1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * 4 * Copyright (C) 2019-2021 Paragon Software GmbH, All rights reserved. 5 * 6 */ 7 8 #include <linux/blkdev.h> 9 #include <linux/fs.h> 10 #include <linux/random.h> 11 #include <linux/slab.h> 12 13 #include "debug.h" 14 #include "ntfs.h" 15 #include "ntfs_fs.h" 16 17 /* 18 * LOG FILE structs 19 */ 20 21 // clang-format off 22 23 #define MaxLogFileSize 0x100000000ull 24 #define DefaultLogPageSize 4096 25 #define MinLogRecordPages 0x30 26 27 struct RESTART_HDR { 28 struct NTFS_RECORD_HEADER rhdr; // 'RSTR' 29 __le32 sys_page_size; // 0x10: Page size of the system which initialized the log. 30 __le32 page_size; // 0x14: Log page size used for this log file. 31 __le16 ra_off; // 0x18: 32 __le16 minor_ver; // 0x1A: 33 __le16 major_ver; // 0x1C: 34 __le16 fixups[]; 35 }; 36 37 #define LFS_NO_CLIENT 0xffff 38 #define LFS_NO_CLIENT_LE cpu_to_le16(0xffff) 39 40 struct CLIENT_REC { 41 __le64 oldest_lsn; 42 __le64 restart_lsn; // 0x08: 43 __le16 prev_client; // 0x10: 44 __le16 next_client; // 0x12: 45 __le16 seq_num; // 0x14: 46 u8 align[6]; // 0x16: 47 __le32 name_bytes; // 0x1C: In bytes. 48 __le16 name[32]; // 0x20: Name of client. 49 }; 50 51 static_assert(sizeof(struct CLIENT_REC) == 0x60); 52 53 /* Two copies of these will exist at the beginning of the log file */ 54 struct RESTART_AREA { 55 __le64 current_lsn; // 0x00: Current logical end of log file. 56 __le16 log_clients; // 0x08: Maximum number of clients. 57 __le16 client_idx[2]; // 0x0A: Free/use index into the client record arrays. 58 __le16 flags; // 0x0E: See RESTART_SINGLE_PAGE_IO. 59 __le32 seq_num_bits; // 0x10: The number of bits in sequence number. 60 __le16 ra_len; // 0x14: 61 __le16 client_off; // 0x16: 62 __le64 l_size; // 0x18: Usable log file size. 63 __le32 last_lsn_data_len; // 0x20: 64 __le16 rec_hdr_len; // 0x24: Log page data offset. 65 __le16 data_off; // 0x26: Log page data length. 66 __le32 open_log_count; // 0x28: 67 __le32 align[5]; // 0x2C: 68 struct CLIENT_REC clients[]; // 0x40: 69 }; 70 71 struct LOG_REC_HDR { 72 __le16 redo_op; // 0x00: NTFS_LOG_OPERATION 73 __le16 undo_op; // 0x02: NTFS_LOG_OPERATION 74 __le16 redo_off; // 0x04: Offset to Redo record. 75 __le16 redo_len; // 0x06: Redo length. 76 __le16 undo_off; // 0x08: Offset to Undo record. 77 __le16 undo_len; // 0x0A: Undo length. 78 __le16 target_attr; // 0x0C: 79 __le16 lcns_follow; // 0x0E: 80 __le16 record_off; // 0x10: 81 __le16 attr_off; // 0x12: 82 __le16 cluster_off; // 0x14: 83 __le16 reserved; // 0x16: 84 __le64 target_vcn; // 0x18: 85 __le64 page_lcns[]; // 0x20: 86 }; 87 88 static_assert(sizeof(struct LOG_REC_HDR) == 0x20); 89 90 #define RESTART_ENTRY_ALLOCATED 0xFFFFFFFF 91 #define RESTART_ENTRY_ALLOCATED_LE cpu_to_le32(0xFFFFFFFF) 92 93 struct RESTART_TABLE { 94 __le16 size; // 0x00: In bytes 95 __le16 used; // 0x02: Entries 96 __le16 total; // 0x04: Entries 97 __le16 res[3]; // 0x06: 98 __le32 free_goal; // 0x0C: 99 __le32 first_free; // 0x10: 100 __le32 last_free; // 0x14: 101 102 }; 103 104 static_assert(sizeof(struct RESTART_TABLE) == 0x18); 105 106 struct ATTR_NAME_ENTRY { 107 __le16 off; // Offset in the Open attribute Table. 108 __le16 name_bytes; 109 __le16 name[]; 110 }; 111 112 struct OPEN_ATTR_ENRTY { 113 __le32 next; // 0x00: RESTART_ENTRY_ALLOCATED if allocated 114 __le32 bytes_per_index; // 0x04: 115 enum ATTR_TYPE type; // 0x08: 116 u8 is_dirty_pages; // 0x0C: 117 u8 is_attr_name; // 0x0B: Faked field to manage 'ptr' 118 u8 name_len; // 0x0C: Faked field to manage 'ptr' 119 u8 res; 120 struct MFT_REF ref; // 0x10: File Reference of file containing attribute 121 __le64 open_record_lsn; // 0x18: 122 void *ptr; // 0x20: 123 }; 124 125 /* 32 bit version of 'struct OPEN_ATTR_ENRTY' */ 126 struct OPEN_ATTR_ENRTY_32 { 127 __le32 next; // 0x00: RESTART_ENTRY_ALLOCATED if allocated 128 __le32 ptr; // 0x04: 129 struct MFT_REF ref; // 0x08: 130 __le64 open_record_lsn; // 0x10: 131 u8 is_dirty_pages; // 0x18: 132 u8 is_attr_name; // 0x19: 133 u8 res1[2]; 134 enum ATTR_TYPE type; // 0x1C: 135 u8 name_len; // 0x20: In wchar 136 u8 res2[3]; 137 __le32 AttributeName; // 0x24: 138 __le32 bytes_per_index; // 0x28: 139 }; 140 141 #define SIZEOF_OPENATTRIBUTEENTRY0 0x2c 142 // static_assert( 0x2C == sizeof(struct OPEN_ATTR_ENRTY_32) ); 143 static_assert(sizeof(struct OPEN_ATTR_ENRTY) < SIZEOF_OPENATTRIBUTEENTRY0); 144 145 /* 146 * One entry exists in the Dirty Pages Table for each page which is dirty at 147 * the time the Restart Area is written. 148 */ 149 struct DIR_PAGE_ENTRY { 150 __le32 next; // 0x00: RESTART_ENTRY_ALLOCATED if allocated 151 __le32 target_attr; // 0x04: Index into the Open attribute Table 152 __le32 transfer_len; // 0x08: 153 __le32 lcns_follow; // 0x0C: 154 __le64 vcn; // 0x10: Vcn of dirty page 155 __le64 oldest_lsn; // 0x18: 156 __le64 page_lcns[]; // 0x20: 157 }; 158 159 static_assert(sizeof(struct DIR_PAGE_ENTRY) == 0x20); 160 161 /* 32 bit version of 'struct DIR_PAGE_ENTRY' */ 162 struct DIR_PAGE_ENTRY_32 { 163 __le32 next; // 0x00: RESTART_ENTRY_ALLOCATED if allocated 164 __le32 target_attr; // 0x04: Index into the Open attribute Table 165 __le32 transfer_len; // 0x08: 166 __le32 lcns_follow; // 0x0C: 167 __le32 reserved; // 0x10: 168 __le32 vcn_low; // 0x14: Vcn of dirty page 169 __le32 vcn_hi; // 0x18: Vcn of dirty page 170 __le32 oldest_lsn_low; // 0x1C: 171 __le32 oldest_lsn_hi; // 0x1C: 172 __le32 page_lcns_low; // 0x24: 173 __le32 page_lcns_hi; // 0x24: 174 }; 175 176 static_assert(offsetof(struct DIR_PAGE_ENTRY_32, vcn_low) == 0x14); 177 static_assert(sizeof(struct DIR_PAGE_ENTRY_32) == 0x2c); 178 179 enum transact_state { 180 TransactionUninitialized = 0, 181 TransactionActive, 182 TransactionPrepared, 183 TransactionCommitted 184 }; 185 186 struct TRANSACTION_ENTRY { 187 __le32 next; // 0x00: RESTART_ENTRY_ALLOCATED if allocated 188 u8 transact_state; // 0x04: 189 u8 reserved[3]; // 0x05: 190 __le64 first_lsn; // 0x08: 191 __le64 prev_lsn; // 0x10: 192 __le64 undo_next_lsn; // 0x18: 193 __le32 undo_records; // 0x20: Number of undo log records pending abort 194 __le32 undo_len; // 0x24: Total undo size 195 }; 196 197 static_assert(sizeof(struct TRANSACTION_ENTRY) == 0x28); 198 199 struct NTFS_RESTART { 200 __le32 major_ver; // 0x00: 201 __le32 minor_ver; // 0x04: 202 __le64 check_point_start; // 0x08: 203 __le64 open_attr_table_lsn; // 0x10: 204 __le64 attr_names_lsn; // 0x18: 205 __le64 dirty_pages_table_lsn; // 0x20: 206 __le64 transact_table_lsn; // 0x28: 207 __le32 open_attr_len; // 0x30: In bytes 208 __le32 attr_names_len; // 0x34: In bytes 209 __le32 dirty_pages_len; // 0x38: In bytes 210 __le32 transact_table_len; // 0x3C: In bytes 211 }; 212 213 static_assert(sizeof(struct NTFS_RESTART) == 0x40); 214 215 struct NEW_ATTRIBUTE_SIZES { 216 __le64 alloc_size; 217 __le64 valid_size; 218 __le64 data_size; 219 __le64 total_size; 220 }; 221 222 struct BITMAP_RANGE { 223 __le32 bitmap_off; 224 __le32 bits; 225 }; 226 227 struct LCN_RANGE { 228 __le64 lcn; 229 __le64 len; 230 }; 231 232 /* The following type defines the different log record types. */ 233 #define LfsClientRecord cpu_to_le32(1) 234 #define LfsClientRestart cpu_to_le32(2) 235 236 /* This is used to uniquely identify a client for a particular log file. */ 237 struct CLIENT_ID { 238 __le16 seq_num; 239 __le16 client_idx; 240 }; 241 242 /* This is the header that begins every Log Record in the log file. */ 243 struct LFS_RECORD_HDR { 244 __le64 this_lsn; // 0x00: 245 __le64 client_prev_lsn; // 0x08: 246 __le64 client_undo_next_lsn; // 0x10: 247 __le32 client_data_len; // 0x18: 248 struct CLIENT_ID client; // 0x1C: Owner of this log record. 249 __le32 record_type; // 0x20: LfsClientRecord or LfsClientRestart. 250 __le32 transact_id; // 0x24: 251 __le16 flags; // 0x28: LOG_RECORD_MULTI_PAGE 252 u8 align[6]; // 0x2A: 253 }; 254 255 #define LOG_RECORD_MULTI_PAGE cpu_to_le16(1) 256 257 static_assert(sizeof(struct LFS_RECORD_HDR) == 0x30); 258 259 struct LFS_RECORD { 260 __le16 next_record_off; // 0x00: Offset of the free space in the page, 261 u8 align[6]; // 0x02: 262 __le64 last_end_lsn; // 0x08: lsn for the last log record which ends on the page, 263 }; 264 265 static_assert(sizeof(struct LFS_RECORD) == 0x10); 266 267 struct RECORD_PAGE_HDR { 268 struct NTFS_RECORD_HEADER rhdr; // 'RCRD' 269 __le32 rflags; // 0x10: See LOG_PAGE_LOG_RECORD_END 270 __le16 page_count; // 0x14: 271 __le16 page_pos; // 0x16: 272 struct LFS_RECORD record_hdr; // 0x18: 273 __le16 fixups[10]; // 0x28: 274 __le32 file_off; // 0x3c: Used when major version >= 2 275 }; 276 277 // clang-format on 278 279 // Page contains the end of a log record. 280 #define LOG_PAGE_LOG_RECORD_END cpu_to_le32(0x00000001) 281 282 static inline bool is_log_record_end(const struct RECORD_PAGE_HDR *hdr) 283 { 284 return hdr->rflags & LOG_PAGE_LOG_RECORD_END; 285 } 286 287 static_assert(offsetof(struct RECORD_PAGE_HDR, file_off) == 0x3c); 288 289 /* 290 * END of NTFS LOG structures 291 */ 292 293 /* Define some tuning parameters to keep the restart tables a reasonable size. */ 294 #define INITIAL_NUMBER_TRANSACTIONS 5 295 296 enum NTFS_LOG_OPERATION { 297 298 Noop = 0x00, 299 CompensationLogRecord = 0x01, 300 InitializeFileRecordSegment = 0x02, 301 DeallocateFileRecordSegment = 0x03, 302 WriteEndOfFileRecordSegment = 0x04, 303 CreateAttribute = 0x05, 304 DeleteAttribute = 0x06, 305 UpdateResidentValue = 0x07, 306 UpdateNonresidentValue = 0x08, 307 UpdateMappingPairs = 0x09, 308 DeleteDirtyClusters = 0x0A, 309 SetNewAttributeSizes = 0x0B, 310 AddIndexEntryRoot = 0x0C, 311 DeleteIndexEntryRoot = 0x0D, 312 AddIndexEntryAllocation = 0x0E, 313 DeleteIndexEntryAllocation = 0x0F, 314 WriteEndOfIndexBuffer = 0x10, 315 SetIndexEntryVcnRoot = 0x11, 316 SetIndexEntryVcnAllocation = 0x12, 317 UpdateFileNameRoot = 0x13, 318 UpdateFileNameAllocation = 0x14, 319 SetBitsInNonresidentBitMap = 0x15, 320 ClearBitsInNonresidentBitMap = 0x16, 321 HotFix = 0x17, 322 EndTopLevelAction = 0x18, 323 PrepareTransaction = 0x19, 324 CommitTransaction = 0x1A, 325 ForgetTransaction = 0x1B, 326 OpenNonresidentAttribute = 0x1C, 327 OpenAttributeTableDump = 0x1D, 328 AttributeNamesDump = 0x1E, 329 DirtyPageTableDump = 0x1F, 330 TransactionTableDump = 0x20, 331 UpdateRecordDataRoot = 0x21, 332 UpdateRecordDataAllocation = 0x22, 333 334 UpdateRelativeDataInIndex = 335 0x23, // NtOfsRestartUpdateRelativeDataInIndex 336 UpdateRelativeDataInIndex2 = 0x24, 337 ZeroEndOfFileRecord = 0x25, 338 }; 339 340 /* 341 * Array for log records which require a target attribute. 342 * A true indicates that the corresponding restart operation 343 * requires a target attribute. 344 */ 345 static const u8 AttributeRequired[] = { 346 0xFC, 0xFB, 0xFF, 0x10, 0x06, 347 }; 348 349 static inline bool is_target_required(u16 op) 350 { 351 bool ret = op <= UpdateRecordDataAllocation && 352 (AttributeRequired[op >> 3] >> (op & 7) & 1); 353 return ret; 354 } 355 356 static inline bool can_skip_action(enum NTFS_LOG_OPERATION op) 357 { 358 switch (op) { 359 case Noop: 360 case DeleteDirtyClusters: 361 case HotFix: 362 case EndTopLevelAction: 363 case PrepareTransaction: 364 case CommitTransaction: 365 case ForgetTransaction: 366 case CompensationLogRecord: 367 case OpenNonresidentAttribute: 368 case OpenAttributeTableDump: 369 case AttributeNamesDump: 370 case DirtyPageTableDump: 371 case TransactionTableDump: 372 return true; 373 default: 374 return false; 375 } 376 } 377 378 enum { lcb_ctx_undo_next, lcb_ctx_prev, lcb_ctx_next }; 379 380 /* Bytes per restart table. */ 381 static inline u32 bytes_per_rt(const struct RESTART_TABLE *rt) 382 { 383 return le16_to_cpu(rt->used) * le16_to_cpu(rt->size) + 384 sizeof(struct RESTART_TABLE); 385 } 386 387 /* Log record length. */ 388 static inline u32 lrh_length(const struct LOG_REC_HDR *lr) 389 { 390 u16 t16 = le16_to_cpu(lr->lcns_follow); 391 392 return struct_size(lr, page_lcns, max_t(u16, 1, t16)); 393 } 394 395 struct lcb { 396 struct LFS_RECORD_HDR *lrh; // Log record header of the current lsn. 397 struct LOG_REC_HDR *log_rec; 398 u32 ctx_mode; // lcb_ctx_undo_next/lcb_ctx_prev/lcb_ctx_next 399 struct CLIENT_ID client; 400 bool alloc; // If true the we should deallocate 'log_rec'. 401 }; 402 403 static void lcb_put(struct lcb *lcb) 404 { 405 if (lcb->alloc) 406 kfree(lcb->log_rec); 407 kfree(lcb->lrh); 408 kfree(lcb); 409 } 410 411 /* Find the oldest lsn from active clients. */ 412 static inline void oldest_client_lsn(const struct CLIENT_REC *ca, 413 __le16 next_client, u64 *oldest_lsn) 414 { 415 while (next_client != LFS_NO_CLIENT_LE) { 416 const struct CLIENT_REC *cr = ca + le16_to_cpu(next_client); 417 u64 lsn = le64_to_cpu(cr->oldest_lsn); 418 419 /* Ignore this block if it's oldest lsn is 0. */ 420 if (lsn && lsn < *oldest_lsn) 421 *oldest_lsn = lsn; 422 423 next_client = cr->next_client; 424 } 425 } 426 427 static inline bool is_rst_page_hdr_valid(u32 file_off, 428 const struct RESTART_HDR *rhdr) 429 { 430 u32 sys_page = le32_to_cpu(rhdr->sys_page_size); 431 u32 page_size = le32_to_cpu(rhdr->page_size); 432 u32 end_usa; 433 u16 ro; 434 435 if (sys_page < SECTOR_SIZE || page_size < SECTOR_SIZE || 436 sys_page & (sys_page - 1) || page_size & (page_size - 1)) { 437 return false; 438 } 439 440 /* Check that if the file offset isn't 0, it is the system page size. */ 441 if (file_off && file_off != sys_page) 442 return false; 443 444 /* Check support version 1.1+. */ 445 if (le16_to_cpu(rhdr->major_ver) <= 1 && !rhdr->minor_ver) 446 return false; 447 448 if (le16_to_cpu(rhdr->major_ver) > 2) 449 return false; 450 451 ro = le16_to_cpu(rhdr->ra_off); 452 if (!IS_ALIGNED(ro, 8) || ro > sys_page) 453 return false; 454 455 end_usa = ((sys_page >> SECTOR_SHIFT) + 1) * sizeof(short); 456 end_usa += le16_to_cpu(rhdr->rhdr.fix_off); 457 458 if (ro < end_usa) 459 return false; 460 461 return true; 462 } 463 464 static inline bool is_rst_area_valid(const struct RESTART_HDR *rhdr) 465 { 466 const struct RESTART_AREA *ra; 467 u16 cl, fl, ul; 468 u32 off, l_size, seq_bits; 469 u16 ro = le16_to_cpu(rhdr->ra_off); 470 u32 sys_page = le32_to_cpu(rhdr->sys_page_size); 471 472 if (ro + offsetof(struct RESTART_AREA, l_size) > 473 SECTOR_SIZE - sizeof(short)) 474 return false; 475 476 ra = Add2Ptr(rhdr, ro); 477 cl = le16_to_cpu(ra->log_clients); 478 479 if (cl > 1) 480 return false; 481 482 off = le16_to_cpu(ra->client_off); 483 484 if (!IS_ALIGNED(off, 8) || ro + off > SECTOR_SIZE - sizeof(short)) 485 return false; 486 487 off += cl * sizeof(struct CLIENT_REC); 488 489 if (off > sys_page) 490 return false; 491 492 /* 493 * Check the restart length field and whether the entire 494 * restart area is contained that length. 495 */ 496 if (le16_to_cpu(rhdr->ra_off) + le16_to_cpu(ra->ra_len) > sys_page || 497 off > le16_to_cpu(ra->ra_len)) { 498 return false; 499 } 500 501 /* 502 * As a final check make sure that the use list and the free list 503 * are either empty or point to a valid client. 504 */ 505 fl = le16_to_cpu(ra->client_idx[0]); 506 ul = le16_to_cpu(ra->client_idx[1]); 507 if ((fl != LFS_NO_CLIENT && fl >= cl) || 508 (ul != LFS_NO_CLIENT && ul >= cl)) 509 return false; 510 511 /* Make sure the sequence number bits match the log file size. */ 512 l_size = le64_to_cpu(ra->l_size); 513 514 seq_bits = sizeof(u64) * 8 + 3; 515 while (l_size) { 516 l_size >>= 1; 517 seq_bits -= 1; 518 } 519 520 if (seq_bits != ra->seq_num_bits) 521 return false; 522 523 /* The log page data offset and record header length must be quad-aligned. */ 524 if (!IS_ALIGNED(le16_to_cpu(ra->data_off), 8) || 525 !IS_ALIGNED(le16_to_cpu(ra->rec_hdr_len), 8)) 526 return false; 527 528 return true; 529 } 530 531 static inline bool is_client_area_valid(const struct RESTART_HDR *rhdr, 532 bool usa_error) 533 { 534 u16 ro = le16_to_cpu(rhdr->ra_off); 535 const struct RESTART_AREA *ra = Add2Ptr(rhdr, ro); 536 u16 ra_len = le16_to_cpu(ra->ra_len); 537 const struct CLIENT_REC *ca; 538 u32 i; 539 540 if (usa_error && ra_len + ro > SECTOR_SIZE - sizeof(short)) 541 return false; 542 543 /* Find the start of the client array. */ 544 ca = Add2Ptr(ra, le16_to_cpu(ra->client_off)); 545 546 /* 547 * Start with the free list. 548 * Check that all the clients are valid and that there isn't a cycle. 549 * Do the in-use list on the second pass. 550 */ 551 for (i = 0; i < 2; i++) { 552 u16 client_idx = le16_to_cpu(ra->client_idx[i]); 553 bool first_client = true; 554 u16 clients = le16_to_cpu(ra->log_clients); 555 556 while (client_idx != LFS_NO_CLIENT) { 557 const struct CLIENT_REC *cr; 558 559 if (!clients || 560 client_idx >= le16_to_cpu(ra->log_clients)) 561 return false; 562 563 clients -= 1; 564 cr = ca + client_idx; 565 566 client_idx = le16_to_cpu(cr->next_client); 567 568 if (first_client) { 569 first_client = false; 570 if (cr->prev_client != LFS_NO_CLIENT_LE) 571 return false; 572 } 573 } 574 } 575 576 return true; 577 } 578 579 /* 580 * remove_client 581 * 582 * Remove a client record from a client record list an restart area. 583 */ 584 static inline void remove_client(struct CLIENT_REC *ca, 585 const struct CLIENT_REC *cr, __le16 *head) 586 { 587 if (cr->prev_client == LFS_NO_CLIENT_LE) 588 *head = cr->next_client; 589 else 590 ca[le16_to_cpu(cr->prev_client)].next_client = cr->next_client; 591 592 if (cr->next_client != LFS_NO_CLIENT_LE) 593 ca[le16_to_cpu(cr->next_client)].prev_client = cr->prev_client; 594 } 595 596 /* 597 * add_client - Add a client record to the start of a list. 598 */ 599 static inline void add_client(struct CLIENT_REC *ca, u16 index, __le16 *head) 600 { 601 struct CLIENT_REC *cr = ca + index; 602 603 cr->prev_client = LFS_NO_CLIENT_LE; 604 cr->next_client = *head; 605 606 if (*head != LFS_NO_CLIENT_LE) 607 ca[le16_to_cpu(*head)].prev_client = cpu_to_le16(index); 608 609 *head = cpu_to_le16(index); 610 } 611 612 static inline void *enum_rstbl(struct RESTART_TABLE *t, void *c) 613 { 614 __le32 *e; 615 u32 bprt; 616 u16 rsize = t ? le16_to_cpu(t->size) : 0; 617 618 if (!c) { 619 if (!t || !t->total) 620 return NULL; 621 e = Add2Ptr(t, sizeof(struct RESTART_TABLE)); 622 } else { 623 e = Add2Ptr(c, rsize); 624 } 625 626 /* Loop until we hit the first one allocated, or the end of the list. */ 627 for (bprt = bytes_per_rt(t); PtrOffset(t, e) < bprt; 628 e = Add2Ptr(e, rsize)) { 629 if (*e == RESTART_ENTRY_ALLOCATED_LE) 630 return e; 631 } 632 return NULL; 633 } 634 635 /* 636 * find_dp - Search for a @vcn in Dirty Page Table. 637 */ 638 static inline struct DIR_PAGE_ENTRY *find_dp(struct RESTART_TABLE *dptbl, 639 u32 target_attr, u64 vcn) 640 { 641 __le32 ta = cpu_to_le32(target_attr); 642 struct DIR_PAGE_ENTRY *dp = NULL; 643 644 while ((dp = enum_rstbl(dptbl, dp))) { 645 u64 dp_vcn = le64_to_cpu(dp->vcn); 646 647 if (dp->target_attr == ta && vcn >= dp_vcn && 648 vcn < dp_vcn + le32_to_cpu(dp->lcns_follow)) { 649 return dp; 650 } 651 } 652 return NULL; 653 } 654 655 static inline u32 norm_file_page(u32 page_size, u32 *l_size, bool use_default) 656 { 657 if (use_default) 658 page_size = DefaultLogPageSize; 659 660 /* Round the file size down to a system page boundary. */ 661 *l_size &= ~(page_size - 1); 662 663 /* File should contain at least 2 restart pages and MinLogRecordPages pages. */ 664 if (*l_size < (MinLogRecordPages + 2) * page_size) 665 return 0; 666 667 return page_size; 668 } 669 670 static bool check_log_rec(const struct LOG_REC_HDR *lr, u32 bytes, u32 tr, 671 u32 bytes_per_attr_entry) 672 { 673 u16 t16; 674 675 if (bytes < sizeof(struct LOG_REC_HDR)) 676 return false; 677 if (!tr) 678 return false; 679 680 if ((tr - sizeof(struct RESTART_TABLE)) % 681 sizeof(struct TRANSACTION_ENTRY)) 682 return false; 683 684 if (le16_to_cpu(lr->redo_off) & 7) 685 return false; 686 687 if (le16_to_cpu(lr->undo_off) & 7) 688 return false; 689 690 if (lr->target_attr) 691 goto check_lcns; 692 693 if (is_target_required(le16_to_cpu(lr->redo_op))) 694 return false; 695 696 if (is_target_required(le16_to_cpu(lr->undo_op))) 697 return false; 698 699 check_lcns: 700 if (!lr->lcns_follow) 701 goto check_length; 702 703 t16 = le16_to_cpu(lr->target_attr); 704 if ((t16 - sizeof(struct RESTART_TABLE)) % bytes_per_attr_entry) 705 return false; 706 707 check_length: 708 if (bytes < lrh_length(lr)) 709 return false; 710 711 return true; 712 } 713 714 static bool check_rstbl(const struct RESTART_TABLE *rt, size_t bytes) 715 { 716 u32 ts; 717 u32 i, off; 718 u16 rsize = le16_to_cpu(rt->size); 719 u16 ne = le16_to_cpu(rt->used); 720 u32 ff = le32_to_cpu(rt->first_free); 721 u32 lf = le32_to_cpu(rt->last_free); 722 723 ts = rsize * ne + sizeof(struct RESTART_TABLE); 724 725 if (!rsize || rsize > bytes || 726 rsize + sizeof(struct RESTART_TABLE) > bytes || bytes < ts || 727 le16_to_cpu(rt->total) > ne || ff > ts || lf > ts || 728 (ff && ff < sizeof(struct RESTART_TABLE)) || 729 (lf && lf < sizeof(struct RESTART_TABLE))) { 730 return false; 731 } 732 733 /* 734 * Verify each entry is either allocated or points 735 * to a valid offset the table. 736 */ 737 for (i = 0; i < ne; i++) { 738 off = le32_to_cpu(*(__le32 *)Add2Ptr( 739 rt, i * rsize + sizeof(struct RESTART_TABLE))); 740 741 if (off != RESTART_ENTRY_ALLOCATED && off && 742 (off < sizeof(struct RESTART_TABLE) || 743 ((off - sizeof(struct RESTART_TABLE)) % rsize))) { 744 return false; 745 } 746 } 747 748 /* 749 * Walk through the list headed by the first entry to make 750 * sure none of the entries are currently being used. 751 */ 752 for (off = ff; off;) { 753 if (off == RESTART_ENTRY_ALLOCATED) 754 return false; 755 756 off = le32_to_cpu(*(__le32 *)Add2Ptr(rt, off)); 757 } 758 759 return true; 760 } 761 762 /* 763 * free_rsttbl_idx - Free a previously allocated index a Restart Table. 764 */ 765 static inline void free_rsttbl_idx(struct RESTART_TABLE *rt, u32 off) 766 { 767 __le32 *e; 768 u32 lf = le32_to_cpu(rt->last_free); 769 __le32 off_le = cpu_to_le32(off); 770 771 e = Add2Ptr(rt, off); 772 773 if (off < le32_to_cpu(rt->free_goal)) { 774 *e = rt->first_free; 775 rt->first_free = off_le; 776 if (!lf) 777 rt->last_free = off_le; 778 } else { 779 if (lf) 780 *(__le32 *)Add2Ptr(rt, lf) = off_le; 781 else 782 rt->first_free = off_le; 783 784 rt->last_free = off_le; 785 *e = 0; 786 } 787 788 le16_sub_cpu(&rt->total, 1); 789 } 790 791 static inline struct RESTART_TABLE *init_rsttbl(u16 esize, u16 used) 792 { 793 __le32 *e, *last_free; 794 u32 off; 795 u32 bytes = esize * used + sizeof(struct RESTART_TABLE); 796 u32 lf = sizeof(struct RESTART_TABLE) + (used - 1) * esize; 797 struct RESTART_TABLE *t = kzalloc(bytes, GFP_NOFS); 798 799 if (!t) 800 return NULL; 801 802 t->size = cpu_to_le16(esize); 803 t->used = cpu_to_le16(used); 804 t->free_goal = cpu_to_le32(~0u); 805 t->first_free = cpu_to_le32(sizeof(struct RESTART_TABLE)); 806 t->last_free = cpu_to_le32(lf); 807 808 e = (__le32 *)(t + 1); 809 last_free = Add2Ptr(t, lf); 810 811 for (off = sizeof(struct RESTART_TABLE) + esize; e < last_free; 812 e = Add2Ptr(e, esize), off += esize) { 813 *e = cpu_to_le32(off); 814 } 815 return t; 816 } 817 818 static inline struct RESTART_TABLE *extend_rsttbl(struct RESTART_TABLE *tbl, 819 u32 add, u32 free_goal) 820 { 821 u16 esize = le16_to_cpu(tbl->size); 822 __le32 osize = cpu_to_le32(bytes_per_rt(tbl)); 823 u32 used = le16_to_cpu(tbl->used); 824 struct RESTART_TABLE *rt; 825 826 rt = init_rsttbl(esize, used + add); 827 if (!rt) 828 return NULL; 829 830 memcpy(rt + 1, tbl + 1, esize * used); 831 832 rt->free_goal = free_goal == ~0u ? 833 cpu_to_le32(~0u) : 834 cpu_to_le32(sizeof(struct RESTART_TABLE) + 835 free_goal * esize); 836 837 if (tbl->first_free) { 838 rt->first_free = tbl->first_free; 839 *(__le32 *)Add2Ptr(rt, le32_to_cpu(tbl->last_free)) = osize; 840 } else { 841 rt->first_free = osize; 842 } 843 844 rt->total = tbl->total; 845 846 kfree(tbl); 847 return rt; 848 } 849 850 /* 851 * alloc_rsttbl_idx 852 * 853 * Allocate an index from within a previously initialized Restart Table. 854 */ 855 static inline void *alloc_rsttbl_idx(struct RESTART_TABLE **tbl) 856 { 857 u32 off; 858 __le32 *e; 859 struct RESTART_TABLE *t = *tbl; 860 861 if (!t->first_free) { 862 *tbl = t = extend_rsttbl(t, 16, ~0u); 863 if (!t) 864 return NULL; 865 } 866 867 off = le32_to_cpu(t->first_free); 868 869 /* Dequeue this entry and zero it. */ 870 e = Add2Ptr(t, off); 871 872 t->first_free = *e; 873 874 memset(e, 0, le16_to_cpu(t->size)); 875 876 *e = RESTART_ENTRY_ALLOCATED_LE; 877 878 /* If list is going empty, then we fix the last_free as well. */ 879 if (!t->first_free) 880 t->last_free = 0; 881 882 le16_add_cpu(&t->total, 1); 883 884 return Add2Ptr(t, off); 885 } 886 887 /* 888 * alloc_rsttbl_from_idx 889 * 890 * Allocate a specific index from within a previously initialized Restart Table. 891 */ 892 static inline void *alloc_rsttbl_from_idx(struct RESTART_TABLE **tbl, u32 vbo) 893 { 894 u32 off; 895 __le32 *e; 896 struct RESTART_TABLE *rt = *tbl; 897 u32 bytes = bytes_per_rt(rt); 898 u16 esize = le16_to_cpu(rt->size); 899 900 /* If the entry is not the table, we will have to extend the table. */ 901 if (vbo >= bytes) { 902 /* 903 * Extend the size by computing the number of entries between 904 * the existing size and the desired index and adding 1 to that. 905 */ 906 u32 bytes2idx = vbo - bytes; 907 908 /* 909 * There should always be an integral number of entries 910 * being added. Now extend the table. 911 */ 912 *tbl = rt = extend_rsttbl(rt, bytes2idx / esize + 1, bytes); 913 if (!rt) 914 return NULL; 915 } 916 917 /* See if the entry is already allocated, and just return if it is. */ 918 e = Add2Ptr(rt, vbo); 919 920 if (*e == RESTART_ENTRY_ALLOCATED_LE) 921 return e; 922 923 /* 924 * Walk through the table, looking for the entry we're 925 * interested and the previous entry. 926 */ 927 off = le32_to_cpu(rt->first_free); 928 e = Add2Ptr(rt, off); 929 930 if (off == vbo) { 931 /* this is a match */ 932 rt->first_free = *e; 933 goto skip_looking; 934 } 935 936 /* 937 * Need to walk through the list looking for the predecessor 938 * of our entry. 939 */ 940 for (;;) { 941 /* Remember the entry just found */ 942 u32 last_off = off; 943 __le32 *last_e = e; 944 945 /* Should never run of entries. */ 946 947 /* Lookup up the next entry the list. */ 948 off = le32_to_cpu(*last_e); 949 e = Add2Ptr(rt, off); 950 951 /* If this is our match we are done. */ 952 if (off == vbo) { 953 *last_e = *e; 954 955 /* 956 * If this was the last entry, we update that 957 * table as well. 958 */ 959 if (le32_to_cpu(rt->last_free) == off) 960 rt->last_free = cpu_to_le32(last_off); 961 break; 962 } 963 } 964 965 skip_looking: 966 /* If the list is now empty, we fix the last_free as well. */ 967 if (!rt->first_free) 968 rt->last_free = 0; 969 970 /* Zero this entry. */ 971 memset(e, 0, esize); 972 *e = RESTART_ENTRY_ALLOCATED_LE; 973 974 le16_add_cpu(&rt->total, 1); 975 976 return e; 977 } 978 979 struct restart_info { 980 u64 last_lsn; 981 struct RESTART_HDR *r_page; 982 u32 vbo; 983 bool chkdsk_was_run; 984 bool valid_page; 985 bool initialized; 986 bool restart; 987 }; 988 989 #define RESTART_SINGLE_PAGE_IO cpu_to_le16(0x0001) 990 991 #define NTFSLOG_WRAPPED 0x00000001 992 #define NTFSLOG_MULTIPLE_PAGE_IO 0x00000002 993 #define NTFSLOG_NO_LAST_LSN 0x00000004 994 #define NTFSLOG_REUSE_TAIL 0x00000010 995 #define NTFSLOG_NO_OLDEST_LSN 0x00000020 996 997 /* Helper struct to work with NTFS $LogFile. */ 998 struct ntfs_log { 999 struct ntfs_inode *ni; 1000 1001 u32 l_size; 1002 u32 orig_file_size; 1003 u32 sys_page_size; 1004 u32 sys_page_mask; 1005 u32 page_size; 1006 u32 page_mask; // page_size - 1 1007 u8 page_bits; 1008 struct RECORD_PAGE_HDR *one_page_buf; 1009 1010 struct RESTART_TABLE *open_attr_tbl; 1011 u32 transaction_id; 1012 u32 clst_per_page; 1013 1014 u32 first_page; 1015 u32 next_page; 1016 u32 ra_off; 1017 u32 data_off; 1018 u32 restart_size; 1019 u32 data_size; 1020 u16 record_header_len; 1021 u64 seq_num; 1022 u32 seq_num_bits; 1023 u32 file_data_bits; 1024 u32 seq_num_mask; /* (1 << file_data_bits) - 1 */ 1025 1026 struct RESTART_AREA *ra; /* In-memory image of the next restart area. */ 1027 u32 ra_size; /* The usable size of the restart area. */ 1028 1029 /* 1030 * If true, then the in-memory restart area is to be written 1031 * to the first position on the disk. 1032 */ 1033 bool init_ra; 1034 bool set_dirty; /* True if we need to set dirty flag. */ 1035 1036 u64 oldest_lsn; 1037 1038 u32 oldest_lsn_off; 1039 u64 last_lsn; 1040 1041 u32 total_avail; 1042 u32 total_avail_pages; 1043 u32 total_undo_commit; 1044 u32 max_current_avail; 1045 u32 current_avail; 1046 u32 reserved; 1047 1048 short major_ver; 1049 short minor_ver; 1050 1051 u32 l_flags; /* See NTFSLOG_XXX */ 1052 u32 current_openlog_count; /* On-disk value for open_log_count. */ 1053 1054 struct CLIENT_ID client_id; 1055 u32 client_undo_commit; 1056 1057 struct restart_info rst_info, rst_info2; 1058 }; 1059 1060 static inline u32 lsn_to_vbo(struct ntfs_log *log, const u64 lsn) 1061 { 1062 u32 vbo = (lsn << log->seq_num_bits) >> (log->seq_num_bits - 3); 1063 1064 return vbo; 1065 } 1066 1067 /* Compute the offset in the log file of the next log page. */ 1068 static inline u32 next_page_off(struct ntfs_log *log, u32 off) 1069 { 1070 off = (off & ~log->sys_page_mask) + log->page_size; 1071 return off >= log->l_size ? log->first_page : off; 1072 } 1073 1074 static inline u32 lsn_to_page_off(struct ntfs_log *log, u64 lsn) 1075 { 1076 return (((u32)lsn) << 3) & log->page_mask; 1077 } 1078 1079 static inline u64 vbo_to_lsn(struct ntfs_log *log, u32 off, u64 Seq) 1080 { 1081 return (off >> 3) + (Seq << log->file_data_bits); 1082 } 1083 1084 static inline bool is_lsn_in_file(struct ntfs_log *log, u64 lsn) 1085 { 1086 return lsn >= log->oldest_lsn && 1087 lsn <= le64_to_cpu(log->ra->current_lsn); 1088 } 1089 1090 static inline u32 hdr_file_off(struct ntfs_log *log, 1091 struct RECORD_PAGE_HDR *hdr) 1092 { 1093 if (log->major_ver < 2) 1094 return le64_to_cpu(hdr->rhdr.lsn); 1095 1096 return le32_to_cpu(hdr->file_off); 1097 } 1098 1099 static inline u64 base_lsn(struct ntfs_log *log, 1100 const struct RECORD_PAGE_HDR *hdr, u64 lsn) 1101 { 1102 u64 h_lsn = le64_to_cpu(hdr->rhdr.lsn); 1103 u64 ret = (((h_lsn >> log->file_data_bits) + 1104 (lsn < (lsn_to_vbo(log, h_lsn) & ~log->page_mask) ? 1 : 0)) 1105 << log->file_data_bits) + 1106 ((((is_log_record_end(hdr) && 1107 h_lsn <= le64_to_cpu(hdr->record_hdr.last_end_lsn)) ? 1108 le16_to_cpu(hdr->record_hdr.next_record_off) : 1109 log->page_size) + 1110 lsn) >> 1111 3); 1112 1113 return ret; 1114 } 1115 1116 static inline bool verify_client_lsn(struct ntfs_log *log, 1117 const struct CLIENT_REC *client, u64 lsn) 1118 { 1119 return lsn >= le64_to_cpu(client->oldest_lsn) && 1120 lsn <= le64_to_cpu(log->ra->current_lsn) && lsn; 1121 } 1122 1123 static int read_log_page(struct ntfs_log *log, u32 vbo, 1124 struct RECORD_PAGE_HDR **buffer, bool *usa_error) 1125 { 1126 int err = 0; 1127 u32 page_idx = vbo >> log->page_bits; 1128 u32 page_off = vbo & log->page_mask; 1129 u32 bytes = log->page_size - page_off; 1130 void *to_free = NULL; 1131 u32 page_vbo = page_idx << log->page_bits; 1132 struct RECORD_PAGE_HDR *page_buf; 1133 struct ntfs_inode *ni = log->ni; 1134 bool bBAAD; 1135 1136 if (vbo >= log->l_size) 1137 return -EINVAL; 1138 1139 if (!*buffer) { 1140 to_free = kmalloc(log->page_size, GFP_NOFS); 1141 if (!to_free) 1142 return -ENOMEM; 1143 *buffer = to_free; 1144 } 1145 1146 page_buf = page_off ? log->one_page_buf : *buffer; 1147 1148 err = ntfs_read_run_nb(ni->mi.sbi, &ni->file.run, page_vbo, page_buf, 1149 log->page_size, NULL); 1150 if (err) 1151 goto out; 1152 1153 if (page_buf->rhdr.sign != NTFS_FFFF_SIGNATURE) 1154 ntfs_fix_post_read(&page_buf->rhdr, PAGE_SIZE, false); 1155 1156 if (page_buf != *buffer) 1157 memcpy(*buffer, Add2Ptr(page_buf, page_off), bytes); 1158 1159 bBAAD = page_buf->rhdr.sign == NTFS_BAAD_SIGNATURE; 1160 1161 if (usa_error) 1162 *usa_error = bBAAD; 1163 /* Check that the update sequence array for this page is valid */ 1164 /* If we don't allow errors, raise an error status */ 1165 else if (bBAAD) 1166 err = -EINVAL; 1167 1168 out: 1169 if (err && to_free) { 1170 kfree(to_free); 1171 *buffer = NULL; 1172 } 1173 1174 return err; 1175 } 1176 1177 /* 1178 * log_read_rst 1179 * 1180 * It walks through 512 blocks of the file looking for a valid 1181 * restart page header. It will stop the first time we find a 1182 * valid page header. 1183 */ 1184 static int log_read_rst(struct ntfs_log *log, bool first, 1185 struct restart_info *info) 1186 { 1187 u32 skip; 1188 u64 vbo; 1189 struct RESTART_HDR *r_page = NULL; 1190 1191 /* Determine which restart area we are looking for. */ 1192 if (first) { 1193 vbo = 0; 1194 skip = 512; 1195 } else { 1196 vbo = 512; 1197 skip = 0; 1198 } 1199 1200 /* Loop continuously until we succeed. */ 1201 for (; vbo < log->l_size; vbo = 2 * vbo + skip, skip = 0) { 1202 bool usa_error; 1203 bool brst, bchk; 1204 struct RESTART_AREA *ra; 1205 1206 /* Read a page header at the current offset. */ 1207 if (read_log_page(log, vbo, (struct RECORD_PAGE_HDR **)&r_page, 1208 &usa_error)) { 1209 /* Ignore any errors. */ 1210 continue; 1211 } 1212 1213 /* Exit if the signature is a log record page. */ 1214 if (r_page->rhdr.sign == NTFS_RCRD_SIGNATURE) { 1215 info->initialized = true; 1216 break; 1217 } 1218 1219 brst = r_page->rhdr.sign == NTFS_RSTR_SIGNATURE; 1220 bchk = r_page->rhdr.sign == NTFS_CHKD_SIGNATURE; 1221 1222 if (!bchk && !brst) { 1223 if (r_page->rhdr.sign != NTFS_FFFF_SIGNATURE) { 1224 /* 1225 * Remember if the signature does not 1226 * indicate uninitialized file. 1227 */ 1228 info->initialized = true; 1229 } 1230 continue; 1231 } 1232 1233 ra = NULL; 1234 info->valid_page = false; 1235 info->initialized = true; 1236 info->vbo = vbo; 1237 1238 /* Let's check the restart area if this is a valid page. */ 1239 if (!is_rst_page_hdr_valid(vbo, r_page)) 1240 goto check_result; 1241 ra = Add2Ptr(r_page, le16_to_cpu(r_page->ra_off)); 1242 1243 if (!is_rst_area_valid(r_page)) 1244 goto check_result; 1245 1246 /* 1247 * We have a valid restart page header and restart area. 1248 * If chkdsk was run or we have no clients then we have 1249 * no more checking to do. 1250 */ 1251 if (bchk || ra->client_idx[1] == LFS_NO_CLIENT_LE) { 1252 info->valid_page = true; 1253 goto check_result; 1254 } 1255 1256 if (is_client_area_valid(r_page, usa_error)) { 1257 info->valid_page = true; 1258 ra = Add2Ptr(r_page, le16_to_cpu(r_page->ra_off)); 1259 } 1260 1261 check_result: 1262 /* 1263 * If chkdsk was run then update the caller's 1264 * values and return. 1265 */ 1266 if (r_page->rhdr.sign == NTFS_CHKD_SIGNATURE) { 1267 info->chkdsk_was_run = true; 1268 info->last_lsn = le64_to_cpu(r_page->rhdr.lsn); 1269 info->restart = true; 1270 info->r_page = r_page; 1271 return 0; 1272 } 1273 1274 /* 1275 * If we have a valid page then copy the values 1276 * we need from it. 1277 */ 1278 if (info->valid_page) { 1279 info->last_lsn = le64_to_cpu(ra->current_lsn); 1280 info->restart = true; 1281 info->r_page = r_page; 1282 return 0; 1283 } 1284 } 1285 1286 kfree(r_page); 1287 1288 return 0; 1289 } 1290 1291 /* 1292 * Ilog_init_pg_hdr - Init @log from restart page header. 1293 */ 1294 static void log_init_pg_hdr(struct ntfs_log *log, u16 major_ver, u16 minor_ver) 1295 { 1296 log->sys_page_size = log->page_size; 1297 log->sys_page_mask = log->page_mask; 1298 1299 log->clst_per_page = log->page_size >> log->ni->mi.sbi->cluster_bits; 1300 if (!log->clst_per_page) 1301 log->clst_per_page = 1; 1302 1303 log->first_page = major_ver >= 2 ? 0x22 * log->page_size : 1304 4 * log->page_size; 1305 log->major_ver = major_ver; 1306 log->minor_ver = minor_ver; 1307 } 1308 1309 /* 1310 * log_create - Init @log in cases when we don't have a restart area to use. 1311 */ 1312 static void log_create(struct ntfs_log *log, const u64 last_lsn, 1313 u32 open_log_count, bool wrapped, bool use_multi_page) 1314 { 1315 /* All file offsets must be quadword aligned. */ 1316 log->file_data_bits = blksize_bits(log->l_size) - 3; 1317 log->seq_num_mask = (8 << log->file_data_bits) - 1; 1318 log->seq_num_bits = sizeof(u64) * 8 - log->file_data_bits; 1319 log->seq_num = (last_lsn >> log->file_data_bits) + 2; 1320 log->next_page = log->first_page; 1321 log->oldest_lsn = log->seq_num << log->file_data_bits; 1322 log->oldest_lsn_off = 0; 1323 log->last_lsn = log->oldest_lsn; 1324 1325 log->l_flags |= NTFSLOG_NO_LAST_LSN | NTFSLOG_NO_OLDEST_LSN; 1326 1327 /* Set the correct flags for the I/O and indicate if we have wrapped. */ 1328 if (wrapped) 1329 log->l_flags |= NTFSLOG_WRAPPED; 1330 1331 if (use_multi_page) 1332 log->l_flags |= NTFSLOG_MULTIPLE_PAGE_IO; 1333 1334 /* Compute the log page values. */ 1335 log->data_off = ALIGN( 1336 offsetof(struct RECORD_PAGE_HDR, fixups) + 1337 sizeof(short) * ((log->page_size >> SECTOR_SHIFT) + 1), 1338 8); 1339 log->data_size = log->page_size - log->data_off; 1340 log->record_header_len = sizeof(struct LFS_RECORD_HDR); 1341 1342 /* Remember the different page sizes for reservation. */ 1343 log->reserved = log->data_size - log->record_header_len; 1344 1345 /* Compute the restart page values. */ 1346 log->ra_off = ALIGN( 1347 offsetof(struct RESTART_HDR, fixups) + 1348 sizeof(short) * 1349 ((log->sys_page_size >> SECTOR_SHIFT) + 1), 1350 8); 1351 log->restart_size = log->sys_page_size - log->ra_off; 1352 log->ra_size = struct_size(log->ra, clients, 1); 1353 log->current_openlog_count = open_log_count; 1354 1355 /* 1356 * The total available log file space is the number of 1357 * log file pages times the space available on each page. 1358 */ 1359 log->total_avail_pages = log->l_size - log->first_page; 1360 log->total_avail = log->total_avail_pages >> log->page_bits; 1361 1362 /* 1363 * We assume that we can't use the end of the page less than 1364 * the file record size. 1365 * Then we won't need to reserve more than the caller asks for. 1366 */ 1367 log->max_current_avail = log->total_avail * log->reserved; 1368 log->total_avail = log->total_avail * log->data_size; 1369 log->current_avail = log->max_current_avail; 1370 } 1371 1372 /* 1373 * log_create_ra - Fill a restart area from the values stored in @log. 1374 */ 1375 static struct RESTART_AREA *log_create_ra(struct ntfs_log *log) 1376 { 1377 struct CLIENT_REC *cr; 1378 struct RESTART_AREA *ra = kzalloc(log->restart_size, GFP_NOFS); 1379 1380 if (!ra) 1381 return NULL; 1382 1383 ra->current_lsn = cpu_to_le64(log->last_lsn); 1384 ra->log_clients = cpu_to_le16(1); 1385 ra->client_idx[1] = LFS_NO_CLIENT_LE; 1386 if (log->l_flags & NTFSLOG_MULTIPLE_PAGE_IO) 1387 ra->flags = RESTART_SINGLE_PAGE_IO; 1388 ra->seq_num_bits = cpu_to_le32(log->seq_num_bits); 1389 ra->ra_len = cpu_to_le16(log->ra_size); 1390 ra->client_off = cpu_to_le16(offsetof(struct RESTART_AREA, clients)); 1391 ra->l_size = cpu_to_le64(log->l_size); 1392 ra->rec_hdr_len = cpu_to_le16(log->record_header_len); 1393 ra->data_off = cpu_to_le16(log->data_off); 1394 ra->open_log_count = cpu_to_le32(log->current_openlog_count + 1); 1395 1396 cr = ra->clients; 1397 1398 cr->prev_client = LFS_NO_CLIENT_LE; 1399 cr->next_client = LFS_NO_CLIENT_LE; 1400 1401 return ra; 1402 } 1403 1404 static u32 final_log_off(struct ntfs_log *log, u64 lsn, u32 data_len) 1405 { 1406 u32 base_vbo = lsn << 3; 1407 u32 final_log_off = (base_vbo & log->seq_num_mask) & ~log->page_mask; 1408 u32 page_off = base_vbo & log->page_mask; 1409 u32 tail = log->page_size - page_off; 1410 1411 page_off -= 1; 1412 1413 /* Add the length of the header. */ 1414 data_len += log->record_header_len; 1415 1416 /* 1417 * If this lsn is contained this log page we are done. 1418 * Otherwise we need to walk through several log pages. 1419 */ 1420 if (data_len > tail) { 1421 data_len -= tail; 1422 tail = log->data_size; 1423 page_off = log->data_off - 1; 1424 1425 for (;;) { 1426 final_log_off = next_page_off(log, final_log_off); 1427 1428 /* 1429 * We are done if the remaining bytes 1430 * fit on this page. 1431 */ 1432 if (data_len <= tail) 1433 break; 1434 data_len -= tail; 1435 } 1436 } 1437 1438 /* 1439 * We add the remaining bytes to our starting position on this page 1440 * and then add that value to the file offset of this log page. 1441 */ 1442 return final_log_off + data_len + page_off; 1443 } 1444 1445 static int next_log_lsn(struct ntfs_log *log, const struct LFS_RECORD_HDR *rh, 1446 u64 *lsn) 1447 { 1448 int err; 1449 u64 this_lsn = le64_to_cpu(rh->this_lsn); 1450 u32 vbo = lsn_to_vbo(log, this_lsn); 1451 u32 end = 1452 final_log_off(log, this_lsn, le32_to_cpu(rh->client_data_len)); 1453 u32 hdr_off = end & ~log->sys_page_mask; 1454 u64 seq = this_lsn >> log->file_data_bits; 1455 struct RECORD_PAGE_HDR *page = NULL; 1456 1457 /* Remember if we wrapped. */ 1458 if (end <= vbo) 1459 seq += 1; 1460 1461 /* Log page header for this page. */ 1462 err = read_log_page(log, hdr_off, &page, NULL); 1463 if (err) 1464 return err; 1465 1466 /* 1467 * If the lsn we were given was not the last lsn on this page, 1468 * then the starting offset for the next lsn is on a quad word 1469 * boundary following the last file offset for the current lsn. 1470 * Otherwise the file offset is the start of the data on the next page. 1471 */ 1472 if (this_lsn == le64_to_cpu(page->rhdr.lsn)) { 1473 /* If we wrapped, we need to increment the sequence number. */ 1474 hdr_off = next_page_off(log, hdr_off); 1475 if (hdr_off == log->first_page) 1476 seq += 1; 1477 1478 vbo = hdr_off + log->data_off; 1479 } else { 1480 vbo = ALIGN(end, 8); 1481 } 1482 1483 /* Compute the lsn based on the file offset and the sequence count. */ 1484 *lsn = vbo_to_lsn(log, vbo, seq); 1485 1486 /* 1487 * If this lsn is within the legal range for the file, we return true. 1488 * Otherwise false indicates that there are no more lsn's. 1489 */ 1490 if (!is_lsn_in_file(log, *lsn)) 1491 *lsn = 0; 1492 1493 kfree(page); 1494 1495 return 0; 1496 } 1497 1498 /* 1499 * current_log_avail - Calculate the number of bytes available for log records. 1500 */ 1501 static u32 current_log_avail(struct ntfs_log *log) 1502 { 1503 u32 oldest_off, next_free_off, free_bytes; 1504 1505 if (log->l_flags & NTFSLOG_NO_LAST_LSN) { 1506 /* The entire file is available. */ 1507 return log->max_current_avail; 1508 } 1509 1510 /* 1511 * If there is a last lsn the restart area then we know that we will 1512 * have to compute the free range. 1513 * If there is no oldest lsn then start at the first page of the file. 1514 */ 1515 oldest_off = (log->l_flags & NTFSLOG_NO_OLDEST_LSN) ? 1516 log->first_page : 1517 (log->oldest_lsn_off & ~log->sys_page_mask); 1518 1519 /* 1520 * We will use the next log page offset to compute the next free page. 1521 * If we are going to reuse this page go to the next page. 1522 * If we are at the first page then use the end of the file. 1523 */ 1524 next_free_off = (log->l_flags & NTFSLOG_REUSE_TAIL) ? 1525 log->next_page + log->page_size : 1526 log->next_page == log->first_page ? log->l_size : 1527 log->next_page; 1528 1529 /* If the two offsets are the same then there is no available space. */ 1530 if (oldest_off == next_free_off) 1531 return 0; 1532 /* 1533 * If the free offset follows the oldest offset then subtract 1534 * this range from the total available pages. 1535 */ 1536 free_bytes = 1537 oldest_off < next_free_off ? 1538 log->total_avail_pages - (next_free_off - oldest_off) : 1539 oldest_off - next_free_off; 1540 1541 free_bytes >>= log->page_bits; 1542 return free_bytes * log->reserved; 1543 } 1544 1545 static bool check_subseq_log_page(struct ntfs_log *log, 1546 const struct RECORD_PAGE_HDR *rp, u32 vbo, 1547 u64 seq) 1548 { 1549 u64 lsn_seq; 1550 const struct NTFS_RECORD_HEADER *rhdr = &rp->rhdr; 1551 u64 lsn = le64_to_cpu(rhdr->lsn); 1552 1553 if (rhdr->sign == NTFS_FFFF_SIGNATURE || !rhdr->sign) 1554 return false; 1555 1556 /* 1557 * If the last lsn on the page occurs was written after the page 1558 * that caused the original error then we have a fatal error. 1559 */ 1560 lsn_seq = lsn >> log->file_data_bits; 1561 1562 /* 1563 * If the sequence number for the lsn the page is equal or greater 1564 * than lsn we expect, then this is a subsequent write. 1565 */ 1566 return lsn_seq >= seq || 1567 (lsn_seq == seq - 1 && log->first_page == vbo && 1568 vbo != (lsn_to_vbo(log, lsn) & ~log->page_mask)); 1569 } 1570 1571 /* 1572 * last_log_lsn 1573 * 1574 * Walks through the log pages for a file, searching for the 1575 * last log page written to the file. 1576 */ 1577 static int last_log_lsn(struct ntfs_log *log) 1578 { 1579 int err; 1580 bool usa_error = false; 1581 bool replace_page = false; 1582 bool reuse_page = log->l_flags & NTFSLOG_REUSE_TAIL; 1583 bool wrapped_file, wrapped; 1584 1585 u32 page_cnt = 1, page_pos = 1; 1586 u32 page_off = 0, page_off1 = 0, saved_off = 0; 1587 u32 final_off, second_off, final_off_prev = 0, second_off_prev = 0; 1588 u32 first_file_off = 0, second_file_off = 0; 1589 u32 part_io_count = 0; 1590 u32 tails = 0; 1591 u32 this_off, curpage_off, nextpage_off, remain_pages; 1592 1593 u64 expected_seq, seq_base = 0, lsn_base = 0; 1594 u64 best_lsn, best_lsn1, best_lsn2; 1595 u64 lsn_cur, lsn1, lsn2; 1596 u64 last_ok_lsn = reuse_page ? log->last_lsn : 0; 1597 1598 u16 cur_pos, best_page_pos; 1599 1600 struct RECORD_PAGE_HDR *page = NULL; 1601 struct RECORD_PAGE_HDR *tst_page = NULL; 1602 struct RECORD_PAGE_HDR *first_tail = NULL; 1603 struct RECORD_PAGE_HDR *second_tail = NULL; 1604 struct RECORD_PAGE_HDR *tail_page = NULL; 1605 struct RECORD_PAGE_HDR *second_tail_prev = NULL; 1606 struct RECORD_PAGE_HDR *first_tail_prev = NULL; 1607 struct RECORD_PAGE_HDR *page_bufs = NULL; 1608 struct RECORD_PAGE_HDR *best_page; 1609 1610 if (log->major_ver >= 2) { 1611 final_off = 0x02 * log->page_size; 1612 second_off = 0x12 * log->page_size; 1613 1614 // 0x10 == 0x12 - 0x2 1615 page_bufs = kmalloc(log->page_size * 0x10, GFP_NOFS); 1616 if (!page_bufs) 1617 return -ENOMEM; 1618 } else { 1619 second_off = log->first_page - log->page_size; 1620 final_off = second_off - log->page_size; 1621 } 1622 1623 next_tail: 1624 /* Read second tail page (at pos 3/0x12000). */ 1625 if (read_log_page(log, second_off, &second_tail, &usa_error) || 1626 usa_error || second_tail->rhdr.sign != NTFS_RCRD_SIGNATURE) { 1627 kfree(second_tail); 1628 second_tail = NULL; 1629 second_file_off = 0; 1630 lsn2 = 0; 1631 } else { 1632 second_file_off = hdr_file_off(log, second_tail); 1633 lsn2 = le64_to_cpu(second_tail->record_hdr.last_end_lsn); 1634 } 1635 1636 /* Read first tail page (at pos 2/0x2000). */ 1637 if (read_log_page(log, final_off, &first_tail, &usa_error) || 1638 usa_error || first_tail->rhdr.sign != NTFS_RCRD_SIGNATURE) { 1639 kfree(first_tail); 1640 first_tail = NULL; 1641 first_file_off = 0; 1642 lsn1 = 0; 1643 } else { 1644 first_file_off = hdr_file_off(log, first_tail); 1645 lsn1 = le64_to_cpu(first_tail->record_hdr.last_end_lsn); 1646 } 1647 1648 if (log->major_ver < 2) { 1649 int best_page; 1650 1651 first_tail_prev = first_tail; 1652 final_off_prev = first_file_off; 1653 second_tail_prev = second_tail; 1654 second_off_prev = second_file_off; 1655 tails = 1; 1656 1657 if (!first_tail && !second_tail) 1658 goto tail_read; 1659 1660 if (first_tail && second_tail) 1661 best_page = lsn1 < lsn2 ? 1 : 0; 1662 else if (first_tail) 1663 best_page = 0; 1664 else 1665 best_page = 1; 1666 1667 page_off = best_page ? second_file_off : first_file_off; 1668 seq_base = (best_page ? lsn2 : lsn1) >> log->file_data_bits; 1669 goto tail_read; 1670 } 1671 1672 best_lsn1 = first_tail ? base_lsn(log, first_tail, first_file_off) : 0; 1673 best_lsn2 = second_tail ? base_lsn(log, second_tail, second_file_off) : 1674 0; 1675 1676 if (first_tail && second_tail) { 1677 if (best_lsn1 > best_lsn2) { 1678 best_lsn = best_lsn1; 1679 best_page = first_tail; 1680 this_off = first_file_off; 1681 } else { 1682 best_lsn = best_lsn2; 1683 best_page = second_tail; 1684 this_off = second_file_off; 1685 } 1686 } else if (first_tail) { 1687 best_lsn = best_lsn1; 1688 best_page = first_tail; 1689 this_off = first_file_off; 1690 } else if (second_tail) { 1691 best_lsn = best_lsn2; 1692 best_page = second_tail; 1693 this_off = second_file_off; 1694 } else { 1695 goto tail_read; 1696 } 1697 1698 best_page_pos = le16_to_cpu(best_page->page_pos); 1699 1700 if (!tails) { 1701 if (best_page_pos == page_pos) { 1702 seq_base = best_lsn >> log->file_data_bits; 1703 saved_off = page_off = le32_to_cpu(best_page->file_off); 1704 lsn_base = best_lsn; 1705 1706 memmove(page_bufs, best_page, log->page_size); 1707 1708 page_cnt = le16_to_cpu(best_page->page_count); 1709 if (page_cnt > 1) 1710 page_pos += 1; 1711 1712 tails = 1; 1713 } 1714 } else if (seq_base == (best_lsn >> log->file_data_bits) && 1715 saved_off + log->page_size == this_off && 1716 lsn_base < best_lsn && 1717 (page_pos != page_cnt || best_page_pos == page_pos || 1718 best_page_pos == 1) && 1719 (page_pos >= page_cnt || best_page_pos == page_pos)) { 1720 u16 bppc = le16_to_cpu(best_page->page_count); 1721 1722 saved_off += log->page_size; 1723 lsn_base = best_lsn; 1724 1725 memmove(Add2Ptr(page_bufs, tails * log->page_size), best_page, 1726 log->page_size); 1727 1728 tails += 1; 1729 1730 if (best_page_pos != bppc) { 1731 page_cnt = bppc; 1732 page_pos = best_page_pos; 1733 1734 if (page_cnt > 1) 1735 page_pos += 1; 1736 } else { 1737 page_pos = page_cnt = 1; 1738 } 1739 } else { 1740 kfree(first_tail); 1741 kfree(second_tail); 1742 goto tail_read; 1743 } 1744 1745 kfree(first_tail_prev); 1746 first_tail_prev = first_tail; 1747 final_off_prev = first_file_off; 1748 first_tail = NULL; 1749 1750 kfree(second_tail_prev); 1751 second_tail_prev = second_tail; 1752 second_off_prev = second_file_off; 1753 second_tail = NULL; 1754 1755 final_off += log->page_size; 1756 second_off += log->page_size; 1757 1758 if (tails < 0x10) 1759 goto next_tail; 1760 tail_read: 1761 first_tail = first_tail_prev; 1762 final_off = final_off_prev; 1763 1764 second_tail = second_tail_prev; 1765 second_off = second_off_prev; 1766 1767 page_cnt = page_pos = 1; 1768 1769 curpage_off = seq_base == log->seq_num ? min(log->next_page, page_off) : 1770 log->next_page; 1771 1772 wrapped_file = 1773 curpage_off == log->first_page && 1774 !(log->l_flags & (NTFSLOG_NO_LAST_LSN | NTFSLOG_REUSE_TAIL)); 1775 1776 expected_seq = wrapped_file ? (log->seq_num + 1) : log->seq_num; 1777 1778 nextpage_off = curpage_off; 1779 1780 next_page: 1781 tail_page = NULL; 1782 /* Read the next log page. */ 1783 err = read_log_page(log, curpage_off, &page, &usa_error); 1784 1785 /* Compute the next log page offset the file. */ 1786 nextpage_off = next_page_off(log, curpage_off); 1787 wrapped = nextpage_off == log->first_page; 1788 1789 if (tails > 1) { 1790 struct RECORD_PAGE_HDR *cur_page = 1791 Add2Ptr(page_bufs, curpage_off - page_off); 1792 1793 if (curpage_off == saved_off) { 1794 tail_page = cur_page; 1795 goto use_tail_page; 1796 } 1797 1798 if (page_off > curpage_off || curpage_off >= saved_off) 1799 goto use_tail_page; 1800 1801 if (page_off1) 1802 goto use_cur_page; 1803 1804 if (!err && !usa_error && 1805 page->rhdr.sign == NTFS_RCRD_SIGNATURE && 1806 cur_page->rhdr.lsn == page->rhdr.lsn && 1807 cur_page->record_hdr.next_record_off == 1808 page->record_hdr.next_record_off && 1809 ((page_pos == page_cnt && 1810 le16_to_cpu(page->page_pos) == 1) || 1811 (page_pos != page_cnt && 1812 le16_to_cpu(page->page_pos) == page_pos + 1 && 1813 le16_to_cpu(page->page_count) == page_cnt))) { 1814 cur_page = NULL; 1815 goto use_tail_page; 1816 } 1817 1818 page_off1 = page_off; 1819 1820 use_cur_page: 1821 1822 lsn_cur = le64_to_cpu(cur_page->rhdr.lsn); 1823 1824 if (last_ok_lsn != 1825 le64_to_cpu(cur_page->record_hdr.last_end_lsn) && 1826 ((lsn_cur >> log->file_data_bits) + 1827 ((curpage_off < 1828 (lsn_to_vbo(log, lsn_cur) & ~log->page_mask)) ? 1829 1 : 1830 0)) != expected_seq) { 1831 goto check_tail; 1832 } 1833 1834 if (!is_log_record_end(cur_page)) { 1835 tail_page = NULL; 1836 last_ok_lsn = lsn_cur; 1837 goto next_page_1; 1838 } 1839 1840 log->seq_num = expected_seq; 1841 log->l_flags &= ~NTFSLOG_NO_LAST_LSN; 1842 log->last_lsn = le64_to_cpu(cur_page->record_hdr.last_end_lsn); 1843 log->ra->current_lsn = cur_page->record_hdr.last_end_lsn; 1844 1845 if (log->record_header_len <= 1846 log->page_size - 1847 le16_to_cpu(cur_page->record_hdr.next_record_off)) { 1848 log->l_flags |= NTFSLOG_REUSE_TAIL; 1849 log->next_page = curpage_off; 1850 } else { 1851 log->l_flags &= ~NTFSLOG_REUSE_TAIL; 1852 log->next_page = nextpage_off; 1853 } 1854 1855 if (wrapped_file) 1856 log->l_flags |= NTFSLOG_WRAPPED; 1857 1858 last_ok_lsn = le64_to_cpu(cur_page->record_hdr.last_end_lsn); 1859 goto next_page_1; 1860 } 1861 1862 /* 1863 * If we are at the expected first page of a transfer check to see 1864 * if either tail copy is at this offset. 1865 * If this page is the last page of a transfer, check if we wrote 1866 * a subsequent tail copy. 1867 */ 1868 if (page_cnt == page_pos || page_cnt == page_pos + 1) { 1869 /* 1870 * Check if the offset matches either the first or second 1871 * tail copy. It is possible it will match both. 1872 */ 1873 if (curpage_off == final_off) 1874 tail_page = first_tail; 1875 1876 /* 1877 * If we already matched on the first page then 1878 * check the ending lsn's. 1879 */ 1880 if (curpage_off == second_off) { 1881 if (!tail_page || 1882 (second_tail && 1883 le64_to_cpu(second_tail->record_hdr.last_end_lsn) > 1884 le64_to_cpu(first_tail->record_hdr 1885 .last_end_lsn))) { 1886 tail_page = second_tail; 1887 } 1888 } 1889 } 1890 1891 use_tail_page: 1892 if (tail_page) { 1893 /* We have a candidate for a tail copy. */ 1894 lsn_cur = le64_to_cpu(tail_page->record_hdr.last_end_lsn); 1895 1896 if (last_ok_lsn < lsn_cur) { 1897 /* 1898 * If the sequence number is not expected, 1899 * then don't use the tail copy. 1900 */ 1901 if (expected_seq != (lsn_cur >> log->file_data_bits)) 1902 tail_page = NULL; 1903 } else if (last_ok_lsn > lsn_cur) { 1904 /* 1905 * If the last lsn is greater than the one on 1906 * this page then forget this tail. 1907 */ 1908 tail_page = NULL; 1909 } 1910 } 1911 1912 /* 1913 *If we have an error on the current page, 1914 * we will break of this loop. 1915 */ 1916 if (err || usa_error) 1917 goto check_tail; 1918 1919 /* 1920 * Done if the last lsn on this page doesn't match the previous known 1921 * last lsn or the sequence number is not expected. 1922 */ 1923 lsn_cur = le64_to_cpu(page->rhdr.lsn); 1924 if (last_ok_lsn != lsn_cur && 1925 expected_seq != (lsn_cur >> log->file_data_bits)) { 1926 goto check_tail; 1927 } 1928 1929 /* 1930 * Check that the page position and page count values are correct. 1931 * If this is the first page of a transfer the position must be 1 1932 * and the count will be unknown. 1933 */ 1934 if (page_cnt == page_pos) { 1935 if (page->page_pos != cpu_to_le16(1) && 1936 (!reuse_page || page->page_pos != page->page_count)) { 1937 /* 1938 * If the current page is the first page we are 1939 * looking at and we are reusing this page then 1940 * it can be either the first or last page of a 1941 * transfer. Otherwise it can only be the first. 1942 */ 1943 goto check_tail; 1944 } 1945 } else if (le16_to_cpu(page->page_count) != page_cnt || 1946 le16_to_cpu(page->page_pos) != page_pos + 1) { 1947 /* 1948 * The page position better be 1 more than the last page 1949 * position and the page count better match. 1950 */ 1951 goto check_tail; 1952 } 1953 1954 /* 1955 * We have a valid page the file and may have a valid page 1956 * the tail copy area. 1957 * If the tail page was written after the page the file then 1958 * break of the loop. 1959 */ 1960 if (tail_page && 1961 le64_to_cpu(tail_page->record_hdr.last_end_lsn) > lsn_cur) { 1962 /* Remember if we will replace the page. */ 1963 replace_page = true; 1964 goto check_tail; 1965 } 1966 1967 tail_page = NULL; 1968 1969 if (is_log_record_end(page)) { 1970 /* 1971 * Since we have read this page we know the sequence number 1972 * is the same as our expected value. 1973 */ 1974 log->seq_num = expected_seq; 1975 log->last_lsn = le64_to_cpu(page->record_hdr.last_end_lsn); 1976 log->ra->current_lsn = page->record_hdr.last_end_lsn; 1977 log->l_flags &= ~NTFSLOG_NO_LAST_LSN; 1978 1979 /* 1980 * If there is room on this page for another header then 1981 * remember we want to reuse the page. 1982 */ 1983 if (log->record_header_len <= 1984 log->page_size - 1985 le16_to_cpu(page->record_hdr.next_record_off)) { 1986 log->l_flags |= NTFSLOG_REUSE_TAIL; 1987 log->next_page = curpage_off; 1988 } else { 1989 log->l_flags &= ~NTFSLOG_REUSE_TAIL; 1990 log->next_page = nextpage_off; 1991 } 1992 1993 /* Remember if we wrapped the log file. */ 1994 if (wrapped_file) 1995 log->l_flags |= NTFSLOG_WRAPPED; 1996 } 1997 1998 /* 1999 * Remember the last page count and position. 2000 * Also remember the last known lsn. 2001 */ 2002 page_cnt = le16_to_cpu(page->page_count); 2003 page_pos = le16_to_cpu(page->page_pos); 2004 last_ok_lsn = le64_to_cpu(page->rhdr.lsn); 2005 2006 next_page_1: 2007 2008 if (wrapped) { 2009 expected_seq += 1; 2010 wrapped_file = 1; 2011 } 2012 2013 curpage_off = nextpage_off; 2014 kfree(page); 2015 page = NULL; 2016 reuse_page = 0; 2017 goto next_page; 2018 2019 check_tail: 2020 if (tail_page) { 2021 log->seq_num = expected_seq; 2022 log->last_lsn = le64_to_cpu(tail_page->record_hdr.last_end_lsn); 2023 log->ra->current_lsn = tail_page->record_hdr.last_end_lsn; 2024 log->l_flags &= ~NTFSLOG_NO_LAST_LSN; 2025 2026 if (log->page_size - 2027 le16_to_cpu( 2028 tail_page->record_hdr.next_record_off) >= 2029 log->record_header_len) { 2030 log->l_flags |= NTFSLOG_REUSE_TAIL; 2031 log->next_page = curpage_off; 2032 } else { 2033 log->l_flags &= ~NTFSLOG_REUSE_TAIL; 2034 log->next_page = nextpage_off; 2035 } 2036 2037 if (wrapped) 2038 log->l_flags |= NTFSLOG_WRAPPED; 2039 } 2040 2041 /* Remember that the partial IO will start at the next page. */ 2042 second_off = nextpage_off; 2043 2044 /* 2045 * If the next page is the first page of the file then update 2046 * the sequence number for log records which begon the next page. 2047 */ 2048 if (wrapped) 2049 expected_seq += 1; 2050 2051 /* 2052 * If we have a tail copy or are performing single page I/O we can 2053 * immediately look at the next page. 2054 */ 2055 if (replace_page || (log->ra->flags & RESTART_SINGLE_PAGE_IO)) { 2056 page_cnt = 2; 2057 page_pos = 1; 2058 goto check_valid; 2059 } 2060 2061 if (page_pos != page_cnt) 2062 goto check_valid; 2063 /* 2064 * If the next page causes us to wrap to the beginning of the log 2065 * file then we know which page to check next. 2066 */ 2067 if (wrapped) { 2068 page_cnt = 2; 2069 page_pos = 1; 2070 goto check_valid; 2071 } 2072 2073 cur_pos = 2; 2074 2075 next_test_page: 2076 kfree(tst_page); 2077 tst_page = NULL; 2078 2079 /* Walk through the file, reading log pages. */ 2080 err = read_log_page(log, nextpage_off, &tst_page, &usa_error); 2081 2082 /* 2083 * If we get a USA error then assume that we correctly found 2084 * the end of the original transfer. 2085 */ 2086 if (usa_error) 2087 goto file_is_valid; 2088 2089 /* 2090 * If we were able to read the page, we examine it to see if it 2091 * is the same or different Io block. 2092 */ 2093 if (err) 2094 goto next_test_page_1; 2095 2096 if (le16_to_cpu(tst_page->page_pos) == cur_pos && 2097 check_subseq_log_page(log, tst_page, nextpage_off, expected_seq)) { 2098 page_cnt = le16_to_cpu(tst_page->page_count) + 1; 2099 page_pos = le16_to_cpu(tst_page->page_pos); 2100 goto check_valid; 2101 } else { 2102 goto file_is_valid; 2103 } 2104 2105 next_test_page_1: 2106 2107 nextpage_off = next_page_off(log, curpage_off); 2108 wrapped = nextpage_off == log->first_page; 2109 2110 if (wrapped) { 2111 expected_seq += 1; 2112 page_cnt = 2; 2113 page_pos = 1; 2114 } 2115 2116 cur_pos += 1; 2117 part_io_count += 1; 2118 if (!wrapped) 2119 goto next_test_page; 2120 2121 check_valid: 2122 /* Skip over the remaining pages this transfer. */ 2123 remain_pages = page_cnt - page_pos - 1; 2124 part_io_count += remain_pages; 2125 2126 while (remain_pages--) { 2127 nextpage_off = next_page_off(log, curpage_off); 2128 wrapped = nextpage_off == log->first_page; 2129 2130 if (wrapped) 2131 expected_seq += 1; 2132 } 2133 2134 /* Call our routine to check this log page. */ 2135 kfree(tst_page); 2136 tst_page = NULL; 2137 2138 err = read_log_page(log, nextpage_off, &tst_page, &usa_error); 2139 if (!err && !usa_error && 2140 check_subseq_log_page(log, tst_page, nextpage_off, expected_seq)) { 2141 err = -EINVAL; 2142 goto out; 2143 } 2144 2145 file_is_valid: 2146 2147 /* We have a valid file. */ 2148 if (page_off1 || tail_page) { 2149 struct RECORD_PAGE_HDR *tmp_page; 2150 2151 if (sb_rdonly(log->ni->mi.sbi->sb)) { 2152 err = -EROFS; 2153 goto out; 2154 } 2155 2156 if (page_off1) { 2157 tmp_page = Add2Ptr(page_bufs, page_off1 - page_off); 2158 tails -= (page_off1 - page_off) / log->page_size; 2159 if (!tail_page) 2160 tails -= 1; 2161 } else { 2162 tmp_page = tail_page; 2163 tails = 1; 2164 } 2165 2166 while (tails--) { 2167 u64 off = hdr_file_off(log, tmp_page); 2168 2169 if (!page) { 2170 page = kmalloc(log->page_size, GFP_NOFS); 2171 if (!page) { 2172 err = -ENOMEM; 2173 goto out; 2174 } 2175 } 2176 2177 /* 2178 * Correct page and copy the data from this page 2179 * into it and flush it to disk. 2180 */ 2181 memcpy(page, tmp_page, log->page_size); 2182 2183 /* Fill last flushed lsn value flush the page. */ 2184 if (log->major_ver < 2) 2185 page->rhdr.lsn = page->record_hdr.last_end_lsn; 2186 else 2187 page->file_off = 0; 2188 2189 page->page_pos = page->page_count = cpu_to_le16(1); 2190 2191 ntfs_fix_pre_write(&page->rhdr, log->page_size); 2192 2193 err = ntfs_sb_write_run(log->ni->mi.sbi, 2194 &log->ni->file.run, off, page, 2195 log->page_size, 0); 2196 2197 if (err) 2198 goto out; 2199 2200 if (part_io_count && second_off == off) { 2201 second_off += log->page_size; 2202 part_io_count -= 1; 2203 } 2204 2205 tmp_page = Add2Ptr(tmp_page, log->page_size); 2206 } 2207 } 2208 2209 if (part_io_count) { 2210 if (sb_rdonly(log->ni->mi.sbi->sb)) { 2211 err = -EROFS; 2212 goto out; 2213 } 2214 } 2215 2216 out: 2217 kfree(second_tail); 2218 kfree(first_tail); 2219 kfree(page); 2220 kfree(tst_page); 2221 kfree(page_bufs); 2222 2223 return err; 2224 } 2225 2226 /* 2227 * read_log_rec_buf - Copy a log record from the file to a buffer. 2228 * 2229 * The log record may span several log pages and may even wrap the file. 2230 */ 2231 static int read_log_rec_buf(struct ntfs_log *log, 2232 const struct LFS_RECORD_HDR *rh, void *buffer) 2233 { 2234 int err; 2235 struct RECORD_PAGE_HDR *ph = NULL; 2236 u64 lsn = le64_to_cpu(rh->this_lsn); 2237 u32 vbo = lsn_to_vbo(log, lsn) & ~log->page_mask; 2238 u32 off = lsn_to_page_off(log, lsn) + log->record_header_len; 2239 u32 data_len = le32_to_cpu(rh->client_data_len); 2240 2241 /* 2242 * While there are more bytes to transfer, 2243 * we continue to attempt to perform the read. 2244 */ 2245 for (;;) { 2246 bool usa_error; 2247 u32 tail = log->page_size - off; 2248 2249 if (tail >= data_len) 2250 tail = data_len; 2251 2252 data_len -= tail; 2253 2254 err = read_log_page(log, vbo, &ph, &usa_error); 2255 if (err) 2256 goto out; 2257 2258 /* 2259 * The last lsn on this page better be greater or equal 2260 * to the lsn we are copying. 2261 */ 2262 if (lsn > le64_to_cpu(ph->rhdr.lsn)) { 2263 err = -EINVAL; 2264 goto out; 2265 } 2266 2267 memcpy(buffer, Add2Ptr(ph, off), tail); 2268 2269 /* If there are no more bytes to transfer, we exit the loop. */ 2270 if (!data_len) { 2271 if (!is_log_record_end(ph) || 2272 lsn > le64_to_cpu(ph->record_hdr.last_end_lsn)) { 2273 err = -EINVAL; 2274 goto out; 2275 } 2276 break; 2277 } 2278 2279 if (ph->rhdr.lsn == ph->record_hdr.last_end_lsn || 2280 lsn > le64_to_cpu(ph->rhdr.lsn)) { 2281 err = -EINVAL; 2282 goto out; 2283 } 2284 2285 vbo = next_page_off(log, vbo); 2286 off = log->data_off; 2287 2288 /* 2289 * Adjust our pointer the user's buffer to transfer 2290 * the next block to. 2291 */ 2292 buffer = Add2Ptr(buffer, tail); 2293 } 2294 2295 out: 2296 kfree(ph); 2297 return err; 2298 } 2299 2300 static int read_rst_area(struct ntfs_log *log, struct NTFS_RESTART **rst_, 2301 u64 *lsn) 2302 { 2303 int err; 2304 struct LFS_RECORD_HDR *rh = NULL; 2305 const struct CLIENT_REC *cr = 2306 Add2Ptr(log->ra, le16_to_cpu(log->ra->client_off)); 2307 u64 lsnr, lsnc = le64_to_cpu(cr->restart_lsn); 2308 u32 len; 2309 struct NTFS_RESTART *rst; 2310 2311 *lsn = 0; 2312 *rst_ = NULL; 2313 2314 /* If the client doesn't have a restart area, go ahead and exit now. */ 2315 if (!lsnc) 2316 return 0; 2317 2318 err = read_log_page(log, lsn_to_vbo(log, lsnc), 2319 (struct RECORD_PAGE_HDR **)&rh, NULL); 2320 if (err) 2321 return err; 2322 2323 rst = NULL; 2324 lsnr = le64_to_cpu(rh->this_lsn); 2325 2326 if (lsnc != lsnr) { 2327 /* If the lsn values don't match, then the disk is corrupt. */ 2328 err = -EINVAL; 2329 goto out; 2330 } 2331 2332 *lsn = lsnr; 2333 len = le32_to_cpu(rh->client_data_len); 2334 2335 if (!len) { 2336 err = 0; 2337 goto out; 2338 } 2339 2340 if (len < sizeof(struct NTFS_RESTART)) { 2341 err = -EINVAL; 2342 goto out; 2343 } 2344 2345 rst = kmalloc(len, GFP_NOFS); 2346 if (!rst) { 2347 err = -ENOMEM; 2348 goto out; 2349 } 2350 2351 /* Copy the data into the 'rst' buffer. */ 2352 err = read_log_rec_buf(log, rh, rst); 2353 if (err) 2354 goto out; 2355 2356 *rst_ = rst; 2357 rst = NULL; 2358 2359 out: 2360 kfree(rh); 2361 kfree(rst); 2362 2363 return err; 2364 } 2365 2366 static int find_log_rec(struct ntfs_log *log, u64 lsn, struct lcb *lcb) 2367 { 2368 int err; 2369 struct LFS_RECORD_HDR *rh = lcb->lrh; 2370 u32 rec_len, len; 2371 2372 /* Read the record header for this lsn. */ 2373 if (!rh) { 2374 err = read_log_page(log, lsn_to_vbo(log, lsn), 2375 (struct RECORD_PAGE_HDR **)&rh, NULL); 2376 2377 lcb->lrh = rh; 2378 if (err) 2379 return err; 2380 } 2381 2382 /* 2383 * If the lsn the log record doesn't match the desired 2384 * lsn then the disk is corrupt. 2385 */ 2386 if (lsn != le64_to_cpu(rh->this_lsn)) 2387 return -EINVAL; 2388 2389 len = le32_to_cpu(rh->client_data_len); 2390 2391 /* 2392 * Check that the length field isn't greater than the total 2393 * available space the log file. 2394 */ 2395 rec_len = len + log->record_header_len; 2396 if (rec_len >= log->total_avail) 2397 return -EINVAL; 2398 2399 /* 2400 * If the entire log record is on this log page, 2401 * put a pointer to the log record the context block. 2402 */ 2403 if (rh->flags & LOG_RECORD_MULTI_PAGE) { 2404 void *lr = kmalloc(len, GFP_NOFS); 2405 2406 if (!lr) 2407 return -ENOMEM; 2408 2409 lcb->log_rec = lr; 2410 lcb->alloc = true; 2411 2412 /* Copy the data into the buffer returned. */ 2413 err = read_log_rec_buf(log, rh, lr); 2414 if (err) 2415 return err; 2416 } else { 2417 /* If beyond the end of the current page -> an error. */ 2418 u32 page_off = lsn_to_page_off(log, lsn); 2419 2420 if (page_off + len + log->record_header_len > log->page_size) 2421 return -EINVAL; 2422 2423 lcb->log_rec = Add2Ptr(rh, sizeof(struct LFS_RECORD_HDR)); 2424 lcb->alloc = false; 2425 } 2426 2427 return 0; 2428 } 2429 2430 /* 2431 * read_log_rec_lcb - Init the query operation. 2432 */ 2433 static int read_log_rec_lcb(struct ntfs_log *log, u64 lsn, u32 ctx_mode, 2434 struct lcb **lcb_) 2435 { 2436 int err; 2437 const struct CLIENT_REC *cr; 2438 struct lcb *lcb; 2439 2440 switch (ctx_mode) { 2441 case lcb_ctx_undo_next: 2442 case lcb_ctx_prev: 2443 case lcb_ctx_next: 2444 break; 2445 default: 2446 return -EINVAL; 2447 } 2448 2449 /* Check that the given lsn is the legal range for this client. */ 2450 cr = Add2Ptr(log->ra, le16_to_cpu(log->ra->client_off)); 2451 2452 if (!verify_client_lsn(log, cr, lsn)) 2453 return -EINVAL; 2454 2455 lcb = kzalloc(sizeof(struct lcb), GFP_NOFS); 2456 if (!lcb) 2457 return -ENOMEM; 2458 lcb->client = log->client_id; 2459 lcb->ctx_mode = ctx_mode; 2460 2461 /* Find the log record indicated by the given lsn. */ 2462 err = find_log_rec(log, lsn, lcb); 2463 if (err) 2464 goto out; 2465 2466 *lcb_ = lcb; 2467 return 0; 2468 2469 out: 2470 lcb_put(lcb); 2471 *lcb_ = NULL; 2472 return err; 2473 } 2474 2475 /* 2476 * find_client_next_lsn 2477 * 2478 * Attempt to find the next lsn to return to a client based on the context mode. 2479 */ 2480 static int find_client_next_lsn(struct ntfs_log *log, struct lcb *lcb, u64 *lsn) 2481 { 2482 int err; 2483 u64 next_lsn; 2484 struct LFS_RECORD_HDR *hdr; 2485 2486 hdr = lcb->lrh; 2487 *lsn = 0; 2488 2489 if (lcb_ctx_next != lcb->ctx_mode) 2490 goto check_undo_next; 2491 2492 /* Loop as long as another lsn can be found. */ 2493 for (;;) { 2494 u64 current_lsn; 2495 2496 err = next_log_lsn(log, hdr, ¤t_lsn); 2497 if (err) 2498 goto out; 2499 2500 if (!current_lsn) 2501 break; 2502 2503 if (hdr != lcb->lrh) 2504 kfree(hdr); 2505 2506 hdr = NULL; 2507 err = read_log_page(log, lsn_to_vbo(log, current_lsn), 2508 (struct RECORD_PAGE_HDR **)&hdr, NULL); 2509 if (err) 2510 goto out; 2511 2512 if (memcmp(&hdr->client, &lcb->client, 2513 sizeof(struct CLIENT_ID))) { 2514 /*err = -EINVAL; */ 2515 } else if (LfsClientRecord == hdr->record_type) { 2516 kfree(lcb->lrh); 2517 lcb->lrh = hdr; 2518 *lsn = current_lsn; 2519 return 0; 2520 } 2521 } 2522 2523 out: 2524 if (hdr != lcb->lrh) 2525 kfree(hdr); 2526 return err; 2527 2528 check_undo_next: 2529 if (lcb_ctx_undo_next == lcb->ctx_mode) 2530 next_lsn = le64_to_cpu(hdr->client_undo_next_lsn); 2531 else if (lcb_ctx_prev == lcb->ctx_mode) 2532 next_lsn = le64_to_cpu(hdr->client_prev_lsn); 2533 else 2534 return 0; 2535 2536 if (!next_lsn) 2537 return 0; 2538 2539 if (!verify_client_lsn( 2540 log, Add2Ptr(log->ra, le16_to_cpu(log->ra->client_off)), 2541 next_lsn)) 2542 return 0; 2543 2544 hdr = NULL; 2545 err = read_log_page(log, lsn_to_vbo(log, next_lsn), 2546 (struct RECORD_PAGE_HDR **)&hdr, NULL); 2547 if (err) 2548 return err; 2549 kfree(lcb->lrh); 2550 lcb->lrh = hdr; 2551 2552 *lsn = next_lsn; 2553 2554 return 0; 2555 } 2556 2557 static int read_next_log_rec(struct ntfs_log *log, struct lcb *lcb, u64 *lsn) 2558 { 2559 int err; 2560 2561 err = find_client_next_lsn(log, lcb, lsn); 2562 if (err) 2563 return err; 2564 2565 if (!*lsn) 2566 return 0; 2567 2568 if (lcb->alloc) 2569 kfree(lcb->log_rec); 2570 2571 lcb->log_rec = NULL; 2572 lcb->alloc = false; 2573 kfree(lcb->lrh); 2574 lcb->lrh = NULL; 2575 2576 return find_log_rec(log, *lsn, lcb); 2577 } 2578 2579 bool check_index_header(const struct INDEX_HDR *hdr, size_t bytes) 2580 { 2581 __le16 mask; 2582 u32 min_de, de_off, used, total; 2583 const struct NTFS_DE *e; 2584 2585 if (hdr_has_subnode(hdr)) { 2586 min_de = sizeof(struct NTFS_DE) + sizeof(u64); 2587 mask = NTFS_IE_HAS_SUBNODES; 2588 } else { 2589 min_de = sizeof(struct NTFS_DE); 2590 mask = 0; 2591 } 2592 2593 de_off = le32_to_cpu(hdr->de_off); 2594 used = le32_to_cpu(hdr->used); 2595 total = le32_to_cpu(hdr->total); 2596 2597 if (de_off > bytes - min_de || used > bytes || total > bytes || 2598 de_off + min_de > used || used > total) { 2599 return false; 2600 } 2601 2602 e = Add2Ptr(hdr, de_off); 2603 for (;;) { 2604 u16 esize = le16_to_cpu(e->size); 2605 struct NTFS_DE *next = Add2Ptr(e, esize); 2606 2607 if (esize < min_de || PtrOffset(hdr, next) > used || 2608 (e->flags & NTFS_IE_HAS_SUBNODES) != mask) { 2609 return false; 2610 } 2611 2612 if (de_is_last(e)) 2613 break; 2614 2615 e = next; 2616 } 2617 2618 return true; 2619 } 2620 2621 static inline bool check_index_buffer(const struct INDEX_BUFFER *ib, u32 bytes) 2622 { 2623 u16 fo; 2624 const struct NTFS_RECORD_HEADER *r = &ib->rhdr; 2625 2626 if (r->sign != NTFS_INDX_SIGNATURE) 2627 return false; 2628 2629 fo = (SECTOR_SIZE - ((bytes >> SECTOR_SHIFT) + 1) * sizeof(short)); 2630 2631 if (le16_to_cpu(r->fix_off) > fo) 2632 return false; 2633 2634 if ((le16_to_cpu(r->fix_num) - 1) * SECTOR_SIZE != bytes) 2635 return false; 2636 2637 return check_index_header(&ib->ihdr, 2638 bytes - offsetof(struct INDEX_BUFFER, ihdr)); 2639 } 2640 2641 static inline bool check_index_root(const struct ATTRIB *attr, 2642 struct ntfs_sb_info *sbi) 2643 { 2644 bool ret; 2645 const struct INDEX_ROOT *root = resident_data(attr); 2646 u8 index_bits = le32_to_cpu(root->index_block_size) >= 2647 sbi->cluster_size ? 2648 sbi->cluster_bits : 2649 SECTOR_SHIFT; 2650 u8 block_clst = root->index_block_clst; 2651 2652 if (le32_to_cpu(attr->res.data_size) < sizeof(struct INDEX_ROOT) || 2653 (root->type != ATTR_NAME && root->type != ATTR_ZERO) || 2654 (root->type == ATTR_NAME && 2655 root->rule != NTFS_COLLATION_TYPE_FILENAME) || 2656 (le32_to_cpu(root->index_block_size) != 2657 (block_clst << index_bits)) || 2658 (block_clst != 1 && block_clst != 2 && block_clst != 4 && 2659 block_clst != 8 && block_clst != 0x10 && block_clst != 0x20 && 2660 block_clst != 0x40 && block_clst != 0x80)) { 2661 return false; 2662 } 2663 2664 ret = check_index_header(&root->ihdr, 2665 le32_to_cpu(attr->res.data_size) - 2666 offsetof(struct INDEX_ROOT, ihdr)); 2667 return ret; 2668 } 2669 2670 static inline bool check_attr(const struct MFT_REC *rec, 2671 const struct ATTRIB *attr, 2672 struct ntfs_sb_info *sbi) 2673 { 2674 u32 asize = le32_to_cpu(attr->size); 2675 u32 rsize = 0; 2676 u64 dsize, svcn, evcn; 2677 u16 run_off; 2678 2679 /* Check the fixed part of the attribute record header. */ 2680 if (asize >= sbi->record_size || 2681 asize + PtrOffset(rec, attr) >= sbi->record_size || 2682 (attr->name_len && 2683 le16_to_cpu(attr->name_off) + attr->name_len * sizeof(short) > 2684 asize)) { 2685 return false; 2686 } 2687 2688 /* Check the attribute fields. */ 2689 switch (attr->non_res) { 2690 case 0: 2691 rsize = le32_to_cpu(attr->res.data_size); 2692 if (rsize >= asize || 2693 le16_to_cpu(attr->res.data_off) + rsize > asize) { 2694 return false; 2695 } 2696 break; 2697 2698 case 1: 2699 dsize = le64_to_cpu(attr->nres.data_size); 2700 svcn = le64_to_cpu(attr->nres.svcn); 2701 evcn = le64_to_cpu(attr->nres.evcn); 2702 run_off = le16_to_cpu(attr->nres.run_off); 2703 2704 if (svcn > evcn + 1 || run_off >= asize || 2705 le64_to_cpu(attr->nres.valid_size) > dsize || 2706 dsize > le64_to_cpu(attr->nres.alloc_size)) { 2707 return false; 2708 } 2709 2710 if (run_off > asize) 2711 return false; 2712 2713 if (run_unpack(NULL, sbi, 0, svcn, evcn, svcn, 2714 Add2Ptr(attr, run_off), asize - run_off) < 0) { 2715 return false; 2716 } 2717 2718 return true; 2719 2720 default: 2721 return false; 2722 } 2723 2724 switch (attr->type) { 2725 case ATTR_NAME: 2726 if (fname_full_size(Add2Ptr( 2727 attr, le16_to_cpu(attr->res.data_off))) > asize) { 2728 return false; 2729 } 2730 break; 2731 2732 case ATTR_ROOT: 2733 return check_index_root(attr, sbi); 2734 2735 case ATTR_STD: 2736 if (rsize < sizeof(struct ATTR_STD_INFO5) && 2737 rsize != sizeof(struct ATTR_STD_INFO)) { 2738 return false; 2739 } 2740 break; 2741 2742 case ATTR_LIST: 2743 case ATTR_ID: 2744 case ATTR_SECURE: 2745 case ATTR_LABEL: 2746 case ATTR_VOL_INFO: 2747 case ATTR_DATA: 2748 case ATTR_ALLOC: 2749 case ATTR_BITMAP: 2750 case ATTR_REPARSE: 2751 case ATTR_EA_INFO: 2752 case ATTR_EA: 2753 case ATTR_PROPERTYSET: 2754 case ATTR_LOGGED_UTILITY_STREAM: 2755 break; 2756 2757 default: 2758 return false; 2759 } 2760 2761 return true; 2762 } 2763 2764 static inline bool check_file_record(const struct MFT_REC *rec, 2765 const struct MFT_REC *rec2, 2766 struct ntfs_sb_info *sbi) 2767 { 2768 const struct ATTRIB *attr; 2769 u16 fo = le16_to_cpu(rec->rhdr.fix_off); 2770 u16 fn = le16_to_cpu(rec->rhdr.fix_num); 2771 u16 ao = le16_to_cpu(rec->attr_off); 2772 u32 rs = sbi->record_size; 2773 2774 /* Check the file record header for consistency. */ 2775 if (rec->rhdr.sign != NTFS_FILE_SIGNATURE || 2776 fo > (SECTOR_SIZE - ((rs >> SECTOR_SHIFT) + 1) * sizeof(short)) || 2777 (fn - 1) * SECTOR_SIZE != rs || ao < MFTRECORD_FIXUP_OFFSET_1 || 2778 ao > sbi->record_size - SIZEOF_RESIDENT || !is_rec_inuse(rec) || 2779 le32_to_cpu(rec->total) != rs) { 2780 return false; 2781 } 2782 2783 /* Loop to check all of the attributes. */ 2784 for (attr = Add2Ptr(rec, ao); attr->type != ATTR_END; 2785 attr = Add2Ptr(attr, le32_to_cpu(attr->size))) { 2786 if (check_attr(rec, attr, sbi)) 2787 continue; 2788 return false; 2789 } 2790 2791 return true; 2792 } 2793 2794 static inline int check_lsn(const struct NTFS_RECORD_HEADER *hdr, 2795 const u64 *rlsn) 2796 { 2797 u64 lsn; 2798 2799 if (!rlsn) 2800 return true; 2801 2802 lsn = le64_to_cpu(hdr->lsn); 2803 2804 if (hdr->sign == NTFS_HOLE_SIGNATURE) 2805 return false; 2806 2807 if (*rlsn > lsn) 2808 return true; 2809 2810 return false; 2811 } 2812 2813 static inline bool check_if_attr(const struct MFT_REC *rec, 2814 const struct LOG_REC_HDR *lrh) 2815 { 2816 u16 ro = le16_to_cpu(lrh->record_off); 2817 u16 o = le16_to_cpu(rec->attr_off); 2818 const struct ATTRIB *attr = Add2Ptr(rec, o); 2819 2820 while (o < ro) { 2821 u32 asize; 2822 2823 if (attr->type == ATTR_END) 2824 break; 2825 2826 asize = le32_to_cpu(attr->size); 2827 if (!asize) 2828 break; 2829 2830 o += asize; 2831 attr = Add2Ptr(attr, asize); 2832 } 2833 2834 return o == ro; 2835 } 2836 2837 static inline bool check_if_index_root(const struct MFT_REC *rec, 2838 const struct LOG_REC_HDR *lrh) 2839 { 2840 u16 ro = le16_to_cpu(lrh->record_off); 2841 u16 o = le16_to_cpu(rec->attr_off); 2842 const struct ATTRIB *attr = Add2Ptr(rec, o); 2843 2844 while (o < ro) { 2845 u32 asize; 2846 2847 if (attr->type == ATTR_END) 2848 break; 2849 2850 asize = le32_to_cpu(attr->size); 2851 if (!asize) 2852 break; 2853 2854 o += asize; 2855 attr = Add2Ptr(attr, asize); 2856 } 2857 2858 return o == ro && attr->type == ATTR_ROOT; 2859 } 2860 2861 static inline bool check_if_root_index(const struct ATTRIB *attr, 2862 const struct INDEX_HDR *hdr, 2863 const struct LOG_REC_HDR *lrh) 2864 { 2865 u16 ao = le16_to_cpu(lrh->attr_off); 2866 u32 de_off = le32_to_cpu(hdr->de_off); 2867 u32 o = PtrOffset(attr, hdr) + de_off; 2868 const struct NTFS_DE *e = Add2Ptr(hdr, de_off); 2869 u32 asize = le32_to_cpu(attr->size); 2870 2871 while (o < ao) { 2872 u16 esize; 2873 2874 if (o >= asize) 2875 break; 2876 2877 esize = le16_to_cpu(e->size); 2878 if (!esize) 2879 break; 2880 2881 o += esize; 2882 e = Add2Ptr(e, esize); 2883 } 2884 2885 return o == ao; 2886 } 2887 2888 static inline bool check_if_alloc_index(const struct INDEX_HDR *hdr, 2889 u32 attr_off) 2890 { 2891 u32 de_off = le32_to_cpu(hdr->de_off); 2892 u32 o = offsetof(struct INDEX_BUFFER, ihdr) + de_off; 2893 const struct NTFS_DE *e = Add2Ptr(hdr, de_off); 2894 u32 used = le32_to_cpu(hdr->used); 2895 2896 while (o < attr_off) { 2897 u16 esize; 2898 2899 if (de_off >= used) 2900 break; 2901 2902 esize = le16_to_cpu(e->size); 2903 if (!esize) 2904 break; 2905 2906 o += esize; 2907 de_off += esize; 2908 e = Add2Ptr(e, esize); 2909 } 2910 2911 return o == attr_off; 2912 } 2913 2914 static inline void change_attr_size(struct MFT_REC *rec, struct ATTRIB *attr, 2915 u32 nsize) 2916 { 2917 u32 asize = le32_to_cpu(attr->size); 2918 int dsize = nsize - asize; 2919 u8 *next = Add2Ptr(attr, asize); 2920 u32 used = le32_to_cpu(rec->used); 2921 2922 memmove(Add2Ptr(attr, nsize), next, used - PtrOffset(rec, next)); 2923 2924 rec->used = cpu_to_le32(used + dsize); 2925 attr->size = cpu_to_le32(nsize); 2926 } 2927 2928 struct OpenAttr { 2929 struct ATTRIB *attr; 2930 struct runs_tree *run1; 2931 struct runs_tree run0; 2932 struct ntfs_inode *ni; 2933 // CLST rno; 2934 }; 2935 2936 /* 2937 * cmp_type_and_name 2938 * 2939 * Return: 0 if 'attr' has the same type and name. 2940 */ 2941 static inline int cmp_type_and_name(const struct ATTRIB *a1, 2942 const struct ATTRIB *a2) 2943 { 2944 return a1->type != a2->type || a1->name_len != a2->name_len || 2945 (a1->name_len && memcmp(attr_name(a1), attr_name(a2), 2946 a1->name_len * sizeof(short))); 2947 } 2948 2949 static struct OpenAttr *find_loaded_attr(struct ntfs_log *log, 2950 const struct ATTRIB *attr, CLST rno) 2951 { 2952 struct OPEN_ATTR_ENRTY *oe = NULL; 2953 2954 while ((oe = enum_rstbl(log->open_attr_tbl, oe))) { 2955 struct OpenAttr *op_attr; 2956 2957 if (ino_get(&oe->ref) != rno) 2958 continue; 2959 2960 op_attr = (struct OpenAttr *)oe->ptr; 2961 if (!cmp_type_and_name(op_attr->attr, attr)) 2962 return op_attr; 2963 } 2964 return NULL; 2965 } 2966 2967 static struct ATTRIB *attr_create_nonres_log(struct ntfs_sb_info *sbi, 2968 enum ATTR_TYPE type, u64 size, 2969 const u16 *name, size_t name_len, 2970 __le16 flags) 2971 { 2972 struct ATTRIB *attr; 2973 u32 name_size = ALIGN(name_len * sizeof(short), 8); 2974 bool is_ext = flags & (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED); 2975 u32 asize = name_size + 2976 (is_ext ? SIZEOF_NONRESIDENT_EX : SIZEOF_NONRESIDENT); 2977 2978 attr = kzalloc(asize, GFP_NOFS); 2979 if (!attr) 2980 return NULL; 2981 2982 attr->type = type; 2983 attr->size = cpu_to_le32(asize); 2984 attr->flags = flags; 2985 attr->non_res = 1; 2986 attr->name_len = name_len; 2987 2988 attr->nres.evcn = cpu_to_le64((u64)bytes_to_cluster(sbi, size) - 1); 2989 attr->nres.alloc_size = cpu_to_le64(ntfs_up_cluster(sbi, size)); 2990 attr->nres.data_size = cpu_to_le64(size); 2991 attr->nres.valid_size = attr->nres.data_size; 2992 if (is_ext) { 2993 attr->name_off = SIZEOF_NONRESIDENT_EX_LE; 2994 if (is_attr_compressed(attr)) 2995 attr->nres.c_unit = COMPRESSION_UNIT; 2996 2997 attr->nres.run_off = 2998 cpu_to_le16(SIZEOF_NONRESIDENT_EX + name_size); 2999 memcpy(Add2Ptr(attr, SIZEOF_NONRESIDENT_EX), name, 3000 name_len * sizeof(short)); 3001 } else { 3002 attr->name_off = SIZEOF_NONRESIDENT_LE; 3003 attr->nres.run_off = 3004 cpu_to_le16(SIZEOF_NONRESIDENT + name_size); 3005 memcpy(Add2Ptr(attr, SIZEOF_NONRESIDENT), name, 3006 name_len * sizeof(short)); 3007 } 3008 3009 return attr; 3010 } 3011 3012 /* 3013 * do_action - Common routine for the Redo and Undo Passes. 3014 * @rlsn: If it is NULL then undo. 3015 */ 3016 static int do_action(struct ntfs_log *log, struct OPEN_ATTR_ENRTY *oe, 3017 const struct LOG_REC_HDR *lrh, u32 op, void *data, 3018 u32 dlen, u32 rec_len, const u64 *rlsn) 3019 { 3020 int err = 0; 3021 struct ntfs_sb_info *sbi = log->ni->mi.sbi; 3022 struct inode *inode = NULL, *inode_parent; 3023 struct mft_inode *mi = NULL, *mi2_child = NULL; 3024 CLST rno = 0, rno_base = 0; 3025 struct INDEX_BUFFER *ib = NULL; 3026 struct MFT_REC *rec = NULL; 3027 struct ATTRIB *attr = NULL, *attr2; 3028 struct INDEX_HDR *hdr; 3029 struct INDEX_ROOT *root; 3030 struct NTFS_DE *e, *e1, *e2; 3031 struct NEW_ATTRIBUTE_SIZES *new_sz; 3032 struct ATTR_FILE_NAME *fname; 3033 struct OpenAttr *oa, *oa2; 3034 u32 nsize, t32, asize, used, esize, off, bits; 3035 u16 id, id2; 3036 u32 record_size = sbi->record_size; 3037 u64 t64; 3038 u16 roff = le16_to_cpu(lrh->record_off); 3039 u16 aoff = le16_to_cpu(lrh->attr_off); 3040 u64 lco = 0; 3041 u64 cbo = (u64)le16_to_cpu(lrh->cluster_off) << SECTOR_SHIFT; 3042 u64 tvo = le64_to_cpu(lrh->target_vcn) << sbi->cluster_bits; 3043 u64 vbo = cbo + tvo; 3044 void *buffer_le = NULL; 3045 u32 bytes = 0; 3046 bool a_dirty = false; 3047 u16 data_off; 3048 3049 oa = oe->ptr; 3050 3051 /* Big switch to prepare. */ 3052 switch (op) { 3053 /* ============================================================ 3054 * Process MFT records, as described by the current log record. 3055 * ============================================================ 3056 */ 3057 case InitializeFileRecordSegment: 3058 case DeallocateFileRecordSegment: 3059 case WriteEndOfFileRecordSegment: 3060 case CreateAttribute: 3061 case DeleteAttribute: 3062 case UpdateResidentValue: 3063 case UpdateMappingPairs: 3064 case SetNewAttributeSizes: 3065 case AddIndexEntryRoot: 3066 case DeleteIndexEntryRoot: 3067 case SetIndexEntryVcnRoot: 3068 case UpdateFileNameRoot: 3069 case UpdateRecordDataRoot: 3070 case ZeroEndOfFileRecord: 3071 rno = vbo >> sbi->record_bits; 3072 inode = ilookup(sbi->sb, rno); 3073 if (inode) { 3074 mi = &ntfs_i(inode)->mi; 3075 } else if (op == InitializeFileRecordSegment) { 3076 mi = kzalloc(sizeof(struct mft_inode), GFP_NOFS); 3077 if (!mi) 3078 return -ENOMEM; 3079 err = mi_format_new(mi, sbi, rno, 0, false); 3080 if (err) 3081 goto out; 3082 } else { 3083 /* Read from disk. */ 3084 err = mi_get(sbi, rno, &mi); 3085 if (err) 3086 return err; 3087 } 3088 rec = mi->mrec; 3089 3090 if (op == DeallocateFileRecordSegment) 3091 goto skip_load_parent; 3092 3093 if (InitializeFileRecordSegment != op) { 3094 if (rec->rhdr.sign == NTFS_BAAD_SIGNATURE) 3095 goto dirty_vol; 3096 if (!check_lsn(&rec->rhdr, rlsn)) 3097 goto out; 3098 if (!check_file_record(rec, NULL, sbi)) 3099 goto dirty_vol; 3100 attr = Add2Ptr(rec, roff); 3101 } 3102 3103 if (is_rec_base(rec) || InitializeFileRecordSegment == op) { 3104 rno_base = rno; 3105 goto skip_load_parent; 3106 } 3107 3108 rno_base = ino_get(&rec->parent_ref); 3109 inode_parent = ntfs_iget5(sbi->sb, &rec->parent_ref, NULL); 3110 if (IS_ERR(inode_parent)) 3111 goto skip_load_parent; 3112 3113 if (is_bad_inode(inode_parent)) { 3114 iput(inode_parent); 3115 goto skip_load_parent; 3116 } 3117 3118 if (ni_load_mi_ex(ntfs_i(inode_parent), rno, &mi2_child)) { 3119 iput(inode_parent); 3120 } else { 3121 if (mi2_child->mrec != mi->mrec) 3122 memcpy(mi2_child->mrec, mi->mrec, 3123 sbi->record_size); 3124 3125 if (inode) 3126 iput(inode); 3127 else if (mi) 3128 mi_put(mi); 3129 3130 inode = inode_parent; 3131 mi = mi2_child; 3132 rec = mi2_child->mrec; 3133 attr = Add2Ptr(rec, roff); 3134 } 3135 3136 skip_load_parent: 3137 inode_parent = NULL; 3138 break; 3139 3140 /* 3141 * Process attributes, as described by the current log record. 3142 */ 3143 case UpdateNonresidentValue: 3144 case AddIndexEntryAllocation: 3145 case DeleteIndexEntryAllocation: 3146 case WriteEndOfIndexBuffer: 3147 case SetIndexEntryVcnAllocation: 3148 case UpdateFileNameAllocation: 3149 case SetBitsInNonresidentBitMap: 3150 case ClearBitsInNonresidentBitMap: 3151 case UpdateRecordDataAllocation: 3152 attr = oa->attr; 3153 bytes = UpdateNonresidentValue == op ? dlen : 0; 3154 lco = (u64)le16_to_cpu(lrh->lcns_follow) << sbi->cluster_bits; 3155 3156 if (attr->type == ATTR_ALLOC) { 3157 t32 = le32_to_cpu(oe->bytes_per_index); 3158 if (bytes < t32) 3159 bytes = t32; 3160 } 3161 3162 if (!bytes) 3163 bytes = lco - cbo; 3164 3165 bytes += roff; 3166 if (attr->type == ATTR_ALLOC) 3167 bytes = (bytes + 511) & ~511; // align 3168 3169 buffer_le = kmalloc(bytes, GFP_NOFS); 3170 if (!buffer_le) 3171 return -ENOMEM; 3172 3173 err = ntfs_read_run_nb(sbi, oa->run1, vbo, buffer_le, bytes, 3174 NULL); 3175 if (err) 3176 goto out; 3177 3178 if (attr->type == ATTR_ALLOC && *(int *)buffer_le) 3179 ntfs_fix_post_read(buffer_le, bytes, false); 3180 break; 3181 3182 default: 3183 WARN_ON(1); 3184 } 3185 3186 /* Big switch to do operation. */ 3187 switch (op) { 3188 case InitializeFileRecordSegment: 3189 if (roff + dlen > record_size) 3190 goto dirty_vol; 3191 3192 memcpy(Add2Ptr(rec, roff), data, dlen); 3193 mi->dirty = true; 3194 break; 3195 3196 case DeallocateFileRecordSegment: 3197 clear_rec_inuse(rec); 3198 le16_add_cpu(&rec->seq, 1); 3199 mi->dirty = true; 3200 break; 3201 3202 case WriteEndOfFileRecordSegment: 3203 attr2 = (struct ATTRIB *)data; 3204 if (!check_if_attr(rec, lrh) || roff + dlen > record_size) 3205 goto dirty_vol; 3206 3207 memmove(attr, attr2, dlen); 3208 rec->used = cpu_to_le32(ALIGN(roff + dlen, 8)); 3209 3210 mi->dirty = true; 3211 break; 3212 3213 case CreateAttribute: 3214 attr2 = (struct ATTRIB *)data; 3215 asize = le32_to_cpu(attr2->size); 3216 used = le32_to_cpu(rec->used); 3217 3218 if (!check_if_attr(rec, lrh) || dlen < SIZEOF_RESIDENT || 3219 !IS_ALIGNED(asize, 8) || 3220 Add2Ptr(attr2, asize) > Add2Ptr(lrh, rec_len) || 3221 dlen > record_size - used) { 3222 goto dirty_vol; 3223 } 3224 3225 memmove(Add2Ptr(attr, asize), attr, used - roff); 3226 memcpy(attr, attr2, asize); 3227 3228 rec->used = cpu_to_le32(used + asize); 3229 id = le16_to_cpu(rec->next_attr_id); 3230 id2 = le16_to_cpu(attr2->id); 3231 if (id <= id2) 3232 rec->next_attr_id = cpu_to_le16(id2 + 1); 3233 if (is_attr_indexed(attr)) 3234 le16_add_cpu(&rec->hard_links, 1); 3235 3236 oa2 = find_loaded_attr(log, attr, rno_base); 3237 if (oa2) { 3238 void *p2 = kmemdup(attr, le32_to_cpu(attr->size), 3239 GFP_NOFS); 3240 if (p2) { 3241 // run_close(oa2->run1); 3242 kfree(oa2->attr); 3243 oa2->attr = p2; 3244 } 3245 } 3246 3247 mi->dirty = true; 3248 break; 3249 3250 case DeleteAttribute: 3251 asize = le32_to_cpu(attr->size); 3252 used = le32_to_cpu(rec->used); 3253 3254 if (!check_if_attr(rec, lrh)) 3255 goto dirty_vol; 3256 3257 rec->used = cpu_to_le32(used - asize); 3258 if (is_attr_indexed(attr)) 3259 le16_add_cpu(&rec->hard_links, -1); 3260 3261 memmove(attr, Add2Ptr(attr, asize), used - asize - roff); 3262 3263 mi->dirty = true; 3264 break; 3265 3266 case UpdateResidentValue: 3267 nsize = aoff + dlen; 3268 3269 if (!check_if_attr(rec, lrh)) 3270 goto dirty_vol; 3271 3272 asize = le32_to_cpu(attr->size); 3273 used = le32_to_cpu(rec->used); 3274 3275 if (lrh->redo_len == lrh->undo_len) { 3276 if (nsize > asize) 3277 goto dirty_vol; 3278 goto move_data; 3279 } 3280 3281 if (nsize > asize && nsize - asize > record_size - used) 3282 goto dirty_vol; 3283 3284 nsize = ALIGN(nsize, 8); 3285 data_off = le16_to_cpu(attr->res.data_off); 3286 3287 if (nsize < asize) { 3288 memmove(Add2Ptr(attr, aoff), data, dlen); 3289 data = NULL; // To skip below memmove(). 3290 } 3291 3292 memmove(Add2Ptr(attr, nsize), Add2Ptr(attr, asize), 3293 used - le16_to_cpu(lrh->record_off) - asize); 3294 3295 rec->used = cpu_to_le32(used + nsize - asize); 3296 attr->size = cpu_to_le32(nsize); 3297 attr->res.data_size = cpu_to_le32(aoff + dlen - data_off); 3298 3299 move_data: 3300 if (data) 3301 memmove(Add2Ptr(attr, aoff), data, dlen); 3302 3303 oa2 = find_loaded_attr(log, attr, rno_base); 3304 if (oa2) { 3305 void *p2 = kmemdup(attr, le32_to_cpu(attr->size), 3306 GFP_NOFS); 3307 if (p2) { 3308 // run_close(&oa2->run0); 3309 oa2->run1 = &oa2->run0; 3310 kfree(oa2->attr); 3311 oa2->attr = p2; 3312 } 3313 } 3314 3315 mi->dirty = true; 3316 break; 3317 3318 case UpdateMappingPairs: 3319 nsize = aoff + dlen; 3320 asize = le32_to_cpu(attr->size); 3321 used = le32_to_cpu(rec->used); 3322 3323 if (!check_if_attr(rec, lrh) || !attr->non_res || 3324 aoff < le16_to_cpu(attr->nres.run_off) || aoff > asize || 3325 (nsize > asize && nsize - asize > record_size - used)) { 3326 goto dirty_vol; 3327 } 3328 3329 nsize = ALIGN(nsize, 8); 3330 3331 memmove(Add2Ptr(attr, nsize), Add2Ptr(attr, asize), 3332 used - le16_to_cpu(lrh->record_off) - asize); 3333 rec->used = cpu_to_le32(used + nsize - asize); 3334 attr->size = cpu_to_le32(nsize); 3335 memmove(Add2Ptr(attr, aoff), data, dlen); 3336 3337 if (run_get_highest_vcn(le64_to_cpu(attr->nres.svcn), 3338 attr_run(attr), &t64)) { 3339 goto dirty_vol; 3340 } 3341 3342 attr->nres.evcn = cpu_to_le64(t64); 3343 oa2 = find_loaded_attr(log, attr, rno_base); 3344 if (oa2 && oa2->attr->non_res) 3345 oa2->attr->nres.evcn = attr->nres.evcn; 3346 3347 mi->dirty = true; 3348 break; 3349 3350 case SetNewAttributeSizes: 3351 new_sz = data; 3352 if (!check_if_attr(rec, lrh) || !attr->non_res) 3353 goto dirty_vol; 3354 3355 attr->nres.alloc_size = new_sz->alloc_size; 3356 attr->nres.data_size = new_sz->data_size; 3357 attr->nres.valid_size = new_sz->valid_size; 3358 3359 if (dlen >= sizeof(struct NEW_ATTRIBUTE_SIZES)) 3360 attr->nres.total_size = new_sz->total_size; 3361 3362 oa2 = find_loaded_attr(log, attr, rno_base); 3363 if (oa2) { 3364 void *p2 = kmemdup(attr, le32_to_cpu(attr->size), 3365 GFP_NOFS); 3366 if (p2) { 3367 kfree(oa2->attr); 3368 oa2->attr = p2; 3369 } 3370 } 3371 mi->dirty = true; 3372 break; 3373 3374 case AddIndexEntryRoot: 3375 e = (struct NTFS_DE *)data; 3376 esize = le16_to_cpu(e->size); 3377 root = resident_data(attr); 3378 hdr = &root->ihdr; 3379 used = le32_to_cpu(hdr->used); 3380 3381 if (!check_if_index_root(rec, lrh) || 3382 !check_if_root_index(attr, hdr, lrh) || 3383 Add2Ptr(data, esize) > Add2Ptr(lrh, rec_len) || 3384 esize > le32_to_cpu(rec->total) - le32_to_cpu(rec->used)) { 3385 goto dirty_vol; 3386 } 3387 3388 e1 = Add2Ptr(attr, le16_to_cpu(lrh->attr_off)); 3389 3390 change_attr_size(rec, attr, le32_to_cpu(attr->size) + esize); 3391 3392 memmove(Add2Ptr(e1, esize), e1, 3393 PtrOffset(e1, Add2Ptr(hdr, used))); 3394 memmove(e1, e, esize); 3395 3396 le32_add_cpu(&attr->res.data_size, esize); 3397 hdr->used = cpu_to_le32(used + esize); 3398 le32_add_cpu(&hdr->total, esize); 3399 3400 mi->dirty = true; 3401 break; 3402 3403 case DeleteIndexEntryRoot: 3404 root = resident_data(attr); 3405 hdr = &root->ihdr; 3406 used = le32_to_cpu(hdr->used); 3407 3408 if (!check_if_index_root(rec, lrh) || 3409 !check_if_root_index(attr, hdr, lrh)) { 3410 goto dirty_vol; 3411 } 3412 3413 e1 = Add2Ptr(attr, le16_to_cpu(lrh->attr_off)); 3414 esize = le16_to_cpu(e1->size); 3415 e2 = Add2Ptr(e1, esize); 3416 3417 memmove(e1, e2, PtrOffset(e2, Add2Ptr(hdr, used))); 3418 3419 le32_sub_cpu(&attr->res.data_size, esize); 3420 hdr->used = cpu_to_le32(used - esize); 3421 le32_sub_cpu(&hdr->total, esize); 3422 3423 change_attr_size(rec, attr, le32_to_cpu(attr->size) - esize); 3424 3425 mi->dirty = true; 3426 break; 3427 3428 case SetIndexEntryVcnRoot: 3429 root = resident_data(attr); 3430 hdr = &root->ihdr; 3431 3432 if (!check_if_index_root(rec, lrh) || 3433 !check_if_root_index(attr, hdr, lrh)) { 3434 goto dirty_vol; 3435 } 3436 3437 e = Add2Ptr(attr, le16_to_cpu(lrh->attr_off)); 3438 3439 de_set_vbn_le(e, *(__le64 *)data); 3440 mi->dirty = true; 3441 break; 3442 3443 case UpdateFileNameRoot: 3444 root = resident_data(attr); 3445 hdr = &root->ihdr; 3446 3447 if (!check_if_index_root(rec, lrh) || 3448 !check_if_root_index(attr, hdr, lrh)) { 3449 goto dirty_vol; 3450 } 3451 3452 e = Add2Ptr(attr, le16_to_cpu(lrh->attr_off)); 3453 fname = (struct ATTR_FILE_NAME *)(e + 1); 3454 memmove(&fname->dup, data, sizeof(fname->dup)); // 3455 mi->dirty = true; 3456 break; 3457 3458 case UpdateRecordDataRoot: 3459 root = resident_data(attr); 3460 hdr = &root->ihdr; 3461 3462 if (!check_if_index_root(rec, lrh) || 3463 !check_if_root_index(attr, hdr, lrh)) { 3464 goto dirty_vol; 3465 } 3466 3467 e = Add2Ptr(attr, le16_to_cpu(lrh->attr_off)); 3468 3469 memmove(Add2Ptr(e, le16_to_cpu(e->view.data_off)), data, dlen); 3470 3471 mi->dirty = true; 3472 break; 3473 3474 case ZeroEndOfFileRecord: 3475 if (roff + dlen > record_size) 3476 goto dirty_vol; 3477 3478 memset(attr, 0, dlen); 3479 mi->dirty = true; 3480 break; 3481 3482 case UpdateNonresidentValue: 3483 if (lco < cbo + roff + dlen) 3484 goto dirty_vol; 3485 3486 memcpy(Add2Ptr(buffer_le, roff), data, dlen); 3487 3488 a_dirty = true; 3489 if (attr->type == ATTR_ALLOC) 3490 ntfs_fix_pre_write(buffer_le, bytes); 3491 break; 3492 3493 case AddIndexEntryAllocation: 3494 ib = Add2Ptr(buffer_le, roff); 3495 hdr = &ib->ihdr; 3496 e = data; 3497 esize = le16_to_cpu(e->size); 3498 e1 = Add2Ptr(ib, aoff); 3499 3500 if (is_baad(&ib->rhdr)) 3501 goto dirty_vol; 3502 if (!check_lsn(&ib->rhdr, rlsn)) 3503 goto out; 3504 3505 used = le32_to_cpu(hdr->used); 3506 3507 if (!check_index_buffer(ib, bytes) || 3508 !check_if_alloc_index(hdr, aoff) || 3509 Add2Ptr(e, esize) > Add2Ptr(lrh, rec_len) || 3510 used + esize > le32_to_cpu(hdr->total)) { 3511 goto dirty_vol; 3512 } 3513 3514 memmove(Add2Ptr(e1, esize), e1, 3515 PtrOffset(e1, Add2Ptr(hdr, used))); 3516 memcpy(e1, e, esize); 3517 3518 hdr->used = cpu_to_le32(used + esize); 3519 3520 a_dirty = true; 3521 3522 ntfs_fix_pre_write(&ib->rhdr, bytes); 3523 break; 3524 3525 case DeleteIndexEntryAllocation: 3526 ib = Add2Ptr(buffer_le, roff); 3527 hdr = &ib->ihdr; 3528 e = Add2Ptr(ib, aoff); 3529 esize = le16_to_cpu(e->size); 3530 3531 if (is_baad(&ib->rhdr)) 3532 goto dirty_vol; 3533 if (!check_lsn(&ib->rhdr, rlsn)) 3534 goto out; 3535 3536 if (!check_index_buffer(ib, bytes) || 3537 !check_if_alloc_index(hdr, aoff)) { 3538 goto dirty_vol; 3539 } 3540 3541 e1 = Add2Ptr(e, esize); 3542 nsize = esize; 3543 used = le32_to_cpu(hdr->used); 3544 3545 memmove(e, e1, PtrOffset(e1, Add2Ptr(hdr, used))); 3546 3547 hdr->used = cpu_to_le32(used - nsize); 3548 3549 a_dirty = true; 3550 3551 ntfs_fix_pre_write(&ib->rhdr, bytes); 3552 break; 3553 3554 case WriteEndOfIndexBuffer: 3555 ib = Add2Ptr(buffer_le, roff); 3556 hdr = &ib->ihdr; 3557 e = Add2Ptr(ib, aoff); 3558 3559 if (is_baad(&ib->rhdr)) 3560 goto dirty_vol; 3561 if (!check_lsn(&ib->rhdr, rlsn)) 3562 goto out; 3563 if (!check_index_buffer(ib, bytes) || 3564 !check_if_alloc_index(hdr, aoff) || 3565 aoff + dlen > offsetof(struct INDEX_BUFFER, ihdr) + 3566 le32_to_cpu(hdr->total)) { 3567 goto dirty_vol; 3568 } 3569 3570 hdr->used = cpu_to_le32(dlen + PtrOffset(hdr, e)); 3571 memmove(e, data, dlen); 3572 3573 a_dirty = true; 3574 ntfs_fix_pre_write(&ib->rhdr, bytes); 3575 break; 3576 3577 case SetIndexEntryVcnAllocation: 3578 ib = Add2Ptr(buffer_le, roff); 3579 hdr = &ib->ihdr; 3580 e = Add2Ptr(ib, aoff); 3581 3582 if (is_baad(&ib->rhdr)) 3583 goto dirty_vol; 3584 3585 if (!check_lsn(&ib->rhdr, rlsn)) 3586 goto out; 3587 if (!check_index_buffer(ib, bytes) || 3588 !check_if_alloc_index(hdr, aoff)) { 3589 goto dirty_vol; 3590 } 3591 3592 de_set_vbn_le(e, *(__le64 *)data); 3593 3594 a_dirty = true; 3595 ntfs_fix_pre_write(&ib->rhdr, bytes); 3596 break; 3597 3598 case UpdateFileNameAllocation: 3599 ib = Add2Ptr(buffer_le, roff); 3600 hdr = &ib->ihdr; 3601 e = Add2Ptr(ib, aoff); 3602 3603 if (is_baad(&ib->rhdr)) 3604 goto dirty_vol; 3605 3606 if (!check_lsn(&ib->rhdr, rlsn)) 3607 goto out; 3608 if (!check_index_buffer(ib, bytes) || 3609 !check_if_alloc_index(hdr, aoff)) { 3610 goto dirty_vol; 3611 } 3612 3613 fname = (struct ATTR_FILE_NAME *)(e + 1); 3614 memmove(&fname->dup, data, sizeof(fname->dup)); 3615 3616 a_dirty = true; 3617 ntfs_fix_pre_write(&ib->rhdr, bytes); 3618 break; 3619 3620 case SetBitsInNonresidentBitMap: 3621 off = le32_to_cpu(((struct BITMAP_RANGE *)data)->bitmap_off); 3622 bits = le32_to_cpu(((struct BITMAP_RANGE *)data)->bits); 3623 3624 if (cbo + (off + 7) / 8 > lco || 3625 cbo + ((off + bits + 7) / 8) > lco) { 3626 goto dirty_vol; 3627 } 3628 3629 ntfs_bitmap_set_le(Add2Ptr(buffer_le, roff), off, bits); 3630 a_dirty = true; 3631 break; 3632 3633 case ClearBitsInNonresidentBitMap: 3634 off = le32_to_cpu(((struct BITMAP_RANGE *)data)->bitmap_off); 3635 bits = le32_to_cpu(((struct BITMAP_RANGE *)data)->bits); 3636 3637 if (cbo + (off + 7) / 8 > lco || 3638 cbo + ((off + bits + 7) / 8) > lco) { 3639 goto dirty_vol; 3640 } 3641 3642 ntfs_bitmap_clear_le(Add2Ptr(buffer_le, roff), off, bits); 3643 a_dirty = true; 3644 break; 3645 3646 case UpdateRecordDataAllocation: 3647 ib = Add2Ptr(buffer_le, roff); 3648 hdr = &ib->ihdr; 3649 e = Add2Ptr(ib, aoff); 3650 3651 if (is_baad(&ib->rhdr)) 3652 goto dirty_vol; 3653 3654 if (!check_lsn(&ib->rhdr, rlsn)) 3655 goto out; 3656 if (!check_index_buffer(ib, bytes) || 3657 !check_if_alloc_index(hdr, aoff)) { 3658 goto dirty_vol; 3659 } 3660 3661 memmove(Add2Ptr(e, le16_to_cpu(e->view.data_off)), data, dlen); 3662 3663 a_dirty = true; 3664 ntfs_fix_pre_write(&ib->rhdr, bytes); 3665 break; 3666 3667 default: 3668 WARN_ON(1); 3669 } 3670 3671 if (rlsn) { 3672 __le64 t64 = cpu_to_le64(*rlsn); 3673 3674 if (rec) 3675 rec->rhdr.lsn = t64; 3676 if (ib) 3677 ib->rhdr.lsn = t64; 3678 } 3679 3680 if (mi && mi->dirty) { 3681 err = mi_write(mi, 0); 3682 if (err) 3683 goto out; 3684 } 3685 3686 if (a_dirty) { 3687 attr = oa->attr; 3688 err = ntfs_sb_write_run(sbi, oa->run1, vbo, buffer_le, bytes, 3689 0); 3690 if (err) 3691 goto out; 3692 } 3693 3694 out: 3695 3696 if (inode) 3697 iput(inode); 3698 else if (mi != mi2_child) 3699 mi_put(mi); 3700 3701 kfree(buffer_le); 3702 3703 return err; 3704 3705 dirty_vol: 3706 log->set_dirty = true; 3707 goto out; 3708 } 3709 3710 /* 3711 * log_replay - Replays log and empties it. 3712 * 3713 * This function is called during mount operation. 3714 * It replays log and empties it. 3715 * Initialized is set false if logfile contains '-1'. 3716 */ 3717 int log_replay(struct ntfs_inode *ni, bool *initialized) 3718 { 3719 int err; 3720 struct ntfs_sb_info *sbi = ni->mi.sbi; 3721 struct ntfs_log *log; 3722 3723 u64 rec_lsn, checkpt_lsn = 0, rlsn = 0; 3724 struct ATTR_NAME_ENTRY *attr_names = NULL; 3725 u32 attr_names_bytes = 0; 3726 u32 oatbl_bytes = 0; 3727 struct RESTART_TABLE *dptbl = NULL; 3728 struct RESTART_TABLE *trtbl = NULL; 3729 const struct RESTART_TABLE *rt; 3730 struct RESTART_TABLE *oatbl = NULL; 3731 struct inode *inode; 3732 struct OpenAttr *oa; 3733 struct ntfs_inode *ni_oe; 3734 struct ATTRIB *attr = NULL; 3735 u64 size, vcn, undo_next_lsn; 3736 CLST rno, lcn, lcn0, len0, clen; 3737 void *data; 3738 struct NTFS_RESTART *rst = NULL; 3739 struct lcb *lcb = NULL; 3740 struct OPEN_ATTR_ENRTY *oe; 3741 struct ATTR_NAME_ENTRY *ane; 3742 struct TRANSACTION_ENTRY *tr; 3743 struct DIR_PAGE_ENTRY *dp; 3744 u32 i, bytes_per_attr_entry; 3745 u32 vbo, tail, off, dlen; 3746 u32 saved_len, rec_len, transact_id; 3747 bool use_second_page; 3748 struct RESTART_AREA *ra2, *ra = NULL; 3749 struct CLIENT_REC *ca, *cr; 3750 __le16 client; 3751 struct RESTART_HDR *rh; 3752 const struct LFS_RECORD_HDR *frh; 3753 const struct LOG_REC_HDR *lrh; 3754 bool is_mapped; 3755 bool is_ro = sb_rdonly(sbi->sb); 3756 u64 t64; 3757 u16 t16; 3758 u32 t32; 3759 3760 log = kzalloc(sizeof(struct ntfs_log), GFP_NOFS); 3761 if (!log) 3762 return -ENOMEM; 3763 3764 log->ni = ni; 3765 log->l_size = log->orig_file_size = ni->vfs_inode.i_size; 3766 3767 /* Get the size of page. NOTE: To replay we can use default page. */ 3768 #if PAGE_SIZE >= DefaultLogPageSize && PAGE_SIZE <= DefaultLogPageSize * 2 3769 log->page_size = norm_file_page(PAGE_SIZE, &log->l_size, true); 3770 #else 3771 log->page_size = norm_file_page(PAGE_SIZE, &log->l_size, false); 3772 #endif 3773 if (!log->page_size) { 3774 err = -EINVAL; 3775 goto out; 3776 } 3777 3778 log->one_page_buf = kmalloc(log->page_size, GFP_NOFS); 3779 if (!log->one_page_buf) { 3780 err = -ENOMEM; 3781 goto out; 3782 } 3783 3784 log->page_mask = log->page_size - 1; 3785 log->page_bits = blksize_bits(log->page_size); 3786 3787 /* Look for a restart area on the disk. */ 3788 err = log_read_rst(log, true, &log->rst_info); 3789 if (err) 3790 goto out; 3791 3792 /* remember 'initialized' */ 3793 *initialized = log->rst_info.initialized; 3794 3795 if (!log->rst_info.restart) { 3796 if (log->rst_info.initialized) { 3797 /* No restart area but the file is not initialized. */ 3798 err = -EINVAL; 3799 goto out; 3800 } 3801 3802 log_init_pg_hdr(log, 1, 1); 3803 log_create(log, 0, get_random_u32(), false, false); 3804 3805 ra = log_create_ra(log); 3806 if (!ra) { 3807 err = -ENOMEM; 3808 goto out; 3809 } 3810 log->ra = ra; 3811 log->init_ra = true; 3812 3813 goto process_log; 3814 } 3815 3816 /* 3817 * If the restart offset above wasn't zero then we won't 3818 * look for a second restart. 3819 */ 3820 if (log->rst_info.vbo) 3821 goto check_restart_area; 3822 3823 err = log_read_rst(log, false, &log->rst_info2); 3824 if (err) 3825 goto out; 3826 3827 /* Determine which restart area to use. */ 3828 if (!log->rst_info2.restart || 3829 log->rst_info2.last_lsn <= log->rst_info.last_lsn) 3830 goto use_first_page; 3831 3832 use_second_page = true; 3833 3834 if (log->rst_info.chkdsk_was_run && 3835 log->page_size != log->rst_info.vbo) { 3836 struct RECORD_PAGE_HDR *sp = NULL; 3837 bool usa_error; 3838 3839 if (!read_log_page(log, log->page_size, &sp, &usa_error) && 3840 sp->rhdr.sign == NTFS_CHKD_SIGNATURE) { 3841 use_second_page = false; 3842 } 3843 kfree(sp); 3844 } 3845 3846 if (use_second_page) { 3847 kfree(log->rst_info.r_page); 3848 memcpy(&log->rst_info, &log->rst_info2, 3849 sizeof(struct restart_info)); 3850 log->rst_info2.r_page = NULL; 3851 } 3852 3853 use_first_page: 3854 kfree(log->rst_info2.r_page); 3855 3856 check_restart_area: 3857 /* 3858 * If the restart area is at offset 0, we want 3859 * to write the second restart area first. 3860 */ 3861 log->init_ra = !!log->rst_info.vbo; 3862 3863 /* If we have a valid page then grab a pointer to the restart area. */ 3864 ra2 = log->rst_info.valid_page ? 3865 Add2Ptr(log->rst_info.r_page, 3866 le16_to_cpu(log->rst_info.r_page->ra_off)) : 3867 NULL; 3868 3869 if (log->rst_info.chkdsk_was_run || 3870 (ra2 && ra2->client_idx[1] == LFS_NO_CLIENT_LE)) { 3871 bool wrapped = false; 3872 bool use_multi_page = false; 3873 u32 open_log_count; 3874 3875 /* Do some checks based on whether we have a valid log page. */ 3876 open_log_count = log->rst_info.valid_page ? 3877 le32_to_cpu(ra2->open_log_count) : 3878 get_random_u32(); 3879 3880 log_init_pg_hdr(log, 1, 1); 3881 3882 log_create(log, log->rst_info.last_lsn, open_log_count, wrapped, 3883 use_multi_page); 3884 3885 ra = log_create_ra(log); 3886 if (!ra) { 3887 err = -ENOMEM; 3888 goto out; 3889 } 3890 log->ra = ra; 3891 3892 /* Put the restart areas and initialize 3893 * the log file as required. 3894 */ 3895 goto process_log; 3896 } 3897 3898 if (!ra2) { 3899 err = -EINVAL; 3900 goto out; 3901 } 3902 3903 /* 3904 * If the log page or the system page sizes have changed, we can't 3905 * use the log file. We must use the system page size instead of the 3906 * default size if there is not a clean shutdown. 3907 */ 3908 t32 = le32_to_cpu(log->rst_info.r_page->sys_page_size); 3909 if (log->page_size != t32) { 3910 log->l_size = log->orig_file_size; 3911 log->page_size = norm_file_page(t32, &log->l_size, 3912 t32 == DefaultLogPageSize); 3913 } 3914 3915 if (log->page_size != t32 || 3916 log->page_size != le32_to_cpu(log->rst_info.r_page->page_size)) { 3917 err = -EINVAL; 3918 goto out; 3919 } 3920 3921 /* If the file size has shrunk then we won't mount it. */ 3922 if (log->l_size < le64_to_cpu(ra2->l_size)) { 3923 err = -EINVAL; 3924 goto out; 3925 } 3926 3927 log_init_pg_hdr(log, le16_to_cpu(log->rst_info.r_page->major_ver), 3928 le16_to_cpu(log->rst_info.r_page->minor_ver)); 3929 3930 log->l_size = le64_to_cpu(ra2->l_size); 3931 log->seq_num_bits = le32_to_cpu(ra2->seq_num_bits); 3932 log->file_data_bits = sizeof(u64) * 8 - log->seq_num_bits; 3933 log->seq_num_mask = (8 << log->file_data_bits) - 1; 3934 log->last_lsn = le64_to_cpu(ra2->current_lsn); 3935 log->seq_num = log->last_lsn >> log->file_data_bits; 3936 log->ra_off = le16_to_cpu(log->rst_info.r_page->ra_off); 3937 log->restart_size = log->sys_page_size - log->ra_off; 3938 log->record_header_len = le16_to_cpu(ra2->rec_hdr_len); 3939 log->ra_size = le16_to_cpu(ra2->ra_len); 3940 log->data_off = le16_to_cpu(ra2->data_off); 3941 log->data_size = log->page_size - log->data_off; 3942 log->reserved = log->data_size - log->record_header_len; 3943 3944 vbo = lsn_to_vbo(log, log->last_lsn); 3945 3946 if (vbo < log->first_page) { 3947 /* This is a pseudo lsn. */ 3948 log->l_flags |= NTFSLOG_NO_LAST_LSN; 3949 log->next_page = log->first_page; 3950 goto find_oldest; 3951 } 3952 3953 /* Find the end of this log record. */ 3954 off = final_log_off(log, log->last_lsn, 3955 le32_to_cpu(ra2->last_lsn_data_len)); 3956 3957 /* If we wrapped the file then increment the sequence number. */ 3958 if (off <= vbo) { 3959 log->seq_num += 1; 3960 log->l_flags |= NTFSLOG_WRAPPED; 3961 } 3962 3963 /* Now compute the next log page to use. */ 3964 vbo &= ~log->sys_page_mask; 3965 tail = log->page_size - (off & log->page_mask) - 1; 3966 3967 /* 3968 *If we can fit another log record on the page, 3969 * move back a page the log file. 3970 */ 3971 if (tail >= log->record_header_len) { 3972 log->l_flags |= NTFSLOG_REUSE_TAIL; 3973 log->next_page = vbo; 3974 } else { 3975 log->next_page = next_page_off(log, vbo); 3976 } 3977 3978 find_oldest: 3979 /* 3980 * Find the oldest client lsn. Use the last 3981 * flushed lsn as a starting point. 3982 */ 3983 log->oldest_lsn = log->last_lsn; 3984 oldest_client_lsn(Add2Ptr(ra2, le16_to_cpu(ra2->client_off)), 3985 ra2->client_idx[1], &log->oldest_lsn); 3986 log->oldest_lsn_off = lsn_to_vbo(log, log->oldest_lsn); 3987 3988 if (log->oldest_lsn_off < log->first_page) 3989 log->l_flags |= NTFSLOG_NO_OLDEST_LSN; 3990 3991 if (!(ra2->flags & RESTART_SINGLE_PAGE_IO)) 3992 log->l_flags |= NTFSLOG_WRAPPED | NTFSLOG_MULTIPLE_PAGE_IO; 3993 3994 log->current_openlog_count = le32_to_cpu(ra2->open_log_count); 3995 log->total_avail_pages = log->l_size - log->first_page; 3996 log->total_avail = log->total_avail_pages >> log->page_bits; 3997 log->max_current_avail = log->total_avail * log->reserved; 3998 log->total_avail = log->total_avail * log->data_size; 3999 4000 log->current_avail = current_log_avail(log); 4001 4002 ra = kzalloc(log->restart_size, GFP_NOFS); 4003 if (!ra) { 4004 err = -ENOMEM; 4005 goto out; 4006 } 4007 log->ra = ra; 4008 4009 t16 = le16_to_cpu(ra2->client_off); 4010 if (t16 == offsetof(struct RESTART_AREA, clients)) { 4011 memcpy(ra, ra2, log->ra_size); 4012 } else { 4013 memcpy(ra, ra2, offsetof(struct RESTART_AREA, clients)); 4014 memcpy(ra->clients, Add2Ptr(ra2, t16), 4015 le16_to_cpu(ra2->ra_len) - t16); 4016 4017 log->current_openlog_count = get_random_u32(); 4018 ra->open_log_count = cpu_to_le32(log->current_openlog_count); 4019 log->ra_size = offsetof(struct RESTART_AREA, clients) + 4020 sizeof(struct CLIENT_REC); 4021 ra->client_off = 4022 cpu_to_le16(offsetof(struct RESTART_AREA, clients)); 4023 ra->ra_len = cpu_to_le16(log->ra_size); 4024 } 4025 4026 le32_add_cpu(&ra->open_log_count, 1); 4027 4028 /* Now we need to walk through looking for the last lsn. */ 4029 err = last_log_lsn(log); 4030 if (err) 4031 goto out; 4032 4033 log->current_avail = current_log_avail(log); 4034 4035 /* Remember which restart area to write first. */ 4036 log->init_ra = log->rst_info.vbo; 4037 4038 process_log: 4039 /* 1.0, 1.1, 2.0 log->major_ver/minor_ver - short values. */ 4040 switch ((log->major_ver << 16) + log->minor_ver) { 4041 case 0x10000: 4042 case 0x10001: 4043 case 0x20000: 4044 break; 4045 default: 4046 ntfs_warn(sbi->sb, "\x24LogFile version %d.%d is not supported", 4047 log->major_ver, log->minor_ver); 4048 err = -EOPNOTSUPP; 4049 log->set_dirty = true; 4050 goto out; 4051 } 4052 4053 /* One client "NTFS" per logfile. */ 4054 ca = Add2Ptr(ra, le16_to_cpu(ra->client_off)); 4055 4056 for (client = ra->client_idx[1];; client = cr->next_client) { 4057 if (client == LFS_NO_CLIENT_LE) { 4058 /* Insert "NTFS" client LogFile. */ 4059 client = ra->client_idx[0]; 4060 if (client == LFS_NO_CLIENT_LE) { 4061 err = -EINVAL; 4062 goto out; 4063 } 4064 4065 t16 = le16_to_cpu(client); 4066 cr = ca + t16; 4067 4068 remove_client(ca, cr, &ra->client_idx[0]); 4069 4070 cr->restart_lsn = 0; 4071 cr->oldest_lsn = cpu_to_le64(log->oldest_lsn); 4072 cr->name_bytes = cpu_to_le32(8); 4073 cr->name[0] = cpu_to_le16('N'); 4074 cr->name[1] = cpu_to_le16('T'); 4075 cr->name[2] = cpu_to_le16('F'); 4076 cr->name[3] = cpu_to_le16('S'); 4077 4078 add_client(ca, t16, &ra->client_idx[1]); 4079 break; 4080 } 4081 4082 cr = ca + le16_to_cpu(client); 4083 4084 if (cpu_to_le32(8) == cr->name_bytes && 4085 cpu_to_le16('N') == cr->name[0] && 4086 cpu_to_le16('T') == cr->name[1] && 4087 cpu_to_le16('F') == cr->name[2] && 4088 cpu_to_le16('S') == cr->name[3]) 4089 break; 4090 } 4091 4092 /* Update the client handle with the client block information. */ 4093 log->client_id.seq_num = cr->seq_num; 4094 log->client_id.client_idx = client; 4095 4096 err = read_rst_area(log, &rst, &checkpt_lsn); 4097 if (err) 4098 goto out; 4099 4100 if (!rst) 4101 goto out; 4102 4103 bytes_per_attr_entry = !rst->major_ver ? 0x2C : 0x28; 4104 4105 if (rst->check_point_start) 4106 checkpt_lsn = le64_to_cpu(rst->check_point_start); 4107 4108 /* Allocate and Read the Transaction Table. */ 4109 if (!rst->transact_table_len) 4110 goto check_dirty_page_table; 4111 4112 t64 = le64_to_cpu(rst->transact_table_lsn); 4113 err = read_log_rec_lcb(log, t64, lcb_ctx_prev, &lcb); 4114 if (err) 4115 goto out; 4116 4117 lrh = lcb->log_rec; 4118 frh = lcb->lrh; 4119 rec_len = le32_to_cpu(frh->client_data_len); 4120 4121 if (!check_log_rec(lrh, rec_len, le32_to_cpu(frh->transact_id), 4122 bytes_per_attr_entry)) { 4123 err = -EINVAL; 4124 goto out; 4125 } 4126 4127 t16 = le16_to_cpu(lrh->redo_off); 4128 4129 rt = Add2Ptr(lrh, t16); 4130 t32 = rec_len - t16; 4131 4132 /* Now check that this is a valid restart table. */ 4133 if (!check_rstbl(rt, t32)) { 4134 err = -EINVAL; 4135 goto out; 4136 } 4137 4138 trtbl = kmemdup(rt, t32, GFP_NOFS); 4139 if (!trtbl) { 4140 err = -ENOMEM; 4141 goto out; 4142 } 4143 4144 lcb_put(lcb); 4145 lcb = NULL; 4146 4147 check_dirty_page_table: 4148 /* The next record back should be the Dirty Pages Table. */ 4149 if (!rst->dirty_pages_len) 4150 goto check_attribute_names; 4151 4152 t64 = le64_to_cpu(rst->dirty_pages_table_lsn); 4153 err = read_log_rec_lcb(log, t64, lcb_ctx_prev, &lcb); 4154 if (err) 4155 goto out; 4156 4157 lrh = lcb->log_rec; 4158 frh = lcb->lrh; 4159 rec_len = le32_to_cpu(frh->client_data_len); 4160 4161 if (!check_log_rec(lrh, rec_len, le32_to_cpu(frh->transact_id), 4162 bytes_per_attr_entry)) { 4163 err = -EINVAL; 4164 goto out; 4165 } 4166 4167 t16 = le16_to_cpu(lrh->redo_off); 4168 4169 rt = Add2Ptr(lrh, t16); 4170 t32 = rec_len - t16; 4171 4172 /* Now check that this is a valid restart table. */ 4173 if (!check_rstbl(rt, t32)) { 4174 err = -EINVAL; 4175 goto out; 4176 } 4177 4178 dptbl = kmemdup(rt, t32, GFP_NOFS); 4179 if (!dptbl) { 4180 err = -ENOMEM; 4181 goto out; 4182 } 4183 4184 /* Convert Ra version '0' into version '1'. */ 4185 if (rst->major_ver) 4186 goto end_conv_1; 4187 4188 dp = NULL; 4189 while ((dp = enum_rstbl(dptbl, dp))) { 4190 struct DIR_PAGE_ENTRY_32 *dp0 = (struct DIR_PAGE_ENTRY_32 *)dp; 4191 // NOTE: Danger. Check for of boundary. 4192 memmove(&dp->vcn, &dp0->vcn_low, 4193 2 * sizeof(u64) + 4194 le32_to_cpu(dp->lcns_follow) * sizeof(u64)); 4195 } 4196 4197 end_conv_1: 4198 lcb_put(lcb); 4199 lcb = NULL; 4200 4201 /* 4202 * Go through the table and remove the duplicates, 4203 * remembering the oldest lsn values. 4204 */ 4205 if (sbi->cluster_size <= log->page_size) 4206 goto trace_dp_table; 4207 4208 dp = NULL; 4209 while ((dp = enum_rstbl(dptbl, dp))) { 4210 struct DIR_PAGE_ENTRY *next = dp; 4211 4212 while ((next = enum_rstbl(dptbl, next))) { 4213 if (next->target_attr == dp->target_attr && 4214 next->vcn == dp->vcn) { 4215 if (le64_to_cpu(next->oldest_lsn) < 4216 le64_to_cpu(dp->oldest_lsn)) { 4217 dp->oldest_lsn = next->oldest_lsn; 4218 } 4219 4220 free_rsttbl_idx(dptbl, PtrOffset(dptbl, next)); 4221 } 4222 } 4223 } 4224 trace_dp_table: 4225 check_attribute_names: 4226 /* The next record should be the Attribute Names. */ 4227 if (!rst->attr_names_len) 4228 goto check_attr_table; 4229 4230 t64 = le64_to_cpu(rst->attr_names_lsn); 4231 err = read_log_rec_lcb(log, t64, lcb_ctx_prev, &lcb); 4232 if (err) 4233 goto out; 4234 4235 lrh = lcb->log_rec; 4236 frh = lcb->lrh; 4237 rec_len = le32_to_cpu(frh->client_data_len); 4238 4239 if (!check_log_rec(lrh, rec_len, le32_to_cpu(frh->transact_id), 4240 bytes_per_attr_entry)) { 4241 err = -EINVAL; 4242 goto out; 4243 } 4244 4245 t32 = lrh_length(lrh); 4246 rec_len -= t32; 4247 4248 attr_names = kmemdup(Add2Ptr(lrh, t32), rec_len, GFP_NOFS); 4249 if (!attr_names) { 4250 err = -ENOMEM; 4251 goto out; 4252 } 4253 4254 lcb_put(lcb); 4255 lcb = NULL; 4256 4257 check_attr_table: 4258 /* The next record should be the attribute Table. */ 4259 if (!rst->open_attr_len) 4260 goto check_attribute_names2; 4261 4262 t64 = le64_to_cpu(rst->open_attr_table_lsn); 4263 err = read_log_rec_lcb(log, t64, lcb_ctx_prev, &lcb); 4264 if (err) 4265 goto out; 4266 4267 lrh = lcb->log_rec; 4268 frh = lcb->lrh; 4269 rec_len = le32_to_cpu(frh->client_data_len); 4270 4271 if (!check_log_rec(lrh, rec_len, le32_to_cpu(frh->transact_id), 4272 bytes_per_attr_entry)) { 4273 err = -EINVAL; 4274 goto out; 4275 } 4276 4277 t16 = le16_to_cpu(lrh->redo_off); 4278 4279 rt = Add2Ptr(lrh, t16); 4280 t32 = rec_len - t16; 4281 4282 if (!check_rstbl(rt, t32)) { 4283 err = -EINVAL; 4284 goto out; 4285 } 4286 4287 oatbl = kmemdup(rt, t32, GFP_NOFS); 4288 if (!oatbl) { 4289 err = -ENOMEM; 4290 goto out; 4291 } 4292 4293 log->open_attr_tbl = oatbl; 4294 4295 /* Clear all of the Attr pointers. */ 4296 oe = NULL; 4297 while ((oe = enum_rstbl(oatbl, oe))) { 4298 if (!rst->major_ver) { 4299 struct OPEN_ATTR_ENRTY_32 oe0; 4300 4301 /* Really 'oe' points to OPEN_ATTR_ENRTY_32. */ 4302 memcpy(&oe0, oe, SIZEOF_OPENATTRIBUTEENTRY0); 4303 4304 oe->bytes_per_index = oe0.bytes_per_index; 4305 oe->type = oe0.type; 4306 oe->is_dirty_pages = oe0.is_dirty_pages; 4307 oe->name_len = 0; 4308 oe->ref = oe0.ref; 4309 oe->open_record_lsn = oe0.open_record_lsn; 4310 } 4311 4312 oe->is_attr_name = 0; 4313 oe->ptr = NULL; 4314 } 4315 4316 lcb_put(lcb); 4317 lcb = NULL; 4318 4319 check_attribute_names2: 4320 if (attr_names && oatbl) { 4321 off = 0; 4322 for (;;) { 4323 /* Check we can use attribute name entry 'ane'. */ 4324 static_assert(sizeof(*ane) == 4); 4325 if (off + sizeof(*ane) > attr_names_bytes) { 4326 /* just ignore the rest. */ 4327 break; 4328 } 4329 4330 ane = Add2Ptr(attr_names, off); 4331 t16 = le16_to_cpu(ane->off); 4332 if (!t16) { 4333 /* this is the only valid exit. */ 4334 break; 4335 } 4336 4337 /* Check we can use open attribute entry 'oe'. */ 4338 if (t16 + sizeof(*oe) > oatbl_bytes) { 4339 /* just ignore the rest. */ 4340 break; 4341 } 4342 4343 /* TODO: Clear table on exit! */ 4344 oe = Add2Ptr(oatbl, t16); 4345 t16 = le16_to_cpu(ane->name_bytes); 4346 off += t16 + sizeof(*ane); 4347 if (off > attr_names_bytes) { 4348 /* just ignore the rest. */ 4349 break; 4350 } 4351 oe->name_len = t16 / sizeof(short); 4352 oe->ptr = ane->name; 4353 oe->is_attr_name = 2; 4354 } 4355 } 4356 4357 /* 4358 * If the checkpt_lsn is zero, then this is a freshly 4359 * formatted disk and we have no work to do. 4360 */ 4361 if (!checkpt_lsn) { 4362 err = 0; 4363 goto out; 4364 } 4365 4366 if (!oatbl) { 4367 oatbl = init_rsttbl(bytes_per_attr_entry, 8); 4368 if (!oatbl) { 4369 err = -ENOMEM; 4370 goto out; 4371 } 4372 } 4373 4374 log->open_attr_tbl = oatbl; 4375 4376 /* Start the analysis pass from the Checkpoint lsn. */ 4377 rec_lsn = checkpt_lsn; 4378 4379 /* Read the first lsn. */ 4380 err = read_log_rec_lcb(log, checkpt_lsn, lcb_ctx_next, &lcb); 4381 if (err) 4382 goto out; 4383 4384 /* Loop to read all subsequent records to the end of the log file. */ 4385 next_log_record_analyze: 4386 err = read_next_log_rec(log, lcb, &rec_lsn); 4387 if (err) 4388 goto out; 4389 4390 if (!rec_lsn) 4391 goto end_log_records_enumerate; 4392 4393 frh = lcb->lrh; 4394 transact_id = le32_to_cpu(frh->transact_id); 4395 rec_len = le32_to_cpu(frh->client_data_len); 4396 lrh = lcb->log_rec; 4397 4398 if (!check_log_rec(lrh, rec_len, transact_id, bytes_per_attr_entry)) { 4399 err = -EINVAL; 4400 goto out; 4401 } 4402 4403 /* 4404 * The first lsn after the previous lsn remembered 4405 * the checkpoint is the first candidate for the rlsn. 4406 */ 4407 if (!rlsn) 4408 rlsn = rec_lsn; 4409 4410 if (LfsClientRecord != frh->record_type) 4411 goto next_log_record_analyze; 4412 4413 /* 4414 * Now update the Transaction Table for this transaction. If there 4415 * is no entry present or it is unallocated we allocate the entry. 4416 */ 4417 if (!trtbl) { 4418 trtbl = init_rsttbl(sizeof(struct TRANSACTION_ENTRY), 4419 INITIAL_NUMBER_TRANSACTIONS); 4420 if (!trtbl) { 4421 err = -ENOMEM; 4422 goto out; 4423 } 4424 } 4425 4426 tr = Add2Ptr(trtbl, transact_id); 4427 4428 if (transact_id >= bytes_per_rt(trtbl) || 4429 tr->next != RESTART_ENTRY_ALLOCATED_LE) { 4430 tr = alloc_rsttbl_from_idx(&trtbl, transact_id); 4431 if (!tr) { 4432 err = -ENOMEM; 4433 goto out; 4434 } 4435 tr->transact_state = TransactionActive; 4436 tr->first_lsn = cpu_to_le64(rec_lsn); 4437 } 4438 4439 tr->prev_lsn = tr->undo_next_lsn = cpu_to_le64(rec_lsn); 4440 4441 /* 4442 * If this is a compensation log record, then change 4443 * the undo_next_lsn to be the undo_next_lsn of this record. 4444 */ 4445 if (lrh->undo_op == cpu_to_le16(CompensationLogRecord)) 4446 tr->undo_next_lsn = frh->client_undo_next_lsn; 4447 4448 /* Dispatch to handle log record depending on type. */ 4449 switch (le16_to_cpu(lrh->redo_op)) { 4450 case InitializeFileRecordSegment: 4451 case DeallocateFileRecordSegment: 4452 case WriteEndOfFileRecordSegment: 4453 case CreateAttribute: 4454 case DeleteAttribute: 4455 case UpdateResidentValue: 4456 case UpdateNonresidentValue: 4457 case UpdateMappingPairs: 4458 case SetNewAttributeSizes: 4459 case AddIndexEntryRoot: 4460 case DeleteIndexEntryRoot: 4461 case AddIndexEntryAllocation: 4462 case DeleteIndexEntryAllocation: 4463 case WriteEndOfIndexBuffer: 4464 case SetIndexEntryVcnRoot: 4465 case SetIndexEntryVcnAllocation: 4466 case UpdateFileNameRoot: 4467 case UpdateFileNameAllocation: 4468 case SetBitsInNonresidentBitMap: 4469 case ClearBitsInNonresidentBitMap: 4470 case UpdateRecordDataRoot: 4471 case UpdateRecordDataAllocation: 4472 case ZeroEndOfFileRecord: 4473 t16 = le16_to_cpu(lrh->target_attr); 4474 t64 = le64_to_cpu(lrh->target_vcn); 4475 dp = find_dp(dptbl, t16, t64); 4476 4477 if (dp) 4478 goto copy_lcns; 4479 4480 /* 4481 * Calculate the number of clusters per page the system 4482 * which wrote the checkpoint, possibly creating the table. 4483 */ 4484 if (dptbl) { 4485 t32 = (le16_to_cpu(dptbl->size) - 4486 sizeof(struct DIR_PAGE_ENTRY)) / 4487 sizeof(u64); 4488 } else { 4489 t32 = log->clst_per_page; 4490 kfree(dptbl); 4491 dptbl = init_rsttbl(struct_size(dp, page_lcns, t32), 4492 32); 4493 if (!dptbl) { 4494 err = -ENOMEM; 4495 goto out; 4496 } 4497 } 4498 4499 dp = alloc_rsttbl_idx(&dptbl); 4500 if (!dp) { 4501 err = -ENOMEM; 4502 goto out; 4503 } 4504 dp->target_attr = cpu_to_le32(t16); 4505 dp->transfer_len = cpu_to_le32(t32 << sbi->cluster_bits); 4506 dp->lcns_follow = cpu_to_le32(t32); 4507 dp->vcn = cpu_to_le64(t64 & ~((u64)t32 - 1)); 4508 dp->oldest_lsn = cpu_to_le64(rec_lsn); 4509 4510 copy_lcns: 4511 /* 4512 * Copy the Lcns from the log record into the Dirty Page Entry. 4513 * TODO: For different page size support, must somehow make 4514 * whole routine a loop, case Lcns do not fit below. 4515 */ 4516 t16 = le16_to_cpu(lrh->lcns_follow); 4517 for (i = 0; i < t16; i++) { 4518 size_t j = (size_t)(le64_to_cpu(lrh->target_vcn) - 4519 le64_to_cpu(dp->vcn)); 4520 dp->page_lcns[j + i] = lrh->page_lcns[i]; 4521 } 4522 4523 goto next_log_record_analyze; 4524 4525 case DeleteDirtyClusters: { 4526 u32 range_count = 4527 le16_to_cpu(lrh->redo_len) / sizeof(struct LCN_RANGE); 4528 const struct LCN_RANGE *r = 4529 Add2Ptr(lrh, le16_to_cpu(lrh->redo_off)); 4530 4531 /* Loop through all of the Lcn ranges this log record. */ 4532 for (i = 0; i < range_count; i++, r++) { 4533 u64 lcn0 = le64_to_cpu(r->lcn); 4534 u64 lcn_e = lcn0 + le64_to_cpu(r->len) - 1; 4535 4536 dp = NULL; 4537 while ((dp = enum_rstbl(dptbl, dp))) { 4538 u32 j; 4539 4540 t32 = le32_to_cpu(dp->lcns_follow); 4541 for (j = 0; j < t32; j++) { 4542 t64 = le64_to_cpu(dp->page_lcns[j]); 4543 if (t64 >= lcn0 && t64 <= lcn_e) 4544 dp->page_lcns[j] = 0; 4545 } 4546 } 4547 } 4548 goto next_log_record_analyze; 4549 ; 4550 } 4551 4552 case OpenNonresidentAttribute: 4553 t16 = le16_to_cpu(lrh->target_attr); 4554 if (t16 >= bytes_per_rt(oatbl)) { 4555 /* 4556 * Compute how big the table needs to be. 4557 * Add 10 extra entries for some cushion. 4558 */ 4559 u32 new_e = t16 / le16_to_cpu(oatbl->size); 4560 4561 new_e += 10 - le16_to_cpu(oatbl->used); 4562 4563 oatbl = extend_rsttbl(oatbl, new_e, ~0u); 4564 log->open_attr_tbl = oatbl; 4565 if (!oatbl) { 4566 err = -ENOMEM; 4567 goto out; 4568 } 4569 } 4570 4571 /* Point to the entry being opened. */ 4572 oe = alloc_rsttbl_from_idx(&oatbl, t16); 4573 log->open_attr_tbl = oatbl; 4574 if (!oe) { 4575 err = -ENOMEM; 4576 goto out; 4577 } 4578 4579 /* Initialize this entry from the log record. */ 4580 t16 = le16_to_cpu(lrh->redo_off); 4581 if (!rst->major_ver) { 4582 /* Convert version '0' into version '1'. */ 4583 struct OPEN_ATTR_ENRTY_32 *oe0 = Add2Ptr(lrh, t16); 4584 4585 oe->bytes_per_index = oe0->bytes_per_index; 4586 oe->type = oe0->type; 4587 oe->is_dirty_pages = oe0->is_dirty_pages; 4588 oe->name_len = 0; //oe0.name_len; 4589 oe->ref = oe0->ref; 4590 oe->open_record_lsn = oe0->open_record_lsn; 4591 } else { 4592 memcpy(oe, Add2Ptr(lrh, t16), bytes_per_attr_entry); 4593 } 4594 4595 t16 = le16_to_cpu(lrh->undo_len); 4596 if (t16) { 4597 oe->ptr = kmalloc(t16, GFP_NOFS); 4598 if (!oe->ptr) { 4599 err = -ENOMEM; 4600 goto out; 4601 } 4602 oe->name_len = t16 / sizeof(short); 4603 memcpy(oe->ptr, 4604 Add2Ptr(lrh, le16_to_cpu(lrh->undo_off)), t16); 4605 oe->is_attr_name = 1; 4606 } else { 4607 oe->ptr = NULL; 4608 oe->is_attr_name = 0; 4609 } 4610 4611 goto next_log_record_analyze; 4612 4613 case HotFix: 4614 t16 = le16_to_cpu(lrh->target_attr); 4615 t64 = le64_to_cpu(lrh->target_vcn); 4616 dp = find_dp(dptbl, t16, t64); 4617 if (dp) { 4618 size_t j = le64_to_cpu(lrh->target_vcn) - 4619 le64_to_cpu(dp->vcn); 4620 if (dp->page_lcns[j]) 4621 dp->page_lcns[j] = lrh->page_lcns[0]; 4622 } 4623 goto next_log_record_analyze; 4624 4625 case EndTopLevelAction: 4626 tr = Add2Ptr(trtbl, transact_id); 4627 tr->prev_lsn = cpu_to_le64(rec_lsn); 4628 tr->undo_next_lsn = frh->client_undo_next_lsn; 4629 goto next_log_record_analyze; 4630 4631 case PrepareTransaction: 4632 tr = Add2Ptr(trtbl, transact_id); 4633 tr->transact_state = TransactionPrepared; 4634 goto next_log_record_analyze; 4635 4636 case CommitTransaction: 4637 tr = Add2Ptr(trtbl, transact_id); 4638 tr->transact_state = TransactionCommitted; 4639 goto next_log_record_analyze; 4640 4641 case ForgetTransaction: 4642 free_rsttbl_idx(trtbl, transact_id); 4643 goto next_log_record_analyze; 4644 4645 case Noop: 4646 case OpenAttributeTableDump: 4647 case AttributeNamesDump: 4648 case DirtyPageTableDump: 4649 case TransactionTableDump: 4650 /* The following cases require no action the Analysis Pass. */ 4651 goto next_log_record_analyze; 4652 4653 default: 4654 /* 4655 * All codes will be explicitly handled. 4656 * If we see a code we do not expect, then we are trouble. 4657 */ 4658 goto next_log_record_analyze; 4659 } 4660 4661 end_log_records_enumerate: 4662 lcb_put(lcb); 4663 lcb = NULL; 4664 4665 /* 4666 * Scan the Dirty Page Table and Transaction Table for 4667 * the lowest lsn, and return it as the Redo lsn. 4668 */ 4669 dp = NULL; 4670 while ((dp = enum_rstbl(dptbl, dp))) { 4671 t64 = le64_to_cpu(dp->oldest_lsn); 4672 if (t64 && t64 < rlsn) 4673 rlsn = t64; 4674 } 4675 4676 tr = NULL; 4677 while ((tr = enum_rstbl(trtbl, tr))) { 4678 t64 = le64_to_cpu(tr->first_lsn); 4679 if (t64 && t64 < rlsn) 4680 rlsn = t64; 4681 } 4682 4683 /* 4684 * Only proceed if the Dirty Page Table or Transaction 4685 * table are not empty. 4686 */ 4687 if ((!dptbl || !dptbl->total) && (!trtbl || !trtbl->total)) 4688 goto end_reply; 4689 4690 sbi->flags |= NTFS_FLAGS_NEED_REPLAY; 4691 if (is_ro) 4692 goto out; 4693 4694 /* Reopen all of the attributes with dirty pages. */ 4695 oe = NULL; 4696 next_open_attribute: 4697 4698 oe = enum_rstbl(oatbl, oe); 4699 if (!oe) { 4700 err = 0; 4701 dp = NULL; 4702 goto next_dirty_page; 4703 } 4704 4705 oa = kzalloc(sizeof(struct OpenAttr), GFP_NOFS); 4706 if (!oa) { 4707 err = -ENOMEM; 4708 goto out; 4709 } 4710 4711 inode = ntfs_iget5(sbi->sb, &oe->ref, NULL); 4712 if (IS_ERR(inode)) 4713 goto fake_attr; 4714 4715 if (is_bad_inode(inode)) { 4716 iput(inode); 4717 fake_attr: 4718 if (oa->ni) { 4719 iput(&oa->ni->vfs_inode); 4720 oa->ni = NULL; 4721 } 4722 4723 attr = attr_create_nonres_log(sbi, oe->type, 0, oe->ptr, 4724 oe->name_len, 0); 4725 if (!attr) { 4726 kfree(oa); 4727 err = -ENOMEM; 4728 goto out; 4729 } 4730 oa->attr = attr; 4731 oa->run1 = &oa->run0; 4732 goto final_oe; 4733 } 4734 4735 ni_oe = ntfs_i(inode); 4736 oa->ni = ni_oe; 4737 4738 attr = ni_find_attr(ni_oe, NULL, NULL, oe->type, oe->ptr, oe->name_len, 4739 NULL, NULL); 4740 4741 if (!attr) 4742 goto fake_attr; 4743 4744 t32 = le32_to_cpu(attr->size); 4745 oa->attr = kmemdup(attr, t32, GFP_NOFS); 4746 if (!oa->attr) 4747 goto fake_attr; 4748 4749 if (!S_ISDIR(inode->i_mode)) { 4750 if (attr->type == ATTR_DATA && !attr->name_len) { 4751 oa->run1 = &ni_oe->file.run; 4752 goto final_oe; 4753 } 4754 } else { 4755 if (attr->type == ATTR_ALLOC && 4756 attr->name_len == ARRAY_SIZE(I30_NAME) && 4757 !memcmp(attr_name(attr), I30_NAME, sizeof(I30_NAME))) { 4758 oa->run1 = &ni_oe->dir.alloc_run; 4759 goto final_oe; 4760 } 4761 } 4762 4763 if (attr->non_res) { 4764 u16 roff = le16_to_cpu(attr->nres.run_off); 4765 CLST svcn = le64_to_cpu(attr->nres.svcn); 4766 4767 if (roff > t32) { 4768 kfree(oa->attr); 4769 oa->attr = NULL; 4770 goto fake_attr; 4771 } 4772 4773 err = run_unpack(&oa->run0, sbi, inode->i_ino, svcn, 4774 le64_to_cpu(attr->nres.evcn), svcn, 4775 Add2Ptr(attr, roff), t32 - roff); 4776 if (err < 0) { 4777 kfree(oa->attr); 4778 oa->attr = NULL; 4779 goto fake_attr; 4780 } 4781 err = 0; 4782 } 4783 oa->run1 = &oa->run0; 4784 attr = oa->attr; 4785 4786 final_oe: 4787 if (oe->is_attr_name == 1) 4788 kfree(oe->ptr); 4789 oe->is_attr_name = 0; 4790 oe->ptr = oa; 4791 oe->name_len = attr->name_len; 4792 4793 goto next_open_attribute; 4794 4795 /* 4796 * Now loop through the dirty page table to extract all of the Vcn/Lcn. 4797 * Mapping that we have, and insert it into the appropriate run. 4798 */ 4799 next_dirty_page: 4800 dp = enum_rstbl(dptbl, dp); 4801 if (!dp) 4802 goto do_redo_1; 4803 4804 oe = Add2Ptr(oatbl, le32_to_cpu(dp->target_attr)); 4805 4806 if (oe->next != RESTART_ENTRY_ALLOCATED_LE) 4807 goto next_dirty_page; 4808 4809 oa = oe->ptr; 4810 if (!oa) 4811 goto next_dirty_page; 4812 4813 i = -1; 4814 next_dirty_page_vcn: 4815 i += 1; 4816 if (i >= le32_to_cpu(dp->lcns_follow)) 4817 goto next_dirty_page; 4818 4819 vcn = le64_to_cpu(dp->vcn) + i; 4820 size = (vcn + 1) << sbi->cluster_bits; 4821 4822 if (!dp->page_lcns[i]) 4823 goto next_dirty_page_vcn; 4824 4825 rno = ino_get(&oe->ref); 4826 if (rno <= MFT_REC_MIRR && 4827 size < (MFT_REC_VOL + 1) * sbi->record_size && 4828 oe->type == ATTR_DATA) { 4829 goto next_dirty_page_vcn; 4830 } 4831 4832 lcn = le64_to_cpu(dp->page_lcns[i]); 4833 4834 if ((!run_lookup_entry(oa->run1, vcn, &lcn0, &len0, NULL) || 4835 lcn0 != lcn) && 4836 !run_add_entry(oa->run1, vcn, lcn, 1, false)) { 4837 err = -ENOMEM; 4838 goto out; 4839 } 4840 attr = oa->attr; 4841 if (size > le64_to_cpu(attr->nres.alloc_size)) { 4842 attr->nres.valid_size = attr->nres.data_size = 4843 attr->nres.alloc_size = cpu_to_le64(size); 4844 } 4845 goto next_dirty_page_vcn; 4846 4847 do_redo_1: 4848 /* 4849 * Perform the Redo Pass, to restore all of the dirty pages to the same 4850 * contents that they had immediately before the crash. If the dirty 4851 * page table is empty, then we can skip the entire Redo Pass. 4852 */ 4853 if (!dptbl || !dptbl->total) 4854 goto do_undo_action; 4855 4856 rec_lsn = rlsn; 4857 4858 /* 4859 * Read the record at the Redo lsn, before falling 4860 * into common code to handle each record. 4861 */ 4862 err = read_log_rec_lcb(log, rlsn, lcb_ctx_next, &lcb); 4863 if (err) 4864 goto out; 4865 4866 /* 4867 * Now loop to read all of our log records forwards, until 4868 * we hit the end of the file, cleaning up at the end. 4869 */ 4870 do_action_next: 4871 frh = lcb->lrh; 4872 4873 if (LfsClientRecord != frh->record_type) 4874 goto read_next_log_do_action; 4875 4876 transact_id = le32_to_cpu(frh->transact_id); 4877 rec_len = le32_to_cpu(frh->client_data_len); 4878 lrh = lcb->log_rec; 4879 4880 if (!check_log_rec(lrh, rec_len, transact_id, bytes_per_attr_entry)) { 4881 err = -EINVAL; 4882 goto out; 4883 } 4884 4885 /* Ignore log records that do not update pages. */ 4886 if (lrh->lcns_follow) 4887 goto find_dirty_page; 4888 4889 goto read_next_log_do_action; 4890 4891 find_dirty_page: 4892 t16 = le16_to_cpu(lrh->target_attr); 4893 t64 = le64_to_cpu(lrh->target_vcn); 4894 dp = find_dp(dptbl, t16, t64); 4895 4896 if (!dp) 4897 goto read_next_log_do_action; 4898 4899 if (rec_lsn < le64_to_cpu(dp->oldest_lsn)) 4900 goto read_next_log_do_action; 4901 4902 t16 = le16_to_cpu(lrh->target_attr); 4903 if (t16 >= bytes_per_rt(oatbl)) { 4904 err = -EINVAL; 4905 goto out; 4906 } 4907 4908 oe = Add2Ptr(oatbl, t16); 4909 4910 if (oe->next != RESTART_ENTRY_ALLOCATED_LE) { 4911 err = -EINVAL; 4912 goto out; 4913 } 4914 4915 oa = oe->ptr; 4916 4917 if (!oa) { 4918 err = -EINVAL; 4919 goto out; 4920 } 4921 attr = oa->attr; 4922 4923 vcn = le64_to_cpu(lrh->target_vcn); 4924 4925 if (!run_lookup_entry(oa->run1, vcn, &lcn, NULL, NULL) || 4926 lcn == SPARSE_LCN) { 4927 goto read_next_log_do_action; 4928 } 4929 4930 /* Point to the Redo data and get its length. */ 4931 data = Add2Ptr(lrh, le16_to_cpu(lrh->redo_off)); 4932 dlen = le16_to_cpu(lrh->redo_len); 4933 4934 /* Shorten length by any Lcns which were deleted. */ 4935 saved_len = dlen; 4936 4937 for (i = le16_to_cpu(lrh->lcns_follow); i; i--) { 4938 size_t j; 4939 u32 alen, voff; 4940 4941 voff = le16_to_cpu(lrh->record_off) + 4942 le16_to_cpu(lrh->attr_off); 4943 voff += le16_to_cpu(lrh->cluster_off) << SECTOR_SHIFT; 4944 4945 /* If the Vcn question is allocated, we can just get out. */ 4946 j = le64_to_cpu(lrh->target_vcn) - le64_to_cpu(dp->vcn); 4947 if (dp->page_lcns[j + i - 1]) 4948 break; 4949 4950 if (!saved_len) 4951 saved_len = 1; 4952 4953 /* 4954 * Calculate the allocated space left relative to the 4955 * log record Vcn, after removing this unallocated Vcn. 4956 */ 4957 alen = (i - 1) << sbi->cluster_bits; 4958 4959 /* 4960 * If the update described this log record goes beyond 4961 * the allocated space, then we will have to reduce the length. 4962 */ 4963 if (voff >= alen) 4964 dlen = 0; 4965 else if (voff + dlen > alen) 4966 dlen = alen - voff; 4967 } 4968 4969 /* 4970 * If the resulting dlen from above is now zero, 4971 * we can skip this log record. 4972 */ 4973 if (!dlen && saved_len) 4974 goto read_next_log_do_action; 4975 4976 t16 = le16_to_cpu(lrh->redo_op); 4977 if (can_skip_action(t16)) 4978 goto read_next_log_do_action; 4979 4980 /* Apply the Redo operation a common routine. */ 4981 err = do_action(log, oe, lrh, t16, data, dlen, rec_len, &rec_lsn); 4982 if (err) 4983 goto out; 4984 4985 /* Keep reading and looping back until end of file. */ 4986 read_next_log_do_action: 4987 err = read_next_log_rec(log, lcb, &rec_lsn); 4988 if (!err && rec_lsn) 4989 goto do_action_next; 4990 4991 lcb_put(lcb); 4992 lcb = NULL; 4993 4994 do_undo_action: 4995 /* Scan Transaction Table. */ 4996 tr = NULL; 4997 transaction_table_next: 4998 tr = enum_rstbl(trtbl, tr); 4999 if (!tr) 5000 goto undo_action_done; 5001 5002 if (TransactionActive != tr->transact_state || !tr->undo_next_lsn) { 5003 free_rsttbl_idx(trtbl, PtrOffset(trtbl, tr)); 5004 goto transaction_table_next; 5005 } 5006 5007 log->transaction_id = PtrOffset(trtbl, tr); 5008 undo_next_lsn = le64_to_cpu(tr->undo_next_lsn); 5009 5010 /* 5011 * We only have to do anything if the transaction has 5012 * something its undo_next_lsn field. 5013 */ 5014 if (!undo_next_lsn) 5015 goto commit_undo; 5016 5017 /* Read the first record to be undone by this transaction. */ 5018 err = read_log_rec_lcb(log, undo_next_lsn, lcb_ctx_undo_next, &lcb); 5019 if (err) 5020 goto out; 5021 5022 /* 5023 * Now loop to read all of our log records forwards, 5024 * until we hit the end of the file, cleaning up at the end. 5025 */ 5026 undo_action_next: 5027 5028 lrh = lcb->log_rec; 5029 frh = lcb->lrh; 5030 transact_id = le32_to_cpu(frh->transact_id); 5031 rec_len = le32_to_cpu(frh->client_data_len); 5032 5033 if (!check_log_rec(lrh, rec_len, transact_id, bytes_per_attr_entry)) { 5034 err = -EINVAL; 5035 goto out; 5036 } 5037 5038 if (lrh->undo_op == cpu_to_le16(Noop)) 5039 goto read_next_log_undo_action; 5040 5041 oe = Add2Ptr(oatbl, le16_to_cpu(lrh->target_attr)); 5042 oa = oe->ptr; 5043 5044 t16 = le16_to_cpu(lrh->lcns_follow); 5045 if (!t16) 5046 goto add_allocated_vcns; 5047 5048 is_mapped = run_lookup_entry(oa->run1, le64_to_cpu(lrh->target_vcn), 5049 &lcn, &clen, NULL); 5050 5051 /* 5052 * If the mapping isn't already the table or the mapping 5053 * corresponds to a hole the mapping, we need to make sure 5054 * there is no partial page already memory. 5055 */ 5056 if (is_mapped && lcn != SPARSE_LCN && clen >= t16) 5057 goto add_allocated_vcns; 5058 5059 vcn = le64_to_cpu(lrh->target_vcn); 5060 vcn &= ~(u64)(log->clst_per_page - 1); 5061 5062 add_allocated_vcns: 5063 for (i = 0, vcn = le64_to_cpu(lrh->target_vcn), 5064 size = (vcn + 1) << sbi->cluster_bits; 5065 i < t16; i++, vcn += 1, size += sbi->cluster_size) { 5066 attr = oa->attr; 5067 if (!attr->non_res) { 5068 if (size > le32_to_cpu(attr->res.data_size)) 5069 attr->res.data_size = cpu_to_le32(size); 5070 } else { 5071 if (size > le64_to_cpu(attr->nres.data_size)) 5072 attr->nres.valid_size = attr->nres.data_size = 5073 attr->nres.alloc_size = 5074 cpu_to_le64(size); 5075 } 5076 } 5077 5078 t16 = le16_to_cpu(lrh->undo_op); 5079 if (can_skip_action(t16)) 5080 goto read_next_log_undo_action; 5081 5082 /* Point to the Redo data and get its length. */ 5083 data = Add2Ptr(lrh, le16_to_cpu(lrh->undo_off)); 5084 dlen = le16_to_cpu(lrh->undo_len); 5085 5086 /* It is time to apply the undo action. */ 5087 err = do_action(log, oe, lrh, t16, data, dlen, rec_len, NULL); 5088 5089 read_next_log_undo_action: 5090 /* 5091 * Keep reading and looping back until we have read the 5092 * last record for this transaction. 5093 */ 5094 err = read_next_log_rec(log, lcb, &rec_lsn); 5095 if (err) 5096 goto out; 5097 5098 if (rec_lsn) 5099 goto undo_action_next; 5100 5101 lcb_put(lcb); 5102 lcb = NULL; 5103 5104 commit_undo: 5105 free_rsttbl_idx(trtbl, log->transaction_id); 5106 5107 log->transaction_id = 0; 5108 5109 goto transaction_table_next; 5110 5111 undo_action_done: 5112 5113 ntfs_update_mftmirr(sbi, 0); 5114 5115 sbi->flags &= ~NTFS_FLAGS_NEED_REPLAY; 5116 5117 end_reply: 5118 5119 err = 0; 5120 if (is_ro) 5121 goto out; 5122 5123 rh = kzalloc(log->page_size, GFP_NOFS); 5124 if (!rh) { 5125 err = -ENOMEM; 5126 goto out; 5127 } 5128 5129 rh->rhdr.sign = NTFS_RSTR_SIGNATURE; 5130 rh->rhdr.fix_off = cpu_to_le16(offsetof(struct RESTART_HDR, fixups)); 5131 t16 = (log->page_size >> SECTOR_SHIFT) + 1; 5132 rh->rhdr.fix_num = cpu_to_le16(t16); 5133 rh->sys_page_size = cpu_to_le32(log->page_size); 5134 rh->page_size = cpu_to_le32(log->page_size); 5135 5136 t16 = ALIGN(offsetof(struct RESTART_HDR, fixups) + sizeof(short) * t16, 5137 8); 5138 rh->ra_off = cpu_to_le16(t16); 5139 rh->minor_ver = cpu_to_le16(1); // 0x1A: 5140 rh->major_ver = cpu_to_le16(1); // 0x1C: 5141 5142 ra2 = Add2Ptr(rh, t16); 5143 memcpy(ra2, ra, sizeof(struct RESTART_AREA)); 5144 5145 ra2->client_idx[0] = 0; 5146 ra2->client_idx[1] = LFS_NO_CLIENT_LE; 5147 ra2->flags = cpu_to_le16(2); 5148 5149 le32_add_cpu(&ra2->open_log_count, 1); 5150 5151 ntfs_fix_pre_write(&rh->rhdr, log->page_size); 5152 5153 err = ntfs_sb_write_run(sbi, &ni->file.run, 0, rh, log->page_size, 0); 5154 if (!err) 5155 err = ntfs_sb_write_run(sbi, &log->ni->file.run, log->page_size, 5156 rh, log->page_size, 0); 5157 5158 kfree(rh); 5159 if (err) 5160 goto out; 5161 5162 out: 5163 kfree(rst); 5164 if (lcb) 5165 lcb_put(lcb); 5166 5167 /* 5168 * Scan the Open Attribute Table to close all of 5169 * the open attributes. 5170 */ 5171 oe = NULL; 5172 while ((oe = enum_rstbl(oatbl, oe))) { 5173 rno = ino_get(&oe->ref); 5174 5175 if (oe->is_attr_name == 1) { 5176 kfree(oe->ptr); 5177 oe->ptr = NULL; 5178 continue; 5179 } 5180 5181 if (oe->is_attr_name) 5182 continue; 5183 5184 oa = oe->ptr; 5185 if (!oa) 5186 continue; 5187 5188 run_close(&oa->run0); 5189 kfree(oa->attr); 5190 if (oa->ni) 5191 iput(&oa->ni->vfs_inode); 5192 kfree(oa); 5193 } 5194 5195 kfree(trtbl); 5196 kfree(oatbl); 5197 kfree(dptbl); 5198 kfree(attr_names); 5199 kfree(log->rst_info.r_page); 5200 5201 kfree(ra); 5202 kfree(log->one_page_buf); 5203 5204 if (err) 5205 sbi->flags |= NTFS_FLAGS_NEED_REPLAY; 5206 5207 if (err == -EROFS) 5208 err = 0; 5209 else if (log->set_dirty) 5210 ntfs_set_state(sbi, NTFS_DIRTY_ERROR); 5211 5212 kfree(log); 5213 5214 return err; 5215 } 5216