xref: /openbmc/linux/fs/ntfs3/fslog.c (revision e0b64e4ad2eb013fd3299e34e7fe5e19f321e140)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *
4  * Copyright (C) 2019-2021 Paragon Software GmbH, All rights reserved.
5  *
6  */
7 
8 #include <linux/blkdev.h>
9 #include <linux/fs.h>
10 #include <linux/random.h>
11 #include <linux/slab.h>
12 
13 #include "debug.h"
14 #include "ntfs.h"
15 #include "ntfs_fs.h"
16 
17 /*
18  * LOG FILE structs
19  */
20 
21 // clang-format off
22 
23 #define MaxLogFileSize     0x100000000ull
24 #define DefaultLogPageSize 4096
25 #define MinLogRecordPages  0x30
26 
27 struct RESTART_HDR {
28 	struct NTFS_RECORD_HEADER rhdr; // 'RSTR'
29 	__le32 sys_page_size; // 0x10: Page size of the system which initialized the log.
30 	__le32 page_size;     // 0x14: Log page size used for this log file.
31 	__le16 ra_off;        // 0x18:
32 	__le16 minor_ver;     // 0x1A:
33 	__le16 major_ver;     // 0x1C:
34 	__le16 fixups[];
35 };
36 
37 #define LFS_NO_CLIENT 0xffff
38 #define LFS_NO_CLIENT_LE cpu_to_le16(0xffff)
39 
40 struct CLIENT_REC {
41 	__le64 oldest_lsn;
42 	__le64 restart_lsn; // 0x08:
43 	__le16 prev_client; // 0x10:
44 	__le16 next_client; // 0x12:
45 	__le16 seq_num;     // 0x14:
46 	u8 align[6];        // 0x16:
47 	__le32 name_bytes;  // 0x1C: In bytes.
48 	__le16 name[32];    // 0x20: Name of client.
49 };
50 
51 static_assert(sizeof(struct CLIENT_REC) == 0x60);
52 
53 /* Two copies of these will exist at the beginning of the log file */
54 struct RESTART_AREA {
55 	__le64 current_lsn;    // 0x00: Current logical end of log file.
56 	__le16 log_clients;    // 0x08: Maximum number of clients.
57 	__le16 client_idx[2];  // 0x0A: Free/use index into the client record arrays.
58 	__le16 flags;          // 0x0E: See RESTART_SINGLE_PAGE_IO.
59 	__le32 seq_num_bits;   // 0x10: The number of bits in sequence number.
60 	__le16 ra_len;         // 0x14:
61 	__le16 client_off;     // 0x16:
62 	__le64 l_size;         // 0x18: Usable log file size.
63 	__le32 last_lsn_data_len; // 0x20:
64 	__le16 rec_hdr_len;    // 0x24: Log page data offset.
65 	__le16 data_off;       // 0x26: Log page data length.
66 	__le32 open_log_count; // 0x28:
67 	__le32 align[5];       // 0x2C:
68 	struct CLIENT_REC clients[]; // 0x40:
69 };
70 
71 struct LOG_REC_HDR {
72 	__le16 redo_op;      // 0x00:  NTFS_LOG_OPERATION
73 	__le16 undo_op;      // 0x02:  NTFS_LOG_OPERATION
74 	__le16 redo_off;     // 0x04:  Offset to Redo record.
75 	__le16 redo_len;     // 0x06:  Redo length.
76 	__le16 undo_off;     // 0x08:  Offset to Undo record.
77 	__le16 undo_len;     // 0x0A:  Undo length.
78 	__le16 target_attr;  // 0x0C:
79 	__le16 lcns_follow;  // 0x0E:
80 	__le16 record_off;   // 0x10:
81 	__le16 attr_off;     // 0x12:
82 	__le16 cluster_off;  // 0x14:
83 	__le16 reserved;     // 0x16:
84 	__le64 target_vcn;   // 0x18:
85 	__le64 page_lcns[];  // 0x20:
86 };
87 
88 static_assert(sizeof(struct LOG_REC_HDR) == 0x20);
89 
90 #define RESTART_ENTRY_ALLOCATED    0xFFFFFFFF
91 #define RESTART_ENTRY_ALLOCATED_LE cpu_to_le32(0xFFFFFFFF)
92 
93 struct RESTART_TABLE {
94 	__le16 size;       // 0x00: In bytes
95 	__le16 used;       // 0x02: Entries
96 	__le16 total;      // 0x04: Entries
97 	__le16 res[3];     // 0x06:
98 	__le32 free_goal;  // 0x0C:
99 	__le32 first_free; // 0x10:
100 	__le32 last_free;  // 0x14:
101 
102 };
103 
104 static_assert(sizeof(struct RESTART_TABLE) == 0x18);
105 
106 struct ATTR_NAME_ENTRY {
107 	__le16 off; // Offset in the Open attribute Table.
108 	__le16 name_bytes;
109 	__le16 name[];
110 };
111 
112 struct OPEN_ATTR_ENRTY {
113 	__le32 next;            // 0x00: RESTART_ENTRY_ALLOCATED if allocated
114 	__le32 bytes_per_index; // 0x04:
115 	enum ATTR_TYPE type;    // 0x08:
116 	u8 is_dirty_pages;      // 0x0C:
117 	u8 is_attr_name;        // 0x0B: Faked field to manage 'ptr'
118 	u8 name_len;            // 0x0C: Faked field to manage 'ptr'
119 	u8 res;
120 	struct MFT_REF ref;     // 0x10: File Reference of file containing attribute
121 	__le64 open_record_lsn; // 0x18:
122 	void *ptr;              // 0x20:
123 };
124 
125 /* 32 bit version of 'struct OPEN_ATTR_ENRTY' */
126 struct OPEN_ATTR_ENRTY_32 {
127 	__le32 next;            // 0x00: RESTART_ENTRY_ALLOCATED if allocated
128 	__le32 ptr;             // 0x04:
129 	struct MFT_REF ref;     // 0x08:
130 	__le64 open_record_lsn; // 0x10:
131 	u8 is_dirty_pages;      // 0x18:
132 	u8 is_attr_name;        // 0x19:
133 	u8 res1[2];
134 	enum ATTR_TYPE type;    // 0x1C:
135 	u8 name_len;            // 0x20: In wchar
136 	u8 res2[3];
137 	__le32 AttributeName;   // 0x24:
138 	__le32 bytes_per_index; // 0x28:
139 };
140 
141 #define SIZEOF_OPENATTRIBUTEENTRY0 0x2c
142 // static_assert( 0x2C == sizeof(struct OPEN_ATTR_ENRTY_32) );
143 static_assert(sizeof(struct OPEN_ATTR_ENRTY) < SIZEOF_OPENATTRIBUTEENTRY0);
144 
145 /*
146  * One entry exists in the Dirty Pages Table for each page which is dirty at
147  * the time the Restart Area is written.
148  */
149 struct DIR_PAGE_ENTRY {
150 	__le32 next;         // 0x00: RESTART_ENTRY_ALLOCATED if allocated
151 	__le32 target_attr;  // 0x04: Index into the Open attribute Table
152 	__le32 transfer_len; // 0x08:
153 	__le32 lcns_follow;  // 0x0C:
154 	__le64 vcn;          // 0x10: Vcn of dirty page
155 	__le64 oldest_lsn;   // 0x18:
156 	__le64 page_lcns[];  // 0x20:
157 };
158 
159 static_assert(sizeof(struct DIR_PAGE_ENTRY) == 0x20);
160 
161 /* 32 bit version of 'struct DIR_PAGE_ENTRY' */
162 struct DIR_PAGE_ENTRY_32 {
163 	__le32 next;		// 0x00: RESTART_ENTRY_ALLOCATED if allocated
164 	__le32 target_attr;	// 0x04: Index into the Open attribute Table
165 	__le32 transfer_len;	// 0x08:
166 	__le32 lcns_follow;	// 0x0C:
167 	__le32 reserved;	// 0x10:
168 	__le32 vcn_low;		// 0x14: Vcn of dirty page
169 	__le32 vcn_hi;		// 0x18: Vcn of dirty page
170 	__le32 oldest_lsn_low;	// 0x1C:
171 	__le32 oldest_lsn_hi;	// 0x1C:
172 	__le32 page_lcns_low;	// 0x24:
173 	__le32 page_lcns_hi;	// 0x24:
174 };
175 
176 static_assert(offsetof(struct DIR_PAGE_ENTRY_32, vcn_low) == 0x14);
177 static_assert(sizeof(struct DIR_PAGE_ENTRY_32) == 0x2c);
178 
179 enum transact_state {
180 	TransactionUninitialized = 0,
181 	TransactionActive,
182 	TransactionPrepared,
183 	TransactionCommitted
184 };
185 
186 struct TRANSACTION_ENTRY {
187 	__le32 next;          // 0x00: RESTART_ENTRY_ALLOCATED if allocated
188 	u8 transact_state;    // 0x04:
189 	u8 reserved[3];       // 0x05:
190 	__le64 first_lsn;     // 0x08:
191 	__le64 prev_lsn;      // 0x10:
192 	__le64 undo_next_lsn; // 0x18:
193 	__le32 undo_records;  // 0x20: Number of undo log records pending abort
194 	__le32 undo_len;      // 0x24: Total undo size
195 };
196 
197 static_assert(sizeof(struct TRANSACTION_ENTRY) == 0x28);
198 
199 struct NTFS_RESTART {
200 	__le32 major_ver;             // 0x00:
201 	__le32 minor_ver;             // 0x04:
202 	__le64 check_point_start;     // 0x08:
203 	__le64 open_attr_table_lsn;   // 0x10:
204 	__le64 attr_names_lsn;        // 0x18:
205 	__le64 dirty_pages_table_lsn; // 0x20:
206 	__le64 transact_table_lsn;    // 0x28:
207 	__le32 open_attr_len;         // 0x30: In bytes
208 	__le32 attr_names_len;        // 0x34: In bytes
209 	__le32 dirty_pages_len;       // 0x38: In bytes
210 	__le32 transact_table_len;    // 0x3C: In bytes
211 };
212 
213 static_assert(sizeof(struct NTFS_RESTART) == 0x40);
214 
215 struct NEW_ATTRIBUTE_SIZES {
216 	__le64 alloc_size;
217 	__le64 valid_size;
218 	__le64 data_size;
219 	__le64 total_size;
220 };
221 
222 struct BITMAP_RANGE {
223 	__le32 bitmap_off;
224 	__le32 bits;
225 };
226 
227 struct LCN_RANGE {
228 	__le64 lcn;
229 	__le64 len;
230 };
231 
232 /* The following type defines the different log record types. */
233 #define LfsClientRecord  cpu_to_le32(1)
234 #define LfsClientRestart cpu_to_le32(2)
235 
236 /* This is used to uniquely identify a client for a particular log file. */
237 struct CLIENT_ID {
238 	__le16 seq_num;
239 	__le16 client_idx;
240 };
241 
242 /* This is the header that begins every Log Record in the log file. */
243 struct LFS_RECORD_HDR {
244 	__le64 this_lsn;		// 0x00:
245 	__le64 client_prev_lsn;		// 0x08:
246 	__le64 client_undo_next_lsn;	// 0x10:
247 	__le32 client_data_len;		// 0x18:
248 	struct CLIENT_ID client;	// 0x1C: Owner of this log record.
249 	__le32 record_type;		// 0x20: LfsClientRecord or LfsClientRestart.
250 	__le32 transact_id;		// 0x24:
251 	__le16 flags;			// 0x28: LOG_RECORD_MULTI_PAGE
252 	u8 align[6];			// 0x2A:
253 };
254 
255 #define LOG_RECORD_MULTI_PAGE cpu_to_le16(1)
256 
257 static_assert(sizeof(struct LFS_RECORD_HDR) == 0x30);
258 
259 struct LFS_RECORD {
260 	__le16 next_record_off;	// 0x00: Offset of the free space in the page,
261 	u8 align[6];		// 0x02:
262 	__le64 last_end_lsn;	// 0x08: lsn for the last log record which ends on the page,
263 };
264 
265 static_assert(sizeof(struct LFS_RECORD) == 0x10);
266 
267 struct RECORD_PAGE_HDR {
268 	struct NTFS_RECORD_HEADER rhdr;	// 'RCRD'
269 	__le32 rflags;			// 0x10: See LOG_PAGE_LOG_RECORD_END
270 	__le16 page_count;		// 0x14:
271 	__le16 page_pos;		// 0x16:
272 	struct LFS_RECORD record_hdr;	// 0x18:
273 	__le16 fixups[10];		// 0x28:
274 	__le32 file_off;		// 0x3c: Used when major version >= 2
275 };
276 
277 // clang-format on
278 
279 // Page contains the end of a log record.
280 #define LOG_PAGE_LOG_RECORD_END cpu_to_le32(0x00000001)
281 
282 static inline bool is_log_record_end(const struct RECORD_PAGE_HDR *hdr)
283 {
284 	return hdr->rflags & LOG_PAGE_LOG_RECORD_END;
285 }
286 
287 static_assert(offsetof(struct RECORD_PAGE_HDR, file_off) == 0x3c);
288 
289 /*
290  * END of NTFS LOG structures
291  */
292 
293 /* Define some tuning parameters to keep the restart tables a reasonable size. */
294 #define INITIAL_NUMBER_TRANSACTIONS 5
295 
296 enum NTFS_LOG_OPERATION {
297 
298 	Noop = 0x00,
299 	CompensationLogRecord = 0x01,
300 	InitializeFileRecordSegment = 0x02,
301 	DeallocateFileRecordSegment = 0x03,
302 	WriteEndOfFileRecordSegment = 0x04,
303 	CreateAttribute = 0x05,
304 	DeleteAttribute = 0x06,
305 	UpdateResidentValue = 0x07,
306 	UpdateNonresidentValue = 0x08,
307 	UpdateMappingPairs = 0x09,
308 	DeleteDirtyClusters = 0x0A,
309 	SetNewAttributeSizes = 0x0B,
310 	AddIndexEntryRoot = 0x0C,
311 	DeleteIndexEntryRoot = 0x0D,
312 	AddIndexEntryAllocation = 0x0E,
313 	DeleteIndexEntryAllocation = 0x0F,
314 	WriteEndOfIndexBuffer = 0x10,
315 	SetIndexEntryVcnRoot = 0x11,
316 	SetIndexEntryVcnAllocation = 0x12,
317 	UpdateFileNameRoot = 0x13,
318 	UpdateFileNameAllocation = 0x14,
319 	SetBitsInNonresidentBitMap = 0x15,
320 	ClearBitsInNonresidentBitMap = 0x16,
321 	HotFix = 0x17,
322 	EndTopLevelAction = 0x18,
323 	PrepareTransaction = 0x19,
324 	CommitTransaction = 0x1A,
325 	ForgetTransaction = 0x1B,
326 	OpenNonresidentAttribute = 0x1C,
327 	OpenAttributeTableDump = 0x1D,
328 	AttributeNamesDump = 0x1E,
329 	DirtyPageTableDump = 0x1F,
330 	TransactionTableDump = 0x20,
331 	UpdateRecordDataRoot = 0x21,
332 	UpdateRecordDataAllocation = 0x22,
333 
334 	UpdateRelativeDataInIndex =
335 		0x23, // NtOfsRestartUpdateRelativeDataInIndex
336 	UpdateRelativeDataInIndex2 = 0x24,
337 	ZeroEndOfFileRecord = 0x25,
338 };
339 
340 /*
341  * Array for log records which require a target attribute.
342  * A true indicates that the corresponding restart operation
343  * requires a target attribute.
344  */
345 static const u8 AttributeRequired[] = {
346 	0xFC, 0xFB, 0xFF, 0x10, 0x06,
347 };
348 
349 static inline bool is_target_required(u16 op)
350 {
351 	bool ret = op <= UpdateRecordDataAllocation &&
352 		   (AttributeRequired[op >> 3] >> (op & 7) & 1);
353 	return ret;
354 }
355 
356 static inline bool can_skip_action(enum NTFS_LOG_OPERATION op)
357 {
358 	switch (op) {
359 	case Noop:
360 	case DeleteDirtyClusters:
361 	case HotFix:
362 	case EndTopLevelAction:
363 	case PrepareTransaction:
364 	case CommitTransaction:
365 	case ForgetTransaction:
366 	case CompensationLogRecord:
367 	case OpenNonresidentAttribute:
368 	case OpenAttributeTableDump:
369 	case AttributeNamesDump:
370 	case DirtyPageTableDump:
371 	case TransactionTableDump:
372 		return true;
373 	default:
374 		return false;
375 	}
376 }
377 
378 enum { lcb_ctx_undo_next, lcb_ctx_prev, lcb_ctx_next };
379 
380 /* Bytes per restart table. */
381 static inline u32 bytes_per_rt(const struct RESTART_TABLE *rt)
382 {
383 	return le16_to_cpu(rt->used) * le16_to_cpu(rt->size) +
384 	       sizeof(struct RESTART_TABLE);
385 }
386 
387 /* Log record length. */
388 static inline u32 lrh_length(const struct LOG_REC_HDR *lr)
389 {
390 	u16 t16 = le16_to_cpu(lr->lcns_follow);
391 
392 	return struct_size(lr, page_lcns, max_t(u16, 1, t16));
393 }
394 
395 struct lcb {
396 	struct LFS_RECORD_HDR *lrh; // Log record header of the current lsn.
397 	struct LOG_REC_HDR *log_rec;
398 	u32 ctx_mode; // lcb_ctx_undo_next/lcb_ctx_prev/lcb_ctx_next
399 	struct CLIENT_ID client;
400 	bool alloc; // If true the we should deallocate 'log_rec'.
401 };
402 
403 static void lcb_put(struct lcb *lcb)
404 {
405 	if (lcb->alloc)
406 		kfree(lcb->log_rec);
407 	kfree(lcb->lrh);
408 	kfree(lcb);
409 }
410 
411 /* Find the oldest lsn from active clients. */
412 static inline void oldest_client_lsn(const struct CLIENT_REC *ca,
413 				     __le16 next_client, u64 *oldest_lsn)
414 {
415 	while (next_client != LFS_NO_CLIENT_LE) {
416 		const struct CLIENT_REC *cr = ca + le16_to_cpu(next_client);
417 		u64 lsn = le64_to_cpu(cr->oldest_lsn);
418 
419 		/* Ignore this block if it's oldest lsn is 0. */
420 		if (lsn && lsn < *oldest_lsn)
421 			*oldest_lsn = lsn;
422 
423 		next_client = cr->next_client;
424 	}
425 }
426 
427 static inline bool is_rst_page_hdr_valid(u32 file_off,
428 					 const struct RESTART_HDR *rhdr)
429 {
430 	u32 sys_page = le32_to_cpu(rhdr->sys_page_size);
431 	u32 page_size = le32_to_cpu(rhdr->page_size);
432 	u32 end_usa;
433 	u16 ro;
434 
435 	if (sys_page < SECTOR_SIZE || page_size < SECTOR_SIZE ||
436 	    sys_page & (sys_page - 1) || page_size & (page_size - 1)) {
437 		return false;
438 	}
439 
440 	/* Check that if the file offset isn't 0, it is the system page size. */
441 	if (file_off && file_off != sys_page)
442 		return false;
443 
444 	/* Check support version 1.1+. */
445 	if (le16_to_cpu(rhdr->major_ver) <= 1 && !rhdr->minor_ver)
446 		return false;
447 
448 	if (le16_to_cpu(rhdr->major_ver) > 2)
449 		return false;
450 
451 	ro = le16_to_cpu(rhdr->ra_off);
452 	if (!IS_ALIGNED(ro, 8) || ro > sys_page)
453 		return false;
454 
455 	end_usa = ((sys_page >> SECTOR_SHIFT) + 1) * sizeof(short);
456 	end_usa += le16_to_cpu(rhdr->rhdr.fix_off);
457 
458 	if (ro < end_usa)
459 		return false;
460 
461 	return true;
462 }
463 
464 static inline bool is_rst_area_valid(const struct RESTART_HDR *rhdr)
465 {
466 	const struct RESTART_AREA *ra;
467 	u16 cl, fl, ul;
468 	u32 off, l_size, file_dat_bits, file_size_round;
469 	u16 ro = le16_to_cpu(rhdr->ra_off);
470 	u32 sys_page = le32_to_cpu(rhdr->sys_page_size);
471 
472 	if (ro + offsetof(struct RESTART_AREA, l_size) >
473 	    SECTOR_SIZE - sizeof(short))
474 		return false;
475 
476 	ra = Add2Ptr(rhdr, ro);
477 	cl = le16_to_cpu(ra->log_clients);
478 
479 	if (cl > 1)
480 		return false;
481 
482 	off = le16_to_cpu(ra->client_off);
483 
484 	if (!IS_ALIGNED(off, 8) || ro + off > SECTOR_SIZE - sizeof(short))
485 		return false;
486 
487 	off += cl * sizeof(struct CLIENT_REC);
488 
489 	if (off > sys_page)
490 		return false;
491 
492 	/*
493 	 * Check the restart length field and whether the entire
494 	 * restart area is contained that length.
495 	 */
496 	if (le16_to_cpu(rhdr->ra_off) + le16_to_cpu(ra->ra_len) > sys_page ||
497 	    off > le16_to_cpu(ra->ra_len)) {
498 		return false;
499 	}
500 
501 	/*
502 	 * As a final check make sure that the use list and the free list
503 	 * are either empty or point to a valid client.
504 	 */
505 	fl = le16_to_cpu(ra->client_idx[0]);
506 	ul = le16_to_cpu(ra->client_idx[1]);
507 	if ((fl != LFS_NO_CLIENT && fl >= cl) ||
508 	    (ul != LFS_NO_CLIENT && ul >= cl))
509 		return false;
510 
511 	/* Make sure the sequence number bits match the log file size. */
512 	l_size = le64_to_cpu(ra->l_size);
513 
514 	file_dat_bits = sizeof(u64) * 8 - le32_to_cpu(ra->seq_num_bits);
515 	file_size_round = 1u << (file_dat_bits + 3);
516 	if (file_size_round != l_size &&
517 	    (file_size_round < l_size || (file_size_round / 2) > l_size)) {
518 		return false;
519 	}
520 
521 	/* The log page data offset and record header length must be quad-aligned. */
522 	if (!IS_ALIGNED(le16_to_cpu(ra->data_off), 8) ||
523 	    !IS_ALIGNED(le16_to_cpu(ra->rec_hdr_len), 8))
524 		return false;
525 
526 	return true;
527 }
528 
529 static inline bool is_client_area_valid(const struct RESTART_HDR *rhdr,
530 					bool usa_error)
531 {
532 	u16 ro = le16_to_cpu(rhdr->ra_off);
533 	const struct RESTART_AREA *ra = Add2Ptr(rhdr, ro);
534 	u16 ra_len = le16_to_cpu(ra->ra_len);
535 	const struct CLIENT_REC *ca;
536 	u32 i;
537 
538 	if (usa_error && ra_len + ro > SECTOR_SIZE - sizeof(short))
539 		return false;
540 
541 	/* Find the start of the client array. */
542 	ca = Add2Ptr(ra, le16_to_cpu(ra->client_off));
543 
544 	/*
545 	 * Start with the free list.
546 	 * Check that all the clients are valid and that there isn't a cycle.
547 	 * Do the in-use list on the second pass.
548 	 */
549 	for (i = 0; i < 2; i++) {
550 		u16 client_idx = le16_to_cpu(ra->client_idx[i]);
551 		bool first_client = true;
552 		u16 clients = le16_to_cpu(ra->log_clients);
553 
554 		while (client_idx != LFS_NO_CLIENT) {
555 			const struct CLIENT_REC *cr;
556 
557 			if (!clients ||
558 			    client_idx >= le16_to_cpu(ra->log_clients))
559 				return false;
560 
561 			clients -= 1;
562 			cr = ca + client_idx;
563 
564 			client_idx = le16_to_cpu(cr->next_client);
565 
566 			if (first_client) {
567 				first_client = false;
568 				if (cr->prev_client != LFS_NO_CLIENT_LE)
569 					return false;
570 			}
571 		}
572 	}
573 
574 	return true;
575 }
576 
577 /*
578  * remove_client
579  *
580  * Remove a client record from a client record list an restart area.
581  */
582 static inline void remove_client(struct CLIENT_REC *ca,
583 				 const struct CLIENT_REC *cr, __le16 *head)
584 {
585 	if (cr->prev_client == LFS_NO_CLIENT_LE)
586 		*head = cr->next_client;
587 	else
588 		ca[le16_to_cpu(cr->prev_client)].next_client = cr->next_client;
589 
590 	if (cr->next_client != LFS_NO_CLIENT_LE)
591 		ca[le16_to_cpu(cr->next_client)].prev_client = cr->prev_client;
592 }
593 
594 /*
595  * add_client - Add a client record to the start of a list.
596  */
597 static inline void add_client(struct CLIENT_REC *ca, u16 index, __le16 *head)
598 {
599 	struct CLIENT_REC *cr = ca + index;
600 
601 	cr->prev_client = LFS_NO_CLIENT_LE;
602 	cr->next_client = *head;
603 
604 	if (*head != LFS_NO_CLIENT_LE)
605 		ca[le16_to_cpu(*head)].prev_client = cpu_to_le16(index);
606 
607 	*head = cpu_to_le16(index);
608 }
609 
610 static inline void *enum_rstbl(struct RESTART_TABLE *t, void *c)
611 {
612 	__le32 *e;
613 	u32 bprt;
614 	u16 rsize = t ? le16_to_cpu(t->size) : 0;
615 
616 	if (!c) {
617 		if (!t || !t->total)
618 			return NULL;
619 		e = Add2Ptr(t, sizeof(struct RESTART_TABLE));
620 	} else {
621 		e = Add2Ptr(c, rsize);
622 	}
623 
624 	/* Loop until we hit the first one allocated, or the end of the list. */
625 	for (bprt = bytes_per_rt(t); PtrOffset(t, e) < bprt;
626 	     e = Add2Ptr(e, rsize)) {
627 		if (*e == RESTART_ENTRY_ALLOCATED_LE)
628 			return e;
629 	}
630 	return NULL;
631 }
632 
633 /*
634  * find_dp - Search for a @vcn in Dirty Page Table.
635  */
636 static inline struct DIR_PAGE_ENTRY *find_dp(struct RESTART_TABLE *dptbl,
637 					     u32 target_attr, u64 vcn)
638 {
639 	__le32 ta = cpu_to_le32(target_attr);
640 	struct DIR_PAGE_ENTRY *dp = NULL;
641 
642 	while ((dp = enum_rstbl(dptbl, dp))) {
643 		u64 dp_vcn = le64_to_cpu(dp->vcn);
644 
645 		if (dp->target_attr == ta && vcn >= dp_vcn &&
646 		    vcn < dp_vcn + le32_to_cpu(dp->lcns_follow)) {
647 			return dp;
648 		}
649 	}
650 	return NULL;
651 }
652 
653 static inline u32 norm_file_page(u32 page_size, u32 *l_size, bool use_default)
654 {
655 	if (use_default)
656 		page_size = DefaultLogPageSize;
657 
658 	/* Round the file size down to a system page boundary. */
659 	*l_size &= ~(page_size - 1);
660 
661 	/* File should contain at least 2 restart pages and MinLogRecordPages pages. */
662 	if (*l_size < (MinLogRecordPages + 2) * page_size)
663 		return 0;
664 
665 	return page_size;
666 }
667 
668 static bool check_log_rec(const struct LOG_REC_HDR *lr, u32 bytes, u32 tr,
669 			  u32 bytes_per_attr_entry)
670 {
671 	u16 t16;
672 
673 	if (bytes < sizeof(struct LOG_REC_HDR))
674 		return false;
675 	if (!tr)
676 		return false;
677 
678 	if ((tr - sizeof(struct RESTART_TABLE)) %
679 	    sizeof(struct TRANSACTION_ENTRY))
680 		return false;
681 
682 	if (le16_to_cpu(lr->redo_off) & 7)
683 		return false;
684 
685 	if (le16_to_cpu(lr->undo_off) & 7)
686 		return false;
687 
688 	if (lr->target_attr)
689 		goto check_lcns;
690 
691 	if (is_target_required(le16_to_cpu(lr->redo_op)))
692 		return false;
693 
694 	if (is_target_required(le16_to_cpu(lr->undo_op)))
695 		return false;
696 
697 check_lcns:
698 	if (!lr->lcns_follow)
699 		goto check_length;
700 
701 	t16 = le16_to_cpu(lr->target_attr);
702 	if ((t16 - sizeof(struct RESTART_TABLE)) % bytes_per_attr_entry)
703 		return false;
704 
705 check_length:
706 	if (bytes < lrh_length(lr))
707 		return false;
708 
709 	return true;
710 }
711 
712 static bool check_rstbl(const struct RESTART_TABLE *rt, size_t bytes)
713 {
714 	u32 ts;
715 	u32 i, off;
716 	u16 rsize = le16_to_cpu(rt->size);
717 	u16 ne = le16_to_cpu(rt->used);
718 	u32 ff = le32_to_cpu(rt->first_free);
719 	u32 lf = le32_to_cpu(rt->last_free);
720 
721 	ts = rsize * ne + sizeof(struct RESTART_TABLE);
722 
723 	if (!rsize || rsize > bytes ||
724 	    rsize + sizeof(struct RESTART_TABLE) > bytes || bytes < ts ||
725 	    le16_to_cpu(rt->total) > ne || ff > ts || lf > ts ||
726 	    (ff && ff < sizeof(struct RESTART_TABLE)) ||
727 	    (lf && lf < sizeof(struct RESTART_TABLE))) {
728 		return false;
729 	}
730 
731 	/*
732 	 * Verify each entry is either allocated or points
733 	 * to a valid offset the table.
734 	 */
735 	for (i = 0; i < ne; i++) {
736 		off = le32_to_cpu(*(__le32 *)Add2Ptr(
737 			rt, i * rsize + sizeof(struct RESTART_TABLE)));
738 
739 		if (off != RESTART_ENTRY_ALLOCATED && off &&
740 		    (off < sizeof(struct RESTART_TABLE) ||
741 		     ((off - sizeof(struct RESTART_TABLE)) % rsize))) {
742 			return false;
743 		}
744 	}
745 
746 	/*
747 	 * Walk through the list headed by the first entry to make
748 	 * sure none of the entries are currently being used.
749 	 */
750 	for (off = ff; off;) {
751 		if (off == RESTART_ENTRY_ALLOCATED)
752 			return false;
753 
754 		off = le32_to_cpu(*(__le32 *)Add2Ptr(rt, off));
755 	}
756 
757 	return true;
758 }
759 
760 /*
761  * free_rsttbl_idx - Free a previously allocated index a Restart Table.
762  */
763 static inline void free_rsttbl_idx(struct RESTART_TABLE *rt, u32 off)
764 {
765 	__le32 *e;
766 	u32 lf = le32_to_cpu(rt->last_free);
767 	__le32 off_le = cpu_to_le32(off);
768 
769 	e = Add2Ptr(rt, off);
770 
771 	if (off < le32_to_cpu(rt->free_goal)) {
772 		*e = rt->first_free;
773 		rt->first_free = off_le;
774 		if (!lf)
775 			rt->last_free = off_le;
776 	} else {
777 		if (lf)
778 			*(__le32 *)Add2Ptr(rt, lf) = off_le;
779 		else
780 			rt->first_free = off_le;
781 
782 		rt->last_free = off_le;
783 		*e = 0;
784 	}
785 
786 	le16_sub_cpu(&rt->total, 1);
787 }
788 
789 static inline struct RESTART_TABLE *init_rsttbl(u16 esize, u16 used)
790 {
791 	__le32 *e, *last_free;
792 	u32 off;
793 	u32 bytes = esize * used + sizeof(struct RESTART_TABLE);
794 	u32 lf = sizeof(struct RESTART_TABLE) + (used - 1) * esize;
795 	struct RESTART_TABLE *t = kzalloc(bytes, GFP_NOFS);
796 
797 	if (!t)
798 		return NULL;
799 
800 	t->size = cpu_to_le16(esize);
801 	t->used = cpu_to_le16(used);
802 	t->free_goal = cpu_to_le32(~0u);
803 	t->first_free = cpu_to_le32(sizeof(struct RESTART_TABLE));
804 	t->last_free = cpu_to_le32(lf);
805 
806 	e = (__le32 *)(t + 1);
807 	last_free = Add2Ptr(t, lf);
808 
809 	for (off = sizeof(struct RESTART_TABLE) + esize; e < last_free;
810 	     e = Add2Ptr(e, esize), off += esize) {
811 		*e = cpu_to_le32(off);
812 	}
813 	return t;
814 }
815 
816 static inline struct RESTART_TABLE *extend_rsttbl(struct RESTART_TABLE *tbl,
817 						  u32 add, u32 free_goal)
818 {
819 	u16 esize = le16_to_cpu(tbl->size);
820 	__le32 osize = cpu_to_le32(bytes_per_rt(tbl));
821 	u32 used = le16_to_cpu(tbl->used);
822 	struct RESTART_TABLE *rt;
823 
824 	rt = init_rsttbl(esize, used + add);
825 	if (!rt)
826 		return NULL;
827 
828 	memcpy(rt + 1, tbl + 1, esize * used);
829 
830 	rt->free_goal = free_goal == ~0u ?
831 				cpu_to_le32(~0u) :
832 				cpu_to_le32(sizeof(struct RESTART_TABLE) +
833 					    free_goal * esize);
834 
835 	if (tbl->first_free) {
836 		rt->first_free = tbl->first_free;
837 		*(__le32 *)Add2Ptr(rt, le32_to_cpu(tbl->last_free)) = osize;
838 	} else {
839 		rt->first_free = osize;
840 	}
841 
842 	rt->total = tbl->total;
843 
844 	kfree(tbl);
845 	return rt;
846 }
847 
848 /*
849  * alloc_rsttbl_idx
850  *
851  * Allocate an index from within a previously initialized Restart Table.
852  */
853 static inline void *alloc_rsttbl_idx(struct RESTART_TABLE **tbl)
854 {
855 	u32 off;
856 	__le32 *e;
857 	struct RESTART_TABLE *t = *tbl;
858 
859 	if (!t->first_free) {
860 		*tbl = t = extend_rsttbl(t, 16, ~0u);
861 		if (!t)
862 			return NULL;
863 	}
864 
865 	off = le32_to_cpu(t->first_free);
866 
867 	/* Dequeue this entry and zero it. */
868 	e = Add2Ptr(t, off);
869 
870 	t->first_free = *e;
871 
872 	memset(e, 0, le16_to_cpu(t->size));
873 
874 	*e = RESTART_ENTRY_ALLOCATED_LE;
875 
876 	/* If list is going empty, then we fix the last_free as well. */
877 	if (!t->first_free)
878 		t->last_free = 0;
879 
880 	le16_add_cpu(&t->total, 1);
881 
882 	return Add2Ptr(t, off);
883 }
884 
885 /*
886  * alloc_rsttbl_from_idx
887  *
888  * Allocate a specific index from within a previously initialized Restart Table.
889  */
890 static inline void *alloc_rsttbl_from_idx(struct RESTART_TABLE **tbl, u32 vbo)
891 {
892 	u32 off;
893 	__le32 *e;
894 	struct RESTART_TABLE *rt = *tbl;
895 	u32 bytes = bytes_per_rt(rt);
896 	u16 esize = le16_to_cpu(rt->size);
897 
898 	/* If the entry is not the table, we will have to extend the table. */
899 	if (vbo >= bytes) {
900 		/*
901 		 * Extend the size by computing the number of entries between
902 		 * the existing size and the desired index and adding 1 to that.
903 		 */
904 		u32 bytes2idx = vbo - bytes;
905 
906 		/*
907 		 * There should always be an integral number of entries
908 		 * being added. Now extend the table.
909 		 */
910 		*tbl = rt = extend_rsttbl(rt, bytes2idx / esize + 1, bytes);
911 		if (!rt)
912 			return NULL;
913 	}
914 
915 	/* See if the entry is already allocated, and just return if it is. */
916 	e = Add2Ptr(rt, vbo);
917 
918 	if (*e == RESTART_ENTRY_ALLOCATED_LE)
919 		return e;
920 
921 	/*
922 	 * Walk through the table, looking for the entry we're
923 	 * interested and the previous entry.
924 	 */
925 	off = le32_to_cpu(rt->first_free);
926 	e = Add2Ptr(rt, off);
927 
928 	if (off == vbo) {
929 		/* this is a match */
930 		rt->first_free = *e;
931 		goto skip_looking;
932 	}
933 
934 	/*
935 	 * Need to walk through the list looking for the predecessor
936 	 * of our entry.
937 	 */
938 	for (;;) {
939 		/* Remember the entry just found */
940 		u32 last_off = off;
941 		__le32 *last_e = e;
942 
943 		/* Should never run of entries. */
944 
945 		/* Lookup up the next entry the list. */
946 		off = le32_to_cpu(*last_e);
947 		e = Add2Ptr(rt, off);
948 
949 		/* If this is our match we are done. */
950 		if (off == vbo) {
951 			*last_e = *e;
952 
953 			/*
954 			 * If this was the last entry, we update that
955 			 * table as well.
956 			 */
957 			if (le32_to_cpu(rt->last_free) == off)
958 				rt->last_free = cpu_to_le32(last_off);
959 			break;
960 		}
961 	}
962 
963 skip_looking:
964 	/* If the list is now empty, we fix the last_free as well. */
965 	if (!rt->first_free)
966 		rt->last_free = 0;
967 
968 	/* Zero this entry. */
969 	memset(e, 0, esize);
970 	*e = RESTART_ENTRY_ALLOCATED_LE;
971 
972 	le16_add_cpu(&rt->total, 1);
973 
974 	return e;
975 }
976 
977 struct restart_info {
978 	u64 last_lsn;
979 	struct RESTART_HDR *r_page;
980 	u32 vbo;
981 	bool chkdsk_was_run;
982 	bool valid_page;
983 	bool initialized;
984 	bool restart;
985 };
986 
987 #define RESTART_SINGLE_PAGE_IO cpu_to_le16(0x0001)
988 
989 #define NTFSLOG_WRAPPED 0x00000001
990 #define NTFSLOG_MULTIPLE_PAGE_IO 0x00000002
991 #define NTFSLOG_NO_LAST_LSN 0x00000004
992 #define NTFSLOG_REUSE_TAIL 0x00000010
993 #define NTFSLOG_NO_OLDEST_LSN 0x00000020
994 
995 /* Helper struct to work with NTFS $LogFile. */
996 struct ntfs_log {
997 	struct ntfs_inode *ni;
998 
999 	u32 l_size;
1000 	u32 orig_file_size;
1001 	u32 sys_page_size;
1002 	u32 sys_page_mask;
1003 	u32 page_size;
1004 	u32 page_mask; // page_size - 1
1005 	u8 page_bits;
1006 	struct RECORD_PAGE_HDR *one_page_buf;
1007 
1008 	struct RESTART_TABLE *open_attr_tbl;
1009 	u32 transaction_id;
1010 	u32 clst_per_page;
1011 
1012 	u32 first_page;
1013 	u32 next_page;
1014 	u32 ra_off;
1015 	u32 data_off;
1016 	u32 restart_size;
1017 	u32 data_size;
1018 	u16 record_header_len;
1019 	u64 seq_num;
1020 	u32 seq_num_bits;
1021 	u32 file_data_bits;
1022 	u32 seq_num_mask; /* (1 << file_data_bits) - 1 */
1023 
1024 	struct RESTART_AREA *ra; /* In-memory image of the next restart area. */
1025 	u32 ra_size; /* The usable size of the restart area. */
1026 
1027 	/*
1028 	 * If true, then the in-memory restart area is to be written
1029 	 * to the first position on the disk.
1030 	 */
1031 	bool init_ra;
1032 	bool set_dirty; /* True if we need to set dirty flag. */
1033 
1034 	u64 oldest_lsn;
1035 
1036 	u32 oldest_lsn_off;
1037 	u64 last_lsn;
1038 
1039 	u32 total_avail;
1040 	u32 total_avail_pages;
1041 	u32 total_undo_commit;
1042 	u32 max_current_avail;
1043 	u32 current_avail;
1044 	u32 reserved;
1045 
1046 	short major_ver;
1047 	short minor_ver;
1048 
1049 	u32 l_flags; /* See NTFSLOG_XXX */
1050 	u32 current_openlog_count; /* On-disk value for open_log_count. */
1051 
1052 	struct CLIENT_ID client_id;
1053 	u32 client_undo_commit;
1054 
1055 	struct restart_info rst_info, rst_info2;
1056 };
1057 
1058 static inline u32 lsn_to_vbo(struct ntfs_log *log, const u64 lsn)
1059 {
1060 	u32 vbo = (lsn << log->seq_num_bits) >> (log->seq_num_bits - 3);
1061 
1062 	return vbo;
1063 }
1064 
1065 /* Compute the offset in the log file of the next log page. */
1066 static inline u32 next_page_off(struct ntfs_log *log, u32 off)
1067 {
1068 	off = (off & ~log->sys_page_mask) + log->page_size;
1069 	return off >= log->l_size ? log->first_page : off;
1070 }
1071 
1072 static inline u32 lsn_to_page_off(struct ntfs_log *log, u64 lsn)
1073 {
1074 	return (((u32)lsn) << 3) & log->page_mask;
1075 }
1076 
1077 static inline u64 vbo_to_lsn(struct ntfs_log *log, u32 off, u64 Seq)
1078 {
1079 	return (off >> 3) + (Seq << log->file_data_bits);
1080 }
1081 
1082 static inline bool is_lsn_in_file(struct ntfs_log *log, u64 lsn)
1083 {
1084 	return lsn >= log->oldest_lsn &&
1085 	       lsn <= le64_to_cpu(log->ra->current_lsn);
1086 }
1087 
1088 static inline u32 hdr_file_off(struct ntfs_log *log,
1089 			       struct RECORD_PAGE_HDR *hdr)
1090 {
1091 	if (log->major_ver < 2)
1092 		return le64_to_cpu(hdr->rhdr.lsn);
1093 
1094 	return le32_to_cpu(hdr->file_off);
1095 }
1096 
1097 static inline u64 base_lsn(struct ntfs_log *log,
1098 			   const struct RECORD_PAGE_HDR *hdr, u64 lsn)
1099 {
1100 	u64 h_lsn = le64_to_cpu(hdr->rhdr.lsn);
1101 	u64 ret = (((h_lsn >> log->file_data_bits) +
1102 		    (lsn < (lsn_to_vbo(log, h_lsn) & ~log->page_mask) ? 1 : 0))
1103 		   << log->file_data_bits) +
1104 		  ((((is_log_record_end(hdr) &&
1105 		      h_lsn <= le64_to_cpu(hdr->record_hdr.last_end_lsn)) ?
1106 			     le16_to_cpu(hdr->record_hdr.next_record_off) :
1107 			     log->page_size) +
1108 		    lsn) >>
1109 		   3);
1110 
1111 	return ret;
1112 }
1113 
1114 static inline bool verify_client_lsn(struct ntfs_log *log,
1115 				     const struct CLIENT_REC *client, u64 lsn)
1116 {
1117 	return lsn >= le64_to_cpu(client->oldest_lsn) &&
1118 	       lsn <= le64_to_cpu(log->ra->current_lsn) && lsn;
1119 }
1120 
1121 static int read_log_page(struct ntfs_log *log, u32 vbo,
1122 			 struct RECORD_PAGE_HDR **buffer, bool *usa_error)
1123 {
1124 	int err = 0;
1125 	u32 page_idx = vbo >> log->page_bits;
1126 	u32 page_off = vbo & log->page_mask;
1127 	u32 bytes = log->page_size - page_off;
1128 	void *to_free = NULL;
1129 	u32 page_vbo = page_idx << log->page_bits;
1130 	struct RECORD_PAGE_HDR *page_buf;
1131 	struct ntfs_inode *ni = log->ni;
1132 	bool bBAAD;
1133 
1134 	if (vbo >= log->l_size)
1135 		return -EINVAL;
1136 
1137 	if (!*buffer) {
1138 		to_free = kmalloc(log->page_size, GFP_NOFS);
1139 		if (!to_free)
1140 			return -ENOMEM;
1141 		*buffer = to_free;
1142 	}
1143 
1144 	page_buf = page_off ? log->one_page_buf : *buffer;
1145 
1146 	err = ntfs_read_run_nb(ni->mi.sbi, &ni->file.run, page_vbo, page_buf,
1147 			       log->page_size, NULL);
1148 	if (err)
1149 		goto out;
1150 
1151 	if (page_buf->rhdr.sign != NTFS_FFFF_SIGNATURE)
1152 		ntfs_fix_post_read(&page_buf->rhdr, PAGE_SIZE, false);
1153 
1154 	if (page_buf != *buffer)
1155 		memcpy(*buffer, Add2Ptr(page_buf, page_off), bytes);
1156 
1157 	bBAAD = page_buf->rhdr.sign == NTFS_BAAD_SIGNATURE;
1158 
1159 	if (usa_error)
1160 		*usa_error = bBAAD;
1161 	/* Check that the update sequence array for this page is valid */
1162 	/* If we don't allow errors, raise an error status */
1163 	else if (bBAAD)
1164 		err = -EINVAL;
1165 
1166 out:
1167 	if (err && to_free) {
1168 		kfree(to_free);
1169 		*buffer = NULL;
1170 	}
1171 
1172 	return err;
1173 }
1174 
1175 /*
1176  * log_read_rst
1177  *
1178  * It walks through 512 blocks of the file looking for a valid
1179  * restart page header. It will stop the first time we find a
1180  * valid page header.
1181  */
1182 static int log_read_rst(struct ntfs_log *log, bool first,
1183 			struct restart_info *info)
1184 {
1185 	u32 skip, vbo;
1186 	struct RESTART_HDR *r_page = NULL;
1187 
1188 	/* Determine which restart area we are looking for. */
1189 	if (first) {
1190 		vbo = 0;
1191 		skip = 512;
1192 	} else {
1193 		vbo = 512;
1194 		skip = 0;
1195 	}
1196 
1197 	/* Loop continuously until we succeed. */
1198 	for (; vbo < log->l_size; vbo = 2 * vbo + skip, skip = 0) {
1199 		bool usa_error;
1200 		bool brst, bchk;
1201 		struct RESTART_AREA *ra;
1202 
1203 		/* Read a page header at the current offset. */
1204 		if (read_log_page(log, vbo, (struct RECORD_PAGE_HDR **)&r_page,
1205 				  &usa_error)) {
1206 			/* Ignore any errors. */
1207 			continue;
1208 		}
1209 
1210 		/* Exit if the signature is a log record page. */
1211 		if (r_page->rhdr.sign == NTFS_RCRD_SIGNATURE) {
1212 			info->initialized = true;
1213 			break;
1214 		}
1215 
1216 		brst = r_page->rhdr.sign == NTFS_RSTR_SIGNATURE;
1217 		bchk = r_page->rhdr.sign == NTFS_CHKD_SIGNATURE;
1218 
1219 		if (!bchk && !brst) {
1220 			if (r_page->rhdr.sign != NTFS_FFFF_SIGNATURE) {
1221 				/*
1222 				 * Remember if the signature does not
1223 				 * indicate uninitialized file.
1224 				 */
1225 				info->initialized = true;
1226 			}
1227 			continue;
1228 		}
1229 
1230 		ra = NULL;
1231 		info->valid_page = false;
1232 		info->initialized = true;
1233 		info->vbo = vbo;
1234 
1235 		/* Let's check the restart area if this is a valid page. */
1236 		if (!is_rst_page_hdr_valid(vbo, r_page))
1237 			goto check_result;
1238 		ra = Add2Ptr(r_page, le16_to_cpu(r_page->ra_off));
1239 
1240 		if (!is_rst_area_valid(r_page))
1241 			goto check_result;
1242 
1243 		/*
1244 		 * We have a valid restart page header and restart area.
1245 		 * If chkdsk was run or we have no clients then we have
1246 		 * no more checking to do.
1247 		 */
1248 		if (bchk || ra->client_idx[1] == LFS_NO_CLIENT_LE) {
1249 			info->valid_page = true;
1250 			goto check_result;
1251 		}
1252 
1253 		if (is_client_area_valid(r_page, usa_error)) {
1254 			info->valid_page = true;
1255 			ra = Add2Ptr(r_page, le16_to_cpu(r_page->ra_off));
1256 		}
1257 
1258 check_result:
1259 		/*
1260 		 * If chkdsk was run then update the caller's
1261 		 * values and return.
1262 		 */
1263 		if (r_page->rhdr.sign == NTFS_CHKD_SIGNATURE) {
1264 			info->chkdsk_was_run = true;
1265 			info->last_lsn = le64_to_cpu(r_page->rhdr.lsn);
1266 			info->restart = true;
1267 			info->r_page = r_page;
1268 			return 0;
1269 		}
1270 
1271 		/*
1272 		 * If we have a valid page then copy the values
1273 		 * we need from it.
1274 		 */
1275 		if (info->valid_page) {
1276 			info->last_lsn = le64_to_cpu(ra->current_lsn);
1277 			info->restart = true;
1278 			info->r_page = r_page;
1279 			return 0;
1280 		}
1281 	}
1282 
1283 	kfree(r_page);
1284 
1285 	return 0;
1286 }
1287 
1288 /*
1289  * Ilog_init_pg_hdr - Init @log from restart page header.
1290  */
1291 static void log_init_pg_hdr(struct ntfs_log *log, u16 major_ver, u16 minor_ver)
1292 {
1293 	log->sys_page_size = log->page_size;
1294 	log->sys_page_mask = log->page_mask;
1295 
1296 	log->clst_per_page = log->page_size >> log->ni->mi.sbi->cluster_bits;
1297 	if (!log->clst_per_page)
1298 		log->clst_per_page = 1;
1299 
1300 	log->first_page = major_ver >= 2 ? 0x22 * log->page_size :
1301 					   4 * log->page_size;
1302 	log->major_ver = major_ver;
1303 	log->minor_ver = minor_ver;
1304 }
1305 
1306 /*
1307  * log_create - Init @log in cases when we don't have a restart area to use.
1308  */
1309 static void log_create(struct ntfs_log *log, const u64 last_lsn,
1310 		       u32 open_log_count, bool wrapped, bool use_multi_page)
1311 {
1312 	/* All file offsets must be quadword aligned. */
1313 	log->file_data_bits = blksize_bits(log->l_size) - 3;
1314 	log->seq_num_mask = (8 << log->file_data_bits) - 1;
1315 	log->seq_num_bits = sizeof(u64) * 8 - log->file_data_bits;
1316 	log->seq_num = (last_lsn >> log->file_data_bits) + 2;
1317 	log->next_page = log->first_page;
1318 	log->oldest_lsn = log->seq_num << log->file_data_bits;
1319 	log->oldest_lsn_off = 0;
1320 	log->last_lsn = log->oldest_lsn;
1321 
1322 	log->l_flags |= NTFSLOG_NO_LAST_LSN | NTFSLOG_NO_OLDEST_LSN;
1323 
1324 	/* Set the correct flags for the I/O and indicate if we have wrapped. */
1325 	if (wrapped)
1326 		log->l_flags |= NTFSLOG_WRAPPED;
1327 
1328 	if (use_multi_page)
1329 		log->l_flags |= NTFSLOG_MULTIPLE_PAGE_IO;
1330 
1331 	/* Compute the log page values. */
1332 	log->data_off = ALIGN(
1333 		offsetof(struct RECORD_PAGE_HDR, fixups) +
1334 			sizeof(short) * ((log->page_size >> SECTOR_SHIFT) + 1),
1335 		8);
1336 	log->data_size = log->page_size - log->data_off;
1337 	log->record_header_len = sizeof(struct LFS_RECORD_HDR);
1338 
1339 	/* Remember the different page sizes for reservation. */
1340 	log->reserved = log->data_size - log->record_header_len;
1341 
1342 	/* Compute the restart page values. */
1343 	log->ra_off = ALIGN(
1344 		offsetof(struct RESTART_HDR, fixups) +
1345 			sizeof(short) *
1346 				((log->sys_page_size >> SECTOR_SHIFT) + 1),
1347 		8);
1348 	log->restart_size = log->sys_page_size - log->ra_off;
1349 	log->ra_size = struct_size(log->ra, clients, 1);
1350 	log->current_openlog_count = open_log_count;
1351 
1352 	/*
1353 	 * The total available log file space is the number of
1354 	 * log file pages times the space available on each page.
1355 	 */
1356 	log->total_avail_pages = log->l_size - log->first_page;
1357 	log->total_avail = log->total_avail_pages >> log->page_bits;
1358 
1359 	/*
1360 	 * We assume that we can't use the end of the page less than
1361 	 * the file record size.
1362 	 * Then we won't need to reserve more than the caller asks for.
1363 	 */
1364 	log->max_current_avail = log->total_avail * log->reserved;
1365 	log->total_avail = log->total_avail * log->data_size;
1366 	log->current_avail = log->max_current_avail;
1367 }
1368 
1369 /*
1370  * log_create_ra - Fill a restart area from the values stored in @log.
1371  */
1372 static struct RESTART_AREA *log_create_ra(struct ntfs_log *log)
1373 {
1374 	struct CLIENT_REC *cr;
1375 	struct RESTART_AREA *ra = kzalloc(log->restart_size, GFP_NOFS);
1376 
1377 	if (!ra)
1378 		return NULL;
1379 
1380 	ra->current_lsn = cpu_to_le64(log->last_lsn);
1381 	ra->log_clients = cpu_to_le16(1);
1382 	ra->client_idx[1] = LFS_NO_CLIENT_LE;
1383 	if (log->l_flags & NTFSLOG_MULTIPLE_PAGE_IO)
1384 		ra->flags = RESTART_SINGLE_PAGE_IO;
1385 	ra->seq_num_bits = cpu_to_le32(log->seq_num_bits);
1386 	ra->ra_len = cpu_to_le16(log->ra_size);
1387 	ra->client_off = cpu_to_le16(offsetof(struct RESTART_AREA, clients));
1388 	ra->l_size = cpu_to_le64(log->l_size);
1389 	ra->rec_hdr_len = cpu_to_le16(log->record_header_len);
1390 	ra->data_off = cpu_to_le16(log->data_off);
1391 	ra->open_log_count = cpu_to_le32(log->current_openlog_count + 1);
1392 
1393 	cr = ra->clients;
1394 
1395 	cr->prev_client = LFS_NO_CLIENT_LE;
1396 	cr->next_client = LFS_NO_CLIENT_LE;
1397 
1398 	return ra;
1399 }
1400 
1401 static u32 final_log_off(struct ntfs_log *log, u64 lsn, u32 data_len)
1402 {
1403 	u32 base_vbo = lsn << 3;
1404 	u32 final_log_off = (base_vbo & log->seq_num_mask) & ~log->page_mask;
1405 	u32 page_off = base_vbo & log->page_mask;
1406 	u32 tail = log->page_size - page_off;
1407 
1408 	page_off -= 1;
1409 
1410 	/* Add the length of the header. */
1411 	data_len += log->record_header_len;
1412 
1413 	/*
1414 	 * If this lsn is contained this log page we are done.
1415 	 * Otherwise we need to walk through several log pages.
1416 	 */
1417 	if (data_len > tail) {
1418 		data_len -= tail;
1419 		tail = log->data_size;
1420 		page_off = log->data_off - 1;
1421 
1422 		for (;;) {
1423 			final_log_off = next_page_off(log, final_log_off);
1424 
1425 			/*
1426 			 * We are done if the remaining bytes
1427 			 * fit on this page.
1428 			 */
1429 			if (data_len <= tail)
1430 				break;
1431 			data_len -= tail;
1432 		}
1433 	}
1434 
1435 	/*
1436 	 * We add the remaining bytes to our starting position on this page
1437 	 * and then add that value to the file offset of this log page.
1438 	 */
1439 	return final_log_off + data_len + page_off;
1440 }
1441 
1442 static int next_log_lsn(struct ntfs_log *log, const struct LFS_RECORD_HDR *rh,
1443 			u64 *lsn)
1444 {
1445 	int err;
1446 	u64 this_lsn = le64_to_cpu(rh->this_lsn);
1447 	u32 vbo = lsn_to_vbo(log, this_lsn);
1448 	u32 end =
1449 		final_log_off(log, this_lsn, le32_to_cpu(rh->client_data_len));
1450 	u32 hdr_off = end & ~log->sys_page_mask;
1451 	u64 seq = this_lsn >> log->file_data_bits;
1452 	struct RECORD_PAGE_HDR *page = NULL;
1453 
1454 	/* Remember if we wrapped. */
1455 	if (end <= vbo)
1456 		seq += 1;
1457 
1458 	/* Log page header for this page. */
1459 	err = read_log_page(log, hdr_off, &page, NULL);
1460 	if (err)
1461 		return err;
1462 
1463 	/*
1464 	 * If the lsn we were given was not the last lsn on this page,
1465 	 * then the starting offset for the next lsn is on a quad word
1466 	 * boundary following the last file offset for the current lsn.
1467 	 * Otherwise the file offset is the start of the data on the next page.
1468 	 */
1469 	if (this_lsn == le64_to_cpu(page->rhdr.lsn)) {
1470 		/* If we wrapped, we need to increment the sequence number. */
1471 		hdr_off = next_page_off(log, hdr_off);
1472 		if (hdr_off == log->first_page)
1473 			seq += 1;
1474 
1475 		vbo = hdr_off + log->data_off;
1476 	} else {
1477 		vbo = ALIGN(end, 8);
1478 	}
1479 
1480 	/* Compute the lsn based on the file offset and the sequence count. */
1481 	*lsn = vbo_to_lsn(log, vbo, seq);
1482 
1483 	/*
1484 	 * If this lsn is within the legal range for the file, we return true.
1485 	 * Otherwise false indicates that there are no more lsn's.
1486 	 */
1487 	if (!is_lsn_in_file(log, *lsn))
1488 		*lsn = 0;
1489 
1490 	kfree(page);
1491 
1492 	return 0;
1493 }
1494 
1495 /*
1496  * current_log_avail - Calculate the number of bytes available for log records.
1497  */
1498 static u32 current_log_avail(struct ntfs_log *log)
1499 {
1500 	u32 oldest_off, next_free_off, free_bytes;
1501 
1502 	if (log->l_flags & NTFSLOG_NO_LAST_LSN) {
1503 		/* The entire file is available. */
1504 		return log->max_current_avail;
1505 	}
1506 
1507 	/*
1508 	 * If there is a last lsn the restart area then we know that we will
1509 	 * have to compute the free range.
1510 	 * If there is no oldest lsn then start at the first page of the file.
1511 	 */
1512 	oldest_off = (log->l_flags & NTFSLOG_NO_OLDEST_LSN) ?
1513 			     log->first_page :
1514 			     (log->oldest_lsn_off & ~log->sys_page_mask);
1515 
1516 	/*
1517 	 * We will use the next log page offset to compute the next free page.
1518 	 * If we are going to reuse this page go to the next page.
1519 	 * If we are at the first page then use the end of the file.
1520 	 */
1521 	next_free_off = (log->l_flags & NTFSLOG_REUSE_TAIL) ?
1522 				log->next_page + log->page_size :
1523 			log->next_page == log->first_page ? log->l_size :
1524 							    log->next_page;
1525 
1526 	/* If the two offsets are the same then there is no available space. */
1527 	if (oldest_off == next_free_off)
1528 		return 0;
1529 	/*
1530 	 * If the free offset follows the oldest offset then subtract
1531 	 * this range from the total available pages.
1532 	 */
1533 	free_bytes =
1534 		oldest_off < next_free_off ?
1535 			log->total_avail_pages - (next_free_off - oldest_off) :
1536 			oldest_off - next_free_off;
1537 
1538 	free_bytes >>= log->page_bits;
1539 	return free_bytes * log->reserved;
1540 }
1541 
1542 static bool check_subseq_log_page(struct ntfs_log *log,
1543 				  const struct RECORD_PAGE_HDR *rp, u32 vbo,
1544 				  u64 seq)
1545 {
1546 	u64 lsn_seq;
1547 	const struct NTFS_RECORD_HEADER *rhdr = &rp->rhdr;
1548 	u64 lsn = le64_to_cpu(rhdr->lsn);
1549 
1550 	if (rhdr->sign == NTFS_FFFF_SIGNATURE || !rhdr->sign)
1551 		return false;
1552 
1553 	/*
1554 	 * If the last lsn on the page occurs was written after the page
1555 	 * that caused the original error then we have a fatal error.
1556 	 */
1557 	lsn_seq = lsn >> log->file_data_bits;
1558 
1559 	/*
1560 	 * If the sequence number for the lsn the page is equal or greater
1561 	 * than lsn we expect, then this is a subsequent write.
1562 	 */
1563 	return lsn_seq >= seq ||
1564 	       (lsn_seq == seq - 1 && log->first_page == vbo &&
1565 		vbo != (lsn_to_vbo(log, lsn) & ~log->page_mask));
1566 }
1567 
1568 /*
1569  * last_log_lsn
1570  *
1571  * Walks through the log pages for a file, searching for the
1572  * last log page written to the file.
1573  */
1574 static int last_log_lsn(struct ntfs_log *log)
1575 {
1576 	int err;
1577 	bool usa_error = false;
1578 	bool replace_page = false;
1579 	bool reuse_page = log->l_flags & NTFSLOG_REUSE_TAIL;
1580 	bool wrapped_file, wrapped;
1581 
1582 	u32 page_cnt = 1, page_pos = 1;
1583 	u32 page_off = 0, page_off1 = 0, saved_off = 0;
1584 	u32 final_off, second_off, final_off_prev = 0, second_off_prev = 0;
1585 	u32 first_file_off = 0, second_file_off = 0;
1586 	u32 part_io_count = 0;
1587 	u32 tails = 0;
1588 	u32 this_off, curpage_off, nextpage_off, remain_pages;
1589 
1590 	u64 expected_seq, seq_base = 0, lsn_base = 0;
1591 	u64 best_lsn, best_lsn1, best_lsn2;
1592 	u64 lsn_cur, lsn1, lsn2;
1593 	u64 last_ok_lsn = reuse_page ? log->last_lsn : 0;
1594 
1595 	u16 cur_pos, best_page_pos;
1596 
1597 	struct RECORD_PAGE_HDR *page = NULL;
1598 	struct RECORD_PAGE_HDR *tst_page = NULL;
1599 	struct RECORD_PAGE_HDR *first_tail = NULL;
1600 	struct RECORD_PAGE_HDR *second_tail = NULL;
1601 	struct RECORD_PAGE_HDR *tail_page = NULL;
1602 	struct RECORD_PAGE_HDR *second_tail_prev = NULL;
1603 	struct RECORD_PAGE_HDR *first_tail_prev = NULL;
1604 	struct RECORD_PAGE_HDR *page_bufs = NULL;
1605 	struct RECORD_PAGE_HDR *best_page;
1606 
1607 	if (log->major_ver >= 2) {
1608 		final_off = 0x02 * log->page_size;
1609 		second_off = 0x12 * log->page_size;
1610 
1611 		// 0x10 == 0x12 - 0x2
1612 		page_bufs = kmalloc(log->page_size * 0x10, GFP_NOFS);
1613 		if (!page_bufs)
1614 			return -ENOMEM;
1615 	} else {
1616 		second_off = log->first_page - log->page_size;
1617 		final_off = second_off - log->page_size;
1618 	}
1619 
1620 next_tail:
1621 	/* Read second tail page (at pos 3/0x12000). */
1622 	if (read_log_page(log, second_off, &second_tail, &usa_error) ||
1623 	    usa_error || second_tail->rhdr.sign != NTFS_RCRD_SIGNATURE) {
1624 		kfree(second_tail);
1625 		second_tail = NULL;
1626 		second_file_off = 0;
1627 		lsn2 = 0;
1628 	} else {
1629 		second_file_off = hdr_file_off(log, second_tail);
1630 		lsn2 = le64_to_cpu(second_tail->record_hdr.last_end_lsn);
1631 	}
1632 
1633 	/* Read first tail page (at pos 2/0x2000). */
1634 	if (read_log_page(log, final_off, &first_tail, &usa_error) ||
1635 	    usa_error || first_tail->rhdr.sign != NTFS_RCRD_SIGNATURE) {
1636 		kfree(first_tail);
1637 		first_tail = NULL;
1638 		first_file_off = 0;
1639 		lsn1 = 0;
1640 	} else {
1641 		first_file_off = hdr_file_off(log, first_tail);
1642 		lsn1 = le64_to_cpu(first_tail->record_hdr.last_end_lsn);
1643 	}
1644 
1645 	if (log->major_ver < 2) {
1646 		int best_page;
1647 
1648 		first_tail_prev = first_tail;
1649 		final_off_prev = first_file_off;
1650 		second_tail_prev = second_tail;
1651 		second_off_prev = second_file_off;
1652 		tails = 1;
1653 
1654 		if (!first_tail && !second_tail)
1655 			goto tail_read;
1656 
1657 		if (first_tail && second_tail)
1658 			best_page = lsn1 < lsn2 ? 1 : 0;
1659 		else if (first_tail)
1660 			best_page = 0;
1661 		else
1662 			best_page = 1;
1663 
1664 		page_off = best_page ? second_file_off : first_file_off;
1665 		seq_base = (best_page ? lsn2 : lsn1) >> log->file_data_bits;
1666 		goto tail_read;
1667 	}
1668 
1669 	best_lsn1 = first_tail ? base_lsn(log, first_tail, first_file_off) : 0;
1670 	best_lsn2 = second_tail ? base_lsn(log, second_tail, second_file_off) :
1671 				  0;
1672 
1673 	if (first_tail && second_tail) {
1674 		if (best_lsn1 > best_lsn2) {
1675 			best_lsn = best_lsn1;
1676 			best_page = first_tail;
1677 			this_off = first_file_off;
1678 		} else {
1679 			best_lsn = best_lsn2;
1680 			best_page = second_tail;
1681 			this_off = second_file_off;
1682 		}
1683 	} else if (first_tail) {
1684 		best_lsn = best_lsn1;
1685 		best_page = first_tail;
1686 		this_off = first_file_off;
1687 	} else if (second_tail) {
1688 		best_lsn = best_lsn2;
1689 		best_page = second_tail;
1690 		this_off = second_file_off;
1691 	} else {
1692 		goto tail_read;
1693 	}
1694 
1695 	best_page_pos = le16_to_cpu(best_page->page_pos);
1696 
1697 	if (!tails) {
1698 		if (best_page_pos == page_pos) {
1699 			seq_base = best_lsn >> log->file_data_bits;
1700 			saved_off = page_off = le32_to_cpu(best_page->file_off);
1701 			lsn_base = best_lsn;
1702 
1703 			memmove(page_bufs, best_page, log->page_size);
1704 
1705 			page_cnt = le16_to_cpu(best_page->page_count);
1706 			if (page_cnt > 1)
1707 				page_pos += 1;
1708 
1709 			tails = 1;
1710 		}
1711 	} else if (seq_base == (best_lsn >> log->file_data_bits) &&
1712 		   saved_off + log->page_size == this_off &&
1713 		   lsn_base < best_lsn &&
1714 		   (page_pos != page_cnt || best_page_pos == page_pos ||
1715 		    best_page_pos == 1) &&
1716 		   (page_pos >= page_cnt || best_page_pos == page_pos)) {
1717 		u16 bppc = le16_to_cpu(best_page->page_count);
1718 
1719 		saved_off += log->page_size;
1720 		lsn_base = best_lsn;
1721 
1722 		memmove(Add2Ptr(page_bufs, tails * log->page_size), best_page,
1723 			log->page_size);
1724 
1725 		tails += 1;
1726 
1727 		if (best_page_pos != bppc) {
1728 			page_cnt = bppc;
1729 			page_pos = best_page_pos;
1730 
1731 			if (page_cnt > 1)
1732 				page_pos += 1;
1733 		} else {
1734 			page_pos = page_cnt = 1;
1735 		}
1736 	} else {
1737 		kfree(first_tail);
1738 		kfree(second_tail);
1739 		goto tail_read;
1740 	}
1741 
1742 	kfree(first_tail_prev);
1743 	first_tail_prev = first_tail;
1744 	final_off_prev = first_file_off;
1745 	first_tail = NULL;
1746 
1747 	kfree(second_tail_prev);
1748 	second_tail_prev = second_tail;
1749 	second_off_prev = second_file_off;
1750 	second_tail = NULL;
1751 
1752 	final_off += log->page_size;
1753 	second_off += log->page_size;
1754 
1755 	if (tails < 0x10)
1756 		goto next_tail;
1757 tail_read:
1758 	first_tail = first_tail_prev;
1759 	final_off = final_off_prev;
1760 
1761 	second_tail = second_tail_prev;
1762 	second_off = second_off_prev;
1763 
1764 	page_cnt = page_pos = 1;
1765 
1766 	curpage_off = seq_base == log->seq_num ? min(log->next_page, page_off) :
1767 						 log->next_page;
1768 
1769 	wrapped_file =
1770 		curpage_off == log->first_page &&
1771 		!(log->l_flags & (NTFSLOG_NO_LAST_LSN | NTFSLOG_REUSE_TAIL));
1772 
1773 	expected_seq = wrapped_file ? (log->seq_num + 1) : log->seq_num;
1774 
1775 	nextpage_off = curpage_off;
1776 
1777 next_page:
1778 	tail_page = NULL;
1779 	/* Read the next log page. */
1780 	err = read_log_page(log, curpage_off, &page, &usa_error);
1781 
1782 	/* Compute the next log page offset the file. */
1783 	nextpage_off = next_page_off(log, curpage_off);
1784 	wrapped = nextpage_off == log->first_page;
1785 
1786 	if (tails > 1) {
1787 		struct RECORD_PAGE_HDR *cur_page =
1788 			Add2Ptr(page_bufs, curpage_off - page_off);
1789 
1790 		if (curpage_off == saved_off) {
1791 			tail_page = cur_page;
1792 			goto use_tail_page;
1793 		}
1794 
1795 		if (page_off > curpage_off || curpage_off >= saved_off)
1796 			goto use_tail_page;
1797 
1798 		if (page_off1)
1799 			goto use_cur_page;
1800 
1801 		if (!err && !usa_error &&
1802 		    page->rhdr.sign == NTFS_RCRD_SIGNATURE &&
1803 		    cur_page->rhdr.lsn == page->rhdr.lsn &&
1804 		    cur_page->record_hdr.next_record_off ==
1805 			    page->record_hdr.next_record_off &&
1806 		    ((page_pos == page_cnt &&
1807 		      le16_to_cpu(page->page_pos) == 1) ||
1808 		     (page_pos != page_cnt &&
1809 		      le16_to_cpu(page->page_pos) == page_pos + 1 &&
1810 		      le16_to_cpu(page->page_count) == page_cnt))) {
1811 			cur_page = NULL;
1812 			goto use_tail_page;
1813 		}
1814 
1815 		page_off1 = page_off;
1816 
1817 use_cur_page:
1818 
1819 		lsn_cur = le64_to_cpu(cur_page->rhdr.lsn);
1820 
1821 		if (last_ok_lsn !=
1822 			    le64_to_cpu(cur_page->record_hdr.last_end_lsn) &&
1823 		    ((lsn_cur >> log->file_data_bits) +
1824 		     ((curpage_off <
1825 		       (lsn_to_vbo(log, lsn_cur) & ~log->page_mask)) ?
1826 			      1 :
1827 			      0)) != expected_seq) {
1828 			goto check_tail;
1829 		}
1830 
1831 		if (!is_log_record_end(cur_page)) {
1832 			tail_page = NULL;
1833 			last_ok_lsn = lsn_cur;
1834 			goto next_page_1;
1835 		}
1836 
1837 		log->seq_num = expected_seq;
1838 		log->l_flags &= ~NTFSLOG_NO_LAST_LSN;
1839 		log->last_lsn = le64_to_cpu(cur_page->record_hdr.last_end_lsn);
1840 		log->ra->current_lsn = cur_page->record_hdr.last_end_lsn;
1841 
1842 		if (log->record_header_len <=
1843 		    log->page_size -
1844 			    le16_to_cpu(cur_page->record_hdr.next_record_off)) {
1845 			log->l_flags |= NTFSLOG_REUSE_TAIL;
1846 			log->next_page = curpage_off;
1847 		} else {
1848 			log->l_flags &= ~NTFSLOG_REUSE_TAIL;
1849 			log->next_page = nextpage_off;
1850 		}
1851 
1852 		if (wrapped_file)
1853 			log->l_flags |= NTFSLOG_WRAPPED;
1854 
1855 		last_ok_lsn = le64_to_cpu(cur_page->record_hdr.last_end_lsn);
1856 		goto next_page_1;
1857 	}
1858 
1859 	/*
1860 	 * If we are at the expected first page of a transfer check to see
1861 	 * if either tail copy is at this offset.
1862 	 * If this page is the last page of a transfer, check if we wrote
1863 	 * a subsequent tail copy.
1864 	 */
1865 	if (page_cnt == page_pos || page_cnt == page_pos + 1) {
1866 		/*
1867 		 * Check if the offset matches either the first or second
1868 		 * tail copy. It is possible it will match both.
1869 		 */
1870 		if (curpage_off == final_off)
1871 			tail_page = first_tail;
1872 
1873 		/*
1874 		 * If we already matched on the first page then
1875 		 * check the ending lsn's.
1876 		 */
1877 		if (curpage_off == second_off) {
1878 			if (!tail_page ||
1879 			    (second_tail &&
1880 			     le64_to_cpu(second_tail->record_hdr.last_end_lsn) >
1881 				     le64_to_cpu(first_tail->record_hdr
1882 							 .last_end_lsn))) {
1883 				tail_page = second_tail;
1884 			}
1885 		}
1886 	}
1887 
1888 use_tail_page:
1889 	if (tail_page) {
1890 		/* We have a candidate for a tail copy. */
1891 		lsn_cur = le64_to_cpu(tail_page->record_hdr.last_end_lsn);
1892 
1893 		if (last_ok_lsn < lsn_cur) {
1894 			/*
1895 			 * If the sequence number is not expected,
1896 			 * then don't use the tail copy.
1897 			 */
1898 			if (expected_seq != (lsn_cur >> log->file_data_bits))
1899 				tail_page = NULL;
1900 		} else if (last_ok_lsn > lsn_cur) {
1901 			/*
1902 			 * If the last lsn is greater than the one on
1903 			 * this page then forget this tail.
1904 			 */
1905 			tail_page = NULL;
1906 		}
1907 	}
1908 
1909 	/*
1910 	 *If we have an error on the current page,
1911 	 * we will break of this loop.
1912 	 */
1913 	if (err || usa_error)
1914 		goto check_tail;
1915 
1916 	/*
1917 	 * Done if the last lsn on this page doesn't match the previous known
1918 	 * last lsn or the sequence number is not expected.
1919 	 */
1920 	lsn_cur = le64_to_cpu(page->rhdr.lsn);
1921 	if (last_ok_lsn != lsn_cur &&
1922 	    expected_seq != (lsn_cur >> log->file_data_bits)) {
1923 		goto check_tail;
1924 	}
1925 
1926 	/*
1927 	 * Check that the page position and page count values are correct.
1928 	 * If this is the first page of a transfer the position must be 1
1929 	 * and the count will be unknown.
1930 	 */
1931 	if (page_cnt == page_pos) {
1932 		if (page->page_pos != cpu_to_le16(1) &&
1933 		    (!reuse_page || page->page_pos != page->page_count)) {
1934 			/*
1935 			 * If the current page is the first page we are
1936 			 * looking at and we are reusing this page then
1937 			 * it can be either the first or last page of a
1938 			 * transfer. Otherwise it can only be the first.
1939 			 */
1940 			goto check_tail;
1941 		}
1942 	} else if (le16_to_cpu(page->page_count) != page_cnt ||
1943 		   le16_to_cpu(page->page_pos) != page_pos + 1) {
1944 		/*
1945 		 * The page position better be 1 more than the last page
1946 		 * position and the page count better match.
1947 		 */
1948 		goto check_tail;
1949 	}
1950 
1951 	/*
1952 	 * We have a valid page the file and may have a valid page
1953 	 * the tail copy area.
1954 	 * If the tail page was written after the page the file then
1955 	 * break of the loop.
1956 	 */
1957 	if (tail_page &&
1958 	    le64_to_cpu(tail_page->record_hdr.last_end_lsn) > lsn_cur) {
1959 		/* Remember if we will replace the page. */
1960 		replace_page = true;
1961 		goto check_tail;
1962 	}
1963 
1964 	tail_page = NULL;
1965 
1966 	if (is_log_record_end(page)) {
1967 		/*
1968 		 * Since we have read this page we know the sequence number
1969 		 * is the same as our expected value.
1970 		 */
1971 		log->seq_num = expected_seq;
1972 		log->last_lsn = le64_to_cpu(page->record_hdr.last_end_lsn);
1973 		log->ra->current_lsn = page->record_hdr.last_end_lsn;
1974 		log->l_flags &= ~NTFSLOG_NO_LAST_LSN;
1975 
1976 		/*
1977 		 * If there is room on this page for another header then
1978 		 * remember we want to reuse the page.
1979 		 */
1980 		if (log->record_header_len <=
1981 		    log->page_size -
1982 			    le16_to_cpu(page->record_hdr.next_record_off)) {
1983 			log->l_flags |= NTFSLOG_REUSE_TAIL;
1984 			log->next_page = curpage_off;
1985 		} else {
1986 			log->l_flags &= ~NTFSLOG_REUSE_TAIL;
1987 			log->next_page = nextpage_off;
1988 		}
1989 
1990 		/* Remember if we wrapped the log file. */
1991 		if (wrapped_file)
1992 			log->l_flags |= NTFSLOG_WRAPPED;
1993 	}
1994 
1995 	/*
1996 	 * Remember the last page count and position.
1997 	 * Also remember the last known lsn.
1998 	 */
1999 	page_cnt = le16_to_cpu(page->page_count);
2000 	page_pos = le16_to_cpu(page->page_pos);
2001 	last_ok_lsn = le64_to_cpu(page->rhdr.lsn);
2002 
2003 next_page_1:
2004 
2005 	if (wrapped) {
2006 		expected_seq += 1;
2007 		wrapped_file = 1;
2008 	}
2009 
2010 	curpage_off = nextpage_off;
2011 	kfree(page);
2012 	page = NULL;
2013 	reuse_page = 0;
2014 	goto next_page;
2015 
2016 check_tail:
2017 	if (tail_page) {
2018 		log->seq_num = expected_seq;
2019 		log->last_lsn = le64_to_cpu(tail_page->record_hdr.last_end_lsn);
2020 		log->ra->current_lsn = tail_page->record_hdr.last_end_lsn;
2021 		log->l_flags &= ~NTFSLOG_NO_LAST_LSN;
2022 
2023 		if (log->page_size -
2024 			    le16_to_cpu(
2025 				    tail_page->record_hdr.next_record_off) >=
2026 		    log->record_header_len) {
2027 			log->l_flags |= NTFSLOG_REUSE_TAIL;
2028 			log->next_page = curpage_off;
2029 		} else {
2030 			log->l_flags &= ~NTFSLOG_REUSE_TAIL;
2031 			log->next_page = nextpage_off;
2032 		}
2033 
2034 		if (wrapped)
2035 			log->l_flags |= NTFSLOG_WRAPPED;
2036 	}
2037 
2038 	/* Remember that the partial IO will start at the next page. */
2039 	second_off = nextpage_off;
2040 
2041 	/*
2042 	 * If the next page is the first page of the file then update
2043 	 * the sequence number for log records which begon the next page.
2044 	 */
2045 	if (wrapped)
2046 		expected_seq += 1;
2047 
2048 	/*
2049 	 * If we have a tail copy or are performing single page I/O we can
2050 	 * immediately look at the next page.
2051 	 */
2052 	if (replace_page || (log->ra->flags & RESTART_SINGLE_PAGE_IO)) {
2053 		page_cnt = 2;
2054 		page_pos = 1;
2055 		goto check_valid;
2056 	}
2057 
2058 	if (page_pos != page_cnt)
2059 		goto check_valid;
2060 	/*
2061 	 * If the next page causes us to wrap to the beginning of the log
2062 	 * file then we know which page to check next.
2063 	 */
2064 	if (wrapped) {
2065 		page_cnt = 2;
2066 		page_pos = 1;
2067 		goto check_valid;
2068 	}
2069 
2070 	cur_pos = 2;
2071 
2072 next_test_page:
2073 	kfree(tst_page);
2074 	tst_page = NULL;
2075 
2076 	/* Walk through the file, reading log pages. */
2077 	err = read_log_page(log, nextpage_off, &tst_page, &usa_error);
2078 
2079 	/*
2080 	 * If we get a USA error then assume that we correctly found
2081 	 * the end of the original transfer.
2082 	 */
2083 	if (usa_error)
2084 		goto file_is_valid;
2085 
2086 	/*
2087 	 * If we were able to read the page, we examine it to see if it
2088 	 * is the same or different Io block.
2089 	 */
2090 	if (err)
2091 		goto next_test_page_1;
2092 
2093 	if (le16_to_cpu(tst_page->page_pos) == cur_pos &&
2094 	    check_subseq_log_page(log, tst_page, nextpage_off, expected_seq)) {
2095 		page_cnt = le16_to_cpu(tst_page->page_count) + 1;
2096 		page_pos = le16_to_cpu(tst_page->page_pos);
2097 		goto check_valid;
2098 	} else {
2099 		goto file_is_valid;
2100 	}
2101 
2102 next_test_page_1:
2103 
2104 	nextpage_off = next_page_off(log, curpage_off);
2105 	wrapped = nextpage_off == log->first_page;
2106 
2107 	if (wrapped) {
2108 		expected_seq += 1;
2109 		page_cnt = 2;
2110 		page_pos = 1;
2111 	}
2112 
2113 	cur_pos += 1;
2114 	part_io_count += 1;
2115 	if (!wrapped)
2116 		goto next_test_page;
2117 
2118 check_valid:
2119 	/* Skip over the remaining pages this transfer. */
2120 	remain_pages = page_cnt - page_pos - 1;
2121 	part_io_count += remain_pages;
2122 
2123 	while (remain_pages--) {
2124 		nextpage_off = next_page_off(log, curpage_off);
2125 		wrapped = nextpage_off == log->first_page;
2126 
2127 		if (wrapped)
2128 			expected_seq += 1;
2129 	}
2130 
2131 	/* Call our routine to check this log page. */
2132 	kfree(tst_page);
2133 	tst_page = NULL;
2134 
2135 	err = read_log_page(log, nextpage_off, &tst_page, &usa_error);
2136 	if (!err && !usa_error &&
2137 	    check_subseq_log_page(log, tst_page, nextpage_off, expected_seq)) {
2138 		err = -EINVAL;
2139 		goto out;
2140 	}
2141 
2142 file_is_valid:
2143 
2144 	/* We have a valid file. */
2145 	if (page_off1 || tail_page) {
2146 		struct RECORD_PAGE_HDR *tmp_page;
2147 
2148 		if (sb_rdonly(log->ni->mi.sbi->sb)) {
2149 			err = -EROFS;
2150 			goto out;
2151 		}
2152 
2153 		if (page_off1) {
2154 			tmp_page = Add2Ptr(page_bufs, page_off1 - page_off);
2155 			tails -= (page_off1 - page_off) / log->page_size;
2156 			if (!tail_page)
2157 				tails -= 1;
2158 		} else {
2159 			tmp_page = tail_page;
2160 			tails = 1;
2161 		}
2162 
2163 		while (tails--) {
2164 			u64 off = hdr_file_off(log, tmp_page);
2165 
2166 			if (!page) {
2167 				page = kmalloc(log->page_size, GFP_NOFS);
2168 				if (!page) {
2169 					err = -ENOMEM;
2170 					goto out;
2171 				}
2172 			}
2173 
2174 			/*
2175 			 * Correct page and copy the data from this page
2176 			 * into it and flush it to disk.
2177 			 */
2178 			memcpy(page, tmp_page, log->page_size);
2179 
2180 			/* Fill last flushed lsn value flush the page. */
2181 			if (log->major_ver < 2)
2182 				page->rhdr.lsn = page->record_hdr.last_end_lsn;
2183 			else
2184 				page->file_off = 0;
2185 
2186 			page->page_pos = page->page_count = cpu_to_le16(1);
2187 
2188 			ntfs_fix_pre_write(&page->rhdr, log->page_size);
2189 
2190 			err = ntfs_sb_write_run(log->ni->mi.sbi,
2191 						&log->ni->file.run, off, page,
2192 						log->page_size, 0);
2193 
2194 			if (err)
2195 				goto out;
2196 
2197 			if (part_io_count && second_off == off) {
2198 				second_off += log->page_size;
2199 				part_io_count -= 1;
2200 			}
2201 
2202 			tmp_page = Add2Ptr(tmp_page, log->page_size);
2203 		}
2204 	}
2205 
2206 	if (part_io_count) {
2207 		if (sb_rdonly(log->ni->mi.sbi->sb)) {
2208 			err = -EROFS;
2209 			goto out;
2210 		}
2211 	}
2212 
2213 out:
2214 	kfree(second_tail);
2215 	kfree(first_tail);
2216 	kfree(page);
2217 	kfree(tst_page);
2218 	kfree(page_bufs);
2219 
2220 	return err;
2221 }
2222 
2223 /*
2224  * read_log_rec_buf - Copy a log record from the file to a buffer.
2225  *
2226  * The log record may span several log pages and may even wrap the file.
2227  */
2228 static int read_log_rec_buf(struct ntfs_log *log,
2229 			    const struct LFS_RECORD_HDR *rh, void *buffer)
2230 {
2231 	int err;
2232 	struct RECORD_PAGE_HDR *ph = NULL;
2233 	u64 lsn = le64_to_cpu(rh->this_lsn);
2234 	u32 vbo = lsn_to_vbo(log, lsn) & ~log->page_mask;
2235 	u32 off = lsn_to_page_off(log, lsn) + log->record_header_len;
2236 	u32 data_len = le32_to_cpu(rh->client_data_len);
2237 
2238 	/*
2239 	 * While there are more bytes to transfer,
2240 	 * we continue to attempt to perform the read.
2241 	 */
2242 	for (;;) {
2243 		bool usa_error;
2244 		u32 tail = log->page_size - off;
2245 
2246 		if (tail >= data_len)
2247 			tail = data_len;
2248 
2249 		data_len -= tail;
2250 
2251 		err = read_log_page(log, vbo, &ph, &usa_error);
2252 		if (err)
2253 			goto out;
2254 
2255 		/*
2256 		 * The last lsn on this page better be greater or equal
2257 		 * to the lsn we are copying.
2258 		 */
2259 		if (lsn > le64_to_cpu(ph->rhdr.lsn)) {
2260 			err = -EINVAL;
2261 			goto out;
2262 		}
2263 
2264 		memcpy(buffer, Add2Ptr(ph, off), tail);
2265 
2266 		/* If there are no more bytes to transfer, we exit the loop. */
2267 		if (!data_len) {
2268 			if (!is_log_record_end(ph) ||
2269 			    lsn > le64_to_cpu(ph->record_hdr.last_end_lsn)) {
2270 				err = -EINVAL;
2271 				goto out;
2272 			}
2273 			break;
2274 		}
2275 
2276 		if (ph->rhdr.lsn == ph->record_hdr.last_end_lsn ||
2277 		    lsn > le64_to_cpu(ph->rhdr.lsn)) {
2278 			err = -EINVAL;
2279 			goto out;
2280 		}
2281 
2282 		vbo = next_page_off(log, vbo);
2283 		off = log->data_off;
2284 
2285 		/*
2286 		 * Adjust our pointer the user's buffer to transfer
2287 		 * the next block to.
2288 		 */
2289 		buffer = Add2Ptr(buffer, tail);
2290 	}
2291 
2292 out:
2293 	kfree(ph);
2294 	return err;
2295 }
2296 
2297 static int read_rst_area(struct ntfs_log *log, struct NTFS_RESTART **rst_,
2298 			 u64 *lsn)
2299 {
2300 	int err;
2301 	struct LFS_RECORD_HDR *rh = NULL;
2302 	const struct CLIENT_REC *cr =
2303 		Add2Ptr(log->ra, le16_to_cpu(log->ra->client_off));
2304 	u64 lsnr, lsnc = le64_to_cpu(cr->restart_lsn);
2305 	u32 len;
2306 	struct NTFS_RESTART *rst;
2307 
2308 	*lsn = 0;
2309 	*rst_ = NULL;
2310 
2311 	/* If the client doesn't have a restart area, go ahead and exit now. */
2312 	if (!lsnc)
2313 		return 0;
2314 
2315 	err = read_log_page(log, lsn_to_vbo(log, lsnc),
2316 			    (struct RECORD_PAGE_HDR **)&rh, NULL);
2317 	if (err)
2318 		return err;
2319 
2320 	rst = NULL;
2321 	lsnr = le64_to_cpu(rh->this_lsn);
2322 
2323 	if (lsnc != lsnr) {
2324 		/* If the lsn values don't match, then the disk is corrupt. */
2325 		err = -EINVAL;
2326 		goto out;
2327 	}
2328 
2329 	*lsn = lsnr;
2330 	len = le32_to_cpu(rh->client_data_len);
2331 
2332 	if (!len) {
2333 		err = 0;
2334 		goto out;
2335 	}
2336 
2337 	if (len < sizeof(struct NTFS_RESTART)) {
2338 		err = -EINVAL;
2339 		goto out;
2340 	}
2341 
2342 	rst = kmalloc(len, GFP_NOFS);
2343 	if (!rst) {
2344 		err = -ENOMEM;
2345 		goto out;
2346 	}
2347 
2348 	/* Copy the data into the 'rst' buffer. */
2349 	err = read_log_rec_buf(log, rh, rst);
2350 	if (err)
2351 		goto out;
2352 
2353 	*rst_ = rst;
2354 	rst = NULL;
2355 
2356 out:
2357 	kfree(rh);
2358 	kfree(rst);
2359 
2360 	return err;
2361 }
2362 
2363 static int find_log_rec(struct ntfs_log *log, u64 lsn, struct lcb *lcb)
2364 {
2365 	int err;
2366 	struct LFS_RECORD_HDR *rh = lcb->lrh;
2367 	u32 rec_len, len;
2368 
2369 	/* Read the record header for this lsn. */
2370 	if (!rh) {
2371 		err = read_log_page(log, lsn_to_vbo(log, lsn),
2372 				    (struct RECORD_PAGE_HDR **)&rh, NULL);
2373 
2374 		lcb->lrh = rh;
2375 		if (err)
2376 			return err;
2377 	}
2378 
2379 	/*
2380 	 * If the lsn the log record doesn't match the desired
2381 	 * lsn then the disk is corrupt.
2382 	 */
2383 	if (lsn != le64_to_cpu(rh->this_lsn))
2384 		return -EINVAL;
2385 
2386 	len = le32_to_cpu(rh->client_data_len);
2387 
2388 	/*
2389 	 * Check that the length field isn't greater than the total
2390 	 * available space the log file.
2391 	 */
2392 	rec_len = len + log->record_header_len;
2393 	if (rec_len >= log->total_avail)
2394 		return -EINVAL;
2395 
2396 	/*
2397 	 * If the entire log record is on this log page,
2398 	 * put a pointer to the log record the context block.
2399 	 */
2400 	if (rh->flags & LOG_RECORD_MULTI_PAGE) {
2401 		void *lr = kmalloc(len, GFP_NOFS);
2402 
2403 		if (!lr)
2404 			return -ENOMEM;
2405 
2406 		lcb->log_rec = lr;
2407 		lcb->alloc = true;
2408 
2409 		/* Copy the data into the buffer returned. */
2410 		err = read_log_rec_buf(log, rh, lr);
2411 		if (err)
2412 			return err;
2413 	} else {
2414 		/* If beyond the end of the current page -> an error. */
2415 		u32 page_off = lsn_to_page_off(log, lsn);
2416 
2417 		if (page_off + len + log->record_header_len > log->page_size)
2418 			return -EINVAL;
2419 
2420 		lcb->log_rec = Add2Ptr(rh, sizeof(struct LFS_RECORD_HDR));
2421 		lcb->alloc = false;
2422 	}
2423 
2424 	return 0;
2425 }
2426 
2427 /*
2428  * read_log_rec_lcb - Init the query operation.
2429  */
2430 static int read_log_rec_lcb(struct ntfs_log *log, u64 lsn, u32 ctx_mode,
2431 			    struct lcb **lcb_)
2432 {
2433 	int err;
2434 	const struct CLIENT_REC *cr;
2435 	struct lcb *lcb;
2436 
2437 	switch (ctx_mode) {
2438 	case lcb_ctx_undo_next:
2439 	case lcb_ctx_prev:
2440 	case lcb_ctx_next:
2441 		break;
2442 	default:
2443 		return -EINVAL;
2444 	}
2445 
2446 	/* Check that the given lsn is the legal range for this client. */
2447 	cr = Add2Ptr(log->ra, le16_to_cpu(log->ra->client_off));
2448 
2449 	if (!verify_client_lsn(log, cr, lsn))
2450 		return -EINVAL;
2451 
2452 	lcb = kzalloc(sizeof(struct lcb), GFP_NOFS);
2453 	if (!lcb)
2454 		return -ENOMEM;
2455 	lcb->client = log->client_id;
2456 	lcb->ctx_mode = ctx_mode;
2457 
2458 	/* Find the log record indicated by the given lsn. */
2459 	err = find_log_rec(log, lsn, lcb);
2460 	if (err)
2461 		goto out;
2462 
2463 	*lcb_ = lcb;
2464 	return 0;
2465 
2466 out:
2467 	lcb_put(lcb);
2468 	*lcb_ = NULL;
2469 	return err;
2470 }
2471 
2472 /*
2473  * find_client_next_lsn
2474  *
2475  * Attempt to find the next lsn to return to a client based on the context mode.
2476  */
2477 static int find_client_next_lsn(struct ntfs_log *log, struct lcb *lcb, u64 *lsn)
2478 {
2479 	int err;
2480 	u64 next_lsn;
2481 	struct LFS_RECORD_HDR *hdr;
2482 
2483 	hdr = lcb->lrh;
2484 	*lsn = 0;
2485 
2486 	if (lcb_ctx_next != lcb->ctx_mode)
2487 		goto check_undo_next;
2488 
2489 	/* Loop as long as another lsn can be found. */
2490 	for (;;) {
2491 		u64 current_lsn;
2492 
2493 		err = next_log_lsn(log, hdr, &current_lsn);
2494 		if (err)
2495 			goto out;
2496 
2497 		if (!current_lsn)
2498 			break;
2499 
2500 		if (hdr != lcb->lrh)
2501 			kfree(hdr);
2502 
2503 		hdr = NULL;
2504 		err = read_log_page(log, lsn_to_vbo(log, current_lsn),
2505 				    (struct RECORD_PAGE_HDR **)&hdr, NULL);
2506 		if (err)
2507 			goto out;
2508 
2509 		if (memcmp(&hdr->client, &lcb->client,
2510 			   sizeof(struct CLIENT_ID))) {
2511 			/*err = -EINVAL; */
2512 		} else if (LfsClientRecord == hdr->record_type) {
2513 			kfree(lcb->lrh);
2514 			lcb->lrh = hdr;
2515 			*lsn = current_lsn;
2516 			return 0;
2517 		}
2518 	}
2519 
2520 out:
2521 	if (hdr != lcb->lrh)
2522 		kfree(hdr);
2523 	return err;
2524 
2525 check_undo_next:
2526 	if (lcb_ctx_undo_next == lcb->ctx_mode)
2527 		next_lsn = le64_to_cpu(hdr->client_undo_next_lsn);
2528 	else if (lcb_ctx_prev == lcb->ctx_mode)
2529 		next_lsn = le64_to_cpu(hdr->client_prev_lsn);
2530 	else
2531 		return 0;
2532 
2533 	if (!next_lsn)
2534 		return 0;
2535 
2536 	if (!verify_client_lsn(
2537 		    log, Add2Ptr(log->ra, le16_to_cpu(log->ra->client_off)),
2538 		    next_lsn))
2539 		return 0;
2540 
2541 	hdr = NULL;
2542 	err = read_log_page(log, lsn_to_vbo(log, next_lsn),
2543 			    (struct RECORD_PAGE_HDR **)&hdr, NULL);
2544 	if (err)
2545 		return err;
2546 	kfree(lcb->lrh);
2547 	lcb->lrh = hdr;
2548 
2549 	*lsn = next_lsn;
2550 
2551 	return 0;
2552 }
2553 
2554 static int read_next_log_rec(struct ntfs_log *log, struct lcb *lcb, u64 *lsn)
2555 {
2556 	int err;
2557 
2558 	err = find_client_next_lsn(log, lcb, lsn);
2559 	if (err)
2560 		return err;
2561 
2562 	if (!*lsn)
2563 		return 0;
2564 
2565 	if (lcb->alloc)
2566 		kfree(lcb->log_rec);
2567 
2568 	lcb->log_rec = NULL;
2569 	lcb->alloc = false;
2570 	kfree(lcb->lrh);
2571 	lcb->lrh = NULL;
2572 
2573 	return find_log_rec(log, *lsn, lcb);
2574 }
2575 
2576 bool check_index_header(const struct INDEX_HDR *hdr, size_t bytes)
2577 {
2578 	__le16 mask;
2579 	u32 min_de, de_off, used, total;
2580 	const struct NTFS_DE *e;
2581 
2582 	if (hdr_has_subnode(hdr)) {
2583 		min_de = sizeof(struct NTFS_DE) + sizeof(u64);
2584 		mask = NTFS_IE_HAS_SUBNODES;
2585 	} else {
2586 		min_de = sizeof(struct NTFS_DE);
2587 		mask = 0;
2588 	}
2589 
2590 	de_off = le32_to_cpu(hdr->de_off);
2591 	used = le32_to_cpu(hdr->used);
2592 	total = le32_to_cpu(hdr->total);
2593 
2594 	if (de_off > bytes - min_de || used > bytes || total > bytes ||
2595 	    de_off + min_de > used || used > total) {
2596 		return false;
2597 	}
2598 
2599 	e = Add2Ptr(hdr, de_off);
2600 	for (;;) {
2601 		u16 esize = le16_to_cpu(e->size);
2602 		struct NTFS_DE *next = Add2Ptr(e, esize);
2603 
2604 		if (esize < min_de || PtrOffset(hdr, next) > used ||
2605 		    (e->flags & NTFS_IE_HAS_SUBNODES) != mask) {
2606 			return false;
2607 		}
2608 
2609 		if (de_is_last(e))
2610 			break;
2611 
2612 		e = next;
2613 	}
2614 
2615 	return true;
2616 }
2617 
2618 static inline bool check_index_buffer(const struct INDEX_BUFFER *ib, u32 bytes)
2619 {
2620 	u16 fo;
2621 	const struct NTFS_RECORD_HEADER *r = &ib->rhdr;
2622 
2623 	if (r->sign != NTFS_INDX_SIGNATURE)
2624 		return false;
2625 
2626 	fo = (SECTOR_SIZE - ((bytes >> SECTOR_SHIFT) + 1) * sizeof(short));
2627 
2628 	if (le16_to_cpu(r->fix_off) > fo)
2629 		return false;
2630 
2631 	if ((le16_to_cpu(r->fix_num) - 1) * SECTOR_SIZE != bytes)
2632 		return false;
2633 
2634 	return check_index_header(&ib->ihdr,
2635 				  bytes - offsetof(struct INDEX_BUFFER, ihdr));
2636 }
2637 
2638 static inline bool check_index_root(const struct ATTRIB *attr,
2639 				    struct ntfs_sb_info *sbi)
2640 {
2641 	bool ret;
2642 	const struct INDEX_ROOT *root = resident_data(attr);
2643 	u8 index_bits = le32_to_cpu(root->index_block_size) >=
2644 					sbi->cluster_size ?
2645 				sbi->cluster_bits :
2646 				SECTOR_SHIFT;
2647 	u8 block_clst = root->index_block_clst;
2648 
2649 	if (le32_to_cpu(attr->res.data_size) < sizeof(struct INDEX_ROOT) ||
2650 	    (root->type != ATTR_NAME && root->type != ATTR_ZERO) ||
2651 	    (root->type == ATTR_NAME &&
2652 	     root->rule != NTFS_COLLATION_TYPE_FILENAME) ||
2653 	    (le32_to_cpu(root->index_block_size) !=
2654 	     (block_clst << index_bits)) ||
2655 	    (block_clst != 1 && block_clst != 2 && block_clst != 4 &&
2656 	     block_clst != 8 && block_clst != 0x10 && block_clst != 0x20 &&
2657 	     block_clst != 0x40 && block_clst != 0x80)) {
2658 		return false;
2659 	}
2660 
2661 	ret = check_index_header(&root->ihdr,
2662 				 le32_to_cpu(attr->res.data_size) -
2663 					 offsetof(struct INDEX_ROOT, ihdr));
2664 	return ret;
2665 }
2666 
2667 static inline bool check_attr(const struct MFT_REC *rec,
2668 			      const struct ATTRIB *attr,
2669 			      struct ntfs_sb_info *sbi)
2670 {
2671 	u32 asize = le32_to_cpu(attr->size);
2672 	u32 rsize = 0;
2673 	u64 dsize, svcn, evcn;
2674 	u16 run_off;
2675 
2676 	/* Check the fixed part of the attribute record header. */
2677 	if (asize >= sbi->record_size ||
2678 	    asize + PtrOffset(rec, attr) >= sbi->record_size ||
2679 	    (attr->name_len &&
2680 	     le16_to_cpu(attr->name_off) + attr->name_len * sizeof(short) >
2681 		     asize)) {
2682 		return false;
2683 	}
2684 
2685 	/* Check the attribute fields. */
2686 	switch (attr->non_res) {
2687 	case 0:
2688 		rsize = le32_to_cpu(attr->res.data_size);
2689 		if (rsize >= asize ||
2690 		    le16_to_cpu(attr->res.data_off) + rsize > asize) {
2691 			return false;
2692 		}
2693 		break;
2694 
2695 	case 1:
2696 		dsize = le64_to_cpu(attr->nres.data_size);
2697 		svcn = le64_to_cpu(attr->nres.svcn);
2698 		evcn = le64_to_cpu(attr->nres.evcn);
2699 		run_off = le16_to_cpu(attr->nres.run_off);
2700 
2701 		if (svcn > evcn + 1 || run_off >= asize ||
2702 		    le64_to_cpu(attr->nres.valid_size) > dsize ||
2703 		    dsize > le64_to_cpu(attr->nres.alloc_size)) {
2704 			return false;
2705 		}
2706 
2707 		if (run_off > asize)
2708 			return false;
2709 
2710 		if (run_unpack(NULL, sbi, 0, svcn, evcn, svcn,
2711 			       Add2Ptr(attr, run_off), asize - run_off) < 0) {
2712 			return false;
2713 		}
2714 
2715 		return true;
2716 
2717 	default:
2718 		return false;
2719 	}
2720 
2721 	switch (attr->type) {
2722 	case ATTR_NAME:
2723 		if (fname_full_size(Add2Ptr(
2724 			    attr, le16_to_cpu(attr->res.data_off))) > asize) {
2725 			return false;
2726 		}
2727 		break;
2728 
2729 	case ATTR_ROOT:
2730 		return check_index_root(attr, sbi);
2731 
2732 	case ATTR_STD:
2733 		if (rsize < sizeof(struct ATTR_STD_INFO5) &&
2734 		    rsize != sizeof(struct ATTR_STD_INFO)) {
2735 			return false;
2736 		}
2737 		break;
2738 
2739 	case ATTR_LIST:
2740 	case ATTR_ID:
2741 	case ATTR_SECURE:
2742 	case ATTR_LABEL:
2743 	case ATTR_VOL_INFO:
2744 	case ATTR_DATA:
2745 	case ATTR_ALLOC:
2746 	case ATTR_BITMAP:
2747 	case ATTR_REPARSE:
2748 	case ATTR_EA_INFO:
2749 	case ATTR_EA:
2750 	case ATTR_PROPERTYSET:
2751 	case ATTR_LOGGED_UTILITY_STREAM:
2752 		break;
2753 
2754 	default:
2755 		return false;
2756 	}
2757 
2758 	return true;
2759 }
2760 
2761 static inline bool check_file_record(const struct MFT_REC *rec,
2762 				     const struct MFT_REC *rec2,
2763 				     struct ntfs_sb_info *sbi)
2764 {
2765 	const struct ATTRIB *attr;
2766 	u16 fo = le16_to_cpu(rec->rhdr.fix_off);
2767 	u16 fn = le16_to_cpu(rec->rhdr.fix_num);
2768 	u16 ao = le16_to_cpu(rec->attr_off);
2769 	u32 rs = sbi->record_size;
2770 
2771 	/* Check the file record header for consistency. */
2772 	if (rec->rhdr.sign != NTFS_FILE_SIGNATURE ||
2773 	    fo > (SECTOR_SIZE - ((rs >> SECTOR_SHIFT) + 1) * sizeof(short)) ||
2774 	    (fn - 1) * SECTOR_SIZE != rs || ao < MFTRECORD_FIXUP_OFFSET_1 ||
2775 	    ao > sbi->record_size - SIZEOF_RESIDENT || !is_rec_inuse(rec) ||
2776 	    le32_to_cpu(rec->total) != rs) {
2777 		return false;
2778 	}
2779 
2780 	/* Loop to check all of the attributes. */
2781 	for (attr = Add2Ptr(rec, ao); attr->type != ATTR_END;
2782 	     attr = Add2Ptr(attr, le32_to_cpu(attr->size))) {
2783 		if (check_attr(rec, attr, sbi))
2784 			continue;
2785 		return false;
2786 	}
2787 
2788 	return true;
2789 }
2790 
2791 static inline int check_lsn(const struct NTFS_RECORD_HEADER *hdr,
2792 			    const u64 *rlsn)
2793 {
2794 	u64 lsn;
2795 
2796 	if (!rlsn)
2797 		return true;
2798 
2799 	lsn = le64_to_cpu(hdr->lsn);
2800 
2801 	if (hdr->sign == NTFS_HOLE_SIGNATURE)
2802 		return false;
2803 
2804 	if (*rlsn > lsn)
2805 		return true;
2806 
2807 	return false;
2808 }
2809 
2810 static inline bool check_if_attr(const struct MFT_REC *rec,
2811 				 const struct LOG_REC_HDR *lrh)
2812 {
2813 	u16 ro = le16_to_cpu(lrh->record_off);
2814 	u16 o = le16_to_cpu(rec->attr_off);
2815 	const struct ATTRIB *attr = Add2Ptr(rec, o);
2816 
2817 	while (o < ro) {
2818 		u32 asize;
2819 
2820 		if (attr->type == ATTR_END)
2821 			break;
2822 
2823 		asize = le32_to_cpu(attr->size);
2824 		if (!asize)
2825 			break;
2826 
2827 		o += asize;
2828 		attr = Add2Ptr(attr, asize);
2829 	}
2830 
2831 	return o == ro;
2832 }
2833 
2834 static inline bool check_if_index_root(const struct MFT_REC *rec,
2835 				       const struct LOG_REC_HDR *lrh)
2836 {
2837 	u16 ro = le16_to_cpu(lrh->record_off);
2838 	u16 o = le16_to_cpu(rec->attr_off);
2839 	const struct ATTRIB *attr = Add2Ptr(rec, o);
2840 
2841 	while (o < ro) {
2842 		u32 asize;
2843 
2844 		if (attr->type == ATTR_END)
2845 			break;
2846 
2847 		asize = le32_to_cpu(attr->size);
2848 		if (!asize)
2849 			break;
2850 
2851 		o += asize;
2852 		attr = Add2Ptr(attr, asize);
2853 	}
2854 
2855 	return o == ro && attr->type == ATTR_ROOT;
2856 }
2857 
2858 static inline bool check_if_root_index(const struct ATTRIB *attr,
2859 				       const struct INDEX_HDR *hdr,
2860 				       const struct LOG_REC_HDR *lrh)
2861 {
2862 	u16 ao = le16_to_cpu(lrh->attr_off);
2863 	u32 de_off = le32_to_cpu(hdr->de_off);
2864 	u32 o = PtrOffset(attr, hdr) + de_off;
2865 	const struct NTFS_DE *e = Add2Ptr(hdr, de_off);
2866 	u32 asize = le32_to_cpu(attr->size);
2867 
2868 	while (o < ao) {
2869 		u16 esize;
2870 
2871 		if (o >= asize)
2872 			break;
2873 
2874 		esize = le16_to_cpu(e->size);
2875 		if (!esize)
2876 			break;
2877 
2878 		o += esize;
2879 		e = Add2Ptr(e, esize);
2880 	}
2881 
2882 	return o == ao;
2883 }
2884 
2885 static inline bool check_if_alloc_index(const struct INDEX_HDR *hdr,
2886 					u32 attr_off)
2887 {
2888 	u32 de_off = le32_to_cpu(hdr->de_off);
2889 	u32 o = offsetof(struct INDEX_BUFFER, ihdr) + de_off;
2890 	const struct NTFS_DE *e = Add2Ptr(hdr, de_off);
2891 	u32 used = le32_to_cpu(hdr->used);
2892 
2893 	while (o < attr_off) {
2894 		u16 esize;
2895 
2896 		if (de_off >= used)
2897 			break;
2898 
2899 		esize = le16_to_cpu(e->size);
2900 		if (!esize)
2901 			break;
2902 
2903 		o += esize;
2904 		de_off += esize;
2905 		e = Add2Ptr(e, esize);
2906 	}
2907 
2908 	return o == attr_off;
2909 }
2910 
2911 static inline void change_attr_size(struct MFT_REC *rec, struct ATTRIB *attr,
2912 				    u32 nsize)
2913 {
2914 	u32 asize = le32_to_cpu(attr->size);
2915 	int dsize = nsize - asize;
2916 	u8 *next = Add2Ptr(attr, asize);
2917 	u32 used = le32_to_cpu(rec->used);
2918 
2919 	memmove(Add2Ptr(attr, nsize), next, used - PtrOffset(rec, next));
2920 
2921 	rec->used = cpu_to_le32(used + dsize);
2922 	attr->size = cpu_to_le32(nsize);
2923 }
2924 
2925 struct OpenAttr {
2926 	struct ATTRIB *attr;
2927 	struct runs_tree *run1;
2928 	struct runs_tree run0;
2929 	struct ntfs_inode *ni;
2930 	// CLST rno;
2931 };
2932 
2933 /*
2934  * cmp_type_and_name
2935  *
2936  * Return: 0 if 'attr' has the same type and name.
2937  */
2938 static inline int cmp_type_and_name(const struct ATTRIB *a1,
2939 				    const struct ATTRIB *a2)
2940 {
2941 	return a1->type != a2->type || a1->name_len != a2->name_len ||
2942 	       (a1->name_len && memcmp(attr_name(a1), attr_name(a2),
2943 				       a1->name_len * sizeof(short)));
2944 }
2945 
2946 static struct OpenAttr *find_loaded_attr(struct ntfs_log *log,
2947 					 const struct ATTRIB *attr, CLST rno)
2948 {
2949 	struct OPEN_ATTR_ENRTY *oe = NULL;
2950 
2951 	while ((oe = enum_rstbl(log->open_attr_tbl, oe))) {
2952 		struct OpenAttr *op_attr;
2953 
2954 		if (ino_get(&oe->ref) != rno)
2955 			continue;
2956 
2957 		op_attr = (struct OpenAttr *)oe->ptr;
2958 		if (!cmp_type_and_name(op_attr->attr, attr))
2959 			return op_attr;
2960 	}
2961 	return NULL;
2962 }
2963 
2964 static struct ATTRIB *attr_create_nonres_log(struct ntfs_sb_info *sbi,
2965 					     enum ATTR_TYPE type, u64 size,
2966 					     const u16 *name, size_t name_len,
2967 					     __le16 flags)
2968 {
2969 	struct ATTRIB *attr;
2970 	u32 name_size = ALIGN(name_len * sizeof(short), 8);
2971 	bool is_ext = flags & (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED);
2972 	u32 asize = name_size +
2973 		    (is_ext ? SIZEOF_NONRESIDENT_EX : SIZEOF_NONRESIDENT);
2974 
2975 	attr = kzalloc(asize, GFP_NOFS);
2976 	if (!attr)
2977 		return NULL;
2978 
2979 	attr->type = type;
2980 	attr->size = cpu_to_le32(asize);
2981 	attr->flags = flags;
2982 	attr->non_res = 1;
2983 	attr->name_len = name_len;
2984 
2985 	attr->nres.evcn = cpu_to_le64((u64)bytes_to_cluster(sbi, size) - 1);
2986 	attr->nres.alloc_size = cpu_to_le64(ntfs_up_cluster(sbi, size));
2987 	attr->nres.data_size = cpu_to_le64(size);
2988 	attr->nres.valid_size = attr->nres.data_size;
2989 	if (is_ext) {
2990 		attr->name_off = SIZEOF_NONRESIDENT_EX_LE;
2991 		if (is_attr_compressed(attr))
2992 			attr->nres.c_unit = COMPRESSION_UNIT;
2993 
2994 		attr->nres.run_off =
2995 			cpu_to_le16(SIZEOF_NONRESIDENT_EX + name_size);
2996 		memcpy(Add2Ptr(attr, SIZEOF_NONRESIDENT_EX), name,
2997 		       name_len * sizeof(short));
2998 	} else {
2999 		attr->name_off = SIZEOF_NONRESIDENT_LE;
3000 		attr->nres.run_off =
3001 			cpu_to_le16(SIZEOF_NONRESIDENT + name_size);
3002 		memcpy(Add2Ptr(attr, SIZEOF_NONRESIDENT), name,
3003 		       name_len * sizeof(short));
3004 	}
3005 
3006 	return attr;
3007 }
3008 
3009 /*
3010  * do_action - Common routine for the Redo and Undo Passes.
3011  * @rlsn: If it is NULL then undo.
3012  */
3013 static int do_action(struct ntfs_log *log, struct OPEN_ATTR_ENRTY *oe,
3014 		     const struct LOG_REC_HDR *lrh, u32 op, void *data,
3015 		     u32 dlen, u32 rec_len, const u64 *rlsn)
3016 {
3017 	int err = 0;
3018 	struct ntfs_sb_info *sbi = log->ni->mi.sbi;
3019 	struct inode *inode = NULL, *inode_parent;
3020 	struct mft_inode *mi = NULL, *mi2_child = NULL;
3021 	CLST rno = 0, rno_base = 0;
3022 	struct INDEX_BUFFER *ib = NULL;
3023 	struct MFT_REC *rec = NULL;
3024 	struct ATTRIB *attr = NULL, *attr2;
3025 	struct INDEX_HDR *hdr;
3026 	struct INDEX_ROOT *root;
3027 	struct NTFS_DE *e, *e1, *e2;
3028 	struct NEW_ATTRIBUTE_SIZES *new_sz;
3029 	struct ATTR_FILE_NAME *fname;
3030 	struct OpenAttr *oa, *oa2;
3031 	u32 nsize, t32, asize, used, esize, off, bits;
3032 	u16 id, id2;
3033 	u32 record_size = sbi->record_size;
3034 	u64 t64;
3035 	u16 roff = le16_to_cpu(lrh->record_off);
3036 	u16 aoff = le16_to_cpu(lrh->attr_off);
3037 	u64 lco = 0;
3038 	u64 cbo = (u64)le16_to_cpu(lrh->cluster_off) << SECTOR_SHIFT;
3039 	u64 tvo = le64_to_cpu(lrh->target_vcn) << sbi->cluster_bits;
3040 	u64 vbo = cbo + tvo;
3041 	void *buffer_le = NULL;
3042 	u32 bytes = 0;
3043 	bool a_dirty = false;
3044 	u16 data_off;
3045 
3046 	oa = oe->ptr;
3047 
3048 	/* Big switch to prepare. */
3049 	switch (op) {
3050 	/* ============================================================
3051 	 * Process MFT records, as described by the current log record.
3052 	 * ============================================================
3053 	 */
3054 	case InitializeFileRecordSegment:
3055 	case DeallocateFileRecordSegment:
3056 	case WriteEndOfFileRecordSegment:
3057 	case CreateAttribute:
3058 	case DeleteAttribute:
3059 	case UpdateResidentValue:
3060 	case UpdateMappingPairs:
3061 	case SetNewAttributeSizes:
3062 	case AddIndexEntryRoot:
3063 	case DeleteIndexEntryRoot:
3064 	case SetIndexEntryVcnRoot:
3065 	case UpdateFileNameRoot:
3066 	case UpdateRecordDataRoot:
3067 	case ZeroEndOfFileRecord:
3068 		rno = vbo >> sbi->record_bits;
3069 		inode = ilookup(sbi->sb, rno);
3070 		if (inode) {
3071 			mi = &ntfs_i(inode)->mi;
3072 		} else if (op == InitializeFileRecordSegment) {
3073 			mi = kzalloc(sizeof(struct mft_inode), GFP_NOFS);
3074 			if (!mi)
3075 				return -ENOMEM;
3076 			err = mi_format_new(mi, sbi, rno, 0, false);
3077 			if (err)
3078 				goto out;
3079 		} else {
3080 			/* Read from disk. */
3081 			err = mi_get(sbi, rno, &mi);
3082 			if (err)
3083 				return err;
3084 		}
3085 		rec = mi->mrec;
3086 
3087 		if (op == DeallocateFileRecordSegment)
3088 			goto skip_load_parent;
3089 
3090 		if (InitializeFileRecordSegment != op) {
3091 			if (rec->rhdr.sign == NTFS_BAAD_SIGNATURE)
3092 				goto dirty_vol;
3093 			if (!check_lsn(&rec->rhdr, rlsn))
3094 				goto out;
3095 			if (!check_file_record(rec, NULL, sbi))
3096 				goto dirty_vol;
3097 			attr = Add2Ptr(rec, roff);
3098 		}
3099 
3100 		if (is_rec_base(rec) || InitializeFileRecordSegment == op) {
3101 			rno_base = rno;
3102 			goto skip_load_parent;
3103 		}
3104 
3105 		rno_base = ino_get(&rec->parent_ref);
3106 		inode_parent = ntfs_iget5(sbi->sb, &rec->parent_ref, NULL);
3107 		if (IS_ERR(inode_parent))
3108 			goto skip_load_parent;
3109 
3110 		if (is_bad_inode(inode_parent)) {
3111 			iput(inode_parent);
3112 			goto skip_load_parent;
3113 		}
3114 
3115 		if (ni_load_mi_ex(ntfs_i(inode_parent), rno, &mi2_child)) {
3116 			iput(inode_parent);
3117 		} else {
3118 			if (mi2_child->mrec != mi->mrec)
3119 				memcpy(mi2_child->mrec, mi->mrec,
3120 				       sbi->record_size);
3121 
3122 			if (inode)
3123 				iput(inode);
3124 			else if (mi)
3125 				mi_put(mi);
3126 
3127 			inode = inode_parent;
3128 			mi = mi2_child;
3129 			rec = mi2_child->mrec;
3130 			attr = Add2Ptr(rec, roff);
3131 		}
3132 
3133 skip_load_parent:
3134 		inode_parent = NULL;
3135 		break;
3136 
3137 	/*
3138 	 * Process attributes, as described by the current log record.
3139 	 */
3140 	case UpdateNonresidentValue:
3141 	case AddIndexEntryAllocation:
3142 	case DeleteIndexEntryAllocation:
3143 	case WriteEndOfIndexBuffer:
3144 	case SetIndexEntryVcnAllocation:
3145 	case UpdateFileNameAllocation:
3146 	case SetBitsInNonresidentBitMap:
3147 	case ClearBitsInNonresidentBitMap:
3148 	case UpdateRecordDataAllocation:
3149 		attr = oa->attr;
3150 		bytes = UpdateNonresidentValue == op ? dlen : 0;
3151 		lco = (u64)le16_to_cpu(lrh->lcns_follow) << sbi->cluster_bits;
3152 
3153 		if (attr->type == ATTR_ALLOC) {
3154 			t32 = le32_to_cpu(oe->bytes_per_index);
3155 			if (bytes < t32)
3156 				bytes = t32;
3157 		}
3158 
3159 		if (!bytes)
3160 			bytes = lco - cbo;
3161 
3162 		bytes += roff;
3163 		if (attr->type == ATTR_ALLOC)
3164 			bytes = (bytes + 511) & ~511; // align
3165 
3166 		buffer_le = kmalloc(bytes, GFP_NOFS);
3167 		if (!buffer_le)
3168 			return -ENOMEM;
3169 
3170 		err = ntfs_read_run_nb(sbi, oa->run1, vbo, buffer_le, bytes,
3171 				       NULL);
3172 		if (err)
3173 			goto out;
3174 
3175 		if (attr->type == ATTR_ALLOC && *(int *)buffer_le)
3176 			ntfs_fix_post_read(buffer_le, bytes, false);
3177 		break;
3178 
3179 	default:
3180 		WARN_ON(1);
3181 	}
3182 
3183 	/* Big switch to do operation. */
3184 	switch (op) {
3185 	case InitializeFileRecordSegment:
3186 		if (roff + dlen > record_size)
3187 			goto dirty_vol;
3188 
3189 		memcpy(Add2Ptr(rec, roff), data, dlen);
3190 		mi->dirty = true;
3191 		break;
3192 
3193 	case DeallocateFileRecordSegment:
3194 		clear_rec_inuse(rec);
3195 		le16_add_cpu(&rec->seq, 1);
3196 		mi->dirty = true;
3197 		break;
3198 
3199 	case WriteEndOfFileRecordSegment:
3200 		attr2 = (struct ATTRIB *)data;
3201 		if (!check_if_attr(rec, lrh) || roff + dlen > record_size)
3202 			goto dirty_vol;
3203 
3204 		memmove(attr, attr2, dlen);
3205 		rec->used = cpu_to_le32(ALIGN(roff + dlen, 8));
3206 
3207 		mi->dirty = true;
3208 		break;
3209 
3210 	case CreateAttribute:
3211 		attr2 = (struct ATTRIB *)data;
3212 		asize = le32_to_cpu(attr2->size);
3213 		used = le32_to_cpu(rec->used);
3214 
3215 		if (!check_if_attr(rec, lrh) || dlen < SIZEOF_RESIDENT ||
3216 		    !IS_ALIGNED(asize, 8) ||
3217 		    Add2Ptr(attr2, asize) > Add2Ptr(lrh, rec_len) ||
3218 		    dlen > record_size - used) {
3219 			goto dirty_vol;
3220 		}
3221 
3222 		memmove(Add2Ptr(attr, asize), attr, used - roff);
3223 		memcpy(attr, attr2, asize);
3224 
3225 		rec->used = cpu_to_le32(used + asize);
3226 		id = le16_to_cpu(rec->next_attr_id);
3227 		id2 = le16_to_cpu(attr2->id);
3228 		if (id <= id2)
3229 			rec->next_attr_id = cpu_to_le16(id2 + 1);
3230 		if (is_attr_indexed(attr))
3231 			le16_add_cpu(&rec->hard_links, 1);
3232 
3233 		oa2 = find_loaded_attr(log, attr, rno_base);
3234 		if (oa2) {
3235 			void *p2 = kmemdup(attr, le32_to_cpu(attr->size),
3236 					   GFP_NOFS);
3237 			if (p2) {
3238 				// run_close(oa2->run1);
3239 				kfree(oa2->attr);
3240 				oa2->attr = p2;
3241 			}
3242 		}
3243 
3244 		mi->dirty = true;
3245 		break;
3246 
3247 	case DeleteAttribute:
3248 		asize = le32_to_cpu(attr->size);
3249 		used = le32_to_cpu(rec->used);
3250 
3251 		if (!check_if_attr(rec, lrh))
3252 			goto dirty_vol;
3253 
3254 		rec->used = cpu_to_le32(used - asize);
3255 		if (is_attr_indexed(attr))
3256 			le16_add_cpu(&rec->hard_links, -1);
3257 
3258 		memmove(attr, Add2Ptr(attr, asize), used - asize - roff);
3259 
3260 		mi->dirty = true;
3261 		break;
3262 
3263 	case UpdateResidentValue:
3264 		nsize = aoff + dlen;
3265 
3266 		if (!check_if_attr(rec, lrh))
3267 			goto dirty_vol;
3268 
3269 		asize = le32_to_cpu(attr->size);
3270 		used = le32_to_cpu(rec->used);
3271 
3272 		if (lrh->redo_len == lrh->undo_len) {
3273 			if (nsize > asize)
3274 				goto dirty_vol;
3275 			goto move_data;
3276 		}
3277 
3278 		if (nsize > asize && nsize - asize > record_size - used)
3279 			goto dirty_vol;
3280 
3281 		nsize = ALIGN(nsize, 8);
3282 		data_off = le16_to_cpu(attr->res.data_off);
3283 
3284 		if (nsize < asize) {
3285 			memmove(Add2Ptr(attr, aoff), data, dlen);
3286 			data = NULL; // To skip below memmove().
3287 		}
3288 
3289 		memmove(Add2Ptr(attr, nsize), Add2Ptr(attr, asize),
3290 			used - le16_to_cpu(lrh->record_off) - asize);
3291 
3292 		rec->used = cpu_to_le32(used + nsize - asize);
3293 		attr->size = cpu_to_le32(nsize);
3294 		attr->res.data_size = cpu_to_le32(aoff + dlen - data_off);
3295 
3296 move_data:
3297 		if (data)
3298 			memmove(Add2Ptr(attr, aoff), data, dlen);
3299 
3300 		oa2 = find_loaded_attr(log, attr, rno_base);
3301 		if (oa2) {
3302 			void *p2 = kmemdup(attr, le32_to_cpu(attr->size),
3303 					   GFP_NOFS);
3304 			if (p2) {
3305 				// run_close(&oa2->run0);
3306 				oa2->run1 = &oa2->run0;
3307 				kfree(oa2->attr);
3308 				oa2->attr = p2;
3309 			}
3310 		}
3311 
3312 		mi->dirty = true;
3313 		break;
3314 
3315 	case UpdateMappingPairs:
3316 		nsize = aoff + dlen;
3317 		asize = le32_to_cpu(attr->size);
3318 		used = le32_to_cpu(rec->used);
3319 
3320 		if (!check_if_attr(rec, lrh) || !attr->non_res ||
3321 		    aoff < le16_to_cpu(attr->nres.run_off) || aoff > asize ||
3322 		    (nsize > asize && nsize - asize > record_size - used)) {
3323 			goto dirty_vol;
3324 		}
3325 
3326 		nsize = ALIGN(nsize, 8);
3327 
3328 		memmove(Add2Ptr(attr, nsize), Add2Ptr(attr, asize),
3329 			used - le16_to_cpu(lrh->record_off) - asize);
3330 		rec->used = cpu_to_le32(used + nsize - asize);
3331 		attr->size = cpu_to_le32(nsize);
3332 		memmove(Add2Ptr(attr, aoff), data, dlen);
3333 
3334 		if (run_get_highest_vcn(le64_to_cpu(attr->nres.svcn),
3335 					attr_run(attr), &t64)) {
3336 			goto dirty_vol;
3337 		}
3338 
3339 		attr->nres.evcn = cpu_to_le64(t64);
3340 		oa2 = find_loaded_attr(log, attr, rno_base);
3341 		if (oa2 && oa2->attr->non_res)
3342 			oa2->attr->nres.evcn = attr->nres.evcn;
3343 
3344 		mi->dirty = true;
3345 		break;
3346 
3347 	case SetNewAttributeSizes:
3348 		new_sz = data;
3349 		if (!check_if_attr(rec, lrh) || !attr->non_res)
3350 			goto dirty_vol;
3351 
3352 		attr->nres.alloc_size = new_sz->alloc_size;
3353 		attr->nres.data_size = new_sz->data_size;
3354 		attr->nres.valid_size = new_sz->valid_size;
3355 
3356 		if (dlen >= sizeof(struct NEW_ATTRIBUTE_SIZES))
3357 			attr->nres.total_size = new_sz->total_size;
3358 
3359 		oa2 = find_loaded_attr(log, attr, rno_base);
3360 		if (oa2) {
3361 			void *p2 = kmemdup(attr, le32_to_cpu(attr->size),
3362 					   GFP_NOFS);
3363 			if (p2) {
3364 				kfree(oa2->attr);
3365 				oa2->attr = p2;
3366 			}
3367 		}
3368 		mi->dirty = true;
3369 		break;
3370 
3371 	case AddIndexEntryRoot:
3372 		e = (struct NTFS_DE *)data;
3373 		esize = le16_to_cpu(e->size);
3374 		root = resident_data(attr);
3375 		hdr = &root->ihdr;
3376 		used = le32_to_cpu(hdr->used);
3377 
3378 		if (!check_if_index_root(rec, lrh) ||
3379 		    !check_if_root_index(attr, hdr, lrh) ||
3380 		    Add2Ptr(data, esize) > Add2Ptr(lrh, rec_len) ||
3381 		    esize > le32_to_cpu(rec->total) - le32_to_cpu(rec->used)) {
3382 			goto dirty_vol;
3383 		}
3384 
3385 		e1 = Add2Ptr(attr, le16_to_cpu(lrh->attr_off));
3386 
3387 		change_attr_size(rec, attr, le32_to_cpu(attr->size) + esize);
3388 
3389 		memmove(Add2Ptr(e1, esize), e1,
3390 			PtrOffset(e1, Add2Ptr(hdr, used)));
3391 		memmove(e1, e, esize);
3392 
3393 		le32_add_cpu(&attr->res.data_size, esize);
3394 		hdr->used = cpu_to_le32(used + esize);
3395 		le32_add_cpu(&hdr->total, esize);
3396 
3397 		mi->dirty = true;
3398 		break;
3399 
3400 	case DeleteIndexEntryRoot:
3401 		root = resident_data(attr);
3402 		hdr = &root->ihdr;
3403 		used = le32_to_cpu(hdr->used);
3404 
3405 		if (!check_if_index_root(rec, lrh) ||
3406 		    !check_if_root_index(attr, hdr, lrh)) {
3407 			goto dirty_vol;
3408 		}
3409 
3410 		e1 = Add2Ptr(attr, le16_to_cpu(lrh->attr_off));
3411 		esize = le16_to_cpu(e1->size);
3412 		e2 = Add2Ptr(e1, esize);
3413 
3414 		memmove(e1, e2, PtrOffset(e2, Add2Ptr(hdr, used)));
3415 
3416 		le32_sub_cpu(&attr->res.data_size, esize);
3417 		hdr->used = cpu_to_le32(used - esize);
3418 		le32_sub_cpu(&hdr->total, esize);
3419 
3420 		change_attr_size(rec, attr, le32_to_cpu(attr->size) - esize);
3421 
3422 		mi->dirty = true;
3423 		break;
3424 
3425 	case SetIndexEntryVcnRoot:
3426 		root = resident_data(attr);
3427 		hdr = &root->ihdr;
3428 
3429 		if (!check_if_index_root(rec, lrh) ||
3430 		    !check_if_root_index(attr, hdr, lrh)) {
3431 			goto dirty_vol;
3432 		}
3433 
3434 		e = Add2Ptr(attr, le16_to_cpu(lrh->attr_off));
3435 
3436 		de_set_vbn_le(e, *(__le64 *)data);
3437 		mi->dirty = true;
3438 		break;
3439 
3440 	case UpdateFileNameRoot:
3441 		root = resident_data(attr);
3442 		hdr = &root->ihdr;
3443 
3444 		if (!check_if_index_root(rec, lrh) ||
3445 		    !check_if_root_index(attr, hdr, lrh)) {
3446 			goto dirty_vol;
3447 		}
3448 
3449 		e = Add2Ptr(attr, le16_to_cpu(lrh->attr_off));
3450 		fname = (struct ATTR_FILE_NAME *)(e + 1);
3451 		memmove(&fname->dup, data, sizeof(fname->dup)); //
3452 		mi->dirty = true;
3453 		break;
3454 
3455 	case UpdateRecordDataRoot:
3456 		root = resident_data(attr);
3457 		hdr = &root->ihdr;
3458 
3459 		if (!check_if_index_root(rec, lrh) ||
3460 		    !check_if_root_index(attr, hdr, lrh)) {
3461 			goto dirty_vol;
3462 		}
3463 
3464 		e = Add2Ptr(attr, le16_to_cpu(lrh->attr_off));
3465 
3466 		memmove(Add2Ptr(e, le16_to_cpu(e->view.data_off)), data, dlen);
3467 
3468 		mi->dirty = true;
3469 		break;
3470 
3471 	case ZeroEndOfFileRecord:
3472 		if (roff + dlen > record_size)
3473 			goto dirty_vol;
3474 
3475 		memset(attr, 0, dlen);
3476 		mi->dirty = true;
3477 		break;
3478 
3479 	case UpdateNonresidentValue:
3480 		if (lco < cbo + roff + dlen)
3481 			goto dirty_vol;
3482 
3483 		memcpy(Add2Ptr(buffer_le, roff), data, dlen);
3484 
3485 		a_dirty = true;
3486 		if (attr->type == ATTR_ALLOC)
3487 			ntfs_fix_pre_write(buffer_le, bytes);
3488 		break;
3489 
3490 	case AddIndexEntryAllocation:
3491 		ib = Add2Ptr(buffer_le, roff);
3492 		hdr = &ib->ihdr;
3493 		e = data;
3494 		esize = le16_to_cpu(e->size);
3495 		e1 = Add2Ptr(ib, aoff);
3496 
3497 		if (is_baad(&ib->rhdr))
3498 			goto dirty_vol;
3499 		if (!check_lsn(&ib->rhdr, rlsn))
3500 			goto out;
3501 
3502 		used = le32_to_cpu(hdr->used);
3503 
3504 		if (!check_index_buffer(ib, bytes) ||
3505 		    !check_if_alloc_index(hdr, aoff) ||
3506 		    Add2Ptr(e, esize) > Add2Ptr(lrh, rec_len) ||
3507 		    used + esize > le32_to_cpu(hdr->total)) {
3508 			goto dirty_vol;
3509 		}
3510 
3511 		memmove(Add2Ptr(e1, esize), e1,
3512 			PtrOffset(e1, Add2Ptr(hdr, used)));
3513 		memcpy(e1, e, esize);
3514 
3515 		hdr->used = cpu_to_le32(used + esize);
3516 
3517 		a_dirty = true;
3518 
3519 		ntfs_fix_pre_write(&ib->rhdr, bytes);
3520 		break;
3521 
3522 	case DeleteIndexEntryAllocation:
3523 		ib = Add2Ptr(buffer_le, roff);
3524 		hdr = &ib->ihdr;
3525 		e = Add2Ptr(ib, aoff);
3526 		esize = le16_to_cpu(e->size);
3527 
3528 		if (is_baad(&ib->rhdr))
3529 			goto dirty_vol;
3530 		if (!check_lsn(&ib->rhdr, rlsn))
3531 			goto out;
3532 
3533 		if (!check_index_buffer(ib, bytes) ||
3534 		    !check_if_alloc_index(hdr, aoff)) {
3535 			goto dirty_vol;
3536 		}
3537 
3538 		e1 = Add2Ptr(e, esize);
3539 		nsize = esize;
3540 		used = le32_to_cpu(hdr->used);
3541 
3542 		memmove(e, e1, PtrOffset(e1, Add2Ptr(hdr, used)));
3543 
3544 		hdr->used = cpu_to_le32(used - nsize);
3545 
3546 		a_dirty = true;
3547 
3548 		ntfs_fix_pre_write(&ib->rhdr, bytes);
3549 		break;
3550 
3551 	case WriteEndOfIndexBuffer:
3552 		ib = Add2Ptr(buffer_le, roff);
3553 		hdr = &ib->ihdr;
3554 		e = Add2Ptr(ib, aoff);
3555 
3556 		if (is_baad(&ib->rhdr))
3557 			goto dirty_vol;
3558 		if (!check_lsn(&ib->rhdr, rlsn))
3559 			goto out;
3560 		if (!check_index_buffer(ib, bytes) ||
3561 		    !check_if_alloc_index(hdr, aoff) ||
3562 		    aoff + dlen > offsetof(struct INDEX_BUFFER, ihdr) +
3563 					  le32_to_cpu(hdr->total)) {
3564 			goto dirty_vol;
3565 		}
3566 
3567 		hdr->used = cpu_to_le32(dlen + PtrOffset(hdr, e));
3568 		memmove(e, data, dlen);
3569 
3570 		a_dirty = true;
3571 		ntfs_fix_pre_write(&ib->rhdr, bytes);
3572 		break;
3573 
3574 	case SetIndexEntryVcnAllocation:
3575 		ib = Add2Ptr(buffer_le, roff);
3576 		hdr = &ib->ihdr;
3577 		e = Add2Ptr(ib, aoff);
3578 
3579 		if (is_baad(&ib->rhdr))
3580 			goto dirty_vol;
3581 
3582 		if (!check_lsn(&ib->rhdr, rlsn))
3583 			goto out;
3584 		if (!check_index_buffer(ib, bytes) ||
3585 		    !check_if_alloc_index(hdr, aoff)) {
3586 			goto dirty_vol;
3587 		}
3588 
3589 		de_set_vbn_le(e, *(__le64 *)data);
3590 
3591 		a_dirty = true;
3592 		ntfs_fix_pre_write(&ib->rhdr, bytes);
3593 		break;
3594 
3595 	case UpdateFileNameAllocation:
3596 		ib = Add2Ptr(buffer_le, roff);
3597 		hdr = &ib->ihdr;
3598 		e = Add2Ptr(ib, aoff);
3599 
3600 		if (is_baad(&ib->rhdr))
3601 			goto dirty_vol;
3602 
3603 		if (!check_lsn(&ib->rhdr, rlsn))
3604 			goto out;
3605 		if (!check_index_buffer(ib, bytes) ||
3606 		    !check_if_alloc_index(hdr, aoff)) {
3607 			goto dirty_vol;
3608 		}
3609 
3610 		fname = (struct ATTR_FILE_NAME *)(e + 1);
3611 		memmove(&fname->dup, data, sizeof(fname->dup));
3612 
3613 		a_dirty = true;
3614 		ntfs_fix_pre_write(&ib->rhdr, bytes);
3615 		break;
3616 
3617 	case SetBitsInNonresidentBitMap:
3618 		off = le32_to_cpu(((struct BITMAP_RANGE *)data)->bitmap_off);
3619 		bits = le32_to_cpu(((struct BITMAP_RANGE *)data)->bits);
3620 
3621 		if (cbo + (off + 7) / 8 > lco ||
3622 		    cbo + ((off + bits + 7) / 8) > lco) {
3623 			goto dirty_vol;
3624 		}
3625 
3626 		ntfs_bitmap_set_le(Add2Ptr(buffer_le, roff), off, bits);
3627 		a_dirty = true;
3628 		break;
3629 
3630 	case ClearBitsInNonresidentBitMap:
3631 		off = le32_to_cpu(((struct BITMAP_RANGE *)data)->bitmap_off);
3632 		bits = le32_to_cpu(((struct BITMAP_RANGE *)data)->bits);
3633 
3634 		if (cbo + (off + 7) / 8 > lco ||
3635 		    cbo + ((off + bits + 7) / 8) > lco) {
3636 			goto dirty_vol;
3637 		}
3638 
3639 		ntfs_bitmap_clear_le(Add2Ptr(buffer_le, roff), off, bits);
3640 		a_dirty = true;
3641 		break;
3642 
3643 	case UpdateRecordDataAllocation:
3644 		ib = Add2Ptr(buffer_le, roff);
3645 		hdr = &ib->ihdr;
3646 		e = Add2Ptr(ib, aoff);
3647 
3648 		if (is_baad(&ib->rhdr))
3649 			goto dirty_vol;
3650 
3651 		if (!check_lsn(&ib->rhdr, rlsn))
3652 			goto out;
3653 		if (!check_index_buffer(ib, bytes) ||
3654 		    !check_if_alloc_index(hdr, aoff)) {
3655 			goto dirty_vol;
3656 		}
3657 
3658 		memmove(Add2Ptr(e, le16_to_cpu(e->view.data_off)), data, dlen);
3659 
3660 		a_dirty = true;
3661 		ntfs_fix_pre_write(&ib->rhdr, bytes);
3662 		break;
3663 
3664 	default:
3665 		WARN_ON(1);
3666 	}
3667 
3668 	if (rlsn) {
3669 		__le64 t64 = cpu_to_le64(*rlsn);
3670 
3671 		if (rec)
3672 			rec->rhdr.lsn = t64;
3673 		if (ib)
3674 			ib->rhdr.lsn = t64;
3675 	}
3676 
3677 	if (mi && mi->dirty) {
3678 		err = mi_write(mi, 0);
3679 		if (err)
3680 			goto out;
3681 	}
3682 
3683 	if (a_dirty) {
3684 		attr = oa->attr;
3685 		err = ntfs_sb_write_run(sbi, oa->run1, vbo, buffer_le, bytes,
3686 					0);
3687 		if (err)
3688 			goto out;
3689 	}
3690 
3691 out:
3692 
3693 	if (inode)
3694 		iput(inode);
3695 	else if (mi != mi2_child)
3696 		mi_put(mi);
3697 
3698 	kfree(buffer_le);
3699 
3700 	return err;
3701 
3702 dirty_vol:
3703 	log->set_dirty = true;
3704 	goto out;
3705 }
3706 
3707 /*
3708  * log_replay - Replays log and empties it.
3709  *
3710  * This function is called during mount operation.
3711  * It replays log and empties it.
3712  * Initialized is set false if logfile contains '-1'.
3713  */
3714 int log_replay(struct ntfs_inode *ni, bool *initialized)
3715 {
3716 	int err;
3717 	struct ntfs_sb_info *sbi = ni->mi.sbi;
3718 	struct ntfs_log *log;
3719 
3720 	u64 rec_lsn, checkpt_lsn = 0, rlsn = 0;
3721 	struct ATTR_NAME_ENTRY *attr_names = NULL;
3722 	struct RESTART_TABLE *dptbl = NULL;
3723 	struct RESTART_TABLE *trtbl = NULL;
3724 	const struct RESTART_TABLE *rt;
3725 	struct RESTART_TABLE *oatbl = NULL;
3726 	struct inode *inode;
3727 	struct OpenAttr *oa;
3728 	struct ntfs_inode *ni_oe;
3729 	struct ATTRIB *attr = NULL;
3730 	u64 size, vcn, undo_next_lsn;
3731 	CLST rno, lcn, lcn0, len0, clen;
3732 	void *data;
3733 	struct NTFS_RESTART *rst = NULL;
3734 	struct lcb *lcb = NULL;
3735 	struct OPEN_ATTR_ENRTY *oe;
3736 	struct TRANSACTION_ENTRY *tr;
3737 	struct DIR_PAGE_ENTRY *dp;
3738 	u32 i, bytes_per_attr_entry;
3739 	u32 vbo, tail, off, dlen;
3740 	u32 saved_len, rec_len, transact_id;
3741 	bool use_second_page;
3742 	struct RESTART_AREA *ra2, *ra = NULL;
3743 	struct CLIENT_REC *ca, *cr;
3744 	__le16 client;
3745 	struct RESTART_HDR *rh;
3746 	const struct LFS_RECORD_HDR *frh;
3747 	const struct LOG_REC_HDR *lrh;
3748 	bool is_mapped;
3749 	bool is_ro = sb_rdonly(sbi->sb);
3750 	u64 t64;
3751 	u16 t16;
3752 	u32 t32;
3753 
3754 	log = kzalloc(sizeof(struct ntfs_log), GFP_NOFS);
3755 	if (!log)
3756 		return -ENOMEM;
3757 
3758 	log->ni = ni;
3759 	log->l_size = log->orig_file_size = ni->vfs_inode.i_size;
3760 
3761 	/* Get the size of page. NOTE: To replay we can use default page. */
3762 #if PAGE_SIZE >= DefaultLogPageSize && PAGE_SIZE <= DefaultLogPageSize * 2
3763 	log->page_size = norm_file_page(PAGE_SIZE, &log->l_size, true);
3764 #else
3765 	log->page_size = norm_file_page(PAGE_SIZE, &log->l_size, false);
3766 #endif
3767 	if (!log->page_size) {
3768 		err = -EINVAL;
3769 		goto out;
3770 	}
3771 
3772 	log->one_page_buf = kmalloc(log->page_size, GFP_NOFS);
3773 	if (!log->one_page_buf) {
3774 		err = -ENOMEM;
3775 		goto out;
3776 	}
3777 
3778 	log->page_mask = log->page_size - 1;
3779 	log->page_bits = blksize_bits(log->page_size);
3780 
3781 	/* Look for a restart area on the disk. */
3782 	err = log_read_rst(log, true, &log->rst_info);
3783 	if (err)
3784 		goto out;
3785 
3786 	/* remember 'initialized' */
3787 	*initialized = log->rst_info.initialized;
3788 
3789 	if (!log->rst_info.restart) {
3790 		if (log->rst_info.initialized) {
3791 			/* No restart area but the file is not initialized. */
3792 			err = -EINVAL;
3793 			goto out;
3794 		}
3795 
3796 		log_init_pg_hdr(log, 1, 1);
3797 		log_create(log, 0, get_random_u32(), false, false);
3798 
3799 		ra = log_create_ra(log);
3800 		if (!ra) {
3801 			err = -ENOMEM;
3802 			goto out;
3803 		}
3804 		log->ra = ra;
3805 		log->init_ra = true;
3806 
3807 		goto process_log;
3808 	}
3809 
3810 	/*
3811 	 * If the restart offset above wasn't zero then we won't
3812 	 * look for a second restart.
3813 	 */
3814 	if (log->rst_info.vbo)
3815 		goto check_restart_area;
3816 
3817 	err = log_read_rst(log, false, &log->rst_info2);
3818 	if (err)
3819 		goto out;
3820 
3821 	/* Determine which restart area to use. */
3822 	if (!log->rst_info2.restart ||
3823 	    log->rst_info2.last_lsn <= log->rst_info.last_lsn)
3824 		goto use_first_page;
3825 
3826 	use_second_page = true;
3827 
3828 	if (log->rst_info.chkdsk_was_run &&
3829 	    log->page_size != log->rst_info.vbo) {
3830 		struct RECORD_PAGE_HDR *sp = NULL;
3831 		bool usa_error;
3832 
3833 		if (!read_log_page(log, log->page_size, &sp, &usa_error) &&
3834 		    sp->rhdr.sign == NTFS_CHKD_SIGNATURE) {
3835 			use_second_page = false;
3836 		}
3837 		kfree(sp);
3838 	}
3839 
3840 	if (use_second_page) {
3841 		kfree(log->rst_info.r_page);
3842 		memcpy(&log->rst_info, &log->rst_info2,
3843 		       sizeof(struct restart_info));
3844 		log->rst_info2.r_page = NULL;
3845 	}
3846 
3847 use_first_page:
3848 	kfree(log->rst_info2.r_page);
3849 
3850 check_restart_area:
3851 	/*
3852 	 * If the restart area is at offset 0, we want
3853 	 * to write the second restart area first.
3854 	 */
3855 	log->init_ra = !!log->rst_info.vbo;
3856 
3857 	/* If we have a valid page then grab a pointer to the restart area. */
3858 	ra2 = log->rst_info.valid_page ?
3859 		      Add2Ptr(log->rst_info.r_page,
3860 			      le16_to_cpu(log->rst_info.r_page->ra_off)) :
3861 		      NULL;
3862 
3863 	if (log->rst_info.chkdsk_was_run ||
3864 	    (ra2 && ra2->client_idx[1] == LFS_NO_CLIENT_LE)) {
3865 		bool wrapped = false;
3866 		bool use_multi_page = false;
3867 		u32 open_log_count;
3868 
3869 		/* Do some checks based on whether we have a valid log page. */
3870 		open_log_count = log->rst_info.valid_page ?
3871 					 le32_to_cpu(ra2->open_log_count) :
3872 					 get_random_u32();
3873 
3874 		log_init_pg_hdr(log, 1, 1);
3875 
3876 		log_create(log, log->rst_info.last_lsn, open_log_count, wrapped,
3877 			   use_multi_page);
3878 
3879 		ra = log_create_ra(log);
3880 		if (!ra) {
3881 			err = -ENOMEM;
3882 			goto out;
3883 		}
3884 		log->ra = ra;
3885 
3886 		/* Put the restart areas and initialize
3887 		 * the log file as required.
3888 		 */
3889 		goto process_log;
3890 	}
3891 
3892 	if (!ra2) {
3893 		err = -EINVAL;
3894 		goto out;
3895 	}
3896 
3897 	/*
3898 	 * If the log page or the system page sizes have changed, we can't
3899 	 * use the log file. We must use the system page size instead of the
3900 	 * default size if there is not a clean shutdown.
3901 	 */
3902 	t32 = le32_to_cpu(log->rst_info.r_page->sys_page_size);
3903 	if (log->page_size != t32) {
3904 		log->l_size = log->orig_file_size;
3905 		log->page_size = norm_file_page(t32, &log->l_size,
3906 						t32 == DefaultLogPageSize);
3907 	}
3908 
3909 	if (log->page_size != t32 ||
3910 	    log->page_size != le32_to_cpu(log->rst_info.r_page->page_size)) {
3911 		err = -EINVAL;
3912 		goto out;
3913 	}
3914 
3915 	/* If the file size has shrunk then we won't mount it. */
3916 	if (log->l_size < le64_to_cpu(ra2->l_size)) {
3917 		err = -EINVAL;
3918 		goto out;
3919 	}
3920 
3921 	log_init_pg_hdr(log, le16_to_cpu(log->rst_info.r_page->major_ver),
3922 			le16_to_cpu(log->rst_info.r_page->minor_ver));
3923 
3924 	log->l_size = le64_to_cpu(ra2->l_size);
3925 	log->seq_num_bits = le32_to_cpu(ra2->seq_num_bits);
3926 	log->file_data_bits = sizeof(u64) * 8 - log->seq_num_bits;
3927 	log->seq_num_mask = (8 << log->file_data_bits) - 1;
3928 	log->last_lsn = le64_to_cpu(ra2->current_lsn);
3929 	log->seq_num = log->last_lsn >> log->file_data_bits;
3930 	log->ra_off = le16_to_cpu(log->rst_info.r_page->ra_off);
3931 	log->restart_size = log->sys_page_size - log->ra_off;
3932 	log->record_header_len = le16_to_cpu(ra2->rec_hdr_len);
3933 	log->ra_size = le16_to_cpu(ra2->ra_len);
3934 	log->data_off = le16_to_cpu(ra2->data_off);
3935 	log->data_size = log->page_size - log->data_off;
3936 	log->reserved = log->data_size - log->record_header_len;
3937 
3938 	vbo = lsn_to_vbo(log, log->last_lsn);
3939 
3940 	if (vbo < log->first_page) {
3941 		/* This is a pseudo lsn. */
3942 		log->l_flags |= NTFSLOG_NO_LAST_LSN;
3943 		log->next_page = log->first_page;
3944 		goto find_oldest;
3945 	}
3946 
3947 	/* Find the end of this log record. */
3948 	off = final_log_off(log, log->last_lsn,
3949 			    le32_to_cpu(ra2->last_lsn_data_len));
3950 
3951 	/* If we wrapped the file then increment the sequence number. */
3952 	if (off <= vbo) {
3953 		log->seq_num += 1;
3954 		log->l_flags |= NTFSLOG_WRAPPED;
3955 	}
3956 
3957 	/* Now compute the next log page to use. */
3958 	vbo &= ~log->sys_page_mask;
3959 	tail = log->page_size - (off & log->page_mask) - 1;
3960 
3961 	/*
3962 	 *If we can fit another log record on the page,
3963 	 * move back a page the log file.
3964 	 */
3965 	if (tail >= log->record_header_len) {
3966 		log->l_flags |= NTFSLOG_REUSE_TAIL;
3967 		log->next_page = vbo;
3968 	} else {
3969 		log->next_page = next_page_off(log, vbo);
3970 	}
3971 
3972 find_oldest:
3973 	/*
3974 	 * Find the oldest client lsn. Use the last
3975 	 * flushed lsn as a starting point.
3976 	 */
3977 	log->oldest_lsn = log->last_lsn;
3978 	oldest_client_lsn(Add2Ptr(ra2, le16_to_cpu(ra2->client_off)),
3979 			  ra2->client_idx[1], &log->oldest_lsn);
3980 	log->oldest_lsn_off = lsn_to_vbo(log, log->oldest_lsn);
3981 
3982 	if (log->oldest_lsn_off < log->first_page)
3983 		log->l_flags |= NTFSLOG_NO_OLDEST_LSN;
3984 
3985 	if (!(ra2->flags & RESTART_SINGLE_PAGE_IO))
3986 		log->l_flags |= NTFSLOG_WRAPPED | NTFSLOG_MULTIPLE_PAGE_IO;
3987 
3988 	log->current_openlog_count = le32_to_cpu(ra2->open_log_count);
3989 	log->total_avail_pages = log->l_size - log->first_page;
3990 	log->total_avail = log->total_avail_pages >> log->page_bits;
3991 	log->max_current_avail = log->total_avail * log->reserved;
3992 	log->total_avail = log->total_avail * log->data_size;
3993 
3994 	log->current_avail = current_log_avail(log);
3995 
3996 	ra = kzalloc(log->restart_size, GFP_NOFS);
3997 	if (!ra) {
3998 		err = -ENOMEM;
3999 		goto out;
4000 	}
4001 	log->ra = ra;
4002 
4003 	t16 = le16_to_cpu(ra2->client_off);
4004 	if (t16 == offsetof(struct RESTART_AREA, clients)) {
4005 		memcpy(ra, ra2, log->ra_size);
4006 	} else {
4007 		memcpy(ra, ra2, offsetof(struct RESTART_AREA, clients));
4008 		memcpy(ra->clients, Add2Ptr(ra2, t16),
4009 		       le16_to_cpu(ra2->ra_len) - t16);
4010 
4011 		log->current_openlog_count = get_random_u32();
4012 		ra->open_log_count = cpu_to_le32(log->current_openlog_count);
4013 		log->ra_size = offsetof(struct RESTART_AREA, clients) +
4014 			       sizeof(struct CLIENT_REC);
4015 		ra->client_off =
4016 			cpu_to_le16(offsetof(struct RESTART_AREA, clients));
4017 		ra->ra_len = cpu_to_le16(log->ra_size);
4018 	}
4019 
4020 	le32_add_cpu(&ra->open_log_count, 1);
4021 
4022 	/* Now we need to walk through looking for the last lsn. */
4023 	err = last_log_lsn(log);
4024 	if (err)
4025 		goto out;
4026 
4027 	log->current_avail = current_log_avail(log);
4028 
4029 	/* Remember which restart area to write first. */
4030 	log->init_ra = log->rst_info.vbo;
4031 
4032 process_log:
4033 	/* 1.0, 1.1, 2.0 log->major_ver/minor_ver - short values. */
4034 	switch ((log->major_ver << 16) + log->minor_ver) {
4035 	case 0x10000:
4036 	case 0x10001:
4037 	case 0x20000:
4038 		break;
4039 	default:
4040 		ntfs_warn(sbi->sb, "\x24LogFile version %d.%d is not supported",
4041 			  log->major_ver, log->minor_ver);
4042 		err = -EOPNOTSUPP;
4043 		log->set_dirty = true;
4044 		goto out;
4045 	}
4046 
4047 	/* One client "NTFS" per logfile. */
4048 	ca = Add2Ptr(ra, le16_to_cpu(ra->client_off));
4049 
4050 	for (client = ra->client_idx[1];; client = cr->next_client) {
4051 		if (client == LFS_NO_CLIENT_LE) {
4052 			/* Insert "NTFS" client LogFile. */
4053 			client = ra->client_idx[0];
4054 			if (client == LFS_NO_CLIENT_LE) {
4055 				err = -EINVAL;
4056 				goto out;
4057 			}
4058 
4059 			t16 = le16_to_cpu(client);
4060 			cr = ca + t16;
4061 
4062 			remove_client(ca, cr, &ra->client_idx[0]);
4063 
4064 			cr->restart_lsn = 0;
4065 			cr->oldest_lsn = cpu_to_le64(log->oldest_lsn);
4066 			cr->name_bytes = cpu_to_le32(8);
4067 			cr->name[0] = cpu_to_le16('N');
4068 			cr->name[1] = cpu_to_le16('T');
4069 			cr->name[2] = cpu_to_le16('F');
4070 			cr->name[3] = cpu_to_le16('S');
4071 
4072 			add_client(ca, t16, &ra->client_idx[1]);
4073 			break;
4074 		}
4075 
4076 		cr = ca + le16_to_cpu(client);
4077 
4078 		if (cpu_to_le32(8) == cr->name_bytes &&
4079 		    cpu_to_le16('N') == cr->name[0] &&
4080 		    cpu_to_le16('T') == cr->name[1] &&
4081 		    cpu_to_le16('F') == cr->name[2] &&
4082 		    cpu_to_le16('S') == cr->name[3])
4083 			break;
4084 	}
4085 
4086 	/* Update the client handle with the client block information. */
4087 	log->client_id.seq_num = cr->seq_num;
4088 	log->client_id.client_idx = client;
4089 
4090 	err = read_rst_area(log, &rst, &checkpt_lsn);
4091 	if (err)
4092 		goto out;
4093 
4094 	if (!rst)
4095 		goto out;
4096 
4097 	bytes_per_attr_entry = !rst->major_ver ? 0x2C : 0x28;
4098 
4099 	if (rst->check_point_start)
4100 		checkpt_lsn = le64_to_cpu(rst->check_point_start);
4101 
4102 	/* Allocate and Read the Transaction Table. */
4103 	if (!rst->transact_table_len)
4104 		goto check_dirty_page_table;
4105 
4106 	t64 = le64_to_cpu(rst->transact_table_lsn);
4107 	err = read_log_rec_lcb(log, t64, lcb_ctx_prev, &lcb);
4108 	if (err)
4109 		goto out;
4110 
4111 	lrh = lcb->log_rec;
4112 	frh = lcb->lrh;
4113 	rec_len = le32_to_cpu(frh->client_data_len);
4114 
4115 	if (!check_log_rec(lrh, rec_len, le32_to_cpu(frh->transact_id),
4116 			   bytes_per_attr_entry)) {
4117 		err = -EINVAL;
4118 		goto out;
4119 	}
4120 
4121 	t16 = le16_to_cpu(lrh->redo_off);
4122 
4123 	rt = Add2Ptr(lrh, t16);
4124 	t32 = rec_len - t16;
4125 
4126 	/* Now check that this is a valid restart table. */
4127 	if (!check_rstbl(rt, t32)) {
4128 		err = -EINVAL;
4129 		goto out;
4130 	}
4131 
4132 	trtbl = kmemdup(rt, t32, GFP_NOFS);
4133 	if (!trtbl) {
4134 		err = -ENOMEM;
4135 		goto out;
4136 	}
4137 
4138 	lcb_put(lcb);
4139 	lcb = NULL;
4140 
4141 check_dirty_page_table:
4142 	/* The next record back should be the Dirty Pages Table. */
4143 	if (!rst->dirty_pages_len)
4144 		goto check_attribute_names;
4145 
4146 	t64 = le64_to_cpu(rst->dirty_pages_table_lsn);
4147 	err = read_log_rec_lcb(log, t64, lcb_ctx_prev, &lcb);
4148 	if (err)
4149 		goto out;
4150 
4151 	lrh = lcb->log_rec;
4152 	frh = lcb->lrh;
4153 	rec_len = le32_to_cpu(frh->client_data_len);
4154 
4155 	if (!check_log_rec(lrh, rec_len, le32_to_cpu(frh->transact_id),
4156 			   bytes_per_attr_entry)) {
4157 		err = -EINVAL;
4158 		goto out;
4159 	}
4160 
4161 	t16 = le16_to_cpu(lrh->redo_off);
4162 
4163 	rt = Add2Ptr(lrh, t16);
4164 	t32 = rec_len - t16;
4165 
4166 	/* Now check that this is a valid restart table. */
4167 	if (!check_rstbl(rt, t32)) {
4168 		err = -EINVAL;
4169 		goto out;
4170 	}
4171 
4172 	dptbl = kmemdup(rt, t32, GFP_NOFS);
4173 	if (!dptbl) {
4174 		err = -ENOMEM;
4175 		goto out;
4176 	}
4177 
4178 	/* Convert Ra version '0' into version '1'. */
4179 	if (rst->major_ver)
4180 		goto end_conv_1;
4181 
4182 	dp = NULL;
4183 	while ((dp = enum_rstbl(dptbl, dp))) {
4184 		struct DIR_PAGE_ENTRY_32 *dp0 = (struct DIR_PAGE_ENTRY_32 *)dp;
4185 		// NOTE: Danger. Check for of boundary.
4186 		memmove(&dp->vcn, &dp0->vcn_low,
4187 			2 * sizeof(u64) +
4188 				le32_to_cpu(dp->lcns_follow) * sizeof(u64));
4189 	}
4190 
4191 end_conv_1:
4192 	lcb_put(lcb);
4193 	lcb = NULL;
4194 
4195 	/*
4196 	 * Go through the table and remove the duplicates,
4197 	 * remembering the oldest lsn values.
4198 	 */
4199 	if (sbi->cluster_size <= log->page_size)
4200 		goto trace_dp_table;
4201 
4202 	dp = NULL;
4203 	while ((dp = enum_rstbl(dptbl, dp))) {
4204 		struct DIR_PAGE_ENTRY *next = dp;
4205 
4206 		while ((next = enum_rstbl(dptbl, next))) {
4207 			if (next->target_attr == dp->target_attr &&
4208 			    next->vcn == dp->vcn) {
4209 				if (le64_to_cpu(next->oldest_lsn) <
4210 				    le64_to_cpu(dp->oldest_lsn)) {
4211 					dp->oldest_lsn = next->oldest_lsn;
4212 				}
4213 
4214 				free_rsttbl_idx(dptbl, PtrOffset(dptbl, next));
4215 			}
4216 		}
4217 	}
4218 trace_dp_table:
4219 check_attribute_names:
4220 	/* The next record should be the Attribute Names. */
4221 	if (!rst->attr_names_len)
4222 		goto check_attr_table;
4223 
4224 	t64 = le64_to_cpu(rst->attr_names_lsn);
4225 	err = read_log_rec_lcb(log, t64, lcb_ctx_prev, &lcb);
4226 	if (err)
4227 		goto out;
4228 
4229 	lrh = lcb->log_rec;
4230 	frh = lcb->lrh;
4231 	rec_len = le32_to_cpu(frh->client_data_len);
4232 
4233 	if (!check_log_rec(lrh, rec_len, le32_to_cpu(frh->transact_id),
4234 			   bytes_per_attr_entry)) {
4235 		err = -EINVAL;
4236 		goto out;
4237 	}
4238 
4239 	t32 = lrh_length(lrh);
4240 	rec_len -= t32;
4241 
4242 	attr_names = kmemdup(Add2Ptr(lrh, t32), rec_len, GFP_NOFS);
4243 	if (!attr_names) {
4244 		err = -ENOMEM;
4245 		goto out;
4246 	}
4247 
4248 	lcb_put(lcb);
4249 	lcb = NULL;
4250 
4251 check_attr_table:
4252 	/* The next record should be the attribute Table. */
4253 	if (!rst->open_attr_len)
4254 		goto check_attribute_names2;
4255 
4256 	t64 = le64_to_cpu(rst->open_attr_table_lsn);
4257 	err = read_log_rec_lcb(log, t64, lcb_ctx_prev, &lcb);
4258 	if (err)
4259 		goto out;
4260 
4261 	lrh = lcb->log_rec;
4262 	frh = lcb->lrh;
4263 	rec_len = le32_to_cpu(frh->client_data_len);
4264 
4265 	if (!check_log_rec(lrh, rec_len, le32_to_cpu(frh->transact_id),
4266 			   bytes_per_attr_entry)) {
4267 		err = -EINVAL;
4268 		goto out;
4269 	}
4270 
4271 	t16 = le16_to_cpu(lrh->redo_off);
4272 
4273 	rt = Add2Ptr(lrh, t16);
4274 	t32 = rec_len - t16;
4275 
4276 	if (!check_rstbl(rt, t32)) {
4277 		err = -EINVAL;
4278 		goto out;
4279 	}
4280 
4281 	oatbl = kmemdup(rt, t32, GFP_NOFS);
4282 	if (!oatbl) {
4283 		err = -ENOMEM;
4284 		goto out;
4285 	}
4286 
4287 	log->open_attr_tbl = oatbl;
4288 
4289 	/* Clear all of the Attr pointers. */
4290 	oe = NULL;
4291 	while ((oe = enum_rstbl(oatbl, oe))) {
4292 		if (!rst->major_ver) {
4293 			struct OPEN_ATTR_ENRTY_32 oe0;
4294 
4295 			/* Really 'oe' points to OPEN_ATTR_ENRTY_32. */
4296 			memcpy(&oe0, oe, SIZEOF_OPENATTRIBUTEENTRY0);
4297 
4298 			oe->bytes_per_index = oe0.bytes_per_index;
4299 			oe->type = oe0.type;
4300 			oe->is_dirty_pages = oe0.is_dirty_pages;
4301 			oe->name_len = 0;
4302 			oe->ref = oe0.ref;
4303 			oe->open_record_lsn = oe0.open_record_lsn;
4304 		}
4305 
4306 		oe->is_attr_name = 0;
4307 		oe->ptr = NULL;
4308 	}
4309 
4310 	lcb_put(lcb);
4311 	lcb = NULL;
4312 
4313 check_attribute_names2:
4314 	if (rst->attr_names_len && oatbl) {
4315 		struct ATTR_NAME_ENTRY *ane = attr_names;
4316 		while (ane->off) {
4317 			/* TODO: Clear table on exit! */
4318 			oe = Add2Ptr(oatbl, le16_to_cpu(ane->off));
4319 			t16 = le16_to_cpu(ane->name_bytes);
4320 			oe->name_len = t16 / sizeof(short);
4321 			oe->ptr = ane->name;
4322 			oe->is_attr_name = 2;
4323 			ane = Add2Ptr(ane,
4324 				      sizeof(struct ATTR_NAME_ENTRY) + t16);
4325 		}
4326 	}
4327 
4328 	/*
4329 	 * If the checkpt_lsn is zero, then this is a freshly
4330 	 * formatted disk and we have no work to do.
4331 	 */
4332 	if (!checkpt_lsn) {
4333 		err = 0;
4334 		goto out;
4335 	}
4336 
4337 	if (!oatbl) {
4338 		oatbl = init_rsttbl(bytes_per_attr_entry, 8);
4339 		if (!oatbl) {
4340 			err = -ENOMEM;
4341 			goto out;
4342 		}
4343 	}
4344 
4345 	log->open_attr_tbl = oatbl;
4346 
4347 	/* Start the analysis pass from the Checkpoint lsn. */
4348 	rec_lsn = checkpt_lsn;
4349 
4350 	/* Read the first lsn. */
4351 	err = read_log_rec_lcb(log, checkpt_lsn, lcb_ctx_next, &lcb);
4352 	if (err)
4353 		goto out;
4354 
4355 	/* Loop to read all subsequent records to the end of the log file. */
4356 next_log_record_analyze:
4357 	err = read_next_log_rec(log, lcb, &rec_lsn);
4358 	if (err)
4359 		goto out;
4360 
4361 	if (!rec_lsn)
4362 		goto end_log_records_enumerate;
4363 
4364 	frh = lcb->lrh;
4365 	transact_id = le32_to_cpu(frh->transact_id);
4366 	rec_len = le32_to_cpu(frh->client_data_len);
4367 	lrh = lcb->log_rec;
4368 
4369 	if (!check_log_rec(lrh, rec_len, transact_id, bytes_per_attr_entry)) {
4370 		err = -EINVAL;
4371 		goto out;
4372 	}
4373 
4374 	/*
4375 	 * The first lsn after the previous lsn remembered
4376 	 * the checkpoint is the first candidate for the rlsn.
4377 	 */
4378 	if (!rlsn)
4379 		rlsn = rec_lsn;
4380 
4381 	if (LfsClientRecord != frh->record_type)
4382 		goto next_log_record_analyze;
4383 
4384 	/*
4385 	 * Now update the Transaction Table for this transaction. If there
4386 	 * is no entry present or it is unallocated we allocate the entry.
4387 	 */
4388 	if (!trtbl) {
4389 		trtbl = init_rsttbl(sizeof(struct TRANSACTION_ENTRY),
4390 				    INITIAL_NUMBER_TRANSACTIONS);
4391 		if (!trtbl) {
4392 			err = -ENOMEM;
4393 			goto out;
4394 		}
4395 	}
4396 
4397 	tr = Add2Ptr(trtbl, transact_id);
4398 
4399 	if (transact_id >= bytes_per_rt(trtbl) ||
4400 	    tr->next != RESTART_ENTRY_ALLOCATED_LE) {
4401 		tr = alloc_rsttbl_from_idx(&trtbl, transact_id);
4402 		if (!tr) {
4403 			err = -ENOMEM;
4404 			goto out;
4405 		}
4406 		tr->transact_state = TransactionActive;
4407 		tr->first_lsn = cpu_to_le64(rec_lsn);
4408 	}
4409 
4410 	tr->prev_lsn = tr->undo_next_lsn = cpu_to_le64(rec_lsn);
4411 
4412 	/*
4413 	 * If this is a compensation log record, then change
4414 	 * the undo_next_lsn to be the undo_next_lsn of this record.
4415 	 */
4416 	if (lrh->undo_op == cpu_to_le16(CompensationLogRecord))
4417 		tr->undo_next_lsn = frh->client_undo_next_lsn;
4418 
4419 	/* Dispatch to handle log record depending on type. */
4420 	switch (le16_to_cpu(lrh->redo_op)) {
4421 	case InitializeFileRecordSegment:
4422 	case DeallocateFileRecordSegment:
4423 	case WriteEndOfFileRecordSegment:
4424 	case CreateAttribute:
4425 	case DeleteAttribute:
4426 	case UpdateResidentValue:
4427 	case UpdateNonresidentValue:
4428 	case UpdateMappingPairs:
4429 	case SetNewAttributeSizes:
4430 	case AddIndexEntryRoot:
4431 	case DeleteIndexEntryRoot:
4432 	case AddIndexEntryAllocation:
4433 	case DeleteIndexEntryAllocation:
4434 	case WriteEndOfIndexBuffer:
4435 	case SetIndexEntryVcnRoot:
4436 	case SetIndexEntryVcnAllocation:
4437 	case UpdateFileNameRoot:
4438 	case UpdateFileNameAllocation:
4439 	case SetBitsInNonresidentBitMap:
4440 	case ClearBitsInNonresidentBitMap:
4441 	case UpdateRecordDataRoot:
4442 	case UpdateRecordDataAllocation:
4443 	case ZeroEndOfFileRecord:
4444 		t16 = le16_to_cpu(lrh->target_attr);
4445 		t64 = le64_to_cpu(lrh->target_vcn);
4446 		dp = find_dp(dptbl, t16, t64);
4447 
4448 		if (dp)
4449 			goto copy_lcns;
4450 
4451 		/*
4452 		 * Calculate the number of clusters per page the system
4453 		 * which wrote the checkpoint, possibly creating the table.
4454 		 */
4455 		if (dptbl) {
4456 			t32 = (le16_to_cpu(dptbl->size) -
4457 			       sizeof(struct DIR_PAGE_ENTRY)) /
4458 			      sizeof(u64);
4459 		} else {
4460 			t32 = log->clst_per_page;
4461 			kfree(dptbl);
4462 			dptbl = init_rsttbl(struct_size(dp, page_lcns, t32),
4463 					    32);
4464 			if (!dptbl) {
4465 				err = -ENOMEM;
4466 				goto out;
4467 			}
4468 		}
4469 
4470 		dp = alloc_rsttbl_idx(&dptbl);
4471 		if (!dp) {
4472 			err = -ENOMEM;
4473 			goto out;
4474 		}
4475 		dp->target_attr = cpu_to_le32(t16);
4476 		dp->transfer_len = cpu_to_le32(t32 << sbi->cluster_bits);
4477 		dp->lcns_follow = cpu_to_le32(t32);
4478 		dp->vcn = cpu_to_le64(t64 & ~((u64)t32 - 1));
4479 		dp->oldest_lsn = cpu_to_le64(rec_lsn);
4480 
4481 copy_lcns:
4482 		/*
4483 		 * Copy the Lcns from the log record into the Dirty Page Entry.
4484 		 * TODO: For different page size support, must somehow make
4485 		 * whole routine a loop, case Lcns do not fit below.
4486 		 */
4487 		t16 = le16_to_cpu(lrh->lcns_follow);
4488 		for (i = 0; i < t16; i++) {
4489 			size_t j = (size_t)(le64_to_cpu(lrh->target_vcn) -
4490 					    le64_to_cpu(dp->vcn));
4491 			dp->page_lcns[j + i] = lrh->page_lcns[i];
4492 		}
4493 
4494 		goto next_log_record_analyze;
4495 
4496 	case DeleteDirtyClusters: {
4497 		u32 range_count =
4498 			le16_to_cpu(lrh->redo_len) / sizeof(struct LCN_RANGE);
4499 		const struct LCN_RANGE *r =
4500 			Add2Ptr(lrh, le16_to_cpu(lrh->redo_off));
4501 
4502 		/* Loop through all of the Lcn ranges this log record. */
4503 		for (i = 0; i < range_count; i++, r++) {
4504 			u64 lcn0 = le64_to_cpu(r->lcn);
4505 			u64 lcn_e = lcn0 + le64_to_cpu(r->len) - 1;
4506 
4507 			dp = NULL;
4508 			while ((dp = enum_rstbl(dptbl, dp))) {
4509 				u32 j;
4510 
4511 				t32 = le32_to_cpu(dp->lcns_follow);
4512 				for (j = 0; j < t32; j++) {
4513 					t64 = le64_to_cpu(dp->page_lcns[j]);
4514 					if (t64 >= lcn0 && t64 <= lcn_e)
4515 						dp->page_lcns[j] = 0;
4516 				}
4517 			}
4518 		}
4519 		goto next_log_record_analyze;
4520 		;
4521 	}
4522 
4523 	case OpenNonresidentAttribute:
4524 		t16 = le16_to_cpu(lrh->target_attr);
4525 		if (t16 >= bytes_per_rt(oatbl)) {
4526 			/*
4527 			 * Compute how big the table needs to be.
4528 			 * Add 10 extra entries for some cushion.
4529 			 */
4530 			u32 new_e = t16 / le16_to_cpu(oatbl->size);
4531 
4532 			new_e += 10 - le16_to_cpu(oatbl->used);
4533 
4534 			oatbl = extend_rsttbl(oatbl, new_e, ~0u);
4535 			log->open_attr_tbl = oatbl;
4536 			if (!oatbl) {
4537 				err = -ENOMEM;
4538 				goto out;
4539 			}
4540 		}
4541 
4542 		/* Point to the entry being opened. */
4543 		oe = alloc_rsttbl_from_idx(&oatbl, t16);
4544 		log->open_attr_tbl = oatbl;
4545 		if (!oe) {
4546 			err = -ENOMEM;
4547 			goto out;
4548 		}
4549 
4550 		/* Initialize this entry from the log record. */
4551 		t16 = le16_to_cpu(lrh->redo_off);
4552 		if (!rst->major_ver) {
4553 			/* Convert version '0' into version '1'. */
4554 			struct OPEN_ATTR_ENRTY_32 *oe0 = Add2Ptr(lrh, t16);
4555 
4556 			oe->bytes_per_index = oe0->bytes_per_index;
4557 			oe->type = oe0->type;
4558 			oe->is_dirty_pages = oe0->is_dirty_pages;
4559 			oe->name_len = 0; //oe0.name_len;
4560 			oe->ref = oe0->ref;
4561 			oe->open_record_lsn = oe0->open_record_lsn;
4562 		} else {
4563 			memcpy(oe, Add2Ptr(lrh, t16), bytes_per_attr_entry);
4564 		}
4565 
4566 		t16 = le16_to_cpu(lrh->undo_len);
4567 		if (t16) {
4568 			oe->ptr = kmalloc(t16, GFP_NOFS);
4569 			if (!oe->ptr) {
4570 				err = -ENOMEM;
4571 				goto out;
4572 			}
4573 			oe->name_len = t16 / sizeof(short);
4574 			memcpy(oe->ptr,
4575 			       Add2Ptr(lrh, le16_to_cpu(lrh->undo_off)), t16);
4576 			oe->is_attr_name = 1;
4577 		} else {
4578 			oe->ptr = NULL;
4579 			oe->is_attr_name = 0;
4580 		}
4581 
4582 		goto next_log_record_analyze;
4583 
4584 	case HotFix:
4585 		t16 = le16_to_cpu(lrh->target_attr);
4586 		t64 = le64_to_cpu(lrh->target_vcn);
4587 		dp = find_dp(dptbl, t16, t64);
4588 		if (dp) {
4589 			size_t j = le64_to_cpu(lrh->target_vcn) -
4590 				   le64_to_cpu(dp->vcn);
4591 			if (dp->page_lcns[j])
4592 				dp->page_lcns[j] = lrh->page_lcns[0];
4593 		}
4594 		goto next_log_record_analyze;
4595 
4596 	case EndTopLevelAction:
4597 		tr = Add2Ptr(trtbl, transact_id);
4598 		tr->prev_lsn = cpu_to_le64(rec_lsn);
4599 		tr->undo_next_lsn = frh->client_undo_next_lsn;
4600 		goto next_log_record_analyze;
4601 
4602 	case PrepareTransaction:
4603 		tr = Add2Ptr(trtbl, transact_id);
4604 		tr->transact_state = TransactionPrepared;
4605 		goto next_log_record_analyze;
4606 
4607 	case CommitTransaction:
4608 		tr = Add2Ptr(trtbl, transact_id);
4609 		tr->transact_state = TransactionCommitted;
4610 		goto next_log_record_analyze;
4611 
4612 	case ForgetTransaction:
4613 		free_rsttbl_idx(trtbl, transact_id);
4614 		goto next_log_record_analyze;
4615 
4616 	case Noop:
4617 	case OpenAttributeTableDump:
4618 	case AttributeNamesDump:
4619 	case DirtyPageTableDump:
4620 	case TransactionTableDump:
4621 		/* The following cases require no action the Analysis Pass. */
4622 		goto next_log_record_analyze;
4623 
4624 	default:
4625 		/*
4626 		 * All codes will be explicitly handled.
4627 		 * If we see a code we do not expect, then we are trouble.
4628 		 */
4629 		goto next_log_record_analyze;
4630 	}
4631 
4632 end_log_records_enumerate:
4633 	lcb_put(lcb);
4634 	lcb = NULL;
4635 
4636 	/*
4637 	 * Scan the Dirty Page Table and Transaction Table for
4638 	 * the lowest lsn, and return it as the Redo lsn.
4639 	 */
4640 	dp = NULL;
4641 	while ((dp = enum_rstbl(dptbl, dp))) {
4642 		t64 = le64_to_cpu(dp->oldest_lsn);
4643 		if (t64 && t64 < rlsn)
4644 			rlsn = t64;
4645 	}
4646 
4647 	tr = NULL;
4648 	while ((tr = enum_rstbl(trtbl, tr))) {
4649 		t64 = le64_to_cpu(tr->first_lsn);
4650 		if (t64 && t64 < rlsn)
4651 			rlsn = t64;
4652 	}
4653 
4654 	/*
4655 	 * Only proceed if the Dirty Page Table or Transaction
4656 	 * table are not empty.
4657 	 */
4658 	if ((!dptbl || !dptbl->total) && (!trtbl || !trtbl->total))
4659 		goto end_reply;
4660 
4661 	sbi->flags |= NTFS_FLAGS_NEED_REPLAY;
4662 	if (is_ro)
4663 		goto out;
4664 
4665 	/* Reopen all of the attributes with dirty pages. */
4666 	oe = NULL;
4667 next_open_attribute:
4668 
4669 	oe = enum_rstbl(oatbl, oe);
4670 	if (!oe) {
4671 		err = 0;
4672 		dp = NULL;
4673 		goto next_dirty_page;
4674 	}
4675 
4676 	oa = kzalloc(sizeof(struct OpenAttr), GFP_NOFS);
4677 	if (!oa) {
4678 		err = -ENOMEM;
4679 		goto out;
4680 	}
4681 
4682 	inode = ntfs_iget5(sbi->sb, &oe->ref, NULL);
4683 	if (IS_ERR(inode))
4684 		goto fake_attr;
4685 
4686 	if (is_bad_inode(inode)) {
4687 		iput(inode);
4688 fake_attr:
4689 		if (oa->ni) {
4690 			iput(&oa->ni->vfs_inode);
4691 			oa->ni = NULL;
4692 		}
4693 
4694 		attr = attr_create_nonres_log(sbi, oe->type, 0, oe->ptr,
4695 					      oe->name_len, 0);
4696 		if (!attr) {
4697 			kfree(oa);
4698 			err = -ENOMEM;
4699 			goto out;
4700 		}
4701 		oa->attr = attr;
4702 		oa->run1 = &oa->run0;
4703 		goto final_oe;
4704 	}
4705 
4706 	ni_oe = ntfs_i(inode);
4707 	oa->ni = ni_oe;
4708 
4709 	attr = ni_find_attr(ni_oe, NULL, NULL, oe->type, oe->ptr, oe->name_len,
4710 			    NULL, NULL);
4711 
4712 	if (!attr)
4713 		goto fake_attr;
4714 
4715 	t32 = le32_to_cpu(attr->size);
4716 	oa->attr = kmemdup(attr, t32, GFP_NOFS);
4717 	if (!oa->attr)
4718 		goto fake_attr;
4719 
4720 	if (!S_ISDIR(inode->i_mode)) {
4721 		if (attr->type == ATTR_DATA && !attr->name_len) {
4722 			oa->run1 = &ni_oe->file.run;
4723 			goto final_oe;
4724 		}
4725 	} else {
4726 		if (attr->type == ATTR_ALLOC &&
4727 		    attr->name_len == ARRAY_SIZE(I30_NAME) &&
4728 		    !memcmp(attr_name(attr), I30_NAME, sizeof(I30_NAME))) {
4729 			oa->run1 = &ni_oe->dir.alloc_run;
4730 			goto final_oe;
4731 		}
4732 	}
4733 
4734 	if (attr->non_res) {
4735 		u16 roff = le16_to_cpu(attr->nres.run_off);
4736 		CLST svcn = le64_to_cpu(attr->nres.svcn);
4737 
4738 		if (roff > t32) {
4739 			kfree(oa->attr);
4740 			oa->attr = NULL;
4741 			goto fake_attr;
4742 		}
4743 
4744 		err = run_unpack(&oa->run0, sbi, inode->i_ino, svcn,
4745 				 le64_to_cpu(attr->nres.evcn), svcn,
4746 				 Add2Ptr(attr, roff), t32 - roff);
4747 		if (err < 0) {
4748 			kfree(oa->attr);
4749 			oa->attr = NULL;
4750 			goto fake_attr;
4751 		}
4752 		err = 0;
4753 	}
4754 	oa->run1 = &oa->run0;
4755 	attr = oa->attr;
4756 
4757 final_oe:
4758 	if (oe->is_attr_name == 1)
4759 		kfree(oe->ptr);
4760 	oe->is_attr_name = 0;
4761 	oe->ptr = oa;
4762 	oe->name_len = attr->name_len;
4763 
4764 	goto next_open_attribute;
4765 
4766 	/*
4767 	 * Now loop through the dirty page table to extract all of the Vcn/Lcn.
4768 	 * Mapping that we have, and insert it into the appropriate run.
4769 	 */
4770 next_dirty_page:
4771 	dp = enum_rstbl(dptbl, dp);
4772 	if (!dp)
4773 		goto do_redo_1;
4774 
4775 	oe = Add2Ptr(oatbl, le32_to_cpu(dp->target_attr));
4776 
4777 	if (oe->next != RESTART_ENTRY_ALLOCATED_LE)
4778 		goto next_dirty_page;
4779 
4780 	oa = oe->ptr;
4781 	if (!oa)
4782 		goto next_dirty_page;
4783 
4784 	i = -1;
4785 next_dirty_page_vcn:
4786 	i += 1;
4787 	if (i >= le32_to_cpu(dp->lcns_follow))
4788 		goto next_dirty_page;
4789 
4790 	vcn = le64_to_cpu(dp->vcn) + i;
4791 	size = (vcn + 1) << sbi->cluster_bits;
4792 
4793 	if (!dp->page_lcns[i])
4794 		goto next_dirty_page_vcn;
4795 
4796 	rno = ino_get(&oe->ref);
4797 	if (rno <= MFT_REC_MIRR &&
4798 	    size < (MFT_REC_VOL + 1) * sbi->record_size &&
4799 	    oe->type == ATTR_DATA) {
4800 		goto next_dirty_page_vcn;
4801 	}
4802 
4803 	lcn = le64_to_cpu(dp->page_lcns[i]);
4804 
4805 	if ((!run_lookup_entry(oa->run1, vcn, &lcn0, &len0, NULL) ||
4806 	     lcn0 != lcn) &&
4807 	    !run_add_entry(oa->run1, vcn, lcn, 1, false)) {
4808 		err = -ENOMEM;
4809 		goto out;
4810 	}
4811 	attr = oa->attr;
4812 	if (size > le64_to_cpu(attr->nres.alloc_size)) {
4813 		attr->nres.valid_size = attr->nres.data_size =
4814 			attr->nres.alloc_size = cpu_to_le64(size);
4815 	}
4816 	goto next_dirty_page_vcn;
4817 
4818 do_redo_1:
4819 	/*
4820 	 * Perform the Redo Pass, to restore all of the dirty pages to the same
4821 	 * contents that they had immediately before the crash. If the dirty
4822 	 * page table is empty, then we can skip the entire Redo Pass.
4823 	 */
4824 	if (!dptbl || !dptbl->total)
4825 		goto do_undo_action;
4826 
4827 	rec_lsn = rlsn;
4828 
4829 	/*
4830 	 * Read the record at the Redo lsn, before falling
4831 	 * into common code to handle each record.
4832 	 */
4833 	err = read_log_rec_lcb(log, rlsn, lcb_ctx_next, &lcb);
4834 	if (err)
4835 		goto out;
4836 
4837 	/*
4838 	 * Now loop to read all of our log records forwards, until
4839 	 * we hit the end of the file, cleaning up at the end.
4840 	 */
4841 do_action_next:
4842 	frh = lcb->lrh;
4843 
4844 	if (LfsClientRecord != frh->record_type)
4845 		goto read_next_log_do_action;
4846 
4847 	transact_id = le32_to_cpu(frh->transact_id);
4848 	rec_len = le32_to_cpu(frh->client_data_len);
4849 	lrh = lcb->log_rec;
4850 
4851 	if (!check_log_rec(lrh, rec_len, transact_id, bytes_per_attr_entry)) {
4852 		err = -EINVAL;
4853 		goto out;
4854 	}
4855 
4856 	/* Ignore log records that do not update pages. */
4857 	if (lrh->lcns_follow)
4858 		goto find_dirty_page;
4859 
4860 	goto read_next_log_do_action;
4861 
4862 find_dirty_page:
4863 	t16 = le16_to_cpu(lrh->target_attr);
4864 	t64 = le64_to_cpu(lrh->target_vcn);
4865 	dp = find_dp(dptbl, t16, t64);
4866 
4867 	if (!dp)
4868 		goto read_next_log_do_action;
4869 
4870 	if (rec_lsn < le64_to_cpu(dp->oldest_lsn))
4871 		goto read_next_log_do_action;
4872 
4873 	t16 = le16_to_cpu(lrh->target_attr);
4874 	if (t16 >= bytes_per_rt(oatbl)) {
4875 		err = -EINVAL;
4876 		goto out;
4877 	}
4878 
4879 	oe = Add2Ptr(oatbl, t16);
4880 
4881 	if (oe->next != RESTART_ENTRY_ALLOCATED_LE) {
4882 		err = -EINVAL;
4883 		goto out;
4884 	}
4885 
4886 	oa = oe->ptr;
4887 
4888 	if (!oa) {
4889 		err = -EINVAL;
4890 		goto out;
4891 	}
4892 	attr = oa->attr;
4893 
4894 	vcn = le64_to_cpu(lrh->target_vcn);
4895 
4896 	if (!run_lookup_entry(oa->run1, vcn, &lcn, NULL, NULL) ||
4897 	    lcn == SPARSE_LCN) {
4898 		goto read_next_log_do_action;
4899 	}
4900 
4901 	/* Point to the Redo data and get its length. */
4902 	data = Add2Ptr(lrh, le16_to_cpu(lrh->redo_off));
4903 	dlen = le16_to_cpu(lrh->redo_len);
4904 
4905 	/* Shorten length by any Lcns which were deleted. */
4906 	saved_len = dlen;
4907 
4908 	for (i = le16_to_cpu(lrh->lcns_follow); i; i--) {
4909 		size_t j;
4910 		u32 alen, voff;
4911 
4912 		voff = le16_to_cpu(lrh->record_off) +
4913 		       le16_to_cpu(lrh->attr_off);
4914 		voff += le16_to_cpu(lrh->cluster_off) << SECTOR_SHIFT;
4915 
4916 		/* If the Vcn question is allocated, we can just get out. */
4917 		j = le64_to_cpu(lrh->target_vcn) - le64_to_cpu(dp->vcn);
4918 		if (dp->page_lcns[j + i - 1])
4919 			break;
4920 
4921 		if (!saved_len)
4922 			saved_len = 1;
4923 
4924 		/*
4925 		 * Calculate the allocated space left relative to the
4926 		 * log record Vcn, after removing this unallocated Vcn.
4927 		 */
4928 		alen = (i - 1) << sbi->cluster_bits;
4929 
4930 		/*
4931 		 * If the update described this log record goes beyond
4932 		 * the allocated space, then we will have to reduce the length.
4933 		 */
4934 		if (voff >= alen)
4935 			dlen = 0;
4936 		else if (voff + dlen > alen)
4937 			dlen = alen - voff;
4938 	}
4939 
4940 	/*
4941 	 * If the resulting dlen from above is now zero,
4942 	 * we can skip this log record.
4943 	 */
4944 	if (!dlen && saved_len)
4945 		goto read_next_log_do_action;
4946 
4947 	t16 = le16_to_cpu(lrh->redo_op);
4948 	if (can_skip_action(t16))
4949 		goto read_next_log_do_action;
4950 
4951 	/* Apply the Redo operation a common routine. */
4952 	err = do_action(log, oe, lrh, t16, data, dlen, rec_len, &rec_lsn);
4953 	if (err)
4954 		goto out;
4955 
4956 	/* Keep reading and looping back until end of file. */
4957 read_next_log_do_action:
4958 	err = read_next_log_rec(log, lcb, &rec_lsn);
4959 	if (!err && rec_lsn)
4960 		goto do_action_next;
4961 
4962 	lcb_put(lcb);
4963 	lcb = NULL;
4964 
4965 do_undo_action:
4966 	/* Scan Transaction Table. */
4967 	tr = NULL;
4968 transaction_table_next:
4969 	tr = enum_rstbl(trtbl, tr);
4970 	if (!tr)
4971 		goto undo_action_done;
4972 
4973 	if (TransactionActive != tr->transact_state || !tr->undo_next_lsn) {
4974 		free_rsttbl_idx(trtbl, PtrOffset(trtbl, tr));
4975 		goto transaction_table_next;
4976 	}
4977 
4978 	log->transaction_id = PtrOffset(trtbl, tr);
4979 	undo_next_lsn = le64_to_cpu(tr->undo_next_lsn);
4980 
4981 	/*
4982 	 * We only have to do anything if the transaction has
4983 	 * something its undo_next_lsn field.
4984 	 */
4985 	if (!undo_next_lsn)
4986 		goto commit_undo;
4987 
4988 	/* Read the first record to be undone by this transaction. */
4989 	err = read_log_rec_lcb(log, undo_next_lsn, lcb_ctx_undo_next, &lcb);
4990 	if (err)
4991 		goto out;
4992 
4993 	/*
4994 	 * Now loop to read all of our log records forwards,
4995 	 * until we hit the end of the file, cleaning up at the end.
4996 	 */
4997 undo_action_next:
4998 
4999 	lrh = lcb->log_rec;
5000 	frh = lcb->lrh;
5001 	transact_id = le32_to_cpu(frh->transact_id);
5002 	rec_len = le32_to_cpu(frh->client_data_len);
5003 
5004 	if (!check_log_rec(lrh, rec_len, transact_id, bytes_per_attr_entry)) {
5005 		err = -EINVAL;
5006 		goto out;
5007 	}
5008 
5009 	if (lrh->undo_op == cpu_to_le16(Noop))
5010 		goto read_next_log_undo_action;
5011 
5012 	oe = Add2Ptr(oatbl, le16_to_cpu(lrh->target_attr));
5013 	oa = oe->ptr;
5014 
5015 	t16 = le16_to_cpu(lrh->lcns_follow);
5016 	if (!t16)
5017 		goto add_allocated_vcns;
5018 
5019 	is_mapped = run_lookup_entry(oa->run1, le64_to_cpu(lrh->target_vcn),
5020 				     &lcn, &clen, NULL);
5021 
5022 	/*
5023 	 * If the mapping isn't already the table or the  mapping
5024 	 * corresponds to a hole the mapping, we need to make sure
5025 	 * there is no partial page already memory.
5026 	 */
5027 	if (is_mapped && lcn != SPARSE_LCN && clen >= t16)
5028 		goto add_allocated_vcns;
5029 
5030 	vcn = le64_to_cpu(lrh->target_vcn);
5031 	vcn &= ~(u64)(log->clst_per_page - 1);
5032 
5033 add_allocated_vcns:
5034 	for (i = 0, vcn = le64_to_cpu(lrh->target_vcn),
5035 	    size = (vcn + 1) << sbi->cluster_bits;
5036 	     i < t16; i++, vcn += 1, size += sbi->cluster_size) {
5037 		attr = oa->attr;
5038 		if (!attr->non_res) {
5039 			if (size > le32_to_cpu(attr->res.data_size))
5040 				attr->res.data_size = cpu_to_le32(size);
5041 		} else {
5042 			if (size > le64_to_cpu(attr->nres.data_size))
5043 				attr->nres.valid_size = attr->nres.data_size =
5044 					attr->nres.alloc_size =
5045 						cpu_to_le64(size);
5046 		}
5047 	}
5048 
5049 	t16 = le16_to_cpu(lrh->undo_op);
5050 	if (can_skip_action(t16))
5051 		goto read_next_log_undo_action;
5052 
5053 	/* Point to the Redo data and get its length. */
5054 	data = Add2Ptr(lrh, le16_to_cpu(lrh->undo_off));
5055 	dlen = le16_to_cpu(lrh->undo_len);
5056 
5057 	/* It is time to apply the undo action. */
5058 	err = do_action(log, oe, lrh, t16, data, dlen, rec_len, NULL);
5059 
5060 read_next_log_undo_action:
5061 	/*
5062 	 * Keep reading and looping back until we have read the
5063 	 * last record for this transaction.
5064 	 */
5065 	err = read_next_log_rec(log, lcb, &rec_lsn);
5066 	if (err)
5067 		goto out;
5068 
5069 	if (rec_lsn)
5070 		goto undo_action_next;
5071 
5072 	lcb_put(lcb);
5073 	lcb = NULL;
5074 
5075 commit_undo:
5076 	free_rsttbl_idx(trtbl, log->transaction_id);
5077 
5078 	log->transaction_id = 0;
5079 
5080 	goto transaction_table_next;
5081 
5082 undo_action_done:
5083 
5084 	ntfs_update_mftmirr(sbi, 0);
5085 
5086 	sbi->flags &= ~NTFS_FLAGS_NEED_REPLAY;
5087 
5088 end_reply:
5089 
5090 	err = 0;
5091 	if (is_ro)
5092 		goto out;
5093 
5094 	rh = kzalloc(log->page_size, GFP_NOFS);
5095 	if (!rh) {
5096 		err = -ENOMEM;
5097 		goto out;
5098 	}
5099 
5100 	rh->rhdr.sign = NTFS_RSTR_SIGNATURE;
5101 	rh->rhdr.fix_off = cpu_to_le16(offsetof(struct RESTART_HDR, fixups));
5102 	t16 = (log->page_size >> SECTOR_SHIFT) + 1;
5103 	rh->rhdr.fix_num = cpu_to_le16(t16);
5104 	rh->sys_page_size = cpu_to_le32(log->page_size);
5105 	rh->page_size = cpu_to_le32(log->page_size);
5106 
5107 	t16 = ALIGN(offsetof(struct RESTART_HDR, fixups) + sizeof(short) * t16,
5108 		    8);
5109 	rh->ra_off = cpu_to_le16(t16);
5110 	rh->minor_ver = cpu_to_le16(1); // 0x1A:
5111 	rh->major_ver = cpu_to_le16(1); // 0x1C:
5112 
5113 	ra2 = Add2Ptr(rh, t16);
5114 	memcpy(ra2, ra, sizeof(struct RESTART_AREA));
5115 
5116 	ra2->client_idx[0] = 0;
5117 	ra2->client_idx[1] = LFS_NO_CLIENT_LE;
5118 	ra2->flags = cpu_to_le16(2);
5119 
5120 	le32_add_cpu(&ra2->open_log_count, 1);
5121 
5122 	ntfs_fix_pre_write(&rh->rhdr, log->page_size);
5123 
5124 	err = ntfs_sb_write_run(sbi, &ni->file.run, 0, rh, log->page_size, 0);
5125 	if (!err)
5126 		err = ntfs_sb_write_run(sbi, &log->ni->file.run, log->page_size,
5127 					rh, log->page_size, 0);
5128 
5129 	kfree(rh);
5130 	if (err)
5131 		goto out;
5132 
5133 out:
5134 	kfree(rst);
5135 	if (lcb)
5136 		lcb_put(lcb);
5137 
5138 	/*
5139 	 * Scan the Open Attribute Table to close all of
5140 	 * the open attributes.
5141 	 */
5142 	oe = NULL;
5143 	while ((oe = enum_rstbl(oatbl, oe))) {
5144 		rno = ino_get(&oe->ref);
5145 
5146 		if (oe->is_attr_name == 1) {
5147 			kfree(oe->ptr);
5148 			oe->ptr = NULL;
5149 			continue;
5150 		}
5151 
5152 		if (oe->is_attr_name)
5153 			continue;
5154 
5155 		oa = oe->ptr;
5156 		if (!oa)
5157 			continue;
5158 
5159 		run_close(&oa->run0);
5160 		kfree(oa->attr);
5161 		if (oa->ni)
5162 			iput(&oa->ni->vfs_inode);
5163 		kfree(oa);
5164 	}
5165 
5166 	kfree(trtbl);
5167 	kfree(oatbl);
5168 	kfree(dptbl);
5169 	kfree(attr_names);
5170 	kfree(log->rst_info.r_page);
5171 
5172 	kfree(ra);
5173 	kfree(log->one_page_buf);
5174 
5175 	if (err)
5176 		sbi->flags |= NTFS_FLAGS_NEED_REPLAY;
5177 
5178 	if (err == -EROFS)
5179 		err = 0;
5180 	else if (log->set_dirty)
5181 		ntfs_set_state(sbi, NTFS_DIRTY_ERROR);
5182 
5183 	kfree(log);
5184 
5185 	return err;
5186 }
5187