xref: /openbmc/linux/fs/ocfs2/alloc.c (revision 3c5e10683e684ef45614c9071847e48f633d9806)
1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * alloc.c
5  *
6  * Extent allocs and frees
7  *
8  * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public
12  * License as published by the Free Software Foundation; either
13  * version 2 of the License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public
21  * License along with this program; if not, write to the
22  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23  * Boston, MA 021110-1307, USA.
24  */
25 
26 #include <linux/fs.h>
27 #include <linux/types.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/swap.h>
31 #include <linux/quotaops.h>
32 
33 #define MLOG_MASK_PREFIX ML_DISK_ALLOC
34 #include <cluster/masklog.h>
35 
36 #include "ocfs2.h"
37 
38 #include "alloc.h"
39 #include "aops.h"
40 #include "blockcheck.h"
41 #include "dlmglue.h"
42 #include "extent_map.h"
43 #include "inode.h"
44 #include "journal.h"
45 #include "localalloc.h"
46 #include "suballoc.h"
47 #include "sysfile.h"
48 #include "file.h"
49 #include "super.h"
50 #include "uptodate.h"
51 #include "xattr.h"
52 
53 #include "buffer_head_io.h"
54 
55 
56 /*
57  * Operations for a specific extent tree type.
58  *
59  * To implement an on-disk btree (extent tree) type in ocfs2, add
60  * an ocfs2_extent_tree_operations structure and the matching
61  * ocfs2_init_<thingy>_extent_tree() function.  That's pretty much it
62  * for the allocation portion of the extent tree.
63  */
64 struct ocfs2_extent_tree_operations {
65 	/*
66 	 * last_eb_blk is the block number of the right most leaf extent
67 	 * block.  Most on-disk structures containing an extent tree store
68 	 * this value for fast access.  The ->eo_set_last_eb_blk() and
69 	 * ->eo_get_last_eb_blk() operations access this value.  They are
70 	 *  both required.
71 	 */
72 	void (*eo_set_last_eb_blk)(struct ocfs2_extent_tree *et,
73 				   u64 blkno);
74 	u64 (*eo_get_last_eb_blk)(struct ocfs2_extent_tree *et);
75 
76 	/*
77 	 * The on-disk structure usually keeps track of how many total
78 	 * clusters are stored in this extent tree.  This function updates
79 	 * that value.  new_clusters is the delta, and must be
80 	 * added to the total.  Required.
81 	 */
82 	void (*eo_update_clusters)(struct inode *inode,
83 				   struct ocfs2_extent_tree *et,
84 				   u32 new_clusters);
85 
86 	/*
87 	 * If ->eo_insert_check() exists, it is called before rec is
88 	 * inserted into the extent tree.  It is optional.
89 	 */
90 	int (*eo_insert_check)(struct inode *inode,
91 			       struct ocfs2_extent_tree *et,
92 			       struct ocfs2_extent_rec *rec);
93 	int (*eo_sanity_check)(struct inode *inode, struct ocfs2_extent_tree *et);
94 
95 	/*
96 	 * --------------------------------------------------------------
97 	 * The remaining are internal to ocfs2_extent_tree and don't have
98 	 * accessor functions
99 	 */
100 
101 	/*
102 	 * ->eo_fill_root_el() takes et->et_object and sets et->et_root_el.
103 	 * It is required.
104 	 */
105 	void (*eo_fill_root_el)(struct ocfs2_extent_tree *et);
106 
107 	/*
108 	 * ->eo_fill_max_leaf_clusters sets et->et_max_leaf_clusters if
109 	 * it exists.  If it does not, et->et_max_leaf_clusters is set
110 	 * to 0 (unlimited).  Optional.
111 	 */
112 	void (*eo_fill_max_leaf_clusters)(struct inode *inode,
113 					  struct ocfs2_extent_tree *et);
114 };
115 
116 
117 /*
118  * Pre-declare ocfs2_dinode_et_ops so we can use it as a sanity check
119  * in the methods.
120  */
121 static u64 ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree *et);
122 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree *et,
123 					 u64 blkno);
124 static void ocfs2_dinode_update_clusters(struct inode *inode,
125 					 struct ocfs2_extent_tree *et,
126 					 u32 clusters);
127 static int ocfs2_dinode_insert_check(struct inode *inode,
128 				     struct ocfs2_extent_tree *et,
129 				     struct ocfs2_extent_rec *rec);
130 static int ocfs2_dinode_sanity_check(struct inode *inode,
131 				     struct ocfs2_extent_tree *et);
132 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree *et);
133 static struct ocfs2_extent_tree_operations ocfs2_dinode_et_ops = {
134 	.eo_set_last_eb_blk	= ocfs2_dinode_set_last_eb_blk,
135 	.eo_get_last_eb_blk	= ocfs2_dinode_get_last_eb_blk,
136 	.eo_update_clusters	= ocfs2_dinode_update_clusters,
137 	.eo_insert_check	= ocfs2_dinode_insert_check,
138 	.eo_sanity_check	= ocfs2_dinode_sanity_check,
139 	.eo_fill_root_el	= ocfs2_dinode_fill_root_el,
140 };
141 
142 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree *et,
143 					 u64 blkno)
144 {
145 	struct ocfs2_dinode *di = et->et_object;
146 
147 	BUG_ON(et->et_ops != &ocfs2_dinode_et_ops);
148 	di->i_last_eb_blk = cpu_to_le64(blkno);
149 }
150 
151 static u64 ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree *et)
152 {
153 	struct ocfs2_dinode *di = et->et_object;
154 
155 	BUG_ON(et->et_ops != &ocfs2_dinode_et_ops);
156 	return le64_to_cpu(di->i_last_eb_blk);
157 }
158 
159 static void ocfs2_dinode_update_clusters(struct inode *inode,
160 					 struct ocfs2_extent_tree *et,
161 					 u32 clusters)
162 {
163 	struct ocfs2_dinode *di = et->et_object;
164 
165 	le32_add_cpu(&di->i_clusters, clusters);
166 	spin_lock(&OCFS2_I(inode)->ip_lock);
167 	OCFS2_I(inode)->ip_clusters = le32_to_cpu(di->i_clusters);
168 	spin_unlock(&OCFS2_I(inode)->ip_lock);
169 }
170 
171 static int ocfs2_dinode_insert_check(struct inode *inode,
172 				     struct ocfs2_extent_tree *et,
173 				     struct ocfs2_extent_rec *rec)
174 {
175 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
176 
177 	BUG_ON(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL);
178 	mlog_bug_on_msg(!ocfs2_sparse_alloc(osb) &&
179 			(OCFS2_I(inode)->ip_clusters !=
180 			 le32_to_cpu(rec->e_cpos)),
181 			"Device %s, asking for sparse allocation: inode %llu, "
182 			"cpos %u, clusters %u\n",
183 			osb->dev_str,
184 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
185 			rec->e_cpos,
186 			OCFS2_I(inode)->ip_clusters);
187 
188 	return 0;
189 }
190 
191 static int ocfs2_dinode_sanity_check(struct inode *inode,
192 				     struct ocfs2_extent_tree *et)
193 {
194 	struct ocfs2_dinode *di = et->et_object;
195 
196 	BUG_ON(et->et_ops != &ocfs2_dinode_et_ops);
197 	BUG_ON(!OCFS2_IS_VALID_DINODE(di));
198 
199 	return 0;
200 }
201 
202 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree *et)
203 {
204 	struct ocfs2_dinode *di = et->et_object;
205 
206 	et->et_root_el = &di->id2.i_list;
207 }
208 
209 
210 static void ocfs2_xattr_value_fill_root_el(struct ocfs2_extent_tree *et)
211 {
212 	struct ocfs2_xattr_value_buf *vb = et->et_object;
213 
214 	et->et_root_el = &vb->vb_xv->xr_list;
215 }
216 
217 static void ocfs2_xattr_value_set_last_eb_blk(struct ocfs2_extent_tree *et,
218 					      u64 blkno)
219 {
220 	struct ocfs2_xattr_value_buf *vb = et->et_object;
221 
222 	vb->vb_xv->xr_last_eb_blk = cpu_to_le64(blkno);
223 }
224 
225 static u64 ocfs2_xattr_value_get_last_eb_blk(struct ocfs2_extent_tree *et)
226 {
227 	struct ocfs2_xattr_value_buf *vb = et->et_object;
228 
229 	return le64_to_cpu(vb->vb_xv->xr_last_eb_blk);
230 }
231 
232 static void ocfs2_xattr_value_update_clusters(struct inode *inode,
233 					      struct ocfs2_extent_tree *et,
234 					      u32 clusters)
235 {
236 	struct ocfs2_xattr_value_buf *vb = et->et_object;
237 
238 	le32_add_cpu(&vb->vb_xv->xr_clusters, clusters);
239 }
240 
241 static struct ocfs2_extent_tree_operations ocfs2_xattr_value_et_ops = {
242 	.eo_set_last_eb_blk	= ocfs2_xattr_value_set_last_eb_blk,
243 	.eo_get_last_eb_blk	= ocfs2_xattr_value_get_last_eb_blk,
244 	.eo_update_clusters	= ocfs2_xattr_value_update_clusters,
245 	.eo_fill_root_el	= ocfs2_xattr_value_fill_root_el,
246 };
247 
248 static void ocfs2_xattr_tree_fill_root_el(struct ocfs2_extent_tree *et)
249 {
250 	struct ocfs2_xattr_block *xb = et->et_object;
251 
252 	et->et_root_el = &xb->xb_attrs.xb_root.xt_list;
253 }
254 
255 static void ocfs2_xattr_tree_fill_max_leaf_clusters(struct inode *inode,
256 						    struct ocfs2_extent_tree *et)
257 {
258 	et->et_max_leaf_clusters =
259 		ocfs2_clusters_for_bytes(inode->i_sb,
260 					 OCFS2_MAX_XATTR_TREE_LEAF_SIZE);
261 }
262 
263 static void ocfs2_xattr_tree_set_last_eb_blk(struct ocfs2_extent_tree *et,
264 					     u64 blkno)
265 {
266 	struct ocfs2_xattr_block *xb = et->et_object;
267 	struct ocfs2_xattr_tree_root *xt = &xb->xb_attrs.xb_root;
268 
269 	xt->xt_last_eb_blk = cpu_to_le64(blkno);
270 }
271 
272 static u64 ocfs2_xattr_tree_get_last_eb_blk(struct ocfs2_extent_tree *et)
273 {
274 	struct ocfs2_xattr_block *xb = et->et_object;
275 	struct ocfs2_xattr_tree_root *xt = &xb->xb_attrs.xb_root;
276 
277 	return le64_to_cpu(xt->xt_last_eb_blk);
278 }
279 
280 static void ocfs2_xattr_tree_update_clusters(struct inode *inode,
281 					     struct ocfs2_extent_tree *et,
282 					     u32 clusters)
283 {
284 	struct ocfs2_xattr_block *xb = et->et_object;
285 
286 	le32_add_cpu(&xb->xb_attrs.xb_root.xt_clusters, clusters);
287 }
288 
289 static struct ocfs2_extent_tree_operations ocfs2_xattr_tree_et_ops = {
290 	.eo_set_last_eb_blk	= ocfs2_xattr_tree_set_last_eb_blk,
291 	.eo_get_last_eb_blk	= ocfs2_xattr_tree_get_last_eb_blk,
292 	.eo_update_clusters	= ocfs2_xattr_tree_update_clusters,
293 	.eo_fill_root_el	= ocfs2_xattr_tree_fill_root_el,
294 	.eo_fill_max_leaf_clusters = ocfs2_xattr_tree_fill_max_leaf_clusters,
295 };
296 
297 static void ocfs2_dx_root_set_last_eb_blk(struct ocfs2_extent_tree *et,
298 					  u64 blkno)
299 {
300 	struct ocfs2_dx_root_block *dx_root = et->et_object;
301 
302 	dx_root->dr_last_eb_blk = cpu_to_le64(blkno);
303 }
304 
305 static u64 ocfs2_dx_root_get_last_eb_blk(struct ocfs2_extent_tree *et)
306 {
307 	struct ocfs2_dx_root_block *dx_root = et->et_object;
308 
309 	return le64_to_cpu(dx_root->dr_last_eb_blk);
310 }
311 
312 static void ocfs2_dx_root_update_clusters(struct inode *inode,
313 					  struct ocfs2_extent_tree *et,
314 					  u32 clusters)
315 {
316 	struct ocfs2_dx_root_block *dx_root = et->et_object;
317 
318 	le32_add_cpu(&dx_root->dr_clusters, clusters);
319 }
320 
321 static int ocfs2_dx_root_sanity_check(struct inode *inode,
322 				      struct ocfs2_extent_tree *et)
323 {
324 	struct ocfs2_dx_root_block *dx_root = et->et_object;
325 
326 	BUG_ON(!OCFS2_IS_VALID_DX_ROOT(dx_root));
327 
328 	return 0;
329 }
330 
331 static void ocfs2_dx_root_fill_root_el(struct ocfs2_extent_tree *et)
332 {
333 	struct ocfs2_dx_root_block *dx_root = et->et_object;
334 
335 	et->et_root_el = &dx_root->dr_list;
336 }
337 
338 static struct ocfs2_extent_tree_operations ocfs2_dx_root_et_ops = {
339 	.eo_set_last_eb_blk	= ocfs2_dx_root_set_last_eb_blk,
340 	.eo_get_last_eb_blk	= ocfs2_dx_root_get_last_eb_blk,
341 	.eo_update_clusters	= ocfs2_dx_root_update_clusters,
342 	.eo_sanity_check	= ocfs2_dx_root_sanity_check,
343 	.eo_fill_root_el	= ocfs2_dx_root_fill_root_el,
344 };
345 
346 static void __ocfs2_init_extent_tree(struct ocfs2_extent_tree *et,
347 				     struct inode *inode,
348 				     struct buffer_head *bh,
349 				     ocfs2_journal_access_func access,
350 				     void *obj,
351 				     struct ocfs2_extent_tree_operations *ops)
352 {
353 	et->et_ops = ops;
354 	et->et_root_bh = bh;
355 	et->et_root_journal_access = access;
356 	if (!obj)
357 		obj = (void *)bh->b_data;
358 	et->et_object = obj;
359 
360 	et->et_ops->eo_fill_root_el(et);
361 	if (!et->et_ops->eo_fill_max_leaf_clusters)
362 		et->et_max_leaf_clusters = 0;
363 	else
364 		et->et_ops->eo_fill_max_leaf_clusters(inode, et);
365 }
366 
367 void ocfs2_init_dinode_extent_tree(struct ocfs2_extent_tree *et,
368 				   struct inode *inode,
369 				   struct buffer_head *bh)
370 {
371 	__ocfs2_init_extent_tree(et, inode, bh, ocfs2_journal_access_di,
372 				 NULL, &ocfs2_dinode_et_ops);
373 }
374 
375 void ocfs2_init_xattr_tree_extent_tree(struct ocfs2_extent_tree *et,
376 				       struct inode *inode,
377 				       struct buffer_head *bh)
378 {
379 	__ocfs2_init_extent_tree(et, inode, bh, ocfs2_journal_access_xb,
380 				 NULL, &ocfs2_xattr_tree_et_ops);
381 }
382 
383 void ocfs2_init_xattr_value_extent_tree(struct ocfs2_extent_tree *et,
384 					struct inode *inode,
385 					struct ocfs2_xattr_value_buf *vb)
386 {
387 	__ocfs2_init_extent_tree(et, inode, vb->vb_bh, vb->vb_access, vb,
388 				 &ocfs2_xattr_value_et_ops);
389 }
390 
391 void ocfs2_init_dx_root_extent_tree(struct ocfs2_extent_tree *et,
392 				    struct inode *inode,
393 				    struct buffer_head *bh)
394 {
395 	__ocfs2_init_extent_tree(et, inode, bh, ocfs2_journal_access_dr,
396 				 NULL, &ocfs2_dx_root_et_ops);
397 }
398 
399 static inline void ocfs2_et_set_last_eb_blk(struct ocfs2_extent_tree *et,
400 					    u64 new_last_eb_blk)
401 {
402 	et->et_ops->eo_set_last_eb_blk(et, new_last_eb_blk);
403 }
404 
405 static inline u64 ocfs2_et_get_last_eb_blk(struct ocfs2_extent_tree *et)
406 {
407 	return et->et_ops->eo_get_last_eb_blk(et);
408 }
409 
410 static inline void ocfs2_et_update_clusters(struct inode *inode,
411 					    struct ocfs2_extent_tree *et,
412 					    u32 clusters)
413 {
414 	et->et_ops->eo_update_clusters(inode, et, clusters);
415 }
416 
417 static inline int ocfs2_et_root_journal_access(handle_t *handle,
418 					       struct inode *inode,
419 					       struct ocfs2_extent_tree *et,
420 					       int type)
421 {
422 	return et->et_root_journal_access(handle, inode, et->et_root_bh,
423 					  type);
424 }
425 
426 static inline int ocfs2_et_insert_check(struct inode *inode,
427 					struct ocfs2_extent_tree *et,
428 					struct ocfs2_extent_rec *rec)
429 {
430 	int ret = 0;
431 
432 	if (et->et_ops->eo_insert_check)
433 		ret = et->et_ops->eo_insert_check(inode, et, rec);
434 	return ret;
435 }
436 
437 static inline int ocfs2_et_sanity_check(struct inode *inode,
438 					struct ocfs2_extent_tree *et)
439 {
440 	int ret = 0;
441 
442 	if (et->et_ops->eo_sanity_check)
443 		ret = et->et_ops->eo_sanity_check(inode, et);
444 	return ret;
445 }
446 
447 static void ocfs2_free_truncate_context(struct ocfs2_truncate_context *tc);
448 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt,
449 					 struct ocfs2_extent_block *eb);
450 
451 /*
452  * Structures which describe a path through a btree, and functions to
453  * manipulate them.
454  *
455  * The idea here is to be as generic as possible with the tree
456  * manipulation code.
457  */
458 struct ocfs2_path_item {
459 	struct buffer_head		*bh;
460 	struct ocfs2_extent_list	*el;
461 };
462 
463 #define OCFS2_MAX_PATH_DEPTH	5
464 
465 struct ocfs2_path {
466 	int				p_tree_depth;
467 	ocfs2_journal_access_func	p_root_access;
468 	struct ocfs2_path_item		p_node[OCFS2_MAX_PATH_DEPTH];
469 };
470 
471 #define path_root_bh(_path) ((_path)->p_node[0].bh)
472 #define path_root_el(_path) ((_path)->p_node[0].el)
473 #define path_root_access(_path)((_path)->p_root_access)
474 #define path_leaf_bh(_path) ((_path)->p_node[(_path)->p_tree_depth].bh)
475 #define path_leaf_el(_path) ((_path)->p_node[(_path)->p_tree_depth].el)
476 #define path_num_items(_path) ((_path)->p_tree_depth + 1)
477 
478 static int ocfs2_find_path(struct inode *inode, struct ocfs2_path *path,
479 			   u32 cpos);
480 static void ocfs2_adjust_rightmost_records(struct inode *inode,
481 					   handle_t *handle,
482 					   struct ocfs2_path *path,
483 					   struct ocfs2_extent_rec *insert_rec);
484 /*
485  * Reset the actual path elements so that we can re-use the structure
486  * to build another path. Generally, this involves freeing the buffer
487  * heads.
488  */
489 static void ocfs2_reinit_path(struct ocfs2_path *path, int keep_root)
490 {
491 	int i, start = 0, depth = 0;
492 	struct ocfs2_path_item *node;
493 
494 	if (keep_root)
495 		start = 1;
496 
497 	for(i = start; i < path_num_items(path); i++) {
498 		node = &path->p_node[i];
499 
500 		brelse(node->bh);
501 		node->bh = NULL;
502 		node->el = NULL;
503 	}
504 
505 	/*
506 	 * Tree depth may change during truncate, or insert. If we're
507 	 * keeping the root extent list, then make sure that our path
508 	 * structure reflects the proper depth.
509 	 */
510 	if (keep_root)
511 		depth = le16_to_cpu(path_root_el(path)->l_tree_depth);
512 	else
513 		path_root_access(path) = NULL;
514 
515 	path->p_tree_depth = depth;
516 }
517 
518 static void ocfs2_free_path(struct ocfs2_path *path)
519 {
520 	if (path) {
521 		ocfs2_reinit_path(path, 0);
522 		kfree(path);
523 	}
524 }
525 
526 /*
527  * All the elements of src into dest. After this call, src could be freed
528  * without affecting dest.
529  *
530  * Both paths should have the same root. Any non-root elements of dest
531  * will be freed.
532  */
533 static void ocfs2_cp_path(struct ocfs2_path *dest, struct ocfs2_path *src)
534 {
535 	int i;
536 
537 	BUG_ON(path_root_bh(dest) != path_root_bh(src));
538 	BUG_ON(path_root_el(dest) != path_root_el(src));
539 	BUG_ON(path_root_access(dest) != path_root_access(src));
540 
541 	ocfs2_reinit_path(dest, 1);
542 
543 	for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) {
544 		dest->p_node[i].bh = src->p_node[i].bh;
545 		dest->p_node[i].el = src->p_node[i].el;
546 
547 		if (dest->p_node[i].bh)
548 			get_bh(dest->p_node[i].bh);
549 	}
550 }
551 
552 /*
553  * Make the *dest path the same as src and re-initialize src path to
554  * have a root only.
555  */
556 static void ocfs2_mv_path(struct ocfs2_path *dest, struct ocfs2_path *src)
557 {
558 	int i;
559 
560 	BUG_ON(path_root_bh(dest) != path_root_bh(src));
561 	BUG_ON(path_root_access(dest) != path_root_access(src));
562 
563 	for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) {
564 		brelse(dest->p_node[i].bh);
565 
566 		dest->p_node[i].bh = src->p_node[i].bh;
567 		dest->p_node[i].el = src->p_node[i].el;
568 
569 		src->p_node[i].bh = NULL;
570 		src->p_node[i].el = NULL;
571 	}
572 }
573 
574 /*
575  * Insert an extent block at given index.
576  *
577  * This will not take an additional reference on eb_bh.
578  */
579 static inline void ocfs2_path_insert_eb(struct ocfs2_path *path, int index,
580 					struct buffer_head *eb_bh)
581 {
582 	struct ocfs2_extent_block *eb = (struct ocfs2_extent_block *)eb_bh->b_data;
583 
584 	/*
585 	 * Right now, no root bh is an extent block, so this helps
586 	 * catch code errors with dinode trees. The assertion can be
587 	 * safely removed if we ever need to insert extent block
588 	 * structures at the root.
589 	 */
590 	BUG_ON(index == 0);
591 
592 	path->p_node[index].bh = eb_bh;
593 	path->p_node[index].el = &eb->h_list;
594 }
595 
596 static struct ocfs2_path *ocfs2_new_path(struct buffer_head *root_bh,
597 					 struct ocfs2_extent_list *root_el,
598 					 ocfs2_journal_access_func access)
599 {
600 	struct ocfs2_path *path;
601 
602 	BUG_ON(le16_to_cpu(root_el->l_tree_depth) >= OCFS2_MAX_PATH_DEPTH);
603 
604 	path = kzalloc(sizeof(*path), GFP_NOFS);
605 	if (path) {
606 		path->p_tree_depth = le16_to_cpu(root_el->l_tree_depth);
607 		get_bh(root_bh);
608 		path_root_bh(path) = root_bh;
609 		path_root_el(path) = root_el;
610 		path_root_access(path) = access;
611 	}
612 
613 	return path;
614 }
615 
616 static struct ocfs2_path *ocfs2_new_path_from_path(struct ocfs2_path *path)
617 {
618 	return ocfs2_new_path(path_root_bh(path), path_root_el(path),
619 			      path_root_access(path));
620 }
621 
622 static struct ocfs2_path *ocfs2_new_path_from_et(struct ocfs2_extent_tree *et)
623 {
624 	return ocfs2_new_path(et->et_root_bh, et->et_root_el,
625 			      et->et_root_journal_access);
626 }
627 
628 /*
629  * Journal the buffer at depth idx.  All idx>0 are extent_blocks,
630  * otherwise it's the root_access function.
631  *
632  * I don't like the way this function's name looks next to
633  * ocfs2_journal_access_path(), but I don't have a better one.
634  */
635 static int ocfs2_path_bh_journal_access(handle_t *handle,
636 					struct inode *inode,
637 					struct ocfs2_path *path,
638 					int idx)
639 {
640 	ocfs2_journal_access_func access = path_root_access(path);
641 
642 	if (!access)
643 		access = ocfs2_journal_access;
644 
645 	if (idx)
646 		access = ocfs2_journal_access_eb;
647 
648 	return access(handle, inode, path->p_node[idx].bh,
649 		      OCFS2_JOURNAL_ACCESS_WRITE);
650 }
651 
652 /*
653  * Convenience function to journal all components in a path.
654  */
655 static int ocfs2_journal_access_path(struct inode *inode, handle_t *handle,
656 				     struct ocfs2_path *path)
657 {
658 	int i, ret = 0;
659 
660 	if (!path)
661 		goto out;
662 
663 	for(i = 0; i < path_num_items(path); i++) {
664 		ret = ocfs2_path_bh_journal_access(handle, inode, path, i);
665 		if (ret < 0) {
666 			mlog_errno(ret);
667 			goto out;
668 		}
669 	}
670 
671 out:
672 	return ret;
673 }
674 
675 /*
676  * Return the index of the extent record which contains cluster #v_cluster.
677  * -1 is returned if it was not found.
678  *
679  * Should work fine on interior and exterior nodes.
680  */
681 int ocfs2_search_extent_list(struct ocfs2_extent_list *el, u32 v_cluster)
682 {
683 	int ret = -1;
684 	int i;
685 	struct ocfs2_extent_rec *rec;
686 	u32 rec_end, rec_start, clusters;
687 
688 	for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) {
689 		rec = &el->l_recs[i];
690 
691 		rec_start = le32_to_cpu(rec->e_cpos);
692 		clusters = ocfs2_rec_clusters(el, rec);
693 
694 		rec_end = rec_start + clusters;
695 
696 		if (v_cluster >= rec_start && v_cluster < rec_end) {
697 			ret = i;
698 			break;
699 		}
700 	}
701 
702 	return ret;
703 }
704 
705 enum ocfs2_contig_type {
706 	CONTIG_NONE = 0,
707 	CONTIG_LEFT,
708 	CONTIG_RIGHT,
709 	CONTIG_LEFTRIGHT,
710 };
711 
712 
713 /*
714  * NOTE: ocfs2_block_extent_contig(), ocfs2_extents_adjacent() and
715  * ocfs2_extent_contig only work properly against leaf nodes!
716  */
717 static int ocfs2_block_extent_contig(struct super_block *sb,
718 				     struct ocfs2_extent_rec *ext,
719 				     u64 blkno)
720 {
721 	u64 blk_end = le64_to_cpu(ext->e_blkno);
722 
723 	blk_end += ocfs2_clusters_to_blocks(sb,
724 				    le16_to_cpu(ext->e_leaf_clusters));
725 
726 	return blkno == blk_end;
727 }
728 
729 static int ocfs2_extents_adjacent(struct ocfs2_extent_rec *left,
730 				  struct ocfs2_extent_rec *right)
731 {
732 	u32 left_range;
733 
734 	left_range = le32_to_cpu(left->e_cpos) +
735 		le16_to_cpu(left->e_leaf_clusters);
736 
737 	return (left_range == le32_to_cpu(right->e_cpos));
738 }
739 
740 static enum ocfs2_contig_type
741 	ocfs2_extent_contig(struct inode *inode,
742 			    struct ocfs2_extent_rec *ext,
743 			    struct ocfs2_extent_rec *insert_rec)
744 {
745 	u64 blkno = le64_to_cpu(insert_rec->e_blkno);
746 
747 	/*
748 	 * Refuse to coalesce extent records with different flag
749 	 * fields - we don't want to mix unwritten extents with user
750 	 * data.
751 	 */
752 	if (ext->e_flags != insert_rec->e_flags)
753 		return CONTIG_NONE;
754 
755 	if (ocfs2_extents_adjacent(ext, insert_rec) &&
756 	    ocfs2_block_extent_contig(inode->i_sb, ext, blkno))
757 			return CONTIG_RIGHT;
758 
759 	blkno = le64_to_cpu(ext->e_blkno);
760 	if (ocfs2_extents_adjacent(insert_rec, ext) &&
761 	    ocfs2_block_extent_contig(inode->i_sb, insert_rec, blkno))
762 		return CONTIG_LEFT;
763 
764 	return CONTIG_NONE;
765 }
766 
767 /*
768  * NOTE: We can have pretty much any combination of contiguousness and
769  * appending.
770  *
771  * The usefulness of APPEND_TAIL is more in that it lets us know that
772  * we'll have to update the path to that leaf.
773  */
774 enum ocfs2_append_type {
775 	APPEND_NONE = 0,
776 	APPEND_TAIL,
777 };
778 
779 enum ocfs2_split_type {
780 	SPLIT_NONE = 0,
781 	SPLIT_LEFT,
782 	SPLIT_RIGHT,
783 };
784 
785 struct ocfs2_insert_type {
786 	enum ocfs2_split_type	ins_split;
787 	enum ocfs2_append_type	ins_appending;
788 	enum ocfs2_contig_type	ins_contig;
789 	int			ins_contig_index;
790 	int			ins_tree_depth;
791 };
792 
793 struct ocfs2_merge_ctxt {
794 	enum ocfs2_contig_type	c_contig_type;
795 	int			c_has_empty_extent;
796 	int			c_split_covers_rec;
797 };
798 
799 static int ocfs2_validate_extent_block(struct super_block *sb,
800 				       struct buffer_head *bh)
801 {
802 	int rc;
803 	struct ocfs2_extent_block *eb =
804 		(struct ocfs2_extent_block *)bh->b_data;
805 
806 	mlog(0, "Validating extent block %llu\n",
807 	     (unsigned long long)bh->b_blocknr);
808 
809 	BUG_ON(!buffer_uptodate(bh));
810 
811 	/*
812 	 * If the ecc fails, we return the error but otherwise
813 	 * leave the filesystem running.  We know any error is
814 	 * local to this block.
815 	 */
816 	rc = ocfs2_validate_meta_ecc(sb, bh->b_data, &eb->h_check);
817 	if (rc) {
818 		mlog(ML_ERROR, "Checksum failed for extent block %llu\n",
819 		     (unsigned long long)bh->b_blocknr);
820 		return rc;
821 	}
822 
823 	/*
824 	 * Errors after here are fatal.
825 	 */
826 
827 	if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
828 		ocfs2_error(sb,
829 			    "Extent block #%llu has bad signature %.*s",
830 			    (unsigned long long)bh->b_blocknr, 7,
831 			    eb->h_signature);
832 		return -EINVAL;
833 	}
834 
835 	if (le64_to_cpu(eb->h_blkno) != bh->b_blocknr) {
836 		ocfs2_error(sb,
837 			    "Extent block #%llu has an invalid h_blkno "
838 			    "of %llu",
839 			    (unsigned long long)bh->b_blocknr,
840 			    (unsigned long long)le64_to_cpu(eb->h_blkno));
841 		return -EINVAL;
842 	}
843 
844 	if (le32_to_cpu(eb->h_fs_generation) != OCFS2_SB(sb)->fs_generation) {
845 		ocfs2_error(sb,
846 			    "Extent block #%llu has an invalid "
847 			    "h_fs_generation of #%u",
848 			    (unsigned long long)bh->b_blocknr,
849 			    le32_to_cpu(eb->h_fs_generation));
850 		return -EINVAL;
851 	}
852 
853 	return 0;
854 }
855 
856 int ocfs2_read_extent_block(struct inode *inode, u64 eb_blkno,
857 			    struct buffer_head **bh)
858 {
859 	int rc;
860 	struct buffer_head *tmp = *bh;
861 
862 	rc = ocfs2_read_block(inode, eb_blkno, &tmp,
863 			      ocfs2_validate_extent_block);
864 
865 	/* If ocfs2_read_block() got us a new bh, pass it up. */
866 	if (!rc && !*bh)
867 		*bh = tmp;
868 
869 	return rc;
870 }
871 
872 
873 /*
874  * How many free extents have we got before we need more meta data?
875  */
876 int ocfs2_num_free_extents(struct ocfs2_super *osb,
877 			   struct inode *inode,
878 			   struct ocfs2_extent_tree *et)
879 {
880 	int retval;
881 	struct ocfs2_extent_list *el = NULL;
882 	struct ocfs2_extent_block *eb;
883 	struct buffer_head *eb_bh = NULL;
884 	u64 last_eb_blk = 0;
885 
886 	mlog_entry_void();
887 
888 	el = et->et_root_el;
889 	last_eb_blk = ocfs2_et_get_last_eb_blk(et);
890 
891 	if (last_eb_blk) {
892 		retval = ocfs2_read_extent_block(inode, last_eb_blk, &eb_bh);
893 		if (retval < 0) {
894 			mlog_errno(retval);
895 			goto bail;
896 		}
897 		eb = (struct ocfs2_extent_block *) eb_bh->b_data;
898 		el = &eb->h_list;
899 	}
900 
901 	BUG_ON(el->l_tree_depth != 0);
902 
903 	retval = le16_to_cpu(el->l_count) - le16_to_cpu(el->l_next_free_rec);
904 bail:
905 	brelse(eb_bh);
906 
907 	mlog_exit(retval);
908 	return retval;
909 }
910 
911 /* expects array to already be allocated
912  *
913  * sets h_signature, h_blkno, h_suballoc_bit, h_suballoc_slot, and
914  * l_count for you
915  */
916 static int ocfs2_create_new_meta_bhs(struct ocfs2_super *osb,
917 				     handle_t *handle,
918 				     struct inode *inode,
919 				     int wanted,
920 				     struct ocfs2_alloc_context *meta_ac,
921 				     struct buffer_head *bhs[])
922 {
923 	int count, status, i;
924 	u16 suballoc_bit_start;
925 	u32 num_got;
926 	u64 first_blkno;
927 	struct ocfs2_extent_block *eb;
928 
929 	mlog_entry_void();
930 
931 	count = 0;
932 	while (count < wanted) {
933 		status = ocfs2_claim_metadata(osb,
934 					      handle,
935 					      meta_ac,
936 					      wanted - count,
937 					      &suballoc_bit_start,
938 					      &num_got,
939 					      &first_blkno);
940 		if (status < 0) {
941 			mlog_errno(status);
942 			goto bail;
943 		}
944 
945 		for(i = count;  i < (num_got + count); i++) {
946 			bhs[i] = sb_getblk(osb->sb, first_blkno);
947 			if (bhs[i] == NULL) {
948 				status = -EIO;
949 				mlog_errno(status);
950 				goto bail;
951 			}
952 			ocfs2_set_new_buffer_uptodate(inode, bhs[i]);
953 
954 			status = ocfs2_journal_access_eb(handle, inode, bhs[i],
955 							 OCFS2_JOURNAL_ACCESS_CREATE);
956 			if (status < 0) {
957 				mlog_errno(status);
958 				goto bail;
959 			}
960 
961 			memset(bhs[i]->b_data, 0, osb->sb->s_blocksize);
962 			eb = (struct ocfs2_extent_block *) bhs[i]->b_data;
963 			/* Ok, setup the minimal stuff here. */
964 			strcpy(eb->h_signature, OCFS2_EXTENT_BLOCK_SIGNATURE);
965 			eb->h_blkno = cpu_to_le64(first_blkno);
966 			eb->h_fs_generation = cpu_to_le32(osb->fs_generation);
967 			eb->h_suballoc_slot = cpu_to_le16(osb->slot_num);
968 			eb->h_suballoc_bit = cpu_to_le16(suballoc_bit_start);
969 			eb->h_list.l_count =
970 				cpu_to_le16(ocfs2_extent_recs_per_eb(osb->sb));
971 
972 			suballoc_bit_start++;
973 			first_blkno++;
974 
975 			/* We'll also be dirtied by the caller, so
976 			 * this isn't absolutely necessary. */
977 			status = ocfs2_journal_dirty(handle, bhs[i]);
978 			if (status < 0) {
979 				mlog_errno(status);
980 				goto bail;
981 			}
982 		}
983 
984 		count += num_got;
985 	}
986 
987 	status = 0;
988 bail:
989 	if (status < 0) {
990 		for(i = 0; i < wanted; i++) {
991 			brelse(bhs[i]);
992 			bhs[i] = NULL;
993 		}
994 	}
995 	mlog_exit(status);
996 	return status;
997 }
998 
999 /*
1000  * Helper function for ocfs2_add_branch() and ocfs2_shift_tree_depth().
1001  *
1002  * Returns the sum of the rightmost extent rec logical offset and
1003  * cluster count.
1004  *
1005  * ocfs2_add_branch() uses this to determine what logical cluster
1006  * value should be populated into the leftmost new branch records.
1007  *
1008  * ocfs2_shift_tree_depth() uses this to determine the # clusters
1009  * value for the new topmost tree record.
1010  */
1011 static inline u32 ocfs2_sum_rightmost_rec(struct ocfs2_extent_list  *el)
1012 {
1013 	int i;
1014 
1015 	i = le16_to_cpu(el->l_next_free_rec) - 1;
1016 
1017 	return le32_to_cpu(el->l_recs[i].e_cpos) +
1018 		ocfs2_rec_clusters(el, &el->l_recs[i]);
1019 }
1020 
1021 /*
1022  * Change range of the branches in the right most path according to the leaf
1023  * extent block's rightmost record.
1024  */
1025 static int ocfs2_adjust_rightmost_branch(handle_t *handle,
1026 					 struct inode *inode,
1027 					 struct ocfs2_extent_tree *et)
1028 {
1029 	int status;
1030 	struct ocfs2_path *path = NULL;
1031 	struct ocfs2_extent_list *el;
1032 	struct ocfs2_extent_rec *rec;
1033 
1034 	path = ocfs2_new_path_from_et(et);
1035 	if (!path) {
1036 		status = -ENOMEM;
1037 		return status;
1038 	}
1039 
1040 	status = ocfs2_find_path(inode, path, UINT_MAX);
1041 	if (status < 0) {
1042 		mlog_errno(status);
1043 		goto out;
1044 	}
1045 
1046 	status = ocfs2_extend_trans(handle, path_num_items(path) +
1047 				    handle->h_buffer_credits);
1048 	if (status < 0) {
1049 		mlog_errno(status);
1050 		goto out;
1051 	}
1052 
1053 	status = ocfs2_journal_access_path(inode, handle, path);
1054 	if (status < 0) {
1055 		mlog_errno(status);
1056 		goto out;
1057 	}
1058 
1059 	el = path_leaf_el(path);
1060 	rec = &el->l_recs[le32_to_cpu(el->l_next_free_rec) - 1];
1061 
1062 	ocfs2_adjust_rightmost_records(inode, handle, path, rec);
1063 
1064 out:
1065 	ocfs2_free_path(path);
1066 	return status;
1067 }
1068 
1069 /*
1070  * Add an entire tree branch to our inode. eb_bh is the extent block
1071  * to start at, if we don't want to start the branch at the dinode
1072  * structure.
1073  *
1074  * last_eb_bh is required as we have to update it's next_leaf pointer
1075  * for the new last extent block.
1076  *
1077  * the new branch will be 'empty' in the sense that every block will
1078  * contain a single record with cluster count == 0.
1079  */
1080 static int ocfs2_add_branch(struct ocfs2_super *osb,
1081 			    handle_t *handle,
1082 			    struct inode *inode,
1083 			    struct ocfs2_extent_tree *et,
1084 			    struct buffer_head *eb_bh,
1085 			    struct buffer_head **last_eb_bh,
1086 			    struct ocfs2_alloc_context *meta_ac)
1087 {
1088 	int status, new_blocks, i;
1089 	u64 next_blkno, new_last_eb_blk;
1090 	struct buffer_head *bh;
1091 	struct buffer_head **new_eb_bhs = NULL;
1092 	struct ocfs2_extent_block *eb;
1093 	struct ocfs2_extent_list  *eb_el;
1094 	struct ocfs2_extent_list  *el;
1095 	u32 new_cpos, root_end;
1096 
1097 	mlog_entry_void();
1098 
1099 	BUG_ON(!last_eb_bh || !*last_eb_bh);
1100 
1101 	if (eb_bh) {
1102 		eb = (struct ocfs2_extent_block *) eb_bh->b_data;
1103 		el = &eb->h_list;
1104 	} else
1105 		el = et->et_root_el;
1106 
1107 	/* we never add a branch to a leaf. */
1108 	BUG_ON(!el->l_tree_depth);
1109 
1110 	new_blocks = le16_to_cpu(el->l_tree_depth);
1111 
1112 	eb = (struct ocfs2_extent_block *)(*last_eb_bh)->b_data;
1113 	new_cpos = ocfs2_sum_rightmost_rec(&eb->h_list);
1114 	root_end = ocfs2_sum_rightmost_rec(et->et_root_el);
1115 
1116 	/*
1117 	 * If there is a gap before the root end and the real end
1118 	 * of the righmost leaf block, we need to remove the gap
1119 	 * between new_cpos and root_end first so that the tree
1120 	 * is consistent after we add a new branch(it will start
1121 	 * from new_cpos).
1122 	 */
1123 	if (root_end > new_cpos) {
1124 		mlog(0, "adjust the cluster end from %u to %u\n",
1125 		     root_end, new_cpos);
1126 		status = ocfs2_adjust_rightmost_branch(handle, inode, et);
1127 		if (status) {
1128 			mlog_errno(status);
1129 			goto bail;
1130 		}
1131 	}
1132 
1133 	/* allocate the number of new eb blocks we need */
1134 	new_eb_bhs = kcalloc(new_blocks, sizeof(struct buffer_head *),
1135 			     GFP_KERNEL);
1136 	if (!new_eb_bhs) {
1137 		status = -ENOMEM;
1138 		mlog_errno(status);
1139 		goto bail;
1140 	}
1141 
1142 	status = ocfs2_create_new_meta_bhs(osb, handle, inode, new_blocks,
1143 					   meta_ac, new_eb_bhs);
1144 	if (status < 0) {
1145 		mlog_errno(status);
1146 		goto bail;
1147 	}
1148 
1149 	/* Note: new_eb_bhs[new_blocks - 1] is the guy which will be
1150 	 * linked with the rest of the tree.
1151 	 * conversly, new_eb_bhs[0] is the new bottommost leaf.
1152 	 *
1153 	 * when we leave the loop, new_last_eb_blk will point to the
1154 	 * newest leaf, and next_blkno will point to the topmost extent
1155 	 * block. */
1156 	next_blkno = new_last_eb_blk = 0;
1157 	for(i = 0; i < new_blocks; i++) {
1158 		bh = new_eb_bhs[i];
1159 		eb = (struct ocfs2_extent_block *) bh->b_data;
1160 		/* ocfs2_create_new_meta_bhs() should create it right! */
1161 		BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb));
1162 		eb_el = &eb->h_list;
1163 
1164 		status = ocfs2_journal_access_eb(handle, inode, bh,
1165 						 OCFS2_JOURNAL_ACCESS_CREATE);
1166 		if (status < 0) {
1167 			mlog_errno(status);
1168 			goto bail;
1169 		}
1170 
1171 		eb->h_next_leaf_blk = 0;
1172 		eb_el->l_tree_depth = cpu_to_le16(i);
1173 		eb_el->l_next_free_rec = cpu_to_le16(1);
1174 		/*
1175 		 * This actually counts as an empty extent as
1176 		 * c_clusters == 0
1177 		 */
1178 		eb_el->l_recs[0].e_cpos = cpu_to_le32(new_cpos);
1179 		eb_el->l_recs[0].e_blkno = cpu_to_le64(next_blkno);
1180 		/*
1181 		 * eb_el isn't always an interior node, but even leaf
1182 		 * nodes want a zero'd flags and reserved field so
1183 		 * this gets the whole 32 bits regardless of use.
1184 		 */
1185 		eb_el->l_recs[0].e_int_clusters = cpu_to_le32(0);
1186 		if (!eb_el->l_tree_depth)
1187 			new_last_eb_blk = le64_to_cpu(eb->h_blkno);
1188 
1189 		status = ocfs2_journal_dirty(handle, bh);
1190 		if (status < 0) {
1191 			mlog_errno(status);
1192 			goto bail;
1193 		}
1194 
1195 		next_blkno = le64_to_cpu(eb->h_blkno);
1196 	}
1197 
1198 	/* This is a bit hairy. We want to update up to three blocks
1199 	 * here without leaving any of them in an inconsistent state
1200 	 * in case of error. We don't have to worry about
1201 	 * journal_dirty erroring as it won't unless we've aborted the
1202 	 * handle (in which case we would never be here) so reserving
1203 	 * the write with journal_access is all we need to do. */
1204 	status = ocfs2_journal_access_eb(handle, inode, *last_eb_bh,
1205 					 OCFS2_JOURNAL_ACCESS_WRITE);
1206 	if (status < 0) {
1207 		mlog_errno(status);
1208 		goto bail;
1209 	}
1210 	status = ocfs2_et_root_journal_access(handle, inode, et,
1211 					      OCFS2_JOURNAL_ACCESS_WRITE);
1212 	if (status < 0) {
1213 		mlog_errno(status);
1214 		goto bail;
1215 	}
1216 	if (eb_bh) {
1217 		status = ocfs2_journal_access_eb(handle, inode, eb_bh,
1218 						 OCFS2_JOURNAL_ACCESS_WRITE);
1219 		if (status < 0) {
1220 			mlog_errno(status);
1221 			goto bail;
1222 		}
1223 	}
1224 
1225 	/* Link the new branch into the rest of the tree (el will
1226 	 * either be on the root_bh, or the extent block passed in. */
1227 	i = le16_to_cpu(el->l_next_free_rec);
1228 	el->l_recs[i].e_blkno = cpu_to_le64(next_blkno);
1229 	el->l_recs[i].e_cpos = cpu_to_le32(new_cpos);
1230 	el->l_recs[i].e_int_clusters = 0;
1231 	le16_add_cpu(&el->l_next_free_rec, 1);
1232 
1233 	/* fe needs a new last extent block pointer, as does the
1234 	 * next_leaf on the previously last-extent-block. */
1235 	ocfs2_et_set_last_eb_blk(et, new_last_eb_blk);
1236 
1237 	eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data;
1238 	eb->h_next_leaf_blk = cpu_to_le64(new_last_eb_blk);
1239 
1240 	status = ocfs2_journal_dirty(handle, *last_eb_bh);
1241 	if (status < 0)
1242 		mlog_errno(status);
1243 	status = ocfs2_journal_dirty(handle, et->et_root_bh);
1244 	if (status < 0)
1245 		mlog_errno(status);
1246 	if (eb_bh) {
1247 		status = ocfs2_journal_dirty(handle, eb_bh);
1248 		if (status < 0)
1249 			mlog_errno(status);
1250 	}
1251 
1252 	/*
1253 	 * Some callers want to track the rightmost leaf so pass it
1254 	 * back here.
1255 	 */
1256 	brelse(*last_eb_bh);
1257 	get_bh(new_eb_bhs[0]);
1258 	*last_eb_bh = new_eb_bhs[0];
1259 
1260 	status = 0;
1261 bail:
1262 	if (new_eb_bhs) {
1263 		for (i = 0; i < new_blocks; i++)
1264 			brelse(new_eb_bhs[i]);
1265 		kfree(new_eb_bhs);
1266 	}
1267 
1268 	mlog_exit(status);
1269 	return status;
1270 }
1271 
1272 /*
1273  * adds another level to the allocation tree.
1274  * returns back the new extent block so you can add a branch to it
1275  * after this call.
1276  */
1277 static int ocfs2_shift_tree_depth(struct ocfs2_super *osb,
1278 				  handle_t *handle,
1279 				  struct inode *inode,
1280 				  struct ocfs2_extent_tree *et,
1281 				  struct ocfs2_alloc_context *meta_ac,
1282 				  struct buffer_head **ret_new_eb_bh)
1283 {
1284 	int status, i;
1285 	u32 new_clusters;
1286 	struct buffer_head *new_eb_bh = NULL;
1287 	struct ocfs2_extent_block *eb;
1288 	struct ocfs2_extent_list  *root_el;
1289 	struct ocfs2_extent_list  *eb_el;
1290 
1291 	mlog_entry_void();
1292 
1293 	status = ocfs2_create_new_meta_bhs(osb, handle, inode, 1, meta_ac,
1294 					   &new_eb_bh);
1295 	if (status < 0) {
1296 		mlog_errno(status);
1297 		goto bail;
1298 	}
1299 
1300 	eb = (struct ocfs2_extent_block *) new_eb_bh->b_data;
1301 	/* ocfs2_create_new_meta_bhs() should create it right! */
1302 	BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb));
1303 
1304 	eb_el = &eb->h_list;
1305 	root_el = et->et_root_el;
1306 
1307 	status = ocfs2_journal_access_eb(handle, inode, new_eb_bh,
1308 					 OCFS2_JOURNAL_ACCESS_CREATE);
1309 	if (status < 0) {
1310 		mlog_errno(status);
1311 		goto bail;
1312 	}
1313 
1314 	/* copy the root extent list data into the new extent block */
1315 	eb_el->l_tree_depth = root_el->l_tree_depth;
1316 	eb_el->l_next_free_rec = root_el->l_next_free_rec;
1317 	for (i = 0; i < le16_to_cpu(root_el->l_next_free_rec); i++)
1318 		eb_el->l_recs[i] = root_el->l_recs[i];
1319 
1320 	status = ocfs2_journal_dirty(handle, new_eb_bh);
1321 	if (status < 0) {
1322 		mlog_errno(status);
1323 		goto bail;
1324 	}
1325 
1326 	status = ocfs2_et_root_journal_access(handle, inode, et,
1327 					      OCFS2_JOURNAL_ACCESS_WRITE);
1328 	if (status < 0) {
1329 		mlog_errno(status);
1330 		goto bail;
1331 	}
1332 
1333 	new_clusters = ocfs2_sum_rightmost_rec(eb_el);
1334 
1335 	/* update root_bh now */
1336 	le16_add_cpu(&root_el->l_tree_depth, 1);
1337 	root_el->l_recs[0].e_cpos = 0;
1338 	root_el->l_recs[0].e_blkno = eb->h_blkno;
1339 	root_el->l_recs[0].e_int_clusters = cpu_to_le32(new_clusters);
1340 	for (i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++)
1341 		memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec));
1342 	root_el->l_next_free_rec = cpu_to_le16(1);
1343 
1344 	/* If this is our 1st tree depth shift, then last_eb_blk
1345 	 * becomes the allocated extent block */
1346 	if (root_el->l_tree_depth == cpu_to_le16(1))
1347 		ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
1348 
1349 	status = ocfs2_journal_dirty(handle, et->et_root_bh);
1350 	if (status < 0) {
1351 		mlog_errno(status);
1352 		goto bail;
1353 	}
1354 
1355 	*ret_new_eb_bh = new_eb_bh;
1356 	new_eb_bh = NULL;
1357 	status = 0;
1358 bail:
1359 	brelse(new_eb_bh);
1360 
1361 	mlog_exit(status);
1362 	return status;
1363 }
1364 
1365 /*
1366  * Should only be called when there is no space left in any of the
1367  * leaf nodes. What we want to do is find the lowest tree depth
1368  * non-leaf extent block with room for new records. There are three
1369  * valid results of this search:
1370  *
1371  * 1) a lowest extent block is found, then we pass it back in
1372  *    *lowest_eb_bh and return '0'
1373  *
1374  * 2) the search fails to find anything, but the root_el has room. We
1375  *    pass NULL back in *lowest_eb_bh, but still return '0'
1376  *
1377  * 3) the search fails to find anything AND the root_el is full, in
1378  *    which case we return > 0
1379  *
1380  * return status < 0 indicates an error.
1381  */
1382 static int ocfs2_find_branch_target(struct ocfs2_super *osb,
1383 				    struct inode *inode,
1384 				    struct ocfs2_extent_tree *et,
1385 				    struct buffer_head **target_bh)
1386 {
1387 	int status = 0, i;
1388 	u64 blkno;
1389 	struct ocfs2_extent_block *eb;
1390 	struct ocfs2_extent_list  *el;
1391 	struct buffer_head *bh = NULL;
1392 	struct buffer_head *lowest_bh = NULL;
1393 
1394 	mlog_entry_void();
1395 
1396 	*target_bh = NULL;
1397 
1398 	el = et->et_root_el;
1399 
1400 	while(le16_to_cpu(el->l_tree_depth) > 1) {
1401 		if (le16_to_cpu(el->l_next_free_rec) == 0) {
1402 			ocfs2_error(inode->i_sb, "Dinode %llu has empty "
1403 				    "extent list (next_free_rec == 0)",
1404 				    (unsigned long long)OCFS2_I(inode)->ip_blkno);
1405 			status = -EIO;
1406 			goto bail;
1407 		}
1408 		i = le16_to_cpu(el->l_next_free_rec) - 1;
1409 		blkno = le64_to_cpu(el->l_recs[i].e_blkno);
1410 		if (!blkno) {
1411 			ocfs2_error(inode->i_sb, "Dinode %llu has extent "
1412 				    "list where extent # %d has no physical "
1413 				    "block start",
1414 				    (unsigned long long)OCFS2_I(inode)->ip_blkno, i);
1415 			status = -EIO;
1416 			goto bail;
1417 		}
1418 
1419 		brelse(bh);
1420 		bh = NULL;
1421 
1422 		status = ocfs2_read_extent_block(inode, blkno, &bh);
1423 		if (status < 0) {
1424 			mlog_errno(status);
1425 			goto bail;
1426 		}
1427 
1428 		eb = (struct ocfs2_extent_block *) bh->b_data;
1429 		el = &eb->h_list;
1430 
1431 		if (le16_to_cpu(el->l_next_free_rec) <
1432 		    le16_to_cpu(el->l_count)) {
1433 			brelse(lowest_bh);
1434 			lowest_bh = bh;
1435 			get_bh(lowest_bh);
1436 		}
1437 	}
1438 
1439 	/* If we didn't find one and the fe doesn't have any room,
1440 	 * then return '1' */
1441 	el = et->et_root_el;
1442 	if (!lowest_bh && (el->l_next_free_rec == el->l_count))
1443 		status = 1;
1444 
1445 	*target_bh = lowest_bh;
1446 bail:
1447 	brelse(bh);
1448 
1449 	mlog_exit(status);
1450 	return status;
1451 }
1452 
1453 /*
1454  * Grow a b-tree so that it has more records.
1455  *
1456  * We might shift the tree depth in which case existing paths should
1457  * be considered invalid.
1458  *
1459  * Tree depth after the grow is returned via *final_depth.
1460  *
1461  * *last_eb_bh will be updated by ocfs2_add_branch().
1462  */
1463 static int ocfs2_grow_tree(struct inode *inode, handle_t *handle,
1464 			   struct ocfs2_extent_tree *et, int *final_depth,
1465 			   struct buffer_head **last_eb_bh,
1466 			   struct ocfs2_alloc_context *meta_ac)
1467 {
1468 	int ret, shift;
1469 	struct ocfs2_extent_list *el = et->et_root_el;
1470 	int depth = le16_to_cpu(el->l_tree_depth);
1471 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1472 	struct buffer_head *bh = NULL;
1473 
1474 	BUG_ON(meta_ac == NULL);
1475 
1476 	shift = ocfs2_find_branch_target(osb, inode, et, &bh);
1477 	if (shift < 0) {
1478 		ret = shift;
1479 		mlog_errno(ret);
1480 		goto out;
1481 	}
1482 
1483 	/* We traveled all the way to the bottom of the allocation tree
1484 	 * and didn't find room for any more extents - we need to add
1485 	 * another tree level */
1486 	if (shift) {
1487 		BUG_ON(bh);
1488 		mlog(0, "need to shift tree depth (current = %d)\n", depth);
1489 
1490 		/* ocfs2_shift_tree_depth will return us a buffer with
1491 		 * the new extent block (so we can pass that to
1492 		 * ocfs2_add_branch). */
1493 		ret = ocfs2_shift_tree_depth(osb, handle, inode, et,
1494 					     meta_ac, &bh);
1495 		if (ret < 0) {
1496 			mlog_errno(ret);
1497 			goto out;
1498 		}
1499 		depth++;
1500 		if (depth == 1) {
1501 			/*
1502 			 * Special case: we have room now if we shifted from
1503 			 * tree_depth 0, so no more work needs to be done.
1504 			 *
1505 			 * We won't be calling add_branch, so pass
1506 			 * back *last_eb_bh as the new leaf. At depth
1507 			 * zero, it should always be null so there's
1508 			 * no reason to brelse.
1509 			 */
1510 			BUG_ON(*last_eb_bh);
1511 			get_bh(bh);
1512 			*last_eb_bh = bh;
1513 			goto out;
1514 		}
1515 	}
1516 
1517 	/* call ocfs2_add_branch to add the final part of the tree with
1518 	 * the new data. */
1519 	mlog(0, "add branch. bh = %p\n", bh);
1520 	ret = ocfs2_add_branch(osb, handle, inode, et, bh, last_eb_bh,
1521 			       meta_ac);
1522 	if (ret < 0) {
1523 		mlog_errno(ret);
1524 		goto out;
1525 	}
1526 
1527 out:
1528 	if (final_depth)
1529 		*final_depth = depth;
1530 	brelse(bh);
1531 	return ret;
1532 }
1533 
1534 /*
1535  * This function will discard the rightmost extent record.
1536  */
1537 static void ocfs2_shift_records_right(struct ocfs2_extent_list *el)
1538 {
1539 	int next_free = le16_to_cpu(el->l_next_free_rec);
1540 	int count = le16_to_cpu(el->l_count);
1541 	unsigned int num_bytes;
1542 
1543 	BUG_ON(!next_free);
1544 	/* This will cause us to go off the end of our extent list. */
1545 	BUG_ON(next_free >= count);
1546 
1547 	num_bytes = sizeof(struct ocfs2_extent_rec) * next_free;
1548 
1549 	memmove(&el->l_recs[1], &el->l_recs[0], num_bytes);
1550 }
1551 
1552 static void ocfs2_rotate_leaf(struct ocfs2_extent_list *el,
1553 			      struct ocfs2_extent_rec *insert_rec)
1554 {
1555 	int i, insert_index, next_free, has_empty, num_bytes;
1556 	u32 insert_cpos = le32_to_cpu(insert_rec->e_cpos);
1557 	struct ocfs2_extent_rec *rec;
1558 
1559 	next_free = le16_to_cpu(el->l_next_free_rec);
1560 	has_empty = ocfs2_is_empty_extent(&el->l_recs[0]);
1561 
1562 	BUG_ON(!next_free);
1563 
1564 	/* The tree code before us didn't allow enough room in the leaf. */
1565 	BUG_ON(el->l_next_free_rec == el->l_count && !has_empty);
1566 
1567 	/*
1568 	 * The easiest way to approach this is to just remove the
1569 	 * empty extent and temporarily decrement next_free.
1570 	 */
1571 	if (has_empty) {
1572 		/*
1573 		 * If next_free was 1 (only an empty extent), this
1574 		 * loop won't execute, which is fine. We still want
1575 		 * the decrement above to happen.
1576 		 */
1577 		for(i = 0; i < (next_free - 1); i++)
1578 			el->l_recs[i] = el->l_recs[i+1];
1579 
1580 		next_free--;
1581 	}
1582 
1583 	/*
1584 	 * Figure out what the new record index should be.
1585 	 */
1586 	for(i = 0; i < next_free; i++) {
1587 		rec = &el->l_recs[i];
1588 
1589 		if (insert_cpos < le32_to_cpu(rec->e_cpos))
1590 			break;
1591 	}
1592 	insert_index = i;
1593 
1594 	mlog(0, "ins %u: index %d, has_empty %d, next_free %d, count %d\n",
1595 	     insert_cpos, insert_index, has_empty, next_free, le16_to_cpu(el->l_count));
1596 
1597 	BUG_ON(insert_index < 0);
1598 	BUG_ON(insert_index >= le16_to_cpu(el->l_count));
1599 	BUG_ON(insert_index > next_free);
1600 
1601 	/*
1602 	 * No need to memmove if we're just adding to the tail.
1603 	 */
1604 	if (insert_index != next_free) {
1605 		BUG_ON(next_free >= le16_to_cpu(el->l_count));
1606 
1607 		num_bytes = next_free - insert_index;
1608 		num_bytes *= sizeof(struct ocfs2_extent_rec);
1609 		memmove(&el->l_recs[insert_index + 1],
1610 			&el->l_recs[insert_index],
1611 			num_bytes);
1612 	}
1613 
1614 	/*
1615 	 * Either we had an empty extent, and need to re-increment or
1616 	 * there was no empty extent on a non full rightmost leaf node,
1617 	 * in which case we still need to increment.
1618 	 */
1619 	next_free++;
1620 	el->l_next_free_rec = cpu_to_le16(next_free);
1621 	/*
1622 	 * Make sure none of the math above just messed up our tree.
1623 	 */
1624 	BUG_ON(le16_to_cpu(el->l_next_free_rec) > le16_to_cpu(el->l_count));
1625 
1626 	el->l_recs[insert_index] = *insert_rec;
1627 
1628 }
1629 
1630 static void ocfs2_remove_empty_extent(struct ocfs2_extent_list *el)
1631 {
1632 	int size, num_recs = le16_to_cpu(el->l_next_free_rec);
1633 
1634 	BUG_ON(num_recs == 0);
1635 
1636 	if (ocfs2_is_empty_extent(&el->l_recs[0])) {
1637 		num_recs--;
1638 		size = num_recs * sizeof(struct ocfs2_extent_rec);
1639 		memmove(&el->l_recs[0], &el->l_recs[1], size);
1640 		memset(&el->l_recs[num_recs], 0,
1641 		       sizeof(struct ocfs2_extent_rec));
1642 		el->l_next_free_rec = cpu_to_le16(num_recs);
1643 	}
1644 }
1645 
1646 /*
1647  * Create an empty extent record .
1648  *
1649  * l_next_free_rec may be updated.
1650  *
1651  * If an empty extent already exists do nothing.
1652  */
1653 static void ocfs2_create_empty_extent(struct ocfs2_extent_list *el)
1654 {
1655 	int next_free = le16_to_cpu(el->l_next_free_rec);
1656 
1657 	BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
1658 
1659 	if (next_free == 0)
1660 		goto set_and_inc;
1661 
1662 	if (ocfs2_is_empty_extent(&el->l_recs[0]))
1663 		return;
1664 
1665 	mlog_bug_on_msg(el->l_count == el->l_next_free_rec,
1666 			"Asked to create an empty extent in a full list:\n"
1667 			"count = %u, tree depth = %u",
1668 			le16_to_cpu(el->l_count),
1669 			le16_to_cpu(el->l_tree_depth));
1670 
1671 	ocfs2_shift_records_right(el);
1672 
1673 set_and_inc:
1674 	le16_add_cpu(&el->l_next_free_rec, 1);
1675 	memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
1676 }
1677 
1678 /*
1679  * For a rotation which involves two leaf nodes, the "root node" is
1680  * the lowest level tree node which contains a path to both leafs. This
1681  * resulting set of information can be used to form a complete "subtree"
1682  *
1683  * This function is passed two full paths from the dinode down to a
1684  * pair of adjacent leaves. It's task is to figure out which path
1685  * index contains the subtree root - this can be the root index itself
1686  * in a worst-case rotation.
1687  *
1688  * The array index of the subtree root is passed back.
1689  */
1690 static int ocfs2_find_subtree_root(struct inode *inode,
1691 				   struct ocfs2_path *left,
1692 				   struct ocfs2_path *right)
1693 {
1694 	int i = 0;
1695 
1696 	/*
1697 	 * Check that the caller passed in two paths from the same tree.
1698 	 */
1699 	BUG_ON(path_root_bh(left) != path_root_bh(right));
1700 
1701 	do {
1702 		i++;
1703 
1704 		/*
1705 		 * The caller didn't pass two adjacent paths.
1706 		 */
1707 		mlog_bug_on_msg(i > left->p_tree_depth,
1708 				"Inode %lu, left depth %u, right depth %u\n"
1709 				"left leaf blk %llu, right leaf blk %llu\n",
1710 				inode->i_ino, left->p_tree_depth,
1711 				right->p_tree_depth,
1712 				(unsigned long long)path_leaf_bh(left)->b_blocknr,
1713 				(unsigned long long)path_leaf_bh(right)->b_blocknr);
1714 	} while (left->p_node[i].bh->b_blocknr ==
1715 		 right->p_node[i].bh->b_blocknr);
1716 
1717 	return i - 1;
1718 }
1719 
1720 typedef void (path_insert_t)(void *, struct buffer_head *);
1721 
1722 /*
1723  * Traverse a btree path in search of cpos, starting at root_el.
1724  *
1725  * This code can be called with a cpos larger than the tree, in which
1726  * case it will return the rightmost path.
1727  */
1728 static int __ocfs2_find_path(struct inode *inode,
1729 			     struct ocfs2_extent_list *root_el, u32 cpos,
1730 			     path_insert_t *func, void *data)
1731 {
1732 	int i, ret = 0;
1733 	u32 range;
1734 	u64 blkno;
1735 	struct buffer_head *bh = NULL;
1736 	struct ocfs2_extent_block *eb;
1737 	struct ocfs2_extent_list *el;
1738 	struct ocfs2_extent_rec *rec;
1739 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
1740 
1741 	el = root_el;
1742 	while (el->l_tree_depth) {
1743 		if (le16_to_cpu(el->l_next_free_rec) == 0) {
1744 			ocfs2_error(inode->i_sb,
1745 				    "Inode %llu has empty extent list at "
1746 				    "depth %u\n",
1747 				    (unsigned long long)oi->ip_blkno,
1748 				    le16_to_cpu(el->l_tree_depth));
1749 			ret = -EROFS;
1750 			goto out;
1751 
1752 		}
1753 
1754 		for(i = 0; i < le16_to_cpu(el->l_next_free_rec) - 1; i++) {
1755 			rec = &el->l_recs[i];
1756 
1757 			/*
1758 			 * In the case that cpos is off the allocation
1759 			 * tree, this should just wind up returning the
1760 			 * rightmost record.
1761 			 */
1762 			range = le32_to_cpu(rec->e_cpos) +
1763 				ocfs2_rec_clusters(el, rec);
1764 			if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range)
1765 			    break;
1766 		}
1767 
1768 		blkno = le64_to_cpu(el->l_recs[i].e_blkno);
1769 		if (blkno == 0) {
1770 			ocfs2_error(inode->i_sb,
1771 				    "Inode %llu has bad blkno in extent list "
1772 				    "at depth %u (index %d)\n",
1773 				    (unsigned long long)oi->ip_blkno,
1774 				    le16_to_cpu(el->l_tree_depth), i);
1775 			ret = -EROFS;
1776 			goto out;
1777 		}
1778 
1779 		brelse(bh);
1780 		bh = NULL;
1781 		ret = ocfs2_read_extent_block(inode, blkno, &bh);
1782 		if (ret) {
1783 			mlog_errno(ret);
1784 			goto out;
1785 		}
1786 
1787 		eb = (struct ocfs2_extent_block *) bh->b_data;
1788 		el = &eb->h_list;
1789 
1790 		if (le16_to_cpu(el->l_next_free_rec) >
1791 		    le16_to_cpu(el->l_count)) {
1792 			ocfs2_error(inode->i_sb,
1793 				    "Inode %llu has bad count in extent list "
1794 				    "at block %llu (next free=%u, count=%u)\n",
1795 				    (unsigned long long)oi->ip_blkno,
1796 				    (unsigned long long)bh->b_blocknr,
1797 				    le16_to_cpu(el->l_next_free_rec),
1798 				    le16_to_cpu(el->l_count));
1799 			ret = -EROFS;
1800 			goto out;
1801 		}
1802 
1803 		if (func)
1804 			func(data, bh);
1805 	}
1806 
1807 out:
1808 	/*
1809 	 * Catch any trailing bh that the loop didn't handle.
1810 	 */
1811 	brelse(bh);
1812 
1813 	return ret;
1814 }
1815 
1816 /*
1817  * Given an initialized path (that is, it has a valid root extent
1818  * list), this function will traverse the btree in search of the path
1819  * which would contain cpos.
1820  *
1821  * The path traveled is recorded in the path structure.
1822  *
1823  * Note that this will not do any comparisons on leaf node extent
1824  * records, so it will work fine in the case that we just added a tree
1825  * branch.
1826  */
1827 struct find_path_data {
1828 	int index;
1829 	struct ocfs2_path *path;
1830 };
1831 static void find_path_ins(void *data, struct buffer_head *bh)
1832 {
1833 	struct find_path_data *fp = data;
1834 
1835 	get_bh(bh);
1836 	ocfs2_path_insert_eb(fp->path, fp->index, bh);
1837 	fp->index++;
1838 }
1839 static int ocfs2_find_path(struct inode *inode, struct ocfs2_path *path,
1840 			   u32 cpos)
1841 {
1842 	struct find_path_data data;
1843 
1844 	data.index = 1;
1845 	data.path = path;
1846 	return __ocfs2_find_path(inode, path_root_el(path), cpos,
1847 				 find_path_ins, &data);
1848 }
1849 
1850 static void find_leaf_ins(void *data, struct buffer_head *bh)
1851 {
1852 	struct ocfs2_extent_block *eb =(struct ocfs2_extent_block *)bh->b_data;
1853 	struct ocfs2_extent_list *el = &eb->h_list;
1854 	struct buffer_head **ret = data;
1855 
1856 	/* We want to retain only the leaf block. */
1857 	if (le16_to_cpu(el->l_tree_depth) == 0) {
1858 		get_bh(bh);
1859 		*ret = bh;
1860 	}
1861 }
1862 /*
1863  * Find the leaf block in the tree which would contain cpos. No
1864  * checking of the actual leaf is done.
1865  *
1866  * Some paths want to call this instead of allocating a path structure
1867  * and calling ocfs2_find_path().
1868  *
1869  * This function doesn't handle non btree extent lists.
1870  */
1871 int ocfs2_find_leaf(struct inode *inode, struct ocfs2_extent_list *root_el,
1872 		    u32 cpos, struct buffer_head **leaf_bh)
1873 {
1874 	int ret;
1875 	struct buffer_head *bh = NULL;
1876 
1877 	ret = __ocfs2_find_path(inode, root_el, cpos, find_leaf_ins, &bh);
1878 	if (ret) {
1879 		mlog_errno(ret);
1880 		goto out;
1881 	}
1882 
1883 	*leaf_bh = bh;
1884 out:
1885 	return ret;
1886 }
1887 
1888 /*
1889  * Adjust the adjacent records (left_rec, right_rec) involved in a rotation.
1890  *
1891  * Basically, we've moved stuff around at the bottom of the tree and
1892  * we need to fix up the extent records above the changes to reflect
1893  * the new changes.
1894  *
1895  * left_rec: the record on the left.
1896  * left_child_el: is the child list pointed to by left_rec
1897  * right_rec: the record to the right of left_rec
1898  * right_child_el: is the child list pointed to by right_rec
1899  *
1900  * By definition, this only works on interior nodes.
1901  */
1902 static void ocfs2_adjust_adjacent_records(struct ocfs2_extent_rec *left_rec,
1903 				  struct ocfs2_extent_list *left_child_el,
1904 				  struct ocfs2_extent_rec *right_rec,
1905 				  struct ocfs2_extent_list *right_child_el)
1906 {
1907 	u32 left_clusters, right_end;
1908 
1909 	/*
1910 	 * Interior nodes never have holes. Their cpos is the cpos of
1911 	 * the leftmost record in their child list. Their cluster
1912 	 * count covers the full theoretical range of their child list
1913 	 * - the range between their cpos and the cpos of the record
1914 	 * immediately to their right.
1915 	 */
1916 	left_clusters = le32_to_cpu(right_child_el->l_recs[0].e_cpos);
1917 	if (ocfs2_is_empty_extent(&right_child_el->l_recs[0])) {
1918 		BUG_ON(le16_to_cpu(right_child_el->l_next_free_rec) <= 1);
1919 		left_clusters = le32_to_cpu(right_child_el->l_recs[1].e_cpos);
1920 	}
1921 	left_clusters -= le32_to_cpu(left_rec->e_cpos);
1922 	left_rec->e_int_clusters = cpu_to_le32(left_clusters);
1923 
1924 	/*
1925 	 * Calculate the rightmost cluster count boundary before
1926 	 * moving cpos - we will need to adjust clusters after
1927 	 * updating e_cpos to keep the same highest cluster count.
1928 	 */
1929 	right_end = le32_to_cpu(right_rec->e_cpos);
1930 	right_end += le32_to_cpu(right_rec->e_int_clusters);
1931 
1932 	right_rec->e_cpos = left_rec->e_cpos;
1933 	le32_add_cpu(&right_rec->e_cpos, left_clusters);
1934 
1935 	right_end -= le32_to_cpu(right_rec->e_cpos);
1936 	right_rec->e_int_clusters = cpu_to_le32(right_end);
1937 }
1938 
1939 /*
1940  * Adjust the adjacent root node records involved in a
1941  * rotation. left_el_blkno is passed in as a key so that we can easily
1942  * find it's index in the root list.
1943  */
1944 static void ocfs2_adjust_root_records(struct ocfs2_extent_list *root_el,
1945 				      struct ocfs2_extent_list *left_el,
1946 				      struct ocfs2_extent_list *right_el,
1947 				      u64 left_el_blkno)
1948 {
1949 	int i;
1950 
1951 	BUG_ON(le16_to_cpu(root_el->l_tree_depth) <=
1952 	       le16_to_cpu(left_el->l_tree_depth));
1953 
1954 	for(i = 0; i < le16_to_cpu(root_el->l_next_free_rec) - 1; i++) {
1955 		if (le64_to_cpu(root_el->l_recs[i].e_blkno) == left_el_blkno)
1956 			break;
1957 	}
1958 
1959 	/*
1960 	 * The path walking code should have never returned a root and
1961 	 * two paths which are not adjacent.
1962 	 */
1963 	BUG_ON(i >= (le16_to_cpu(root_el->l_next_free_rec) - 1));
1964 
1965 	ocfs2_adjust_adjacent_records(&root_el->l_recs[i], left_el,
1966 				      &root_el->l_recs[i + 1], right_el);
1967 }
1968 
1969 /*
1970  * We've changed a leaf block (in right_path) and need to reflect that
1971  * change back up the subtree.
1972  *
1973  * This happens in multiple places:
1974  *   - When we've moved an extent record from the left path leaf to the right
1975  *     path leaf to make room for an empty extent in the left path leaf.
1976  *   - When our insert into the right path leaf is at the leftmost edge
1977  *     and requires an update of the path immediately to it's left. This
1978  *     can occur at the end of some types of rotation and appending inserts.
1979  *   - When we've adjusted the last extent record in the left path leaf and the
1980  *     1st extent record in the right path leaf during cross extent block merge.
1981  */
1982 static void ocfs2_complete_edge_insert(struct inode *inode, handle_t *handle,
1983 				       struct ocfs2_path *left_path,
1984 				       struct ocfs2_path *right_path,
1985 				       int subtree_index)
1986 {
1987 	int ret, i, idx;
1988 	struct ocfs2_extent_list *el, *left_el, *right_el;
1989 	struct ocfs2_extent_rec *left_rec, *right_rec;
1990 	struct buffer_head *root_bh = left_path->p_node[subtree_index].bh;
1991 
1992 	/*
1993 	 * Update the counts and position values within all the
1994 	 * interior nodes to reflect the leaf rotation we just did.
1995 	 *
1996 	 * The root node is handled below the loop.
1997 	 *
1998 	 * We begin the loop with right_el and left_el pointing to the
1999 	 * leaf lists and work our way up.
2000 	 *
2001 	 * NOTE: within this loop, left_el and right_el always refer
2002 	 * to the *child* lists.
2003 	 */
2004 	left_el = path_leaf_el(left_path);
2005 	right_el = path_leaf_el(right_path);
2006 	for(i = left_path->p_tree_depth - 1; i > subtree_index; i--) {
2007 		mlog(0, "Adjust records at index %u\n", i);
2008 
2009 		/*
2010 		 * One nice property of knowing that all of these
2011 		 * nodes are below the root is that we only deal with
2012 		 * the leftmost right node record and the rightmost
2013 		 * left node record.
2014 		 */
2015 		el = left_path->p_node[i].el;
2016 		idx = le16_to_cpu(left_el->l_next_free_rec) - 1;
2017 		left_rec = &el->l_recs[idx];
2018 
2019 		el = right_path->p_node[i].el;
2020 		right_rec = &el->l_recs[0];
2021 
2022 		ocfs2_adjust_adjacent_records(left_rec, left_el, right_rec,
2023 					      right_el);
2024 
2025 		ret = ocfs2_journal_dirty(handle, left_path->p_node[i].bh);
2026 		if (ret)
2027 			mlog_errno(ret);
2028 
2029 		ret = ocfs2_journal_dirty(handle, right_path->p_node[i].bh);
2030 		if (ret)
2031 			mlog_errno(ret);
2032 
2033 		/*
2034 		 * Setup our list pointers now so that the current
2035 		 * parents become children in the next iteration.
2036 		 */
2037 		left_el = left_path->p_node[i].el;
2038 		right_el = right_path->p_node[i].el;
2039 	}
2040 
2041 	/*
2042 	 * At the root node, adjust the two adjacent records which
2043 	 * begin our path to the leaves.
2044 	 */
2045 
2046 	el = left_path->p_node[subtree_index].el;
2047 	left_el = left_path->p_node[subtree_index + 1].el;
2048 	right_el = right_path->p_node[subtree_index + 1].el;
2049 
2050 	ocfs2_adjust_root_records(el, left_el, right_el,
2051 				  left_path->p_node[subtree_index + 1].bh->b_blocknr);
2052 
2053 	root_bh = left_path->p_node[subtree_index].bh;
2054 
2055 	ret = ocfs2_journal_dirty(handle, root_bh);
2056 	if (ret)
2057 		mlog_errno(ret);
2058 }
2059 
2060 static int ocfs2_rotate_subtree_right(struct inode *inode,
2061 				      handle_t *handle,
2062 				      struct ocfs2_path *left_path,
2063 				      struct ocfs2_path *right_path,
2064 				      int subtree_index)
2065 {
2066 	int ret, i;
2067 	struct buffer_head *right_leaf_bh;
2068 	struct buffer_head *left_leaf_bh = NULL;
2069 	struct buffer_head *root_bh;
2070 	struct ocfs2_extent_list *right_el, *left_el;
2071 	struct ocfs2_extent_rec move_rec;
2072 
2073 	left_leaf_bh = path_leaf_bh(left_path);
2074 	left_el = path_leaf_el(left_path);
2075 
2076 	if (left_el->l_next_free_rec != left_el->l_count) {
2077 		ocfs2_error(inode->i_sb,
2078 			    "Inode %llu has non-full interior leaf node %llu"
2079 			    "(next free = %u)",
2080 			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
2081 			    (unsigned long long)left_leaf_bh->b_blocknr,
2082 			    le16_to_cpu(left_el->l_next_free_rec));
2083 		return -EROFS;
2084 	}
2085 
2086 	/*
2087 	 * This extent block may already have an empty record, so we
2088 	 * return early if so.
2089 	 */
2090 	if (ocfs2_is_empty_extent(&left_el->l_recs[0]))
2091 		return 0;
2092 
2093 	root_bh = left_path->p_node[subtree_index].bh;
2094 	BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
2095 
2096 	ret = ocfs2_path_bh_journal_access(handle, inode, right_path,
2097 					   subtree_index);
2098 	if (ret) {
2099 		mlog_errno(ret);
2100 		goto out;
2101 	}
2102 
2103 	for(i = subtree_index + 1; i < path_num_items(right_path); i++) {
2104 		ret = ocfs2_path_bh_journal_access(handle, inode,
2105 						   right_path, i);
2106 		if (ret) {
2107 			mlog_errno(ret);
2108 			goto out;
2109 		}
2110 
2111 		ret = ocfs2_path_bh_journal_access(handle, inode,
2112 						   left_path, i);
2113 		if (ret) {
2114 			mlog_errno(ret);
2115 			goto out;
2116 		}
2117 	}
2118 
2119 	right_leaf_bh = path_leaf_bh(right_path);
2120 	right_el = path_leaf_el(right_path);
2121 
2122 	/* This is a code error, not a disk corruption. */
2123 	mlog_bug_on_msg(!right_el->l_next_free_rec, "Inode %llu: Rotate fails "
2124 			"because rightmost leaf block %llu is empty\n",
2125 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
2126 			(unsigned long long)right_leaf_bh->b_blocknr);
2127 
2128 	ocfs2_create_empty_extent(right_el);
2129 
2130 	ret = ocfs2_journal_dirty(handle, right_leaf_bh);
2131 	if (ret) {
2132 		mlog_errno(ret);
2133 		goto out;
2134 	}
2135 
2136 	/* Do the copy now. */
2137 	i = le16_to_cpu(left_el->l_next_free_rec) - 1;
2138 	move_rec = left_el->l_recs[i];
2139 	right_el->l_recs[0] = move_rec;
2140 
2141 	/*
2142 	 * Clear out the record we just copied and shift everything
2143 	 * over, leaving an empty extent in the left leaf.
2144 	 *
2145 	 * We temporarily subtract from next_free_rec so that the
2146 	 * shift will lose the tail record (which is now defunct).
2147 	 */
2148 	le16_add_cpu(&left_el->l_next_free_rec, -1);
2149 	ocfs2_shift_records_right(left_el);
2150 	memset(&left_el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
2151 	le16_add_cpu(&left_el->l_next_free_rec, 1);
2152 
2153 	ret = ocfs2_journal_dirty(handle, left_leaf_bh);
2154 	if (ret) {
2155 		mlog_errno(ret);
2156 		goto out;
2157 	}
2158 
2159 	ocfs2_complete_edge_insert(inode, handle, left_path, right_path,
2160 				subtree_index);
2161 
2162 out:
2163 	return ret;
2164 }
2165 
2166 /*
2167  * Given a full path, determine what cpos value would return us a path
2168  * containing the leaf immediately to the left of the current one.
2169  *
2170  * Will return zero if the path passed in is already the leftmost path.
2171  */
2172 static int ocfs2_find_cpos_for_left_leaf(struct super_block *sb,
2173 					 struct ocfs2_path *path, u32 *cpos)
2174 {
2175 	int i, j, ret = 0;
2176 	u64 blkno;
2177 	struct ocfs2_extent_list *el;
2178 
2179 	BUG_ON(path->p_tree_depth == 0);
2180 
2181 	*cpos = 0;
2182 
2183 	blkno = path_leaf_bh(path)->b_blocknr;
2184 
2185 	/* Start at the tree node just above the leaf and work our way up. */
2186 	i = path->p_tree_depth - 1;
2187 	while (i >= 0) {
2188 		el = path->p_node[i].el;
2189 
2190 		/*
2191 		 * Find the extent record just before the one in our
2192 		 * path.
2193 		 */
2194 		for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) {
2195 			if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) {
2196 				if (j == 0) {
2197 					if (i == 0) {
2198 						/*
2199 						 * We've determined that the
2200 						 * path specified is already
2201 						 * the leftmost one - return a
2202 						 * cpos of zero.
2203 						 */
2204 						goto out;
2205 					}
2206 					/*
2207 					 * The leftmost record points to our
2208 					 * leaf - we need to travel up the
2209 					 * tree one level.
2210 					 */
2211 					goto next_node;
2212 				}
2213 
2214 				*cpos = le32_to_cpu(el->l_recs[j - 1].e_cpos);
2215 				*cpos = *cpos + ocfs2_rec_clusters(el,
2216 							   &el->l_recs[j - 1]);
2217 				*cpos = *cpos - 1;
2218 				goto out;
2219 			}
2220 		}
2221 
2222 		/*
2223 		 * If we got here, we never found a valid node where
2224 		 * the tree indicated one should be.
2225 		 */
2226 		ocfs2_error(sb,
2227 			    "Invalid extent tree at extent block %llu\n",
2228 			    (unsigned long long)blkno);
2229 		ret = -EROFS;
2230 		goto out;
2231 
2232 next_node:
2233 		blkno = path->p_node[i].bh->b_blocknr;
2234 		i--;
2235 	}
2236 
2237 out:
2238 	return ret;
2239 }
2240 
2241 /*
2242  * Extend the transaction by enough credits to complete the rotation,
2243  * and still leave at least the original number of credits allocated
2244  * to this transaction.
2245  */
2246 static int ocfs2_extend_rotate_transaction(handle_t *handle, int subtree_depth,
2247 					   int op_credits,
2248 					   struct ocfs2_path *path)
2249 {
2250 	int credits = (path->p_tree_depth - subtree_depth) * 2 + 1 + op_credits;
2251 
2252 	if (handle->h_buffer_credits < credits)
2253 		return ocfs2_extend_trans(handle, credits);
2254 
2255 	return 0;
2256 }
2257 
2258 /*
2259  * Trap the case where we're inserting into the theoretical range past
2260  * the _actual_ left leaf range. Otherwise, we'll rotate a record
2261  * whose cpos is less than ours into the right leaf.
2262  *
2263  * It's only necessary to look at the rightmost record of the left
2264  * leaf because the logic that calls us should ensure that the
2265  * theoretical ranges in the path components above the leaves are
2266  * correct.
2267  */
2268 static int ocfs2_rotate_requires_path_adjustment(struct ocfs2_path *left_path,
2269 						 u32 insert_cpos)
2270 {
2271 	struct ocfs2_extent_list *left_el;
2272 	struct ocfs2_extent_rec *rec;
2273 	int next_free;
2274 
2275 	left_el = path_leaf_el(left_path);
2276 	next_free = le16_to_cpu(left_el->l_next_free_rec);
2277 	rec = &left_el->l_recs[next_free - 1];
2278 
2279 	if (insert_cpos > le32_to_cpu(rec->e_cpos))
2280 		return 1;
2281 	return 0;
2282 }
2283 
2284 static int ocfs2_leftmost_rec_contains(struct ocfs2_extent_list *el, u32 cpos)
2285 {
2286 	int next_free = le16_to_cpu(el->l_next_free_rec);
2287 	unsigned int range;
2288 	struct ocfs2_extent_rec *rec;
2289 
2290 	if (next_free == 0)
2291 		return 0;
2292 
2293 	rec = &el->l_recs[0];
2294 	if (ocfs2_is_empty_extent(rec)) {
2295 		/* Empty list. */
2296 		if (next_free == 1)
2297 			return 0;
2298 		rec = &el->l_recs[1];
2299 	}
2300 
2301 	range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
2302 	if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range)
2303 		return 1;
2304 	return 0;
2305 }
2306 
2307 /*
2308  * Rotate all the records in a btree right one record, starting at insert_cpos.
2309  *
2310  * The path to the rightmost leaf should be passed in.
2311  *
2312  * The array is assumed to be large enough to hold an entire path (tree depth).
2313  *
2314  * Upon succesful return from this function:
2315  *
2316  * - The 'right_path' array will contain a path to the leaf block
2317  *   whose range contains e_cpos.
2318  * - That leaf block will have a single empty extent in list index 0.
2319  * - In the case that the rotation requires a post-insert update,
2320  *   *ret_left_path will contain a valid path which can be passed to
2321  *   ocfs2_insert_path().
2322  */
2323 static int ocfs2_rotate_tree_right(struct inode *inode,
2324 				   handle_t *handle,
2325 				   enum ocfs2_split_type split,
2326 				   u32 insert_cpos,
2327 				   struct ocfs2_path *right_path,
2328 				   struct ocfs2_path **ret_left_path)
2329 {
2330 	int ret, start, orig_credits = handle->h_buffer_credits;
2331 	u32 cpos;
2332 	struct ocfs2_path *left_path = NULL;
2333 
2334 	*ret_left_path = NULL;
2335 
2336 	left_path = ocfs2_new_path_from_path(right_path);
2337 	if (!left_path) {
2338 		ret = -ENOMEM;
2339 		mlog_errno(ret);
2340 		goto out;
2341 	}
2342 
2343 	ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path, &cpos);
2344 	if (ret) {
2345 		mlog_errno(ret);
2346 		goto out;
2347 	}
2348 
2349 	mlog(0, "Insert: %u, first left path cpos: %u\n", insert_cpos, cpos);
2350 
2351 	/*
2352 	 * What we want to do here is:
2353 	 *
2354 	 * 1) Start with the rightmost path.
2355 	 *
2356 	 * 2) Determine a path to the leaf block directly to the left
2357 	 *    of that leaf.
2358 	 *
2359 	 * 3) Determine the 'subtree root' - the lowest level tree node
2360 	 *    which contains a path to both leaves.
2361 	 *
2362 	 * 4) Rotate the subtree.
2363 	 *
2364 	 * 5) Find the next subtree by considering the left path to be
2365 	 *    the new right path.
2366 	 *
2367 	 * The check at the top of this while loop also accepts
2368 	 * insert_cpos == cpos because cpos is only a _theoretical_
2369 	 * value to get us the left path - insert_cpos might very well
2370 	 * be filling that hole.
2371 	 *
2372 	 * Stop at a cpos of '0' because we either started at the
2373 	 * leftmost branch (i.e., a tree with one branch and a
2374 	 * rotation inside of it), or we've gone as far as we can in
2375 	 * rotating subtrees.
2376 	 */
2377 	while (cpos && insert_cpos <= cpos) {
2378 		mlog(0, "Rotating a tree: ins. cpos: %u, left path cpos: %u\n",
2379 		     insert_cpos, cpos);
2380 
2381 		ret = ocfs2_find_path(inode, left_path, cpos);
2382 		if (ret) {
2383 			mlog_errno(ret);
2384 			goto out;
2385 		}
2386 
2387 		mlog_bug_on_msg(path_leaf_bh(left_path) ==
2388 				path_leaf_bh(right_path),
2389 				"Inode %lu: error during insert of %u "
2390 				"(left path cpos %u) results in two identical "
2391 				"paths ending at %llu\n",
2392 				inode->i_ino, insert_cpos, cpos,
2393 				(unsigned long long)
2394 				path_leaf_bh(left_path)->b_blocknr);
2395 
2396 		if (split == SPLIT_NONE &&
2397 		    ocfs2_rotate_requires_path_adjustment(left_path,
2398 							  insert_cpos)) {
2399 
2400 			/*
2401 			 * We've rotated the tree as much as we
2402 			 * should. The rest is up to
2403 			 * ocfs2_insert_path() to complete, after the
2404 			 * record insertion. We indicate this
2405 			 * situation by returning the left path.
2406 			 *
2407 			 * The reason we don't adjust the records here
2408 			 * before the record insert is that an error
2409 			 * later might break the rule where a parent
2410 			 * record e_cpos will reflect the actual
2411 			 * e_cpos of the 1st nonempty record of the
2412 			 * child list.
2413 			 */
2414 			*ret_left_path = left_path;
2415 			goto out_ret_path;
2416 		}
2417 
2418 		start = ocfs2_find_subtree_root(inode, left_path, right_path);
2419 
2420 		mlog(0, "Subtree root at index %d (blk %llu, depth %d)\n",
2421 		     start,
2422 		     (unsigned long long) right_path->p_node[start].bh->b_blocknr,
2423 		     right_path->p_tree_depth);
2424 
2425 		ret = ocfs2_extend_rotate_transaction(handle, start,
2426 						      orig_credits, right_path);
2427 		if (ret) {
2428 			mlog_errno(ret);
2429 			goto out;
2430 		}
2431 
2432 		ret = ocfs2_rotate_subtree_right(inode, handle, left_path,
2433 						 right_path, start);
2434 		if (ret) {
2435 			mlog_errno(ret);
2436 			goto out;
2437 		}
2438 
2439 		if (split != SPLIT_NONE &&
2440 		    ocfs2_leftmost_rec_contains(path_leaf_el(right_path),
2441 						insert_cpos)) {
2442 			/*
2443 			 * A rotate moves the rightmost left leaf
2444 			 * record over to the leftmost right leaf
2445 			 * slot. If we're doing an extent split
2446 			 * instead of a real insert, then we have to
2447 			 * check that the extent to be split wasn't
2448 			 * just moved over. If it was, then we can
2449 			 * exit here, passing left_path back -
2450 			 * ocfs2_split_extent() is smart enough to
2451 			 * search both leaves.
2452 			 */
2453 			*ret_left_path = left_path;
2454 			goto out_ret_path;
2455 		}
2456 
2457 		/*
2458 		 * There is no need to re-read the next right path
2459 		 * as we know that it'll be our current left
2460 		 * path. Optimize by copying values instead.
2461 		 */
2462 		ocfs2_mv_path(right_path, left_path);
2463 
2464 		ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path,
2465 						    &cpos);
2466 		if (ret) {
2467 			mlog_errno(ret);
2468 			goto out;
2469 		}
2470 	}
2471 
2472 out:
2473 	ocfs2_free_path(left_path);
2474 
2475 out_ret_path:
2476 	return ret;
2477 }
2478 
2479 static int ocfs2_update_edge_lengths(struct inode *inode, handle_t *handle,
2480 				     int subtree_index, struct ocfs2_path *path)
2481 {
2482 	int i, idx, ret;
2483 	struct ocfs2_extent_rec *rec;
2484 	struct ocfs2_extent_list *el;
2485 	struct ocfs2_extent_block *eb;
2486 	u32 range;
2487 
2488 	/*
2489 	 * In normal tree rotation process, we will never touch the
2490 	 * tree branch above subtree_index and ocfs2_extend_rotate_transaction
2491 	 * doesn't reserve the credits for them either.
2492 	 *
2493 	 * But we do have a special case here which will update the rightmost
2494 	 * records for all the bh in the path.
2495 	 * So we have to allocate extra credits and access them.
2496 	 */
2497 	ret = ocfs2_extend_trans(handle,
2498 				 handle->h_buffer_credits + subtree_index);
2499 	if (ret) {
2500 		mlog_errno(ret);
2501 		goto out;
2502 	}
2503 
2504 	ret = ocfs2_journal_access_path(inode, handle, path);
2505 	if (ret) {
2506 		mlog_errno(ret);
2507 		goto out;
2508 	}
2509 
2510 	/* Path should always be rightmost. */
2511 	eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
2512 	BUG_ON(eb->h_next_leaf_blk != 0ULL);
2513 
2514 	el = &eb->h_list;
2515 	BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0);
2516 	idx = le16_to_cpu(el->l_next_free_rec) - 1;
2517 	rec = &el->l_recs[idx];
2518 	range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
2519 
2520 	for (i = 0; i < path->p_tree_depth; i++) {
2521 		el = path->p_node[i].el;
2522 		idx = le16_to_cpu(el->l_next_free_rec) - 1;
2523 		rec = &el->l_recs[idx];
2524 
2525 		rec->e_int_clusters = cpu_to_le32(range);
2526 		le32_add_cpu(&rec->e_int_clusters, -le32_to_cpu(rec->e_cpos));
2527 
2528 		ocfs2_journal_dirty(handle, path->p_node[i].bh);
2529 	}
2530 out:
2531 	return ret;
2532 }
2533 
2534 static void ocfs2_unlink_path(struct inode *inode, handle_t *handle,
2535 			      struct ocfs2_cached_dealloc_ctxt *dealloc,
2536 			      struct ocfs2_path *path, int unlink_start)
2537 {
2538 	int ret, i;
2539 	struct ocfs2_extent_block *eb;
2540 	struct ocfs2_extent_list *el;
2541 	struct buffer_head *bh;
2542 
2543 	for(i = unlink_start; i < path_num_items(path); i++) {
2544 		bh = path->p_node[i].bh;
2545 
2546 		eb = (struct ocfs2_extent_block *)bh->b_data;
2547 		/*
2548 		 * Not all nodes might have had their final count
2549 		 * decremented by the caller - handle this here.
2550 		 */
2551 		el = &eb->h_list;
2552 		if (le16_to_cpu(el->l_next_free_rec) > 1) {
2553 			mlog(ML_ERROR,
2554 			     "Inode %llu, attempted to remove extent block "
2555 			     "%llu with %u records\n",
2556 			     (unsigned long long)OCFS2_I(inode)->ip_blkno,
2557 			     (unsigned long long)le64_to_cpu(eb->h_blkno),
2558 			     le16_to_cpu(el->l_next_free_rec));
2559 
2560 			ocfs2_journal_dirty(handle, bh);
2561 			ocfs2_remove_from_cache(inode, bh);
2562 			continue;
2563 		}
2564 
2565 		el->l_next_free_rec = 0;
2566 		memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
2567 
2568 		ocfs2_journal_dirty(handle, bh);
2569 
2570 		ret = ocfs2_cache_extent_block_free(dealloc, eb);
2571 		if (ret)
2572 			mlog_errno(ret);
2573 
2574 		ocfs2_remove_from_cache(inode, bh);
2575 	}
2576 }
2577 
2578 static void ocfs2_unlink_subtree(struct inode *inode, handle_t *handle,
2579 				 struct ocfs2_path *left_path,
2580 				 struct ocfs2_path *right_path,
2581 				 int subtree_index,
2582 				 struct ocfs2_cached_dealloc_ctxt *dealloc)
2583 {
2584 	int i;
2585 	struct buffer_head *root_bh = left_path->p_node[subtree_index].bh;
2586 	struct ocfs2_extent_list *root_el = left_path->p_node[subtree_index].el;
2587 	struct ocfs2_extent_list *el;
2588 	struct ocfs2_extent_block *eb;
2589 
2590 	el = path_leaf_el(left_path);
2591 
2592 	eb = (struct ocfs2_extent_block *)right_path->p_node[subtree_index + 1].bh->b_data;
2593 
2594 	for(i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++)
2595 		if (root_el->l_recs[i].e_blkno == eb->h_blkno)
2596 			break;
2597 
2598 	BUG_ON(i >= le16_to_cpu(root_el->l_next_free_rec));
2599 
2600 	memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec));
2601 	le16_add_cpu(&root_el->l_next_free_rec, -1);
2602 
2603 	eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
2604 	eb->h_next_leaf_blk = 0;
2605 
2606 	ocfs2_journal_dirty(handle, root_bh);
2607 	ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
2608 
2609 	ocfs2_unlink_path(inode, handle, dealloc, right_path,
2610 			  subtree_index + 1);
2611 }
2612 
2613 static int ocfs2_rotate_subtree_left(struct inode *inode, handle_t *handle,
2614 				     struct ocfs2_path *left_path,
2615 				     struct ocfs2_path *right_path,
2616 				     int subtree_index,
2617 				     struct ocfs2_cached_dealloc_ctxt *dealloc,
2618 				     int *deleted,
2619 				     struct ocfs2_extent_tree *et)
2620 {
2621 	int ret, i, del_right_subtree = 0, right_has_empty = 0;
2622 	struct buffer_head *root_bh, *et_root_bh = path_root_bh(right_path);
2623 	struct ocfs2_extent_list *right_leaf_el, *left_leaf_el;
2624 	struct ocfs2_extent_block *eb;
2625 
2626 	*deleted = 0;
2627 
2628 	right_leaf_el = path_leaf_el(right_path);
2629 	left_leaf_el = path_leaf_el(left_path);
2630 	root_bh = left_path->p_node[subtree_index].bh;
2631 	BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
2632 
2633 	if (!ocfs2_is_empty_extent(&left_leaf_el->l_recs[0]))
2634 		return 0;
2635 
2636 	eb = (struct ocfs2_extent_block *)path_leaf_bh(right_path)->b_data;
2637 	if (ocfs2_is_empty_extent(&right_leaf_el->l_recs[0])) {
2638 		/*
2639 		 * It's legal for us to proceed if the right leaf is
2640 		 * the rightmost one and it has an empty extent. There
2641 		 * are two cases to handle - whether the leaf will be
2642 		 * empty after removal or not. If the leaf isn't empty
2643 		 * then just remove the empty extent up front. The
2644 		 * next block will handle empty leaves by flagging
2645 		 * them for unlink.
2646 		 *
2647 		 * Non rightmost leaves will throw -EAGAIN and the
2648 		 * caller can manually move the subtree and retry.
2649 		 */
2650 
2651 		if (eb->h_next_leaf_blk != 0ULL)
2652 			return -EAGAIN;
2653 
2654 		if (le16_to_cpu(right_leaf_el->l_next_free_rec) > 1) {
2655 			ret = ocfs2_journal_access_eb(handle, inode,
2656 						      path_leaf_bh(right_path),
2657 						      OCFS2_JOURNAL_ACCESS_WRITE);
2658 			if (ret) {
2659 				mlog_errno(ret);
2660 				goto out;
2661 			}
2662 
2663 			ocfs2_remove_empty_extent(right_leaf_el);
2664 		} else
2665 			right_has_empty = 1;
2666 	}
2667 
2668 	if (eb->h_next_leaf_blk == 0ULL &&
2669 	    le16_to_cpu(right_leaf_el->l_next_free_rec) == 1) {
2670 		/*
2671 		 * We have to update i_last_eb_blk during the meta
2672 		 * data delete.
2673 		 */
2674 		ret = ocfs2_et_root_journal_access(handle, inode, et,
2675 						   OCFS2_JOURNAL_ACCESS_WRITE);
2676 		if (ret) {
2677 			mlog_errno(ret);
2678 			goto out;
2679 		}
2680 
2681 		del_right_subtree = 1;
2682 	}
2683 
2684 	/*
2685 	 * Getting here with an empty extent in the right path implies
2686 	 * that it's the rightmost path and will be deleted.
2687 	 */
2688 	BUG_ON(right_has_empty && !del_right_subtree);
2689 
2690 	ret = ocfs2_path_bh_journal_access(handle, inode, right_path,
2691 					   subtree_index);
2692 	if (ret) {
2693 		mlog_errno(ret);
2694 		goto out;
2695 	}
2696 
2697 	for(i = subtree_index + 1; i < path_num_items(right_path); i++) {
2698 		ret = ocfs2_path_bh_journal_access(handle, inode,
2699 						   right_path, i);
2700 		if (ret) {
2701 			mlog_errno(ret);
2702 			goto out;
2703 		}
2704 
2705 		ret = ocfs2_path_bh_journal_access(handle, inode,
2706 						   left_path, i);
2707 		if (ret) {
2708 			mlog_errno(ret);
2709 			goto out;
2710 		}
2711 	}
2712 
2713 	if (!right_has_empty) {
2714 		/*
2715 		 * Only do this if we're moving a real
2716 		 * record. Otherwise, the action is delayed until
2717 		 * after removal of the right path in which case we
2718 		 * can do a simple shift to remove the empty extent.
2719 		 */
2720 		ocfs2_rotate_leaf(left_leaf_el, &right_leaf_el->l_recs[0]);
2721 		memset(&right_leaf_el->l_recs[0], 0,
2722 		       sizeof(struct ocfs2_extent_rec));
2723 	}
2724 	if (eb->h_next_leaf_blk == 0ULL) {
2725 		/*
2726 		 * Move recs over to get rid of empty extent, decrease
2727 		 * next_free. This is allowed to remove the last
2728 		 * extent in our leaf (setting l_next_free_rec to
2729 		 * zero) - the delete code below won't care.
2730 		 */
2731 		ocfs2_remove_empty_extent(right_leaf_el);
2732 	}
2733 
2734 	ret = ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
2735 	if (ret)
2736 		mlog_errno(ret);
2737 	ret = ocfs2_journal_dirty(handle, path_leaf_bh(right_path));
2738 	if (ret)
2739 		mlog_errno(ret);
2740 
2741 	if (del_right_subtree) {
2742 		ocfs2_unlink_subtree(inode, handle, left_path, right_path,
2743 				     subtree_index, dealloc);
2744 		ret = ocfs2_update_edge_lengths(inode, handle, subtree_index,
2745 						left_path);
2746 		if (ret) {
2747 			mlog_errno(ret);
2748 			goto out;
2749 		}
2750 
2751 		eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
2752 		ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
2753 
2754 		/*
2755 		 * Removal of the extent in the left leaf was skipped
2756 		 * above so we could delete the right path
2757 		 * 1st.
2758 		 */
2759 		if (right_has_empty)
2760 			ocfs2_remove_empty_extent(left_leaf_el);
2761 
2762 		ret = ocfs2_journal_dirty(handle, et_root_bh);
2763 		if (ret)
2764 			mlog_errno(ret);
2765 
2766 		*deleted = 1;
2767 	} else
2768 		ocfs2_complete_edge_insert(inode, handle, left_path, right_path,
2769 					   subtree_index);
2770 
2771 out:
2772 	return ret;
2773 }
2774 
2775 /*
2776  * Given a full path, determine what cpos value would return us a path
2777  * containing the leaf immediately to the right of the current one.
2778  *
2779  * Will return zero if the path passed in is already the rightmost path.
2780  *
2781  * This looks similar, but is subtly different to
2782  * ocfs2_find_cpos_for_left_leaf().
2783  */
2784 static int ocfs2_find_cpos_for_right_leaf(struct super_block *sb,
2785 					  struct ocfs2_path *path, u32 *cpos)
2786 {
2787 	int i, j, ret = 0;
2788 	u64 blkno;
2789 	struct ocfs2_extent_list *el;
2790 
2791 	*cpos = 0;
2792 
2793 	if (path->p_tree_depth == 0)
2794 		return 0;
2795 
2796 	blkno = path_leaf_bh(path)->b_blocknr;
2797 
2798 	/* Start at the tree node just above the leaf and work our way up. */
2799 	i = path->p_tree_depth - 1;
2800 	while (i >= 0) {
2801 		int next_free;
2802 
2803 		el = path->p_node[i].el;
2804 
2805 		/*
2806 		 * Find the extent record just after the one in our
2807 		 * path.
2808 		 */
2809 		next_free = le16_to_cpu(el->l_next_free_rec);
2810 		for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) {
2811 			if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) {
2812 				if (j == (next_free - 1)) {
2813 					if (i == 0) {
2814 						/*
2815 						 * We've determined that the
2816 						 * path specified is already
2817 						 * the rightmost one - return a
2818 						 * cpos of zero.
2819 						 */
2820 						goto out;
2821 					}
2822 					/*
2823 					 * The rightmost record points to our
2824 					 * leaf - we need to travel up the
2825 					 * tree one level.
2826 					 */
2827 					goto next_node;
2828 				}
2829 
2830 				*cpos = le32_to_cpu(el->l_recs[j + 1].e_cpos);
2831 				goto out;
2832 			}
2833 		}
2834 
2835 		/*
2836 		 * If we got here, we never found a valid node where
2837 		 * the tree indicated one should be.
2838 		 */
2839 		ocfs2_error(sb,
2840 			    "Invalid extent tree at extent block %llu\n",
2841 			    (unsigned long long)blkno);
2842 		ret = -EROFS;
2843 		goto out;
2844 
2845 next_node:
2846 		blkno = path->p_node[i].bh->b_blocknr;
2847 		i--;
2848 	}
2849 
2850 out:
2851 	return ret;
2852 }
2853 
2854 static int ocfs2_rotate_rightmost_leaf_left(struct inode *inode,
2855 					    handle_t *handle,
2856 					    struct ocfs2_path *path)
2857 {
2858 	int ret;
2859 	struct buffer_head *bh = path_leaf_bh(path);
2860 	struct ocfs2_extent_list *el = path_leaf_el(path);
2861 
2862 	if (!ocfs2_is_empty_extent(&el->l_recs[0]))
2863 		return 0;
2864 
2865 	ret = ocfs2_path_bh_journal_access(handle, inode, path,
2866 					   path_num_items(path) - 1);
2867 	if (ret) {
2868 		mlog_errno(ret);
2869 		goto out;
2870 	}
2871 
2872 	ocfs2_remove_empty_extent(el);
2873 
2874 	ret = ocfs2_journal_dirty(handle, bh);
2875 	if (ret)
2876 		mlog_errno(ret);
2877 
2878 out:
2879 	return ret;
2880 }
2881 
2882 static int __ocfs2_rotate_tree_left(struct inode *inode,
2883 				    handle_t *handle, int orig_credits,
2884 				    struct ocfs2_path *path,
2885 				    struct ocfs2_cached_dealloc_ctxt *dealloc,
2886 				    struct ocfs2_path **empty_extent_path,
2887 				    struct ocfs2_extent_tree *et)
2888 {
2889 	int ret, subtree_root, deleted;
2890 	u32 right_cpos;
2891 	struct ocfs2_path *left_path = NULL;
2892 	struct ocfs2_path *right_path = NULL;
2893 
2894 	BUG_ON(!ocfs2_is_empty_extent(&(path_leaf_el(path)->l_recs[0])));
2895 
2896 	*empty_extent_path = NULL;
2897 
2898 	ret = ocfs2_find_cpos_for_right_leaf(inode->i_sb, path,
2899 					     &right_cpos);
2900 	if (ret) {
2901 		mlog_errno(ret);
2902 		goto out;
2903 	}
2904 
2905 	left_path = ocfs2_new_path_from_path(path);
2906 	if (!left_path) {
2907 		ret = -ENOMEM;
2908 		mlog_errno(ret);
2909 		goto out;
2910 	}
2911 
2912 	ocfs2_cp_path(left_path, path);
2913 
2914 	right_path = ocfs2_new_path_from_path(path);
2915 	if (!right_path) {
2916 		ret = -ENOMEM;
2917 		mlog_errno(ret);
2918 		goto out;
2919 	}
2920 
2921 	while (right_cpos) {
2922 		ret = ocfs2_find_path(inode, right_path, right_cpos);
2923 		if (ret) {
2924 			mlog_errno(ret);
2925 			goto out;
2926 		}
2927 
2928 		subtree_root = ocfs2_find_subtree_root(inode, left_path,
2929 						       right_path);
2930 
2931 		mlog(0, "Subtree root at index %d (blk %llu, depth %d)\n",
2932 		     subtree_root,
2933 		     (unsigned long long)
2934 		     right_path->p_node[subtree_root].bh->b_blocknr,
2935 		     right_path->p_tree_depth);
2936 
2937 		ret = ocfs2_extend_rotate_transaction(handle, subtree_root,
2938 						      orig_credits, left_path);
2939 		if (ret) {
2940 			mlog_errno(ret);
2941 			goto out;
2942 		}
2943 
2944 		/*
2945 		 * Caller might still want to make changes to the
2946 		 * tree root, so re-add it to the journal here.
2947 		 */
2948 		ret = ocfs2_path_bh_journal_access(handle, inode,
2949 						   left_path, 0);
2950 		if (ret) {
2951 			mlog_errno(ret);
2952 			goto out;
2953 		}
2954 
2955 		ret = ocfs2_rotate_subtree_left(inode, handle, left_path,
2956 						right_path, subtree_root,
2957 						dealloc, &deleted, et);
2958 		if (ret == -EAGAIN) {
2959 			/*
2960 			 * The rotation has to temporarily stop due to
2961 			 * the right subtree having an empty
2962 			 * extent. Pass it back to the caller for a
2963 			 * fixup.
2964 			 */
2965 			*empty_extent_path = right_path;
2966 			right_path = NULL;
2967 			goto out;
2968 		}
2969 		if (ret) {
2970 			mlog_errno(ret);
2971 			goto out;
2972 		}
2973 
2974 		/*
2975 		 * The subtree rotate might have removed records on
2976 		 * the rightmost edge. If so, then rotation is
2977 		 * complete.
2978 		 */
2979 		if (deleted)
2980 			break;
2981 
2982 		ocfs2_mv_path(left_path, right_path);
2983 
2984 		ret = ocfs2_find_cpos_for_right_leaf(inode->i_sb, left_path,
2985 						     &right_cpos);
2986 		if (ret) {
2987 			mlog_errno(ret);
2988 			goto out;
2989 		}
2990 	}
2991 
2992 out:
2993 	ocfs2_free_path(right_path);
2994 	ocfs2_free_path(left_path);
2995 
2996 	return ret;
2997 }
2998 
2999 static int ocfs2_remove_rightmost_path(struct inode *inode, handle_t *handle,
3000 				struct ocfs2_path *path,
3001 				struct ocfs2_cached_dealloc_ctxt *dealloc,
3002 				struct ocfs2_extent_tree *et)
3003 {
3004 	int ret, subtree_index;
3005 	u32 cpos;
3006 	struct ocfs2_path *left_path = NULL;
3007 	struct ocfs2_extent_block *eb;
3008 	struct ocfs2_extent_list *el;
3009 
3010 
3011 	ret = ocfs2_et_sanity_check(inode, et);
3012 	if (ret)
3013 		goto out;
3014 	/*
3015 	 * There's two ways we handle this depending on
3016 	 * whether path is the only existing one.
3017 	 */
3018 	ret = ocfs2_extend_rotate_transaction(handle, 0,
3019 					      handle->h_buffer_credits,
3020 					      path);
3021 	if (ret) {
3022 		mlog_errno(ret);
3023 		goto out;
3024 	}
3025 
3026 	ret = ocfs2_journal_access_path(inode, handle, path);
3027 	if (ret) {
3028 		mlog_errno(ret);
3029 		goto out;
3030 	}
3031 
3032 	ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path, &cpos);
3033 	if (ret) {
3034 		mlog_errno(ret);
3035 		goto out;
3036 	}
3037 
3038 	if (cpos) {
3039 		/*
3040 		 * We have a path to the left of this one - it needs
3041 		 * an update too.
3042 		 */
3043 		left_path = ocfs2_new_path_from_path(path);
3044 		if (!left_path) {
3045 			ret = -ENOMEM;
3046 			mlog_errno(ret);
3047 			goto out;
3048 		}
3049 
3050 		ret = ocfs2_find_path(inode, left_path, cpos);
3051 		if (ret) {
3052 			mlog_errno(ret);
3053 			goto out;
3054 		}
3055 
3056 		ret = ocfs2_journal_access_path(inode, handle, left_path);
3057 		if (ret) {
3058 			mlog_errno(ret);
3059 			goto out;
3060 		}
3061 
3062 		subtree_index = ocfs2_find_subtree_root(inode, left_path, path);
3063 
3064 		ocfs2_unlink_subtree(inode, handle, left_path, path,
3065 				     subtree_index, dealloc);
3066 		ret = ocfs2_update_edge_lengths(inode, handle, subtree_index,
3067 						left_path);
3068 		if (ret) {
3069 			mlog_errno(ret);
3070 			goto out;
3071 		}
3072 
3073 		eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
3074 		ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
3075 	} else {
3076 		/*
3077 		 * 'path' is also the leftmost path which
3078 		 * means it must be the only one. This gets
3079 		 * handled differently because we want to
3080 		 * revert the inode back to having extents
3081 		 * in-line.
3082 		 */
3083 		ocfs2_unlink_path(inode, handle, dealloc, path, 1);
3084 
3085 		el = et->et_root_el;
3086 		el->l_tree_depth = 0;
3087 		el->l_next_free_rec = 0;
3088 		memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
3089 
3090 		ocfs2_et_set_last_eb_blk(et, 0);
3091 	}
3092 
3093 	ocfs2_journal_dirty(handle, path_root_bh(path));
3094 
3095 out:
3096 	ocfs2_free_path(left_path);
3097 	return ret;
3098 }
3099 
3100 /*
3101  * Left rotation of btree records.
3102  *
3103  * In many ways, this is (unsurprisingly) the opposite of right
3104  * rotation. We start at some non-rightmost path containing an empty
3105  * extent in the leaf block. The code works its way to the rightmost
3106  * path by rotating records to the left in every subtree.
3107  *
3108  * This is used by any code which reduces the number of extent records
3109  * in a leaf. After removal, an empty record should be placed in the
3110  * leftmost list position.
3111  *
3112  * This won't handle a length update of the rightmost path records if
3113  * the rightmost tree leaf record is removed so the caller is
3114  * responsible for detecting and correcting that.
3115  */
3116 static int ocfs2_rotate_tree_left(struct inode *inode, handle_t *handle,
3117 				  struct ocfs2_path *path,
3118 				  struct ocfs2_cached_dealloc_ctxt *dealloc,
3119 				  struct ocfs2_extent_tree *et)
3120 {
3121 	int ret, orig_credits = handle->h_buffer_credits;
3122 	struct ocfs2_path *tmp_path = NULL, *restart_path = NULL;
3123 	struct ocfs2_extent_block *eb;
3124 	struct ocfs2_extent_list *el;
3125 
3126 	el = path_leaf_el(path);
3127 	if (!ocfs2_is_empty_extent(&el->l_recs[0]))
3128 		return 0;
3129 
3130 	if (path->p_tree_depth == 0) {
3131 rightmost_no_delete:
3132 		/*
3133 		 * Inline extents. This is trivially handled, so do
3134 		 * it up front.
3135 		 */
3136 		ret = ocfs2_rotate_rightmost_leaf_left(inode, handle,
3137 						       path);
3138 		if (ret)
3139 			mlog_errno(ret);
3140 		goto out;
3141 	}
3142 
3143 	/*
3144 	 * Handle rightmost branch now. There's several cases:
3145 	 *  1) simple rotation leaving records in there. That's trivial.
3146 	 *  2) rotation requiring a branch delete - there's no more
3147 	 *     records left. Two cases of this:
3148 	 *     a) There are branches to the left.
3149 	 *     b) This is also the leftmost (the only) branch.
3150 	 *
3151 	 *  1) is handled via ocfs2_rotate_rightmost_leaf_left()
3152 	 *  2a) we need the left branch so that we can update it with the unlink
3153 	 *  2b) we need to bring the inode back to inline extents.
3154 	 */
3155 
3156 	eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
3157 	el = &eb->h_list;
3158 	if (eb->h_next_leaf_blk == 0) {
3159 		/*
3160 		 * This gets a bit tricky if we're going to delete the
3161 		 * rightmost path. Get the other cases out of the way
3162 		 * 1st.
3163 		 */
3164 		if (le16_to_cpu(el->l_next_free_rec) > 1)
3165 			goto rightmost_no_delete;
3166 
3167 		if (le16_to_cpu(el->l_next_free_rec) == 0) {
3168 			ret = -EIO;
3169 			ocfs2_error(inode->i_sb,
3170 				    "Inode %llu has empty extent block at %llu",
3171 				    (unsigned long long)OCFS2_I(inode)->ip_blkno,
3172 				    (unsigned long long)le64_to_cpu(eb->h_blkno));
3173 			goto out;
3174 		}
3175 
3176 		/*
3177 		 * XXX: The caller can not trust "path" any more after
3178 		 * this as it will have been deleted. What do we do?
3179 		 *
3180 		 * In theory the rotate-for-merge code will never get
3181 		 * here because it'll always ask for a rotate in a
3182 		 * nonempty list.
3183 		 */
3184 
3185 		ret = ocfs2_remove_rightmost_path(inode, handle, path,
3186 						  dealloc, et);
3187 		if (ret)
3188 			mlog_errno(ret);
3189 		goto out;
3190 	}
3191 
3192 	/*
3193 	 * Now we can loop, remembering the path we get from -EAGAIN
3194 	 * and restarting from there.
3195 	 */
3196 try_rotate:
3197 	ret = __ocfs2_rotate_tree_left(inode, handle, orig_credits, path,
3198 				       dealloc, &restart_path, et);
3199 	if (ret && ret != -EAGAIN) {
3200 		mlog_errno(ret);
3201 		goto out;
3202 	}
3203 
3204 	while (ret == -EAGAIN) {
3205 		tmp_path = restart_path;
3206 		restart_path = NULL;
3207 
3208 		ret = __ocfs2_rotate_tree_left(inode, handle, orig_credits,
3209 					       tmp_path, dealloc,
3210 					       &restart_path, et);
3211 		if (ret && ret != -EAGAIN) {
3212 			mlog_errno(ret);
3213 			goto out;
3214 		}
3215 
3216 		ocfs2_free_path(tmp_path);
3217 		tmp_path = NULL;
3218 
3219 		if (ret == 0)
3220 			goto try_rotate;
3221 	}
3222 
3223 out:
3224 	ocfs2_free_path(tmp_path);
3225 	ocfs2_free_path(restart_path);
3226 	return ret;
3227 }
3228 
3229 static void ocfs2_cleanup_merge(struct ocfs2_extent_list *el,
3230 				int index)
3231 {
3232 	struct ocfs2_extent_rec *rec = &el->l_recs[index];
3233 	unsigned int size;
3234 
3235 	if (rec->e_leaf_clusters == 0) {
3236 		/*
3237 		 * We consumed all of the merged-from record. An empty
3238 		 * extent cannot exist anywhere but the 1st array
3239 		 * position, so move things over if the merged-from
3240 		 * record doesn't occupy that position.
3241 		 *
3242 		 * This creates a new empty extent so the caller
3243 		 * should be smart enough to have removed any existing
3244 		 * ones.
3245 		 */
3246 		if (index > 0) {
3247 			BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0]));
3248 			size = index * sizeof(struct ocfs2_extent_rec);
3249 			memmove(&el->l_recs[1], &el->l_recs[0], size);
3250 		}
3251 
3252 		/*
3253 		 * Always memset - the caller doesn't check whether it
3254 		 * created an empty extent, so there could be junk in
3255 		 * the other fields.
3256 		 */
3257 		memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
3258 	}
3259 }
3260 
3261 static int ocfs2_get_right_path(struct inode *inode,
3262 				struct ocfs2_path *left_path,
3263 				struct ocfs2_path **ret_right_path)
3264 {
3265 	int ret;
3266 	u32 right_cpos;
3267 	struct ocfs2_path *right_path = NULL;
3268 	struct ocfs2_extent_list *left_el;
3269 
3270 	*ret_right_path = NULL;
3271 
3272 	/* This function shouldn't be called for non-trees. */
3273 	BUG_ON(left_path->p_tree_depth == 0);
3274 
3275 	left_el = path_leaf_el(left_path);
3276 	BUG_ON(left_el->l_next_free_rec != left_el->l_count);
3277 
3278 	ret = ocfs2_find_cpos_for_right_leaf(inode->i_sb, left_path,
3279 					     &right_cpos);
3280 	if (ret) {
3281 		mlog_errno(ret);
3282 		goto out;
3283 	}
3284 
3285 	/* This function shouldn't be called for the rightmost leaf. */
3286 	BUG_ON(right_cpos == 0);
3287 
3288 	right_path = ocfs2_new_path_from_path(left_path);
3289 	if (!right_path) {
3290 		ret = -ENOMEM;
3291 		mlog_errno(ret);
3292 		goto out;
3293 	}
3294 
3295 	ret = ocfs2_find_path(inode, right_path, right_cpos);
3296 	if (ret) {
3297 		mlog_errno(ret);
3298 		goto out;
3299 	}
3300 
3301 	*ret_right_path = right_path;
3302 out:
3303 	if (ret)
3304 		ocfs2_free_path(right_path);
3305 	return ret;
3306 }
3307 
3308 /*
3309  * Remove split_rec clusters from the record at index and merge them
3310  * onto the beginning of the record "next" to it.
3311  * For index < l_count - 1, the next means the extent rec at index + 1.
3312  * For index == l_count - 1, the "next" means the 1st extent rec of the
3313  * next extent block.
3314  */
3315 static int ocfs2_merge_rec_right(struct inode *inode,
3316 				 struct ocfs2_path *left_path,
3317 				 handle_t *handle,
3318 				 struct ocfs2_extent_rec *split_rec,
3319 				 int index)
3320 {
3321 	int ret, next_free, i;
3322 	unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters);
3323 	struct ocfs2_extent_rec *left_rec;
3324 	struct ocfs2_extent_rec *right_rec;
3325 	struct ocfs2_extent_list *right_el;
3326 	struct ocfs2_path *right_path = NULL;
3327 	int subtree_index = 0;
3328 	struct ocfs2_extent_list *el = path_leaf_el(left_path);
3329 	struct buffer_head *bh = path_leaf_bh(left_path);
3330 	struct buffer_head *root_bh = NULL;
3331 
3332 	BUG_ON(index >= le16_to_cpu(el->l_next_free_rec));
3333 	left_rec = &el->l_recs[index];
3334 
3335 	if (index == le16_to_cpu(el->l_next_free_rec) - 1 &&
3336 	    le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count)) {
3337 		/* we meet with a cross extent block merge. */
3338 		ret = ocfs2_get_right_path(inode, left_path, &right_path);
3339 		if (ret) {
3340 			mlog_errno(ret);
3341 			goto out;
3342 		}
3343 
3344 		right_el = path_leaf_el(right_path);
3345 		next_free = le16_to_cpu(right_el->l_next_free_rec);
3346 		BUG_ON(next_free <= 0);
3347 		right_rec = &right_el->l_recs[0];
3348 		if (ocfs2_is_empty_extent(right_rec)) {
3349 			BUG_ON(next_free <= 1);
3350 			right_rec = &right_el->l_recs[1];
3351 		}
3352 
3353 		BUG_ON(le32_to_cpu(left_rec->e_cpos) +
3354 		       le16_to_cpu(left_rec->e_leaf_clusters) !=
3355 		       le32_to_cpu(right_rec->e_cpos));
3356 
3357 		subtree_index = ocfs2_find_subtree_root(inode,
3358 							left_path, right_path);
3359 
3360 		ret = ocfs2_extend_rotate_transaction(handle, subtree_index,
3361 						      handle->h_buffer_credits,
3362 						      right_path);
3363 		if (ret) {
3364 			mlog_errno(ret);
3365 			goto out;
3366 		}
3367 
3368 		root_bh = left_path->p_node[subtree_index].bh;
3369 		BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
3370 
3371 		ret = ocfs2_path_bh_journal_access(handle, inode, right_path,
3372 						   subtree_index);
3373 		if (ret) {
3374 			mlog_errno(ret);
3375 			goto out;
3376 		}
3377 
3378 		for (i = subtree_index + 1;
3379 		     i < path_num_items(right_path); i++) {
3380 			ret = ocfs2_path_bh_journal_access(handle, inode,
3381 							   right_path, i);
3382 			if (ret) {
3383 				mlog_errno(ret);
3384 				goto out;
3385 			}
3386 
3387 			ret = ocfs2_path_bh_journal_access(handle, inode,
3388 							   left_path, i);
3389 			if (ret) {
3390 				mlog_errno(ret);
3391 				goto out;
3392 			}
3393 		}
3394 
3395 	} else {
3396 		BUG_ON(index == le16_to_cpu(el->l_next_free_rec) - 1);
3397 		right_rec = &el->l_recs[index + 1];
3398 	}
3399 
3400 	ret = ocfs2_path_bh_journal_access(handle, inode, left_path,
3401 					   path_num_items(left_path) - 1);
3402 	if (ret) {
3403 		mlog_errno(ret);
3404 		goto out;
3405 	}
3406 
3407 	le16_add_cpu(&left_rec->e_leaf_clusters, -split_clusters);
3408 
3409 	le32_add_cpu(&right_rec->e_cpos, -split_clusters);
3410 	le64_add_cpu(&right_rec->e_blkno,
3411 		     -ocfs2_clusters_to_blocks(inode->i_sb, split_clusters));
3412 	le16_add_cpu(&right_rec->e_leaf_clusters, split_clusters);
3413 
3414 	ocfs2_cleanup_merge(el, index);
3415 
3416 	ret = ocfs2_journal_dirty(handle, bh);
3417 	if (ret)
3418 		mlog_errno(ret);
3419 
3420 	if (right_path) {
3421 		ret = ocfs2_journal_dirty(handle, path_leaf_bh(right_path));
3422 		if (ret)
3423 			mlog_errno(ret);
3424 
3425 		ocfs2_complete_edge_insert(inode, handle, left_path,
3426 					   right_path, subtree_index);
3427 	}
3428 out:
3429 	if (right_path)
3430 		ocfs2_free_path(right_path);
3431 	return ret;
3432 }
3433 
3434 static int ocfs2_get_left_path(struct inode *inode,
3435 			       struct ocfs2_path *right_path,
3436 			       struct ocfs2_path **ret_left_path)
3437 {
3438 	int ret;
3439 	u32 left_cpos;
3440 	struct ocfs2_path *left_path = NULL;
3441 
3442 	*ret_left_path = NULL;
3443 
3444 	/* This function shouldn't be called for non-trees. */
3445 	BUG_ON(right_path->p_tree_depth == 0);
3446 
3447 	ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb,
3448 					    right_path, &left_cpos);
3449 	if (ret) {
3450 		mlog_errno(ret);
3451 		goto out;
3452 	}
3453 
3454 	/* This function shouldn't be called for the leftmost leaf. */
3455 	BUG_ON(left_cpos == 0);
3456 
3457 	left_path = ocfs2_new_path_from_path(right_path);
3458 	if (!left_path) {
3459 		ret = -ENOMEM;
3460 		mlog_errno(ret);
3461 		goto out;
3462 	}
3463 
3464 	ret = ocfs2_find_path(inode, left_path, left_cpos);
3465 	if (ret) {
3466 		mlog_errno(ret);
3467 		goto out;
3468 	}
3469 
3470 	*ret_left_path = left_path;
3471 out:
3472 	if (ret)
3473 		ocfs2_free_path(left_path);
3474 	return ret;
3475 }
3476 
3477 /*
3478  * Remove split_rec clusters from the record at index and merge them
3479  * onto the tail of the record "before" it.
3480  * For index > 0, the "before" means the extent rec at index - 1.
3481  *
3482  * For index == 0, the "before" means the last record of the previous
3483  * extent block. And there is also a situation that we may need to
3484  * remove the rightmost leaf extent block in the right_path and change
3485  * the right path to indicate the new rightmost path.
3486  */
3487 static int ocfs2_merge_rec_left(struct inode *inode,
3488 				struct ocfs2_path *right_path,
3489 				handle_t *handle,
3490 				struct ocfs2_extent_rec *split_rec,
3491 				struct ocfs2_cached_dealloc_ctxt *dealloc,
3492 				struct ocfs2_extent_tree *et,
3493 				int index)
3494 {
3495 	int ret, i, subtree_index = 0, has_empty_extent = 0;
3496 	unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters);
3497 	struct ocfs2_extent_rec *left_rec;
3498 	struct ocfs2_extent_rec *right_rec;
3499 	struct ocfs2_extent_list *el = path_leaf_el(right_path);
3500 	struct buffer_head *bh = path_leaf_bh(right_path);
3501 	struct buffer_head *root_bh = NULL;
3502 	struct ocfs2_path *left_path = NULL;
3503 	struct ocfs2_extent_list *left_el;
3504 
3505 	BUG_ON(index < 0);
3506 
3507 	right_rec = &el->l_recs[index];
3508 	if (index == 0) {
3509 		/* we meet with a cross extent block merge. */
3510 		ret = ocfs2_get_left_path(inode, right_path, &left_path);
3511 		if (ret) {
3512 			mlog_errno(ret);
3513 			goto out;
3514 		}
3515 
3516 		left_el = path_leaf_el(left_path);
3517 		BUG_ON(le16_to_cpu(left_el->l_next_free_rec) !=
3518 		       le16_to_cpu(left_el->l_count));
3519 
3520 		left_rec = &left_el->l_recs[
3521 				le16_to_cpu(left_el->l_next_free_rec) - 1];
3522 		BUG_ON(le32_to_cpu(left_rec->e_cpos) +
3523 		       le16_to_cpu(left_rec->e_leaf_clusters) !=
3524 		       le32_to_cpu(split_rec->e_cpos));
3525 
3526 		subtree_index = ocfs2_find_subtree_root(inode,
3527 							left_path, right_path);
3528 
3529 		ret = ocfs2_extend_rotate_transaction(handle, subtree_index,
3530 						      handle->h_buffer_credits,
3531 						      left_path);
3532 		if (ret) {
3533 			mlog_errno(ret);
3534 			goto out;
3535 		}
3536 
3537 		root_bh = left_path->p_node[subtree_index].bh;
3538 		BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
3539 
3540 		ret = ocfs2_path_bh_journal_access(handle, inode, right_path,
3541 						   subtree_index);
3542 		if (ret) {
3543 			mlog_errno(ret);
3544 			goto out;
3545 		}
3546 
3547 		for (i = subtree_index + 1;
3548 		     i < path_num_items(right_path); i++) {
3549 			ret = ocfs2_path_bh_journal_access(handle, inode,
3550 							   right_path, i);
3551 			if (ret) {
3552 				mlog_errno(ret);
3553 				goto out;
3554 			}
3555 
3556 			ret = ocfs2_path_bh_journal_access(handle, inode,
3557 							   left_path, i);
3558 			if (ret) {
3559 				mlog_errno(ret);
3560 				goto out;
3561 			}
3562 		}
3563 	} else {
3564 		left_rec = &el->l_recs[index - 1];
3565 		if (ocfs2_is_empty_extent(&el->l_recs[0]))
3566 			has_empty_extent = 1;
3567 	}
3568 
3569 	ret = ocfs2_path_bh_journal_access(handle, inode, right_path,
3570 					   path_num_items(right_path) - 1);
3571 	if (ret) {
3572 		mlog_errno(ret);
3573 		goto out;
3574 	}
3575 
3576 	if (has_empty_extent && index == 1) {
3577 		/*
3578 		 * The easy case - we can just plop the record right in.
3579 		 */
3580 		*left_rec = *split_rec;
3581 
3582 		has_empty_extent = 0;
3583 	} else
3584 		le16_add_cpu(&left_rec->e_leaf_clusters, split_clusters);
3585 
3586 	le32_add_cpu(&right_rec->e_cpos, split_clusters);
3587 	le64_add_cpu(&right_rec->e_blkno,
3588 		     ocfs2_clusters_to_blocks(inode->i_sb, split_clusters));
3589 	le16_add_cpu(&right_rec->e_leaf_clusters, -split_clusters);
3590 
3591 	ocfs2_cleanup_merge(el, index);
3592 
3593 	ret = ocfs2_journal_dirty(handle, bh);
3594 	if (ret)
3595 		mlog_errno(ret);
3596 
3597 	if (left_path) {
3598 		ret = ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
3599 		if (ret)
3600 			mlog_errno(ret);
3601 
3602 		/*
3603 		 * In the situation that the right_rec is empty and the extent
3604 		 * block is empty also,  ocfs2_complete_edge_insert can't handle
3605 		 * it and we need to delete the right extent block.
3606 		 */
3607 		if (le16_to_cpu(right_rec->e_leaf_clusters) == 0 &&
3608 		    le16_to_cpu(el->l_next_free_rec) == 1) {
3609 
3610 			ret = ocfs2_remove_rightmost_path(inode, handle,
3611 							  right_path,
3612 							  dealloc, et);
3613 			if (ret) {
3614 				mlog_errno(ret);
3615 				goto out;
3616 			}
3617 
3618 			/* Now the rightmost extent block has been deleted.
3619 			 * So we use the new rightmost path.
3620 			 */
3621 			ocfs2_mv_path(right_path, left_path);
3622 			left_path = NULL;
3623 		} else
3624 			ocfs2_complete_edge_insert(inode, handle, left_path,
3625 						   right_path, subtree_index);
3626 	}
3627 out:
3628 	if (left_path)
3629 		ocfs2_free_path(left_path);
3630 	return ret;
3631 }
3632 
3633 static int ocfs2_try_to_merge_extent(struct inode *inode,
3634 				     handle_t *handle,
3635 				     struct ocfs2_path *path,
3636 				     int split_index,
3637 				     struct ocfs2_extent_rec *split_rec,
3638 				     struct ocfs2_cached_dealloc_ctxt *dealloc,
3639 				     struct ocfs2_merge_ctxt *ctxt,
3640 				     struct ocfs2_extent_tree *et)
3641 
3642 {
3643 	int ret = 0;
3644 	struct ocfs2_extent_list *el = path_leaf_el(path);
3645 	struct ocfs2_extent_rec *rec = &el->l_recs[split_index];
3646 
3647 	BUG_ON(ctxt->c_contig_type == CONTIG_NONE);
3648 
3649 	if (ctxt->c_split_covers_rec && ctxt->c_has_empty_extent) {
3650 		/*
3651 		 * The merge code will need to create an empty
3652 		 * extent to take the place of the newly
3653 		 * emptied slot. Remove any pre-existing empty
3654 		 * extents - having more than one in a leaf is
3655 		 * illegal.
3656 		 */
3657 		ret = ocfs2_rotate_tree_left(inode, handle, path,
3658 					     dealloc, et);
3659 		if (ret) {
3660 			mlog_errno(ret);
3661 			goto out;
3662 		}
3663 		split_index--;
3664 		rec = &el->l_recs[split_index];
3665 	}
3666 
3667 	if (ctxt->c_contig_type == CONTIG_LEFTRIGHT) {
3668 		/*
3669 		 * Left-right contig implies this.
3670 		 */
3671 		BUG_ON(!ctxt->c_split_covers_rec);
3672 
3673 		/*
3674 		 * Since the leftright insert always covers the entire
3675 		 * extent, this call will delete the insert record
3676 		 * entirely, resulting in an empty extent record added to
3677 		 * the extent block.
3678 		 *
3679 		 * Since the adding of an empty extent shifts
3680 		 * everything back to the right, there's no need to
3681 		 * update split_index here.
3682 		 *
3683 		 * When the split_index is zero, we need to merge it to the
3684 		 * prevoius extent block. It is more efficient and easier
3685 		 * if we do merge_right first and merge_left later.
3686 		 */
3687 		ret = ocfs2_merge_rec_right(inode, path,
3688 					    handle, split_rec,
3689 					    split_index);
3690 		if (ret) {
3691 			mlog_errno(ret);
3692 			goto out;
3693 		}
3694 
3695 		/*
3696 		 * We can only get this from logic error above.
3697 		 */
3698 		BUG_ON(!ocfs2_is_empty_extent(&el->l_recs[0]));
3699 
3700 		/* The merge left us with an empty extent, remove it. */
3701 		ret = ocfs2_rotate_tree_left(inode, handle, path,
3702 					     dealloc, et);
3703 		if (ret) {
3704 			mlog_errno(ret);
3705 			goto out;
3706 		}
3707 
3708 		rec = &el->l_recs[split_index];
3709 
3710 		/*
3711 		 * Note that we don't pass split_rec here on purpose -
3712 		 * we've merged it into the rec already.
3713 		 */
3714 		ret = ocfs2_merge_rec_left(inode, path,
3715 					   handle, rec,
3716 					   dealloc, et,
3717 					   split_index);
3718 
3719 		if (ret) {
3720 			mlog_errno(ret);
3721 			goto out;
3722 		}
3723 
3724 		ret = ocfs2_rotate_tree_left(inode, handle, path,
3725 					     dealloc, et);
3726 		/*
3727 		 * Error from this last rotate is not critical, so
3728 		 * print but don't bubble it up.
3729 		 */
3730 		if (ret)
3731 			mlog_errno(ret);
3732 		ret = 0;
3733 	} else {
3734 		/*
3735 		 * Merge a record to the left or right.
3736 		 *
3737 		 * 'contig_type' is relative to the existing record,
3738 		 * so for example, if we're "right contig", it's to
3739 		 * the record on the left (hence the left merge).
3740 		 */
3741 		if (ctxt->c_contig_type == CONTIG_RIGHT) {
3742 			ret = ocfs2_merge_rec_left(inode,
3743 						   path,
3744 						   handle, split_rec,
3745 						   dealloc, et,
3746 						   split_index);
3747 			if (ret) {
3748 				mlog_errno(ret);
3749 				goto out;
3750 			}
3751 		} else {
3752 			ret = ocfs2_merge_rec_right(inode,
3753 						    path,
3754 						    handle, split_rec,
3755 						    split_index);
3756 			if (ret) {
3757 				mlog_errno(ret);
3758 				goto out;
3759 			}
3760 		}
3761 
3762 		if (ctxt->c_split_covers_rec) {
3763 			/*
3764 			 * The merge may have left an empty extent in
3765 			 * our leaf. Try to rotate it away.
3766 			 */
3767 			ret = ocfs2_rotate_tree_left(inode, handle, path,
3768 						     dealloc, et);
3769 			if (ret)
3770 				mlog_errno(ret);
3771 			ret = 0;
3772 		}
3773 	}
3774 
3775 out:
3776 	return ret;
3777 }
3778 
3779 static void ocfs2_subtract_from_rec(struct super_block *sb,
3780 				    enum ocfs2_split_type split,
3781 				    struct ocfs2_extent_rec *rec,
3782 				    struct ocfs2_extent_rec *split_rec)
3783 {
3784 	u64 len_blocks;
3785 
3786 	len_blocks = ocfs2_clusters_to_blocks(sb,
3787 				le16_to_cpu(split_rec->e_leaf_clusters));
3788 
3789 	if (split == SPLIT_LEFT) {
3790 		/*
3791 		 * Region is on the left edge of the existing
3792 		 * record.
3793 		 */
3794 		le32_add_cpu(&rec->e_cpos,
3795 			     le16_to_cpu(split_rec->e_leaf_clusters));
3796 		le64_add_cpu(&rec->e_blkno, len_blocks);
3797 		le16_add_cpu(&rec->e_leaf_clusters,
3798 			     -le16_to_cpu(split_rec->e_leaf_clusters));
3799 	} else {
3800 		/*
3801 		 * Region is on the right edge of the existing
3802 		 * record.
3803 		 */
3804 		le16_add_cpu(&rec->e_leaf_clusters,
3805 			     -le16_to_cpu(split_rec->e_leaf_clusters));
3806 	}
3807 }
3808 
3809 /*
3810  * Do the final bits of extent record insertion at the target leaf
3811  * list. If this leaf is part of an allocation tree, it is assumed
3812  * that the tree above has been prepared.
3813  */
3814 static void ocfs2_insert_at_leaf(struct ocfs2_extent_rec *insert_rec,
3815 				 struct ocfs2_extent_list *el,
3816 				 struct ocfs2_insert_type *insert,
3817 				 struct inode *inode)
3818 {
3819 	int i = insert->ins_contig_index;
3820 	unsigned int range;
3821 	struct ocfs2_extent_rec *rec;
3822 
3823 	BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
3824 
3825 	if (insert->ins_split != SPLIT_NONE) {
3826 		i = ocfs2_search_extent_list(el, le32_to_cpu(insert_rec->e_cpos));
3827 		BUG_ON(i == -1);
3828 		rec = &el->l_recs[i];
3829 		ocfs2_subtract_from_rec(inode->i_sb, insert->ins_split, rec,
3830 					insert_rec);
3831 		goto rotate;
3832 	}
3833 
3834 	/*
3835 	 * Contiguous insert - either left or right.
3836 	 */
3837 	if (insert->ins_contig != CONTIG_NONE) {
3838 		rec = &el->l_recs[i];
3839 		if (insert->ins_contig == CONTIG_LEFT) {
3840 			rec->e_blkno = insert_rec->e_blkno;
3841 			rec->e_cpos = insert_rec->e_cpos;
3842 		}
3843 		le16_add_cpu(&rec->e_leaf_clusters,
3844 			     le16_to_cpu(insert_rec->e_leaf_clusters));
3845 		return;
3846 	}
3847 
3848 	/*
3849 	 * Handle insert into an empty leaf.
3850 	 */
3851 	if (le16_to_cpu(el->l_next_free_rec) == 0 ||
3852 	    ((le16_to_cpu(el->l_next_free_rec) == 1) &&
3853 	     ocfs2_is_empty_extent(&el->l_recs[0]))) {
3854 		el->l_recs[0] = *insert_rec;
3855 		el->l_next_free_rec = cpu_to_le16(1);
3856 		return;
3857 	}
3858 
3859 	/*
3860 	 * Appending insert.
3861 	 */
3862 	if (insert->ins_appending == APPEND_TAIL) {
3863 		i = le16_to_cpu(el->l_next_free_rec) - 1;
3864 		rec = &el->l_recs[i];
3865 		range = le32_to_cpu(rec->e_cpos)
3866 			+ le16_to_cpu(rec->e_leaf_clusters);
3867 		BUG_ON(le32_to_cpu(insert_rec->e_cpos) < range);
3868 
3869 		mlog_bug_on_msg(le16_to_cpu(el->l_next_free_rec) >=
3870 				le16_to_cpu(el->l_count),
3871 				"inode %lu, depth %u, count %u, next free %u, "
3872 				"rec.cpos %u, rec.clusters %u, "
3873 				"insert.cpos %u, insert.clusters %u\n",
3874 				inode->i_ino,
3875 				le16_to_cpu(el->l_tree_depth),
3876 				le16_to_cpu(el->l_count),
3877 				le16_to_cpu(el->l_next_free_rec),
3878 				le32_to_cpu(el->l_recs[i].e_cpos),
3879 				le16_to_cpu(el->l_recs[i].e_leaf_clusters),
3880 				le32_to_cpu(insert_rec->e_cpos),
3881 				le16_to_cpu(insert_rec->e_leaf_clusters));
3882 		i++;
3883 		el->l_recs[i] = *insert_rec;
3884 		le16_add_cpu(&el->l_next_free_rec, 1);
3885 		return;
3886 	}
3887 
3888 rotate:
3889 	/*
3890 	 * Ok, we have to rotate.
3891 	 *
3892 	 * At this point, it is safe to assume that inserting into an
3893 	 * empty leaf and appending to a leaf have both been handled
3894 	 * above.
3895 	 *
3896 	 * This leaf needs to have space, either by the empty 1st
3897 	 * extent record, or by virtue of an l_next_rec < l_count.
3898 	 */
3899 	ocfs2_rotate_leaf(el, insert_rec);
3900 }
3901 
3902 static void ocfs2_adjust_rightmost_records(struct inode *inode,
3903 					   handle_t *handle,
3904 					   struct ocfs2_path *path,
3905 					   struct ocfs2_extent_rec *insert_rec)
3906 {
3907 	int ret, i, next_free;
3908 	struct buffer_head *bh;
3909 	struct ocfs2_extent_list *el;
3910 	struct ocfs2_extent_rec *rec;
3911 
3912 	/*
3913 	 * Update everything except the leaf block.
3914 	 */
3915 	for (i = 0; i < path->p_tree_depth; i++) {
3916 		bh = path->p_node[i].bh;
3917 		el = path->p_node[i].el;
3918 
3919 		next_free = le16_to_cpu(el->l_next_free_rec);
3920 		if (next_free == 0) {
3921 			ocfs2_error(inode->i_sb,
3922 				    "Dinode %llu has a bad extent list",
3923 				    (unsigned long long)OCFS2_I(inode)->ip_blkno);
3924 			ret = -EIO;
3925 			return;
3926 		}
3927 
3928 		rec = &el->l_recs[next_free - 1];
3929 
3930 		rec->e_int_clusters = insert_rec->e_cpos;
3931 		le32_add_cpu(&rec->e_int_clusters,
3932 			     le16_to_cpu(insert_rec->e_leaf_clusters));
3933 		le32_add_cpu(&rec->e_int_clusters,
3934 			     -le32_to_cpu(rec->e_cpos));
3935 
3936 		ret = ocfs2_journal_dirty(handle, bh);
3937 		if (ret)
3938 			mlog_errno(ret);
3939 
3940 	}
3941 }
3942 
3943 static int ocfs2_append_rec_to_path(struct inode *inode, handle_t *handle,
3944 				    struct ocfs2_extent_rec *insert_rec,
3945 				    struct ocfs2_path *right_path,
3946 				    struct ocfs2_path **ret_left_path)
3947 {
3948 	int ret, next_free;
3949 	struct ocfs2_extent_list *el;
3950 	struct ocfs2_path *left_path = NULL;
3951 
3952 	*ret_left_path = NULL;
3953 
3954 	/*
3955 	 * This shouldn't happen for non-trees. The extent rec cluster
3956 	 * count manipulation below only works for interior nodes.
3957 	 */
3958 	BUG_ON(right_path->p_tree_depth == 0);
3959 
3960 	/*
3961 	 * If our appending insert is at the leftmost edge of a leaf,
3962 	 * then we might need to update the rightmost records of the
3963 	 * neighboring path.
3964 	 */
3965 	el = path_leaf_el(right_path);
3966 	next_free = le16_to_cpu(el->l_next_free_rec);
3967 	if (next_free == 0 ||
3968 	    (next_free == 1 && ocfs2_is_empty_extent(&el->l_recs[0]))) {
3969 		u32 left_cpos;
3970 
3971 		ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path,
3972 						    &left_cpos);
3973 		if (ret) {
3974 			mlog_errno(ret);
3975 			goto out;
3976 		}
3977 
3978 		mlog(0, "Append may need a left path update. cpos: %u, "
3979 		     "left_cpos: %u\n", le32_to_cpu(insert_rec->e_cpos),
3980 		     left_cpos);
3981 
3982 		/*
3983 		 * No need to worry if the append is already in the
3984 		 * leftmost leaf.
3985 		 */
3986 		if (left_cpos) {
3987 			left_path = ocfs2_new_path_from_path(right_path);
3988 			if (!left_path) {
3989 				ret = -ENOMEM;
3990 				mlog_errno(ret);
3991 				goto out;
3992 			}
3993 
3994 			ret = ocfs2_find_path(inode, left_path, left_cpos);
3995 			if (ret) {
3996 				mlog_errno(ret);
3997 				goto out;
3998 			}
3999 
4000 			/*
4001 			 * ocfs2_insert_path() will pass the left_path to the
4002 			 * journal for us.
4003 			 */
4004 		}
4005 	}
4006 
4007 	ret = ocfs2_journal_access_path(inode, handle, right_path);
4008 	if (ret) {
4009 		mlog_errno(ret);
4010 		goto out;
4011 	}
4012 
4013 	ocfs2_adjust_rightmost_records(inode, handle, right_path, insert_rec);
4014 
4015 	*ret_left_path = left_path;
4016 	ret = 0;
4017 out:
4018 	if (ret != 0)
4019 		ocfs2_free_path(left_path);
4020 
4021 	return ret;
4022 }
4023 
4024 static void ocfs2_split_record(struct inode *inode,
4025 			       struct ocfs2_path *left_path,
4026 			       struct ocfs2_path *right_path,
4027 			       struct ocfs2_extent_rec *split_rec,
4028 			       enum ocfs2_split_type split)
4029 {
4030 	int index;
4031 	u32 cpos = le32_to_cpu(split_rec->e_cpos);
4032 	struct ocfs2_extent_list *left_el = NULL, *right_el, *insert_el, *el;
4033 	struct ocfs2_extent_rec *rec, *tmprec;
4034 
4035 	right_el = path_leaf_el(right_path);
4036 	if (left_path)
4037 		left_el = path_leaf_el(left_path);
4038 
4039 	el = right_el;
4040 	insert_el = right_el;
4041 	index = ocfs2_search_extent_list(el, cpos);
4042 	if (index != -1) {
4043 		if (index == 0 && left_path) {
4044 			BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0]));
4045 
4046 			/*
4047 			 * This typically means that the record
4048 			 * started in the left path but moved to the
4049 			 * right as a result of rotation. We either
4050 			 * move the existing record to the left, or we
4051 			 * do the later insert there.
4052 			 *
4053 			 * In this case, the left path should always
4054 			 * exist as the rotate code will have passed
4055 			 * it back for a post-insert update.
4056 			 */
4057 
4058 			if (split == SPLIT_LEFT) {
4059 				/*
4060 				 * It's a left split. Since we know
4061 				 * that the rotate code gave us an
4062 				 * empty extent in the left path, we
4063 				 * can just do the insert there.
4064 				 */
4065 				insert_el = left_el;
4066 			} else {
4067 				/*
4068 				 * Right split - we have to move the
4069 				 * existing record over to the left
4070 				 * leaf. The insert will be into the
4071 				 * newly created empty extent in the
4072 				 * right leaf.
4073 				 */
4074 				tmprec = &right_el->l_recs[index];
4075 				ocfs2_rotate_leaf(left_el, tmprec);
4076 				el = left_el;
4077 
4078 				memset(tmprec, 0, sizeof(*tmprec));
4079 				index = ocfs2_search_extent_list(left_el, cpos);
4080 				BUG_ON(index == -1);
4081 			}
4082 		}
4083 	} else {
4084 		BUG_ON(!left_path);
4085 		BUG_ON(!ocfs2_is_empty_extent(&left_el->l_recs[0]));
4086 		/*
4087 		 * Left path is easy - we can just allow the insert to
4088 		 * happen.
4089 		 */
4090 		el = left_el;
4091 		insert_el = left_el;
4092 		index = ocfs2_search_extent_list(el, cpos);
4093 		BUG_ON(index == -1);
4094 	}
4095 
4096 	rec = &el->l_recs[index];
4097 	ocfs2_subtract_from_rec(inode->i_sb, split, rec, split_rec);
4098 	ocfs2_rotate_leaf(insert_el, split_rec);
4099 }
4100 
4101 /*
4102  * This function only does inserts on an allocation b-tree. For tree
4103  * depth = 0, ocfs2_insert_at_leaf() is called directly.
4104  *
4105  * right_path is the path we want to do the actual insert
4106  * in. left_path should only be passed in if we need to update that
4107  * portion of the tree after an edge insert.
4108  */
4109 static int ocfs2_insert_path(struct inode *inode,
4110 			     handle_t *handle,
4111 			     struct ocfs2_path *left_path,
4112 			     struct ocfs2_path *right_path,
4113 			     struct ocfs2_extent_rec *insert_rec,
4114 			     struct ocfs2_insert_type *insert)
4115 {
4116 	int ret, subtree_index;
4117 	struct buffer_head *leaf_bh = path_leaf_bh(right_path);
4118 
4119 	if (left_path) {
4120 		int credits = handle->h_buffer_credits;
4121 
4122 		/*
4123 		 * There's a chance that left_path got passed back to
4124 		 * us without being accounted for in the
4125 		 * journal. Extend our transaction here to be sure we
4126 		 * can change those blocks.
4127 		 */
4128 		credits += left_path->p_tree_depth;
4129 
4130 		ret = ocfs2_extend_trans(handle, credits);
4131 		if (ret < 0) {
4132 			mlog_errno(ret);
4133 			goto out;
4134 		}
4135 
4136 		ret = ocfs2_journal_access_path(inode, handle, left_path);
4137 		if (ret < 0) {
4138 			mlog_errno(ret);
4139 			goto out;
4140 		}
4141 	}
4142 
4143 	/*
4144 	 * Pass both paths to the journal. The majority of inserts
4145 	 * will be touching all components anyway.
4146 	 */
4147 	ret = ocfs2_journal_access_path(inode, handle, right_path);
4148 	if (ret < 0) {
4149 		mlog_errno(ret);
4150 		goto out;
4151 	}
4152 
4153 	if (insert->ins_split != SPLIT_NONE) {
4154 		/*
4155 		 * We could call ocfs2_insert_at_leaf() for some types
4156 		 * of splits, but it's easier to just let one separate
4157 		 * function sort it all out.
4158 		 */
4159 		ocfs2_split_record(inode, left_path, right_path,
4160 				   insert_rec, insert->ins_split);
4161 
4162 		/*
4163 		 * Split might have modified either leaf and we don't
4164 		 * have a guarantee that the later edge insert will
4165 		 * dirty this for us.
4166 		 */
4167 		if (left_path)
4168 			ret = ocfs2_journal_dirty(handle,
4169 						  path_leaf_bh(left_path));
4170 			if (ret)
4171 				mlog_errno(ret);
4172 	} else
4173 		ocfs2_insert_at_leaf(insert_rec, path_leaf_el(right_path),
4174 				     insert, inode);
4175 
4176 	ret = ocfs2_journal_dirty(handle, leaf_bh);
4177 	if (ret)
4178 		mlog_errno(ret);
4179 
4180 	if (left_path) {
4181 		/*
4182 		 * The rotate code has indicated that we need to fix
4183 		 * up portions of the tree after the insert.
4184 		 *
4185 		 * XXX: Should we extend the transaction here?
4186 		 */
4187 		subtree_index = ocfs2_find_subtree_root(inode, left_path,
4188 							right_path);
4189 		ocfs2_complete_edge_insert(inode, handle, left_path,
4190 					   right_path, subtree_index);
4191 	}
4192 
4193 	ret = 0;
4194 out:
4195 	return ret;
4196 }
4197 
4198 static int ocfs2_do_insert_extent(struct inode *inode,
4199 				  handle_t *handle,
4200 				  struct ocfs2_extent_tree *et,
4201 				  struct ocfs2_extent_rec *insert_rec,
4202 				  struct ocfs2_insert_type *type)
4203 {
4204 	int ret, rotate = 0;
4205 	u32 cpos;
4206 	struct ocfs2_path *right_path = NULL;
4207 	struct ocfs2_path *left_path = NULL;
4208 	struct ocfs2_extent_list *el;
4209 
4210 	el = et->et_root_el;
4211 
4212 	ret = ocfs2_et_root_journal_access(handle, inode, et,
4213 					   OCFS2_JOURNAL_ACCESS_WRITE);
4214 	if (ret) {
4215 		mlog_errno(ret);
4216 		goto out;
4217 	}
4218 
4219 	if (le16_to_cpu(el->l_tree_depth) == 0) {
4220 		ocfs2_insert_at_leaf(insert_rec, el, type, inode);
4221 		goto out_update_clusters;
4222 	}
4223 
4224 	right_path = ocfs2_new_path_from_et(et);
4225 	if (!right_path) {
4226 		ret = -ENOMEM;
4227 		mlog_errno(ret);
4228 		goto out;
4229 	}
4230 
4231 	/*
4232 	 * Determine the path to start with. Rotations need the
4233 	 * rightmost path, everything else can go directly to the
4234 	 * target leaf.
4235 	 */
4236 	cpos = le32_to_cpu(insert_rec->e_cpos);
4237 	if (type->ins_appending == APPEND_NONE &&
4238 	    type->ins_contig == CONTIG_NONE) {
4239 		rotate = 1;
4240 		cpos = UINT_MAX;
4241 	}
4242 
4243 	ret = ocfs2_find_path(inode, right_path, cpos);
4244 	if (ret) {
4245 		mlog_errno(ret);
4246 		goto out;
4247 	}
4248 
4249 	/*
4250 	 * Rotations and appends need special treatment - they modify
4251 	 * parts of the tree's above them.
4252 	 *
4253 	 * Both might pass back a path immediate to the left of the
4254 	 * one being inserted to. This will be cause
4255 	 * ocfs2_insert_path() to modify the rightmost records of
4256 	 * left_path to account for an edge insert.
4257 	 *
4258 	 * XXX: When modifying this code, keep in mind that an insert
4259 	 * can wind up skipping both of these two special cases...
4260 	 */
4261 	if (rotate) {
4262 		ret = ocfs2_rotate_tree_right(inode, handle, type->ins_split,
4263 					      le32_to_cpu(insert_rec->e_cpos),
4264 					      right_path, &left_path);
4265 		if (ret) {
4266 			mlog_errno(ret);
4267 			goto out;
4268 		}
4269 
4270 		/*
4271 		 * ocfs2_rotate_tree_right() might have extended the
4272 		 * transaction without re-journaling our tree root.
4273 		 */
4274 		ret = ocfs2_et_root_journal_access(handle, inode, et,
4275 						   OCFS2_JOURNAL_ACCESS_WRITE);
4276 		if (ret) {
4277 			mlog_errno(ret);
4278 			goto out;
4279 		}
4280 	} else if (type->ins_appending == APPEND_TAIL
4281 		   && type->ins_contig != CONTIG_LEFT) {
4282 		ret = ocfs2_append_rec_to_path(inode, handle, insert_rec,
4283 					       right_path, &left_path);
4284 		if (ret) {
4285 			mlog_errno(ret);
4286 			goto out;
4287 		}
4288 	}
4289 
4290 	ret = ocfs2_insert_path(inode, handle, left_path, right_path,
4291 				insert_rec, type);
4292 	if (ret) {
4293 		mlog_errno(ret);
4294 		goto out;
4295 	}
4296 
4297 out_update_clusters:
4298 	if (type->ins_split == SPLIT_NONE)
4299 		ocfs2_et_update_clusters(inode, et,
4300 					 le16_to_cpu(insert_rec->e_leaf_clusters));
4301 
4302 	ret = ocfs2_journal_dirty(handle, et->et_root_bh);
4303 	if (ret)
4304 		mlog_errno(ret);
4305 
4306 out:
4307 	ocfs2_free_path(left_path);
4308 	ocfs2_free_path(right_path);
4309 
4310 	return ret;
4311 }
4312 
4313 static enum ocfs2_contig_type
4314 ocfs2_figure_merge_contig_type(struct inode *inode, struct ocfs2_path *path,
4315 			       struct ocfs2_extent_list *el, int index,
4316 			       struct ocfs2_extent_rec *split_rec)
4317 {
4318 	int status;
4319 	enum ocfs2_contig_type ret = CONTIG_NONE;
4320 	u32 left_cpos, right_cpos;
4321 	struct ocfs2_extent_rec *rec = NULL;
4322 	struct ocfs2_extent_list *new_el;
4323 	struct ocfs2_path *left_path = NULL, *right_path = NULL;
4324 	struct buffer_head *bh;
4325 	struct ocfs2_extent_block *eb;
4326 
4327 	if (index > 0) {
4328 		rec = &el->l_recs[index - 1];
4329 	} else if (path->p_tree_depth > 0) {
4330 		status = ocfs2_find_cpos_for_left_leaf(inode->i_sb,
4331 						       path, &left_cpos);
4332 		if (status)
4333 			goto out;
4334 
4335 		if (left_cpos != 0) {
4336 			left_path = ocfs2_new_path_from_path(path);
4337 			if (!left_path)
4338 				goto out;
4339 
4340 			status = ocfs2_find_path(inode, left_path, left_cpos);
4341 			if (status)
4342 				goto out;
4343 
4344 			new_el = path_leaf_el(left_path);
4345 
4346 			if (le16_to_cpu(new_el->l_next_free_rec) !=
4347 			    le16_to_cpu(new_el->l_count)) {
4348 				bh = path_leaf_bh(left_path);
4349 				eb = (struct ocfs2_extent_block *)bh->b_data;
4350 				ocfs2_error(inode->i_sb,
4351 					    "Extent block #%llu has an "
4352 					    "invalid l_next_free_rec of "
4353 					    "%d.  It should have "
4354 					    "matched the l_count of %d",
4355 					    (unsigned long long)le64_to_cpu(eb->h_blkno),
4356 					    le16_to_cpu(new_el->l_next_free_rec),
4357 					    le16_to_cpu(new_el->l_count));
4358 				status = -EINVAL;
4359 				goto out;
4360 			}
4361 			rec = &new_el->l_recs[
4362 				le16_to_cpu(new_el->l_next_free_rec) - 1];
4363 		}
4364 	}
4365 
4366 	/*
4367 	 * We're careful to check for an empty extent record here -
4368 	 * the merge code will know what to do if it sees one.
4369 	 */
4370 	if (rec) {
4371 		if (index == 1 && ocfs2_is_empty_extent(rec)) {
4372 			if (split_rec->e_cpos == el->l_recs[index].e_cpos)
4373 				ret = CONTIG_RIGHT;
4374 		} else {
4375 			ret = ocfs2_extent_contig(inode, rec, split_rec);
4376 		}
4377 	}
4378 
4379 	rec = NULL;
4380 	if (index < (le16_to_cpu(el->l_next_free_rec) - 1))
4381 		rec = &el->l_recs[index + 1];
4382 	else if (le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count) &&
4383 		 path->p_tree_depth > 0) {
4384 		status = ocfs2_find_cpos_for_right_leaf(inode->i_sb,
4385 							path, &right_cpos);
4386 		if (status)
4387 			goto out;
4388 
4389 		if (right_cpos == 0)
4390 			goto out;
4391 
4392 		right_path = ocfs2_new_path_from_path(path);
4393 		if (!right_path)
4394 			goto out;
4395 
4396 		status = ocfs2_find_path(inode, right_path, right_cpos);
4397 		if (status)
4398 			goto out;
4399 
4400 		new_el = path_leaf_el(right_path);
4401 		rec = &new_el->l_recs[0];
4402 		if (ocfs2_is_empty_extent(rec)) {
4403 			if (le16_to_cpu(new_el->l_next_free_rec) <= 1) {
4404 				bh = path_leaf_bh(right_path);
4405 				eb = (struct ocfs2_extent_block *)bh->b_data;
4406 				ocfs2_error(inode->i_sb,
4407 					    "Extent block #%llu has an "
4408 					    "invalid l_next_free_rec of %d",
4409 					    (unsigned long long)le64_to_cpu(eb->h_blkno),
4410 					    le16_to_cpu(new_el->l_next_free_rec));
4411 				status = -EINVAL;
4412 				goto out;
4413 			}
4414 			rec = &new_el->l_recs[1];
4415 		}
4416 	}
4417 
4418 	if (rec) {
4419 		enum ocfs2_contig_type contig_type;
4420 
4421 		contig_type = ocfs2_extent_contig(inode, rec, split_rec);
4422 
4423 		if (contig_type == CONTIG_LEFT && ret == CONTIG_RIGHT)
4424 			ret = CONTIG_LEFTRIGHT;
4425 		else if (ret == CONTIG_NONE)
4426 			ret = contig_type;
4427 	}
4428 
4429 out:
4430 	if (left_path)
4431 		ocfs2_free_path(left_path);
4432 	if (right_path)
4433 		ocfs2_free_path(right_path);
4434 
4435 	return ret;
4436 }
4437 
4438 static void ocfs2_figure_contig_type(struct inode *inode,
4439 				     struct ocfs2_insert_type *insert,
4440 				     struct ocfs2_extent_list *el,
4441 				     struct ocfs2_extent_rec *insert_rec,
4442 				     struct ocfs2_extent_tree *et)
4443 {
4444 	int i;
4445 	enum ocfs2_contig_type contig_type = CONTIG_NONE;
4446 
4447 	BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
4448 
4449 	for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) {
4450 		contig_type = ocfs2_extent_contig(inode, &el->l_recs[i],
4451 						  insert_rec);
4452 		if (contig_type != CONTIG_NONE) {
4453 			insert->ins_contig_index = i;
4454 			break;
4455 		}
4456 	}
4457 	insert->ins_contig = contig_type;
4458 
4459 	if (insert->ins_contig != CONTIG_NONE) {
4460 		struct ocfs2_extent_rec *rec =
4461 				&el->l_recs[insert->ins_contig_index];
4462 		unsigned int len = le16_to_cpu(rec->e_leaf_clusters) +
4463 				   le16_to_cpu(insert_rec->e_leaf_clusters);
4464 
4465 		/*
4466 		 * Caller might want us to limit the size of extents, don't
4467 		 * calculate contiguousness if we might exceed that limit.
4468 		 */
4469 		if (et->et_max_leaf_clusters &&
4470 		    (len > et->et_max_leaf_clusters))
4471 			insert->ins_contig = CONTIG_NONE;
4472 	}
4473 }
4474 
4475 /*
4476  * This should only be called against the righmost leaf extent list.
4477  *
4478  * ocfs2_figure_appending_type() will figure out whether we'll have to
4479  * insert at the tail of the rightmost leaf.
4480  *
4481  * This should also work against the root extent list for tree's with 0
4482  * depth. If we consider the root extent list to be the rightmost leaf node
4483  * then the logic here makes sense.
4484  */
4485 static void ocfs2_figure_appending_type(struct ocfs2_insert_type *insert,
4486 					struct ocfs2_extent_list *el,
4487 					struct ocfs2_extent_rec *insert_rec)
4488 {
4489 	int i;
4490 	u32 cpos = le32_to_cpu(insert_rec->e_cpos);
4491 	struct ocfs2_extent_rec *rec;
4492 
4493 	insert->ins_appending = APPEND_NONE;
4494 
4495 	BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
4496 
4497 	if (!el->l_next_free_rec)
4498 		goto set_tail_append;
4499 
4500 	if (ocfs2_is_empty_extent(&el->l_recs[0])) {
4501 		/* Were all records empty? */
4502 		if (le16_to_cpu(el->l_next_free_rec) == 1)
4503 			goto set_tail_append;
4504 	}
4505 
4506 	i = le16_to_cpu(el->l_next_free_rec) - 1;
4507 	rec = &el->l_recs[i];
4508 
4509 	if (cpos >=
4510 	    (le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)))
4511 		goto set_tail_append;
4512 
4513 	return;
4514 
4515 set_tail_append:
4516 	insert->ins_appending = APPEND_TAIL;
4517 }
4518 
4519 /*
4520  * Helper function called at the begining of an insert.
4521  *
4522  * This computes a few things that are commonly used in the process of
4523  * inserting into the btree:
4524  *   - Whether the new extent is contiguous with an existing one.
4525  *   - The current tree depth.
4526  *   - Whether the insert is an appending one.
4527  *   - The total # of free records in the tree.
4528  *
4529  * All of the information is stored on the ocfs2_insert_type
4530  * structure.
4531  */
4532 static int ocfs2_figure_insert_type(struct inode *inode,
4533 				    struct ocfs2_extent_tree *et,
4534 				    struct buffer_head **last_eb_bh,
4535 				    struct ocfs2_extent_rec *insert_rec,
4536 				    int *free_records,
4537 				    struct ocfs2_insert_type *insert)
4538 {
4539 	int ret;
4540 	struct ocfs2_extent_block *eb;
4541 	struct ocfs2_extent_list *el;
4542 	struct ocfs2_path *path = NULL;
4543 	struct buffer_head *bh = NULL;
4544 
4545 	insert->ins_split = SPLIT_NONE;
4546 
4547 	el = et->et_root_el;
4548 	insert->ins_tree_depth = le16_to_cpu(el->l_tree_depth);
4549 
4550 	if (el->l_tree_depth) {
4551 		/*
4552 		 * If we have tree depth, we read in the
4553 		 * rightmost extent block ahead of time as
4554 		 * ocfs2_figure_insert_type() and ocfs2_add_branch()
4555 		 * may want it later.
4556 		 */
4557 		ret = ocfs2_read_extent_block(inode,
4558 					      ocfs2_et_get_last_eb_blk(et),
4559 					      &bh);
4560 		if (ret) {
4561 			mlog_exit(ret);
4562 			goto out;
4563 		}
4564 		eb = (struct ocfs2_extent_block *) bh->b_data;
4565 		el = &eb->h_list;
4566 	}
4567 
4568 	/*
4569 	 * Unless we have a contiguous insert, we'll need to know if
4570 	 * there is room left in our allocation tree for another
4571 	 * extent record.
4572 	 *
4573 	 * XXX: This test is simplistic, we can search for empty
4574 	 * extent records too.
4575 	 */
4576 	*free_records = le16_to_cpu(el->l_count) -
4577 		le16_to_cpu(el->l_next_free_rec);
4578 
4579 	if (!insert->ins_tree_depth) {
4580 		ocfs2_figure_contig_type(inode, insert, el, insert_rec, et);
4581 		ocfs2_figure_appending_type(insert, el, insert_rec);
4582 		return 0;
4583 	}
4584 
4585 	path = ocfs2_new_path_from_et(et);
4586 	if (!path) {
4587 		ret = -ENOMEM;
4588 		mlog_errno(ret);
4589 		goto out;
4590 	}
4591 
4592 	/*
4593 	 * In the case that we're inserting past what the tree
4594 	 * currently accounts for, ocfs2_find_path() will return for
4595 	 * us the rightmost tree path. This is accounted for below in
4596 	 * the appending code.
4597 	 */
4598 	ret = ocfs2_find_path(inode, path, le32_to_cpu(insert_rec->e_cpos));
4599 	if (ret) {
4600 		mlog_errno(ret);
4601 		goto out;
4602 	}
4603 
4604 	el = path_leaf_el(path);
4605 
4606 	/*
4607 	 * Now that we have the path, there's two things we want to determine:
4608 	 * 1) Contiguousness (also set contig_index if this is so)
4609 	 *
4610 	 * 2) Are we doing an append? We can trivially break this up
4611          *     into two types of appends: simple record append, or a
4612          *     rotate inside the tail leaf.
4613 	 */
4614 	ocfs2_figure_contig_type(inode, insert, el, insert_rec, et);
4615 
4616 	/*
4617 	 * The insert code isn't quite ready to deal with all cases of
4618 	 * left contiguousness. Specifically, if it's an insert into
4619 	 * the 1st record in a leaf, it will require the adjustment of
4620 	 * cluster count on the last record of the path directly to it's
4621 	 * left. For now, just catch that case and fool the layers
4622 	 * above us. This works just fine for tree_depth == 0, which
4623 	 * is why we allow that above.
4624 	 */
4625 	if (insert->ins_contig == CONTIG_LEFT &&
4626 	    insert->ins_contig_index == 0)
4627 		insert->ins_contig = CONTIG_NONE;
4628 
4629 	/*
4630 	 * Ok, so we can simply compare against last_eb to figure out
4631 	 * whether the path doesn't exist. This will only happen in
4632 	 * the case that we're doing a tail append, so maybe we can
4633 	 * take advantage of that information somehow.
4634 	 */
4635 	if (ocfs2_et_get_last_eb_blk(et) ==
4636 	    path_leaf_bh(path)->b_blocknr) {
4637 		/*
4638 		 * Ok, ocfs2_find_path() returned us the rightmost
4639 		 * tree path. This might be an appending insert. There are
4640 		 * two cases:
4641 		 *    1) We're doing a true append at the tail:
4642 		 *	-This might even be off the end of the leaf
4643 		 *    2) We're "appending" by rotating in the tail
4644 		 */
4645 		ocfs2_figure_appending_type(insert, el, insert_rec);
4646 	}
4647 
4648 out:
4649 	ocfs2_free_path(path);
4650 
4651 	if (ret == 0)
4652 		*last_eb_bh = bh;
4653 	else
4654 		brelse(bh);
4655 	return ret;
4656 }
4657 
4658 /*
4659  * Insert an extent into an inode btree.
4660  *
4661  * The caller needs to update fe->i_clusters
4662  */
4663 int ocfs2_insert_extent(struct ocfs2_super *osb,
4664 			handle_t *handle,
4665 			struct inode *inode,
4666 			struct ocfs2_extent_tree *et,
4667 			u32 cpos,
4668 			u64 start_blk,
4669 			u32 new_clusters,
4670 			u8 flags,
4671 			struct ocfs2_alloc_context *meta_ac)
4672 {
4673 	int status;
4674 	int uninitialized_var(free_records);
4675 	struct buffer_head *last_eb_bh = NULL;
4676 	struct ocfs2_insert_type insert = {0, };
4677 	struct ocfs2_extent_rec rec;
4678 
4679 	mlog(0, "add %u clusters at position %u to inode %llu\n",
4680 	     new_clusters, cpos, (unsigned long long)OCFS2_I(inode)->ip_blkno);
4681 
4682 	memset(&rec, 0, sizeof(rec));
4683 	rec.e_cpos = cpu_to_le32(cpos);
4684 	rec.e_blkno = cpu_to_le64(start_blk);
4685 	rec.e_leaf_clusters = cpu_to_le16(new_clusters);
4686 	rec.e_flags = flags;
4687 	status = ocfs2_et_insert_check(inode, et, &rec);
4688 	if (status) {
4689 		mlog_errno(status);
4690 		goto bail;
4691 	}
4692 
4693 	status = ocfs2_figure_insert_type(inode, et, &last_eb_bh, &rec,
4694 					  &free_records, &insert);
4695 	if (status < 0) {
4696 		mlog_errno(status);
4697 		goto bail;
4698 	}
4699 
4700 	mlog(0, "Insert.appending: %u, Insert.Contig: %u, "
4701 	     "Insert.contig_index: %d, Insert.free_records: %d, "
4702 	     "Insert.tree_depth: %d\n",
4703 	     insert.ins_appending, insert.ins_contig, insert.ins_contig_index,
4704 	     free_records, insert.ins_tree_depth);
4705 
4706 	if (insert.ins_contig == CONTIG_NONE && free_records == 0) {
4707 		status = ocfs2_grow_tree(inode, handle, et,
4708 					 &insert.ins_tree_depth, &last_eb_bh,
4709 					 meta_ac);
4710 		if (status) {
4711 			mlog_errno(status);
4712 			goto bail;
4713 		}
4714 	}
4715 
4716 	/* Finally, we can add clusters. This might rotate the tree for us. */
4717 	status = ocfs2_do_insert_extent(inode, handle, et, &rec, &insert);
4718 	if (status < 0)
4719 		mlog_errno(status);
4720 	else if (et->et_ops == &ocfs2_dinode_et_ops)
4721 		ocfs2_extent_map_insert_rec(inode, &rec);
4722 
4723 bail:
4724 	brelse(last_eb_bh);
4725 
4726 	mlog_exit(status);
4727 	return status;
4728 }
4729 
4730 /*
4731  * Allcate and add clusters into the extent b-tree.
4732  * The new clusters(clusters_to_add) will be inserted at logical_offset.
4733  * The extent b-tree's root is specified by et, and
4734  * it is not limited to the file storage. Any extent tree can use this
4735  * function if it implements the proper ocfs2_extent_tree.
4736  */
4737 int ocfs2_add_clusters_in_btree(struct ocfs2_super *osb,
4738 				struct inode *inode,
4739 				u32 *logical_offset,
4740 				u32 clusters_to_add,
4741 				int mark_unwritten,
4742 				struct ocfs2_extent_tree *et,
4743 				handle_t *handle,
4744 				struct ocfs2_alloc_context *data_ac,
4745 				struct ocfs2_alloc_context *meta_ac,
4746 				enum ocfs2_alloc_restarted *reason_ret)
4747 {
4748 	int status = 0;
4749 	int free_extents;
4750 	enum ocfs2_alloc_restarted reason = RESTART_NONE;
4751 	u32 bit_off, num_bits;
4752 	u64 block;
4753 	u8 flags = 0;
4754 
4755 	BUG_ON(!clusters_to_add);
4756 
4757 	if (mark_unwritten)
4758 		flags = OCFS2_EXT_UNWRITTEN;
4759 
4760 	free_extents = ocfs2_num_free_extents(osb, inode, et);
4761 	if (free_extents < 0) {
4762 		status = free_extents;
4763 		mlog_errno(status);
4764 		goto leave;
4765 	}
4766 
4767 	/* there are two cases which could cause us to EAGAIN in the
4768 	 * we-need-more-metadata case:
4769 	 * 1) we haven't reserved *any*
4770 	 * 2) we are so fragmented, we've needed to add metadata too
4771 	 *    many times. */
4772 	if (!free_extents && !meta_ac) {
4773 		mlog(0, "we haven't reserved any metadata!\n");
4774 		status = -EAGAIN;
4775 		reason = RESTART_META;
4776 		goto leave;
4777 	} else if ((!free_extents)
4778 		   && (ocfs2_alloc_context_bits_left(meta_ac)
4779 		       < ocfs2_extend_meta_needed(et->et_root_el))) {
4780 		mlog(0, "filesystem is really fragmented...\n");
4781 		status = -EAGAIN;
4782 		reason = RESTART_META;
4783 		goto leave;
4784 	}
4785 
4786 	status = __ocfs2_claim_clusters(osb, handle, data_ac, 1,
4787 					clusters_to_add, &bit_off, &num_bits);
4788 	if (status < 0) {
4789 		if (status != -ENOSPC)
4790 			mlog_errno(status);
4791 		goto leave;
4792 	}
4793 
4794 	BUG_ON(num_bits > clusters_to_add);
4795 
4796 	/* reserve our write early -- insert_extent may update the tree root */
4797 	status = ocfs2_et_root_journal_access(handle, inode, et,
4798 					      OCFS2_JOURNAL_ACCESS_WRITE);
4799 	if (status < 0) {
4800 		mlog_errno(status);
4801 		goto leave;
4802 	}
4803 
4804 	block = ocfs2_clusters_to_blocks(osb->sb, bit_off);
4805 	mlog(0, "Allocating %u clusters at block %u for inode %llu\n",
4806 	     num_bits, bit_off, (unsigned long long)OCFS2_I(inode)->ip_blkno);
4807 	status = ocfs2_insert_extent(osb, handle, inode, et,
4808 				     *logical_offset, block,
4809 				     num_bits, flags, meta_ac);
4810 	if (status < 0) {
4811 		mlog_errno(status);
4812 		goto leave;
4813 	}
4814 
4815 	status = ocfs2_journal_dirty(handle, et->et_root_bh);
4816 	if (status < 0) {
4817 		mlog_errno(status);
4818 		goto leave;
4819 	}
4820 
4821 	clusters_to_add -= num_bits;
4822 	*logical_offset += num_bits;
4823 
4824 	if (clusters_to_add) {
4825 		mlog(0, "need to alloc once more, wanted = %u\n",
4826 		     clusters_to_add);
4827 		status = -EAGAIN;
4828 		reason = RESTART_TRANS;
4829 	}
4830 
4831 leave:
4832 	mlog_exit(status);
4833 	if (reason_ret)
4834 		*reason_ret = reason;
4835 	return status;
4836 }
4837 
4838 static void ocfs2_make_right_split_rec(struct super_block *sb,
4839 				       struct ocfs2_extent_rec *split_rec,
4840 				       u32 cpos,
4841 				       struct ocfs2_extent_rec *rec)
4842 {
4843 	u32 rec_cpos = le32_to_cpu(rec->e_cpos);
4844 	u32 rec_range = rec_cpos + le16_to_cpu(rec->e_leaf_clusters);
4845 
4846 	memset(split_rec, 0, sizeof(struct ocfs2_extent_rec));
4847 
4848 	split_rec->e_cpos = cpu_to_le32(cpos);
4849 	split_rec->e_leaf_clusters = cpu_to_le16(rec_range - cpos);
4850 
4851 	split_rec->e_blkno = rec->e_blkno;
4852 	le64_add_cpu(&split_rec->e_blkno,
4853 		     ocfs2_clusters_to_blocks(sb, cpos - rec_cpos));
4854 
4855 	split_rec->e_flags = rec->e_flags;
4856 }
4857 
4858 static int ocfs2_split_and_insert(struct inode *inode,
4859 				  handle_t *handle,
4860 				  struct ocfs2_path *path,
4861 				  struct ocfs2_extent_tree *et,
4862 				  struct buffer_head **last_eb_bh,
4863 				  int split_index,
4864 				  struct ocfs2_extent_rec *orig_split_rec,
4865 				  struct ocfs2_alloc_context *meta_ac)
4866 {
4867 	int ret = 0, depth;
4868 	unsigned int insert_range, rec_range, do_leftright = 0;
4869 	struct ocfs2_extent_rec tmprec;
4870 	struct ocfs2_extent_list *rightmost_el;
4871 	struct ocfs2_extent_rec rec;
4872 	struct ocfs2_extent_rec split_rec = *orig_split_rec;
4873 	struct ocfs2_insert_type insert;
4874 	struct ocfs2_extent_block *eb;
4875 
4876 leftright:
4877 	/*
4878 	 * Store a copy of the record on the stack - it might move
4879 	 * around as the tree is manipulated below.
4880 	 */
4881 	rec = path_leaf_el(path)->l_recs[split_index];
4882 
4883 	rightmost_el = et->et_root_el;
4884 
4885 	depth = le16_to_cpu(rightmost_el->l_tree_depth);
4886 	if (depth) {
4887 		BUG_ON(!(*last_eb_bh));
4888 		eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data;
4889 		rightmost_el = &eb->h_list;
4890 	}
4891 
4892 	if (le16_to_cpu(rightmost_el->l_next_free_rec) ==
4893 	    le16_to_cpu(rightmost_el->l_count)) {
4894 		ret = ocfs2_grow_tree(inode, handle, et,
4895 				      &depth, last_eb_bh, meta_ac);
4896 		if (ret) {
4897 			mlog_errno(ret);
4898 			goto out;
4899 		}
4900 	}
4901 
4902 	memset(&insert, 0, sizeof(struct ocfs2_insert_type));
4903 	insert.ins_appending = APPEND_NONE;
4904 	insert.ins_contig = CONTIG_NONE;
4905 	insert.ins_tree_depth = depth;
4906 
4907 	insert_range = le32_to_cpu(split_rec.e_cpos) +
4908 		le16_to_cpu(split_rec.e_leaf_clusters);
4909 	rec_range = le32_to_cpu(rec.e_cpos) +
4910 		le16_to_cpu(rec.e_leaf_clusters);
4911 
4912 	if (split_rec.e_cpos == rec.e_cpos) {
4913 		insert.ins_split = SPLIT_LEFT;
4914 	} else if (insert_range == rec_range) {
4915 		insert.ins_split = SPLIT_RIGHT;
4916 	} else {
4917 		/*
4918 		 * Left/right split. We fake this as a right split
4919 		 * first and then make a second pass as a left split.
4920 		 */
4921 		insert.ins_split = SPLIT_RIGHT;
4922 
4923 		ocfs2_make_right_split_rec(inode->i_sb, &tmprec, insert_range,
4924 					   &rec);
4925 
4926 		split_rec = tmprec;
4927 
4928 		BUG_ON(do_leftright);
4929 		do_leftright = 1;
4930 	}
4931 
4932 	ret = ocfs2_do_insert_extent(inode, handle, et, &split_rec, &insert);
4933 	if (ret) {
4934 		mlog_errno(ret);
4935 		goto out;
4936 	}
4937 
4938 	if (do_leftright == 1) {
4939 		u32 cpos;
4940 		struct ocfs2_extent_list *el;
4941 
4942 		do_leftright++;
4943 		split_rec = *orig_split_rec;
4944 
4945 		ocfs2_reinit_path(path, 1);
4946 
4947 		cpos = le32_to_cpu(split_rec.e_cpos);
4948 		ret = ocfs2_find_path(inode, path, cpos);
4949 		if (ret) {
4950 			mlog_errno(ret);
4951 			goto out;
4952 		}
4953 
4954 		el = path_leaf_el(path);
4955 		split_index = ocfs2_search_extent_list(el, cpos);
4956 		goto leftright;
4957 	}
4958 out:
4959 
4960 	return ret;
4961 }
4962 
4963 static int ocfs2_replace_extent_rec(struct inode *inode,
4964 				    handle_t *handle,
4965 				    struct ocfs2_path *path,
4966 				    struct ocfs2_extent_list *el,
4967 				    int split_index,
4968 				    struct ocfs2_extent_rec *split_rec)
4969 {
4970 	int ret;
4971 
4972 	ret = ocfs2_path_bh_journal_access(handle, inode, path,
4973 					   path_num_items(path) - 1);
4974 	if (ret) {
4975 		mlog_errno(ret);
4976 		goto out;
4977 	}
4978 
4979 	el->l_recs[split_index] = *split_rec;
4980 
4981 	ocfs2_journal_dirty(handle, path_leaf_bh(path));
4982 out:
4983 	return ret;
4984 }
4985 
4986 /*
4987  * Mark part or all of the extent record at split_index in the leaf
4988  * pointed to by path as written. This removes the unwritten
4989  * extent flag.
4990  *
4991  * Care is taken to handle contiguousness so as to not grow the tree.
4992  *
4993  * meta_ac is not strictly necessary - we only truly need it if growth
4994  * of the tree is required. All other cases will degrade into a less
4995  * optimal tree layout.
4996  *
4997  * last_eb_bh should be the rightmost leaf block for any extent
4998  * btree. Since a split may grow the tree or a merge might shrink it,
4999  * the caller cannot trust the contents of that buffer after this call.
5000  *
5001  * This code is optimized for readability - several passes might be
5002  * made over certain portions of the tree. All of those blocks will
5003  * have been brought into cache (and pinned via the journal), so the
5004  * extra overhead is not expressed in terms of disk reads.
5005  */
5006 static int __ocfs2_mark_extent_written(struct inode *inode,
5007 				       struct ocfs2_extent_tree *et,
5008 				       handle_t *handle,
5009 				       struct ocfs2_path *path,
5010 				       int split_index,
5011 				       struct ocfs2_extent_rec *split_rec,
5012 				       struct ocfs2_alloc_context *meta_ac,
5013 				       struct ocfs2_cached_dealloc_ctxt *dealloc)
5014 {
5015 	int ret = 0;
5016 	struct ocfs2_extent_list *el = path_leaf_el(path);
5017 	struct buffer_head *last_eb_bh = NULL;
5018 	struct ocfs2_extent_rec *rec = &el->l_recs[split_index];
5019 	struct ocfs2_merge_ctxt ctxt;
5020 	struct ocfs2_extent_list *rightmost_el;
5021 
5022 	if (!(rec->e_flags & OCFS2_EXT_UNWRITTEN)) {
5023 		ret = -EIO;
5024 		mlog_errno(ret);
5025 		goto out;
5026 	}
5027 
5028 	if (le32_to_cpu(rec->e_cpos) > le32_to_cpu(split_rec->e_cpos) ||
5029 	    ((le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)) <
5030 	     (le32_to_cpu(split_rec->e_cpos) + le16_to_cpu(split_rec->e_leaf_clusters)))) {
5031 		ret = -EIO;
5032 		mlog_errno(ret);
5033 		goto out;
5034 	}
5035 
5036 	ctxt.c_contig_type = ocfs2_figure_merge_contig_type(inode, path, el,
5037 							    split_index,
5038 							    split_rec);
5039 
5040 	/*
5041 	 * The core merge / split code wants to know how much room is
5042 	 * left in this inodes allocation tree, so we pass the
5043 	 * rightmost extent list.
5044 	 */
5045 	if (path->p_tree_depth) {
5046 		struct ocfs2_extent_block *eb;
5047 
5048 		ret = ocfs2_read_extent_block(inode,
5049 					      ocfs2_et_get_last_eb_blk(et),
5050 					      &last_eb_bh);
5051 		if (ret) {
5052 			mlog_exit(ret);
5053 			goto out;
5054 		}
5055 
5056 		eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
5057 		rightmost_el = &eb->h_list;
5058 	} else
5059 		rightmost_el = path_root_el(path);
5060 
5061 	if (rec->e_cpos == split_rec->e_cpos &&
5062 	    rec->e_leaf_clusters == split_rec->e_leaf_clusters)
5063 		ctxt.c_split_covers_rec = 1;
5064 	else
5065 		ctxt.c_split_covers_rec = 0;
5066 
5067 	ctxt.c_has_empty_extent = ocfs2_is_empty_extent(&el->l_recs[0]);
5068 
5069 	mlog(0, "index: %d, contig: %u, has_empty: %u, split_covers: %u\n",
5070 	     split_index, ctxt.c_contig_type, ctxt.c_has_empty_extent,
5071 	     ctxt.c_split_covers_rec);
5072 
5073 	if (ctxt.c_contig_type == CONTIG_NONE) {
5074 		if (ctxt.c_split_covers_rec)
5075 			ret = ocfs2_replace_extent_rec(inode, handle,
5076 						       path, el,
5077 						       split_index, split_rec);
5078 		else
5079 			ret = ocfs2_split_and_insert(inode, handle, path, et,
5080 						     &last_eb_bh, split_index,
5081 						     split_rec, meta_ac);
5082 		if (ret)
5083 			mlog_errno(ret);
5084 	} else {
5085 		ret = ocfs2_try_to_merge_extent(inode, handle, path,
5086 						split_index, split_rec,
5087 						dealloc, &ctxt, et);
5088 		if (ret)
5089 			mlog_errno(ret);
5090 	}
5091 
5092 out:
5093 	brelse(last_eb_bh);
5094 	return ret;
5095 }
5096 
5097 /*
5098  * Mark the already-existing extent at cpos as written for len clusters.
5099  *
5100  * If the existing extent is larger than the request, initiate a
5101  * split. An attempt will be made at merging with adjacent extents.
5102  *
5103  * The caller is responsible for passing down meta_ac if we'll need it.
5104  */
5105 int ocfs2_mark_extent_written(struct inode *inode,
5106 			      struct ocfs2_extent_tree *et,
5107 			      handle_t *handle, u32 cpos, u32 len, u32 phys,
5108 			      struct ocfs2_alloc_context *meta_ac,
5109 			      struct ocfs2_cached_dealloc_ctxt *dealloc)
5110 {
5111 	int ret, index;
5112 	u64 start_blkno = ocfs2_clusters_to_blocks(inode->i_sb, phys);
5113 	struct ocfs2_extent_rec split_rec;
5114 	struct ocfs2_path *left_path = NULL;
5115 	struct ocfs2_extent_list *el;
5116 
5117 	mlog(0, "Inode %lu cpos %u, len %u, phys %u (%llu)\n",
5118 	     inode->i_ino, cpos, len, phys, (unsigned long long)start_blkno);
5119 
5120 	if (!ocfs2_writes_unwritten_extents(OCFS2_SB(inode->i_sb))) {
5121 		ocfs2_error(inode->i_sb, "Inode %llu has unwritten extents "
5122 			    "that are being written to, but the feature bit "
5123 			    "is not set in the super block.",
5124 			    (unsigned long long)OCFS2_I(inode)->ip_blkno);
5125 		ret = -EROFS;
5126 		goto out;
5127 	}
5128 
5129 	/*
5130 	 * XXX: This should be fixed up so that we just re-insert the
5131 	 * next extent records.
5132 	 *
5133 	 * XXX: This is a hack on the extent tree, maybe it should be
5134 	 * an op?
5135 	 */
5136 	if (et->et_ops == &ocfs2_dinode_et_ops)
5137 		ocfs2_extent_map_trunc(inode, 0);
5138 
5139 	left_path = ocfs2_new_path_from_et(et);
5140 	if (!left_path) {
5141 		ret = -ENOMEM;
5142 		mlog_errno(ret);
5143 		goto out;
5144 	}
5145 
5146 	ret = ocfs2_find_path(inode, left_path, cpos);
5147 	if (ret) {
5148 		mlog_errno(ret);
5149 		goto out;
5150 	}
5151 	el = path_leaf_el(left_path);
5152 
5153 	index = ocfs2_search_extent_list(el, cpos);
5154 	if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) {
5155 		ocfs2_error(inode->i_sb,
5156 			    "Inode %llu has an extent at cpos %u which can no "
5157 			    "longer be found.\n",
5158 			    (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos);
5159 		ret = -EROFS;
5160 		goto out;
5161 	}
5162 
5163 	memset(&split_rec, 0, sizeof(struct ocfs2_extent_rec));
5164 	split_rec.e_cpos = cpu_to_le32(cpos);
5165 	split_rec.e_leaf_clusters = cpu_to_le16(len);
5166 	split_rec.e_blkno = cpu_to_le64(start_blkno);
5167 	split_rec.e_flags = path_leaf_el(left_path)->l_recs[index].e_flags;
5168 	split_rec.e_flags &= ~OCFS2_EXT_UNWRITTEN;
5169 
5170 	ret = __ocfs2_mark_extent_written(inode, et, handle, left_path,
5171 					  index, &split_rec, meta_ac,
5172 					  dealloc);
5173 	if (ret)
5174 		mlog_errno(ret);
5175 
5176 out:
5177 	ocfs2_free_path(left_path);
5178 	return ret;
5179 }
5180 
5181 static int ocfs2_split_tree(struct inode *inode, struct ocfs2_extent_tree *et,
5182 			    handle_t *handle, struct ocfs2_path *path,
5183 			    int index, u32 new_range,
5184 			    struct ocfs2_alloc_context *meta_ac)
5185 {
5186 	int ret, depth, credits = handle->h_buffer_credits;
5187 	struct buffer_head *last_eb_bh = NULL;
5188 	struct ocfs2_extent_block *eb;
5189 	struct ocfs2_extent_list *rightmost_el, *el;
5190 	struct ocfs2_extent_rec split_rec;
5191 	struct ocfs2_extent_rec *rec;
5192 	struct ocfs2_insert_type insert;
5193 
5194 	/*
5195 	 * Setup the record to split before we grow the tree.
5196 	 */
5197 	el = path_leaf_el(path);
5198 	rec = &el->l_recs[index];
5199 	ocfs2_make_right_split_rec(inode->i_sb, &split_rec, new_range, rec);
5200 
5201 	depth = path->p_tree_depth;
5202 	if (depth > 0) {
5203 		ret = ocfs2_read_extent_block(inode,
5204 					      ocfs2_et_get_last_eb_blk(et),
5205 					      &last_eb_bh);
5206 		if (ret < 0) {
5207 			mlog_errno(ret);
5208 			goto out;
5209 		}
5210 
5211 		eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
5212 		rightmost_el = &eb->h_list;
5213 	} else
5214 		rightmost_el = path_leaf_el(path);
5215 
5216 	credits += path->p_tree_depth +
5217 		   ocfs2_extend_meta_needed(et->et_root_el);
5218 	ret = ocfs2_extend_trans(handle, credits);
5219 	if (ret) {
5220 		mlog_errno(ret);
5221 		goto out;
5222 	}
5223 
5224 	if (le16_to_cpu(rightmost_el->l_next_free_rec) ==
5225 	    le16_to_cpu(rightmost_el->l_count)) {
5226 		ret = ocfs2_grow_tree(inode, handle, et, &depth, &last_eb_bh,
5227 				      meta_ac);
5228 		if (ret) {
5229 			mlog_errno(ret);
5230 			goto out;
5231 		}
5232 	}
5233 
5234 	memset(&insert, 0, sizeof(struct ocfs2_insert_type));
5235 	insert.ins_appending = APPEND_NONE;
5236 	insert.ins_contig = CONTIG_NONE;
5237 	insert.ins_split = SPLIT_RIGHT;
5238 	insert.ins_tree_depth = depth;
5239 
5240 	ret = ocfs2_do_insert_extent(inode, handle, et, &split_rec, &insert);
5241 	if (ret)
5242 		mlog_errno(ret);
5243 
5244 out:
5245 	brelse(last_eb_bh);
5246 	return ret;
5247 }
5248 
5249 static int ocfs2_truncate_rec(struct inode *inode, handle_t *handle,
5250 			      struct ocfs2_path *path, int index,
5251 			      struct ocfs2_cached_dealloc_ctxt *dealloc,
5252 			      u32 cpos, u32 len,
5253 			      struct ocfs2_extent_tree *et)
5254 {
5255 	int ret;
5256 	u32 left_cpos, rec_range, trunc_range;
5257 	int wants_rotate = 0, is_rightmost_tree_rec = 0;
5258 	struct super_block *sb = inode->i_sb;
5259 	struct ocfs2_path *left_path = NULL;
5260 	struct ocfs2_extent_list *el = path_leaf_el(path);
5261 	struct ocfs2_extent_rec *rec;
5262 	struct ocfs2_extent_block *eb;
5263 
5264 	if (ocfs2_is_empty_extent(&el->l_recs[0]) && index > 0) {
5265 		ret = ocfs2_rotate_tree_left(inode, handle, path, dealloc, et);
5266 		if (ret) {
5267 			mlog_errno(ret);
5268 			goto out;
5269 		}
5270 
5271 		index--;
5272 	}
5273 
5274 	if (index == (le16_to_cpu(el->l_next_free_rec) - 1) &&
5275 	    path->p_tree_depth) {
5276 		/*
5277 		 * Check whether this is the rightmost tree record. If
5278 		 * we remove all of this record or part of its right
5279 		 * edge then an update of the record lengths above it
5280 		 * will be required.
5281 		 */
5282 		eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
5283 		if (eb->h_next_leaf_blk == 0)
5284 			is_rightmost_tree_rec = 1;
5285 	}
5286 
5287 	rec = &el->l_recs[index];
5288 	if (index == 0 && path->p_tree_depth &&
5289 	    le32_to_cpu(rec->e_cpos) == cpos) {
5290 		/*
5291 		 * Changing the leftmost offset (via partial or whole
5292 		 * record truncate) of an interior (or rightmost) path
5293 		 * means we have to update the subtree that is formed
5294 		 * by this leaf and the one to it's left.
5295 		 *
5296 		 * There are two cases we can skip:
5297 		 *   1) Path is the leftmost one in our inode tree.
5298 		 *   2) The leaf is rightmost and will be empty after
5299 		 *      we remove the extent record - the rotate code
5300 		 *      knows how to update the newly formed edge.
5301 		 */
5302 
5303 		ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path,
5304 						    &left_cpos);
5305 		if (ret) {
5306 			mlog_errno(ret);
5307 			goto out;
5308 		}
5309 
5310 		if (left_cpos && le16_to_cpu(el->l_next_free_rec) > 1) {
5311 			left_path = ocfs2_new_path_from_path(path);
5312 			if (!left_path) {
5313 				ret = -ENOMEM;
5314 				mlog_errno(ret);
5315 				goto out;
5316 			}
5317 
5318 			ret = ocfs2_find_path(inode, left_path, left_cpos);
5319 			if (ret) {
5320 				mlog_errno(ret);
5321 				goto out;
5322 			}
5323 		}
5324 	}
5325 
5326 	ret = ocfs2_extend_rotate_transaction(handle, 0,
5327 					      handle->h_buffer_credits,
5328 					      path);
5329 	if (ret) {
5330 		mlog_errno(ret);
5331 		goto out;
5332 	}
5333 
5334 	ret = ocfs2_journal_access_path(inode, handle, path);
5335 	if (ret) {
5336 		mlog_errno(ret);
5337 		goto out;
5338 	}
5339 
5340 	ret = ocfs2_journal_access_path(inode, handle, left_path);
5341 	if (ret) {
5342 		mlog_errno(ret);
5343 		goto out;
5344 	}
5345 
5346 	rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
5347 	trunc_range = cpos + len;
5348 
5349 	if (le32_to_cpu(rec->e_cpos) == cpos && rec_range == trunc_range) {
5350 		int next_free;
5351 
5352 		memset(rec, 0, sizeof(*rec));
5353 		ocfs2_cleanup_merge(el, index);
5354 		wants_rotate = 1;
5355 
5356 		next_free = le16_to_cpu(el->l_next_free_rec);
5357 		if (is_rightmost_tree_rec && next_free > 1) {
5358 			/*
5359 			 * We skip the edge update if this path will
5360 			 * be deleted by the rotate code.
5361 			 */
5362 			rec = &el->l_recs[next_free - 1];
5363 			ocfs2_adjust_rightmost_records(inode, handle, path,
5364 						       rec);
5365 		}
5366 	} else if (le32_to_cpu(rec->e_cpos) == cpos) {
5367 		/* Remove leftmost portion of the record. */
5368 		le32_add_cpu(&rec->e_cpos, len);
5369 		le64_add_cpu(&rec->e_blkno, ocfs2_clusters_to_blocks(sb, len));
5370 		le16_add_cpu(&rec->e_leaf_clusters, -len);
5371 	} else if (rec_range == trunc_range) {
5372 		/* Remove rightmost portion of the record */
5373 		le16_add_cpu(&rec->e_leaf_clusters, -len);
5374 		if (is_rightmost_tree_rec)
5375 			ocfs2_adjust_rightmost_records(inode, handle, path, rec);
5376 	} else {
5377 		/* Caller should have trapped this. */
5378 		mlog(ML_ERROR, "Inode %llu: Invalid record truncate: (%u, %u) "
5379 		     "(%u, %u)\n", (unsigned long long)OCFS2_I(inode)->ip_blkno,
5380 		     le32_to_cpu(rec->e_cpos),
5381 		     le16_to_cpu(rec->e_leaf_clusters), cpos, len);
5382 		BUG();
5383 	}
5384 
5385 	if (left_path) {
5386 		int subtree_index;
5387 
5388 		subtree_index = ocfs2_find_subtree_root(inode, left_path, path);
5389 		ocfs2_complete_edge_insert(inode, handle, left_path, path,
5390 					   subtree_index);
5391 	}
5392 
5393 	ocfs2_journal_dirty(handle, path_leaf_bh(path));
5394 
5395 	ret = ocfs2_rotate_tree_left(inode, handle, path, dealloc, et);
5396 	if (ret) {
5397 		mlog_errno(ret);
5398 		goto out;
5399 	}
5400 
5401 out:
5402 	ocfs2_free_path(left_path);
5403 	return ret;
5404 }
5405 
5406 int ocfs2_remove_extent(struct inode *inode,
5407 			struct ocfs2_extent_tree *et,
5408 			u32 cpos, u32 len, handle_t *handle,
5409 			struct ocfs2_alloc_context *meta_ac,
5410 			struct ocfs2_cached_dealloc_ctxt *dealloc)
5411 {
5412 	int ret, index;
5413 	u32 rec_range, trunc_range;
5414 	struct ocfs2_extent_rec *rec;
5415 	struct ocfs2_extent_list *el;
5416 	struct ocfs2_path *path = NULL;
5417 
5418 	ocfs2_extent_map_trunc(inode, 0);
5419 
5420 	path = ocfs2_new_path_from_et(et);
5421 	if (!path) {
5422 		ret = -ENOMEM;
5423 		mlog_errno(ret);
5424 		goto out;
5425 	}
5426 
5427 	ret = ocfs2_find_path(inode, path, cpos);
5428 	if (ret) {
5429 		mlog_errno(ret);
5430 		goto out;
5431 	}
5432 
5433 	el = path_leaf_el(path);
5434 	index = ocfs2_search_extent_list(el, cpos);
5435 	if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) {
5436 		ocfs2_error(inode->i_sb,
5437 			    "Inode %llu has an extent at cpos %u which can no "
5438 			    "longer be found.\n",
5439 			    (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos);
5440 		ret = -EROFS;
5441 		goto out;
5442 	}
5443 
5444 	/*
5445 	 * We have 3 cases of extent removal:
5446 	 *   1) Range covers the entire extent rec
5447 	 *   2) Range begins or ends on one edge of the extent rec
5448 	 *   3) Range is in the middle of the extent rec (no shared edges)
5449 	 *
5450 	 * For case 1 we remove the extent rec and left rotate to
5451 	 * fill the hole.
5452 	 *
5453 	 * For case 2 we just shrink the existing extent rec, with a
5454 	 * tree update if the shrinking edge is also the edge of an
5455 	 * extent block.
5456 	 *
5457 	 * For case 3 we do a right split to turn the extent rec into
5458 	 * something case 2 can handle.
5459 	 */
5460 	rec = &el->l_recs[index];
5461 	rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
5462 	trunc_range = cpos + len;
5463 
5464 	BUG_ON(cpos < le32_to_cpu(rec->e_cpos) || trunc_range > rec_range);
5465 
5466 	mlog(0, "Inode %llu, remove (cpos %u, len %u). Existing index %d "
5467 	     "(cpos %u, len %u)\n",
5468 	     (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos, len, index,
5469 	     le32_to_cpu(rec->e_cpos), ocfs2_rec_clusters(el, rec));
5470 
5471 	if (le32_to_cpu(rec->e_cpos) == cpos || rec_range == trunc_range) {
5472 		ret = ocfs2_truncate_rec(inode, handle, path, index, dealloc,
5473 					 cpos, len, et);
5474 		if (ret) {
5475 			mlog_errno(ret);
5476 			goto out;
5477 		}
5478 	} else {
5479 		ret = ocfs2_split_tree(inode, et, handle, path, index,
5480 				       trunc_range, meta_ac);
5481 		if (ret) {
5482 			mlog_errno(ret);
5483 			goto out;
5484 		}
5485 
5486 		/*
5487 		 * The split could have manipulated the tree enough to
5488 		 * move the record location, so we have to look for it again.
5489 		 */
5490 		ocfs2_reinit_path(path, 1);
5491 
5492 		ret = ocfs2_find_path(inode, path, cpos);
5493 		if (ret) {
5494 			mlog_errno(ret);
5495 			goto out;
5496 		}
5497 
5498 		el = path_leaf_el(path);
5499 		index = ocfs2_search_extent_list(el, cpos);
5500 		if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) {
5501 			ocfs2_error(inode->i_sb,
5502 				    "Inode %llu: split at cpos %u lost record.",
5503 				    (unsigned long long)OCFS2_I(inode)->ip_blkno,
5504 				    cpos);
5505 			ret = -EROFS;
5506 			goto out;
5507 		}
5508 
5509 		/*
5510 		 * Double check our values here. If anything is fishy,
5511 		 * it's easier to catch it at the top level.
5512 		 */
5513 		rec = &el->l_recs[index];
5514 		rec_range = le32_to_cpu(rec->e_cpos) +
5515 			ocfs2_rec_clusters(el, rec);
5516 		if (rec_range != trunc_range) {
5517 			ocfs2_error(inode->i_sb,
5518 				    "Inode %llu: error after split at cpos %u"
5519 				    "trunc len %u, existing record is (%u,%u)",
5520 				    (unsigned long long)OCFS2_I(inode)->ip_blkno,
5521 				    cpos, len, le32_to_cpu(rec->e_cpos),
5522 				    ocfs2_rec_clusters(el, rec));
5523 			ret = -EROFS;
5524 			goto out;
5525 		}
5526 
5527 		ret = ocfs2_truncate_rec(inode, handle, path, index, dealloc,
5528 					 cpos, len, et);
5529 		if (ret) {
5530 			mlog_errno(ret);
5531 			goto out;
5532 		}
5533 	}
5534 
5535 out:
5536 	ocfs2_free_path(path);
5537 	return ret;
5538 }
5539 
5540 int ocfs2_remove_btree_range(struct inode *inode,
5541 			     struct ocfs2_extent_tree *et,
5542 			     u32 cpos, u32 phys_cpos, u32 len,
5543 			     struct ocfs2_cached_dealloc_ctxt *dealloc)
5544 {
5545 	int ret;
5546 	u64 phys_blkno = ocfs2_clusters_to_blocks(inode->i_sb, phys_cpos);
5547 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
5548 	struct inode *tl_inode = osb->osb_tl_inode;
5549 	handle_t *handle;
5550 	struct ocfs2_alloc_context *meta_ac = NULL;
5551 
5552 	ret = ocfs2_lock_allocators(inode, et, 0, 1, NULL, &meta_ac);
5553 	if (ret) {
5554 		mlog_errno(ret);
5555 		return ret;
5556 	}
5557 
5558 	mutex_lock(&tl_inode->i_mutex);
5559 
5560 	if (ocfs2_truncate_log_needs_flush(osb)) {
5561 		ret = __ocfs2_flush_truncate_log(osb);
5562 		if (ret < 0) {
5563 			mlog_errno(ret);
5564 			goto out;
5565 		}
5566 	}
5567 
5568 	handle = ocfs2_start_trans(osb, ocfs2_remove_extent_credits(osb->sb));
5569 	if (IS_ERR(handle)) {
5570 		ret = PTR_ERR(handle);
5571 		mlog_errno(ret);
5572 		goto out;
5573 	}
5574 
5575 	ret = ocfs2_et_root_journal_access(handle, inode, et,
5576 					   OCFS2_JOURNAL_ACCESS_WRITE);
5577 	if (ret) {
5578 		mlog_errno(ret);
5579 		goto out;
5580 	}
5581 
5582 	vfs_dq_free_space_nodirty(inode,
5583 				  ocfs2_clusters_to_bytes(inode->i_sb, len));
5584 
5585 	ret = ocfs2_remove_extent(inode, et, cpos, len, handle, meta_ac,
5586 				  dealloc);
5587 	if (ret) {
5588 		mlog_errno(ret);
5589 		goto out_commit;
5590 	}
5591 
5592 	ocfs2_et_update_clusters(inode, et, -len);
5593 
5594 	ret = ocfs2_journal_dirty(handle, et->et_root_bh);
5595 	if (ret) {
5596 		mlog_errno(ret);
5597 		goto out_commit;
5598 	}
5599 
5600 	ret = ocfs2_truncate_log_append(osb, handle, phys_blkno, len);
5601 	if (ret)
5602 		mlog_errno(ret);
5603 
5604 out_commit:
5605 	ocfs2_commit_trans(osb, handle);
5606 out:
5607 	mutex_unlock(&tl_inode->i_mutex);
5608 
5609 	if (meta_ac)
5610 		ocfs2_free_alloc_context(meta_ac);
5611 
5612 	return ret;
5613 }
5614 
5615 int ocfs2_truncate_log_needs_flush(struct ocfs2_super *osb)
5616 {
5617 	struct buffer_head *tl_bh = osb->osb_tl_bh;
5618 	struct ocfs2_dinode *di;
5619 	struct ocfs2_truncate_log *tl;
5620 
5621 	di = (struct ocfs2_dinode *) tl_bh->b_data;
5622 	tl = &di->id2.i_dealloc;
5623 
5624 	mlog_bug_on_msg(le16_to_cpu(tl->tl_used) > le16_to_cpu(tl->tl_count),
5625 			"slot %d, invalid truncate log parameters: used = "
5626 			"%u, count = %u\n", osb->slot_num,
5627 			le16_to_cpu(tl->tl_used), le16_to_cpu(tl->tl_count));
5628 	return le16_to_cpu(tl->tl_used) == le16_to_cpu(tl->tl_count);
5629 }
5630 
5631 static int ocfs2_truncate_log_can_coalesce(struct ocfs2_truncate_log *tl,
5632 					   unsigned int new_start)
5633 {
5634 	unsigned int tail_index;
5635 	unsigned int current_tail;
5636 
5637 	/* No records, nothing to coalesce */
5638 	if (!le16_to_cpu(tl->tl_used))
5639 		return 0;
5640 
5641 	tail_index = le16_to_cpu(tl->tl_used) - 1;
5642 	current_tail = le32_to_cpu(tl->tl_recs[tail_index].t_start);
5643 	current_tail += le32_to_cpu(tl->tl_recs[tail_index].t_clusters);
5644 
5645 	return current_tail == new_start;
5646 }
5647 
5648 int ocfs2_truncate_log_append(struct ocfs2_super *osb,
5649 			      handle_t *handle,
5650 			      u64 start_blk,
5651 			      unsigned int num_clusters)
5652 {
5653 	int status, index;
5654 	unsigned int start_cluster, tl_count;
5655 	struct inode *tl_inode = osb->osb_tl_inode;
5656 	struct buffer_head *tl_bh = osb->osb_tl_bh;
5657 	struct ocfs2_dinode *di;
5658 	struct ocfs2_truncate_log *tl;
5659 
5660 	mlog_entry("start_blk = %llu, num_clusters = %u\n",
5661 		   (unsigned long long)start_blk, num_clusters);
5662 
5663 	BUG_ON(mutex_trylock(&tl_inode->i_mutex));
5664 
5665 	start_cluster = ocfs2_blocks_to_clusters(osb->sb, start_blk);
5666 
5667 	di = (struct ocfs2_dinode *) tl_bh->b_data;
5668 
5669 	/* tl_bh is loaded from ocfs2_truncate_log_init().  It's validated
5670 	 * by the underlying call to ocfs2_read_inode_block(), so any
5671 	 * corruption is a code bug */
5672 	BUG_ON(!OCFS2_IS_VALID_DINODE(di));
5673 
5674 	tl = &di->id2.i_dealloc;
5675 	tl_count = le16_to_cpu(tl->tl_count);
5676 	mlog_bug_on_msg(tl_count > ocfs2_truncate_recs_per_inode(osb->sb) ||
5677 			tl_count == 0,
5678 			"Truncate record count on #%llu invalid "
5679 			"wanted %u, actual %u\n",
5680 			(unsigned long long)OCFS2_I(tl_inode)->ip_blkno,
5681 			ocfs2_truncate_recs_per_inode(osb->sb),
5682 			le16_to_cpu(tl->tl_count));
5683 
5684 	/* Caller should have known to flush before calling us. */
5685 	index = le16_to_cpu(tl->tl_used);
5686 	if (index >= tl_count) {
5687 		status = -ENOSPC;
5688 		mlog_errno(status);
5689 		goto bail;
5690 	}
5691 
5692 	status = ocfs2_journal_access_di(handle, tl_inode, tl_bh,
5693 					 OCFS2_JOURNAL_ACCESS_WRITE);
5694 	if (status < 0) {
5695 		mlog_errno(status);
5696 		goto bail;
5697 	}
5698 
5699 	mlog(0, "Log truncate of %u clusters starting at cluster %u to "
5700 	     "%llu (index = %d)\n", num_clusters, start_cluster,
5701 	     (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, index);
5702 
5703 	if (ocfs2_truncate_log_can_coalesce(tl, start_cluster)) {
5704 		/*
5705 		 * Move index back to the record we are coalescing with.
5706 		 * ocfs2_truncate_log_can_coalesce() guarantees nonzero
5707 		 */
5708 		index--;
5709 
5710 		num_clusters += le32_to_cpu(tl->tl_recs[index].t_clusters);
5711 		mlog(0, "Coalesce with index %u (start = %u, clusters = %u)\n",
5712 		     index, le32_to_cpu(tl->tl_recs[index].t_start),
5713 		     num_clusters);
5714 	} else {
5715 		tl->tl_recs[index].t_start = cpu_to_le32(start_cluster);
5716 		tl->tl_used = cpu_to_le16(index + 1);
5717 	}
5718 	tl->tl_recs[index].t_clusters = cpu_to_le32(num_clusters);
5719 
5720 	status = ocfs2_journal_dirty(handle, tl_bh);
5721 	if (status < 0) {
5722 		mlog_errno(status);
5723 		goto bail;
5724 	}
5725 
5726 bail:
5727 	mlog_exit(status);
5728 	return status;
5729 }
5730 
5731 static int ocfs2_replay_truncate_records(struct ocfs2_super *osb,
5732 					 handle_t *handle,
5733 					 struct inode *data_alloc_inode,
5734 					 struct buffer_head *data_alloc_bh)
5735 {
5736 	int status = 0;
5737 	int i;
5738 	unsigned int num_clusters;
5739 	u64 start_blk;
5740 	struct ocfs2_truncate_rec rec;
5741 	struct ocfs2_dinode *di;
5742 	struct ocfs2_truncate_log *tl;
5743 	struct inode *tl_inode = osb->osb_tl_inode;
5744 	struct buffer_head *tl_bh = osb->osb_tl_bh;
5745 
5746 	mlog_entry_void();
5747 
5748 	di = (struct ocfs2_dinode *) tl_bh->b_data;
5749 	tl = &di->id2.i_dealloc;
5750 	i = le16_to_cpu(tl->tl_used) - 1;
5751 	while (i >= 0) {
5752 		/* Caller has given us at least enough credits to
5753 		 * update the truncate log dinode */
5754 		status = ocfs2_journal_access_di(handle, tl_inode, tl_bh,
5755 						 OCFS2_JOURNAL_ACCESS_WRITE);
5756 		if (status < 0) {
5757 			mlog_errno(status);
5758 			goto bail;
5759 		}
5760 
5761 		tl->tl_used = cpu_to_le16(i);
5762 
5763 		status = ocfs2_journal_dirty(handle, tl_bh);
5764 		if (status < 0) {
5765 			mlog_errno(status);
5766 			goto bail;
5767 		}
5768 
5769 		/* TODO: Perhaps we can calculate the bulk of the
5770 		 * credits up front rather than extending like
5771 		 * this. */
5772 		status = ocfs2_extend_trans(handle,
5773 					    OCFS2_TRUNCATE_LOG_FLUSH_ONE_REC);
5774 		if (status < 0) {
5775 			mlog_errno(status);
5776 			goto bail;
5777 		}
5778 
5779 		rec = tl->tl_recs[i];
5780 		start_blk = ocfs2_clusters_to_blocks(data_alloc_inode->i_sb,
5781 						    le32_to_cpu(rec.t_start));
5782 		num_clusters = le32_to_cpu(rec.t_clusters);
5783 
5784 		/* if start_blk is not set, we ignore the record as
5785 		 * invalid. */
5786 		if (start_blk) {
5787 			mlog(0, "free record %d, start = %u, clusters = %u\n",
5788 			     i, le32_to_cpu(rec.t_start), num_clusters);
5789 
5790 			status = ocfs2_free_clusters(handle, data_alloc_inode,
5791 						     data_alloc_bh, start_blk,
5792 						     num_clusters);
5793 			if (status < 0) {
5794 				mlog_errno(status);
5795 				goto bail;
5796 			}
5797 		}
5798 		i--;
5799 	}
5800 
5801 bail:
5802 	mlog_exit(status);
5803 	return status;
5804 }
5805 
5806 /* Expects you to already be holding tl_inode->i_mutex */
5807 int __ocfs2_flush_truncate_log(struct ocfs2_super *osb)
5808 {
5809 	int status;
5810 	unsigned int num_to_flush;
5811 	handle_t *handle;
5812 	struct inode *tl_inode = osb->osb_tl_inode;
5813 	struct inode *data_alloc_inode = NULL;
5814 	struct buffer_head *tl_bh = osb->osb_tl_bh;
5815 	struct buffer_head *data_alloc_bh = NULL;
5816 	struct ocfs2_dinode *di;
5817 	struct ocfs2_truncate_log *tl;
5818 
5819 	mlog_entry_void();
5820 
5821 	BUG_ON(mutex_trylock(&tl_inode->i_mutex));
5822 
5823 	di = (struct ocfs2_dinode *) tl_bh->b_data;
5824 
5825 	/* tl_bh is loaded from ocfs2_truncate_log_init().  It's validated
5826 	 * by the underlying call to ocfs2_read_inode_block(), so any
5827 	 * corruption is a code bug */
5828 	BUG_ON(!OCFS2_IS_VALID_DINODE(di));
5829 
5830 	tl = &di->id2.i_dealloc;
5831 	num_to_flush = le16_to_cpu(tl->tl_used);
5832 	mlog(0, "Flush %u records from truncate log #%llu\n",
5833 	     num_to_flush, (unsigned long long)OCFS2_I(tl_inode)->ip_blkno);
5834 	if (!num_to_flush) {
5835 		status = 0;
5836 		goto out;
5837 	}
5838 
5839 	data_alloc_inode = ocfs2_get_system_file_inode(osb,
5840 						       GLOBAL_BITMAP_SYSTEM_INODE,
5841 						       OCFS2_INVALID_SLOT);
5842 	if (!data_alloc_inode) {
5843 		status = -EINVAL;
5844 		mlog(ML_ERROR, "Could not get bitmap inode!\n");
5845 		goto out;
5846 	}
5847 
5848 	mutex_lock(&data_alloc_inode->i_mutex);
5849 
5850 	status = ocfs2_inode_lock(data_alloc_inode, &data_alloc_bh, 1);
5851 	if (status < 0) {
5852 		mlog_errno(status);
5853 		goto out_mutex;
5854 	}
5855 
5856 	handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
5857 	if (IS_ERR(handle)) {
5858 		status = PTR_ERR(handle);
5859 		mlog_errno(status);
5860 		goto out_unlock;
5861 	}
5862 
5863 	status = ocfs2_replay_truncate_records(osb, handle, data_alloc_inode,
5864 					       data_alloc_bh);
5865 	if (status < 0)
5866 		mlog_errno(status);
5867 
5868 	ocfs2_commit_trans(osb, handle);
5869 
5870 out_unlock:
5871 	brelse(data_alloc_bh);
5872 	ocfs2_inode_unlock(data_alloc_inode, 1);
5873 
5874 out_mutex:
5875 	mutex_unlock(&data_alloc_inode->i_mutex);
5876 	iput(data_alloc_inode);
5877 
5878 out:
5879 	mlog_exit(status);
5880 	return status;
5881 }
5882 
5883 int ocfs2_flush_truncate_log(struct ocfs2_super *osb)
5884 {
5885 	int status;
5886 	struct inode *tl_inode = osb->osb_tl_inode;
5887 
5888 	mutex_lock(&tl_inode->i_mutex);
5889 	status = __ocfs2_flush_truncate_log(osb);
5890 	mutex_unlock(&tl_inode->i_mutex);
5891 
5892 	return status;
5893 }
5894 
5895 static void ocfs2_truncate_log_worker(struct work_struct *work)
5896 {
5897 	int status;
5898 	struct ocfs2_super *osb =
5899 		container_of(work, struct ocfs2_super,
5900 			     osb_truncate_log_wq.work);
5901 
5902 	mlog_entry_void();
5903 
5904 	status = ocfs2_flush_truncate_log(osb);
5905 	if (status < 0)
5906 		mlog_errno(status);
5907 	else
5908 		ocfs2_init_inode_steal_slot(osb);
5909 
5910 	mlog_exit(status);
5911 }
5912 
5913 #define OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL (2 * HZ)
5914 void ocfs2_schedule_truncate_log_flush(struct ocfs2_super *osb,
5915 				       int cancel)
5916 {
5917 	if (osb->osb_tl_inode) {
5918 		/* We want to push off log flushes while truncates are
5919 		 * still running. */
5920 		if (cancel)
5921 			cancel_delayed_work(&osb->osb_truncate_log_wq);
5922 
5923 		queue_delayed_work(ocfs2_wq, &osb->osb_truncate_log_wq,
5924 				   OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL);
5925 	}
5926 }
5927 
5928 static int ocfs2_get_truncate_log_info(struct ocfs2_super *osb,
5929 				       int slot_num,
5930 				       struct inode **tl_inode,
5931 				       struct buffer_head **tl_bh)
5932 {
5933 	int status;
5934 	struct inode *inode = NULL;
5935 	struct buffer_head *bh = NULL;
5936 
5937 	inode = ocfs2_get_system_file_inode(osb,
5938 					   TRUNCATE_LOG_SYSTEM_INODE,
5939 					   slot_num);
5940 	if (!inode) {
5941 		status = -EINVAL;
5942 		mlog(ML_ERROR, "Could not get load truncate log inode!\n");
5943 		goto bail;
5944 	}
5945 
5946 	status = ocfs2_read_inode_block(inode, &bh);
5947 	if (status < 0) {
5948 		iput(inode);
5949 		mlog_errno(status);
5950 		goto bail;
5951 	}
5952 
5953 	*tl_inode = inode;
5954 	*tl_bh    = bh;
5955 bail:
5956 	mlog_exit(status);
5957 	return status;
5958 }
5959 
5960 /* called during the 1st stage of node recovery. we stamp a clean
5961  * truncate log and pass back a copy for processing later. if the
5962  * truncate log does not require processing, a *tl_copy is set to
5963  * NULL. */
5964 int ocfs2_begin_truncate_log_recovery(struct ocfs2_super *osb,
5965 				      int slot_num,
5966 				      struct ocfs2_dinode **tl_copy)
5967 {
5968 	int status;
5969 	struct inode *tl_inode = NULL;
5970 	struct buffer_head *tl_bh = NULL;
5971 	struct ocfs2_dinode *di;
5972 	struct ocfs2_truncate_log *tl;
5973 
5974 	*tl_copy = NULL;
5975 
5976 	mlog(0, "recover truncate log from slot %d\n", slot_num);
5977 
5978 	status = ocfs2_get_truncate_log_info(osb, slot_num, &tl_inode, &tl_bh);
5979 	if (status < 0) {
5980 		mlog_errno(status);
5981 		goto bail;
5982 	}
5983 
5984 	di = (struct ocfs2_dinode *) tl_bh->b_data;
5985 
5986 	/* tl_bh is loaded from ocfs2_get_truncate_log_info().  It's
5987 	 * validated by the underlying call to ocfs2_read_inode_block(),
5988 	 * so any corruption is a code bug */
5989 	BUG_ON(!OCFS2_IS_VALID_DINODE(di));
5990 
5991 	tl = &di->id2.i_dealloc;
5992 	if (le16_to_cpu(tl->tl_used)) {
5993 		mlog(0, "We'll have %u logs to recover\n",
5994 		     le16_to_cpu(tl->tl_used));
5995 
5996 		*tl_copy = kmalloc(tl_bh->b_size, GFP_KERNEL);
5997 		if (!(*tl_copy)) {
5998 			status = -ENOMEM;
5999 			mlog_errno(status);
6000 			goto bail;
6001 		}
6002 
6003 		/* Assuming the write-out below goes well, this copy
6004 		 * will be passed back to recovery for processing. */
6005 		memcpy(*tl_copy, tl_bh->b_data, tl_bh->b_size);
6006 
6007 		/* All we need to do to clear the truncate log is set
6008 		 * tl_used. */
6009 		tl->tl_used = 0;
6010 
6011 		ocfs2_compute_meta_ecc(osb->sb, tl_bh->b_data, &di->i_check);
6012 		status = ocfs2_write_block(osb, tl_bh, tl_inode);
6013 		if (status < 0) {
6014 			mlog_errno(status);
6015 			goto bail;
6016 		}
6017 	}
6018 
6019 bail:
6020 	if (tl_inode)
6021 		iput(tl_inode);
6022 	brelse(tl_bh);
6023 
6024 	if (status < 0 && (*tl_copy)) {
6025 		kfree(*tl_copy);
6026 		*tl_copy = NULL;
6027 	}
6028 
6029 	mlog_exit(status);
6030 	return status;
6031 }
6032 
6033 int ocfs2_complete_truncate_log_recovery(struct ocfs2_super *osb,
6034 					 struct ocfs2_dinode *tl_copy)
6035 {
6036 	int status = 0;
6037 	int i;
6038 	unsigned int clusters, num_recs, start_cluster;
6039 	u64 start_blk;
6040 	handle_t *handle;
6041 	struct inode *tl_inode = osb->osb_tl_inode;
6042 	struct ocfs2_truncate_log *tl;
6043 
6044 	mlog_entry_void();
6045 
6046 	if (OCFS2_I(tl_inode)->ip_blkno == le64_to_cpu(tl_copy->i_blkno)) {
6047 		mlog(ML_ERROR, "Asked to recover my own truncate log!\n");
6048 		return -EINVAL;
6049 	}
6050 
6051 	tl = &tl_copy->id2.i_dealloc;
6052 	num_recs = le16_to_cpu(tl->tl_used);
6053 	mlog(0, "cleanup %u records from %llu\n", num_recs,
6054 	     (unsigned long long)le64_to_cpu(tl_copy->i_blkno));
6055 
6056 	mutex_lock(&tl_inode->i_mutex);
6057 	for(i = 0; i < num_recs; i++) {
6058 		if (ocfs2_truncate_log_needs_flush(osb)) {
6059 			status = __ocfs2_flush_truncate_log(osb);
6060 			if (status < 0) {
6061 				mlog_errno(status);
6062 				goto bail_up;
6063 			}
6064 		}
6065 
6066 		handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
6067 		if (IS_ERR(handle)) {
6068 			status = PTR_ERR(handle);
6069 			mlog_errno(status);
6070 			goto bail_up;
6071 		}
6072 
6073 		clusters = le32_to_cpu(tl->tl_recs[i].t_clusters);
6074 		start_cluster = le32_to_cpu(tl->tl_recs[i].t_start);
6075 		start_blk = ocfs2_clusters_to_blocks(osb->sb, start_cluster);
6076 
6077 		status = ocfs2_truncate_log_append(osb, handle,
6078 						   start_blk, clusters);
6079 		ocfs2_commit_trans(osb, handle);
6080 		if (status < 0) {
6081 			mlog_errno(status);
6082 			goto bail_up;
6083 		}
6084 	}
6085 
6086 bail_up:
6087 	mutex_unlock(&tl_inode->i_mutex);
6088 
6089 	mlog_exit(status);
6090 	return status;
6091 }
6092 
6093 void ocfs2_truncate_log_shutdown(struct ocfs2_super *osb)
6094 {
6095 	int status;
6096 	struct inode *tl_inode = osb->osb_tl_inode;
6097 
6098 	mlog_entry_void();
6099 
6100 	if (tl_inode) {
6101 		cancel_delayed_work(&osb->osb_truncate_log_wq);
6102 		flush_workqueue(ocfs2_wq);
6103 
6104 		status = ocfs2_flush_truncate_log(osb);
6105 		if (status < 0)
6106 			mlog_errno(status);
6107 
6108 		brelse(osb->osb_tl_bh);
6109 		iput(osb->osb_tl_inode);
6110 	}
6111 
6112 	mlog_exit_void();
6113 }
6114 
6115 int ocfs2_truncate_log_init(struct ocfs2_super *osb)
6116 {
6117 	int status;
6118 	struct inode *tl_inode = NULL;
6119 	struct buffer_head *tl_bh = NULL;
6120 
6121 	mlog_entry_void();
6122 
6123 	status = ocfs2_get_truncate_log_info(osb,
6124 					     osb->slot_num,
6125 					     &tl_inode,
6126 					     &tl_bh);
6127 	if (status < 0)
6128 		mlog_errno(status);
6129 
6130 	/* ocfs2_truncate_log_shutdown keys on the existence of
6131 	 * osb->osb_tl_inode so we don't set any of the osb variables
6132 	 * until we're sure all is well. */
6133 	INIT_DELAYED_WORK(&osb->osb_truncate_log_wq,
6134 			  ocfs2_truncate_log_worker);
6135 	osb->osb_tl_bh    = tl_bh;
6136 	osb->osb_tl_inode = tl_inode;
6137 
6138 	mlog_exit(status);
6139 	return status;
6140 }
6141 
6142 /*
6143  * Delayed de-allocation of suballocator blocks.
6144  *
6145  * Some sets of block de-allocations might involve multiple suballocator inodes.
6146  *
6147  * The locking for this can get extremely complicated, especially when
6148  * the suballocator inodes to delete from aren't known until deep
6149  * within an unrelated codepath.
6150  *
6151  * ocfs2_extent_block structures are a good example of this - an inode
6152  * btree could have been grown by any number of nodes each allocating
6153  * out of their own suballoc inode.
6154  *
6155  * These structures allow the delay of block de-allocation until a
6156  * later time, when locking of multiple cluster inodes won't cause
6157  * deadlock.
6158  */
6159 
6160 /*
6161  * Describe a single bit freed from a suballocator.  For the block
6162  * suballocators, it represents one block.  For the global cluster
6163  * allocator, it represents some clusters and free_bit indicates
6164  * clusters number.
6165  */
6166 struct ocfs2_cached_block_free {
6167 	struct ocfs2_cached_block_free		*free_next;
6168 	u64					free_blk;
6169 	unsigned int				free_bit;
6170 };
6171 
6172 struct ocfs2_per_slot_free_list {
6173 	struct ocfs2_per_slot_free_list		*f_next_suballocator;
6174 	int					f_inode_type;
6175 	int					f_slot;
6176 	struct ocfs2_cached_block_free		*f_first;
6177 };
6178 
6179 static int ocfs2_free_cached_blocks(struct ocfs2_super *osb,
6180 				    int sysfile_type,
6181 				    int slot,
6182 				    struct ocfs2_cached_block_free *head)
6183 {
6184 	int ret;
6185 	u64 bg_blkno;
6186 	handle_t *handle;
6187 	struct inode *inode;
6188 	struct buffer_head *di_bh = NULL;
6189 	struct ocfs2_cached_block_free *tmp;
6190 
6191 	inode = ocfs2_get_system_file_inode(osb, sysfile_type, slot);
6192 	if (!inode) {
6193 		ret = -EINVAL;
6194 		mlog_errno(ret);
6195 		goto out;
6196 	}
6197 
6198 	mutex_lock(&inode->i_mutex);
6199 
6200 	ret = ocfs2_inode_lock(inode, &di_bh, 1);
6201 	if (ret) {
6202 		mlog_errno(ret);
6203 		goto out_mutex;
6204 	}
6205 
6206 	handle = ocfs2_start_trans(osb, OCFS2_SUBALLOC_FREE);
6207 	if (IS_ERR(handle)) {
6208 		ret = PTR_ERR(handle);
6209 		mlog_errno(ret);
6210 		goto out_unlock;
6211 	}
6212 
6213 	while (head) {
6214 		bg_blkno = ocfs2_which_suballoc_group(head->free_blk,
6215 						      head->free_bit);
6216 		mlog(0, "Free bit: (bit %u, blkno %llu)\n",
6217 		     head->free_bit, (unsigned long long)head->free_blk);
6218 
6219 		ret = ocfs2_free_suballoc_bits(handle, inode, di_bh,
6220 					       head->free_bit, bg_blkno, 1);
6221 		if (ret) {
6222 			mlog_errno(ret);
6223 			goto out_journal;
6224 		}
6225 
6226 		ret = ocfs2_extend_trans(handle, OCFS2_SUBALLOC_FREE);
6227 		if (ret) {
6228 			mlog_errno(ret);
6229 			goto out_journal;
6230 		}
6231 
6232 		tmp = head;
6233 		head = head->free_next;
6234 		kfree(tmp);
6235 	}
6236 
6237 out_journal:
6238 	ocfs2_commit_trans(osb, handle);
6239 
6240 out_unlock:
6241 	ocfs2_inode_unlock(inode, 1);
6242 	brelse(di_bh);
6243 out_mutex:
6244 	mutex_unlock(&inode->i_mutex);
6245 	iput(inode);
6246 out:
6247 	while(head) {
6248 		/* Premature exit may have left some dangling items. */
6249 		tmp = head;
6250 		head = head->free_next;
6251 		kfree(tmp);
6252 	}
6253 
6254 	return ret;
6255 }
6256 
6257 int ocfs2_cache_cluster_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt,
6258 				u64 blkno, unsigned int bit)
6259 {
6260 	int ret = 0;
6261 	struct ocfs2_cached_block_free *item;
6262 
6263 	item = kmalloc(sizeof(*item), GFP_NOFS);
6264 	if (item == NULL) {
6265 		ret = -ENOMEM;
6266 		mlog_errno(ret);
6267 		return ret;
6268 	}
6269 
6270 	mlog(0, "Insert clusters: (bit %u, blk %llu)\n",
6271 	     bit, (unsigned long long)blkno);
6272 
6273 	item->free_blk = blkno;
6274 	item->free_bit = bit;
6275 	item->free_next = ctxt->c_global_allocator;
6276 
6277 	ctxt->c_global_allocator = item;
6278 	return ret;
6279 }
6280 
6281 static int ocfs2_free_cached_clusters(struct ocfs2_super *osb,
6282 				      struct ocfs2_cached_block_free *head)
6283 {
6284 	struct ocfs2_cached_block_free *tmp;
6285 	struct inode *tl_inode = osb->osb_tl_inode;
6286 	handle_t *handle;
6287 	int ret = 0;
6288 
6289 	mutex_lock(&tl_inode->i_mutex);
6290 
6291 	while (head) {
6292 		if (ocfs2_truncate_log_needs_flush(osb)) {
6293 			ret = __ocfs2_flush_truncate_log(osb);
6294 			if (ret < 0) {
6295 				mlog_errno(ret);
6296 				break;
6297 			}
6298 		}
6299 
6300 		handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
6301 		if (IS_ERR(handle)) {
6302 			ret = PTR_ERR(handle);
6303 			mlog_errno(ret);
6304 			break;
6305 		}
6306 
6307 		ret = ocfs2_truncate_log_append(osb, handle, head->free_blk,
6308 						head->free_bit);
6309 
6310 		ocfs2_commit_trans(osb, handle);
6311 		tmp = head;
6312 		head = head->free_next;
6313 		kfree(tmp);
6314 
6315 		if (ret < 0) {
6316 			mlog_errno(ret);
6317 			break;
6318 		}
6319 	}
6320 
6321 	mutex_unlock(&tl_inode->i_mutex);
6322 
6323 	while (head) {
6324 		/* Premature exit may have left some dangling items. */
6325 		tmp = head;
6326 		head = head->free_next;
6327 		kfree(tmp);
6328 	}
6329 
6330 	return ret;
6331 }
6332 
6333 int ocfs2_run_deallocs(struct ocfs2_super *osb,
6334 		       struct ocfs2_cached_dealloc_ctxt *ctxt)
6335 {
6336 	int ret = 0, ret2;
6337 	struct ocfs2_per_slot_free_list *fl;
6338 
6339 	if (!ctxt)
6340 		return 0;
6341 
6342 	while (ctxt->c_first_suballocator) {
6343 		fl = ctxt->c_first_suballocator;
6344 
6345 		if (fl->f_first) {
6346 			mlog(0, "Free items: (type %u, slot %d)\n",
6347 			     fl->f_inode_type, fl->f_slot);
6348 			ret2 = ocfs2_free_cached_blocks(osb,
6349 							fl->f_inode_type,
6350 							fl->f_slot,
6351 							fl->f_first);
6352 			if (ret2)
6353 				mlog_errno(ret2);
6354 			if (!ret)
6355 				ret = ret2;
6356 		}
6357 
6358 		ctxt->c_first_suballocator = fl->f_next_suballocator;
6359 		kfree(fl);
6360 	}
6361 
6362 	if (ctxt->c_global_allocator) {
6363 		ret2 = ocfs2_free_cached_clusters(osb,
6364 						  ctxt->c_global_allocator);
6365 		if (ret2)
6366 			mlog_errno(ret2);
6367 		if (!ret)
6368 			ret = ret2;
6369 
6370 		ctxt->c_global_allocator = NULL;
6371 	}
6372 
6373 	return ret;
6374 }
6375 
6376 static struct ocfs2_per_slot_free_list *
6377 ocfs2_find_per_slot_free_list(int type,
6378 			      int slot,
6379 			      struct ocfs2_cached_dealloc_ctxt *ctxt)
6380 {
6381 	struct ocfs2_per_slot_free_list *fl = ctxt->c_first_suballocator;
6382 
6383 	while (fl) {
6384 		if (fl->f_inode_type == type && fl->f_slot == slot)
6385 			return fl;
6386 
6387 		fl = fl->f_next_suballocator;
6388 	}
6389 
6390 	fl = kmalloc(sizeof(*fl), GFP_NOFS);
6391 	if (fl) {
6392 		fl->f_inode_type = type;
6393 		fl->f_slot = slot;
6394 		fl->f_first = NULL;
6395 		fl->f_next_suballocator = ctxt->c_first_suballocator;
6396 
6397 		ctxt->c_first_suballocator = fl;
6398 	}
6399 	return fl;
6400 }
6401 
6402 static int ocfs2_cache_block_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt,
6403 				     int type, int slot, u64 blkno,
6404 				     unsigned int bit)
6405 {
6406 	int ret;
6407 	struct ocfs2_per_slot_free_list *fl;
6408 	struct ocfs2_cached_block_free *item;
6409 
6410 	fl = ocfs2_find_per_slot_free_list(type, slot, ctxt);
6411 	if (fl == NULL) {
6412 		ret = -ENOMEM;
6413 		mlog_errno(ret);
6414 		goto out;
6415 	}
6416 
6417 	item = kmalloc(sizeof(*item), GFP_NOFS);
6418 	if (item == NULL) {
6419 		ret = -ENOMEM;
6420 		mlog_errno(ret);
6421 		goto out;
6422 	}
6423 
6424 	mlog(0, "Insert: (type %d, slot %u, bit %u, blk %llu)\n",
6425 	     type, slot, bit, (unsigned long long)blkno);
6426 
6427 	item->free_blk = blkno;
6428 	item->free_bit = bit;
6429 	item->free_next = fl->f_first;
6430 
6431 	fl->f_first = item;
6432 
6433 	ret = 0;
6434 out:
6435 	return ret;
6436 }
6437 
6438 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt,
6439 					 struct ocfs2_extent_block *eb)
6440 {
6441 	return ocfs2_cache_block_dealloc(ctxt, EXTENT_ALLOC_SYSTEM_INODE,
6442 					 le16_to_cpu(eb->h_suballoc_slot),
6443 					 le64_to_cpu(eb->h_blkno),
6444 					 le16_to_cpu(eb->h_suballoc_bit));
6445 }
6446 
6447 /* This function will figure out whether the currently last extent
6448  * block will be deleted, and if it will, what the new last extent
6449  * block will be so we can update his h_next_leaf_blk field, as well
6450  * as the dinodes i_last_eb_blk */
6451 static int ocfs2_find_new_last_ext_blk(struct inode *inode,
6452 				       unsigned int clusters_to_del,
6453 				       struct ocfs2_path *path,
6454 				       struct buffer_head **new_last_eb)
6455 {
6456 	int next_free, ret = 0;
6457 	u32 cpos;
6458 	struct ocfs2_extent_rec *rec;
6459 	struct ocfs2_extent_block *eb;
6460 	struct ocfs2_extent_list *el;
6461 	struct buffer_head *bh = NULL;
6462 
6463 	*new_last_eb = NULL;
6464 
6465 	/* we have no tree, so of course, no last_eb. */
6466 	if (!path->p_tree_depth)
6467 		goto out;
6468 
6469 	/* trunc to zero special case - this makes tree_depth = 0
6470 	 * regardless of what it is.  */
6471 	if (OCFS2_I(inode)->ip_clusters == clusters_to_del)
6472 		goto out;
6473 
6474 	el = path_leaf_el(path);
6475 	BUG_ON(!el->l_next_free_rec);
6476 
6477 	/*
6478 	 * Make sure that this extent list will actually be empty
6479 	 * after we clear away the data. We can shortcut out if
6480 	 * there's more than one non-empty extent in the
6481 	 * list. Otherwise, a check of the remaining extent is
6482 	 * necessary.
6483 	 */
6484 	next_free = le16_to_cpu(el->l_next_free_rec);
6485 	rec = NULL;
6486 	if (ocfs2_is_empty_extent(&el->l_recs[0])) {
6487 		if (next_free > 2)
6488 			goto out;
6489 
6490 		/* We may have a valid extent in index 1, check it. */
6491 		if (next_free == 2)
6492 			rec = &el->l_recs[1];
6493 
6494 		/*
6495 		 * Fall through - no more nonempty extents, so we want
6496 		 * to delete this leaf.
6497 		 */
6498 	} else {
6499 		if (next_free > 1)
6500 			goto out;
6501 
6502 		rec = &el->l_recs[0];
6503 	}
6504 
6505 	if (rec) {
6506 		/*
6507 		 * Check it we'll only be trimming off the end of this
6508 		 * cluster.
6509 		 */
6510 		if (le16_to_cpu(rec->e_leaf_clusters) > clusters_to_del)
6511 			goto out;
6512 	}
6513 
6514 	ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path, &cpos);
6515 	if (ret) {
6516 		mlog_errno(ret);
6517 		goto out;
6518 	}
6519 
6520 	ret = ocfs2_find_leaf(inode, path_root_el(path), cpos, &bh);
6521 	if (ret) {
6522 		mlog_errno(ret);
6523 		goto out;
6524 	}
6525 
6526 	eb = (struct ocfs2_extent_block *) bh->b_data;
6527 	el = &eb->h_list;
6528 
6529 	/* ocfs2_find_leaf() gets the eb from ocfs2_read_extent_block().
6530 	 * Any corruption is a code bug. */
6531 	BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb));
6532 
6533 	*new_last_eb = bh;
6534 	get_bh(*new_last_eb);
6535 	mlog(0, "returning block %llu, (cpos: %u)\n",
6536 	     (unsigned long long)le64_to_cpu(eb->h_blkno), cpos);
6537 out:
6538 	brelse(bh);
6539 
6540 	return ret;
6541 }
6542 
6543 /*
6544  * Trim some clusters off the rightmost edge of a tree. Only called
6545  * during truncate.
6546  *
6547  * The caller needs to:
6548  *   - start journaling of each path component.
6549  *   - compute and fully set up any new last ext block
6550  */
6551 static int ocfs2_trim_tree(struct inode *inode, struct ocfs2_path *path,
6552 			   handle_t *handle, struct ocfs2_truncate_context *tc,
6553 			   u32 clusters_to_del, u64 *delete_start)
6554 {
6555 	int ret, i, index = path->p_tree_depth;
6556 	u32 new_edge = 0;
6557 	u64 deleted_eb = 0;
6558 	struct buffer_head *bh;
6559 	struct ocfs2_extent_list *el;
6560 	struct ocfs2_extent_rec *rec;
6561 
6562 	*delete_start = 0;
6563 
6564 	while (index >= 0) {
6565 		bh = path->p_node[index].bh;
6566 		el = path->p_node[index].el;
6567 
6568 		mlog(0, "traveling tree (index = %d, block = %llu)\n",
6569 		     index,  (unsigned long long)bh->b_blocknr);
6570 
6571 		BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0);
6572 
6573 		if (index !=
6574 		    (path->p_tree_depth - le16_to_cpu(el->l_tree_depth))) {
6575 			ocfs2_error(inode->i_sb,
6576 				    "Inode %lu has invalid ext. block %llu",
6577 				    inode->i_ino,
6578 				    (unsigned long long)bh->b_blocknr);
6579 			ret = -EROFS;
6580 			goto out;
6581 		}
6582 
6583 find_tail_record:
6584 		i = le16_to_cpu(el->l_next_free_rec) - 1;
6585 		rec = &el->l_recs[i];
6586 
6587 		mlog(0, "Extent list before: record %d: (%u, %u, %llu), "
6588 		     "next = %u\n", i, le32_to_cpu(rec->e_cpos),
6589 		     ocfs2_rec_clusters(el, rec),
6590 		     (unsigned long long)le64_to_cpu(rec->e_blkno),
6591 		     le16_to_cpu(el->l_next_free_rec));
6592 
6593 		BUG_ON(ocfs2_rec_clusters(el, rec) < clusters_to_del);
6594 
6595 		if (le16_to_cpu(el->l_tree_depth) == 0) {
6596 			/*
6597 			 * If the leaf block contains a single empty
6598 			 * extent and no records, we can just remove
6599 			 * the block.
6600 			 */
6601 			if (i == 0 && ocfs2_is_empty_extent(rec)) {
6602 				memset(rec, 0,
6603 				       sizeof(struct ocfs2_extent_rec));
6604 				el->l_next_free_rec = cpu_to_le16(0);
6605 
6606 				goto delete;
6607 			}
6608 
6609 			/*
6610 			 * Remove any empty extents by shifting things
6611 			 * left. That should make life much easier on
6612 			 * the code below. This condition is rare
6613 			 * enough that we shouldn't see a performance
6614 			 * hit.
6615 			 */
6616 			if (ocfs2_is_empty_extent(&el->l_recs[0])) {
6617 				le16_add_cpu(&el->l_next_free_rec, -1);
6618 
6619 				for(i = 0;
6620 				    i < le16_to_cpu(el->l_next_free_rec); i++)
6621 					el->l_recs[i] = el->l_recs[i + 1];
6622 
6623 				memset(&el->l_recs[i], 0,
6624 				       sizeof(struct ocfs2_extent_rec));
6625 
6626 				/*
6627 				 * We've modified our extent list. The
6628 				 * simplest way to handle this change
6629 				 * is to being the search from the
6630 				 * start again.
6631 				 */
6632 				goto find_tail_record;
6633 			}
6634 
6635 			le16_add_cpu(&rec->e_leaf_clusters, -clusters_to_del);
6636 
6637 			/*
6638 			 * We'll use "new_edge" on our way back up the
6639 			 * tree to know what our rightmost cpos is.
6640 			 */
6641 			new_edge = le16_to_cpu(rec->e_leaf_clusters);
6642 			new_edge += le32_to_cpu(rec->e_cpos);
6643 
6644 			/*
6645 			 * The caller will use this to delete data blocks.
6646 			 */
6647 			*delete_start = le64_to_cpu(rec->e_blkno)
6648 				+ ocfs2_clusters_to_blocks(inode->i_sb,
6649 					le16_to_cpu(rec->e_leaf_clusters));
6650 
6651 			/*
6652 			 * If it's now empty, remove this record.
6653 			 */
6654 			if (le16_to_cpu(rec->e_leaf_clusters) == 0) {
6655 				memset(rec, 0,
6656 				       sizeof(struct ocfs2_extent_rec));
6657 				le16_add_cpu(&el->l_next_free_rec, -1);
6658 			}
6659 		} else {
6660 			if (le64_to_cpu(rec->e_blkno) == deleted_eb) {
6661 				memset(rec, 0,
6662 				       sizeof(struct ocfs2_extent_rec));
6663 				le16_add_cpu(&el->l_next_free_rec, -1);
6664 
6665 				goto delete;
6666 			}
6667 
6668 			/* Can this actually happen? */
6669 			if (le16_to_cpu(el->l_next_free_rec) == 0)
6670 				goto delete;
6671 
6672 			/*
6673 			 * We never actually deleted any clusters
6674 			 * because our leaf was empty. There's no
6675 			 * reason to adjust the rightmost edge then.
6676 			 */
6677 			if (new_edge == 0)
6678 				goto delete;
6679 
6680 			rec->e_int_clusters = cpu_to_le32(new_edge);
6681 			le32_add_cpu(&rec->e_int_clusters,
6682 				     -le32_to_cpu(rec->e_cpos));
6683 
6684 			 /*
6685 			  * A deleted child record should have been
6686 			  * caught above.
6687 			  */
6688 			 BUG_ON(le32_to_cpu(rec->e_int_clusters) == 0);
6689 		}
6690 
6691 delete:
6692 		ret = ocfs2_journal_dirty(handle, bh);
6693 		if (ret) {
6694 			mlog_errno(ret);
6695 			goto out;
6696 		}
6697 
6698 		mlog(0, "extent list container %llu, after: record %d: "
6699 		     "(%u, %u, %llu), next = %u.\n",
6700 		     (unsigned long long)bh->b_blocknr, i,
6701 		     le32_to_cpu(rec->e_cpos), ocfs2_rec_clusters(el, rec),
6702 		     (unsigned long long)le64_to_cpu(rec->e_blkno),
6703 		     le16_to_cpu(el->l_next_free_rec));
6704 
6705 		/*
6706 		 * We must be careful to only attempt delete of an
6707 		 * extent block (and not the root inode block).
6708 		 */
6709 		if (index > 0 && le16_to_cpu(el->l_next_free_rec) == 0) {
6710 			struct ocfs2_extent_block *eb =
6711 				(struct ocfs2_extent_block *)bh->b_data;
6712 
6713 			/*
6714 			 * Save this for use when processing the
6715 			 * parent block.
6716 			 */
6717 			deleted_eb = le64_to_cpu(eb->h_blkno);
6718 
6719 			mlog(0, "deleting this extent block.\n");
6720 
6721 			ocfs2_remove_from_cache(inode, bh);
6722 
6723 			BUG_ON(ocfs2_rec_clusters(el, &el->l_recs[0]));
6724 			BUG_ON(le32_to_cpu(el->l_recs[0].e_cpos));
6725 			BUG_ON(le64_to_cpu(el->l_recs[0].e_blkno));
6726 
6727 			ret = ocfs2_cache_extent_block_free(&tc->tc_dealloc, eb);
6728 			/* An error here is not fatal. */
6729 			if (ret < 0)
6730 				mlog_errno(ret);
6731 		} else {
6732 			deleted_eb = 0;
6733 		}
6734 
6735 		index--;
6736 	}
6737 
6738 	ret = 0;
6739 out:
6740 	return ret;
6741 }
6742 
6743 static int ocfs2_do_truncate(struct ocfs2_super *osb,
6744 			     unsigned int clusters_to_del,
6745 			     struct inode *inode,
6746 			     struct buffer_head *fe_bh,
6747 			     handle_t *handle,
6748 			     struct ocfs2_truncate_context *tc,
6749 			     struct ocfs2_path *path)
6750 {
6751 	int status;
6752 	struct ocfs2_dinode *fe;
6753 	struct ocfs2_extent_block *last_eb = NULL;
6754 	struct ocfs2_extent_list *el;
6755 	struct buffer_head *last_eb_bh = NULL;
6756 	u64 delete_blk = 0;
6757 
6758 	fe = (struct ocfs2_dinode *) fe_bh->b_data;
6759 
6760 	status = ocfs2_find_new_last_ext_blk(inode, clusters_to_del,
6761 					     path, &last_eb_bh);
6762 	if (status < 0) {
6763 		mlog_errno(status);
6764 		goto bail;
6765 	}
6766 
6767 	/*
6768 	 * Each component will be touched, so we might as well journal
6769 	 * here to avoid having to handle errors later.
6770 	 */
6771 	status = ocfs2_journal_access_path(inode, handle, path);
6772 	if (status < 0) {
6773 		mlog_errno(status);
6774 		goto bail;
6775 	}
6776 
6777 	if (last_eb_bh) {
6778 		status = ocfs2_journal_access_eb(handle, inode, last_eb_bh,
6779 						 OCFS2_JOURNAL_ACCESS_WRITE);
6780 		if (status < 0) {
6781 			mlog_errno(status);
6782 			goto bail;
6783 		}
6784 
6785 		last_eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
6786 	}
6787 
6788 	el = &(fe->id2.i_list);
6789 
6790 	/*
6791 	 * Lower levels depend on this never happening, but it's best
6792 	 * to check it up here before changing the tree.
6793 	 */
6794 	if (el->l_tree_depth && el->l_recs[0].e_int_clusters == 0) {
6795 		ocfs2_error(inode->i_sb,
6796 			    "Inode %lu has an empty extent record, depth %u\n",
6797 			    inode->i_ino, le16_to_cpu(el->l_tree_depth));
6798 		status = -EROFS;
6799 		goto bail;
6800 	}
6801 
6802 	vfs_dq_free_space_nodirty(inode,
6803 			ocfs2_clusters_to_bytes(osb->sb, clusters_to_del));
6804 	spin_lock(&OCFS2_I(inode)->ip_lock);
6805 	OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters) -
6806 				      clusters_to_del;
6807 	spin_unlock(&OCFS2_I(inode)->ip_lock);
6808 	le32_add_cpu(&fe->i_clusters, -clusters_to_del);
6809 	inode->i_blocks = ocfs2_inode_sector_count(inode);
6810 
6811 	status = ocfs2_trim_tree(inode, path, handle, tc,
6812 				 clusters_to_del, &delete_blk);
6813 	if (status) {
6814 		mlog_errno(status);
6815 		goto bail;
6816 	}
6817 
6818 	if (le32_to_cpu(fe->i_clusters) == 0) {
6819 		/* trunc to zero is a special case. */
6820 		el->l_tree_depth = 0;
6821 		fe->i_last_eb_blk = 0;
6822 	} else if (last_eb)
6823 		fe->i_last_eb_blk = last_eb->h_blkno;
6824 
6825 	status = ocfs2_journal_dirty(handle, fe_bh);
6826 	if (status < 0) {
6827 		mlog_errno(status);
6828 		goto bail;
6829 	}
6830 
6831 	if (last_eb) {
6832 		/* If there will be a new last extent block, then by
6833 		 * definition, there cannot be any leaves to the right of
6834 		 * him. */
6835 		last_eb->h_next_leaf_blk = 0;
6836 		status = ocfs2_journal_dirty(handle, last_eb_bh);
6837 		if (status < 0) {
6838 			mlog_errno(status);
6839 			goto bail;
6840 		}
6841 	}
6842 
6843 	if (delete_blk) {
6844 		status = ocfs2_truncate_log_append(osb, handle, delete_blk,
6845 						   clusters_to_del);
6846 		if (status < 0) {
6847 			mlog_errno(status);
6848 			goto bail;
6849 		}
6850 	}
6851 	status = 0;
6852 bail:
6853 
6854 	mlog_exit(status);
6855 	return status;
6856 }
6857 
6858 static int ocfs2_zero_func(handle_t *handle, struct buffer_head *bh)
6859 {
6860 	set_buffer_uptodate(bh);
6861 	mark_buffer_dirty(bh);
6862 	return 0;
6863 }
6864 
6865 static void ocfs2_map_and_dirty_page(struct inode *inode, handle_t *handle,
6866 				     unsigned int from, unsigned int to,
6867 				     struct page *page, int zero, u64 *phys)
6868 {
6869 	int ret, partial = 0;
6870 
6871 	ret = ocfs2_map_page_blocks(page, phys, inode, from, to, 0);
6872 	if (ret)
6873 		mlog_errno(ret);
6874 
6875 	if (zero)
6876 		zero_user_segment(page, from, to);
6877 
6878 	/*
6879 	 * Need to set the buffers we zero'd into uptodate
6880 	 * here if they aren't - ocfs2_map_page_blocks()
6881 	 * might've skipped some
6882 	 */
6883 	ret = walk_page_buffers(handle, page_buffers(page),
6884 				from, to, &partial,
6885 				ocfs2_zero_func);
6886 	if (ret < 0)
6887 		mlog_errno(ret);
6888 	else if (ocfs2_should_order_data(inode)) {
6889 		ret = ocfs2_jbd2_file_inode(handle, inode);
6890 		if (ret < 0)
6891 			mlog_errno(ret);
6892 	}
6893 
6894 	if (!partial)
6895 		SetPageUptodate(page);
6896 
6897 	flush_dcache_page(page);
6898 }
6899 
6900 static void ocfs2_zero_cluster_pages(struct inode *inode, loff_t start,
6901 				     loff_t end, struct page **pages,
6902 				     int numpages, u64 phys, handle_t *handle)
6903 {
6904 	int i;
6905 	struct page *page;
6906 	unsigned int from, to = PAGE_CACHE_SIZE;
6907 	struct super_block *sb = inode->i_sb;
6908 
6909 	BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(sb)));
6910 
6911 	if (numpages == 0)
6912 		goto out;
6913 
6914 	to = PAGE_CACHE_SIZE;
6915 	for(i = 0; i < numpages; i++) {
6916 		page = pages[i];
6917 
6918 		from = start & (PAGE_CACHE_SIZE - 1);
6919 		if ((end >> PAGE_CACHE_SHIFT) == page->index)
6920 			to = end & (PAGE_CACHE_SIZE - 1);
6921 
6922 		BUG_ON(from > PAGE_CACHE_SIZE);
6923 		BUG_ON(to > PAGE_CACHE_SIZE);
6924 
6925 		ocfs2_map_and_dirty_page(inode, handle, from, to, page, 1,
6926 					 &phys);
6927 
6928 		start = (page->index + 1) << PAGE_CACHE_SHIFT;
6929 	}
6930 out:
6931 	if (pages)
6932 		ocfs2_unlock_and_free_pages(pages, numpages);
6933 }
6934 
6935 static int ocfs2_grab_eof_pages(struct inode *inode, loff_t start, loff_t end,
6936 				struct page **pages, int *num)
6937 {
6938 	int numpages, ret = 0;
6939 	struct super_block *sb = inode->i_sb;
6940 	struct address_space *mapping = inode->i_mapping;
6941 	unsigned long index;
6942 	loff_t last_page_bytes;
6943 
6944 	BUG_ON(start > end);
6945 
6946 	BUG_ON(start >> OCFS2_SB(sb)->s_clustersize_bits !=
6947 	       (end - 1) >> OCFS2_SB(sb)->s_clustersize_bits);
6948 
6949 	numpages = 0;
6950 	last_page_bytes = PAGE_ALIGN(end);
6951 	index = start >> PAGE_CACHE_SHIFT;
6952 	do {
6953 		pages[numpages] = grab_cache_page(mapping, index);
6954 		if (!pages[numpages]) {
6955 			ret = -ENOMEM;
6956 			mlog_errno(ret);
6957 			goto out;
6958 		}
6959 
6960 		numpages++;
6961 		index++;
6962 	} while (index < (last_page_bytes >> PAGE_CACHE_SHIFT));
6963 
6964 out:
6965 	if (ret != 0) {
6966 		if (pages)
6967 			ocfs2_unlock_and_free_pages(pages, numpages);
6968 		numpages = 0;
6969 	}
6970 
6971 	*num = numpages;
6972 
6973 	return ret;
6974 }
6975 
6976 /*
6977  * Zero the area past i_size but still within an allocated
6978  * cluster. This avoids exposing nonzero data on subsequent file
6979  * extends.
6980  *
6981  * We need to call this before i_size is updated on the inode because
6982  * otherwise block_write_full_page() will skip writeout of pages past
6983  * i_size. The new_i_size parameter is passed for this reason.
6984  */
6985 int ocfs2_zero_range_for_truncate(struct inode *inode, handle_t *handle,
6986 				  u64 range_start, u64 range_end)
6987 {
6988 	int ret = 0, numpages;
6989 	struct page **pages = NULL;
6990 	u64 phys;
6991 	unsigned int ext_flags;
6992 	struct super_block *sb = inode->i_sb;
6993 
6994 	/*
6995 	 * File systems which don't support sparse files zero on every
6996 	 * extend.
6997 	 */
6998 	if (!ocfs2_sparse_alloc(OCFS2_SB(sb)))
6999 		return 0;
7000 
7001 	pages = kcalloc(ocfs2_pages_per_cluster(sb),
7002 			sizeof(struct page *), GFP_NOFS);
7003 	if (pages == NULL) {
7004 		ret = -ENOMEM;
7005 		mlog_errno(ret);
7006 		goto out;
7007 	}
7008 
7009 	if (range_start == range_end)
7010 		goto out;
7011 
7012 	ret = ocfs2_extent_map_get_blocks(inode,
7013 					  range_start >> sb->s_blocksize_bits,
7014 					  &phys, NULL, &ext_flags);
7015 	if (ret) {
7016 		mlog_errno(ret);
7017 		goto out;
7018 	}
7019 
7020 	/*
7021 	 * Tail is a hole, or is marked unwritten. In either case, we
7022 	 * can count on read and write to return/push zero's.
7023 	 */
7024 	if (phys == 0 || ext_flags & OCFS2_EXT_UNWRITTEN)
7025 		goto out;
7026 
7027 	ret = ocfs2_grab_eof_pages(inode, range_start, range_end, pages,
7028 				   &numpages);
7029 	if (ret) {
7030 		mlog_errno(ret);
7031 		goto out;
7032 	}
7033 
7034 	ocfs2_zero_cluster_pages(inode, range_start, range_end, pages,
7035 				 numpages, phys, handle);
7036 
7037 	/*
7038 	 * Initiate writeout of the pages we zero'd here. We don't
7039 	 * wait on them - the truncate_inode_pages() call later will
7040 	 * do that for us.
7041 	 */
7042 	ret = do_sync_mapping_range(inode->i_mapping, range_start,
7043 				    range_end - 1, SYNC_FILE_RANGE_WRITE);
7044 	if (ret)
7045 		mlog_errno(ret);
7046 
7047 out:
7048 	if (pages)
7049 		kfree(pages);
7050 
7051 	return ret;
7052 }
7053 
7054 static void ocfs2_zero_dinode_id2_with_xattr(struct inode *inode,
7055 					     struct ocfs2_dinode *di)
7056 {
7057 	unsigned int blocksize = 1 << inode->i_sb->s_blocksize_bits;
7058 	unsigned int xattrsize = le16_to_cpu(di->i_xattr_inline_size);
7059 
7060 	if (le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_XATTR_FL)
7061 		memset(&di->id2, 0, blocksize -
7062 				    offsetof(struct ocfs2_dinode, id2) -
7063 				    xattrsize);
7064 	else
7065 		memset(&di->id2, 0, blocksize -
7066 				    offsetof(struct ocfs2_dinode, id2));
7067 }
7068 
7069 void ocfs2_dinode_new_extent_list(struct inode *inode,
7070 				  struct ocfs2_dinode *di)
7071 {
7072 	ocfs2_zero_dinode_id2_with_xattr(inode, di);
7073 	di->id2.i_list.l_tree_depth = 0;
7074 	di->id2.i_list.l_next_free_rec = 0;
7075 	di->id2.i_list.l_count = cpu_to_le16(
7076 		ocfs2_extent_recs_per_inode_with_xattr(inode->i_sb, di));
7077 }
7078 
7079 void ocfs2_set_inode_data_inline(struct inode *inode, struct ocfs2_dinode *di)
7080 {
7081 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
7082 	struct ocfs2_inline_data *idata = &di->id2.i_data;
7083 
7084 	spin_lock(&oi->ip_lock);
7085 	oi->ip_dyn_features |= OCFS2_INLINE_DATA_FL;
7086 	di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features);
7087 	spin_unlock(&oi->ip_lock);
7088 
7089 	/*
7090 	 * We clear the entire i_data structure here so that all
7091 	 * fields can be properly initialized.
7092 	 */
7093 	ocfs2_zero_dinode_id2_with_xattr(inode, di);
7094 
7095 	idata->id_count = cpu_to_le16(
7096 			ocfs2_max_inline_data_with_xattr(inode->i_sb, di));
7097 }
7098 
7099 int ocfs2_convert_inline_data_to_extents(struct inode *inode,
7100 					 struct buffer_head *di_bh)
7101 {
7102 	int ret, i, has_data, num_pages = 0;
7103 	handle_t *handle;
7104 	u64 uninitialized_var(block);
7105 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
7106 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
7107 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
7108 	struct ocfs2_alloc_context *data_ac = NULL;
7109 	struct page **pages = NULL;
7110 	loff_t end = osb->s_clustersize;
7111 	struct ocfs2_extent_tree et;
7112 	int did_quota = 0;
7113 
7114 	has_data = i_size_read(inode) ? 1 : 0;
7115 
7116 	if (has_data) {
7117 		pages = kcalloc(ocfs2_pages_per_cluster(osb->sb),
7118 				sizeof(struct page *), GFP_NOFS);
7119 		if (pages == NULL) {
7120 			ret = -ENOMEM;
7121 			mlog_errno(ret);
7122 			goto out;
7123 		}
7124 
7125 		ret = ocfs2_reserve_clusters(osb, 1, &data_ac);
7126 		if (ret) {
7127 			mlog_errno(ret);
7128 			goto out;
7129 		}
7130 	}
7131 
7132 	handle = ocfs2_start_trans(osb,
7133 				   ocfs2_inline_to_extents_credits(osb->sb));
7134 	if (IS_ERR(handle)) {
7135 		ret = PTR_ERR(handle);
7136 		mlog_errno(ret);
7137 		goto out_unlock;
7138 	}
7139 
7140 	ret = ocfs2_journal_access_di(handle, inode, di_bh,
7141 				      OCFS2_JOURNAL_ACCESS_WRITE);
7142 	if (ret) {
7143 		mlog_errno(ret);
7144 		goto out_commit;
7145 	}
7146 
7147 	if (has_data) {
7148 		u32 bit_off, num;
7149 		unsigned int page_end;
7150 		u64 phys;
7151 
7152 		if (vfs_dq_alloc_space_nodirty(inode,
7153 				       ocfs2_clusters_to_bytes(osb->sb, 1))) {
7154 			ret = -EDQUOT;
7155 			goto out_commit;
7156 		}
7157 		did_quota = 1;
7158 
7159 		ret = ocfs2_claim_clusters(osb, handle, data_ac, 1, &bit_off,
7160 					   &num);
7161 		if (ret) {
7162 			mlog_errno(ret);
7163 			goto out_commit;
7164 		}
7165 
7166 		/*
7167 		 * Save two copies, one for insert, and one that can
7168 		 * be changed by ocfs2_map_and_dirty_page() below.
7169 		 */
7170 		block = phys = ocfs2_clusters_to_blocks(inode->i_sb, bit_off);
7171 
7172 		/*
7173 		 * Non sparse file systems zero on extend, so no need
7174 		 * to do that now.
7175 		 */
7176 		if (!ocfs2_sparse_alloc(osb) &&
7177 		    PAGE_CACHE_SIZE < osb->s_clustersize)
7178 			end = PAGE_CACHE_SIZE;
7179 
7180 		ret = ocfs2_grab_eof_pages(inode, 0, end, pages, &num_pages);
7181 		if (ret) {
7182 			mlog_errno(ret);
7183 			goto out_commit;
7184 		}
7185 
7186 		/*
7187 		 * This should populate the 1st page for us and mark
7188 		 * it up to date.
7189 		 */
7190 		ret = ocfs2_read_inline_data(inode, pages[0], di_bh);
7191 		if (ret) {
7192 			mlog_errno(ret);
7193 			goto out_commit;
7194 		}
7195 
7196 		page_end = PAGE_CACHE_SIZE;
7197 		if (PAGE_CACHE_SIZE > osb->s_clustersize)
7198 			page_end = osb->s_clustersize;
7199 
7200 		for (i = 0; i < num_pages; i++)
7201 			ocfs2_map_and_dirty_page(inode, handle, 0, page_end,
7202 						 pages[i], i > 0, &phys);
7203 	}
7204 
7205 	spin_lock(&oi->ip_lock);
7206 	oi->ip_dyn_features &= ~OCFS2_INLINE_DATA_FL;
7207 	di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features);
7208 	spin_unlock(&oi->ip_lock);
7209 
7210 	ocfs2_dinode_new_extent_list(inode, di);
7211 
7212 	ocfs2_journal_dirty(handle, di_bh);
7213 
7214 	if (has_data) {
7215 		/*
7216 		 * An error at this point should be extremely rare. If
7217 		 * this proves to be false, we could always re-build
7218 		 * the in-inode data from our pages.
7219 		 */
7220 		ocfs2_init_dinode_extent_tree(&et, inode, di_bh);
7221 		ret = ocfs2_insert_extent(osb, handle, inode, &et,
7222 					  0, block, 1, 0, NULL);
7223 		if (ret) {
7224 			mlog_errno(ret);
7225 			goto out_commit;
7226 		}
7227 
7228 		inode->i_blocks = ocfs2_inode_sector_count(inode);
7229 	}
7230 
7231 out_commit:
7232 	if (ret < 0 && did_quota)
7233 		vfs_dq_free_space_nodirty(inode,
7234 					  ocfs2_clusters_to_bytes(osb->sb, 1));
7235 
7236 	ocfs2_commit_trans(osb, handle);
7237 
7238 out_unlock:
7239 	if (data_ac)
7240 		ocfs2_free_alloc_context(data_ac);
7241 
7242 out:
7243 	if (pages) {
7244 		ocfs2_unlock_and_free_pages(pages, num_pages);
7245 		kfree(pages);
7246 	}
7247 
7248 	return ret;
7249 }
7250 
7251 /*
7252  * It is expected, that by the time you call this function,
7253  * inode->i_size and fe->i_size have been adjusted.
7254  *
7255  * WARNING: This will kfree the truncate context
7256  */
7257 int ocfs2_commit_truncate(struct ocfs2_super *osb,
7258 			  struct inode *inode,
7259 			  struct buffer_head *fe_bh,
7260 			  struct ocfs2_truncate_context *tc)
7261 {
7262 	int status, i, credits, tl_sem = 0;
7263 	u32 clusters_to_del, new_highest_cpos, range;
7264 	struct ocfs2_extent_list *el;
7265 	handle_t *handle = NULL;
7266 	struct inode *tl_inode = osb->osb_tl_inode;
7267 	struct ocfs2_path *path = NULL;
7268 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)fe_bh->b_data;
7269 
7270 	mlog_entry_void();
7271 
7272 	new_highest_cpos = ocfs2_clusters_for_bytes(osb->sb,
7273 						     i_size_read(inode));
7274 
7275 	path = ocfs2_new_path(fe_bh, &di->id2.i_list,
7276 			      ocfs2_journal_access_di);
7277 	if (!path) {
7278 		status = -ENOMEM;
7279 		mlog_errno(status);
7280 		goto bail;
7281 	}
7282 
7283 	ocfs2_extent_map_trunc(inode, new_highest_cpos);
7284 
7285 start:
7286 	/*
7287 	 * Check that we still have allocation to delete.
7288 	 */
7289 	if (OCFS2_I(inode)->ip_clusters == 0) {
7290 		status = 0;
7291 		goto bail;
7292 	}
7293 
7294 	/*
7295 	 * Truncate always works against the rightmost tree branch.
7296 	 */
7297 	status = ocfs2_find_path(inode, path, UINT_MAX);
7298 	if (status) {
7299 		mlog_errno(status);
7300 		goto bail;
7301 	}
7302 
7303 	mlog(0, "inode->ip_clusters = %u, tree_depth = %u\n",
7304 	     OCFS2_I(inode)->ip_clusters, path->p_tree_depth);
7305 
7306 	/*
7307 	 * By now, el will point to the extent list on the bottom most
7308 	 * portion of this tree. Only the tail record is considered in
7309 	 * each pass.
7310 	 *
7311 	 * We handle the following cases, in order:
7312 	 * - empty extent: delete the remaining branch
7313 	 * - remove the entire record
7314 	 * - remove a partial record
7315 	 * - no record needs to be removed (truncate has completed)
7316 	 */
7317 	el = path_leaf_el(path);
7318 	if (le16_to_cpu(el->l_next_free_rec) == 0) {
7319 		ocfs2_error(inode->i_sb,
7320 			    "Inode %llu has empty extent block at %llu\n",
7321 			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
7322 			    (unsigned long long)path_leaf_bh(path)->b_blocknr);
7323 		status = -EROFS;
7324 		goto bail;
7325 	}
7326 
7327 	i = le16_to_cpu(el->l_next_free_rec) - 1;
7328 	range = le32_to_cpu(el->l_recs[i].e_cpos) +
7329 		ocfs2_rec_clusters(el, &el->l_recs[i]);
7330 	if (i == 0 && ocfs2_is_empty_extent(&el->l_recs[i])) {
7331 		clusters_to_del = 0;
7332 	} else if (le32_to_cpu(el->l_recs[i].e_cpos) >= new_highest_cpos) {
7333 		clusters_to_del = ocfs2_rec_clusters(el, &el->l_recs[i]);
7334 	} else if (range > new_highest_cpos) {
7335 		clusters_to_del = (ocfs2_rec_clusters(el, &el->l_recs[i]) +
7336 				   le32_to_cpu(el->l_recs[i].e_cpos)) -
7337 				  new_highest_cpos;
7338 	} else {
7339 		status = 0;
7340 		goto bail;
7341 	}
7342 
7343 	mlog(0, "clusters_to_del = %u in this pass, tail blk=%llu\n",
7344 	     clusters_to_del, (unsigned long long)path_leaf_bh(path)->b_blocknr);
7345 
7346 	mutex_lock(&tl_inode->i_mutex);
7347 	tl_sem = 1;
7348 	/* ocfs2_truncate_log_needs_flush guarantees us at least one
7349 	 * record is free for use. If there isn't any, we flush to get
7350 	 * an empty truncate log.  */
7351 	if (ocfs2_truncate_log_needs_flush(osb)) {
7352 		status = __ocfs2_flush_truncate_log(osb);
7353 		if (status < 0) {
7354 			mlog_errno(status);
7355 			goto bail;
7356 		}
7357 	}
7358 
7359 	credits = ocfs2_calc_tree_trunc_credits(osb->sb, clusters_to_del,
7360 						(struct ocfs2_dinode *)fe_bh->b_data,
7361 						el);
7362 	handle = ocfs2_start_trans(osb, credits);
7363 	if (IS_ERR(handle)) {
7364 		status = PTR_ERR(handle);
7365 		handle = NULL;
7366 		mlog_errno(status);
7367 		goto bail;
7368 	}
7369 
7370 	status = ocfs2_do_truncate(osb, clusters_to_del, inode, fe_bh, handle,
7371 				   tc, path);
7372 	if (status < 0) {
7373 		mlog_errno(status);
7374 		goto bail;
7375 	}
7376 
7377 	mutex_unlock(&tl_inode->i_mutex);
7378 	tl_sem = 0;
7379 
7380 	ocfs2_commit_trans(osb, handle);
7381 	handle = NULL;
7382 
7383 	ocfs2_reinit_path(path, 1);
7384 
7385 	/*
7386 	 * The check above will catch the case where we've truncated
7387 	 * away all allocation.
7388 	 */
7389 	goto start;
7390 
7391 bail:
7392 
7393 	ocfs2_schedule_truncate_log_flush(osb, 1);
7394 
7395 	if (tl_sem)
7396 		mutex_unlock(&tl_inode->i_mutex);
7397 
7398 	if (handle)
7399 		ocfs2_commit_trans(osb, handle);
7400 
7401 	ocfs2_run_deallocs(osb, &tc->tc_dealloc);
7402 
7403 	ocfs2_free_path(path);
7404 
7405 	/* This will drop the ext_alloc cluster lock for us */
7406 	ocfs2_free_truncate_context(tc);
7407 
7408 	mlog_exit(status);
7409 	return status;
7410 }
7411 
7412 /*
7413  * Expects the inode to already be locked.
7414  */
7415 int ocfs2_prepare_truncate(struct ocfs2_super *osb,
7416 			   struct inode *inode,
7417 			   struct buffer_head *fe_bh,
7418 			   struct ocfs2_truncate_context **tc)
7419 {
7420 	int status;
7421 	unsigned int new_i_clusters;
7422 	struct ocfs2_dinode *fe;
7423 	struct ocfs2_extent_block *eb;
7424 	struct buffer_head *last_eb_bh = NULL;
7425 
7426 	mlog_entry_void();
7427 
7428 	*tc = NULL;
7429 
7430 	new_i_clusters = ocfs2_clusters_for_bytes(osb->sb,
7431 						  i_size_read(inode));
7432 	fe = (struct ocfs2_dinode *) fe_bh->b_data;
7433 
7434 	mlog(0, "fe->i_clusters = %u, new_i_clusters = %u, fe->i_size ="
7435 	     "%llu\n", le32_to_cpu(fe->i_clusters), new_i_clusters,
7436 	     (unsigned long long)le64_to_cpu(fe->i_size));
7437 
7438 	*tc = kzalloc(sizeof(struct ocfs2_truncate_context), GFP_KERNEL);
7439 	if (!(*tc)) {
7440 		status = -ENOMEM;
7441 		mlog_errno(status);
7442 		goto bail;
7443 	}
7444 	ocfs2_init_dealloc_ctxt(&(*tc)->tc_dealloc);
7445 
7446 	if (fe->id2.i_list.l_tree_depth) {
7447 		status = ocfs2_read_extent_block(inode,
7448 						 le64_to_cpu(fe->i_last_eb_blk),
7449 						 &last_eb_bh);
7450 		if (status < 0) {
7451 			mlog_errno(status);
7452 			goto bail;
7453 		}
7454 		eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
7455 	}
7456 
7457 	(*tc)->tc_last_eb_bh = last_eb_bh;
7458 
7459 	status = 0;
7460 bail:
7461 	if (status < 0) {
7462 		if (*tc)
7463 			ocfs2_free_truncate_context(*tc);
7464 		*tc = NULL;
7465 	}
7466 	mlog_exit_void();
7467 	return status;
7468 }
7469 
7470 /*
7471  * 'start' is inclusive, 'end' is not.
7472  */
7473 int ocfs2_truncate_inline(struct inode *inode, struct buffer_head *di_bh,
7474 			  unsigned int start, unsigned int end, int trunc)
7475 {
7476 	int ret;
7477 	unsigned int numbytes;
7478 	handle_t *handle;
7479 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
7480 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
7481 	struct ocfs2_inline_data *idata = &di->id2.i_data;
7482 
7483 	if (end > i_size_read(inode))
7484 		end = i_size_read(inode);
7485 
7486 	BUG_ON(start >= end);
7487 
7488 	if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) ||
7489 	    !(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL) ||
7490 	    !ocfs2_supports_inline_data(osb)) {
7491 		ocfs2_error(inode->i_sb,
7492 			    "Inline data flags for inode %llu don't agree! "
7493 			    "Disk: 0x%x, Memory: 0x%x, Superblock: 0x%x\n",
7494 			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
7495 			    le16_to_cpu(di->i_dyn_features),
7496 			    OCFS2_I(inode)->ip_dyn_features,
7497 			    osb->s_feature_incompat);
7498 		ret = -EROFS;
7499 		goto out;
7500 	}
7501 
7502 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
7503 	if (IS_ERR(handle)) {
7504 		ret = PTR_ERR(handle);
7505 		mlog_errno(ret);
7506 		goto out;
7507 	}
7508 
7509 	ret = ocfs2_journal_access_di(handle, inode, di_bh,
7510 				      OCFS2_JOURNAL_ACCESS_WRITE);
7511 	if (ret) {
7512 		mlog_errno(ret);
7513 		goto out_commit;
7514 	}
7515 
7516 	numbytes = end - start;
7517 	memset(idata->id_data + start, 0, numbytes);
7518 
7519 	/*
7520 	 * No need to worry about the data page here - it's been
7521 	 * truncated already and inline data doesn't need it for
7522 	 * pushing zero's to disk, so we'll let readpage pick it up
7523 	 * later.
7524 	 */
7525 	if (trunc) {
7526 		i_size_write(inode, start);
7527 		di->i_size = cpu_to_le64(start);
7528 	}
7529 
7530 	inode->i_blocks = ocfs2_inode_sector_count(inode);
7531 	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
7532 
7533 	di->i_ctime = di->i_mtime = cpu_to_le64(inode->i_ctime.tv_sec);
7534 	di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
7535 
7536 	ocfs2_journal_dirty(handle, di_bh);
7537 
7538 out_commit:
7539 	ocfs2_commit_trans(osb, handle);
7540 
7541 out:
7542 	return ret;
7543 }
7544 
7545 static void ocfs2_free_truncate_context(struct ocfs2_truncate_context *tc)
7546 {
7547 	/*
7548 	 * The caller is responsible for completing deallocation
7549 	 * before freeing the context.
7550 	 */
7551 	if (tc->tc_dealloc.c_first_suballocator != NULL)
7552 		mlog(ML_NOTICE,
7553 		     "Truncate completion has non-empty dealloc context\n");
7554 
7555 	brelse(tc->tc_last_eb_bh);
7556 
7557 	kfree(tc);
7558 }
7559