits; 4822 *logical_offset += num_bits; 4823 4824 if (clusters_to_add) { 4825 mlog(0, "need to alloc once more, wanted = %u\n", 4826 clusters_to_add); 4827 status = -EAGAIN; 4828 reason = RESTART_TRANS; 4829 } 4830 4831 leave: 4832 mlog_exit(status); 4833 if (reason_ret) 4834 *reason_ret = reason; 4835 return status; 4836 } 4837 4838 static void ocfs2_make_right_split_rec(struct super_block *sb, 4839 struct ocfs2_extent_rec *split_rec, 4840 u32 cpos, 4841 struct ocfs2_extent_rec *rec) 4842 { 4843 u32 rec_cpos = le32_to_cpu(rec->e_cpos); 4844 u32 rec_range = rec_cpos + le16_to_cpu(rec->e_leaf_clusters); 4845 4846 memset(split_rec, 0, sizeof(struct ocfs2_extent_rec)); 4847 4848 split_rec->e_cpos = cpu_to_le32(cpos); 4849 split_rec->e_leaf_clusters = cpu_to_le16(rec_range - cpos); 4850 4851 split_rec->e_blkno = rec->e_blkno; 4852 le64_add_cpu(&split_rec->e_blkno, 4853 ocfs2_clusters_to_blocks(sb, cpos - rec_cpos)); 4854 4855 split_rec->e_flags = rec->e_flags; 4856 } 4857 4858 static int ocfs2_split_and_insert(struct inode *inode, 4859 handle_t *handle, 4860 struct ocfs2_path *path, 4861 struct ocfs2_extent_tree *et, 4862 struct buffer_head **last_eb_bh, 4863 int split_index, 4864 struct ocfs2_extent_rec *orig_split_rec, 4865 struct ocfs2_alloc_context *meta_ac) 4866 { 4867 int ret = 0, depth; 4868 unsigned int insert_range, rec_range, do_leftright = 0; 4869 struct ocfs2_extent_rec tmprec; 4870 struct ocfs2_extent_list *rightmost_el; 4871 struct ocfs2_extent_rec rec; 4872 struct ocfs2_extent_rec split_rec = *orig_split_rec; 4873 struct ocfs2_insert_type insert; 4874 struct ocfs2_extent_block *eb; 4875 4876 leftright: 4877 /* 4878 * Store a copy of the record on the stack - it might move 4879 * around as the tree is manipulated below. 4880 */ 4881 rec = path_leaf_el(path)->l_recs[split_index]; 4882 4883 rightmost_el = et->et_root_el; 4884 4885 depth = le16_to_cpu(rightmost_el->l_tree_depth); 4886 if (depth) { 4887 BUG_ON(!(*last_eb_bh)); 4888 eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data; 4889 rightmost_el = &eb->h_list; 4890 } 4891 4892 if (le16_to_cpu(rightmost_el->l_next_free_rec) == 4893 le16_to_cpu(rightmost_el->l_count)) { 4894 ret = ocfs2_grow_tree(inode, handle, et, 4895 &depth, last_eb_bh, meta_ac); 4896 if (ret) { 4897 mlog_errno(ret); 4898 goto out; 4899 } 4900 } 4901 4902 memset(&insert, 0, sizeof(struct ocfs2_insert_type)); 4903 insert.ins_appending = APPEND_NONE; 4904 insert.ins_contig = CONTIG_NONE; 4905 insert.ins_tree_depth = depth; 4906 4907 insert_range = le32_to_cpu(split_rec.e_cpos) + 4908 le16_to_cpu(split_rec.e_leaf_clusters); 4909 rec_range = le32_to_cpu(rec.e_cpos) + 4910 le16_to_cpu(rec.e_leaf_clusters); 4911 4912 if (split_rec.e_cpos == rec.e_cpos) { 4913 insert.ins_split = SPLIT_LEFT; 4914 } else if (insert_range == rec_range) { 4915 insert.ins_split = SPLIT_RIGHT; 4916 } else { 4917 /* 4918 * Left/right split. We fake this as a right split 4919 * first and then make a second pass as a left split. 4920 */ 4921 insert.ins_split = SPLIT_RIGHT; 4922 4923 ocfs2_make_right_split_rec(inode->i_sb, &tmprec, insert_range, 4924 &rec); 4925 4926 split_rec = tmprec; 4927 4928 BUG_ON(do_leftright); 4929 do_leftright = 1; 4930 } 4931 4932 ret = ocfs2_do_insert_extent(inode, handle, et, &split_rec, &insert); 4933 if (ret) { 4934 mlog_errno(ret); 4935 goto out; 4936 } 4937 4938 if (do_leftright == 1) { 4939 u32 cpos; 4940 struct ocfs2_extent_list *el; 4941 4942 do_leftright++; 4943 split_rec = *orig_split_rec; 4944 4945 ocfs2_reinit_path(path, 1); 4946 4947 cpos = le32_to_cpu(split_rec.e_cpos); 4948 ret = ocfs2_find_path(inode, path, cpos); 4949 if (ret) { 4950 mlog_errno(ret); 4951 goto out; 4952 } 4953 4954 el = path_leaf_el(path); 4955 split_index = ocfs2_search_extent_list(el, cpos); 4956 goto leftright; 4957 } 4958 out: 4959 4960 return ret; 4961 } 4962 4963 static int ocfs2_replace_extent_rec(struct inode *inode, 4964 handle_t *handle, 4965 struct ocfs2_path *path, 4966 struct ocfs2_extent_list *el, 4967 int split_index, 4968 struct ocfs2_extent_rec *split_rec) 4969 { 4970 int ret; 4971 4972 ret = ocfs2_path_bh_journal_access(handle, inode, path, 4973 path_num_items(path) - 1); 4974 if (ret) { 4975 mlog_errno(ret); 4976 goto out; 4977 } 4978 4979 el->l_recs[split_index] = *split_rec; 4980 4981 ocfs2_journal_dirty(handle, path_leaf_bh(path)); 4982 out: 4983 return ret; 4984 } 4985 4986 /* 4987 * Mark part or all of the extent record at split_index in the leaf 4988 * pointed to by path as written. This removes the unwritten 4989 * extent flag. 4990 * 4991 * Care is taken to handle contiguousness so as to not grow the tree. 4992 * 4993 * meta_ac is not strictly necessary - we only truly need it if growth 4994 * of the tree is required. All other cases will degrade into a less 4995 * optimal tree layout. 4996 * 4997 * last_eb_bh should be the rightmost leaf block for any extent 4998 * btree. Since a split may grow the tree or a merge might shrink it, 4999 * the caller cannot trust the contents of that buffer after this call. 5000 * 5001 * This code is optimized for readability - several passes might be 5002 * made over certain portions of the tree. All of those blocks will 5003 * have been brought into cache (and pinned via the journal), so the 5004 * extra overhead is not expressed in terms of disk reads. 5005 */ 5006 static int __ocfs2_mark_extent_written(struct inode *inode, 5007 struct ocfs2_extent_tree *et, 5008 handle_t *handle, 5009 struct ocfs2_path *path, 5010 int split_index, 5011 struct ocfs2_extent_rec *split_rec, 5012 struct ocfs2_alloc_context *meta_ac, 5013 struct ocfs2_cached_dealloc_ctxt *dealloc) 5014 { 5015 int ret = 0; 5016 struct ocfs2_extent_list *el = path_leaf_el(path); 5017 struct buffer_head *last_eb_bh = NULL; 5018 struct ocfs2_extent_rec *rec = &el->l_recs[split_index]; 5019 struct ocfs2_merge_ctxt ctxt; 5020 struct ocfs2_extent_list *rightmost_el; 5021 5022 if (!(rec->e_flags & OCFS2_EXT_UNWRITTEN)) { 5023 ret = -EIO; 5024 mlog_errno(ret); 5025 goto out; 5026 } 5027 5028 if (le32_to_cpu(rec->e_cpos) > le32_to_cpu(split_rec->e_cpos) || 5029 ((le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)) < 5030 (le32_to_cpu(split_rec->e_cpos) + le16_to_cpu(split_rec->e_leaf_clusters)))) { 5031 ret = -EIO; 5032 mlog_errno(ret); 5033 goto out; 5034 } 5035 5036 ctxt.c_contig_type = ocfs2_figure_merge_contig_type(inode, path, el, 5037 split_index, 5038 split_rec); 5039 5040 /* 5041 * The core merge / split code wants to know how much room is 5042 * left in this inodes allocation tree, so we pass the 5043 * rightmost extent list. 5044 */ 5045 if (path->p_tree_depth) { 5046 struct ocfs2_extent_block *eb; 5047 5048 ret = ocfs2_read_extent_block(inode, 5049 ocfs2_et_get_last_eb_blk(et), 5050 &last_eb_bh); 5051 if (ret) { 5052 mlog_exit(ret); 5053 goto out; 5054 } 5055 5056 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data; 5057 rightmost_el = &eb->h_list; 5058 } else 5059 rightmost_el = path_root_el(path); 5060 5061 if (rec->e_cpos == split_rec->e_cpos && 5062 rec->e_leaf_clusters == split_rec->e_leaf_clusters) 5063 ctxt.c_split_covers_rec = 1; 5064 else 5065 ctxt.c_split_covers_rec = 0; 5066 5067 ctxt.c_has_empty_extent = ocfs2_is_empty_extent(&el->l_recs[0]); 5068 5069 mlog(0, "index: %d, contig: %u, has_empty: %u, split_covers: %u\n", 5070 split_index, ctxt.c_contig_type, ctxt.c_has_empty_extent, 5071 ctxt.c_split_covers_rec); 5072 5073 if (ctxt.c_contig_type == CONTIG_NONE) { 5074 if (ctxt.c_split_covers_rec) 5075 ret = ocfs2_replace_extent_rec(inode, handle, 5076 path, el, 5077 split_index, split_rec); 5078 else 5079 ret = ocfs2_split_and_insert(inode, handle, path, et, 5080 &last_eb_bh, split_index, 5081 split_rec, meta_ac); 5082 if (ret) 5083 mlog_errno(ret); 5084 } else { 5085 ret = ocfs2_try_to_merge_extent(inode, handle, path, 5086 split_index, split_rec, 5087 dealloc, &ctxt, et); 5088 if (ret) 5089 mlog_errno(ret); 5090 } 5091 5092 out: 5093 brelse(last_eb_bh); 5094 return ret; 5095 } 5096 5097 /* 5098 * Mark the already-existing extent at cpos as written for len clusters. 5099 * 5100 * If the existing extent is larger than the request, initiate a 5101 * split. An attempt will be made at merging with adjacent extents. 5102 * 5103 * The caller is responsible for passing down meta_ac if we'll need it. 5104 */ 5105 int ocfs2_mark_extent_written(struct inode *inode, 5106 struct ocfs2_extent_tree *et, 5107 handle_t *handle, u32 cpos, u32 len, u32 phys, 5108 struct ocfs2_alloc_context *meta_ac, 5109 struct ocfs2_cached_dealloc_ctxt *dealloc) 5110 { 5111 int ret, index; 5112 u64 start_blkno = ocfs2_clusters_to_blocks(inode->i_sb, phys); 5113 struct ocfs2_extent_rec split_rec; 5114 struct ocfs2_path *left_path = NULL; 5115 struct ocfs2_extent_list *el; 5116 5117 mlog(0, "Inode %lu cpos %u, len %u, phys %u (%llu)\n", 5118 inode->i_ino, cpos, len, phys, (unsigned long long)start_blkno); 5119 5120 if (!ocfs2_writes_unwritten_extents(OCFS2_SB(inode->i_sb))) { 5121 ocfs2_error(inode->i_sb, "Inode %llu has unwritten extents " 5122 "that are being written to, but the feature bit " 5123 "is not set in the super block.", 5124 (unsigned long long)OCFS2_I(inode)->ip_blkno); 5125 ret = -EROFS; 5126 goto out; 5127 } 5128 5129 /* 5130 * XXX: This should be fixed up so that we just re-insert the 5131 * next extent records. 5132 * 5133 * XXX: This is a hack on the extent tree, maybe it should be 5134 * an op? 5135 */ 5136 if (et->et_ops == &ocfs2_dinode_et_ops) 5137 ocfs2_extent_map_trunc(inode, 0); 5138 5139 left_path = ocfs2_new_path_from_et(et); 5140 if (!left_path) { 5141 ret = -ENOMEM; 5142 mlog_errno(ret); 5143 goto out; 5144 } 5145 5146 ret = ocfs2_find_path(inode, left_path, cpos); 5147 if (ret) { 5148 mlog_errno(ret); 5149 goto out; 5150 } 5151 el = path_leaf_el(left_path); 5152 5153 index = ocfs2_search_extent_list(el, cpos); 5154 if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) { 5155 ocfs2_error(inode->i_sb, 5156 "Inode %llu has an extent at cpos %u which can no " 5157 "longer be found.\n", 5158 (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos); 5159 ret = -EROFS; 5160 goto out; 5161 } 5162 5163 memset(&split_rec, 0, sizeof(struct ocfs2_extent_rec)); 5164 split_rec.e_cpos = cpu_to_le32(cpos); 5165 split_rec.e_leaf_clusters = cpu_to_le16(len); 5166 split_rec.e_blkno = cpu_to_le64(start_blkno); 5167 split_rec.e_flags = path_leaf_el(left_path)->l_recs[index].e_flags; 5168 split_rec.e_flags &= ~OCFS2_EXT_UNWRITTEN; 5169 5170 ret = __ocfs2_mark_extent_written(inode, et, handle, left_path, 5171 index, &split_rec, meta_ac, 5172 dealloc); 5173 if (ret) 5174 mlog_errno(ret); 5175 5176 out: 5177 ocfs2_free_path(left_path); 5178 return ret; 5179 } 5180 5181 static int ocfs2_split_tree(struct inode *inode, struct ocfs2_extent_tree *et, 5182 handle_t *handle, struct ocfs2_path *path, 5183 int index, u32 new_range, 5184 struct ocfs2_alloc_context *meta_ac) 5185 { 5186 int ret, depth, credits = handle->h_buffer_credits; 5187 struct buffer_head *last_eb_bh = NULL; 5188 struct ocfs2_extent_block *eb; 5189 struct ocfs2_extent_list *rightmost_el, *el; 5190 struct ocfs2_extent_rec split_rec; 5191 struct ocfs2_extent_rec *rec; 5192 struct ocfs2_insert_type insert; 5193 5194 /* 5195 * Setup the record to split before we grow the tree. 5196 */ 5197 el = path_leaf_el(path); 5198 rec = &el->l_recs[index]; 5199 ocfs2_make_right_split_rec(inode->i_sb, &split_rec, new_range, rec); 5200 5201 depth = path->p_tree_depth; 5202 if (depth > 0) { 5203 ret = ocfs2_read_extent_block(inode, 5204 ocfs2_et_get_last_eb_blk(et), 5205 &last_eb_bh); 5206 if (ret < 0) { 5207 mlog_errno(ret); 5208 goto out; 5209 } 5210 5211 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data; 5212 rightmost_el = &eb->h_list; 5213 } else 5214 rightmost_el = path_leaf_el(path); 5215 5216 credits += path->p_tree_depth + 5217 ocfs2_extend_meta_needed(et->et_root_el); 5218 ret = ocfs2_extend_trans(handle, credits); 5219 if (ret) { 5220 mlog_errno(ret); 5221 goto out; 5222 } 5223 5224 if (le16_to_cpu(rightmost_el->l_next_free_rec) == 5225 le16_to_cpu(rightmost_el->l_count)) { 5226 ret = ocfs2_grow_tree(inode, handle, et, &depth, &last_eb_bh, 5227 meta_ac); 5228 if (ret) { 5229 mlog_errno(ret); 5230 goto out; 5231 } 5232 } 5233 5234 memset(&insert, 0, sizeof(struct ocfs2_insert_type)); 5235 insert.ins_appending = APPEND_NONE; 5236 insert.ins_contig = CONTIG_NONE; 5237 insert.ins_split = SPLIT_RIGHT; 5238 insert.ins_tree_depth = depth; 5239 5240 ret = ocfs2_do_insert_extent(inode, handle, et, &split_rec, &insert); 5241 if (ret) 5242 mlog_errno(ret); 5243 5244 out: 5245 brelse(last_eb_bh); 5246 return ret; 5247 } 5248 5249 static int ocfs2_truncate_rec(struct inode *inode, handle_t *handle, 5250 struct ocfs2_path *path, int index, 5251 struct ocfs2_cached_dealloc_ctxt *dealloc, 5252 u32 cpos, u32 len, 5253 struct ocfs2_extent_tree *et) 5254 { 5255 int ret; 5256 u32 left_cpos, rec_range, trunc_range; 5257 int wants_rotate = 0, is_rightmost_tree_rec = 0; 5258 struct super_block *sb = inode->i_sb; 5259 struct ocfs2_path *left_path = NULL; 5260 struct ocfs2_extent_list *el = path_leaf_el(path); 5261 struct ocfs2_extent_rec *rec; 5262 struct ocfs2_extent_block *eb; 5263 5264 if (ocfs2_is_empty_extent(&el->l_recs[0]) && index > 0) { 5265 ret = ocfs2_rotate_tree_left(inode, handle, path, dealloc, et); 5266 if (ret) { 5267 mlog_errno(ret); 5268 goto out; 5269 } 5270 5271 index--; 5272 } 5273 5274 if (index == (le16_to_cpu(el->l_next_free_rec) - 1) && 5275 path->p_tree_depth) { 5276 /* 5277 * Check whether this is the rightmost tree record. If 5278 * we remove all of this record or part of its right 5279 * edge then an update of the record lengths above it 5280 * will be required. 5281 */ 5282 eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data; 5283 if (eb->h_next_leaf_blk == 0) 5284 is_rightmost_tree_rec = 1; 5285 } 5286 5287 rec = &el->l_recs[index]; 5288 if (index == 0 && path->p_tree_depth && 5289 le32_to_cpu(rec->e_cpos) == cpos) { 5290 /* 5291 * Changing the leftmost offset (via partial or whole 5292 * record truncate) of an interior (or rightmost) path 5293 * means we have to update the subtree that is formed 5294 * by this leaf and the one to it's left. 5295 * 5296 * There are two cases we can skip: 5297 * 1) Path is the leftmost one in our inode tree. 5298 * 2) The leaf is rightmost and will be empty after 5299 * we remove the extent record - the rotate code 5300 * knows how to update the newly formed edge. 5301 */ 5302 5303 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path, 5304 &left_cpos); 5305 if (ret) { 5306 mlog_errno(ret); 5307 goto out; 5308 } 5309 5310 if (left_cpos && le16_to_cpu(el->l_next_free_rec) > 1) { 5311 left_path = ocfs2_new_path_from_path(path); 5312 if (!left_path) { 5313 ret = -ENOMEM; 5314 mlog_errno(ret); 5315 goto out; 5316 } 5317 5318 ret = ocfs2_find_path(inode, left_path, left_cpos); 5319 if (ret) { 5320 mlog_errno(ret); 5321 goto out; 5322 } 5323 } 5324 } 5325 5326 ret = ocfs2_extend_rotate_transaction(handle, 0, 5327 handle->h_buffer_credits, 5328 path); 5329 if (ret) { 5330 mlog_errno(ret); 5331 goto out; 5332 } 5333 5334 ret = ocfs2_journal_access_path(inode, handle, path); 5335 if (ret) { 5336 mlog_errno(ret); 5337 goto out; 5338 } 5339 5340 ret = ocfs2_journal_access_path(inode, handle, left_path); 5341 if (ret) { 5342 mlog_errno(ret); 5343 goto out; 5344 } 5345 5346 rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); 5347 trunc_range = cpos + len; 5348 5349 if (le32_to_cpu(rec->e_cpos) == cpos && rec_range == trunc_range) { 5350 int next_free; 5351 5352 memset(rec, 0, sizeof(*rec)); 5353 ocfs2_cleanup_merge(el, index); 5354 wants_rotate = 1; 5355 5356 next_free = le16_to_cpu(el->l_next_free_rec); 5357 if (is_rightmost_tree_rec && next_free > 1) { 5358 /* 5359 * We skip the edge update if this path will 5360 * be deleted by the rotate code. 5361 */ 5362 rec = &el->l_recs[next_free - 1]; 5363 ocfs2_adjust_rightmost_records(inode, handle, path, 5364 rec); 5365 } 5366 } else if (le32_to_cpu(rec->e_cpos) == cpos) { 5367 /* Remove leftmost portion of the record. */ 5368 le32_add_cpu(&rec->e_cpos, len); 5369 le64_add_cpu(&rec->e_blkno, ocfs2_clusters_to_blocks(sb, len)); 5370 le16_add_cpu(&rec->e_leaf_clusters, -len); 5371 } else if (rec_range == trunc_range) { 5372 /* Remove rightmost portion of the record */ 5373 le16_add_cpu(&rec->e_leaf_clusters, -len); 5374 if (is_rightmost_tree_rec) 5375 ocfs2_adjust_rightmost_records(inode, handle, path, rec); 5376 } else { 5377 /* Caller should have trapped this. */ 5378 mlog(ML_ERROR, "Inode %llu: Invalid record truncate: (%u, %u) " 5379 "(%u, %u)\n", (unsigned long long)OCFS2_I(inode)->ip_blkno, 5380 le32_to_cpu(rec->e_cpos), 5381 le16_to_cpu(rec->e_leaf_clusters), cpos, len); 5382 BUG(); 5383 } 5384 5385 if (left_path) { 5386 int subtree_index; 5387 5388 subtree_index = ocfs2_find_subtree_root(inode, left_path, path); 5389 ocfs2_complete_edge_insert(inode, handle, left_path, path, 5390 subtree_index); 5391 } 5392 5393 ocfs2_journal_dirty(handle, path_leaf_bh(path)); 5394 5395 ret = ocfs2_rotate_tree_left(inode, handle, path, dealloc, et); 5396 if (ret) { 5397 mlog_errno(ret); 5398 goto out; 5399 } 5400 5401 out: 5402 ocfs2_free_path(left_path); 5403 return ret; 5404 } 5405 5406 int ocfs2_remove_extent(struct inode *inode, 5407 struct ocfs2_extent_tree *et, 5408 u32 cpos, u32 len, handle_t *handle, 5409 struct ocfs2_alloc_context *meta_ac, 5410 struct ocfs2_cached_dealloc_ctxt *dealloc) 5411 { 5412 int ret, index; 5413 u32 rec_range, trunc_range; 5414 struct ocfs2_extent_rec *rec; 5415 struct ocfs2_extent_list *el; 5416 struct ocfs2_path *path = NULL; 5417 5418 ocfs2_extent_map_trunc(inode, 0); 5419 5420 path = ocfs2_new_path_from_et(et); 5421 if (!path) { 5422 ret = -ENOMEM; 5423 mlog_errno(ret); 5424 goto out; 5425 } 5426 5427 ret = ocfs2_find_path(inode, path, cpos); 5428 if (ret) { 5429 mlog_errno(ret); 5430 goto out; 5431 } 5432 5433 el = path_leaf_el(path); 5434 index = ocfs2_search_extent_list(el, cpos); 5435 if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) { 5436 ocfs2_error(inode->i_sb, 5437 "Inode %llu has an extent at cpos %u which can no " 5438 "longer be found.\n", 5439 (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos); 5440 ret = -EROFS; 5441 goto out; 5442 } 5443 5444 /* 5445 * We have 3 cases of extent removal: 5446 * 1) Range covers the entire extent rec 5447 * 2) Range begins or ends on one edge of the extent rec 5448 * 3) Range is in the middle of the extent rec (no shared edges) 5449 * 5450 * For case 1 we remove the extent rec and left rotate to 5451 * fill the hole. 5452 * 5453 * For case 2 we just shrink the existing extent rec, with a 5454 * tree update if the shrinking edge is also the edge of an 5455 * extent block. 5456 * 5457 * For case 3 we do a right split to turn the extent rec into 5458 * something case 2 can handle. 5459 */ 5460 rec = &el->l_recs[index]; 5461 rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); 5462 trunc_range = cpos + len; 5463 5464 BUG_ON(cpos < le32_to_cpu(rec->e_cpos) || trunc_range > rec_range); 5465 5466 mlog(0, "Inode %llu, remove (cpos %u, len %u). Existing index %d " 5467 "(cpos %u, len %u)\n", 5468 (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos, len, index, 5469 le32_to_cpu(rec->e_cpos), ocfs2_rec_clusters(el, rec)); 5470 5471 if (le32_to_cpu(rec->e_cpos) == cpos || rec_range == trunc_range) { 5472 ret = ocfs2_truncate_rec(inode, handle, path, index, dealloc, 5473 cpos, len, et); 5474 if (ret) { 5475 mlog_errno(ret); 5476 goto out; 5477 } 5478 } else { 5479 ret = ocfs2_split_tree(inode, et, handle, path, index, 5480 trunc_range, meta_ac); 5481 if (ret) { 5482 mlog_errno(ret); 5483 goto out; 5484 } 5485 5486 /* 5487 * The split could have manipulated the tree enough to 5488 * move the record location, so we have to look for it again. 5489 */ 5490 ocfs2_reinit_path(path, 1); 5491 5492 ret = ocfs2_find_path(inode, path, cpos); 5493 if (ret) { 5494 mlog_errno(ret); 5495 goto out; 5496 } 5497 5498 el = path_leaf_el(path); 5499 index = ocfs2_search_extent_list(el, cpos); 5500 if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) { 5501 ocfs2_error(inode->i_sb, 5502 "Inode %llu: split at cpos %u lost record.", 5503 (unsigned long long)OCFS2_I(inode)->ip_blkno, 5504 cpos); 5505 ret = -EROFS; 5506 goto out; 5507 } 5508 5509 /* 5510 * Double check our values here. If anything is fishy, 5511 * it's easier to catch it at the top level. 5512 */ 5513 rec = &el->l_recs[index]; 5514 rec_range = le32_to_cpu(rec->e_cpos) + 5515 ocfs2_rec_clusters(el, rec); 5516 if (rec_range != trunc_range) { 5517 ocfs2_error(inode->i_sb, 5518 "Inode %llu: error after split at cpos %u" 5519 "trunc len %u, existing record is (%u,%u)", 5520 (unsigned long long)OCFS2_I(inode)->ip_blkno, 5521 cpos, len, le32_to_cpu(rec->e_cpos), 5522 ocfs2_rec_clusters(el, rec)); 5523 ret = -EROFS; 5524 goto out; 5525 } 5526 5527 ret = ocfs2_truncate_rec(inode, handle, path, index, dealloc, 5528 cpos, len, et); 5529 if (ret) { 5530 mlog_errno(ret); 5531 goto out; 5532 } 5533 } 5534 5535 out: 5536 ocfs2_free_path(path); 5537 return ret; 5538 } 5539 5540 int ocfs2_remove_btree_range(struct inode *inode, 5541 struct ocfs2_extent_tree *et, 5542 u32 cpos, u32 phys_cpos, u32 len, 5543 struct ocfs2_cached_dealloc_ctxt *dealloc) 5544 { 5545 int ret; 5546 u64 phys_blkno = ocfs2_clusters_to_blocks(inode->i_sb, phys_cpos); 5547 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 5548 struct inode *tl_inode = osb->osb_tl_inode; 5549 handle_t *handle; 5550 struct ocfs2_alloc_context *meta_ac = NULL; 5551 5552 ret = ocfs2_lock_allocators(inode, et, 0, 1, NULL, &meta_ac); 5553 if (ret) { 5554 mlog_errno(ret); 5555 return ret; 5556 } 5557 5558 mutex_lock(&tl_inode->i_mutex); 5559 5560 if (ocfs2_truncate_log_needs_flush(osb)) { 5561 ret = __ocfs2_flush_truncate_log(osb); 5562 if (ret < 0) { 5563 mlog_errno(ret); 5564 goto out; 5565 } 5566 } 5567 5568 handle = ocfs2_start_trans(osb, ocfs2_remove_extent_credits(osb->sb)); 5569 if (IS_ERR(handle)) { 5570 ret = PTR_ERR(handle); 5571 mlog_errno(ret); 5572 goto out; 5573 } 5574 5575 ret = ocfs2_et_root_journal_access(handle, inode, et, 5576 OCFS2_JOURNAL_ACCESS_WRITE); 5577 if (ret) { 5578 mlog_errno(ret); 5579 goto out; 5580 } 5581 5582 vfs_dq_free_space_nodirty(inode, 5583 ocfs2_clusters_to_bytes(inode->i_sb, len)); 5584 5585 ret = ocfs2_remove_extent(inode, et, cpos, len, handle, meta_ac, 5586 dealloc); 5587 if (ret) { 5588 mlog_errno(ret); 5589 goto out_commit; 5590 } 5591 5592 ocfs2_et_update_clusters(inode, et, -len); 5593 5594 ret = ocfs2_journal_dirty(handle, et->et_root_bh); 5595 if (ret) { 5596 mlog_errno(ret); 5597 goto out_commit; 5598 } 5599 5600 ret = ocfs2_truncate_log_append(osb, handle, phys_blkno, len); 5601 if (ret) 5602 mlog_errno(ret); 5603 5604 out_commit: 5605 ocfs2_commit_trans(osb, handle); 5606 out: 5607 mutex_unlock(&tl_inode->i_mutex); 5608 5609 if (meta_ac) 5610 ocfs2_free_alloc_context(meta_ac); 5611 5612 return ret; 5613 } 5614 5615 int ocfs2_truncate_log_needs_flush(struct ocfs2_super *osb) 5616 { 5617 struct buffer_head *tl_bh = osb->osb_tl_bh; 5618 struct ocfs2_dinode *di; 5619 struct ocfs2_truncate_log *tl; 5620 5621 di = (struct ocfs2_dinode *) tl_bh->b_data; 5622 tl = &di->id2.i_dealloc; 5623 5624 mlog_bug_on_msg(le16_to_cpu(tl->tl_used) > le16_to_cpu(tl->tl_count), 5625 "slot %d, invalid truncate log parameters: used = " 5626 "%u, count = %u\n", osb->slot_num, 5627 le16_to_cpu(tl->tl_used), le16_to_cpu(tl->tl_count)); 5628 return le16_to_cpu(tl->tl_used) == le16_to_cpu(tl->tl_count); 5629 } 5630 5631 static int ocfs2_truncate_log_can_coalesce(struct ocfs2_truncate_log *tl, 5632 unsigned int new_start) 5633 { 5634 unsigned int tail_index; 5635 unsigned int current_tail; 5636 5637 /* No records, nothing to coalesce */ 5638 if (!le16_to_cpu(tl->tl_used)) 5639 return 0; 5640 5641 tail_index = le16_to_cpu(tl->tl_used) - 1; 5642 current_tail = le32_to_cpu(tl->tl_recs[tail_index].t_start); 5643 current_tail += le32_to_cpu(tl->tl_recs[tail_index].t_clusters); 5644 5645 return current_tail == new_start; 5646 } 5647 5648 int ocfs2_truncate_log_append(struct ocfs2_super *osb, 5649 handle_t *handle, 5650 u64 start_blk, 5651 unsigned int num_clusters) 5652 { 5653 int status, index; 5654 unsigned int start_cluster, tl_count; 5655 struct inode *tl_inode = osb->osb_tl_inode; 5656 struct buffer_head *tl_bh = osb->osb_tl_bh; 5657 struct ocfs2_dinode *di; 5658 struct ocfs2_truncate_log *tl; 5659 5660 mlog_entry("start_blk = %llu, num_clusters = %u\n", 5661 (unsigned long long)start_blk, num_clusters); 5662 5663 BUG_ON(mutex_trylock(&tl_inode->i_mutex)); 5664 5665 start_cluster = ocfs2_blocks_to_clusters(osb->sb, start_blk); 5666 5667 di = (struct ocfs2_dinode *) tl_bh->b_data; 5668 5669 /* tl_bh is loaded from ocfs2_truncate_log_init(). It's validated 5670 * by the underlying call to ocfs2_read_inode_block(), so any 5671 * corruption is a code bug */ 5672 BUG_ON(!OCFS2_IS_VALID_DINODE(di)); 5673 5674 tl = &di->id2.i_dealloc; 5675 tl_count = le16_to_cpu(tl->tl_count); 5676 mlog_bug_on_msg(tl_count > ocfs2_truncate_recs_per_inode(osb->sb) || 5677 tl_count == 0, 5678 "Truncate record count on #%llu invalid " 5679 "wanted %u, actual %u\n", 5680 (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, 5681 ocfs2_truncate_recs_per_inode(osb->sb), 5682 le16_to_cpu(tl->tl_count)); 5683 5684 /* Caller should have known to flush before calling us. */ 5685 index = le16_to_cpu(tl->tl_used); 5686 if (index >= tl_count) { 5687 status = -ENOSPC; 5688 mlog_errno(status); 5689 goto bail; 5690 } 5691 5692 status = ocfs2_journal_access_di(handle, tl_inode, tl_bh, 5693 OCFS2_JOURNAL_ACCESS_WRITE); 5694 if (status < 0) { 5695 mlog_errno(status); 5696 goto bail; 5697 } 5698 5699 mlog(0, "Log truncate of %u clusters starting at cluster %u to " 5700 "%llu (index = %d)\n", num_clusters, start_cluster, 5701 (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, index); 5702 5703 if (ocfs2_truncate_log_can_coalesce(tl, start_cluster)) { 5704 /* 5705 * Move index back to the record we are coalescing with. 5706 * ocfs2_truncate_log_can_coalesce() guarantees nonzero 5707 */ 5708 index--; 5709 5710 num_clusters += le32_to_cpu(tl->tl_recs[index].t_clusters); 5711 mlog(0, "Coalesce with index %u (start = %u, clusters = %u)\n", 5712 index, le32_to_cpu(tl->tl_recs[index].t_start), 5713 num_clusters); 5714 } else { 5715 tl->tl_recs[index].t_start = cpu_to_le32(start_cluster); 5716 tl->tl_used = cpu_to_le16(index + 1); 5717 } 5718 tl->tl_recs[index].t_clusters = cpu_to_le32(num_clusters); 5719 5720 status = ocfs2_journal_dirty(handle, tl_bh); 5721 if (status < 0) { 5722 mlog_errno(status); 5723 goto bail; 5724 } 5725 5726 bail: 5727 mlog_exit(status); 5728 return status; 5729 } 5730 5731 static int ocfs2_replay_truncate_records(struct ocfs2_super *osb, 5732 handle_t *handle, 5733 struct inode *data_alloc_inode, 5734 struct buffer_head *data_alloc_bh) 5735 { 5736 int status = 0; 5737 int i; 5738 unsigned int num_clusters; 5739 u64 start_blk; 5740 struct ocfs2_truncate_rec rec; 5741 struct ocfs2_dinode *di; 5742 struct ocfs2_truncate_log *tl; 5743 struct inode *tl_inode = osb->osb_tl_inode; 5744 struct buffer_head *tl_bh = osb->osb_tl_bh; 5745 5746 mlog_entry_void(); 5747 5748 di = (struct ocfs2_dinode *) tl_bh->b_data; 5749 tl = &di->id2.i_dealloc; 5750 i = le16_to_cpu(tl->tl_used) - 1; 5751 while (i >= 0) { 5752 /* Caller has given us at least enough credits to 5753 * update the truncate log dinode */ 5754 status = ocfs2_journal_access_di(handle, tl_inode, tl_bh, 5755 OCFS2_JOURNAL_ACCESS_WRITE); 5756 if (status < 0) { 5757 mlog_errno(status); 5758 goto bail; 5759 } 5760 5761 tl->tl_used = cpu_to_le16(i); 5762 5763 status = ocfs2_journal_dirty(handle, tl_bh); 5764 if (status < 0) { 5765 mlog_errno(status); 5766 goto bail; 5767 } 5768 5769 /* TODO: Perhaps we can calculate the bulk of the 5770 * credits up front rather than extending like 5771 * this. */ 5772 status = ocfs2_extend_trans(handle, 5773 OCFS2_TRUNCATE_LOG_FLUSH_ONE_REC); 5774 if (status < 0) { 5775 mlog_errno(status); 5776 goto bail; 5777 } 5778 5779 rec = tl->tl_recs[i]; 5780 start_blk = ocfs2_clusters_to_blocks(data_alloc_inode->i_sb, 5781 le32_to_cpu(rec.t_start)); 5782 num_clusters = le32_to_cpu(rec.t_clusters); 5783 5784 /* if start_blk is not set, we ignore the record as 5785 * invalid. */ 5786 if (start_blk) { 5787 mlog(0, "free record %d, start = %u, clusters = %u\n", 5788 i, le32_to_cpu(rec.t_start), num_clusters); 5789 5790 status = ocfs2_free_clusters(handle, data_alloc_inode, 5791 data_alloc_bh, start_blk, 5792 num_clusters); 5793 if (status < 0) { 5794 mlog_errno(status); 5795 goto bail; 5796 } 5797 } 5798 i--; 5799 } 5800 5801 bail: 5802 mlog_exit(status); 5803 return status; 5804 } 5805 5806 /* Expects you to already be holding tl_inode->i_mutex */ 5807 int __ocfs2_flush_truncate_log(struct ocfs2_super *osb) 5808 { 5809 int status; 5810 unsigned int num_to_flush; 5811 handle_t *handle; 5812 struct inode *tl_inode = osb->osb_tl_inode; 5813 struct inode *data_alloc_inode = NULL; 5814 struct buffer_head *tl_bh = osb->osb_tl_bh; 5815 struct buffer_head *data_alloc_bh = NULL; 5816 struct ocfs2_dinode *di; 5817 struct ocfs2_truncate_log *tl; 5818 5819 mlog_entry_void(); 5820 5821 BUG_ON(mutex_trylock(&tl_inode->i_mutex)); 5822 5823 di = (struct ocfs2_dinode *) tl_bh->b_data; 5824 5825 /* tl_bh is loaded from ocfs2_truncate_log_init(). It's validated 5826 * by the underlying call to ocfs2_read_inode_block(), so any 5827 * corruption is a code bug */ 5828 BUG_ON(!OCFS2_IS_VALID_DINODE(di)); 5829 5830 tl = &di->id2.i_dealloc; 5831 num_to_flush = le16_to_cpu(tl->tl_used); 5832 mlog(0, "Flush %u records from truncate log #%llu\n", 5833 num_to_flush, (unsigned long long)OCFS2_I(tl_inode)->ip_blkno); 5834 if (!num_to_flush) { 5835 status = 0; 5836 goto out; 5837 } 5838 5839 data_alloc_inode = ocfs2_get_system_file_inode(osb, 5840 GLOBAL_BITMAP_SYSTEM_INODE, 5841 OCFS2_INVALID_SLOT); 5842 if (!data_alloc_inode) { 5843 status = -EINVAL; 5844 mlog(ML_ERROR, "Could not get bitmap inode!\n"); 5845 goto out; 5846 } 5847 5848 mutex_lock(&data_alloc_inode->i_mutex); 5849 5850 status = ocfs2_inode_lock(data_alloc_inode, &data_alloc_bh, 1); 5851 if (status < 0) { 5852 mlog_errno(status); 5853 goto out_mutex; 5854 } 5855 5856 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE); 5857 if (IS_ERR(handle)) { 5858 status = PTR_ERR(handle); 5859 mlog_errno(status); 5860 goto out_unlock; 5861 } 5862 5863 status = ocfs2_replay_truncate_records(osb, handle, data_alloc_inode, 5864 data_alloc_bh); 5865 if (status < 0) 5866 mlog_errno(status); 5867 5868 ocfs2_commit_trans(osb, handle); 5869 5870 out_unlock: 5871 brelse(data_alloc_bh); 5872 ocfs2_inode_unlock(data_alloc_inode, 1); 5873 5874 out_mutex: 5875 mutex_unlock(&data_alloc_inode->i_mutex); 5876 iput(data_alloc_inode); 5877 5878 out: 5879 mlog_exit(status); 5880 return status; 5881 } 5882 5883 int ocfs2_flush_truncate_log(struct ocfs2_super *osb) 5884 { 5885 int status; 5886 struct inode *tl_inode = osb->osb_tl_inode; 5887 5888 mutex_lock(&tl_inode->i_mutex); 5889 status = __ocfs2_flush_truncate_log(osb); 5890 mutex_unlock(&tl_inode->i_mutex); 5891 5892 return status; 5893 } 5894 5895 static void ocfs2_truncate_log_worker(struct work_struct *work) 5896 { 5897 int status; 5898 struct ocfs2_super *osb = 5899 container_of(work, struct ocfs2_super, 5900 osb_truncate_log_wq.work); 5901 5902 mlog_entry_void(); 5903 5904 status = ocfs2_flush_truncate_log(osb); 5905 if (status < 0) 5906 mlog_errno(status); 5907 else 5908 ocfs2_init_inode_steal_slot(osb); 5909 5910 mlog_exit(status); 5911 } 5912 5913 #define OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL (2 * HZ) 5914 void ocfs2_schedule_truncate_log_flush(struct ocfs2_super *osb, 5915 int cancel) 5916 { 5917 if (osb->osb_tl_inode) { 5918 /* We want to push off log flushes while truncates are 5919 * still running. */ 5920 if (cancel) 5921 cancel_delayed_work(&osb->osb_truncate_log_wq); 5922 5923 queue_delayed_work(ocfs2_wq, &osb->osb_truncate_log_wq, 5924 OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL); 5925 } 5926 } 5927 5928 static int ocfs2_get_truncate_log_info(struct ocfs2_super *osb, 5929 int slot_num, 5930 struct inode **tl_inode, 5931 struct buffer_head **tl_bh) 5932 { 5933 int status; 5934 struct inode *inode = NULL; 5935 struct buffer_head *bh = NULL; 5936 5937 inode = ocfs2_get_system_file_inode(osb, 5938 TRUNCATE_LOG_SYSTEM_INODE, 5939 slot_num); 5940 if (!inode) { 5941 status = -EINVAL; 5942 mlog(ML_ERROR, "Could not get load truncate log inode!\n"); 5943 goto bail; 5944 } 5945 5946 status = ocfs2_read_inode_block(inode, &bh); 5947 if (status < 0) { 5948 iput(inode); 5949 mlog_errno(status); 5950 goto bail; 5951 } 5952 5953 *tl_inode = inode; 5954 *tl_bh = bh; 5955 bail: 5956 mlog_exit(status); 5957 return status; 5958 } 5959 5960 /* called during the 1st stage of node recovery. we stamp a clean 5961 * truncate log and pass back a copy for processing later. if the 5962 * truncate log does not require processing, a *tl_copy is set to 5963 * NULL. */ 5964 int ocfs2_begin_truncate_log_recovery(struct ocfs2_super *osb, 5965 int slot_num, 5966 struct ocfs2_dinode **tl_copy) 5967 { 5968 int status; 5969 struct inode *tl_inode = NULL; 5970 struct buffer_head *tl_bh = NULL; 5971 struct ocfs2_dinode *di; 5972 struct ocfs2_truncate_log *tl; 5973 5974 *tl_copy = NULL; 5975 5976 mlog(0, "recover truncate log from slot %d\n", slot_num); 5977 5978 status = ocfs2_get_truncate_log_info(osb, slot_num, &tl_inode, &tl_bh); 5979 if (status < 0) { 5980 mlog_errno(status); 5981 goto bail; 5982 } 5983 5984 di = (struct ocfs2_dinode *) tl_bh->b_data; 5985 5986 /* tl_bh is loaded from ocfs2_get_truncate_log_info(). It's 5987 * validated by the underlying call to ocfs2_read_inode_block(), 5988 * so any corruption is a code bug */ 5989 BUG_ON(!OCFS2_IS_VALID_DINODE(di)); 5990 5991 tl = &di->id2.i_dealloc; 5992 if (le16_to_cpu(tl->tl_used)) { 5993 mlog(0, "We'll have %u logs to recover\n", 5994 le16_to_cpu(tl->tl_used)); 5995 5996 *tl_copy = kmalloc(tl_bh->b_size, GFP_KERNEL); 5997 if (!(*tl_copy)) { 5998 status = -ENOMEM; 5999 mlog_errno(status); 6000 goto bail; 6001 } 6002 6003 /* Assuming the write-out below goes well, this copy 6004 * will be passed back to recovery for processing. */ 6005 memcpy(*tl_copy, tl_bh->b_data, tl_bh->b_size); 6006 6007 /* All we need to do to clear the truncate log is set 6008 * tl_used. */ 6009 tl->tl_used = 0; 6010 6011 ocfs2_compute_meta_ecc(osb->sb, tl_bh->b_data, &di->i_check); 6012 status = ocfs2_write_block(osb, tl_bh, tl_inode); 6013 if (status < 0) { 6014 mlog_errno(status); 6015 goto bail; 6016 } 6017 } 6018 6019 bail: 6020 if (tl_inode) 6021 iput(tl_inode); 6022 brelse(tl_bh); 6023 6024 if (status < 0 && (*tl_copy)) { 6025 kfree(*tl_copy); 6026 *tl_copy = NULL; 6027 } 6028 6029 mlog_exit(status); 6030 return status; 6031 } 6032 6033 int ocfs2_complete_truncate_log_recovery(struct ocfs2_super *osb, 6034 struct ocfs2_dinode *tl_copy) 6035 { 6036 int status = 0; 6037 int i; 6038 unsigned int clusters, num_recs, start_cluster; 6039 u64 start_blk; 6040 handle_t *handle; 6041 struct inode *tl_inode = osb->osb_tl_inode; 6042 struct ocfs2_truncate_log *tl; 6043 6044 mlog_entry_void(); 6045 6046 if (OCFS2_I(tl_inode)->ip_blkno == le64_to_cpu(tl_copy->i_blkno)) { 6047 mlog(ML_ERROR, "Asked to recover my own truncate log!\n"); 6048 return -EINVAL; 6049 } 6050 6051 tl = &tl_copy->id2.i_dealloc; 6052 num_recs = le16_to_cpu(tl->tl_used); 6053 mlog(0, "cleanup %u records from %llu\n", num_recs, 6054 (unsigned long long)le64_to_cpu(tl_copy->i_blkno)); 6055 6056 mutex_lock(&tl_inode->i_mutex); 6057 for(i = 0; i < num_recs; i++) { 6058 if (ocfs2_truncate_log_needs_flush(osb)) { 6059 status = __ocfs2_flush_truncate_log(osb); 6060 if (status < 0) { 6061 mlog_errno(status); 6062 goto bail_up; 6063 } 6064 } 6065 6066 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE); 6067 if (IS_ERR(handle)) { 6068 status = PTR_ERR(handle); 6069 mlog_errno(status); 6070 goto bail_up; 6071 } 6072 6073 clusters = le32_to_cpu(tl->tl_recs[i].t_clusters); 6074 start_cluster = le32_to_cpu(tl->tl_recs[i].t_start); 6075 start_blk = ocfs2_clusters_to_blocks(osb->sb, start_cluster); 6076 6077 status = ocfs2_truncate_log_append(osb, handle, 6078 start_blk, clusters); 6079 ocfs2_commit_trans(osb, handle); 6080 if (status < 0) { 6081 mlog_errno(status); 6082 goto bail_up; 6083 } 6084 } 6085 6086 bail_up: 6087 mutex_unlock(&tl_inode->i_mutex); 6088 6089 mlog_exit(status); 6090 return status; 6091 } 6092 6093 void ocfs2_truncate_log_shutdown(struct ocfs2_super *osb) 6094 { 6095 int status; 6096 struct inode *tl_inode = osb->osb_tl_inode; 6097 6098 mlog_entry_void(); 6099 6100 if (tl_inode) { 6101 cancel_delayed_work(&osb->osb_truncate_log_wq); 6102 flush_workqueue(ocfs2_wq); 6103 6104 status = ocfs2_flush_truncate_log(osb); 6105 if (status < 0) 6106 mlog_errno(status); 6107 6108 brelse(osb->osb_tl_bh); 6109 iput(osb->osb_tl_inode); 6110 } 6111 6112 mlog_exit_void(); 6113 } 6114 6115 int ocfs2_truncate_log_init(struct ocfs2_super *osb) 6116 { 6117 int status; 6118 struct inode *tl_inode = NULL; 6119 struct buffer_head *tl_bh = NULL; 6120 6121 mlog_entry_void(); 6122 6123 status = ocfs2_get_truncate_log_info(osb, 6124 osb->slot_num, 6125 &tl_inode, 6126 &tl_bh); 6127 if (status < 0) 6128 mlog_errno(status); 6129 6130 /* ocfs2_truncate_log_shutdown keys on the existence of 6131 * osb->osb_tl_inode so we don't set any of the osb variables 6132 * until we're sure all is well. */ 6133 INIT_DELAYED_WORK(&osb->osb_truncate_log_wq, 6134 ocfs2_truncate_log_worker); 6135 osb->osb_tl_bh = tl_bh; 6136 osb->osb_tl_inode = tl_inode; 6137 6138 mlog_exit(status); 6139 return status; 6140 } 6141 6142 /* 6143 * Delayed de-allocation of suballocator blocks. 6144 * 6145 * Some sets of block de-allocations might involve multiple suballocator inodes. 6146 * 6147 * The locking for this can get extremely complicated, especially when 6148 * the suballocator inodes to delete from aren't known until deep 6149 * within an unrelated codepath. 6150 * 6151 * ocfs2_extent_block structures are a good example of this - an inode 6152 * btree could have been grown by any number of nodes each allocating 6153 * out of their own suballoc inode. 6154 * 6155 * These structures allow the delay of block de-allocation until a 6156 * later time, when locking of multiple cluster inodes won't cause 6157 * deadlock. 6158 */ 6159 6160 /* 6161 * Describe a single bit freed from a suballocator. For the block 6162 * suballocators, it represents one block. For the global cluster 6163 * allocator, it represents some clusters and free_bit indicates 6164 * clusters number. 6165 */ 6166 struct ocfs2_cached_block_free { 6167 struct ocfs2_cached_block_free *free_next; 6168 u64 free_blk; 6169 unsigned int free_bit; 6170 }; 6171 6172 struct ocfs2_per_slot_free_list { 6173 struct ocfs2_per_slot_free_list *f_next_suballocator; 6174 int f_inode_type; 6175 int f_slot; 6176 struct ocfs2_cached_block_free *f_first; 6177 }; 6178 6179 static int ocfs2_free_cached_blocks(struct ocfs2_super *osb, 6180 int sysfile_type, 6181 int slot, 6182 struct ocfs2_cached_block_free *head) 6183 { 6184 int ret; 6185 u64 bg_blkno; 6186 handle_t *handle; 6187 struct inode *inode; 6188 struct buffer_head *di_bh = NULL; 6189 struct ocfs2_cached_block_free *tmp; 6190 6191 inode = ocfs2_get_system_file_inode(osb, sysfile_type, slot); 6192 if (!inode) { 6193 ret = -EINVAL; 6194 mlog_errno(ret); 6195 goto out; 6196 } 6197 6198 mutex_lock(&inode->i_mutex); 6199 6200 ret = ocfs2_inode_lock(inode, &di_bh, 1); 6201 if (ret) { 6202 mlog_errno(ret); 6203 goto out_mutex; 6204 } 6205 6206 handle = ocfs2_start_trans(osb, OCFS2_SUBALLOC_FREE); 6207 if (IS_ERR(handle)) { 6208 ret = PTR_ERR(handle); 6209 mlog_errno(ret); 6210 goto out_unlock; 6211 } 6212 6213 while (head) { 6214 bg_blkno = ocfs2_which_suballoc_group(head->free_blk, 6215 head->free_bit); 6216 mlog(0, "Free bit: (bit %u, blkno %llu)\n", 6217 head->free_bit, (unsigned long long)head->free_blk); 6218 6219 ret = ocfs2_free_suballoc_bits(handle, inode, di_bh, 6220 head->free_bit, bg_blkno, 1); 6221 if (ret) { 6222 mlog_errno(ret); 6223 goto out_journal; 6224 } 6225 6226 ret = ocfs2_extend_trans(handle, OCFS2_SUBALLOC_FREE); 6227 if (ret) { 6228 mlog_errno(ret); 6229 goto out_journal; 6230 } 6231 6232 tmp = head; 6233 head = head->free_next; 6234 kfree(tmp); 6235 } 6236 6237 out_journal: 6238 ocfs2_commit_trans(osb, handle); 6239 6240 out_unlock: 6241 ocfs2_inode_unlock(inode, 1); 6242 brelse(di_bh); 6243 out_mutex: 6244 mutex_unlock(&inode->i_mutex); 6245 iput(inode); 6246 out: 6247 while(head) { 6248 /* Premature exit may have left some dangling items. */ 6249 tmp = head; 6250 head = head->free_next; 6251 kfree(tmp); 6252 } 6253 6254 return ret; 6255 } 6256 6257 int ocfs2_cache_cluster_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt, 6258 u64 blkno, unsigned int bit) 6259 { 6260 int ret = 0; 6261 struct ocfs2_cached_block_free *item; 6262 6263 item = kmalloc(sizeof(*item), GFP_NOFS); 6264 if (item == NULL) { 6265 ret = -ENOMEM; 6266 mlog_errno(ret); 6267 return ret; 6268 } 6269 6270 mlog(0, "Insert clusters: (bit %u, blk %llu)\n", 6271 bit, (unsigned long long)blkno); 6272 6273 item->free_blk = blkno; 6274 item->free_bit = bit; 6275 item->free_next = ctxt->c_global_allocator; 6276 6277 ctxt->c_global_allocator = item; 6278 return ret; 6279 } 6280 6281 static int ocfs2_free_cached_clusters(struct ocfs2_super *osb, 6282 struct ocfs2_cached_block_free *head) 6283 { 6284 struct ocfs2_cached_block_free *tmp; 6285 struct inode *tl_inode = osb->osb_tl_inode; 6286 handle_t *handle; 6287 int ret = 0; 6288 6289 mutex_lock(&tl_inode->i_mutex); 6290 6291 while (head) { 6292 if (ocfs2_truncate_log_needs_flush(osb)) { 6293 ret = __ocfs2_flush_truncate_log(osb); 6294 if (ret < 0) { 6295 mlog_errno(ret); 6296 break; 6297 } 6298 } 6299 6300 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE); 6301 if (IS_ERR(handle)) { 6302 ret = PTR_ERR(handle); 6303 mlog_errno(ret); 6304 break; 6305 } 6306 6307 ret = ocfs2_truncate_log_append(osb, handle, head->free_blk, 6308 head->free_bit); 6309 6310 ocfs2_commit_trans(osb, handle); 6311 tmp = head; 6312 head = head->free_next; 6313 kfree(tmp); 6314 6315 if (ret < 0) { 6316 mlog_errno(ret); 6317 break; 6318 } 6319 } 6320 6321 mutex_unlock(&tl_inode->i_mutex); 6322 6323 while (head) { 6324 /* Premature exit may have left some dangling items. */ 6325 tmp = head; 6326 head = head->free_next; 6327 kfree(tmp); 6328 } 6329 6330 return ret; 6331 } 6332 6333 int ocfs2_run_deallocs(struct ocfs2_super *osb, 6334 struct ocfs2_cached_dealloc_ctxt *ctxt) 6335 { 6336 int ret = 0, ret2; 6337 struct ocfs2_per_slot_free_list *fl; 6338 6339 if (!ctxt) 6340 return 0; 6341 6342 while (ctxt->c_first_suballocator) { 6343 fl = ctxt->c_first_suballocator; 6344 6345 if (fl->f_first) { 6346 mlog(0, "Free items: (type %u, slot %d)\n", 6347 fl->f_inode_type, fl->f_slot); 6348 ret2 = ocfs2_free_cached_blocks(osb, 6349 fl->f_inode_type, 6350 fl->f_slot, 6351 fl->f_first); 6352 if (ret2) 6353 mlog_errno(ret2); 6354 if (!ret) 6355 ret = ret2; 6356 } 6357 6358 ctxt->c_first_suballocator = fl->f_next_suballocator; 6359 kfree(fl); 6360 } 6361 6362 if (ctxt->c_global_allocator) { 6363 ret2 = ocfs2_free_cached_clusters(osb, 6364 ctxt->c_global_allocator); 6365 if (ret2) 6366 mlog_errno(ret2); 6367 if (!ret) 6368 ret = ret2; 6369 6370 ctxt->c_global_allocator = NULL; 6371 } 6372 6373 return ret; 6374 } 6375 6376 static struct ocfs2_per_slot_free_list * 6377 ocfs2_find_per_slot_free_list(int type, 6378 int slot, 6379 struct ocfs2_cached_dealloc_ctxt *ctxt) 6380 { 6381 struct ocfs2_per_slot_free_list *fl = ctxt->c_first_suballocator; 6382 6383 while (fl) { 6384 if (fl->f_inode_type == type && fl->f_slot == slot) 6385 return fl; 6386 6387 fl = fl->f_next_suballocator; 6388 } 6389 6390 fl = kmalloc(sizeof(*fl), GFP_NOFS); 6391 if (fl) { 6392 fl->f_inode_type = type; 6393 fl->f_slot = slot; 6394 fl->f_first = NULL; 6395 fl->f_next_suballocator = ctxt->c_first_suballocator; 6396 6397 ctxt->c_first_suballocator = fl; 6398 } 6399 return fl; 6400 } 6401 6402 static int ocfs2_cache_block_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt, 6403 int type, int slot, u64 blkno, 6404 unsigned int bit) 6405 { 6406 int ret; 6407 struct ocfs2_per_slot_free_list *fl; 6408 struct ocfs2_cached_block_free *item; 6409 6410 fl = ocfs2_find_per_slot_free_list(type, slot, ctxt); 6411 if (fl == NULL) { 6412 ret = -ENOMEM; 6413 mlog_errno(ret); 6414 goto out; 6415 } 6416 6417 item = kmalloc(sizeof(*item), GFP_NOFS); 6418 if (item == NULL) { 6419 ret = -ENOMEM; 6420 mlog_errno(ret); 6421 goto out; 6422 } 6423 6424 mlog(0, "Insert: (type %d, slot %u, bit %u, blk %llu)\n", 6425 type, slot, bit, (unsigned long long)blkno); 6426 6427 item->free_blk = blkno; 6428 item->free_bit = bit; 6429 item->free_next = fl->f_first; 6430 6431 fl->f_first = item; 6432 6433 ret = 0; 6434 out: 6435 return ret; 6436 } 6437 6438 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt, 6439 struct ocfs2_extent_block *eb) 6440 { 6441 return ocfs2_cache_block_dealloc(ctxt, EXTENT_ALLOC_SYSTEM_INODE, 6442 le16_to_cpu(eb->h_suballoc_slot), 6443 le64_to_cpu(eb->h_blkno), 6444 le16_to_cpu(eb->h_suballoc_bit)); 6445 } 6446 6447 /* This function will figure out whether the currently last extent 6448 * block will be deleted, and if it will, what the new last extent 6449 * block will be so we can update his h_next_leaf_blk field, as well 6450 * as the dinodes i_last_eb_blk */ 6451 static int ocfs2_find_new_last_ext_blk(struct inode *inode, 6452 unsigned int clusters_to_del, 6453 struct ocfs2_path *path, 6454 struct buffer_head **new_last_eb) 6455 { 6456 int next_free, ret = 0; 6457 u32 cpos; 6458 struct ocfs2_extent_rec *rec; 6459 struct ocfs2_extent_block *eb; 6460 struct ocfs2_extent_list *el; 6461 struct buffer_head *bh = NULL; 6462 6463 *new_last_eb = NULL; 6464 6465 /* we have no tree, so of course, no last_eb. */ 6466 if (!path->p_tree_depth) 6467 goto out; 6468 6469 /* trunc to zero special case - this makes tree_depth = 0 6470 * regardless of what it is. */ 6471 if (OCFS2_I(inode)->ip_clusters == clusters_to_del) 6472 goto out; 6473 6474 el = path_leaf_el(path); 6475 BUG_ON(!el->l_next_free_rec); 6476 6477 /* 6478 * Make sure that this extent list will actually be empty 6479 * after we clear away the data. We can shortcut out if 6480 * there's more than one non-empty extent in the 6481 * list. Otherwise, a check of the remaining extent is 6482 * necessary. 6483 */ 6484 next_free = le16_to_cpu(el->l_next_free_rec); 6485 rec = NULL; 6486 if (ocfs2_is_empty_extent(&el->l_recs[0])) { 6487 if (next_free > 2) 6488 goto out; 6489 6490 /* We may have a valid extent in index 1, check it. */ 6491 if (next_free == 2) 6492 rec = &el->l_recs[1]; 6493 6494 /* 6495 * Fall through - no more nonempty extents, so we want 6496 * to delete this leaf. 6497 */ 6498 } else { 6499 if (next_free > 1) 6500 goto out; 6501 6502 rec = &el->l_recs[0]; 6503 } 6504 6505 if (rec) { 6506 /* 6507 * Check it we'll only be trimming off the end of this 6508 * cluster. 6509 */ 6510 if (le16_to_cpu(rec->e_leaf_clusters) > clusters_to_del) 6511 goto out; 6512 } 6513 6514 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path, &cpos); 6515 if (ret) { 6516 mlog_errno(ret); 6517 goto out; 6518 } 6519 6520 ret = ocfs2_find_leaf(inode, path_root_el(path), cpos, &bh); 6521 if (ret) { 6522 mlog_errno(ret); 6523 goto out; 6524 } 6525 6526 eb = (struct ocfs2_extent_block *) bh->b_data; 6527 el = &eb->h_list; 6528 6529 /* ocfs2_find_leaf() gets the eb from ocfs2_read_extent_block(). 6530 * Any corruption is a code bug. */ 6531 BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb)); 6532 6533 *new_last_eb = bh; 6534 get_bh(*new_last_eb); 6535 mlog(0, "returning block %llu, (cpos: %u)\n", 6536 (unsigned long long)le64_to_cpu(eb->h_blkno), cpos); 6537 out: 6538 brelse(bh); 6539 6540 return ret; 6541 } 6542 6543 /* 6544 * Trim some clusters off the rightmost edge of a tree. Only called 6545 * during truncate. 6546 * 6547 * The caller needs to: 6548 * - start journaling of each path component. 6549 * - compute and fully set up any new last ext block 6550 */ 6551 static int ocfs2_trim_tree(struct inode *inode, struct ocfs2_path *path, 6552 handle_t *handle, struct ocfs2_truncate_context *tc, 6553 u32 clusters_to_del, u64 *delete_start) 6554 { 6555 int ret, i, index = path->p_tree_depth; 6556 u32 new_edge = 0; 6557 u64 deleted_eb = 0; 6558 struct buffer_head *bh; 6559 struct ocfs2_extent_list *el; 6560 struct ocfs2_extent_rec *rec; 6561 6562 *delete_start = 0; 6563 6564 while (index >= 0) { 6565 bh = path->p_node[index].bh; 6566 el = path->p_node[index].el; 6567 6568 mlog(0, "traveling tree (index = %d, block = %llu)\n", 6569 index, (unsigned long long)bh->b_blocknr); 6570 6571 BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0); 6572 6573 if (index != 6574 (path->p_tree_depth - le16_to_cpu(el->l_tree_depth))) { 6575 ocfs2_error(inode->i_sb, 6576 "Inode %lu has invalid ext. block %llu", 6577 inode->i_ino, 6578 (unsigned long long)bh->b_blocknr); 6579 ret = -EROFS; 6580 goto out; 6581 } 6582 6583 find_tail_record: 6584 i = le16_to_cpu(el->l_next_free_rec) - 1; 6585 rec = &el->l_recs[i]; 6586 6587 mlog(0, "Extent list before: record %d: (%u, %u, %llu), " 6588 "next = %u\n", i, le32_to_cpu(rec->e_cpos), 6589 ocfs2_rec_clusters(el, rec), 6590 (unsigned long long)le64_to_cpu(rec->e_blkno), 6591 le16_to_cpu(el->l_next_free_rec)); 6592 6593 BUG_ON(ocfs2_rec_clusters(el, rec) < clusters_to_del); 6594 6595 if (le16_to_cpu(el->l_tree_depth) == 0) { 6596 /* 6597 * If the leaf block contains a single empty 6598 * extent and no records, we can just remove 6599 * the block. 6600 */ 6601 if (i == 0 && ocfs2_is_empty_extent(rec)) { 6602 memset(rec, 0, 6603 sizeof(struct ocfs2_extent_rec)); 6604 el->l_next_free_rec = cpu_to_le16(0); 6605 6606 goto delete; 6607 } 6608 6609 /* 6610 * Remove any empty extents by shifting things 6611 * left. That should make life much easier on 6612 * the code below. This condition is rare 6613 * enough that we shouldn't see a performance 6614 * hit. 6615 */ 6616 if (ocfs2_is_empty_extent(&el->l_recs[0])) { 6617 le16_add_cpu(&el->l_next_free_rec, -1); 6618 6619 for(i = 0; 6620 i < le16_to_cpu(el->l_next_free_rec); i++) 6621 el->l_recs[i] = el->l_recs[i + 1]; 6622 6623 memset(&el->l_recs[i], 0, 6624 sizeof(struct ocfs2_extent_rec)); 6625 6626 /* 6627 * We've modified our extent list. The 6628 * simplest way to handle this change 6629 * is to being the search from the 6630 * start again. 6631 */ 6632 goto find_tail_record; 6633 } 6634 6635 le16_add_cpu(&rec->e_leaf_clusters, -clusters_to_del); 6636 6637 /* 6638 * We'll use "new_edge" on our way back up the 6639 * tree to know what our rightmost cpos is. 6640 */ 6641 new_edge = le16_to_cpu(rec->e_leaf_clusters); 6642 new_edge += le32_to_cpu(rec->e_cpos); 6643 6644 /* 6645 * The caller will use this to delete data blocks. 6646 */ 6647 *delete_start = le64_to_cpu(rec->e_blkno) 6648 + ocfs2_clusters_to_blocks(inode->i_sb, 6649 le16_to_cpu(rec->e_leaf_clusters)); 6650 6651 /* 6652 * If it's now empty, remove this record. 6653 */ 6654 if (le16_to_cpu(rec->e_leaf_clusters) == 0) { 6655 memset(rec, 0, 6656 sizeof(struct ocfs2_extent_rec)); 6657 le16_add_cpu(&el->l_next_free_rec, -1); 6658 } 6659 } else { 6660 if (le64_to_cpu(rec->e_blkno) == deleted_eb) { 6661 memset(rec, 0, 6662 sizeof(struct ocfs2_extent_rec)); 6663 le16_add_cpu(&el->l_next_free_rec, -1); 6664 6665 goto delete; 6666 } 6667 6668 /* Can this actually happen? */ 6669 if (le16_to_cpu(el->l_next_free_rec) == 0) 6670 goto delete; 6671 6672 /* 6673 * We never actually deleted any clusters 6674 * because our leaf was empty. There's no 6675 * reason to adjust the rightmost edge then. 6676 */ 6677 if (new_edge == 0) 6678 goto delete; 6679 6680 rec->e_int_clusters = cpu_to_le32(new_edge); 6681 le32_add_cpu(&rec->e_int_clusters, 6682 -le32_to_cpu(rec->e_cpos)); 6683 6684 /* 6685 * A deleted child record should have been 6686 * caught above. 6687 */ 6688 BUG_ON(le32_to_cpu(rec->e_int_clusters) == 0); 6689 } 6690 6691 delete: 6692 ret = ocfs2_journal_dirty(handle, bh); 6693 if (ret) { 6694 mlog_errno(ret); 6695 goto out; 6696 } 6697 6698 mlog(0, "extent list container %llu, after: record %d: " 6699 "(%u, %u, %llu), next = %u.\n", 6700 (unsigned long long)bh->b_blocknr, i, 6701 le32_to_cpu(rec->e_cpos), ocfs2_rec_clusters(el, rec), 6702 (unsigned long long)le64_to_cpu(rec->e_blkno), 6703 le16_to_cpu(el->l_next_free_rec)); 6704 6705 /* 6706 * We must be careful to only attempt delete of an 6707 * extent block (and not the root inode block). 6708 */ 6709 if (index > 0 && le16_to_cpu(el->l_next_free_rec) == 0) { 6710 struct ocfs2_extent_block *eb = 6711 (struct ocfs2_extent_block *)bh->b_data; 6712 6713 /* 6714 * Save this for use when processing the 6715 * parent block. 6716 */ 6717 deleted_eb = le64_to_cpu(eb->h_blkno); 6718 6719 mlog(0, "deleting this extent block.\n"); 6720 6721 ocfs2_remove_from_cache(inode, bh); 6722 6723 BUG_ON(ocfs2_rec_clusters(el, &el->l_recs[0])); 6724 BUG_ON(le32_to_cpu(el->l_recs[0].e_cpos)); 6725 BUG_ON(le64_to_cpu(el->l_recs[0].e_blkno)); 6726 6727 ret = ocfs2_cache_extent_block_free(&tc->tc_dealloc, eb); 6728 /* An error here is not fatal. */ 6729 if (ret < 0) 6730 mlog_errno(ret); 6731 } else { 6732 deleted_eb = 0; 6733 } 6734 6735 index--; 6736 } 6737 6738 ret = 0; 6739 out: 6740 return ret; 6741 } 6742 6743 static int ocfs2_do_truncate(struct ocfs2_super *osb, 6744 unsigned int clusters_to_del, 6745 struct inode *inode, 6746 struct buffer_head *fe_bh, 6747 handle_t *handle, 6748 struct ocfs2_truncate_context *tc, 6749 struct ocfs2_path *path) 6750 { 6751 int status; 6752 struct ocfs2_dinode *fe; 6753 struct ocfs2_extent_block *last_eb = NULL; 6754 struct ocfs2_extent_list *el; 6755 struct buffer_head *last_eb_bh = NULL; 6756 u64 delete_blk = 0; 6757 6758 fe = (struct ocfs2_dinode *) fe_bh->b_data; 6759 6760 status = ocfs2_find_new_last_ext_blk(inode, clusters_to_del, 6761 path, &last_eb_bh); 6762 if (status < 0) { 6763 mlog_errno(status); 6764 goto bail; 6765 } 6766 6767 /* 6768 * Each component will be touched, so we might as well journal 6769 * here to avoid having to handle errors later. 6770 */ 6771 status = ocfs2_journal_access_path(inode, handle, path); 6772 if (status < 0) { 6773 mlog_errno(status); 6774 goto bail; 6775 } 6776 6777 if (last_eb_bh) { 6778 status = ocfs2_journal_access_eb(handle, inode, last_eb_bh, 6779 OCFS2_JOURNAL_ACCESS_WRITE); 6780 if (status < 0) { 6781 mlog_errno(status); 6782 goto bail; 6783 } 6784 6785 last_eb = (struct ocfs2_extent_block *) last_eb_bh->b_data; 6786 } 6787 6788 el = &(fe->id2.i_list); 6789 6790 /* 6791 * Lower levels depend on this never happening, but it's best 6792 * to check it up here before changing the tree. 6793 */ 6794 if (el->l_tree_depth && el->l_recs[0].e_int_clusters == 0) { 6795 ocfs2_error(inode->i_sb, 6796 "Inode %lu has an empty extent record, depth %u\n", 6797 inode->i_ino, le16_to_cpu(el->l_tree_depth)); 6798 status = -EROFS; 6799 goto bail; 6800 } 6801 6802 vfs_dq_free_space_nodirty(inode, 6803 ocfs2_clusters_to_bytes(osb->sb, clusters_to_del)); 6804 spin_lock(&OCFS2_I(inode)->ip_lock); 6805 OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters) - 6806 clusters_to_del; 6807 spin_unlock(&OCFS2_I(inode)->ip_lock); 6808 le32_add_cpu(&fe->i_clusters, -clusters_to_del); 6809 inode->i_blocks = ocfs2_inode_sector_count(inode); 6810 6811 status = ocfs2_trim_tree(inode, path, handle, tc, 6812 clusters_to_del, &delete_blk); 6813 if (status) { 6814 mlog_errno(status); 6815 goto bail; 6816 } 6817 6818 if (le32_to_cpu(fe->i_clusters) == 0) { 6819 /* trunc to zero is a special case. */ 6820 el->l_tree_depth = 0; 6821 fe->i_last_eb_blk = 0; 6822 } else if (last_eb) 6823 fe->i_last_eb_blk = last_eb->h_blkno; 6824 6825 status = ocfs2_journal_dirty(handle, fe_bh); 6826 if (status < 0) { 6827 mlog_errno(status); 6828 goto bail; 6829 } 6830 6831 if (last_eb) { 6832 /* If there will be a new last extent block, then by 6833 * definition, there cannot be any leaves to the right of 6834 * him. */ 6835 last_eb->h_next_leaf_blk = 0; 6836 status = ocfs2_journal_dirty(handle, last_eb_bh); 6837 if (status < 0) { 6838 mlog_errno(status); 6839 goto bail; 6840 } 6841 } 6842 6843 if (delete_blk) { 6844 status = ocfs2_truncate_log_append(osb, handle, delete_blk, 6845 clusters_to_del); 6846 if (status < 0) { 6847 mlog_errno(status); 6848 goto bail; 6849 } 6850 } 6851 status = 0; 6852 bail: 6853 6854 mlog_exit(status); 6855 return status; 6856 } 6857 6858 static int ocfs2_zero_func(handle_t *handle, struct buffer_head *bh) 6859 { 6860 set_buffer_uptodate(bh); 6861 mark_buffer_dirty(bh); 6862 return 0; 6863 } 6864 6865 static void ocfs2_map_and_dirty_page(struct inode *inode, handle_t *handle, 6866 unsigned int from, unsigned int to, 6867 struct page *page, int zero, u64 *phys) 6868 { 6869 int ret, partial = 0; 6870 6871 ret = ocfs2_map_page_blocks(page, phys, inode, from, to, 0); 6872 if (ret) 6873 mlog_errno(ret); 6874 6875 if (zero) 6876 zero_user_segment(page, from, to); 6877 6878 /* 6879 * Need to set the buffers we zero'd into uptodate 6880 * here if they aren't - ocfs2_map_page_blocks() 6881 * might've skipped some 6882 */ 6883 ret = walk_page_buffers(handle, page_buffers(page), 6884 from, to, &partial, 6885 ocfs2_zero_func); 6886 if (ret < 0) 6887 mlog_errno(ret); 6888 else if (ocfs2_should_order_data(inode)) { 6889 ret = ocfs2_jbd2_file_inode(handle, inode); 6890 if (ret < 0) 6891 mlog_errno(ret); 6892 } 6893 6894 if (!partial) 6895 SetPageUptodate(page); 6896 6897 flush_dcache_page(page); 6898 } 6899 6900 static void ocfs2_zero_cluster_pages(struct inode *inode, loff_t start, 6901 loff_t end, struct page **pages, 6902 int numpages, u64 phys, handle_t *handle) 6903 { 6904 int i; 6905 struct page *page; 6906 unsigned int from, to = PAGE_CACHE_SIZE; 6907 struct super_block *sb = inode->i_sb; 6908 6909 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(sb))); 6910 6911 if (numpages == 0) 6912 goto out; 6913 6914 to = PAGE_CACHE_SIZE; 6915 for(i = 0; i < numpages; i++) { 6916 page = pages[i]; 6917 6918 from = start & (PAGE_CACHE_SIZE - 1); 6919 if ((end >> PAGE_CACHE_SHIFT) == page->index) 6920 to = end & (PAGE_CACHE_SIZE - 1); 6921 6922 BUG_ON(from > PAGE_CACHE_SIZE); 6923 BUG_ON(to > PAGE_CACHE_SIZE); 6924 6925 ocfs2_map_and_dirty_page(inode, handle, from, to, page, 1, 6926 &phys); 6927 6928 start = (page->index + 1) << PAGE_CACHE_SHIFT; 6929 } 6930 out: 6931 if (pages) 6932 ocfs2_unlock_and_free_pages(pages, numpages); 6933 } 6934 6935 static int ocfs2_grab_eof_pages(struct inode *inode, loff_t start, loff_t end, 6936 struct page **pages, int *num) 6937 { 6938 int numpages, ret = 0; 6939 struct super_block *sb = inode->i_sb; 6940 struct address_space *mapping = inode->i_mapping; 6941 unsigned long index; 6942 loff_t last_page_bytes; 6943 6944 BUG_ON(start > end); 6945 6946 BUG_ON(start >> OCFS2_SB(sb)->s_clustersize_bits != 6947 (end - 1) >> OCFS2_SB(sb)->s_clustersize_bits); 6948 6949 numpages = 0; 6950 last_page_bytes = PAGE_ALIGN(end); 6951 index = start >> PAGE_CACHE_SHIFT; 6952 do { 6953 pages[numpages] = grab_cache_page(mapping, index); 6954 if (!pages[numpages]) { 6955 ret = -ENOMEM; 6956 mlog_errno(ret); 6957 goto out; 6958 } 6959 6960 numpages++; 6961 index++; 6962 } while (index < (last_page_bytes >> PAGE_CACHE_SHIFT)); 6963 6964 out: 6965 if (ret != 0) { 6966 if (pages) 6967 ocfs2_unlock_and_free_pages(pages, numpages); 6968 numpages = 0; 6969 } 6970 6971 *num = numpages; 6972 6973 return ret; 6974 } 6975 6976 /* 6977 * Zero the area past i_size but still within an allocated 6978 * cluster. This avoids exposing nonzero data on subsequent file 6979 * extends. 6980 * 6981 * We need to call this before i_size is updated on the inode because 6982 * otherwise block_write_full_page() will skip writeout of pages past 6983 * i_size. The new_i_size parameter is passed for this reason. 6984 */ 6985 int ocfs2_zero_range_for_truncate(struct inode *inode, handle_t *handle, 6986 u64 range_start, u64 range_end) 6987 { 6988 int ret = 0, numpages; 6989 struct page **pages = NULL; 6990 u64 phys; 6991 unsigned int ext_flags; 6992 struct super_block *sb = inode->i_sb; 6993 6994 /* 6995 * File systems which don't support sparse files zero on every 6996 * extend. 6997 */ 6998 if (!ocfs2_sparse_alloc(OCFS2_SB(sb))) 6999 return 0; 7000 7001 pages = kcalloc(ocfs2_pages_per_cluster(sb), 7002 sizeof(struct page *), GFP_NOFS); 7003 if (pages == NULL) { 7004 ret = -ENOMEM; 7005 mlog_errno(ret); 7006 goto out; 7007 } 7008 7009 if (range_start == range_end) 7010 goto out; 7011 7012 ret = ocfs2_extent_map_get_blocks(inode, 7013 range_start >> sb->s_blocksize_bits, 7014 &phys, NULL, &ext_flags); 7015 if (ret) { 7016 mlog_errno(ret); 7017 goto out; 7018 } 7019 7020 /* 7021 * Tail is a hole, or is marked unwritten. In either case, we 7022 * can count on read and write to return/push zero's. 7023 */ 7024 if (phys == 0 || ext_flags & OCFS2_EXT_UNWRITTEN) 7025 goto out; 7026 7027 ret = ocfs2_grab_eof_pages(inode, range_start, range_end, pages, 7028 &numpages); 7029 if (ret) { 7030 mlog_errno(ret); 7031 goto out; 7032 } 7033 7034 ocfs2_zero_cluster_pages(inode, range_start, range_end, pages, 7035 numpages, phys, handle); 7036 7037 /* 7038 * Initiate writeout of the pages we zero'd here. We don't 7039 * wait on them - the truncate_inode_pages() call later will 7040 * do that for us. 7041 */ 7042 ret = do_sync_mapping_range(inode->i_mapping, range_start, 7043 range_end - 1, SYNC_FILE_RANGE_WRITE); 7044 if (ret) 7045 mlog_errno(ret); 7046 7047 out: 7048 if (pages) 7049 kfree(pages); 7050 7051 return ret; 7052 } 7053 7054 static void ocfs2_zero_dinode_id2_with_xattr(struct inode *inode, 7055 struct ocfs2_dinode *di) 7056 { 7057 unsigned int blocksize = 1 << inode->i_sb->s_blocksize_bits; 7058 unsigned int xattrsize = le16_to_cpu(di->i_xattr_inline_size); 7059 7060 if (le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_XATTR_FL) 7061 memset(&di->id2, 0, blocksize - 7062 offsetof(struct ocfs2_dinode, id2) - 7063 xattrsize); 7064 else 7065 memset(&di->id2, 0, blocksize - 7066 offsetof(struct ocfs2_dinode, id2)); 7067 } 7068 7069 void ocfs2_dinode_new_extent_list(struct inode *inode, 7070 struct ocfs2_dinode *di) 7071 { 7072 ocfs2_zero_dinode_id2_with_xattr(inode, di); 7073 di->id2.i_list.l_tree_depth = 0; 7074 di->id2.i_list.l_next_free_rec = 0; 7075 di->id2.i_list.l_count = cpu_to_le16( 7076 ocfs2_extent_recs_per_inode_with_xattr(inode->i_sb, di)); 7077 } 7078 7079 void ocfs2_set_inode_data_inline(struct inode *inode, struct ocfs2_dinode *di) 7080 { 7081 struct ocfs2_inode_info *oi = OCFS2_I(inode); 7082 struct ocfs2_inline_data *idata = &di->id2.i_data; 7083 7084 spin_lock(&oi->ip_lock); 7085 oi->ip_dyn_features |= OCFS2_INLINE_DATA_FL; 7086 di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features); 7087 spin_unlock(&oi->ip_lock); 7088 7089 /* 7090 * We clear the entire i_data structure here so that all 7091 * fields can be properly initialized. 7092 */ 7093 ocfs2_zero_dinode_id2_with_xattr(inode, di); 7094 7095 idata->id_count = cpu_to_le16( 7096 ocfs2_max_inline_data_with_xattr(inode->i_sb, di)); 7097 } 7098 7099 int ocfs2_convert_inline_data_to_extents(struct inode *inode, 7100 struct buffer_head *di_bh) 7101 { 7102 int ret, i, has_data, num_pages = 0; 7103 handle_t *handle; 7104 u64 uninitialized_var(block); 7105 struct ocfs2_inode_info *oi = OCFS2_I(inode); 7106 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 7107 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 7108 struct ocfs2_alloc_context *data_ac = NULL; 7109 struct page **pages = NULL; 7110 loff_t end = osb->s_clustersize; 7111 struct ocfs2_extent_tree et; 7112 int did_quota = 0; 7113 7114 has_data = i_size_read(inode) ? 1 : 0; 7115 7116 if (has_data) { 7117 pages = kcalloc(ocfs2_pages_per_cluster(osb->sb), 7118 sizeof(struct page *), GFP_NOFS); 7119 if (pages == NULL) { 7120 ret = -ENOMEM; 7121 mlog_errno(ret); 7122 goto out; 7123 } 7124 7125 ret = ocfs2_reserve_clusters(osb, 1, &data_ac); 7126 if (ret) { 7127 mlog_errno(ret); 7128 goto out; 7129 } 7130 } 7131 7132 handle = ocfs2_start_trans(osb, 7133 ocfs2_inline_to_extents_credits(osb->sb)); 7134 if (IS_ERR(handle)) { 7135 ret = PTR_ERR(handle); 7136 mlog_errno(ret); 7137 goto out_unlock; 7138 } 7139 7140 ret = ocfs2_journal_access_di(handle, inode, di_bh, 7141 OCFS2_JOURNAL_ACCESS_WRITE); 7142 if (ret) { 7143 mlog_errno(ret); 7144 goto out_commit; 7145 } 7146 7147 if (has_data) { 7148 u32 bit_off, num; 7149 unsigned int page_end; 7150 u64 phys; 7151 7152 if (vfs_dq_alloc_space_nodirty(inode, 7153 ocfs2_clusters_to_bytes(osb->sb, 1))) { 7154 ret = -EDQUOT; 7155 goto out_commit; 7156 } 7157 did_quota = 1; 7158 7159 ret = ocfs2_claim_clusters(osb, handle, data_ac, 1, &bit_off, 7160 &num); 7161 if (ret) { 7162 mlog_errno(ret); 7163 goto out_commit; 7164 } 7165 7166 /* 7167 * Save two copies, one for insert, and one that can 7168 * be changed by ocfs2_map_and_dirty_page() below. 7169 */ 7170 block = phys = ocfs2_clusters_to_blocks(inode->i_sb, bit_off); 7171 7172 /* 7173 * Non sparse file systems zero on extend, so no need 7174 * to do that now. 7175 */ 7176 if (!ocfs2_sparse_alloc(osb) && 7177 PAGE_CACHE_SIZE < osb->s_clustersize) 7178 end = PAGE_CACHE_SIZE; 7179 7180 ret = ocfs2_grab_eof_pages(inode, 0, end, pages, &num_pages); 7181 if (ret) { 7182 mlog_errno(ret); 7183 goto out_commit; 7184 } 7185 7186 /* 7187 * This should populate the 1st page for us and mark 7188 * it up to date. 7189 */ 7190 ret = ocfs2_read_inline_data(inode, pages[0], di_bh); 7191 if (ret) { 7192 mlog_errno(ret); 7193 goto out_commit; 7194 } 7195 7196 page_end = PAGE_CACHE_SIZE; 7197 if (PAGE_CACHE_SIZE > osb->s_clustersize) 7198 page_end = osb->s_clustersize; 7199 7200 for (i = 0; i < num_pages; i++) 7201 ocfs2_map_and_dirty_page(inode, handle, 0, page_end, 7202 pages[i], i > 0, &phys); 7203 } 7204 7205 spin_lock(&oi->ip_lock); 7206 oi->ip_dyn_features &= ~OCFS2_INLINE_DATA_FL; 7207 di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features); 7208 spin_unlock(&oi->ip_lock); 7209 7210 ocfs2_dinode_new_extent_list(inode, di); 7211 7212 ocfs2_journal_dirty(handle, di_bh); 7213 7214 if (has_data) { 7215 /* 7216 * An error at this point should be extremely rare. If 7217 * this proves to be false, we could always re-build 7218 * the in-inode data from our pages. 7219 */ 7220 ocfs2_init_dinode_extent_tree(&et, inode, di_bh); 7221 ret = ocfs2_insert_extent(osb, handle, inode, &et, 7222 0, block, 1, 0, NULL); 7223 if (ret) { 7224 mlog_errno(ret); 7225 goto out_commit; 7226 } 7227 7228 inode->i_blocks = ocfs2_inode_sector_count(inode); 7229 } 7230 7231 out_commit: 7232 if (ret < 0 && did_quota) 7233 vfs_dq_free_space_nodirty(inode, 7234 ocfs2_clusters_to_bytes(osb->sb, 1)); 7235 7236 ocfs2_commit_trans(osb, handle); 7237 7238 out_unlock: 7239 if (data_ac) 7240 ocfs2_free_alloc_context(data_ac); 7241 7242 out: 7243 if (pages) { 7244 ocfs2_unlock_and_free_pages(pages, num_pages); 7245 kfree(pages); 7246 } 7247 7248 return ret; 7249 } 7250 7251 /* 7252 * It is expected, that by the time you call this function, 7253 * inode->i_size and fe->i_size have been adjusted. 7254 * 7255 * WARNING: This will kfree the truncate context 7256 */ 7257 int ocfs2_commit_truncate(struct ocfs2_super *osb, 7258 struct inode *inode, 7259 struct buffer_head *fe_bh, 7260 struct ocfs2_truncate_context *tc) 7261 { 7262 int status, i, credits, tl_sem = 0; 7263 u32 clusters_to_del, new_highest_cpos, range; 7264 struct ocfs2_extent_list *el; 7265 handle_t *handle = NULL; 7266 struct inode *tl_inode = osb->osb_tl_inode; 7267 struct ocfs2_path *path = NULL; 7268 struct ocfs2_dinode *di = (struct ocfs2_dinode *)fe_bh->b_data; 7269 7270 mlog_entry_void(); 7271 7272 new_highest_cpos = ocfs2_clusters_for_bytes(osb->sb, 7273 i_size_read(inode)); 7274 7275 path = ocfs2_new_path(fe_bh, &di->id2.i_list, 7276 ocfs2_journal_access_di); 7277 if (!path) { 7278 status = -ENOMEM; 7279 mlog_errno(status); 7280 goto bail; 7281 } 7282 7283 ocfs2_extent_map_trunc(inode, new_highest_cpos); 7284 7285 start: 7286 /* 7287 * Check that we still have allocation to delete. 7288 */ 7289 if (OCFS2_I(inode)->ip_clusters == 0) { 7290 status = 0; 7291 goto bail; 7292 } 7293 7294 /* 7295 * Truncate always works against the rightmost tree branch. 7296 */ 7297 status = ocfs2_find_path(inode, path, UINT_MAX); 7298 if (status) { 7299 mlog_errno(status); 7300 goto bail; 7301 } 7302 7303 mlog(0, "inode->ip_clusters = %u, tree_depth = %u\n", 7304 OCFS2_I(inode)->ip_clusters, path->p_tree_depth); 7305 7306 /* 7307 * By now, el will point to the extent list on the bottom most 7308 * portion of this tree. Only the tail record is considered in 7309 * each pass. 7310 * 7311 * We handle the following cases, in order: 7312 * - empty extent: delete the remaining branch 7313 * - remove the entire record 7314 * - remove a partial record 7315 * - no record needs to be removed (truncate has completed) 7316 */ 7317 el = path_leaf_el(path); 7318 if (le16_to_cpu(el->l_next_free_rec) == 0) { 7319 ocfs2_error(inode->i_sb, 7320 "Inode %llu has empty extent block at %llu\n", 7321 (unsigned long long)OCFS2_I(inode)->ip_blkno, 7322 (unsigned long long)path_leaf_bh(path)->b_blocknr); 7323 status = -EROFS; 7324 goto bail; 7325 } 7326 7327 i = le16_to_cpu(el->l_next_free_rec) - 1; 7328 range = le32_to_cpu(el->l_recs[i].e_cpos) + 7329 ocfs2_rec_clusters(el, &el->l_recs[i]); 7330 if (i == 0 && ocfs2_is_empty_extent(&el->l_recs[i])) { 7331 clusters_to_del = 0; 7332 } else if (le32_to_cpu(el->l_recs[i].e_cpos) >= new_highest_cpos) { 7333 clusters_to_del = ocfs2_rec_clusters(el, &el->l_recs[i]); 7334 } else if (range > new_highest_cpos) { 7335 clusters_to_del = (ocfs2_rec_clusters(el, &el->l_recs[i]) + 7336 le32_to_cpu(el->l_recs[i].e_cpos)) - 7337 new_highest_cpos; 7338 } else { 7339 status = 0; 7340 goto bail; 7341 } 7342 7343 mlog(0, "clusters_to_del = %u in this pass, tail blk=%llu\n", 7344 clusters_to_del, (unsigned long long)path_leaf_bh(path)->b_blocknr); 7345 7346 mutex_lock(&tl_inode->i_mutex); 7347 tl_sem = 1; 7348 /* ocfs2_truncate_log_needs_flush guarantees us at least one 7349 * record is free for use. If there isn't any, we flush to get 7350 * an empty truncate log. */ 7351 if (ocfs2_truncate_log_needs_flush(osb)) { 7352 status = __ocfs2_flush_truncate_log(osb); 7353 if (status < 0) { 7354 mlog_errno(status); 7355 goto bail; 7356 } 7357 } 7358 7359 credits = ocfs2_calc_tree_trunc_credits(osb->sb, clusters_to_del, 7360 (struct ocfs2_dinode *)fe_bh->b_data, 7361 el); 7362 handle = ocfs2_start_trans(osb, credits); 7363 if (IS_ERR(handle)) { 7364 status = PTR_ERR(handle); 7365 handle = NULL; 7366 mlog_errno(status); 7367 goto bail; 7368 } 7369 7370 status = ocfs2_do_truncate(osb, clusters_to_del, inode, fe_bh, handle, 7371 tc, path); 7372 if (status < 0) { 7373 mlog_errno(status); 7374 goto bail; 7375 } 7376 7377 mutex_unlock(&tl_inode->i_mutex); 7378 tl_sem = 0; 7379 7380 ocfs2_commit_trans(osb, handle); 7381 handle = NULL; 7382 7383 ocfs2_reinit_path(path, 1); 7384 7385 /* 7386 * The check above will catch the case where we've truncated 7387 * away all allocation. 7388 */ 7389 goto start; 7390 7391 bail: 7392 7393 ocfs2_schedule_truncate_log_flush(osb, 1); 7394 7395 if (tl_sem) 7396 mutex_unlock(&tl_inode->i_mutex); 7397 7398 if (handle) 7399 ocfs2_commit_trans(osb, handle); 7400 7401 ocfs2_run_deallocs(osb, &tc->tc_dealloc); 7402 7403 ocfs2_free_path(path); 7404 7405 /* This will drop the ext_alloc cluster lock for us */ 7406 ocfs2_free_truncate_context(tc); 7407 7408 mlog_exit(status); 7409 return status; 7410 } 7411 7412 /* 7413 * Expects the inode to already be locked. 7414 */ 7415 int ocfs2_prepare_truncate(struct ocfs2_super *osb, 7416 struct inode *inode, 7417 struct buffer_head *fe_bh, 7418 struct ocfs2_truncate_context **tc) 7419 { 7420 int status; 7421 unsigned int new_i_clusters; 7422 struct ocfs2_dinode *fe; 7423 struct ocfs2_extent_block *eb; 7424 struct buffer_head *last_eb_bh = NULL; 7425 7426 mlog_entry_void(); 7427 7428 *tc = NULL; 7429 7430 new_i_clusters = ocfs2_clusters_for_bytes(osb->sb, 7431 i_size_read(inode)); 7432 fe = (struct ocfs2_dinode *) fe_bh->b_data; 7433 7434 mlog(0, "fe->i_clusters = %u, new_i_clusters = %u, fe->i_size =" 7435 "%llu\n", le32_to_cpu(fe->i_clusters), new_i_clusters, 7436 (unsigned long long)le64_to_cpu(fe->i_size)); 7437 7438 *tc = kzalloc(sizeof(struct ocfs2_truncate_context), GFP_KERNEL); 7439 if (!(*tc)) { 7440 status = -ENOMEM; 7441 mlog_errno(status); 7442 goto bail; 7443 } 7444 ocfs2_init_dealloc_ctxt(&(*tc)->tc_dealloc); 7445 7446 if (fe->id2.i_list.l_tree_depth) { 7447 status = ocfs2_read_extent_block(inode, 7448 le64_to_cpu(fe->i_last_eb_blk), 7449 &last_eb_bh); 7450 if (status < 0) { 7451 mlog_errno(status); 7452 goto bail; 7453 } 7454 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data; 7455 } 7456 7457 (*tc)->tc_last_eb_bh = last_eb_bh; 7458 7459 status = 0; 7460 bail: 7461 if (status < 0) { 7462 if (*tc) 7463 ocfs2_free_truncate_context(*tc); 7464 *tc = NULL; 7465 } 7466 mlog_exit_void(); 7467 return status; 7468 } 7469 7470 /* 7471 * 'start' is inclusive, 'end' is not. 7472 */ 7473 int ocfs2_truncate_inline(struct inode *inode, struct buffer_head *di_bh, 7474 unsigned int start, unsigned int end, int trunc) 7475 { 7476 int ret; 7477 unsigned int numbytes; 7478 handle_t *handle; 7479 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 7480 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 7481 struct ocfs2_inline_data *idata = &di->id2.i_data; 7482 7483 if (end > i_size_read(inode)) 7484 end = i_size_read(inode); 7485 7486 BUG_ON(start >= end); 7487 7488 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) || 7489 !(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL) || 7490 !ocfs2_supports_inline_data(osb)) { 7491 ocfs2_error(inode->i_sb, 7492 "Inline data flags for inode %llu don't agree! " 7493 "Disk: 0x%x, Memory: 0x%x, Superblock: 0x%x\n", 7494 (unsigned long long)OCFS2_I(inode)->ip_blkno, 7495 le16_to_cpu(di->i_dyn_features), 7496 OCFS2_I(inode)->ip_dyn_features, 7497 osb->s_feature_incompat); 7498 ret = -EROFS; 7499 goto out; 7500 } 7501 7502 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 7503 if (IS_ERR(handle)) { 7504 ret = PTR_ERR(handle); 7505 mlog_errno(ret); 7506 goto out; 7507 } 7508 7509 ret = ocfs2_journal_access_di(handle, inode, di_bh, 7510 OCFS2_JOURNAL_ACCESS_WRITE); 7511 if (ret) { 7512 mlog_errno(ret); 7513 goto out_commit; 7514 } 7515 7516 numbytes = end - start; 7517 memset(idata->id_data + start, 0, numbytes); 7518 7519 /* 7520 * No need to worry about the data page here - it's been 7521 * truncated already and inline data doesn't need it for 7522 * pushing zero's to disk, so we'll let readpage pick it up 7523 * later. 7524 */ 7525 if (trunc) { 7526 i_size_write(inode, start); 7527 di->i_size = cpu_to_le64(start); 7528 } 7529 7530 inode->i_blocks = ocfs2_inode_sector_count(inode); 7531 inode->i_ctime = inode->i_mtime = CURRENT_TIME; 7532 7533 di->i_ctime = di->i_mtime = cpu_to_le64(inode->i_ctime.tv_sec); 7534 di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec); 7535 7536 ocfs2_journal_dirty(handle, di_bh); 7537 7538 out_commit: 7539 ocfs2_commit_trans(osb, handle); 7540 7541 out: 7542 return ret; 7543 } 7544 7545 static void ocfs2_free_truncate_context(struct ocfs2_truncate_context *tc) 7546 { 7547 /* 7548 * The caller is responsible for completing deallocation 7549 * before freeing the context. 7550 */ 7551 if (tc->tc_dealloc.c_first_suballocator != NULL) 7552 mlog(ML_NOTICE, 7553 "Truncate completion has non-empty dealloc context\n"); 7554 7555 brelse(tc->tc_last_eb_bh); 7556 7557 kfree(tc); 7558 } 7559