xref: /openbmc/linux/fs/ntfs3/fslog.c (revision 96d3c5a7d20ec546e44695983fe0508c6f904248)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *
4  * Copyright (C) 2019-2021 Paragon Software GmbH, All rights reserved.
5  *
6  */
7 
8 #include <linux/blkdev.h>
9 #include <linux/fs.h>
10 #include <linux/random.h>
11 #include <linux/slab.h>
12 
13 #include "debug.h"
14 #include "ntfs.h"
15 #include "ntfs_fs.h"
16 
17 /*
18  * LOG FILE structs
19  */
20 
21 // clang-format off
22 
23 #define MaxLogFileSize     0x100000000ull
24 #define DefaultLogPageSize 4096
25 #define MinLogRecordPages  0x30
26 
27 struct RESTART_HDR {
28 	struct NTFS_RECORD_HEADER rhdr; // 'RSTR'
29 	__le32 sys_page_size; // 0x10: Page size of the system which initialized the log.
30 	__le32 page_size;     // 0x14: Log page size used for this log file.
31 	__le16 ra_off;        // 0x18:
32 	__le16 minor_ver;     // 0x1A:
33 	__le16 major_ver;     // 0x1C:
34 	__le16 fixups[];
35 };
36 
37 #define LFS_NO_CLIENT 0xffff
38 #define LFS_NO_CLIENT_LE cpu_to_le16(0xffff)
39 
40 struct CLIENT_REC {
41 	__le64 oldest_lsn;
42 	__le64 restart_lsn; // 0x08:
43 	__le16 prev_client; // 0x10:
44 	__le16 next_client; // 0x12:
45 	__le16 seq_num;     // 0x14:
46 	u8 align[6];        // 0x16:
47 	__le32 name_bytes;  // 0x1C: In bytes.
48 	__le16 name[32];    // 0x20: Name of client.
49 };
50 
51 static_assert(sizeof(struct CLIENT_REC) == 0x60);
52 
53 /* Two copies of these will exist at the beginning of the log file */
54 struct RESTART_AREA {
55 	__le64 current_lsn;    // 0x00: Current logical end of log file.
56 	__le16 log_clients;    // 0x08: Maximum number of clients.
57 	__le16 client_idx[2];  // 0x0A: Free/use index into the client record arrays.
58 	__le16 flags;          // 0x0E: See RESTART_SINGLE_PAGE_IO.
59 	__le32 seq_num_bits;   // 0x10: The number of bits in sequence number.
60 	__le16 ra_len;         // 0x14:
61 	__le16 client_off;     // 0x16:
62 	__le64 l_size;         // 0x18: Usable log file size.
63 	__le32 last_lsn_data_len; // 0x20:
64 	__le16 rec_hdr_len;    // 0x24: Log page data offset.
65 	__le16 data_off;       // 0x26: Log page data length.
66 	__le32 open_log_count; // 0x28:
67 	__le32 align[5];       // 0x2C:
68 	struct CLIENT_REC clients[]; // 0x40:
69 };
70 
71 struct LOG_REC_HDR {
72 	__le16 redo_op;      // 0x00:  NTFS_LOG_OPERATION
73 	__le16 undo_op;      // 0x02:  NTFS_LOG_OPERATION
74 	__le16 redo_off;     // 0x04:  Offset to Redo record.
75 	__le16 redo_len;     // 0x06:  Redo length.
76 	__le16 undo_off;     // 0x08:  Offset to Undo record.
77 	__le16 undo_len;     // 0x0A:  Undo length.
78 	__le16 target_attr;  // 0x0C:
79 	__le16 lcns_follow;  // 0x0E:
80 	__le16 record_off;   // 0x10:
81 	__le16 attr_off;     // 0x12:
82 	__le16 cluster_off;  // 0x14:
83 	__le16 reserved;     // 0x16:
84 	__le64 target_vcn;   // 0x18:
85 	__le64 page_lcns[];  // 0x20:
86 };
87 
88 static_assert(sizeof(struct LOG_REC_HDR) == 0x20);
89 
90 #define RESTART_ENTRY_ALLOCATED    0xFFFFFFFF
91 #define RESTART_ENTRY_ALLOCATED_LE cpu_to_le32(0xFFFFFFFF)
92 
93 struct RESTART_TABLE {
94 	__le16 size;       // 0x00: In bytes
95 	__le16 used;       // 0x02: Entries
96 	__le16 total;      // 0x04: Entries
97 	__le16 res[3];     // 0x06:
98 	__le32 free_goal;  // 0x0C:
99 	__le32 first_free; // 0x10:
100 	__le32 last_free;  // 0x14:
101 
102 };
103 
104 static_assert(sizeof(struct RESTART_TABLE) == 0x18);
105 
106 struct ATTR_NAME_ENTRY {
107 	__le16 off; // Offset in the Open attribute Table.
108 	__le16 name_bytes;
109 	__le16 name[];
110 };
111 
112 struct OPEN_ATTR_ENRTY {
113 	__le32 next;            // 0x00: RESTART_ENTRY_ALLOCATED if allocated
114 	__le32 bytes_per_index; // 0x04:
115 	enum ATTR_TYPE type;    // 0x08:
116 	u8 is_dirty_pages;      // 0x0C:
117 	u8 is_attr_name;        // 0x0B: Faked field to manage 'ptr'
118 	u8 name_len;            // 0x0C: Faked field to manage 'ptr'
119 	u8 res;
120 	struct MFT_REF ref;     // 0x10: File Reference of file containing attribute
121 	__le64 open_record_lsn; // 0x18:
122 	void *ptr;              // 0x20:
123 };
124 
125 /* 32 bit version of 'struct OPEN_ATTR_ENRTY' */
126 struct OPEN_ATTR_ENRTY_32 {
127 	__le32 next;            // 0x00: RESTART_ENTRY_ALLOCATED if allocated
128 	__le32 ptr;             // 0x04:
129 	struct MFT_REF ref;     // 0x08:
130 	__le64 open_record_lsn; // 0x10:
131 	u8 is_dirty_pages;      // 0x18:
132 	u8 is_attr_name;        // 0x19:
133 	u8 res1[2];
134 	enum ATTR_TYPE type;    // 0x1C:
135 	u8 name_len;            // 0x20: In wchar
136 	u8 res2[3];
137 	__le32 AttributeName;   // 0x24:
138 	__le32 bytes_per_index; // 0x28:
139 };
140 
141 #define SIZEOF_OPENATTRIBUTEENTRY0 0x2c
142 // static_assert( 0x2C == sizeof(struct OPEN_ATTR_ENRTY_32) );
143 static_assert(sizeof(struct OPEN_ATTR_ENRTY) < SIZEOF_OPENATTRIBUTEENTRY0);
144 
145 /*
146  * One entry exists in the Dirty Pages Table for each page which is dirty at
147  * the time the Restart Area is written.
148  */
149 struct DIR_PAGE_ENTRY {
150 	__le32 next;         // 0x00: RESTART_ENTRY_ALLOCATED if allocated
151 	__le32 target_attr;  // 0x04: Index into the Open attribute Table
152 	__le32 transfer_len; // 0x08:
153 	__le32 lcns_follow;  // 0x0C:
154 	__le64 vcn;          // 0x10: Vcn of dirty page
155 	__le64 oldest_lsn;   // 0x18:
156 	__le64 page_lcns[];  // 0x20:
157 };
158 
159 static_assert(sizeof(struct DIR_PAGE_ENTRY) == 0x20);
160 
161 /* 32 bit version of 'struct DIR_PAGE_ENTRY' */
162 struct DIR_PAGE_ENTRY_32 {
163 	__le32 next;		// 0x00: RESTART_ENTRY_ALLOCATED if allocated
164 	__le32 target_attr;	// 0x04: Index into the Open attribute Table
165 	__le32 transfer_len;	// 0x08:
166 	__le32 lcns_follow;	// 0x0C:
167 	__le32 reserved;	// 0x10:
168 	__le32 vcn_low;		// 0x14: Vcn of dirty page
169 	__le32 vcn_hi;		// 0x18: Vcn of dirty page
170 	__le32 oldest_lsn_low;	// 0x1C:
171 	__le32 oldest_lsn_hi;	// 0x1C:
172 	__le32 page_lcns_low;	// 0x24:
173 	__le32 page_lcns_hi;	// 0x24:
174 };
175 
176 static_assert(offsetof(struct DIR_PAGE_ENTRY_32, vcn_low) == 0x14);
177 static_assert(sizeof(struct DIR_PAGE_ENTRY_32) == 0x2c);
178 
179 enum transact_state {
180 	TransactionUninitialized = 0,
181 	TransactionActive,
182 	TransactionPrepared,
183 	TransactionCommitted
184 };
185 
186 struct TRANSACTION_ENTRY {
187 	__le32 next;          // 0x00: RESTART_ENTRY_ALLOCATED if allocated
188 	u8 transact_state;    // 0x04:
189 	u8 reserved[3];       // 0x05:
190 	__le64 first_lsn;     // 0x08:
191 	__le64 prev_lsn;      // 0x10:
192 	__le64 undo_next_lsn; // 0x18:
193 	__le32 undo_records;  // 0x20: Number of undo log records pending abort
194 	__le32 undo_len;      // 0x24: Total undo size
195 };
196 
197 static_assert(sizeof(struct TRANSACTION_ENTRY) == 0x28);
198 
199 struct NTFS_RESTART {
200 	__le32 major_ver;             // 0x00:
201 	__le32 minor_ver;             // 0x04:
202 	__le64 check_point_start;     // 0x08:
203 	__le64 open_attr_table_lsn;   // 0x10:
204 	__le64 attr_names_lsn;        // 0x18:
205 	__le64 dirty_pages_table_lsn; // 0x20:
206 	__le64 transact_table_lsn;    // 0x28:
207 	__le32 open_attr_len;         // 0x30: In bytes
208 	__le32 attr_names_len;        // 0x34: In bytes
209 	__le32 dirty_pages_len;       // 0x38: In bytes
210 	__le32 transact_table_len;    // 0x3C: In bytes
211 };
212 
213 static_assert(sizeof(struct NTFS_RESTART) == 0x40);
214 
215 struct NEW_ATTRIBUTE_SIZES {
216 	__le64 alloc_size;
217 	__le64 valid_size;
218 	__le64 data_size;
219 	__le64 total_size;
220 };
221 
222 struct BITMAP_RANGE {
223 	__le32 bitmap_off;
224 	__le32 bits;
225 };
226 
227 struct LCN_RANGE {
228 	__le64 lcn;
229 	__le64 len;
230 };
231 
232 /* The following type defines the different log record types. */
233 #define LfsClientRecord  cpu_to_le32(1)
234 #define LfsClientRestart cpu_to_le32(2)
235 
236 /* This is used to uniquely identify a client for a particular log file. */
237 struct CLIENT_ID {
238 	__le16 seq_num;
239 	__le16 client_idx;
240 };
241 
242 /* This is the header that begins every Log Record in the log file. */
243 struct LFS_RECORD_HDR {
244 	__le64 this_lsn;		// 0x00:
245 	__le64 client_prev_lsn;		// 0x08:
246 	__le64 client_undo_next_lsn;	// 0x10:
247 	__le32 client_data_len;		// 0x18:
248 	struct CLIENT_ID client;	// 0x1C: Owner of this log record.
249 	__le32 record_type;		// 0x20: LfsClientRecord or LfsClientRestart.
250 	__le32 transact_id;		// 0x24:
251 	__le16 flags;			// 0x28: LOG_RECORD_MULTI_PAGE
252 	u8 align[6];			// 0x2A:
253 };
254 
255 #define LOG_RECORD_MULTI_PAGE cpu_to_le16(1)
256 
257 static_assert(sizeof(struct LFS_RECORD_HDR) == 0x30);
258 
259 struct LFS_RECORD {
260 	__le16 next_record_off;	// 0x00: Offset of the free space in the page,
261 	u8 align[6];		// 0x02:
262 	__le64 last_end_lsn;	// 0x08: lsn for the last log record which ends on the page,
263 };
264 
265 static_assert(sizeof(struct LFS_RECORD) == 0x10);
266 
267 struct RECORD_PAGE_HDR {
268 	struct NTFS_RECORD_HEADER rhdr;	// 'RCRD'
269 	__le32 rflags;			// 0x10: See LOG_PAGE_LOG_RECORD_END
270 	__le16 page_count;		// 0x14:
271 	__le16 page_pos;		// 0x16:
272 	struct LFS_RECORD record_hdr;	// 0x18:
273 	__le16 fixups[10];		// 0x28:
274 	__le32 file_off;		// 0x3c: Used when major version >= 2
275 };
276 
277 // clang-format on
278 
279 // Page contains the end of a log record.
280 #define LOG_PAGE_LOG_RECORD_END cpu_to_le32(0x00000001)
281 
282 static inline bool is_log_record_end(const struct RECORD_PAGE_HDR *hdr)
283 {
284 	return hdr->rflags & LOG_PAGE_LOG_RECORD_END;
285 }
286 
287 static_assert(offsetof(struct RECORD_PAGE_HDR, file_off) == 0x3c);
288 
289 /*
290  * END of NTFS LOG structures
291  */
292 
293 /* Define some tuning parameters to keep the restart tables a reasonable size. */
294 #define INITIAL_NUMBER_TRANSACTIONS 5
295 
296 enum NTFS_LOG_OPERATION {
297 
298 	Noop = 0x00,
299 	CompensationLogRecord = 0x01,
300 	InitializeFileRecordSegment = 0x02,
301 	DeallocateFileRecordSegment = 0x03,
302 	WriteEndOfFileRecordSegment = 0x04,
303 	CreateAttribute = 0x05,
304 	DeleteAttribute = 0x06,
305 	UpdateResidentValue = 0x07,
306 	UpdateNonresidentValue = 0x08,
307 	UpdateMappingPairs = 0x09,
308 	DeleteDirtyClusters = 0x0A,
309 	SetNewAttributeSizes = 0x0B,
310 	AddIndexEntryRoot = 0x0C,
311 	DeleteIndexEntryRoot = 0x0D,
312 	AddIndexEntryAllocation = 0x0E,
313 	DeleteIndexEntryAllocation = 0x0F,
314 	WriteEndOfIndexBuffer = 0x10,
315 	SetIndexEntryVcnRoot = 0x11,
316 	SetIndexEntryVcnAllocation = 0x12,
317 	UpdateFileNameRoot = 0x13,
318 	UpdateFileNameAllocation = 0x14,
319 	SetBitsInNonresidentBitMap = 0x15,
320 	ClearBitsInNonresidentBitMap = 0x16,
321 	HotFix = 0x17,
322 	EndTopLevelAction = 0x18,
323 	PrepareTransaction = 0x19,
324 	CommitTransaction = 0x1A,
325 	ForgetTransaction = 0x1B,
326 	OpenNonresidentAttribute = 0x1C,
327 	OpenAttributeTableDump = 0x1D,
328 	AttributeNamesDump = 0x1E,
329 	DirtyPageTableDump = 0x1F,
330 	TransactionTableDump = 0x20,
331 	UpdateRecordDataRoot = 0x21,
332 	UpdateRecordDataAllocation = 0x22,
333 
334 	UpdateRelativeDataInIndex =
335 		0x23, // NtOfsRestartUpdateRelativeDataInIndex
336 	UpdateRelativeDataInIndex2 = 0x24,
337 	ZeroEndOfFileRecord = 0x25,
338 };
339 
340 /*
341  * Array for log records which require a target attribute.
342  * A true indicates that the corresponding restart operation
343  * requires a target attribute.
344  */
345 static const u8 AttributeRequired[] = {
346 	0xFC, 0xFB, 0xFF, 0x10, 0x06,
347 };
348 
349 static inline bool is_target_required(u16 op)
350 {
351 	bool ret = op <= UpdateRecordDataAllocation &&
352 		   (AttributeRequired[op >> 3] >> (op & 7) & 1);
353 	return ret;
354 }
355 
356 static inline bool can_skip_action(enum NTFS_LOG_OPERATION op)
357 {
358 	switch (op) {
359 	case Noop:
360 	case DeleteDirtyClusters:
361 	case HotFix:
362 	case EndTopLevelAction:
363 	case PrepareTransaction:
364 	case CommitTransaction:
365 	case ForgetTransaction:
366 	case CompensationLogRecord:
367 	case OpenNonresidentAttribute:
368 	case OpenAttributeTableDump:
369 	case AttributeNamesDump:
370 	case DirtyPageTableDump:
371 	case TransactionTableDump:
372 		return true;
373 	default:
374 		return false;
375 	}
376 }
377 
378 enum { lcb_ctx_undo_next, lcb_ctx_prev, lcb_ctx_next };
379 
380 /* Bytes per restart table. */
381 static inline u32 bytes_per_rt(const struct RESTART_TABLE *rt)
382 {
383 	return le16_to_cpu(rt->used) * le16_to_cpu(rt->size) +
384 	       sizeof(struct RESTART_TABLE);
385 }
386 
387 /* Log record length. */
388 static inline u32 lrh_length(const struct LOG_REC_HDR *lr)
389 {
390 	u16 t16 = le16_to_cpu(lr->lcns_follow);
391 
392 	return struct_size(lr, page_lcns, max_t(u16, 1, t16));
393 }
394 
395 struct lcb {
396 	struct LFS_RECORD_HDR *lrh; // Log record header of the current lsn.
397 	struct LOG_REC_HDR *log_rec;
398 	u32 ctx_mode; // lcb_ctx_undo_next/lcb_ctx_prev/lcb_ctx_next
399 	struct CLIENT_ID client;
400 	bool alloc; // If true the we should deallocate 'log_rec'.
401 };
402 
403 static void lcb_put(struct lcb *lcb)
404 {
405 	if (lcb->alloc)
406 		kfree(lcb->log_rec);
407 	kfree(lcb->lrh);
408 	kfree(lcb);
409 }
410 
411 /* Find the oldest lsn from active clients. */
412 static inline void oldest_client_lsn(const struct CLIENT_REC *ca,
413 				     __le16 next_client, u64 *oldest_lsn)
414 {
415 	while (next_client != LFS_NO_CLIENT_LE) {
416 		const struct CLIENT_REC *cr = ca + le16_to_cpu(next_client);
417 		u64 lsn = le64_to_cpu(cr->oldest_lsn);
418 
419 		/* Ignore this block if it's oldest lsn is 0. */
420 		if (lsn && lsn < *oldest_lsn)
421 			*oldest_lsn = lsn;
422 
423 		next_client = cr->next_client;
424 	}
425 }
426 
427 static inline bool is_rst_page_hdr_valid(u32 file_off,
428 					 const struct RESTART_HDR *rhdr)
429 {
430 	u32 sys_page = le32_to_cpu(rhdr->sys_page_size);
431 	u32 page_size = le32_to_cpu(rhdr->page_size);
432 	u32 end_usa;
433 	u16 ro;
434 
435 	if (sys_page < SECTOR_SIZE || page_size < SECTOR_SIZE ||
436 	    sys_page & (sys_page - 1) || page_size & (page_size - 1)) {
437 		return false;
438 	}
439 
440 	/* Check that if the file offset isn't 0, it is the system page size. */
441 	if (file_off && file_off != sys_page)
442 		return false;
443 
444 	/* Check support version 1.1+. */
445 	if (le16_to_cpu(rhdr->major_ver) <= 1 && !rhdr->minor_ver)
446 		return false;
447 
448 	if (le16_to_cpu(rhdr->major_ver) > 2)
449 		return false;
450 
451 	ro = le16_to_cpu(rhdr->ra_off);
452 	if (!IS_ALIGNED(ro, 8) || ro > sys_page)
453 		return false;
454 
455 	end_usa = ((sys_page >> SECTOR_SHIFT) + 1) * sizeof(short);
456 	end_usa += le16_to_cpu(rhdr->rhdr.fix_off);
457 
458 	if (ro < end_usa)
459 		return false;
460 
461 	return true;
462 }
463 
464 static inline bool is_rst_area_valid(const struct RESTART_HDR *rhdr)
465 {
466 	const struct RESTART_AREA *ra;
467 	u16 cl, fl, ul;
468 	u32 off, l_size, seq_bits;
469 	u16 ro = le16_to_cpu(rhdr->ra_off);
470 	u32 sys_page = le32_to_cpu(rhdr->sys_page_size);
471 
472 	if (ro + offsetof(struct RESTART_AREA, l_size) >
473 	    SECTOR_SIZE - sizeof(short))
474 		return false;
475 
476 	ra = Add2Ptr(rhdr, ro);
477 	cl = le16_to_cpu(ra->log_clients);
478 
479 	if (cl > 1)
480 		return false;
481 
482 	off = le16_to_cpu(ra->client_off);
483 
484 	if (!IS_ALIGNED(off, 8) || ro + off > SECTOR_SIZE - sizeof(short))
485 		return false;
486 
487 	off += cl * sizeof(struct CLIENT_REC);
488 
489 	if (off > sys_page)
490 		return false;
491 
492 	/*
493 	 * Check the restart length field and whether the entire
494 	 * restart area is contained that length.
495 	 */
496 	if (le16_to_cpu(rhdr->ra_off) + le16_to_cpu(ra->ra_len) > sys_page ||
497 	    off > le16_to_cpu(ra->ra_len)) {
498 		return false;
499 	}
500 
501 	/*
502 	 * As a final check make sure that the use list and the free list
503 	 * are either empty or point to a valid client.
504 	 */
505 	fl = le16_to_cpu(ra->client_idx[0]);
506 	ul = le16_to_cpu(ra->client_idx[1]);
507 	if ((fl != LFS_NO_CLIENT && fl >= cl) ||
508 	    (ul != LFS_NO_CLIENT && ul >= cl))
509 		return false;
510 
511 	/* Make sure the sequence number bits match the log file size. */
512 	l_size = le64_to_cpu(ra->l_size);
513 
514 	seq_bits = sizeof(u64) * 8 + 3;
515 	while (l_size) {
516 		l_size >>= 1;
517 		seq_bits -= 1;
518 	}
519 
520 	if (seq_bits != ra->seq_num_bits)
521 		return false;
522 
523 	/* The log page data offset and record header length must be quad-aligned. */
524 	if (!IS_ALIGNED(le16_to_cpu(ra->data_off), 8) ||
525 	    !IS_ALIGNED(le16_to_cpu(ra->rec_hdr_len), 8))
526 		return false;
527 
528 	return true;
529 }
530 
531 static inline bool is_client_area_valid(const struct RESTART_HDR *rhdr,
532 					bool usa_error)
533 {
534 	u16 ro = le16_to_cpu(rhdr->ra_off);
535 	const struct RESTART_AREA *ra = Add2Ptr(rhdr, ro);
536 	u16 ra_len = le16_to_cpu(ra->ra_len);
537 	const struct CLIENT_REC *ca;
538 	u32 i;
539 
540 	if (usa_error && ra_len + ro > SECTOR_SIZE - sizeof(short))
541 		return false;
542 
543 	/* Find the start of the client array. */
544 	ca = Add2Ptr(ra, le16_to_cpu(ra->client_off));
545 
546 	/*
547 	 * Start with the free list.
548 	 * Check that all the clients are valid and that there isn't a cycle.
549 	 * Do the in-use list on the second pass.
550 	 */
551 	for (i = 0; i < 2; i++) {
552 		u16 client_idx = le16_to_cpu(ra->client_idx[i]);
553 		bool first_client = true;
554 		u16 clients = le16_to_cpu(ra->log_clients);
555 
556 		while (client_idx != LFS_NO_CLIENT) {
557 			const struct CLIENT_REC *cr;
558 
559 			if (!clients ||
560 			    client_idx >= le16_to_cpu(ra->log_clients))
561 				return false;
562 
563 			clients -= 1;
564 			cr = ca + client_idx;
565 
566 			client_idx = le16_to_cpu(cr->next_client);
567 
568 			if (first_client) {
569 				first_client = false;
570 				if (cr->prev_client != LFS_NO_CLIENT_LE)
571 					return false;
572 			}
573 		}
574 	}
575 
576 	return true;
577 }
578 
579 /*
580  * remove_client
581  *
582  * Remove a client record from a client record list an restart area.
583  */
584 static inline void remove_client(struct CLIENT_REC *ca,
585 				 const struct CLIENT_REC *cr, __le16 *head)
586 {
587 	if (cr->prev_client == LFS_NO_CLIENT_LE)
588 		*head = cr->next_client;
589 	else
590 		ca[le16_to_cpu(cr->prev_client)].next_client = cr->next_client;
591 
592 	if (cr->next_client != LFS_NO_CLIENT_LE)
593 		ca[le16_to_cpu(cr->next_client)].prev_client = cr->prev_client;
594 }
595 
596 /*
597  * add_client - Add a client record to the start of a list.
598  */
599 static inline void add_client(struct CLIENT_REC *ca, u16 index, __le16 *head)
600 {
601 	struct CLIENT_REC *cr = ca + index;
602 
603 	cr->prev_client = LFS_NO_CLIENT_LE;
604 	cr->next_client = *head;
605 
606 	if (*head != LFS_NO_CLIENT_LE)
607 		ca[le16_to_cpu(*head)].prev_client = cpu_to_le16(index);
608 
609 	*head = cpu_to_le16(index);
610 }
611 
612 static inline void *enum_rstbl(struct RESTART_TABLE *t, void *c)
613 {
614 	__le32 *e;
615 	u32 bprt;
616 	u16 rsize = t ? le16_to_cpu(t->size) : 0;
617 
618 	if (!c) {
619 		if (!t || !t->total)
620 			return NULL;
621 		e = Add2Ptr(t, sizeof(struct RESTART_TABLE));
622 	} else {
623 		e = Add2Ptr(c, rsize);
624 	}
625 
626 	/* Loop until we hit the first one allocated, or the end of the list. */
627 	for (bprt = bytes_per_rt(t); PtrOffset(t, e) < bprt;
628 	     e = Add2Ptr(e, rsize)) {
629 		if (*e == RESTART_ENTRY_ALLOCATED_LE)
630 			return e;
631 	}
632 	return NULL;
633 }
634 
635 /*
636  * find_dp - Search for a @vcn in Dirty Page Table.
637  */
638 static inline struct DIR_PAGE_ENTRY *find_dp(struct RESTART_TABLE *dptbl,
639 					     u32 target_attr, u64 vcn)
640 {
641 	__le32 ta = cpu_to_le32(target_attr);
642 	struct DIR_PAGE_ENTRY *dp = NULL;
643 
644 	while ((dp = enum_rstbl(dptbl, dp))) {
645 		u64 dp_vcn = le64_to_cpu(dp->vcn);
646 
647 		if (dp->target_attr == ta && vcn >= dp_vcn &&
648 		    vcn < dp_vcn + le32_to_cpu(dp->lcns_follow)) {
649 			return dp;
650 		}
651 	}
652 	return NULL;
653 }
654 
655 static inline u32 norm_file_page(u32 page_size, u32 *l_size, bool use_default)
656 {
657 	if (use_default)
658 		page_size = DefaultLogPageSize;
659 
660 	/* Round the file size down to a system page boundary. */
661 	*l_size &= ~(page_size - 1);
662 
663 	/* File should contain at least 2 restart pages and MinLogRecordPages pages. */
664 	if (*l_size < (MinLogRecordPages + 2) * page_size)
665 		return 0;
666 
667 	return page_size;
668 }
669 
670 static bool check_log_rec(const struct LOG_REC_HDR *lr, u32 bytes, u32 tr,
671 			  u32 bytes_per_attr_entry)
672 {
673 	u16 t16;
674 
675 	if (bytes < sizeof(struct LOG_REC_HDR))
676 		return false;
677 	if (!tr)
678 		return false;
679 
680 	if ((tr - sizeof(struct RESTART_TABLE)) %
681 	    sizeof(struct TRANSACTION_ENTRY))
682 		return false;
683 
684 	if (le16_to_cpu(lr->redo_off) & 7)
685 		return false;
686 
687 	if (le16_to_cpu(lr->undo_off) & 7)
688 		return false;
689 
690 	if (lr->target_attr)
691 		goto check_lcns;
692 
693 	if (is_target_required(le16_to_cpu(lr->redo_op)))
694 		return false;
695 
696 	if (is_target_required(le16_to_cpu(lr->undo_op)))
697 		return false;
698 
699 check_lcns:
700 	if (!lr->lcns_follow)
701 		goto check_length;
702 
703 	t16 = le16_to_cpu(lr->target_attr);
704 	if ((t16 - sizeof(struct RESTART_TABLE)) % bytes_per_attr_entry)
705 		return false;
706 
707 check_length:
708 	if (bytes < lrh_length(lr))
709 		return false;
710 
711 	return true;
712 }
713 
714 static bool check_rstbl(const struct RESTART_TABLE *rt, size_t bytes)
715 {
716 	u32 ts;
717 	u32 i, off;
718 	u16 rsize = le16_to_cpu(rt->size);
719 	u16 ne = le16_to_cpu(rt->used);
720 	u32 ff = le32_to_cpu(rt->first_free);
721 	u32 lf = le32_to_cpu(rt->last_free);
722 
723 	ts = rsize * ne + sizeof(struct RESTART_TABLE);
724 
725 	if (!rsize || rsize > bytes ||
726 	    rsize + sizeof(struct RESTART_TABLE) > bytes || bytes < ts ||
727 	    le16_to_cpu(rt->total) > ne || ff > ts || lf > ts ||
728 	    (ff && ff < sizeof(struct RESTART_TABLE)) ||
729 	    (lf && lf < sizeof(struct RESTART_TABLE))) {
730 		return false;
731 	}
732 
733 	/*
734 	 * Verify each entry is either allocated or points
735 	 * to a valid offset the table.
736 	 */
737 	for (i = 0; i < ne; i++) {
738 		off = le32_to_cpu(*(__le32 *)Add2Ptr(
739 			rt, i * rsize + sizeof(struct RESTART_TABLE)));
740 
741 		if (off != RESTART_ENTRY_ALLOCATED && off &&
742 		    (off < sizeof(struct RESTART_TABLE) ||
743 		     ((off - sizeof(struct RESTART_TABLE)) % rsize))) {
744 			return false;
745 		}
746 	}
747 
748 	/*
749 	 * Walk through the list headed by the first entry to make
750 	 * sure none of the entries are currently being used.
751 	 */
752 	for (off = ff; off;) {
753 		if (off == RESTART_ENTRY_ALLOCATED)
754 			return false;
755 
756 		off = le32_to_cpu(*(__le32 *)Add2Ptr(rt, off));
757 	}
758 
759 	return true;
760 }
761 
762 /*
763  * free_rsttbl_idx - Free a previously allocated index a Restart Table.
764  */
765 static inline void free_rsttbl_idx(struct RESTART_TABLE *rt, u32 off)
766 {
767 	__le32 *e;
768 	u32 lf = le32_to_cpu(rt->last_free);
769 	__le32 off_le = cpu_to_le32(off);
770 
771 	e = Add2Ptr(rt, off);
772 
773 	if (off < le32_to_cpu(rt->free_goal)) {
774 		*e = rt->first_free;
775 		rt->first_free = off_le;
776 		if (!lf)
777 			rt->last_free = off_le;
778 	} else {
779 		if (lf)
780 			*(__le32 *)Add2Ptr(rt, lf) = off_le;
781 		else
782 			rt->first_free = off_le;
783 
784 		rt->last_free = off_le;
785 		*e = 0;
786 	}
787 
788 	le16_sub_cpu(&rt->total, 1);
789 }
790 
791 static inline struct RESTART_TABLE *init_rsttbl(u16 esize, u16 used)
792 {
793 	__le32 *e, *last_free;
794 	u32 off;
795 	u32 bytes = esize * used + sizeof(struct RESTART_TABLE);
796 	u32 lf = sizeof(struct RESTART_TABLE) + (used - 1) * esize;
797 	struct RESTART_TABLE *t = kzalloc(bytes, GFP_NOFS);
798 
799 	if (!t)
800 		return NULL;
801 
802 	t->size = cpu_to_le16(esize);
803 	t->used = cpu_to_le16(used);
804 	t->free_goal = cpu_to_le32(~0u);
805 	t->first_free = cpu_to_le32(sizeof(struct RESTART_TABLE));
806 	t->last_free = cpu_to_le32(lf);
807 
808 	e = (__le32 *)(t + 1);
809 	last_free = Add2Ptr(t, lf);
810 
811 	for (off = sizeof(struct RESTART_TABLE) + esize; e < last_free;
812 	     e = Add2Ptr(e, esize), off += esize) {
813 		*e = cpu_to_le32(off);
814 	}
815 	return t;
816 }
817 
818 static inline struct RESTART_TABLE *extend_rsttbl(struct RESTART_TABLE *tbl,
819 						  u32 add, u32 free_goal)
820 {
821 	u16 esize = le16_to_cpu(tbl->size);
822 	__le32 osize = cpu_to_le32(bytes_per_rt(tbl));
823 	u32 used = le16_to_cpu(tbl->used);
824 	struct RESTART_TABLE *rt;
825 
826 	rt = init_rsttbl(esize, used + add);
827 	if (!rt)
828 		return NULL;
829 
830 	memcpy(rt + 1, tbl + 1, esize * used);
831 
832 	rt->free_goal = free_goal == ~0u ?
833 				cpu_to_le32(~0u) :
834 				cpu_to_le32(sizeof(struct RESTART_TABLE) +
835 					    free_goal * esize);
836 
837 	if (tbl->first_free) {
838 		rt->first_free = tbl->first_free;
839 		*(__le32 *)Add2Ptr(rt, le32_to_cpu(tbl->last_free)) = osize;
840 	} else {
841 		rt->first_free = osize;
842 	}
843 
844 	rt->total = tbl->total;
845 
846 	kfree(tbl);
847 	return rt;
848 }
849 
850 /*
851  * alloc_rsttbl_idx
852  *
853  * Allocate an index from within a previously initialized Restart Table.
854  */
855 static inline void *alloc_rsttbl_idx(struct RESTART_TABLE **tbl)
856 {
857 	u32 off;
858 	__le32 *e;
859 	struct RESTART_TABLE *t = *tbl;
860 
861 	if (!t->first_free) {
862 		*tbl = t = extend_rsttbl(t, 16, ~0u);
863 		if (!t)
864 			return NULL;
865 	}
866 
867 	off = le32_to_cpu(t->first_free);
868 
869 	/* Dequeue this entry and zero it. */
870 	e = Add2Ptr(t, off);
871 
872 	t->first_free = *e;
873 
874 	memset(e, 0, le16_to_cpu(t->size));
875 
876 	*e = RESTART_ENTRY_ALLOCATED_LE;
877 
878 	/* If list is going empty, then we fix the last_free as well. */
879 	if (!t->first_free)
880 		t->last_free = 0;
881 
882 	le16_add_cpu(&t->total, 1);
883 
884 	return Add2Ptr(t, off);
885 }
886 
887 /*
888  * alloc_rsttbl_from_idx
889  *
890  * Allocate a specific index from within a previously initialized Restart Table.
891  */
892 static inline void *alloc_rsttbl_from_idx(struct RESTART_TABLE **tbl, u32 vbo)
893 {
894 	u32 off;
895 	__le32 *e;
896 	struct RESTART_TABLE *rt = *tbl;
897 	u32 bytes = bytes_per_rt(rt);
898 	u16 esize = le16_to_cpu(rt->size);
899 
900 	/* If the entry is not the table, we will have to extend the table. */
901 	if (vbo >= bytes) {
902 		/*
903 		 * Extend the size by computing the number of entries between
904 		 * the existing size and the desired index and adding 1 to that.
905 		 */
906 		u32 bytes2idx = vbo - bytes;
907 
908 		/*
909 		 * There should always be an integral number of entries
910 		 * being added. Now extend the table.
911 		 */
912 		*tbl = rt = extend_rsttbl(rt, bytes2idx / esize + 1, bytes);
913 		if (!rt)
914 			return NULL;
915 	}
916 
917 	/* See if the entry is already allocated, and just return if it is. */
918 	e = Add2Ptr(rt, vbo);
919 
920 	if (*e == RESTART_ENTRY_ALLOCATED_LE)
921 		return e;
922 
923 	/*
924 	 * Walk through the table, looking for the entry we're
925 	 * interested and the previous entry.
926 	 */
927 	off = le32_to_cpu(rt->first_free);
928 	e = Add2Ptr(rt, off);
929 
930 	if (off == vbo) {
931 		/* this is a match */
932 		rt->first_free = *e;
933 		goto skip_looking;
934 	}
935 
936 	/*
937 	 * Need to walk through the list looking for the predecessor
938 	 * of our entry.
939 	 */
940 	for (;;) {
941 		/* Remember the entry just found */
942 		u32 last_off = off;
943 		__le32 *last_e = e;
944 
945 		/* Should never run of entries. */
946 
947 		/* Lookup up the next entry the list. */
948 		off = le32_to_cpu(*last_e);
949 		e = Add2Ptr(rt, off);
950 
951 		/* If this is our match we are done. */
952 		if (off == vbo) {
953 			*last_e = *e;
954 
955 			/*
956 			 * If this was the last entry, we update that
957 			 * table as well.
958 			 */
959 			if (le32_to_cpu(rt->last_free) == off)
960 				rt->last_free = cpu_to_le32(last_off);
961 			break;
962 		}
963 	}
964 
965 skip_looking:
966 	/* If the list is now empty, we fix the last_free as well. */
967 	if (!rt->first_free)
968 		rt->last_free = 0;
969 
970 	/* Zero this entry. */
971 	memset(e, 0, esize);
972 	*e = RESTART_ENTRY_ALLOCATED_LE;
973 
974 	le16_add_cpu(&rt->total, 1);
975 
976 	return e;
977 }
978 
979 struct restart_info {
980 	u64 last_lsn;
981 	struct RESTART_HDR *r_page;
982 	u32 vbo;
983 	bool chkdsk_was_run;
984 	bool valid_page;
985 	bool initialized;
986 	bool restart;
987 };
988 
989 #define RESTART_SINGLE_PAGE_IO cpu_to_le16(0x0001)
990 
991 #define NTFSLOG_WRAPPED 0x00000001
992 #define NTFSLOG_MULTIPLE_PAGE_IO 0x00000002
993 #define NTFSLOG_NO_LAST_LSN 0x00000004
994 #define NTFSLOG_REUSE_TAIL 0x00000010
995 #define NTFSLOG_NO_OLDEST_LSN 0x00000020
996 
997 /* Helper struct to work with NTFS $LogFile. */
998 struct ntfs_log {
999 	struct ntfs_inode *ni;
1000 
1001 	u32 l_size;
1002 	u32 orig_file_size;
1003 	u32 sys_page_size;
1004 	u32 sys_page_mask;
1005 	u32 page_size;
1006 	u32 page_mask; // page_size - 1
1007 	u8 page_bits;
1008 	struct RECORD_PAGE_HDR *one_page_buf;
1009 
1010 	struct RESTART_TABLE *open_attr_tbl;
1011 	u32 transaction_id;
1012 	u32 clst_per_page;
1013 
1014 	u32 first_page;
1015 	u32 next_page;
1016 	u32 ra_off;
1017 	u32 data_off;
1018 	u32 restart_size;
1019 	u32 data_size;
1020 	u16 record_header_len;
1021 	u64 seq_num;
1022 	u32 seq_num_bits;
1023 	u32 file_data_bits;
1024 	u32 seq_num_mask; /* (1 << file_data_bits) - 1 */
1025 
1026 	struct RESTART_AREA *ra; /* In-memory image of the next restart area. */
1027 	u32 ra_size; /* The usable size of the restart area. */
1028 
1029 	/*
1030 	 * If true, then the in-memory restart area is to be written
1031 	 * to the first position on the disk.
1032 	 */
1033 	bool init_ra;
1034 	bool set_dirty; /* True if we need to set dirty flag. */
1035 
1036 	u64 oldest_lsn;
1037 
1038 	u32 oldest_lsn_off;
1039 	u64 last_lsn;
1040 
1041 	u32 total_avail;
1042 	u32 total_avail_pages;
1043 	u32 total_undo_commit;
1044 	u32 max_current_avail;
1045 	u32 current_avail;
1046 	u32 reserved;
1047 
1048 	short major_ver;
1049 	short minor_ver;
1050 
1051 	u32 l_flags; /* See NTFSLOG_XXX */
1052 	u32 current_openlog_count; /* On-disk value for open_log_count. */
1053 
1054 	struct CLIENT_ID client_id;
1055 	u32 client_undo_commit;
1056 
1057 	struct restart_info rst_info, rst_info2;
1058 };
1059 
1060 static inline u32 lsn_to_vbo(struct ntfs_log *log, const u64 lsn)
1061 {
1062 	u32 vbo = (lsn << log->seq_num_bits) >> (log->seq_num_bits - 3);
1063 
1064 	return vbo;
1065 }
1066 
1067 /* Compute the offset in the log file of the next log page. */
1068 static inline u32 next_page_off(struct ntfs_log *log, u32 off)
1069 {
1070 	off = (off & ~log->sys_page_mask) + log->page_size;
1071 	return off >= log->l_size ? log->first_page : off;
1072 }
1073 
1074 static inline u32 lsn_to_page_off(struct ntfs_log *log, u64 lsn)
1075 {
1076 	return (((u32)lsn) << 3) & log->page_mask;
1077 }
1078 
1079 static inline u64 vbo_to_lsn(struct ntfs_log *log, u32 off, u64 Seq)
1080 {
1081 	return (off >> 3) + (Seq << log->file_data_bits);
1082 }
1083 
1084 static inline bool is_lsn_in_file(struct ntfs_log *log, u64 lsn)
1085 {
1086 	return lsn >= log->oldest_lsn &&
1087 	       lsn <= le64_to_cpu(log->ra->current_lsn);
1088 }
1089 
1090 static inline u32 hdr_file_off(struct ntfs_log *log,
1091 			       struct RECORD_PAGE_HDR *hdr)
1092 {
1093 	if (log->major_ver < 2)
1094 		return le64_to_cpu(hdr->rhdr.lsn);
1095 
1096 	return le32_to_cpu(hdr->file_off);
1097 }
1098 
1099 static inline u64 base_lsn(struct ntfs_log *log,
1100 			   const struct RECORD_PAGE_HDR *hdr, u64 lsn)
1101 {
1102 	u64 h_lsn = le64_to_cpu(hdr->rhdr.lsn);
1103 	u64 ret = (((h_lsn >> log->file_data_bits) +
1104 		    (lsn < (lsn_to_vbo(log, h_lsn) & ~log->page_mask) ? 1 : 0))
1105 		   << log->file_data_bits) +
1106 		  ((((is_log_record_end(hdr) &&
1107 		      h_lsn <= le64_to_cpu(hdr->record_hdr.last_end_lsn)) ?
1108 			     le16_to_cpu(hdr->record_hdr.next_record_off) :
1109 			     log->page_size) +
1110 		    lsn) >>
1111 		   3);
1112 
1113 	return ret;
1114 }
1115 
1116 static inline bool verify_client_lsn(struct ntfs_log *log,
1117 				     const struct CLIENT_REC *client, u64 lsn)
1118 {
1119 	return lsn >= le64_to_cpu(client->oldest_lsn) &&
1120 	       lsn <= le64_to_cpu(log->ra->current_lsn) && lsn;
1121 }
1122 
1123 static int read_log_page(struct ntfs_log *log, u32 vbo,
1124 			 struct RECORD_PAGE_HDR **buffer, bool *usa_error)
1125 {
1126 	int err = 0;
1127 	u32 page_idx = vbo >> log->page_bits;
1128 	u32 page_off = vbo & log->page_mask;
1129 	u32 bytes = log->page_size - page_off;
1130 	void *to_free = NULL;
1131 	u32 page_vbo = page_idx << log->page_bits;
1132 	struct RECORD_PAGE_HDR *page_buf;
1133 	struct ntfs_inode *ni = log->ni;
1134 	bool bBAAD;
1135 
1136 	if (vbo >= log->l_size)
1137 		return -EINVAL;
1138 
1139 	if (!*buffer) {
1140 		to_free = kmalloc(log->page_size, GFP_NOFS);
1141 		if (!to_free)
1142 			return -ENOMEM;
1143 		*buffer = to_free;
1144 	}
1145 
1146 	page_buf = page_off ? log->one_page_buf : *buffer;
1147 
1148 	err = ntfs_read_run_nb(ni->mi.sbi, &ni->file.run, page_vbo, page_buf,
1149 			       log->page_size, NULL);
1150 	if (err)
1151 		goto out;
1152 
1153 	if (page_buf->rhdr.sign != NTFS_FFFF_SIGNATURE)
1154 		ntfs_fix_post_read(&page_buf->rhdr, PAGE_SIZE, false);
1155 
1156 	if (page_buf != *buffer)
1157 		memcpy(*buffer, Add2Ptr(page_buf, page_off), bytes);
1158 
1159 	bBAAD = page_buf->rhdr.sign == NTFS_BAAD_SIGNATURE;
1160 
1161 	if (usa_error)
1162 		*usa_error = bBAAD;
1163 	/* Check that the update sequence array for this page is valid */
1164 	/* If we don't allow errors, raise an error status */
1165 	else if (bBAAD)
1166 		err = -EINVAL;
1167 
1168 out:
1169 	if (err && to_free) {
1170 		kfree(to_free);
1171 		*buffer = NULL;
1172 	}
1173 
1174 	return err;
1175 }
1176 
1177 /*
1178  * log_read_rst
1179  *
1180  * It walks through 512 blocks of the file looking for a valid
1181  * restart page header. It will stop the first time we find a
1182  * valid page header.
1183  */
1184 static int log_read_rst(struct ntfs_log *log, bool first,
1185 			struct restart_info *info)
1186 {
1187 	u32 skip, vbo;
1188 	struct RESTART_HDR *r_page = NULL;
1189 
1190 	/* Determine which restart area we are looking for. */
1191 	if (first) {
1192 		vbo = 0;
1193 		skip = 512;
1194 	} else {
1195 		vbo = 512;
1196 		skip = 0;
1197 	}
1198 
1199 	/* Loop continuously until we succeed. */
1200 	for (; vbo < log->l_size; vbo = 2 * vbo + skip, skip = 0) {
1201 		bool usa_error;
1202 		bool brst, bchk;
1203 		struct RESTART_AREA *ra;
1204 
1205 		/* Read a page header at the current offset. */
1206 		if (read_log_page(log, vbo, (struct RECORD_PAGE_HDR **)&r_page,
1207 				  &usa_error)) {
1208 			/* Ignore any errors. */
1209 			continue;
1210 		}
1211 
1212 		/* Exit if the signature is a log record page. */
1213 		if (r_page->rhdr.sign == NTFS_RCRD_SIGNATURE) {
1214 			info->initialized = true;
1215 			break;
1216 		}
1217 
1218 		brst = r_page->rhdr.sign == NTFS_RSTR_SIGNATURE;
1219 		bchk = r_page->rhdr.sign == NTFS_CHKD_SIGNATURE;
1220 
1221 		if (!bchk && !brst) {
1222 			if (r_page->rhdr.sign != NTFS_FFFF_SIGNATURE) {
1223 				/*
1224 				 * Remember if the signature does not
1225 				 * indicate uninitialized file.
1226 				 */
1227 				info->initialized = true;
1228 			}
1229 			continue;
1230 		}
1231 
1232 		ra = NULL;
1233 		info->valid_page = false;
1234 		info->initialized = true;
1235 		info->vbo = vbo;
1236 
1237 		/* Let's check the restart area if this is a valid page. */
1238 		if (!is_rst_page_hdr_valid(vbo, r_page))
1239 			goto check_result;
1240 		ra = Add2Ptr(r_page, le16_to_cpu(r_page->ra_off));
1241 
1242 		if (!is_rst_area_valid(r_page))
1243 			goto check_result;
1244 
1245 		/*
1246 		 * We have a valid restart page header and restart area.
1247 		 * If chkdsk was run or we have no clients then we have
1248 		 * no more checking to do.
1249 		 */
1250 		if (bchk || ra->client_idx[1] == LFS_NO_CLIENT_LE) {
1251 			info->valid_page = true;
1252 			goto check_result;
1253 		}
1254 
1255 		if (is_client_area_valid(r_page, usa_error)) {
1256 			info->valid_page = true;
1257 			ra = Add2Ptr(r_page, le16_to_cpu(r_page->ra_off));
1258 		}
1259 
1260 check_result:
1261 		/*
1262 		 * If chkdsk was run then update the caller's
1263 		 * values and return.
1264 		 */
1265 		if (r_page->rhdr.sign == NTFS_CHKD_SIGNATURE) {
1266 			info->chkdsk_was_run = true;
1267 			info->last_lsn = le64_to_cpu(r_page->rhdr.lsn);
1268 			info->restart = true;
1269 			info->r_page = r_page;
1270 			return 0;
1271 		}
1272 
1273 		/*
1274 		 * If we have a valid page then copy the values
1275 		 * we need from it.
1276 		 */
1277 		if (info->valid_page) {
1278 			info->last_lsn = le64_to_cpu(ra->current_lsn);
1279 			info->restart = true;
1280 			info->r_page = r_page;
1281 			return 0;
1282 		}
1283 	}
1284 
1285 	kfree(r_page);
1286 
1287 	return 0;
1288 }
1289 
1290 /*
1291  * Ilog_init_pg_hdr - Init @log from restart page header.
1292  */
1293 static void log_init_pg_hdr(struct ntfs_log *log, u16 major_ver, u16 minor_ver)
1294 {
1295 	log->sys_page_size = log->page_size;
1296 	log->sys_page_mask = log->page_mask;
1297 
1298 	log->clst_per_page = log->page_size >> log->ni->mi.sbi->cluster_bits;
1299 	if (!log->clst_per_page)
1300 		log->clst_per_page = 1;
1301 
1302 	log->first_page = major_ver >= 2 ? 0x22 * log->page_size :
1303 					   4 * log->page_size;
1304 	log->major_ver = major_ver;
1305 	log->minor_ver = minor_ver;
1306 }
1307 
1308 /*
1309  * log_create - Init @log in cases when we don't have a restart area to use.
1310  */
1311 static void log_create(struct ntfs_log *log, const u64 last_lsn,
1312 		       u32 open_log_count, bool wrapped, bool use_multi_page)
1313 {
1314 	/* All file offsets must be quadword aligned. */
1315 	log->file_data_bits = blksize_bits(log->l_size) - 3;
1316 	log->seq_num_mask = (8 << log->file_data_bits) - 1;
1317 	log->seq_num_bits = sizeof(u64) * 8 - log->file_data_bits;
1318 	log->seq_num = (last_lsn >> log->file_data_bits) + 2;
1319 	log->next_page = log->first_page;
1320 	log->oldest_lsn = log->seq_num << log->file_data_bits;
1321 	log->oldest_lsn_off = 0;
1322 	log->last_lsn = log->oldest_lsn;
1323 
1324 	log->l_flags |= NTFSLOG_NO_LAST_LSN | NTFSLOG_NO_OLDEST_LSN;
1325 
1326 	/* Set the correct flags for the I/O and indicate if we have wrapped. */
1327 	if (wrapped)
1328 		log->l_flags |= NTFSLOG_WRAPPED;
1329 
1330 	if (use_multi_page)
1331 		log->l_flags |= NTFSLOG_MULTIPLE_PAGE_IO;
1332 
1333 	/* Compute the log page values. */
1334 	log->data_off = ALIGN(
1335 		offsetof(struct RECORD_PAGE_HDR, fixups) +
1336 			sizeof(short) * ((log->page_size >> SECTOR_SHIFT) + 1),
1337 		8);
1338 	log->data_size = log->page_size - log->data_off;
1339 	log->record_header_len = sizeof(struct LFS_RECORD_HDR);
1340 
1341 	/* Remember the different page sizes for reservation. */
1342 	log->reserved = log->data_size - log->record_header_len;
1343 
1344 	/* Compute the restart page values. */
1345 	log->ra_off = ALIGN(
1346 		offsetof(struct RESTART_HDR, fixups) +
1347 			sizeof(short) *
1348 				((log->sys_page_size >> SECTOR_SHIFT) + 1),
1349 		8);
1350 	log->restart_size = log->sys_page_size - log->ra_off;
1351 	log->ra_size = struct_size(log->ra, clients, 1);
1352 	log->current_openlog_count = open_log_count;
1353 
1354 	/*
1355 	 * The total available log file space is the number of
1356 	 * log file pages times the space available on each page.
1357 	 */
1358 	log->total_avail_pages = log->l_size - log->first_page;
1359 	log->total_avail = log->total_avail_pages >> log->page_bits;
1360 
1361 	/*
1362 	 * We assume that we can't use the end of the page less than
1363 	 * the file record size.
1364 	 * Then we won't need to reserve more than the caller asks for.
1365 	 */
1366 	log->max_current_avail = log->total_avail * log->reserved;
1367 	log->total_avail = log->total_avail * log->data_size;
1368 	log->current_avail = log->max_current_avail;
1369 }
1370 
1371 /*
1372  * log_create_ra - Fill a restart area from the values stored in @log.
1373  */
1374 static struct RESTART_AREA *log_create_ra(struct ntfs_log *log)
1375 {
1376 	struct CLIENT_REC *cr;
1377 	struct RESTART_AREA *ra = kzalloc(log->restart_size, GFP_NOFS);
1378 
1379 	if (!ra)
1380 		return NULL;
1381 
1382 	ra->current_lsn = cpu_to_le64(log->last_lsn);
1383 	ra->log_clients = cpu_to_le16(1);
1384 	ra->client_idx[1] = LFS_NO_CLIENT_LE;
1385 	if (log->l_flags & NTFSLOG_MULTIPLE_PAGE_IO)
1386 		ra->flags = RESTART_SINGLE_PAGE_IO;
1387 	ra->seq_num_bits = cpu_to_le32(log->seq_num_bits);
1388 	ra->ra_len = cpu_to_le16(log->ra_size);
1389 	ra->client_off = cpu_to_le16(offsetof(struct RESTART_AREA, clients));
1390 	ra->l_size = cpu_to_le64(log->l_size);
1391 	ra->rec_hdr_len = cpu_to_le16(log->record_header_len);
1392 	ra->data_off = cpu_to_le16(log->data_off);
1393 	ra->open_log_count = cpu_to_le32(log->current_openlog_count + 1);
1394 
1395 	cr = ra->clients;
1396 
1397 	cr->prev_client = LFS_NO_CLIENT_LE;
1398 	cr->next_client = LFS_NO_CLIENT_LE;
1399 
1400 	return ra;
1401 }
1402 
1403 static u32 final_log_off(struct ntfs_log *log, u64 lsn, u32 data_len)
1404 {
1405 	u32 base_vbo = lsn << 3;
1406 	u32 final_log_off = (base_vbo & log->seq_num_mask) & ~log->page_mask;
1407 	u32 page_off = base_vbo & log->page_mask;
1408 	u32 tail = log->page_size - page_off;
1409 
1410 	page_off -= 1;
1411 
1412 	/* Add the length of the header. */
1413 	data_len += log->record_header_len;
1414 
1415 	/*
1416 	 * If this lsn is contained this log page we are done.
1417 	 * Otherwise we need to walk through several log pages.
1418 	 */
1419 	if (data_len > tail) {
1420 		data_len -= tail;
1421 		tail = log->data_size;
1422 		page_off = log->data_off - 1;
1423 
1424 		for (;;) {
1425 			final_log_off = next_page_off(log, final_log_off);
1426 
1427 			/*
1428 			 * We are done if the remaining bytes
1429 			 * fit on this page.
1430 			 */
1431 			if (data_len <= tail)
1432 				break;
1433 			data_len -= tail;
1434 		}
1435 	}
1436 
1437 	/*
1438 	 * We add the remaining bytes to our starting position on this page
1439 	 * and then add that value to the file offset of this log page.
1440 	 */
1441 	return final_log_off + data_len + page_off;
1442 }
1443 
1444 static int next_log_lsn(struct ntfs_log *log, const struct LFS_RECORD_HDR *rh,
1445 			u64 *lsn)
1446 {
1447 	int err;
1448 	u64 this_lsn = le64_to_cpu(rh->this_lsn);
1449 	u32 vbo = lsn_to_vbo(log, this_lsn);
1450 	u32 end =
1451 		final_log_off(log, this_lsn, le32_to_cpu(rh->client_data_len));
1452 	u32 hdr_off = end & ~log->sys_page_mask;
1453 	u64 seq = this_lsn >> log->file_data_bits;
1454 	struct RECORD_PAGE_HDR *page = NULL;
1455 
1456 	/* Remember if we wrapped. */
1457 	if (end <= vbo)
1458 		seq += 1;
1459 
1460 	/* Log page header for this page. */
1461 	err = read_log_page(log, hdr_off, &page, NULL);
1462 	if (err)
1463 		return err;
1464 
1465 	/*
1466 	 * If the lsn we were given was not the last lsn on this page,
1467 	 * then the starting offset for the next lsn is on a quad word
1468 	 * boundary following the last file offset for the current lsn.
1469 	 * Otherwise the file offset is the start of the data on the next page.
1470 	 */
1471 	if (this_lsn == le64_to_cpu(page->rhdr.lsn)) {
1472 		/* If we wrapped, we need to increment the sequence number. */
1473 		hdr_off = next_page_off(log, hdr_off);
1474 		if (hdr_off == log->first_page)
1475 			seq += 1;
1476 
1477 		vbo = hdr_off + log->data_off;
1478 	} else {
1479 		vbo = ALIGN(end, 8);
1480 	}
1481 
1482 	/* Compute the lsn based on the file offset and the sequence count. */
1483 	*lsn = vbo_to_lsn(log, vbo, seq);
1484 
1485 	/*
1486 	 * If this lsn is within the legal range for the file, we return true.
1487 	 * Otherwise false indicates that there are no more lsn's.
1488 	 */
1489 	if (!is_lsn_in_file(log, *lsn))
1490 		*lsn = 0;
1491 
1492 	kfree(page);
1493 
1494 	return 0;
1495 }
1496 
1497 /*
1498  * current_log_avail - Calculate the number of bytes available for log records.
1499  */
1500 static u32 current_log_avail(struct ntfs_log *log)
1501 {
1502 	u32 oldest_off, next_free_off, free_bytes;
1503 
1504 	if (log->l_flags & NTFSLOG_NO_LAST_LSN) {
1505 		/* The entire file is available. */
1506 		return log->max_current_avail;
1507 	}
1508 
1509 	/*
1510 	 * If there is a last lsn the restart area then we know that we will
1511 	 * have to compute the free range.
1512 	 * If there is no oldest lsn then start at the first page of the file.
1513 	 */
1514 	oldest_off = (log->l_flags & NTFSLOG_NO_OLDEST_LSN) ?
1515 			     log->first_page :
1516 			     (log->oldest_lsn_off & ~log->sys_page_mask);
1517 
1518 	/*
1519 	 * We will use the next log page offset to compute the next free page.
1520 	 * If we are going to reuse this page go to the next page.
1521 	 * If we are at the first page then use the end of the file.
1522 	 */
1523 	next_free_off = (log->l_flags & NTFSLOG_REUSE_TAIL) ?
1524 				log->next_page + log->page_size :
1525 			log->next_page == log->first_page ? log->l_size :
1526 							    log->next_page;
1527 
1528 	/* If the two offsets are the same then there is no available space. */
1529 	if (oldest_off == next_free_off)
1530 		return 0;
1531 	/*
1532 	 * If the free offset follows the oldest offset then subtract
1533 	 * this range from the total available pages.
1534 	 */
1535 	free_bytes =
1536 		oldest_off < next_free_off ?
1537 			log->total_avail_pages - (next_free_off - oldest_off) :
1538 			oldest_off - next_free_off;
1539 
1540 	free_bytes >>= log->page_bits;
1541 	return free_bytes * log->reserved;
1542 }
1543 
1544 static bool check_subseq_log_page(struct ntfs_log *log,
1545 				  const struct RECORD_PAGE_HDR *rp, u32 vbo,
1546 				  u64 seq)
1547 {
1548 	u64 lsn_seq;
1549 	const struct NTFS_RECORD_HEADER *rhdr = &rp->rhdr;
1550 	u64 lsn = le64_to_cpu(rhdr->lsn);
1551 
1552 	if (rhdr->sign == NTFS_FFFF_SIGNATURE || !rhdr->sign)
1553 		return false;
1554 
1555 	/*
1556 	 * If the last lsn on the page occurs was written after the page
1557 	 * that caused the original error then we have a fatal error.
1558 	 */
1559 	lsn_seq = lsn >> log->file_data_bits;
1560 
1561 	/*
1562 	 * If the sequence number for the lsn the page is equal or greater
1563 	 * than lsn we expect, then this is a subsequent write.
1564 	 */
1565 	return lsn_seq >= seq ||
1566 	       (lsn_seq == seq - 1 && log->first_page == vbo &&
1567 		vbo != (lsn_to_vbo(log, lsn) & ~log->page_mask));
1568 }
1569 
1570 /*
1571  * last_log_lsn
1572  *
1573  * Walks through the log pages for a file, searching for the
1574  * last log page written to the file.
1575  */
1576 static int last_log_lsn(struct ntfs_log *log)
1577 {
1578 	int err;
1579 	bool usa_error = false;
1580 	bool replace_page = false;
1581 	bool reuse_page = log->l_flags & NTFSLOG_REUSE_TAIL;
1582 	bool wrapped_file, wrapped;
1583 
1584 	u32 page_cnt = 1, page_pos = 1;
1585 	u32 page_off = 0, page_off1 = 0, saved_off = 0;
1586 	u32 final_off, second_off, final_off_prev = 0, second_off_prev = 0;
1587 	u32 first_file_off = 0, second_file_off = 0;
1588 	u32 part_io_count = 0;
1589 	u32 tails = 0;
1590 	u32 this_off, curpage_off, nextpage_off, remain_pages;
1591 
1592 	u64 expected_seq, seq_base = 0, lsn_base = 0;
1593 	u64 best_lsn, best_lsn1, best_lsn2;
1594 	u64 lsn_cur, lsn1, lsn2;
1595 	u64 last_ok_lsn = reuse_page ? log->last_lsn : 0;
1596 
1597 	u16 cur_pos, best_page_pos;
1598 
1599 	struct RECORD_PAGE_HDR *page = NULL;
1600 	struct RECORD_PAGE_HDR *tst_page = NULL;
1601 	struct RECORD_PAGE_HDR *first_tail = NULL;
1602 	struct RECORD_PAGE_HDR *second_tail = NULL;
1603 	struct RECORD_PAGE_HDR *tail_page = NULL;
1604 	struct RECORD_PAGE_HDR *second_tail_prev = NULL;
1605 	struct RECORD_PAGE_HDR *first_tail_prev = NULL;
1606 	struct RECORD_PAGE_HDR *page_bufs = NULL;
1607 	struct RECORD_PAGE_HDR *best_page;
1608 
1609 	if (log->major_ver >= 2) {
1610 		final_off = 0x02 * log->page_size;
1611 		second_off = 0x12 * log->page_size;
1612 
1613 		// 0x10 == 0x12 - 0x2
1614 		page_bufs = kmalloc(log->page_size * 0x10, GFP_NOFS);
1615 		if (!page_bufs)
1616 			return -ENOMEM;
1617 	} else {
1618 		second_off = log->first_page - log->page_size;
1619 		final_off = second_off - log->page_size;
1620 	}
1621 
1622 next_tail:
1623 	/* Read second tail page (at pos 3/0x12000). */
1624 	if (read_log_page(log, second_off, &second_tail, &usa_error) ||
1625 	    usa_error || second_tail->rhdr.sign != NTFS_RCRD_SIGNATURE) {
1626 		kfree(second_tail);
1627 		second_tail = NULL;
1628 		second_file_off = 0;
1629 		lsn2 = 0;
1630 	} else {
1631 		second_file_off = hdr_file_off(log, second_tail);
1632 		lsn2 = le64_to_cpu(second_tail->record_hdr.last_end_lsn);
1633 	}
1634 
1635 	/* Read first tail page (at pos 2/0x2000). */
1636 	if (read_log_page(log, final_off, &first_tail, &usa_error) ||
1637 	    usa_error || first_tail->rhdr.sign != NTFS_RCRD_SIGNATURE) {
1638 		kfree(first_tail);
1639 		first_tail = NULL;
1640 		first_file_off = 0;
1641 		lsn1 = 0;
1642 	} else {
1643 		first_file_off = hdr_file_off(log, first_tail);
1644 		lsn1 = le64_to_cpu(first_tail->record_hdr.last_end_lsn);
1645 	}
1646 
1647 	if (log->major_ver < 2) {
1648 		int best_page;
1649 
1650 		first_tail_prev = first_tail;
1651 		final_off_prev = first_file_off;
1652 		second_tail_prev = second_tail;
1653 		second_off_prev = second_file_off;
1654 		tails = 1;
1655 
1656 		if (!first_tail && !second_tail)
1657 			goto tail_read;
1658 
1659 		if (first_tail && second_tail)
1660 			best_page = lsn1 < lsn2 ? 1 : 0;
1661 		else if (first_tail)
1662 			best_page = 0;
1663 		else
1664 			best_page = 1;
1665 
1666 		page_off = best_page ? second_file_off : first_file_off;
1667 		seq_base = (best_page ? lsn2 : lsn1) >> log->file_data_bits;
1668 		goto tail_read;
1669 	}
1670 
1671 	best_lsn1 = first_tail ? base_lsn(log, first_tail, first_file_off) : 0;
1672 	best_lsn2 = second_tail ? base_lsn(log, second_tail, second_file_off) :
1673 				  0;
1674 
1675 	if (first_tail && second_tail) {
1676 		if (best_lsn1 > best_lsn2) {
1677 			best_lsn = best_lsn1;
1678 			best_page = first_tail;
1679 			this_off = first_file_off;
1680 		} else {
1681 			best_lsn = best_lsn2;
1682 			best_page = second_tail;
1683 			this_off = second_file_off;
1684 		}
1685 	} else if (first_tail) {
1686 		best_lsn = best_lsn1;
1687 		best_page = first_tail;
1688 		this_off = first_file_off;
1689 	} else if (second_tail) {
1690 		best_lsn = best_lsn2;
1691 		best_page = second_tail;
1692 		this_off = second_file_off;
1693 	} else {
1694 		goto tail_read;
1695 	}
1696 
1697 	best_page_pos = le16_to_cpu(best_page->page_pos);
1698 
1699 	if (!tails) {
1700 		if (best_page_pos == page_pos) {
1701 			seq_base = best_lsn >> log->file_data_bits;
1702 			saved_off = page_off = le32_to_cpu(best_page->file_off);
1703 			lsn_base = best_lsn;
1704 
1705 			memmove(page_bufs, best_page, log->page_size);
1706 
1707 			page_cnt = le16_to_cpu(best_page->page_count);
1708 			if (page_cnt > 1)
1709 				page_pos += 1;
1710 
1711 			tails = 1;
1712 		}
1713 	} else if (seq_base == (best_lsn >> log->file_data_bits) &&
1714 		   saved_off + log->page_size == this_off &&
1715 		   lsn_base < best_lsn &&
1716 		   (page_pos != page_cnt || best_page_pos == page_pos ||
1717 		    best_page_pos == 1) &&
1718 		   (page_pos >= page_cnt || best_page_pos == page_pos)) {
1719 		u16 bppc = le16_to_cpu(best_page->page_count);
1720 
1721 		saved_off += log->page_size;
1722 		lsn_base = best_lsn;
1723 
1724 		memmove(Add2Ptr(page_bufs, tails * log->page_size), best_page,
1725 			log->page_size);
1726 
1727 		tails += 1;
1728 
1729 		if (best_page_pos != bppc) {
1730 			page_cnt = bppc;
1731 			page_pos = best_page_pos;
1732 
1733 			if (page_cnt > 1)
1734 				page_pos += 1;
1735 		} else {
1736 			page_pos = page_cnt = 1;
1737 		}
1738 	} else {
1739 		kfree(first_tail);
1740 		kfree(second_tail);
1741 		goto tail_read;
1742 	}
1743 
1744 	kfree(first_tail_prev);
1745 	first_tail_prev = first_tail;
1746 	final_off_prev = first_file_off;
1747 	first_tail = NULL;
1748 
1749 	kfree(second_tail_prev);
1750 	second_tail_prev = second_tail;
1751 	second_off_prev = second_file_off;
1752 	second_tail = NULL;
1753 
1754 	final_off += log->page_size;
1755 	second_off += log->page_size;
1756 
1757 	if (tails < 0x10)
1758 		goto next_tail;
1759 tail_read:
1760 	first_tail = first_tail_prev;
1761 	final_off = final_off_prev;
1762 
1763 	second_tail = second_tail_prev;
1764 	second_off = second_off_prev;
1765 
1766 	page_cnt = page_pos = 1;
1767 
1768 	curpage_off = seq_base == log->seq_num ? min(log->next_page, page_off) :
1769 						 log->next_page;
1770 
1771 	wrapped_file =
1772 		curpage_off == log->first_page &&
1773 		!(log->l_flags & (NTFSLOG_NO_LAST_LSN | NTFSLOG_REUSE_TAIL));
1774 
1775 	expected_seq = wrapped_file ? (log->seq_num + 1) : log->seq_num;
1776 
1777 	nextpage_off = curpage_off;
1778 
1779 next_page:
1780 	tail_page = NULL;
1781 	/* Read the next log page. */
1782 	err = read_log_page(log, curpage_off, &page, &usa_error);
1783 
1784 	/* Compute the next log page offset the file. */
1785 	nextpage_off = next_page_off(log, curpage_off);
1786 	wrapped = nextpage_off == log->first_page;
1787 
1788 	if (tails > 1) {
1789 		struct RECORD_PAGE_HDR *cur_page =
1790 			Add2Ptr(page_bufs, curpage_off - page_off);
1791 
1792 		if (curpage_off == saved_off) {
1793 			tail_page = cur_page;
1794 			goto use_tail_page;
1795 		}
1796 
1797 		if (page_off > curpage_off || curpage_off >= saved_off)
1798 			goto use_tail_page;
1799 
1800 		if (page_off1)
1801 			goto use_cur_page;
1802 
1803 		if (!err && !usa_error &&
1804 		    page->rhdr.sign == NTFS_RCRD_SIGNATURE &&
1805 		    cur_page->rhdr.lsn == page->rhdr.lsn &&
1806 		    cur_page->record_hdr.next_record_off ==
1807 			    page->record_hdr.next_record_off &&
1808 		    ((page_pos == page_cnt &&
1809 		      le16_to_cpu(page->page_pos) == 1) ||
1810 		     (page_pos != page_cnt &&
1811 		      le16_to_cpu(page->page_pos) == page_pos + 1 &&
1812 		      le16_to_cpu(page->page_count) == page_cnt))) {
1813 			cur_page = NULL;
1814 			goto use_tail_page;
1815 		}
1816 
1817 		page_off1 = page_off;
1818 
1819 use_cur_page:
1820 
1821 		lsn_cur = le64_to_cpu(cur_page->rhdr.lsn);
1822 
1823 		if (last_ok_lsn !=
1824 			    le64_to_cpu(cur_page->record_hdr.last_end_lsn) &&
1825 		    ((lsn_cur >> log->file_data_bits) +
1826 		     ((curpage_off <
1827 		       (lsn_to_vbo(log, lsn_cur) & ~log->page_mask)) ?
1828 			      1 :
1829 			      0)) != expected_seq) {
1830 			goto check_tail;
1831 		}
1832 
1833 		if (!is_log_record_end(cur_page)) {
1834 			tail_page = NULL;
1835 			last_ok_lsn = lsn_cur;
1836 			goto next_page_1;
1837 		}
1838 
1839 		log->seq_num = expected_seq;
1840 		log->l_flags &= ~NTFSLOG_NO_LAST_LSN;
1841 		log->last_lsn = le64_to_cpu(cur_page->record_hdr.last_end_lsn);
1842 		log->ra->current_lsn = cur_page->record_hdr.last_end_lsn;
1843 
1844 		if (log->record_header_len <=
1845 		    log->page_size -
1846 			    le16_to_cpu(cur_page->record_hdr.next_record_off)) {
1847 			log->l_flags |= NTFSLOG_REUSE_TAIL;
1848 			log->next_page = curpage_off;
1849 		} else {
1850 			log->l_flags &= ~NTFSLOG_REUSE_TAIL;
1851 			log->next_page = nextpage_off;
1852 		}
1853 
1854 		if (wrapped_file)
1855 			log->l_flags |= NTFSLOG_WRAPPED;
1856 
1857 		last_ok_lsn = le64_to_cpu(cur_page->record_hdr.last_end_lsn);
1858 		goto next_page_1;
1859 	}
1860 
1861 	/*
1862 	 * If we are at the expected first page of a transfer check to see
1863 	 * if either tail copy is at this offset.
1864 	 * If this page is the last page of a transfer, check if we wrote
1865 	 * a subsequent tail copy.
1866 	 */
1867 	if (page_cnt == page_pos || page_cnt == page_pos + 1) {
1868 		/*
1869 		 * Check if the offset matches either the first or second
1870 		 * tail copy. It is possible it will match both.
1871 		 */
1872 		if (curpage_off == final_off)
1873 			tail_page = first_tail;
1874 
1875 		/*
1876 		 * If we already matched on the first page then
1877 		 * check the ending lsn's.
1878 		 */
1879 		if (curpage_off == second_off) {
1880 			if (!tail_page ||
1881 			    (second_tail &&
1882 			     le64_to_cpu(second_tail->record_hdr.last_end_lsn) >
1883 				     le64_to_cpu(first_tail->record_hdr
1884 							 .last_end_lsn))) {
1885 				tail_page = second_tail;
1886 			}
1887 		}
1888 	}
1889 
1890 use_tail_page:
1891 	if (tail_page) {
1892 		/* We have a candidate for a tail copy. */
1893 		lsn_cur = le64_to_cpu(tail_page->record_hdr.last_end_lsn);
1894 
1895 		if (last_ok_lsn < lsn_cur) {
1896 			/*
1897 			 * If the sequence number is not expected,
1898 			 * then don't use the tail copy.
1899 			 */
1900 			if (expected_seq != (lsn_cur >> log->file_data_bits))
1901 				tail_page = NULL;
1902 		} else if (last_ok_lsn > lsn_cur) {
1903 			/*
1904 			 * If the last lsn is greater than the one on
1905 			 * this page then forget this tail.
1906 			 */
1907 			tail_page = NULL;
1908 		}
1909 	}
1910 
1911 	/*
1912 	 *If we have an error on the current page,
1913 	 * we will break of this loop.
1914 	 */
1915 	if (err || usa_error)
1916 		goto check_tail;
1917 
1918 	/*
1919 	 * Done if the last lsn on this page doesn't match the previous known
1920 	 * last lsn or the sequence number is not expected.
1921 	 */
1922 	lsn_cur = le64_to_cpu(page->rhdr.lsn);
1923 	if (last_ok_lsn != lsn_cur &&
1924 	    expected_seq != (lsn_cur >> log->file_data_bits)) {
1925 		goto check_tail;
1926 	}
1927 
1928 	/*
1929 	 * Check that the page position and page count values are correct.
1930 	 * If this is the first page of a transfer the position must be 1
1931 	 * and the count will be unknown.
1932 	 */
1933 	if (page_cnt == page_pos) {
1934 		if (page->page_pos != cpu_to_le16(1) &&
1935 		    (!reuse_page || page->page_pos != page->page_count)) {
1936 			/*
1937 			 * If the current page is the first page we are
1938 			 * looking at and we are reusing this page then
1939 			 * it can be either the first or last page of a
1940 			 * transfer. Otherwise it can only be the first.
1941 			 */
1942 			goto check_tail;
1943 		}
1944 	} else if (le16_to_cpu(page->page_count) != page_cnt ||
1945 		   le16_to_cpu(page->page_pos) != page_pos + 1) {
1946 		/*
1947 		 * The page position better be 1 more than the last page
1948 		 * position and the page count better match.
1949 		 */
1950 		goto check_tail;
1951 	}
1952 
1953 	/*
1954 	 * We have a valid page the file and may have a valid page
1955 	 * the tail copy area.
1956 	 * If the tail page was written after the page the file then
1957 	 * break of the loop.
1958 	 */
1959 	if (tail_page &&
1960 	    le64_to_cpu(tail_page->record_hdr.last_end_lsn) > lsn_cur) {
1961 		/* Remember if we will replace the page. */
1962 		replace_page = true;
1963 		goto check_tail;
1964 	}
1965 
1966 	tail_page = NULL;
1967 
1968 	if (is_log_record_end(page)) {
1969 		/*
1970 		 * Since we have read this page we know the sequence number
1971 		 * is the same as our expected value.
1972 		 */
1973 		log->seq_num = expected_seq;
1974 		log->last_lsn = le64_to_cpu(page->record_hdr.last_end_lsn);
1975 		log->ra->current_lsn = page->record_hdr.last_end_lsn;
1976 		log->l_flags &= ~NTFSLOG_NO_LAST_LSN;
1977 
1978 		/*
1979 		 * If there is room on this page for another header then
1980 		 * remember we want to reuse the page.
1981 		 */
1982 		if (log->record_header_len <=
1983 		    log->page_size -
1984 			    le16_to_cpu(page->record_hdr.next_record_off)) {
1985 			log->l_flags |= NTFSLOG_REUSE_TAIL;
1986 			log->next_page = curpage_off;
1987 		} else {
1988 			log->l_flags &= ~NTFSLOG_REUSE_TAIL;
1989 			log->next_page = nextpage_off;
1990 		}
1991 
1992 		/* Remember if we wrapped the log file. */
1993 		if (wrapped_file)
1994 			log->l_flags |= NTFSLOG_WRAPPED;
1995 	}
1996 
1997 	/*
1998 	 * Remember the last page count and position.
1999 	 * Also remember the last known lsn.
2000 	 */
2001 	page_cnt = le16_to_cpu(page->page_count);
2002 	page_pos = le16_to_cpu(page->page_pos);
2003 	last_ok_lsn = le64_to_cpu(page->rhdr.lsn);
2004 
2005 next_page_1:
2006 
2007 	if (wrapped) {
2008 		expected_seq += 1;
2009 		wrapped_file = 1;
2010 	}
2011 
2012 	curpage_off = nextpage_off;
2013 	kfree(page);
2014 	page = NULL;
2015 	reuse_page = 0;
2016 	goto next_page;
2017 
2018 check_tail:
2019 	if (tail_page) {
2020 		log->seq_num = expected_seq;
2021 		log->last_lsn = le64_to_cpu(tail_page->record_hdr.last_end_lsn);
2022 		log->ra->current_lsn = tail_page->record_hdr.last_end_lsn;
2023 		log->l_flags &= ~NTFSLOG_NO_LAST_LSN;
2024 
2025 		if (log->page_size -
2026 			    le16_to_cpu(
2027 				    tail_page->record_hdr.next_record_off) >=
2028 		    log->record_header_len) {
2029 			log->l_flags |= NTFSLOG_REUSE_TAIL;
2030 			log->next_page = curpage_off;
2031 		} else {
2032 			log->l_flags &= ~NTFSLOG_REUSE_TAIL;
2033 			log->next_page = nextpage_off;
2034 		}
2035 
2036 		if (wrapped)
2037 			log->l_flags |= NTFSLOG_WRAPPED;
2038 	}
2039 
2040 	/* Remember that the partial IO will start at the next page. */
2041 	second_off = nextpage_off;
2042 
2043 	/*
2044 	 * If the next page is the first page of the file then update
2045 	 * the sequence number for log records which begon the next page.
2046 	 */
2047 	if (wrapped)
2048 		expected_seq += 1;
2049 
2050 	/*
2051 	 * If we have a tail copy or are performing single page I/O we can
2052 	 * immediately look at the next page.
2053 	 */
2054 	if (replace_page || (log->ra->flags & RESTART_SINGLE_PAGE_IO)) {
2055 		page_cnt = 2;
2056 		page_pos = 1;
2057 		goto check_valid;
2058 	}
2059 
2060 	if (page_pos != page_cnt)
2061 		goto check_valid;
2062 	/*
2063 	 * If the next page causes us to wrap to the beginning of the log
2064 	 * file then we know which page to check next.
2065 	 */
2066 	if (wrapped) {
2067 		page_cnt = 2;
2068 		page_pos = 1;
2069 		goto check_valid;
2070 	}
2071 
2072 	cur_pos = 2;
2073 
2074 next_test_page:
2075 	kfree(tst_page);
2076 	tst_page = NULL;
2077 
2078 	/* Walk through the file, reading log pages. */
2079 	err = read_log_page(log, nextpage_off, &tst_page, &usa_error);
2080 
2081 	/*
2082 	 * If we get a USA error then assume that we correctly found
2083 	 * the end of the original transfer.
2084 	 */
2085 	if (usa_error)
2086 		goto file_is_valid;
2087 
2088 	/*
2089 	 * If we were able to read the page, we examine it to see if it
2090 	 * is the same or different Io block.
2091 	 */
2092 	if (err)
2093 		goto next_test_page_1;
2094 
2095 	if (le16_to_cpu(tst_page->page_pos) == cur_pos &&
2096 	    check_subseq_log_page(log, tst_page, nextpage_off, expected_seq)) {
2097 		page_cnt = le16_to_cpu(tst_page->page_count) + 1;
2098 		page_pos = le16_to_cpu(tst_page->page_pos);
2099 		goto check_valid;
2100 	} else {
2101 		goto file_is_valid;
2102 	}
2103 
2104 next_test_page_1:
2105 
2106 	nextpage_off = next_page_off(log, curpage_off);
2107 	wrapped = nextpage_off == log->first_page;
2108 
2109 	if (wrapped) {
2110 		expected_seq += 1;
2111 		page_cnt = 2;
2112 		page_pos = 1;
2113 	}
2114 
2115 	cur_pos += 1;
2116 	part_io_count += 1;
2117 	if (!wrapped)
2118 		goto next_test_page;
2119 
2120 check_valid:
2121 	/* Skip over the remaining pages this transfer. */
2122 	remain_pages = page_cnt - page_pos - 1;
2123 	part_io_count += remain_pages;
2124 
2125 	while (remain_pages--) {
2126 		nextpage_off = next_page_off(log, curpage_off);
2127 		wrapped = nextpage_off == log->first_page;
2128 
2129 		if (wrapped)
2130 			expected_seq += 1;
2131 	}
2132 
2133 	/* Call our routine to check this log page. */
2134 	kfree(tst_page);
2135 	tst_page = NULL;
2136 
2137 	err = read_log_page(log, nextpage_off, &tst_page, &usa_error);
2138 	if (!err && !usa_error &&
2139 	    check_subseq_log_page(log, tst_page, nextpage_off, expected_seq)) {
2140 		err = -EINVAL;
2141 		goto out;
2142 	}
2143 
2144 file_is_valid:
2145 
2146 	/* We have a valid file. */
2147 	if (page_off1 || tail_page) {
2148 		struct RECORD_PAGE_HDR *tmp_page;
2149 
2150 		if (sb_rdonly(log->ni->mi.sbi->sb)) {
2151 			err = -EROFS;
2152 			goto out;
2153 		}
2154 
2155 		if (page_off1) {
2156 			tmp_page = Add2Ptr(page_bufs, page_off1 - page_off);
2157 			tails -= (page_off1 - page_off) / log->page_size;
2158 			if (!tail_page)
2159 				tails -= 1;
2160 		} else {
2161 			tmp_page = tail_page;
2162 			tails = 1;
2163 		}
2164 
2165 		while (tails--) {
2166 			u64 off = hdr_file_off(log, tmp_page);
2167 
2168 			if (!page) {
2169 				page = kmalloc(log->page_size, GFP_NOFS);
2170 				if (!page) {
2171 					err = -ENOMEM;
2172 					goto out;
2173 				}
2174 			}
2175 
2176 			/*
2177 			 * Correct page and copy the data from this page
2178 			 * into it and flush it to disk.
2179 			 */
2180 			memcpy(page, tmp_page, log->page_size);
2181 
2182 			/* Fill last flushed lsn value flush the page. */
2183 			if (log->major_ver < 2)
2184 				page->rhdr.lsn = page->record_hdr.last_end_lsn;
2185 			else
2186 				page->file_off = 0;
2187 
2188 			page->page_pos = page->page_count = cpu_to_le16(1);
2189 
2190 			ntfs_fix_pre_write(&page->rhdr, log->page_size);
2191 
2192 			err = ntfs_sb_write_run(log->ni->mi.sbi,
2193 						&log->ni->file.run, off, page,
2194 						log->page_size, 0);
2195 
2196 			if (err)
2197 				goto out;
2198 
2199 			if (part_io_count && second_off == off) {
2200 				second_off += log->page_size;
2201 				part_io_count -= 1;
2202 			}
2203 
2204 			tmp_page = Add2Ptr(tmp_page, log->page_size);
2205 		}
2206 	}
2207 
2208 	if (part_io_count) {
2209 		if (sb_rdonly(log->ni->mi.sbi->sb)) {
2210 			err = -EROFS;
2211 			goto out;
2212 		}
2213 	}
2214 
2215 out:
2216 	kfree(second_tail);
2217 	kfree(first_tail);
2218 	kfree(page);
2219 	kfree(tst_page);
2220 	kfree(page_bufs);
2221 
2222 	return err;
2223 }
2224 
2225 /*
2226  * read_log_rec_buf - Copy a log record from the file to a buffer.
2227  *
2228  * The log record may span several log pages and may even wrap the file.
2229  */
2230 static int read_log_rec_buf(struct ntfs_log *log,
2231 			    const struct LFS_RECORD_HDR *rh, void *buffer)
2232 {
2233 	int err;
2234 	struct RECORD_PAGE_HDR *ph = NULL;
2235 	u64 lsn = le64_to_cpu(rh->this_lsn);
2236 	u32 vbo = lsn_to_vbo(log, lsn) & ~log->page_mask;
2237 	u32 off = lsn_to_page_off(log, lsn) + log->record_header_len;
2238 	u32 data_len = le32_to_cpu(rh->client_data_len);
2239 
2240 	/*
2241 	 * While there are more bytes to transfer,
2242 	 * we continue to attempt to perform the read.
2243 	 */
2244 	for (;;) {
2245 		bool usa_error;
2246 		u32 tail = log->page_size - off;
2247 
2248 		if (tail >= data_len)
2249 			tail = data_len;
2250 
2251 		data_len -= tail;
2252 
2253 		err = read_log_page(log, vbo, &ph, &usa_error);
2254 		if (err)
2255 			goto out;
2256 
2257 		/*
2258 		 * The last lsn on this page better be greater or equal
2259 		 * to the lsn we are copying.
2260 		 */
2261 		if (lsn > le64_to_cpu(ph->rhdr.lsn)) {
2262 			err = -EINVAL;
2263 			goto out;
2264 		}
2265 
2266 		memcpy(buffer, Add2Ptr(ph, off), tail);
2267 
2268 		/* If there are no more bytes to transfer, we exit the loop. */
2269 		if (!data_len) {
2270 			if (!is_log_record_end(ph) ||
2271 			    lsn > le64_to_cpu(ph->record_hdr.last_end_lsn)) {
2272 				err = -EINVAL;
2273 				goto out;
2274 			}
2275 			break;
2276 		}
2277 
2278 		if (ph->rhdr.lsn == ph->record_hdr.last_end_lsn ||
2279 		    lsn > le64_to_cpu(ph->rhdr.lsn)) {
2280 			err = -EINVAL;
2281 			goto out;
2282 		}
2283 
2284 		vbo = next_page_off(log, vbo);
2285 		off = log->data_off;
2286 
2287 		/*
2288 		 * Adjust our pointer the user's buffer to transfer
2289 		 * the next block to.
2290 		 */
2291 		buffer = Add2Ptr(buffer, tail);
2292 	}
2293 
2294 out:
2295 	kfree(ph);
2296 	return err;
2297 }
2298 
2299 static int read_rst_area(struct ntfs_log *log, struct NTFS_RESTART **rst_,
2300 			 u64 *lsn)
2301 {
2302 	int err;
2303 	struct LFS_RECORD_HDR *rh = NULL;
2304 	const struct CLIENT_REC *cr =
2305 		Add2Ptr(log->ra, le16_to_cpu(log->ra->client_off));
2306 	u64 lsnr, lsnc = le64_to_cpu(cr->restart_lsn);
2307 	u32 len;
2308 	struct NTFS_RESTART *rst;
2309 
2310 	*lsn = 0;
2311 	*rst_ = NULL;
2312 
2313 	/* If the client doesn't have a restart area, go ahead and exit now. */
2314 	if (!lsnc)
2315 		return 0;
2316 
2317 	err = read_log_page(log, lsn_to_vbo(log, lsnc),
2318 			    (struct RECORD_PAGE_HDR **)&rh, NULL);
2319 	if (err)
2320 		return err;
2321 
2322 	rst = NULL;
2323 	lsnr = le64_to_cpu(rh->this_lsn);
2324 
2325 	if (lsnc != lsnr) {
2326 		/* If the lsn values don't match, then the disk is corrupt. */
2327 		err = -EINVAL;
2328 		goto out;
2329 	}
2330 
2331 	*lsn = lsnr;
2332 	len = le32_to_cpu(rh->client_data_len);
2333 
2334 	if (!len) {
2335 		err = 0;
2336 		goto out;
2337 	}
2338 
2339 	if (len < sizeof(struct NTFS_RESTART)) {
2340 		err = -EINVAL;
2341 		goto out;
2342 	}
2343 
2344 	rst = kmalloc(len, GFP_NOFS);
2345 	if (!rst) {
2346 		err = -ENOMEM;
2347 		goto out;
2348 	}
2349 
2350 	/* Copy the data into the 'rst' buffer. */
2351 	err = read_log_rec_buf(log, rh, rst);
2352 	if (err)
2353 		goto out;
2354 
2355 	*rst_ = rst;
2356 	rst = NULL;
2357 
2358 out:
2359 	kfree(rh);
2360 	kfree(rst);
2361 
2362 	return err;
2363 }
2364 
2365 static int find_log_rec(struct ntfs_log *log, u64 lsn, struct lcb *lcb)
2366 {
2367 	int err;
2368 	struct LFS_RECORD_HDR *rh = lcb->lrh;
2369 	u32 rec_len, len;
2370 
2371 	/* Read the record header for this lsn. */
2372 	if (!rh) {
2373 		err = read_log_page(log, lsn_to_vbo(log, lsn),
2374 				    (struct RECORD_PAGE_HDR **)&rh, NULL);
2375 
2376 		lcb->lrh = rh;
2377 		if (err)
2378 			return err;
2379 	}
2380 
2381 	/*
2382 	 * If the lsn the log record doesn't match the desired
2383 	 * lsn then the disk is corrupt.
2384 	 */
2385 	if (lsn != le64_to_cpu(rh->this_lsn))
2386 		return -EINVAL;
2387 
2388 	len = le32_to_cpu(rh->client_data_len);
2389 
2390 	/*
2391 	 * Check that the length field isn't greater than the total
2392 	 * available space the log file.
2393 	 */
2394 	rec_len = len + log->record_header_len;
2395 	if (rec_len >= log->total_avail)
2396 		return -EINVAL;
2397 
2398 	/*
2399 	 * If the entire log record is on this log page,
2400 	 * put a pointer to the log record the context block.
2401 	 */
2402 	if (rh->flags & LOG_RECORD_MULTI_PAGE) {
2403 		void *lr = kmalloc(len, GFP_NOFS);
2404 
2405 		if (!lr)
2406 			return -ENOMEM;
2407 
2408 		lcb->log_rec = lr;
2409 		lcb->alloc = true;
2410 
2411 		/* Copy the data into the buffer returned. */
2412 		err = read_log_rec_buf(log, rh, lr);
2413 		if (err)
2414 			return err;
2415 	} else {
2416 		/* If beyond the end of the current page -> an error. */
2417 		u32 page_off = lsn_to_page_off(log, lsn);
2418 
2419 		if (page_off + len + log->record_header_len > log->page_size)
2420 			return -EINVAL;
2421 
2422 		lcb->log_rec = Add2Ptr(rh, sizeof(struct LFS_RECORD_HDR));
2423 		lcb->alloc = false;
2424 	}
2425 
2426 	return 0;
2427 }
2428 
2429 /*
2430  * read_log_rec_lcb - Init the query operation.
2431  */
2432 static int read_log_rec_lcb(struct ntfs_log *log, u64 lsn, u32 ctx_mode,
2433 			    struct lcb **lcb_)
2434 {
2435 	int err;
2436 	const struct CLIENT_REC *cr;
2437 	struct lcb *lcb;
2438 
2439 	switch (ctx_mode) {
2440 	case lcb_ctx_undo_next:
2441 	case lcb_ctx_prev:
2442 	case lcb_ctx_next:
2443 		break;
2444 	default:
2445 		return -EINVAL;
2446 	}
2447 
2448 	/* Check that the given lsn is the legal range for this client. */
2449 	cr = Add2Ptr(log->ra, le16_to_cpu(log->ra->client_off));
2450 
2451 	if (!verify_client_lsn(log, cr, lsn))
2452 		return -EINVAL;
2453 
2454 	lcb = kzalloc(sizeof(struct lcb), GFP_NOFS);
2455 	if (!lcb)
2456 		return -ENOMEM;
2457 	lcb->client = log->client_id;
2458 	lcb->ctx_mode = ctx_mode;
2459 
2460 	/* Find the log record indicated by the given lsn. */
2461 	err = find_log_rec(log, lsn, lcb);
2462 	if (err)
2463 		goto out;
2464 
2465 	*lcb_ = lcb;
2466 	return 0;
2467 
2468 out:
2469 	lcb_put(lcb);
2470 	*lcb_ = NULL;
2471 	return err;
2472 }
2473 
2474 /*
2475  * find_client_next_lsn
2476  *
2477  * Attempt to find the next lsn to return to a client based on the context mode.
2478  */
2479 static int find_client_next_lsn(struct ntfs_log *log, struct lcb *lcb, u64 *lsn)
2480 {
2481 	int err;
2482 	u64 next_lsn;
2483 	struct LFS_RECORD_HDR *hdr;
2484 
2485 	hdr = lcb->lrh;
2486 	*lsn = 0;
2487 
2488 	if (lcb_ctx_next != lcb->ctx_mode)
2489 		goto check_undo_next;
2490 
2491 	/* Loop as long as another lsn can be found. */
2492 	for (;;) {
2493 		u64 current_lsn;
2494 
2495 		err = next_log_lsn(log, hdr, &current_lsn);
2496 		if (err)
2497 			goto out;
2498 
2499 		if (!current_lsn)
2500 			break;
2501 
2502 		if (hdr != lcb->lrh)
2503 			kfree(hdr);
2504 
2505 		hdr = NULL;
2506 		err = read_log_page(log, lsn_to_vbo(log, current_lsn),
2507 				    (struct RECORD_PAGE_HDR **)&hdr, NULL);
2508 		if (err)
2509 			goto out;
2510 
2511 		if (memcmp(&hdr->client, &lcb->client,
2512 			   sizeof(struct CLIENT_ID))) {
2513 			/*err = -EINVAL; */
2514 		} else if (LfsClientRecord == hdr->record_type) {
2515 			kfree(lcb->lrh);
2516 			lcb->lrh = hdr;
2517 			*lsn = current_lsn;
2518 			return 0;
2519 		}
2520 	}
2521 
2522 out:
2523 	if (hdr != lcb->lrh)
2524 		kfree(hdr);
2525 	return err;
2526 
2527 check_undo_next:
2528 	if (lcb_ctx_undo_next == lcb->ctx_mode)
2529 		next_lsn = le64_to_cpu(hdr->client_undo_next_lsn);
2530 	else if (lcb_ctx_prev == lcb->ctx_mode)
2531 		next_lsn = le64_to_cpu(hdr->client_prev_lsn);
2532 	else
2533 		return 0;
2534 
2535 	if (!next_lsn)
2536 		return 0;
2537 
2538 	if (!verify_client_lsn(
2539 		    log, Add2Ptr(log->ra, le16_to_cpu(log->ra->client_off)),
2540 		    next_lsn))
2541 		return 0;
2542 
2543 	hdr = NULL;
2544 	err = read_log_page(log, lsn_to_vbo(log, next_lsn),
2545 			    (struct RECORD_PAGE_HDR **)&hdr, NULL);
2546 	if (err)
2547 		return err;
2548 	kfree(lcb->lrh);
2549 	lcb->lrh = hdr;
2550 
2551 	*lsn = next_lsn;
2552 
2553 	return 0;
2554 }
2555 
2556 static int read_next_log_rec(struct ntfs_log *log, struct lcb *lcb, u64 *lsn)
2557 {
2558 	int err;
2559 
2560 	err = find_client_next_lsn(log, lcb, lsn);
2561 	if (err)
2562 		return err;
2563 
2564 	if (!*lsn)
2565 		return 0;
2566 
2567 	if (lcb->alloc)
2568 		kfree(lcb->log_rec);
2569 
2570 	lcb->log_rec = NULL;
2571 	lcb->alloc = false;
2572 	kfree(lcb->lrh);
2573 	lcb->lrh = NULL;
2574 
2575 	return find_log_rec(log, *lsn, lcb);
2576 }
2577 
2578 bool check_index_header(const struct INDEX_HDR *hdr, size_t bytes)
2579 {
2580 	__le16 mask;
2581 	u32 min_de, de_off, used, total;
2582 	const struct NTFS_DE *e;
2583 
2584 	if (hdr_has_subnode(hdr)) {
2585 		min_de = sizeof(struct NTFS_DE) + sizeof(u64);
2586 		mask = NTFS_IE_HAS_SUBNODES;
2587 	} else {
2588 		min_de = sizeof(struct NTFS_DE);
2589 		mask = 0;
2590 	}
2591 
2592 	de_off = le32_to_cpu(hdr->de_off);
2593 	used = le32_to_cpu(hdr->used);
2594 	total = le32_to_cpu(hdr->total);
2595 
2596 	if (de_off > bytes - min_de || used > bytes || total > bytes ||
2597 	    de_off + min_de > used || used > total) {
2598 		return false;
2599 	}
2600 
2601 	e = Add2Ptr(hdr, de_off);
2602 	for (;;) {
2603 		u16 esize = le16_to_cpu(e->size);
2604 		struct NTFS_DE *next = Add2Ptr(e, esize);
2605 
2606 		if (esize < min_de || PtrOffset(hdr, next) > used ||
2607 		    (e->flags & NTFS_IE_HAS_SUBNODES) != mask) {
2608 			return false;
2609 		}
2610 
2611 		if (de_is_last(e))
2612 			break;
2613 
2614 		e = next;
2615 	}
2616 
2617 	return true;
2618 }
2619 
2620 static inline bool check_index_buffer(const struct INDEX_BUFFER *ib, u32 bytes)
2621 {
2622 	u16 fo;
2623 	const struct NTFS_RECORD_HEADER *r = &ib->rhdr;
2624 
2625 	if (r->sign != NTFS_INDX_SIGNATURE)
2626 		return false;
2627 
2628 	fo = (SECTOR_SIZE - ((bytes >> SECTOR_SHIFT) + 1) * sizeof(short));
2629 
2630 	if (le16_to_cpu(r->fix_off) > fo)
2631 		return false;
2632 
2633 	if ((le16_to_cpu(r->fix_num) - 1) * SECTOR_SIZE != bytes)
2634 		return false;
2635 
2636 	return check_index_header(&ib->ihdr,
2637 				  bytes - offsetof(struct INDEX_BUFFER, ihdr));
2638 }
2639 
2640 static inline bool check_index_root(const struct ATTRIB *attr,
2641 				    struct ntfs_sb_info *sbi)
2642 {
2643 	bool ret;
2644 	const struct INDEX_ROOT *root = resident_data(attr);
2645 	u8 index_bits = le32_to_cpu(root->index_block_size) >=
2646 					sbi->cluster_size ?
2647 				sbi->cluster_bits :
2648 				SECTOR_SHIFT;
2649 	u8 block_clst = root->index_block_clst;
2650 
2651 	if (le32_to_cpu(attr->res.data_size) < sizeof(struct INDEX_ROOT) ||
2652 	    (root->type != ATTR_NAME && root->type != ATTR_ZERO) ||
2653 	    (root->type == ATTR_NAME &&
2654 	     root->rule != NTFS_COLLATION_TYPE_FILENAME) ||
2655 	    (le32_to_cpu(root->index_block_size) !=
2656 	     (block_clst << index_bits)) ||
2657 	    (block_clst != 1 && block_clst != 2 && block_clst != 4 &&
2658 	     block_clst != 8 && block_clst != 0x10 && block_clst != 0x20 &&
2659 	     block_clst != 0x40 && block_clst != 0x80)) {
2660 		return false;
2661 	}
2662 
2663 	ret = check_index_header(&root->ihdr,
2664 				 le32_to_cpu(attr->res.data_size) -
2665 					 offsetof(struct INDEX_ROOT, ihdr));
2666 	return ret;
2667 }
2668 
2669 static inline bool check_attr(const struct MFT_REC *rec,
2670 			      const struct ATTRIB *attr,
2671 			      struct ntfs_sb_info *sbi)
2672 {
2673 	u32 asize = le32_to_cpu(attr->size);
2674 	u32 rsize = 0;
2675 	u64 dsize, svcn, evcn;
2676 	u16 run_off;
2677 
2678 	/* Check the fixed part of the attribute record header. */
2679 	if (asize >= sbi->record_size ||
2680 	    asize + PtrOffset(rec, attr) >= sbi->record_size ||
2681 	    (attr->name_len &&
2682 	     le16_to_cpu(attr->name_off) + attr->name_len * sizeof(short) >
2683 		     asize)) {
2684 		return false;
2685 	}
2686 
2687 	/* Check the attribute fields. */
2688 	switch (attr->non_res) {
2689 	case 0:
2690 		rsize = le32_to_cpu(attr->res.data_size);
2691 		if (rsize >= asize ||
2692 		    le16_to_cpu(attr->res.data_off) + rsize > asize) {
2693 			return false;
2694 		}
2695 		break;
2696 
2697 	case 1:
2698 		dsize = le64_to_cpu(attr->nres.data_size);
2699 		svcn = le64_to_cpu(attr->nres.svcn);
2700 		evcn = le64_to_cpu(attr->nres.evcn);
2701 		run_off = le16_to_cpu(attr->nres.run_off);
2702 
2703 		if (svcn > evcn + 1 || run_off >= asize ||
2704 		    le64_to_cpu(attr->nres.valid_size) > dsize ||
2705 		    dsize > le64_to_cpu(attr->nres.alloc_size)) {
2706 			return false;
2707 		}
2708 
2709 		if (run_off > asize)
2710 			return false;
2711 
2712 		if (run_unpack(NULL, sbi, 0, svcn, evcn, svcn,
2713 			       Add2Ptr(attr, run_off), asize - run_off) < 0) {
2714 			return false;
2715 		}
2716 
2717 		return true;
2718 
2719 	default:
2720 		return false;
2721 	}
2722 
2723 	switch (attr->type) {
2724 	case ATTR_NAME:
2725 		if (fname_full_size(Add2Ptr(
2726 			    attr, le16_to_cpu(attr->res.data_off))) > asize) {
2727 			return false;
2728 		}
2729 		break;
2730 
2731 	case ATTR_ROOT:
2732 		return check_index_root(attr, sbi);
2733 
2734 	case ATTR_STD:
2735 		if (rsize < sizeof(struct ATTR_STD_INFO5) &&
2736 		    rsize != sizeof(struct ATTR_STD_INFO)) {
2737 			return false;
2738 		}
2739 		break;
2740 
2741 	case ATTR_LIST:
2742 	case ATTR_ID:
2743 	case ATTR_SECURE:
2744 	case ATTR_LABEL:
2745 	case ATTR_VOL_INFO:
2746 	case ATTR_DATA:
2747 	case ATTR_ALLOC:
2748 	case ATTR_BITMAP:
2749 	case ATTR_REPARSE:
2750 	case ATTR_EA_INFO:
2751 	case ATTR_EA:
2752 	case ATTR_PROPERTYSET:
2753 	case ATTR_LOGGED_UTILITY_STREAM:
2754 		break;
2755 
2756 	default:
2757 		return false;
2758 	}
2759 
2760 	return true;
2761 }
2762 
2763 static inline bool check_file_record(const struct MFT_REC *rec,
2764 				     const struct MFT_REC *rec2,
2765 				     struct ntfs_sb_info *sbi)
2766 {
2767 	const struct ATTRIB *attr;
2768 	u16 fo = le16_to_cpu(rec->rhdr.fix_off);
2769 	u16 fn = le16_to_cpu(rec->rhdr.fix_num);
2770 	u16 ao = le16_to_cpu(rec->attr_off);
2771 	u32 rs = sbi->record_size;
2772 
2773 	/* Check the file record header for consistency. */
2774 	if (rec->rhdr.sign != NTFS_FILE_SIGNATURE ||
2775 	    fo > (SECTOR_SIZE - ((rs >> SECTOR_SHIFT) + 1) * sizeof(short)) ||
2776 	    (fn - 1) * SECTOR_SIZE != rs || ao < MFTRECORD_FIXUP_OFFSET_1 ||
2777 	    ao > sbi->record_size - SIZEOF_RESIDENT || !is_rec_inuse(rec) ||
2778 	    le32_to_cpu(rec->total) != rs) {
2779 		return false;
2780 	}
2781 
2782 	/* Loop to check all of the attributes. */
2783 	for (attr = Add2Ptr(rec, ao); attr->type != ATTR_END;
2784 	     attr = Add2Ptr(attr, le32_to_cpu(attr->size))) {
2785 		if (check_attr(rec, attr, sbi))
2786 			continue;
2787 		return false;
2788 	}
2789 
2790 	return true;
2791 }
2792 
2793 static inline int check_lsn(const struct NTFS_RECORD_HEADER *hdr,
2794 			    const u64 *rlsn)
2795 {
2796 	u64 lsn;
2797 
2798 	if (!rlsn)
2799 		return true;
2800 
2801 	lsn = le64_to_cpu(hdr->lsn);
2802 
2803 	if (hdr->sign == NTFS_HOLE_SIGNATURE)
2804 		return false;
2805 
2806 	if (*rlsn > lsn)
2807 		return true;
2808 
2809 	return false;
2810 }
2811 
2812 static inline bool check_if_attr(const struct MFT_REC *rec,
2813 				 const struct LOG_REC_HDR *lrh)
2814 {
2815 	u16 ro = le16_to_cpu(lrh->record_off);
2816 	u16 o = le16_to_cpu(rec->attr_off);
2817 	const struct ATTRIB *attr = Add2Ptr(rec, o);
2818 
2819 	while (o < ro) {
2820 		u32 asize;
2821 
2822 		if (attr->type == ATTR_END)
2823 			break;
2824 
2825 		asize = le32_to_cpu(attr->size);
2826 		if (!asize)
2827 			break;
2828 
2829 		o += asize;
2830 		attr = Add2Ptr(attr, asize);
2831 	}
2832 
2833 	return o == ro;
2834 }
2835 
2836 static inline bool check_if_index_root(const struct MFT_REC *rec,
2837 				       const struct LOG_REC_HDR *lrh)
2838 {
2839 	u16 ro = le16_to_cpu(lrh->record_off);
2840 	u16 o = le16_to_cpu(rec->attr_off);
2841 	const struct ATTRIB *attr = Add2Ptr(rec, o);
2842 
2843 	while (o < ro) {
2844 		u32 asize;
2845 
2846 		if (attr->type == ATTR_END)
2847 			break;
2848 
2849 		asize = le32_to_cpu(attr->size);
2850 		if (!asize)
2851 			break;
2852 
2853 		o += asize;
2854 		attr = Add2Ptr(attr, asize);
2855 	}
2856 
2857 	return o == ro && attr->type == ATTR_ROOT;
2858 }
2859 
2860 static inline bool check_if_root_index(const struct ATTRIB *attr,
2861 				       const struct INDEX_HDR *hdr,
2862 				       const struct LOG_REC_HDR *lrh)
2863 {
2864 	u16 ao = le16_to_cpu(lrh->attr_off);
2865 	u32 de_off = le32_to_cpu(hdr->de_off);
2866 	u32 o = PtrOffset(attr, hdr) + de_off;
2867 	const struct NTFS_DE *e = Add2Ptr(hdr, de_off);
2868 	u32 asize = le32_to_cpu(attr->size);
2869 
2870 	while (o < ao) {
2871 		u16 esize;
2872 
2873 		if (o >= asize)
2874 			break;
2875 
2876 		esize = le16_to_cpu(e->size);
2877 		if (!esize)
2878 			break;
2879 
2880 		o += esize;
2881 		e = Add2Ptr(e, esize);
2882 	}
2883 
2884 	return o == ao;
2885 }
2886 
2887 static inline bool check_if_alloc_index(const struct INDEX_HDR *hdr,
2888 					u32 attr_off)
2889 {
2890 	u32 de_off = le32_to_cpu(hdr->de_off);
2891 	u32 o = offsetof(struct INDEX_BUFFER, ihdr) + de_off;
2892 	const struct NTFS_DE *e = Add2Ptr(hdr, de_off);
2893 	u32 used = le32_to_cpu(hdr->used);
2894 
2895 	while (o < attr_off) {
2896 		u16 esize;
2897 
2898 		if (de_off >= used)
2899 			break;
2900 
2901 		esize = le16_to_cpu(e->size);
2902 		if (!esize)
2903 			break;
2904 
2905 		o += esize;
2906 		de_off += esize;
2907 		e = Add2Ptr(e, esize);
2908 	}
2909 
2910 	return o == attr_off;
2911 }
2912 
2913 static inline void change_attr_size(struct MFT_REC *rec, struct ATTRIB *attr,
2914 				    u32 nsize)
2915 {
2916 	u32 asize = le32_to_cpu(attr->size);
2917 	int dsize = nsize - asize;
2918 	u8 *next = Add2Ptr(attr, asize);
2919 	u32 used = le32_to_cpu(rec->used);
2920 
2921 	memmove(Add2Ptr(attr, nsize), next, used - PtrOffset(rec, next));
2922 
2923 	rec->used = cpu_to_le32(used + dsize);
2924 	attr->size = cpu_to_le32(nsize);
2925 }
2926 
2927 struct OpenAttr {
2928 	struct ATTRIB *attr;
2929 	struct runs_tree *run1;
2930 	struct runs_tree run0;
2931 	struct ntfs_inode *ni;
2932 	// CLST rno;
2933 };
2934 
2935 /*
2936  * cmp_type_and_name
2937  *
2938  * Return: 0 if 'attr' has the same type and name.
2939  */
2940 static inline int cmp_type_and_name(const struct ATTRIB *a1,
2941 				    const struct ATTRIB *a2)
2942 {
2943 	return a1->type != a2->type || a1->name_len != a2->name_len ||
2944 	       (a1->name_len && memcmp(attr_name(a1), attr_name(a2),
2945 				       a1->name_len * sizeof(short)));
2946 }
2947 
2948 static struct OpenAttr *find_loaded_attr(struct ntfs_log *log,
2949 					 const struct ATTRIB *attr, CLST rno)
2950 {
2951 	struct OPEN_ATTR_ENRTY *oe = NULL;
2952 
2953 	while ((oe = enum_rstbl(log->open_attr_tbl, oe))) {
2954 		struct OpenAttr *op_attr;
2955 
2956 		if (ino_get(&oe->ref) != rno)
2957 			continue;
2958 
2959 		op_attr = (struct OpenAttr *)oe->ptr;
2960 		if (!cmp_type_and_name(op_attr->attr, attr))
2961 			return op_attr;
2962 	}
2963 	return NULL;
2964 }
2965 
2966 static struct ATTRIB *attr_create_nonres_log(struct ntfs_sb_info *sbi,
2967 					     enum ATTR_TYPE type, u64 size,
2968 					     const u16 *name, size_t name_len,
2969 					     __le16 flags)
2970 {
2971 	struct ATTRIB *attr;
2972 	u32 name_size = ALIGN(name_len * sizeof(short), 8);
2973 	bool is_ext = flags & (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED);
2974 	u32 asize = name_size +
2975 		    (is_ext ? SIZEOF_NONRESIDENT_EX : SIZEOF_NONRESIDENT);
2976 
2977 	attr = kzalloc(asize, GFP_NOFS);
2978 	if (!attr)
2979 		return NULL;
2980 
2981 	attr->type = type;
2982 	attr->size = cpu_to_le32(asize);
2983 	attr->flags = flags;
2984 	attr->non_res = 1;
2985 	attr->name_len = name_len;
2986 
2987 	attr->nres.evcn = cpu_to_le64((u64)bytes_to_cluster(sbi, size) - 1);
2988 	attr->nres.alloc_size = cpu_to_le64(ntfs_up_cluster(sbi, size));
2989 	attr->nres.data_size = cpu_to_le64(size);
2990 	attr->nres.valid_size = attr->nres.data_size;
2991 	if (is_ext) {
2992 		attr->name_off = SIZEOF_NONRESIDENT_EX_LE;
2993 		if (is_attr_compressed(attr))
2994 			attr->nres.c_unit = COMPRESSION_UNIT;
2995 
2996 		attr->nres.run_off =
2997 			cpu_to_le16(SIZEOF_NONRESIDENT_EX + name_size);
2998 		memcpy(Add2Ptr(attr, SIZEOF_NONRESIDENT_EX), name,
2999 		       name_len * sizeof(short));
3000 	} else {
3001 		attr->name_off = SIZEOF_NONRESIDENT_LE;
3002 		attr->nres.run_off =
3003 			cpu_to_le16(SIZEOF_NONRESIDENT + name_size);
3004 		memcpy(Add2Ptr(attr, SIZEOF_NONRESIDENT), name,
3005 		       name_len * sizeof(short));
3006 	}
3007 
3008 	return attr;
3009 }
3010 
3011 /*
3012  * do_action - Common routine for the Redo and Undo Passes.
3013  * @rlsn: If it is NULL then undo.
3014  */
3015 static int do_action(struct ntfs_log *log, struct OPEN_ATTR_ENRTY *oe,
3016 		     const struct LOG_REC_HDR *lrh, u32 op, void *data,
3017 		     u32 dlen, u32 rec_len, const u64 *rlsn)
3018 {
3019 	int err = 0;
3020 	struct ntfs_sb_info *sbi = log->ni->mi.sbi;
3021 	struct inode *inode = NULL, *inode_parent;
3022 	struct mft_inode *mi = NULL, *mi2_child = NULL;
3023 	CLST rno = 0, rno_base = 0;
3024 	struct INDEX_BUFFER *ib = NULL;
3025 	struct MFT_REC *rec = NULL;
3026 	struct ATTRIB *attr = NULL, *attr2;
3027 	struct INDEX_HDR *hdr;
3028 	struct INDEX_ROOT *root;
3029 	struct NTFS_DE *e, *e1, *e2;
3030 	struct NEW_ATTRIBUTE_SIZES *new_sz;
3031 	struct ATTR_FILE_NAME *fname;
3032 	struct OpenAttr *oa, *oa2;
3033 	u32 nsize, t32, asize, used, esize, off, bits;
3034 	u16 id, id2;
3035 	u32 record_size = sbi->record_size;
3036 	u64 t64;
3037 	u16 roff = le16_to_cpu(lrh->record_off);
3038 	u16 aoff = le16_to_cpu(lrh->attr_off);
3039 	u64 lco = 0;
3040 	u64 cbo = (u64)le16_to_cpu(lrh->cluster_off) << SECTOR_SHIFT;
3041 	u64 tvo = le64_to_cpu(lrh->target_vcn) << sbi->cluster_bits;
3042 	u64 vbo = cbo + tvo;
3043 	void *buffer_le = NULL;
3044 	u32 bytes = 0;
3045 	bool a_dirty = false;
3046 	u16 data_off;
3047 
3048 	oa = oe->ptr;
3049 
3050 	/* Big switch to prepare. */
3051 	switch (op) {
3052 	/* ============================================================
3053 	 * Process MFT records, as described by the current log record.
3054 	 * ============================================================
3055 	 */
3056 	case InitializeFileRecordSegment:
3057 	case DeallocateFileRecordSegment:
3058 	case WriteEndOfFileRecordSegment:
3059 	case CreateAttribute:
3060 	case DeleteAttribute:
3061 	case UpdateResidentValue:
3062 	case UpdateMappingPairs:
3063 	case SetNewAttributeSizes:
3064 	case AddIndexEntryRoot:
3065 	case DeleteIndexEntryRoot:
3066 	case SetIndexEntryVcnRoot:
3067 	case UpdateFileNameRoot:
3068 	case UpdateRecordDataRoot:
3069 	case ZeroEndOfFileRecord:
3070 		rno = vbo >> sbi->record_bits;
3071 		inode = ilookup(sbi->sb, rno);
3072 		if (inode) {
3073 			mi = &ntfs_i(inode)->mi;
3074 		} else if (op == InitializeFileRecordSegment) {
3075 			mi = kzalloc(sizeof(struct mft_inode), GFP_NOFS);
3076 			if (!mi)
3077 				return -ENOMEM;
3078 			err = mi_format_new(mi, sbi, rno, 0, false);
3079 			if (err)
3080 				goto out;
3081 		} else {
3082 			/* Read from disk. */
3083 			err = mi_get(sbi, rno, &mi);
3084 			if (err)
3085 				return err;
3086 		}
3087 		rec = mi->mrec;
3088 
3089 		if (op == DeallocateFileRecordSegment)
3090 			goto skip_load_parent;
3091 
3092 		if (InitializeFileRecordSegment != op) {
3093 			if (rec->rhdr.sign == NTFS_BAAD_SIGNATURE)
3094 				goto dirty_vol;
3095 			if (!check_lsn(&rec->rhdr, rlsn))
3096 				goto out;
3097 			if (!check_file_record(rec, NULL, sbi))
3098 				goto dirty_vol;
3099 			attr = Add2Ptr(rec, roff);
3100 		}
3101 
3102 		if (is_rec_base(rec) || InitializeFileRecordSegment == op) {
3103 			rno_base = rno;
3104 			goto skip_load_parent;
3105 		}
3106 
3107 		rno_base = ino_get(&rec->parent_ref);
3108 		inode_parent = ntfs_iget5(sbi->sb, &rec->parent_ref, NULL);
3109 		if (IS_ERR(inode_parent))
3110 			goto skip_load_parent;
3111 
3112 		if (is_bad_inode(inode_parent)) {
3113 			iput(inode_parent);
3114 			goto skip_load_parent;
3115 		}
3116 
3117 		if (ni_load_mi_ex(ntfs_i(inode_parent), rno, &mi2_child)) {
3118 			iput(inode_parent);
3119 		} else {
3120 			if (mi2_child->mrec != mi->mrec)
3121 				memcpy(mi2_child->mrec, mi->mrec,
3122 				       sbi->record_size);
3123 
3124 			if (inode)
3125 				iput(inode);
3126 			else if (mi)
3127 				mi_put(mi);
3128 
3129 			inode = inode_parent;
3130 			mi = mi2_child;
3131 			rec = mi2_child->mrec;
3132 			attr = Add2Ptr(rec, roff);
3133 		}
3134 
3135 skip_load_parent:
3136 		inode_parent = NULL;
3137 		break;
3138 
3139 	/*
3140 	 * Process attributes, as described by the current log record.
3141 	 */
3142 	case UpdateNonresidentValue:
3143 	case AddIndexEntryAllocation:
3144 	case DeleteIndexEntryAllocation:
3145 	case WriteEndOfIndexBuffer:
3146 	case SetIndexEntryVcnAllocation:
3147 	case UpdateFileNameAllocation:
3148 	case SetBitsInNonresidentBitMap:
3149 	case ClearBitsInNonresidentBitMap:
3150 	case UpdateRecordDataAllocation:
3151 		attr = oa->attr;
3152 		bytes = UpdateNonresidentValue == op ? dlen : 0;
3153 		lco = (u64)le16_to_cpu(lrh->lcns_follow) << sbi->cluster_bits;
3154 
3155 		if (attr->type == ATTR_ALLOC) {
3156 			t32 = le32_to_cpu(oe->bytes_per_index);
3157 			if (bytes < t32)
3158 				bytes = t32;
3159 		}
3160 
3161 		if (!bytes)
3162 			bytes = lco - cbo;
3163 
3164 		bytes += roff;
3165 		if (attr->type == ATTR_ALLOC)
3166 			bytes = (bytes + 511) & ~511; // align
3167 
3168 		buffer_le = kmalloc(bytes, GFP_NOFS);
3169 		if (!buffer_le)
3170 			return -ENOMEM;
3171 
3172 		err = ntfs_read_run_nb(sbi, oa->run1, vbo, buffer_le, bytes,
3173 				       NULL);
3174 		if (err)
3175 			goto out;
3176 
3177 		if (attr->type == ATTR_ALLOC && *(int *)buffer_le)
3178 			ntfs_fix_post_read(buffer_le, bytes, false);
3179 		break;
3180 
3181 	default:
3182 		WARN_ON(1);
3183 	}
3184 
3185 	/* Big switch to do operation. */
3186 	switch (op) {
3187 	case InitializeFileRecordSegment:
3188 		if (roff + dlen > record_size)
3189 			goto dirty_vol;
3190 
3191 		memcpy(Add2Ptr(rec, roff), data, dlen);
3192 		mi->dirty = true;
3193 		break;
3194 
3195 	case DeallocateFileRecordSegment:
3196 		clear_rec_inuse(rec);
3197 		le16_add_cpu(&rec->seq, 1);
3198 		mi->dirty = true;
3199 		break;
3200 
3201 	case WriteEndOfFileRecordSegment:
3202 		attr2 = (struct ATTRIB *)data;
3203 		if (!check_if_attr(rec, lrh) || roff + dlen > record_size)
3204 			goto dirty_vol;
3205 
3206 		memmove(attr, attr2, dlen);
3207 		rec->used = cpu_to_le32(ALIGN(roff + dlen, 8));
3208 
3209 		mi->dirty = true;
3210 		break;
3211 
3212 	case CreateAttribute:
3213 		attr2 = (struct ATTRIB *)data;
3214 		asize = le32_to_cpu(attr2->size);
3215 		used = le32_to_cpu(rec->used);
3216 
3217 		if (!check_if_attr(rec, lrh) || dlen < SIZEOF_RESIDENT ||
3218 		    !IS_ALIGNED(asize, 8) ||
3219 		    Add2Ptr(attr2, asize) > Add2Ptr(lrh, rec_len) ||
3220 		    dlen > record_size - used) {
3221 			goto dirty_vol;
3222 		}
3223 
3224 		memmove(Add2Ptr(attr, asize), attr, used - roff);
3225 		memcpy(attr, attr2, asize);
3226 
3227 		rec->used = cpu_to_le32(used + asize);
3228 		id = le16_to_cpu(rec->next_attr_id);
3229 		id2 = le16_to_cpu(attr2->id);
3230 		if (id <= id2)
3231 			rec->next_attr_id = cpu_to_le16(id2 + 1);
3232 		if (is_attr_indexed(attr))
3233 			le16_add_cpu(&rec->hard_links, 1);
3234 
3235 		oa2 = find_loaded_attr(log, attr, rno_base);
3236 		if (oa2) {
3237 			void *p2 = kmemdup(attr, le32_to_cpu(attr->size),
3238 					   GFP_NOFS);
3239 			if (p2) {
3240 				// run_close(oa2->run1);
3241 				kfree(oa2->attr);
3242 				oa2->attr = p2;
3243 			}
3244 		}
3245 
3246 		mi->dirty = true;
3247 		break;
3248 
3249 	case DeleteAttribute:
3250 		asize = le32_to_cpu(attr->size);
3251 		used = le32_to_cpu(rec->used);
3252 
3253 		if (!check_if_attr(rec, lrh))
3254 			goto dirty_vol;
3255 
3256 		rec->used = cpu_to_le32(used - asize);
3257 		if (is_attr_indexed(attr))
3258 			le16_add_cpu(&rec->hard_links, -1);
3259 
3260 		memmove(attr, Add2Ptr(attr, asize), used - asize - roff);
3261 
3262 		mi->dirty = true;
3263 		break;
3264 
3265 	case UpdateResidentValue:
3266 		nsize = aoff + dlen;
3267 
3268 		if (!check_if_attr(rec, lrh))
3269 			goto dirty_vol;
3270 
3271 		asize = le32_to_cpu(attr->size);
3272 		used = le32_to_cpu(rec->used);
3273 
3274 		if (lrh->redo_len == lrh->undo_len) {
3275 			if (nsize > asize)
3276 				goto dirty_vol;
3277 			goto move_data;
3278 		}
3279 
3280 		if (nsize > asize && nsize - asize > record_size - used)
3281 			goto dirty_vol;
3282 
3283 		nsize = ALIGN(nsize, 8);
3284 		data_off = le16_to_cpu(attr->res.data_off);
3285 
3286 		if (nsize < asize) {
3287 			memmove(Add2Ptr(attr, aoff), data, dlen);
3288 			data = NULL; // To skip below memmove().
3289 		}
3290 
3291 		memmove(Add2Ptr(attr, nsize), Add2Ptr(attr, asize),
3292 			used - le16_to_cpu(lrh->record_off) - asize);
3293 
3294 		rec->used = cpu_to_le32(used + nsize - asize);
3295 		attr->size = cpu_to_le32(nsize);
3296 		attr->res.data_size = cpu_to_le32(aoff + dlen - data_off);
3297 
3298 move_data:
3299 		if (data)
3300 			memmove(Add2Ptr(attr, aoff), data, dlen);
3301 
3302 		oa2 = find_loaded_attr(log, attr, rno_base);
3303 		if (oa2) {
3304 			void *p2 = kmemdup(attr, le32_to_cpu(attr->size),
3305 					   GFP_NOFS);
3306 			if (p2) {
3307 				// run_close(&oa2->run0);
3308 				oa2->run1 = &oa2->run0;
3309 				kfree(oa2->attr);
3310 				oa2->attr = p2;
3311 			}
3312 		}
3313 
3314 		mi->dirty = true;
3315 		break;
3316 
3317 	case UpdateMappingPairs:
3318 		nsize = aoff + dlen;
3319 		asize = le32_to_cpu(attr->size);
3320 		used = le32_to_cpu(rec->used);
3321 
3322 		if (!check_if_attr(rec, lrh) || !attr->non_res ||
3323 		    aoff < le16_to_cpu(attr->nres.run_off) || aoff > asize ||
3324 		    (nsize > asize && nsize - asize > record_size - used)) {
3325 			goto dirty_vol;
3326 		}
3327 
3328 		nsize = ALIGN(nsize, 8);
3329 
3330 		memmove(Add2Ptr(attr, nsize), Add2Ptr(attr, asize),
3331 			used - le16_to_cpu(lrh->record_off) - asize);
3332 		rec->used = cpu_to_le32(used + nsize - asize);
3333 		attr->size = cpu_to_le32(nsize);
3334 		memmove(Add2Ptr(attr, aoff), data, dlen);
3335 
3336 		if (run_get_highest_vcn(le64_to_cpu(attr->nres.svcn),
3337 					attr_run(attr), &t64)) {
3338 			goto dirty_vol;
3339 		}
3340 
3341 		attr->nres.evcn = cpu_to_le64(t64);
3342 		oa2 = find_loaded_attr(log, attr, rno_base);
3343 		if (oa2 && oa2->attr->non_res)
3344 			oa2->attr->nres.evcn = attr->nres.evcn;
3345 
3346 		mi->dirty = true;
3347 		break;
3348 
3349 	case SetNewAttributeSizes:
3350 		new_sz = data;
3351 		if (!check_if_attr(rec, lrh) || !attr->non_res)
3352 			goto dirty_vol;
3353 
3354 		attr->nres.alloc_size = new_sz->alloc_size;
3355 		attr->nres.data_size = new_sz->data_size;
3356 		attr->nres.valid_size = new_sz->valid_size;
3357 
3358 		if (dlen >= sizeof(struct NEW_ATTRIBUTE_SIZES))
3359 			attr->nres.total_size = new_sz->total_size;
3360 
3361 		oa2 = find_loaded_attr(log, attr, rno_base);
3362 		if (oa2) {
3363 			void *p2 = kmemdup(attr, le32_to_cpu(attr->size),
3364 					   GFP_NOFS);
3365 			if (p2) {
3366 				kfree(oa2->attr);
3367 				oa2->attr = p2;
3368 			}
3369 		}
3370 		mi->dirty = true;
3371 		break;
3372 
3373 	case AddIndexEntryRoot:
3374 		e = (struct NTFS_DE *)data;
3375 		esize = le16_to_cpu(e->size);
3376 		root = resident_data(attr);
3377 		hdr = &root->ihdr;
3378 		used = le32_to_cpu(hdr->used);
3379 
3380 		if (!check_if_index_root(rec, lrh) ||
3381 		    !check_if_root_index(attr, hdr, lrh) ||
3382 		    Add2Ptr(data, esize) > Add2Ptr(lrh, rec_len) ||
3383 		    esize > le32_to_cpu(rec->total) - le32_to_cpu(rec->used)) {
3384 			goto dirty_vol;
3385 		}
3386 
3387 		e1 = Add2Ptr(attr, le16_to_cpu(lrh->attr_off));
3388 
3389 		change_attr_size(rec, attr, le32_to_cpu(attr->size) + esize);
3390 
3391 		memmove(Add2Ptr(e1, esize), e1,
3392 			PtrOffset(e1, Add2Ptr(hdr, used)));
3393 		memmove(e1, e, esize);
3394 
3395 		le32_add_cpu(&attr->res.data_size, esize);
3396 		hdr->used = cpu_to_le32(used + esize);
3397 		le32_add_cpu(&hdr->total, esize);
3398 
3399 		mi->dirty = true;
3400 		break;
3401 
3402 	case DeleteIndexEntryRoot:
3403 		root = resident_data(attr);
3404 		hdr = &root->ihdr;
3405 		used = le32_to_cpu(hdr->used);
3406 
3407 		if (!check_if_index_root(rec, lrh) ||
3408 		    !check_if_root_index(attr, hdr, lrh)) {
3409 			goto dirty_vol;
3410 		}
3411 
3412 		e1 = Add2Ptr(attr, le16_to_cpu(lrh->attr_off));
3413 		esize = le16_to_cpu(e1->size);
3414 		e2 = Add2Ptr(e1, esize);
3415 
3416 		memmove(e1, e2, PtrOffset(e2, Add2Ptr(hdr, used)));
3417 
3418 		le32_sub_cpu(&attr->res.data_size, esize);
3419 		hdr->used = cpu_to_le32(used - esize);
3420 		le32_sub_cpu(&hdr->total, esize);
3421 
3422 		change_attr_size(rec, attr, le32_to_cpu(attr->size) - esize);
3423 
3424 		mi->dirty = true;
3425 		break;
3426 
3427 	case SetIndexEntryVcnRoot:
3428 		root = resident_data(attr);
3429 		hdr = &root->ihdr;
3430 
3431 		if (!check_if_index_root(rec, lrh) ||
3432 		    !check_if_root_index(attr, hdr, lrh)) {
3433 			goto dirty_vol;
3434 		}
3435 
3436 		e = Add2Ptr(attr, le16_to_cpu(lrh->attr_off));
3437 
3438 		de_set_vbn_le(e, *(__le64 *)data);
3439 		mi->dirty = true;
3440 		break;
3441 
3442 	case UpdateFileNameRoot:
3443 		root = resident_data(attr);
3444 		hdr = &root->ihdr;
3445 
3446 		if (!check_if_index_root(rec, lrh) ||
3447 		    !check_if_root_index(attr, hdr, lrh)) {
3448 			goto dirty_vol;
3449 		}
3450 
3451 		e = Add2Ptr(attr, le16_to_cpu(lrh->attr_off));
3452 		fname = (struct ATTR_FILE_NAME *)(e + 1);
3453 		memmove(&fname->dup, data, sizeof(fname->dup)); //
3454 		mi->dirty = true;
3455 		break;
3456 
3457 	case UpdateRecordDataRoot:
3458 		root = resident_data(attr);
3459 		hdr = &root->ihdr;
3460 
3461 		if (!check_if_index_root(rec, lrh) ||
3462 		    !check_if_root_index(attr, hdr, lrh)) {
3463 			goto dirty_vol;
3464 		}
3465 
3466 		e = Add2Ptr(attr, le16_to_cpu(lrh->attr_off));
3467 
3468 		memmove(Add2Ptr(e, le16_to_cpu(e->view.data_off)), data, dlen);
3469 
3470 		mi->dirty = true;
3471 		break;
3472 
3473 	case ZeroEndOfFileRecord:
3474 		if (roff + dlen > record_size)
3475 			goto dirty_vol;
3476 
3477 		memset(attr, 0, dlen);
3478 		mi->dirty = true;
3479 		break;
3480 
3481 	case UpdateNonresidentValue:
3482 		if (lco < cbo + roff + dlen)
3483 			goto dirty_vol;
3484 
3485 		memcpy(Add2Ptr(buffer_le, roff), data, dlen);
3486 
3487 		a_dirty = true;
3488 		if (attr->type == ATTR_ALLOC)
3489 			ntfs_fix_pre_write(buffer_le, bytes);
3490 		break;
3491 
3492 	case AddIndexEntryAllocation:
3493 		ib = Add2Ptr(buffer_le, roff);
3494 		hdr = &ib->ihdr;
3495 		e = data;
3496 		esize = le16_to_cpu(e->size);
3497 		e1 = Add2Ptr(ib, aoff);
3498 
3499 		if (is_baad(&ib->rhdr))
3500 			goto dirty_vol;
3501 		if (!check_lsn(&ib->rhdr, rlsn))
3502 			goto out;
3503 
3504 		used = le32_to_cpu(hdr->used);
3505 
3506 		if (!check_index_buffer(ib, bytes) ||
3507 		    !check_if_alloc_index(hdr, aoff) ||
3508 		    Add2Ptr(e, esize) > Add2Ptr(lrh, rec_len) ||
3509 		    used + esize > le32_to_cpu(hdr->total)) {
3510 			goto dirty_vol;
3511 		}
3512 
3513 		memmove(Add2Ptr(e1, esize), e1,
3514 			PtrOffset(e1, Add2Ptr(hdr, used)));
3515 		memcpy(e1, e, esize);
3516 
3517 		hdr->used = cpu_to_le32(used + esize);
3518 
3519 		a_dirty = true;
3520 
3521 		ntfs_fix_pre_write(&ib->rhdr, bytes);
3522 		break;
3523 
3524 	case DeleteIndexEntryAllocation:
3525 		ib = Add2Ptr(buffer_le, roff);
3526 		hdr = &ib->ihdr;
3527 		e = Add2Ptr(ib, aoff);
3528 		esize = le16_to_cpu(e->size);
3529 
3530 		if (is_baad(&ib->rhdr))
3531 			goto dirty_vol;
3532 		if (!check_lsn(&ib->rhdr, rlsn))
3533 			goto out;
3534 
3535 		if (!check_index_buffer(ib, bytes) ||
3536 		    !check_if_alloc_index(hdr, aoff)) {
3537 			goto dirty_vol;
3538 		}
3539 
3540 		e1 = Add2Ptr(e, esize);
3541 		nsize = esize;
3542 		used = le32_to_cpu(hdr->used);
3543 
3544 		memmove(e, e1, PtrOffset(e1, Add2Ptr(hdr, used)));
3545 
3546 		hdr->used = cpu_to_le32(used - nsize);
3547 
3548 		a_dirty = true;
3549 
3550 		ntfs_fix_pre_write(&ib->rhdr, bytes);
3551 		break;
3552 
3553 	case WriteEndOfIndexBuffer:
3554 		ib = Add2Ptr(buffer_le, roff);
3555 		hdr = &ib->ihdr;
3556 		e = Add2Ptr(ib, aoff);
3557 
3558 		if (is_baad(&ib->rhdr))
3559 			goto dirty_vol;
3560 		if (!check_lsn(&ib->rhdr, rlsn))
3561 			goto out;
3562 		if (!check_index_buffer(ib, bytes) ||
3563 		    !check_if_alloc_index(hdr, aoff) ||
3564 		    aoff + dlen > offsetof(struct INDEX_BUFFER, ihdr) +
3565 					  le32_to_cpu(hdr->total)) {
3566 			goto dirty_vol;
3567 		}
3568 
3569 		hdr->used = cpu_to_le32(dlen + PtrOffset(hdr, e));
3570 		memmove(e, data, dlen);
3571 
3572 		a_dirty = true;
3573 		ntfs_fix_pre_write(&ib->rhdr, bytes);
3574 		break;
3575 
3576 	case SetIndexEntryVcnAllocation:
3577 		ib = Add2Ptr(buffer_le, roff);
3578 		hdr = &ib->ihdr;
3579 		e = Add2Ptr(ib, aoff);
3580 
3581 		if (is_baad(&ib->rhdr))
3582 			goto dirty_vol;
3583 
3584 		if (!check_lsn(&ib->rhdr, rlsn))
3585 			goto out;
3586 		if (!check_index_buffer(ib, bytes) ||
3587 		    !check_if_alloc_index(hdr, aoff)) {
3588 			goto dirty_vol;
3589 		}
3590 
3591 		de_set_vbn_le(e, *(__le64 *)data);
3592 
3593 		a_dirty = true;
3594 		ntfs_fix_pre_write(&ib->rhdr, bytes);
3595 		break;
3596 
3597 	case UpdateFileNameAllocation:
3598 		ib = Add2Ptr(buffer_le, roff);
3599 		hdr = &ib->ihdr;
3600 		e = Add2Ptr(ib, aoff);
3601 
3602 		if (is_baad(&ib->rhdr))
3603 			goto dirty_vol;
3604 
3605 		if (!check_lsn(&ib->rhdr, rlsn))
3606 			goto out;
3607 		if (!check_index_buffer(ib, bytes) ||
3608 		    !check_if_alloc_index(hdr, aoff)) {
3609 			goto dirty_vol;
3610 		}
3611 
3612 		fname = (struct ATTR_FILE_NAME *)(e + 1);
3613 		memmove(&fname->dup, data, sizeof(fname->dup));
3614 
3615 		a_dirty = true;
3616 		ntfs_fix_pre_write(&ib->rhdr, bytes);
3617 		break;
3618 
3619 	case SetBitsInNonresidentBitMap:
3620 		off = le32_to_cpu(((struct BITMAP_RANGE *)data)->bitmap_off);
3621 		bits = le32_to_cpu(((struct BITMAP_RANGE *)data)->bits);
3622 
3623 		if (cbo + (off + 7) / 8 > lco ||
3624 		    cbo + ((off + bits + 7) / 8) > lco) {
3625 			goto dirty_vol;
3626 		}
3627 
3628 		ntfs_bitmap_set_le(Add2Ptr(buffer_le, roff), off, bits);
3629 		a_dirty = true;
3630 		break;
3631 
3632 	case ClearBitsInNonresidentBitMap:
3633 		off = le32_to_cpu(((struct BITMAP_RANGE *)data)->bitmap_off);
3634 		bits = le32_to_cpu(((struct BITMAP_RANGE *)data)->bits);
3635 
3636 		if (cbo + (off + 7) / 8 > lco ||
3637 		    cbo + ((off + bits + 7) / 8) > lco) {
3638 			goto dirty_vol;
3639 		}
3640 
3641 		ntfs_bitmap_clear_le(Add2Ptr(buffer_le, roff), off, bits);
3642 		a_dirty = true;
3643 		break;
3644 
3645 	case UpdateRecordDataAllocation:
3646 		ib = Add2Ptr(buffer_le, roff);
3647 		hdr = &ib->ihdr;
3648 		e = Add2Ptr(ib, aoff);
3649 
3650 		if (is_baad(&ib->rhdr))
3651 			goto dirty_vol;
3652 
3653 		if (!check_lsn(&ib->rhdr, rlsn))
3654 			goto out;
3655 		if (!check_index_buffer(ib, bytes) ||
3656 		    !check_if_alloc_index(hdr, aoff)) {
3657 			goto dirty_vol;
3658 		}
3659 
3660 		memmove(Add2Ptr(e, le16_to_cpu(e->view.data_off)), data, dlen);
3661 
3662 		a_dirty = true;
3663 		ntfs_fix_pre_write(&ib->rhdr, bytes);
3664 		break;
3665 
3666 	default:
3667 		WARN_ON(1);
3668 	}
3669 
3670 	if (rlsn) {
3671 		__le64 t64 = cpu_to_le64(*rlsn);
3672 
3673 		if (rec)
3674 			rec->rhdr.lsn = t64;
3675 		if (ib)
3676 			ib->rhdr.lsn = t64;
3677 	}
3678 
3679 	if (mi && mi->dirty) {
3680 		err = mi_write(mi, 0);
3681 		if (err)
3682 			goto out;
3683 	}
3684 
3685 	if (a_dirty) {
3686 		attr = oa->attr;
3687 		err = ntfs_sb_write_run(sbi, oa->run1, vbo, buffer_le, bytes,
3688 					0);
3689 		if (err)
3690 			goto out;
3691 	}
3692 
3693 out:
3694 
3695 	if (inode)
3696 		iput(inode);
3697 	else if (mi != mi2_child)
3698 		mi_put(mi);
3699 
3700 	kfree(buffer_le);
3701 
3702 	return err;
3703 
3704 dirty_vol:
3705 	log->set_dirty = true;
3706 	goto out;
3707 }
3708 
3709 /*
3710  * log_replay - Replays log and empties it.
3711  *
3712  * This function is called during mount operation.
3713  * It replays log and empties it.
3714  * Initialized is set false if logfile contains '-1'.
3715  */
3716 int log_replay(struct ntfs_inode *ni, bool *initialized)
3717 {
3718 	int err;
3719 	struct ntfs_sb_info *sbi = ni->mi.sbi;
3720 	struct ntfs_log *log;
3721 
3722 	u64 rec_lsn, checkpt_lsn = 0, rlsn = 0;
3723 	struct ATTR_NAME_ENTRY *attr_names = NULL;
3724 	struct RESTART_TABLE *dptbl = NULL;
3725 	struct RESTART_TABLE *trtbl = NULL;
3726 	const struct RESTART_TABLE *rt;
3727 	struct RESTART_TABLE *oatbl = NULL;
3728 	struct inode *inode;
3729 	struct OpenAttr *oa;
3730 	struct ntfs_inode *ni_oe;
3731 	struct ATTRIB *attr = NULL;
3732 	u64 size, vcn, undo_next_lsn;
3733 	CLST rno, lcn, lcn0, len0, clen;
3734 	void *data;
3735 	struct NTFS_RESTART *rst = NULL;
3736 	struct lcb *lcb = NULL;
3737 	struct OPEN_ATTR_ENRTY *oe;
3738 	struct TRANSACTION_ENTRY *tr;
3739 	struct DIR_PAGE_ENTRY *dp;
3740 	u32 i, bytes_per_attr_entry;
3741 	u32 vbo, tail, off, dlen;
3742 	u32 saved_len, rec_len, transact_id;
3743 	bool use_second_page;
3744 	struct RESTART_AREA *ra2, *ra = NULL;
3745 	struct CLIENT_REC *ca, *cr;
3746 	__le16 client;
3747 	struct RESTART_HDR *rh;
3748 	const struct LFS_RECORD_HDR *frh;
3749 	const struct LOG_REC_HDR *lrh;
3750 	bool is_mapped;
3751 	bool is_ro = sb_rdonly(sbi->sb);
3752 	u64 t64;
3753 	u16 t16;
3754 	u32 t32;
3755 
3756 	log = kzalloc(sizeof(struct ntfs_log), GFP_NOFS);
3757 	if (!log)
3758 		return -ENOMEM;
3759 
3760 	log->ni = ni;
3761 	log->l_size = log->orig_file_size = ni->vfs_inode.i_size;
3762 
3763 	/* Get the size of page. NOTE: To replay we can use default page. */
3764 #if PAGE_SIZE >= DefaultLogPageSize && PAGE_SIZE <= DefaultLogPageSize * 2
3765 	log->page_size = norm_file_page(PAGE_SIZE, &log->l_size, true);
3766 #else
3767 	log->page_size = norm_file_page(PAGE_SIZE, &log->l_size, false);
3768 #endif
3769 	if (!log->page_size) {
3770 		err = -EINVAL;
3771 		goto out;
3772 	}
3773 
3774 	log->one_page_buf = kmalloc(log->page_size, GFP_NOFS);
3775 	if (!log->one_page_buf) {
3776 		err = -ENOMEM;
3777 		goto out;
3778 	}
3779 
3780 	log->page_mask = log->page_size - 1;
3781 	log->page_bits = blksize_bits(log->page_size);
3782 
3783 	/* Look for a restart area on the disk. */
3784 	err = log_read_rst(log, true, &log->rst_info);
3785 	if (err)
3786 		goto out;
3787 
3788 	/* remember 'initialized' */
3789 	*initialized = log->rst_info.initialized;
3790 
3791 	if (!log->rst_info.restart) {
3792 		if (log->rst_info.initialized) {
3793 			/* No restart area but the file is not initialized. */
3794 			err = -EINVAL;
3795 			goto out;
3796 		}
3797 
3798 		log_init_pg_hdr(log, 1, 1);
3799 		log_create(log, 0, get_random_u32(), false, false);
3800 
3801 		ra = log_create_ra(log);
3802 		if (!ra) {
3803 			err = -ENOMEM;
3804 			goto out;
3805 		}
3806 		log->ra = ra;
3807 		log->init_ra = true;
3808 
3809 		goto process_log;
3810 	}
3811 
3812 	/*
3813 	 * If the restart offset above wasn't zero then we won't
3814 	 * look for a second restart.
3815 	 */
3816 	if (log->rst_info.vbo)
3817 		goto check_restart_area;
3818 
3819 	err = log_read_rst(log, false, &log->rst_info2);
3820 	if (err)
3821 		goto out;
3822 
3823 	/* Determine which restart area to use. */
3824 	if (!log->rst_info2.restart ||
3825 	    log->rst_info2.last_lsn <= log->rst_info.last_lsn)
3826 		goto use_first_page;
3827 
3828 	use_second_page = true;
3829 
3830 	if (log->rst_info.chkdsk_was_run &&
3831 	    log->page_size != log->rst_info.vbo) {
3832 		struct RECORD_PAGE_HDR *sp = NULL;
3833 		bool usa_error;
3834 
3835 		if (!read_log_page(log, log->page_size, &sp, &usa_error) &&
3836 		    sp->rhdr.sign == NTFS_CHKD_SIGNATURE) {
3837 			use_second_page = false;
3838 		}
3839 		kfree(sp);
3840 	}
3841 
3842 	if (use_second_page) {
3843 		kfree(log->rst_info.r_page);
3844 		memcpy(&log->rst_info, &log->rst_info2,
3845 		       sizeof(struct restart_info));
3846 		log->rst_info2.r_page = NULL;
3847 	}
3848 
3849 use_first_page:
3850 	kfree(log->rst_info2.r_page);
3851 
3852 check_restart_area:
3853 	/*
3854 	 * If the restart area is at offset 0, we want
3855 	 * to write the second restart area first.
3856 	 */
3857 	log->init_ra = !!log->rst_info.vbo;
3858 
3859 	/* If we have a valid page then grab a pointer to the restart area. */
3860 	ra2 = log->rst_info.valid_page ?
3861 		      Add2Ptr(log->rst_info.r_page,
3862 			      le16_to_cpu(log->rst_info.r_page->ra_off)) :
3863 		      NULL;
3864 
3865 	if (log->rst_info.chkdsk_was_run ||
3866 	    (ra2 && ra2->client_idx[1] == LFS_NO_CLIENT_LE)) {
3867 		bool wrapped = false;
3868 		bool use_multi_page = false;
3869 		u32 open_log_count;
3870 
3871 		/* Do some checks based on whether we have a valid log page. */
3872 		open_log_count = log->rst_info.valid_page ?
3873 					 le32_to_cpu(ra2->open_log_count) :
3874 					 get_random_u32();
3875 
3876 		log_init_pg_hdr(log, 1, 1);
3877 
3878 		log_create(log, log->rst_info.last_lsn, open_log_count, wrapped,
3879 			   use_multi_page);
3880 
3881 		ra = log_create_ra(log);
3882 		if (!ra) {
3883 			err = -ENOMEM;
3884 			goto out;
3885 		}
3886 		log->ra = ra;
3887 
3888 		/* Put the restart areas and initialize
3889 		 * the log file as required.
3890 		 */
3891 		goto process_log;
3892 	}
3893 
3894 	if (!ra2) {
3895 		err = -EINVAL;
3896 		goto out;
3897 	}
3898 
3899 	/*
3900 	 * If the log page or the system page sizes have changed, we can't
3901 	 * use the log file. We must use the system page size instead of the
3902 	 * default size if there is not a clean shutdown.
3903 	 */
3904 	t32 = le32_to_cpu(log->rst_info.r_page->sys_page_size);
3905 	if (log->page_size != t32) {
3906 		log->l_size = log->orig_file_size;
3907 		log->page_size = norm_file_page(t32, &log->l_size,
3908 						t32 == DefaultLogPageSize);
3909 	}
3910 
3911 	if (log->page_size != t32 ||
3912 	    log->page_size != le32_to_cpu(log->rst_info.r_page->page_size)) {
3913 		err = -EINVAL;
3914 		goto out;
3915 	}
3916 
3917 	/* If the file size has shrunk then we won't mount it. */
3918 	if (log->l_size < le64_to_cpu(ra2->l_size)) {
3919 		err = -EINVAL;
3920 		goto out;
3921 	}
3922 
3923 	log_init_pg_hdr(log, le16_to_cpu(log->rst_info.r_page->major_ver),
3924 			le16_to_cpu(log->rst_info.r_page->minor_ver));
3925 
3926 	log->l_size = le64_to_cpu(ra2->l_size);
3927 	log->seq_num_bits = le32_to_cpu(ra2->seq_num_bits);
3928 	log->file_data_bits = sizeof(u64) * 8 - log->seq_num_bits;
3929 	log->seq_num_mask = (8 << log->file_data_bits) - 1;
3930 	log->last_lsn = le64_to_cpu(ra2->current_lsn);
3931 	log->seq_num = log->last_lsn >> log->file_data_bits;
3932 	log->ra_off = le16_to_cpu(log->rst_info.r_page->ra_off);
3933 	log->restart_size = log->sys_page_size - log->ra_off;
3934 	log->record_header_len = le16_to_cpu(ra2->rec_hdr_len);
3935 	log->ra_size = le16_to_cpu(ra2->ra_len);
3936 	log->data_off = le16_to_cpu(ra2->data_off);
3937 	log->data_size = log->page_size - log->data_off;
3938 	log->reserved = log->data_size - log->record_header_len;
3939 
3940 	vbo = lsn_to_vbo(log, log->last_lsn);
3941 
3942 	if (vbo < log->first_page) {
3943 		/* This is a pseudo lsn. */
3944 		log->l_flags |= NTFSLOG_NO_LAST_LSN;
3945 		log->next_page = log->first_page;
3946 		goto find_oldest;
3947 	}
3948 
3949 	/* Find the end of this log record. */
3950 	off = final_log_off(log, log->last_lsn,
3951 			    le32_to_cpu(ra2->last_lsn_data_len));
3952 
3953 	/* If we wrapped the file then increment the sequence number. */
3954 	if (off <= vbo) {
3955 		log->seq_num += 1;
3956 		log->l_flags |= NTFSLOG_WRAPPED;
3957 	}
3958 
3959 	/* Now compute the next log page to use. */
3960 	vbo &= ~log->sys_page_mask;
3961 	tail = log->page_size - (off & log->page_mask) - 1;
3962 
3963 	/*
3964 	 *If we can fit another log record on the page,
3965 	 * move back a page the log file.
3966 	 */
3967 	if (tail >= log->record_header_len) {
3968 		log->l_flags |= NTFSLOG_REUSE_TAIL;
3969 		log->next_page = vbo;
3970 	} else {
3971 		log->next_page = next_page_off(log, vbo);
3972 	}
3973 
3974 find_oldest:
3975 	/*
3976 	 * Find the oldest client lsn. Use the last
3977 	 * flushed lsn as a starting point.
3978 	 */
3979 	log->oldest_lsn = log->last_lsn;
3980 	oldest_client_lsn(Add2Ptr(ra2, le16_to_cpu(ra2->client_off)),
3981 			  ra2->client_idx[1], &log->oldest_lsn);
3982 	log->oldest_lsn_off = lsn_to_vbo(log, log->oldest_lsn);
3983 
3984 	if (log->oldest_lsn_off < log->first_page)
3985 		log->l_flags |= NTFSLOG_NO_OLDEST_LSN;
3986 
3987 	if (!(ra2->flags & RESTART_SINGLE_PAGE_IO))
3988 		log->l_flags |= NTFSLOG_WRAPPED | NTFSLOG_MULTIPLE_PAGE_IO;
3989 
3990 	log->current_openlog_count = le32_to_cpu(ra2->open_log_count);
3991 	log->total_avail_pages = log->l_size - log->first_page;
3992 	log->total_avail = log->total_avail_pages >> log->page_bits;
3993 	log->max_current_avail = log->total_avail * log->reserved;
3994 	log->total_avail = log->total_avail * log->data_size;
3995 
3996 	log->current_avail = current_log_avail(log);
3997 
3998 	ra = kzalloc(log->restart_size, GFP_NOFS);
3999 	if (!ra) {
4000 		err = -ENOMEM;
4001 		goto out;
4002 	}
4003 	log->ra = ra;
4004 
4005 	t16 = le16_to_cpu(ra2->client_off);
4006 	if (t16 == offsetof(struct RESTART_AREA, clients)) {
4007 		memcpy(ra, ra2, log->ra_size);
4008 	} else {
4009 		memcpy(ra, ra2, offsetof(struct RESTART_AREA, clients));
4010 		memcpy(ra->clients, Add2Ptr(ra2, t16),
4011 		       le16_to_cpu(ra2->ra_len) - t16);
4012 
4013 		log->current_openlog_count = get_random_u32();
4014 		ra->open_log_count = cpu_to_le32(log->current_openlog_count);
4015 		log->ra_size = offsetof(struct RESTART_AREA, clients) +
4016 			       sizeof(struct CLIENT_REC);
4017 		ra->client_off =
4018 			cpu_to_le16(offsetof(struct RESTART_AREA, clients));
4019 		ra->ra_len = cpu_to_le16(log->ra_size);
4020 	}
4021 
4022 	le32_add_cpu(&ra->open_log_count, 1);
4023 
4024 	/* Now we need to walk through looking for the last lsn. */
4025 	err = last_log_lsn(log);
4026 	if (err)
4027 		goto out;
4028 
4029 	log->current_avail = current_log_avail(log);
4030 
4031 	/* Remember which restart area to write first. */
4032 	log->init_ra = log->rst_info.vbo;
4033 
4034 process_log:
4035 	/* 1.0, 1.1, 2.0 log->major_ver/minor_ver - short values. */
4036 	switch ((log->major_ver << 16) + log->minor_ver) {
4037 	case 0x10000:
4038 	case 0x10001:
4039 	case 0x20000:
4040 		break;
4041 	default:
4042 		ntfs_warn(sbi->sb, "\x24LogFile version %d.%d is not supported",
4043 			  log->major_ver, log->minor_ver);
4044 		err = -EOPNOTSUPP;
4045 		log->set_dirty = true;
4046 		goto out;
4047 	}
4048 
4049 	/* One client "NTFS" per logfile. */
4050 	ca = Add2Ptr(ra, le16_to_cpu(ra->client_off));
4051 
4052 	for (client = ra->client_idx[1];; client = cr->next_client) {
4053 		if (client == LFS_NO_CLIENT_LE) {
4054 			/* Insert "NTFS" client LogFile. */
4055 			client = ra->client_idx[0];
4056 			if (client == LFS_NO_CLIENT_LE) {
4057 				err = -EINVAL;
4058 				goto out;
4059 			}
4060 
4061 			t16 = le16_to_cpu(client);
4062 			cr = ca + t16;
4063 
4064 			remove_client(ca, cr, &ra->client_idx[0]);
4065 
4066 			cr->restart_lsn = 0;
4067 			cr->oldest_lsn = cpu_to_le64(log->oldest_lsn);
4068 			cr->name_bytes = cpu_to_le32(8);
4069 			cr->name[0] = cpu_to_le16('N');
4070 			cr->name[1] = cpu_to_le16('T');
4071 			cr->name[2] = cpu_to_le16('F');
4072 			cr->name[3] = cpu_to_le16('S');
4073 
4074 			add_client(ca, t16, &ra->client_idx[1]);
4075 			break;
4076 		}
4077 
4078 		cr = ca + le16_to_cpu(client);
4079 
4080 		if (cpu_to_le32(8) == cr->name_bytes &&
4081 		    cpu_to_le16('N') == cr->name[0] &&
4082 		    cpu_to_le16('T') == cr->name[1] &&
4083 		    cpu_to_le16('F') == cr->name[2] &&
4084 		    cpu_to_le16('S') == cr->name[3])
4085 			break;
4086 	}
4087 
4088 	/* Update the client handle with the client block information. */
4089 	log->client_id.seq_num = cr->seq_num;
4090 	log->client_id.client_idx = client;
4091 
4092 	err = read_rst_area(log, &rst, &checkpt_lsn);
4093 	if (err)
4094 		goto out;
4095 
4096 	if (!rst)
4097 		goto out;
4098 
4099 	bytes_per_attr_entry = !rst->major_ver ? 0x2C : 0x28;
4100 
4101 	if (rst->check_point_start)
4102 		checkpt_lsn = le64_to_cpu(rst->check_point_start);
4103 
4104 	/* Allocate and Read the Transaction Table. */
4105 	if (!rst->transact_table_len)
4106 		goto check_dirty_page_table;
4107 
4108 	t64 = le64_to_cpu(rst->transact_table_lsn);
4109 	err = read_log_rec_lcb(log, t64, lcb_ctx_prev, &lcb);
4110 	if (err)
4111 		goto out;
4112 
4113 	lrh = lcb->log_rec;
4114 	frh = lcb->lrh;
4115 	rec_len = le32_to_cpu(frh->client_data_len);
4116 
4117 	if (!check_log_rec(lrh, rec_len, le32_to_cpu(frh->transact_id),
4118 			   bytes_per_attr_entry)) {
4119 		err = -EINVAL;
4120 		goto out;
4121 	}
4122 
4123 	t16 = le16_to_cpu(lrh->redo_off);
4124 
4125 	rt = Add2Ptr(lrh, t16);
4126 	t32 = rec_len - t16;
4127 
4128 	/* Now check that this is a valid restart table. */
4129 	if (!check_rstbl(rt, t32)) {
4130 		err = -EINVAL;
4131 		goto out;
4132 	}
4133 
4134 	trtbl = kmemdup(rt, t32, GFP_NOFS);
4135 	if (!trtbl) {
4136 		err = -ENOMEM;
4137 		goto out;
4138 	}
4139 
4140 	lcb_put(lcb);
4141 	lcb = NULL;
4142 
4143 check_dirty_page_table:
4144 	/* The next record back should be the Dirty Pages Table. */
4145 	if (!rst->dirty_pages_len)
4146 		goto check_attribute_names;
4147 
4148 	t64 = le64_to_cpu(rst->dirty_pages_table_lsn);
4149 	err = read_log_rec_lcb(log, t64, lcb_ctx_prev, &lcb);
4150 	if (err)
4151 		goto out;
4152 
4153 	lrh = lcb->log_rec;
4154 	frh = lcb->lrh;
4155 	rec_len = le32_to_cpu(frh->client_data_len);
4156 
4157 	if (!check_log_rec(lrh, rec_len, le32_to_cpu(frh->transact_id),
4158 			   bytes_per_attr_entry)) {
4159 		err = -EINVAL;
4160 		goto out;
4161 	}
4162 
4163 	t16 = le16_to_cpu(lrh->redo_off);
4164 
4165 	rt = Add2Ptr(lrh, t16);
4166 	t32 = rec_len - t16;
4167 
4168 	/* Now check that this is a valid restart table. */
4169 	if (!check_rstbl(rt, t32)) {
4170 		err = -EINVAL;
4171 		goto out;
4172 	}
4173 
4174 	dptbl = kmemdup(rt, t32, GFP_NOFS);
4175 	if (!dptbl) {
4176 		err = -ENOMEM;
4177 		goto out;
4178 	}
4179 
4180 	/* Convert Ra version '0' into version '1'. */
4181 	if (rst->major_ver)
4182 		goto end_conv_1;
4183 
4184 	dp = NULL;
4185 	while ((dp = enum_rstbl(dptbl, dp))) {
4186 		struct DIR_PAGE_ENTRY_32 *dp0 = (struct DIR_PAGE_ENTRY_32 *)dp;
4187 		// NOTE: Danger. Check for of boundary.
4188 		memmove(&dp->vcn, &dp0->vcn_low,
4189 			2 * sizeof(u64) +
4190 				le32_to_cpu(dp->lcns_follow) * sizeof(u64));
4191 	}
4192 
4193 end_conv_1:
4194 	lcb_put(lcb);
4195 	lcb = NULL;
4196 
4197 	/*
4198 	 * Go through the table and remove the duplicates,
4199 	 * remembering the oldest lsn values.
4200 	 */
4201 	if (sbi->cluster_size <= log->page_size)
4202 		goto trace_dp_table;
4203 
4204 	dp = NULL;
4205 	while ((dp = enum_rstbl(dptbl, dp))) {
4206 		struct DIR_PAGE_ENTRY *next = dp;
4207 
4208 		while ((next = enum_rstbl(dptbl, next))) {
4209 			if (next->target_attr == dp->target_attr &&
4210 			    next->vcn == dp->vcn) {
4211 				if (le64_to_cpu(next->oldest_lsn) <
4212 				    le64_to_cpu(dp->oldest_lsn)) {
4213 					dp->oldest_lsn = next->oldest_lsn;
4214 				}
4215 
4216 				free_rsttbl_idx(dptbl, PtrOffset(dptbl, next));
4217 			}
4218 		}
4219 	}
4220 trace_dp_table:
4221 check_attribute_names:
4222 	/* The next record should be the Attribute Names. */
4223 	if (!rst->attr_names_len)
4224 		goto check_attr_table;
4225 
4226 	t64 = le64_to_cpu(rst->attr_names_lsn);
4227 	err = read_log_rec_lcb(log, t64, lcb_ctx_prev, &lcb);
4228 	if (err)
4229 		goto out;
4230 
4231 	lrh = lcb->log_rec;
4232 	frh = lcb->lrh;
4233 	rec_len = le32_to_cpu(frh->client_data_len);
4234 
4235 	if (!check_log_rec(lrh, rec_len, le32_to_cpu(frh->transact_id),
4236 			   bytes_per_attr_entry)) {
4237 		err = -EINVAL;
4238 		goto out;
4239 	}
4240 
4241 	t32 = lrh_length(lrh);
4242 	rec_len -= t32;
4243 
4244 	attr_names = kmemdup(Add2Ptr(lrh, t32), rec_len, GFP_NOFS);
4245 	if (!attr_names) {
4246 		err = -ENOMEM;
4247 		goto out;
4248 	}
4249 
4250 	lcb_put(lcb);
4251 	lcb = NULL;
4252 
4253 check_attr_table:
4254 	/* The next record should be the attribute Table. */
4255 	if (!rst->open_attr_len)
4256 		goto check_attribute_names2;
4257 
4258 	t64 = le64_to_cpu(rst->open_attr_table_lsn);
4259 	err = read_log_rec_lcb(log, t64, lcb_ctx_prev, &lcb);
4260 	if (err)
4261 		goto out;
4262 
4263 	lrh = lcb->log_rec;
4264 	frh = lcb->lrh;
4265 	rec_len = le32_to_cpu(frh->client_data_len);
4266 
4267 	if (!check_log_rec(lrh, rec_len, le32_to_cpu(frh->transact_id),
4268 			   bytes_per_attr_entry)) {
4269 		err = -EINVAL;
4270 		goto out;
4271 	}
4272 
4273 	t16 = le16_to_cpu(lrh->redo_off);
4274 
4275 	rt = Add2Ptr(lrh, t16);
4276 	t32 = rec_len - t16;
4277 
4278 	if (!check_rstbl(rt, t32)) {
4279 		err = -EINVAL;
4280 		goto out;
4281 	}
4282 
4283 	oatbl = kmemdup(rt, t32, GFP_NOFS);
4284 	if (!oatbl) {
4285 		err = -ENOMEM;
4286 		goto out;
4287 	}
4288 
4289 	log->open_attr_tbl = oatbl;
4290 
4291 	/* Clear all of the Attr pointers. */
4292 	oe = NULL;
4293 	while ((oe = enum_rstbl(oatbl, oe))) {
4294 		if (!rst->major_ver) {
4295 			struct OPEN_ATTR_ENRTY_32 oe0;
4296 
4297 			/* Really 'oe' points to OPEN_ATTR_ENRTY_32. */
4298 			memcpy(&oe0, oe, SIZEOF_OPENATTRIBUTEENTRY0);
4299 
4300 			oe->bytes_per_index = oe0.bytes_per_index;
4301 			oe->type = oe0.type;
4302 			oe->is_dirty_pages = oe0.is_dirty_pages;
4303 			oe->name_len = 0;
4304 			oe->ref = oe0.ref;
4305 			oe->open_record_lsn = oe0.open_record_lsn;
4306 		}
4307 
4308 		oe->is_attr_name = 0;
4309 		oe->ptr = NULL;
4310 	}
4311 
4312 	lcb_put(lcb);
4313 	lcb = NULL;
4314 
4315 check_attribute_names2:
4316 	if (rst->attr_names_len && oatbl) {
4317 		struct ATTR_NAME_ENTRY *ane = attr_names;
4318 		while (ane->off) {
4319 			/* TODO: Clear table on exit! */
4320 			oe = Add2Ptr(oatbl, le16_to_cpu(ane->off));
4321 			t16 = le16_to_cpu(ane->name_bytes);
4322 			oe->name_len = t16 / sizeof(short);
4323 			oe->ptr = ane->name;
4324 			oe->is_attr_name = 2;
4325 			ane = Add2Ptr(ane,
4326 				      sizeof(struct ATTR_NAME_ENTRY) + t16);
4327 		}
4328 	}
4329 
4330 	/*
4331 	 * If the checkpt_lsn is zero, then this is a freshly
4332 	 * formatted disk and we have no work to do.
4333 	 */
4334 	if (!checkpt_lsn) {
4335 		err = 0;
4336 		goto out;
4337 	}
4338 
4339 	if (!oatbl) {
4340 		oatbl = init_rsttbl(bytes_per_attr_entry, 8);
4341 		if (!oatbl) {
4342 			err = -ENOMEM;
4343 			goto out;
4344 		}
4345 	}
4346 
4347 	log->open_attr_tbl = oatbl;
4348 
4349 	/* Start the analysis pass from the Checkpoint lsn. */
4350 	rec_lsn = checkpt_lsn;
4351 
4352 	/* Read the first lsn. */
4353 	err = read_log_rec_lcb(log, checkpt_lsn, lcb_ctx_next, &lcb);
4354 	if (err)
4355 		goto out;
4356 
4357 	/* Loop to read all subsequent records to the end of the log file. */
4358 next_log_record_analyze:
4359 	err = read_next_log_rec(log, lcb, &rec_lsn);
4360 	if (err)
4361 		goto out;
4362 
4363 	if (!rec_lsn)
4364 		goto end_log_records_enumerate;
4365 
4366 	frh = lcb->lrh;
4367 	transact_id = le32_to_cpu(frh->transact_id);
4368 	rec_len = le32_to_cpu(frh->client_data_len);
4369 	lrh = lcb->log_rec;
4370 
4371 	if (!check_log_rec(lrh, rec_len, transact_id, bytes_per_attr_entry)) {
4372 		err = -EINVAL;
4373 		goto out;
4374 	}
4375 
4376 	/*
4377 	 * The first lsn after the previous lsn remembered
4378 	 * the checkpoint is the first candidate for the rlsn.
4379 	 */
4380 	if (!rlsn)
4381 		rlsn = rec_lsn;
4382 
4383 	if (LfsClientRecord != frh->record_type)
4384 		goto next_log_record_analyze;
4385 
4386 	/*
4387 	 * Now update the Transaction Table for this transaction. If there
4388 	 * is no entry present or it is unallocated we allocate the entry.
4389 	 */
4390 	if (!trtbl) {
4391 		trtbl = init_rsttbl(sizeof(struct TRANSACTION_ENTRY),
4392 				    INITIAL_NUMBER_TRANSACTIONS);
4393 		if (!trtbl) {
4394 			err = -ENOMEM;
4395 			goto out;
4396 		}
4397 	}
4398 
4399 	tr = Add2Ptr(trtbl, transact_id);
4400 
4401 	if (transact_id >= bytes_per_rt(trtbl) ||
4402 	    tr->next != RESTART_ENTRY_ALLOCATED_LE) {
4403 		tr = alloc_rsttbl_from_idx(&trtbl, transact_id);
4404 		if (!tr) {
4405 			err = -ENOMEM;
4406 			goto out;
4407 		}
4408 		tr->transact_state = TransactionActive;
4409 		tr->first_lsn = cpu_to_le64(rec_lsn);
4410 	}
4411 
4412 	tr->prev_lsn = tr->undo_next_lsn = cpu_to_le64(rec_lsn);
4413 
4414 	/*
4415 	 * If this is a compensation log record, then change
4416 	 * the undo_next_lsn to be the undo_next_lsn of this record.
4417 	 */
4418 	if (lrh->undo_op == cpu_to_le16(CompensationLogRecord))
4419 		tr->undo_next_lsn = frh->client_undo_next_lsn;
4420 
4421 	/* Dispatch to handle log record depending on type. */
4422 	switch (le16_to_cpu(lrh->redo_op)) {
4423 	case InitializeFileRecordSegment:
4424 	case DeallocateFileRecordSegment:
4425 	case WriteEndOfFileRecordSegment:
4426 	case CreateAttribute:
4427 	case DeleteAttribute:
4428 	case UpdateResidentValue:
4429 	case UpdateNonresidentValue:
4430 	case UpdateMappingPairs:
4431 	case SetNewAttributeSizes:
4432 	case AddIndexEntryRoot:
4433 	case DeleteIndexEntryRoot:
4434 	case AddIndexEntryAllocation:
4435 	case DeleteIndexEntryAllocation:
4436 	case WriteEndOfIndexBuffer:
4437 	case SetIndexEntryVcnRoot:
4438 	case SetIndexEntryVcnAllocation:
4439 	case UpdateFileNameRoot:
4440 	case UpdateFileNameAllocation:
4441 	case SetBitsInNonresidentBitMap:
4442 	case ClearBitsInNonresidentBitMap:
4443 	case UpdateRecordDataRoot:
4444 	case UpdateRecordDataAllocation:
4445 	case ZeroEndOfFileRecord:
4446 		t16 = le16_to_cpu(lrh->target_attr);
4447 		t64 = le64_to_cpu(lrh->target_vcn);
4448 		dp = find_dp(dptbl, t16, t64);
4449 
4450 		if (dp)
4451 			goto copy_lcns;
4452 
4453 		/*
4454 		 * Calculate the number of clusters per page the system
4455 		 * which wrote the checkpoint, possibly creating the table.
4456 		 */
4457 		if (dptbl) {
4458 			t32 = (le16_to_cpu(dptbl->size) -
4459 			       sizeof(struct DIR_PAGE_ENTRY)) /
4460 			      sizeof(u64);
4461 		} else {
4462 			t32 = log->clst_per_page;
4463 			kfree(dptbl);
4464 			dptbl = init_rsttbl(struct_size(dp, page_lcns, t32),
4465 					    32);
4466 			if (!dptbl) {
4467 				err = -ENOMEM;
4468 				goto out;
4469 			}
4470 		}
4471 
4472 		dp = alloc_rsttbl_idx(&dptbl);
4473 		if (!dp) {
4474 			err = -ENOMEM;
4475 			goto out;
4476 		}
4477 		dp->target_attr = cpu_to_le32(t16);
4478 		dp->transfer_len = cpu_to_le32(t32 << sbi->cluster_bits);
4479 		dp->lcns_follow = cpu_to_le32(t32);
4480 		dp->vcn = cpu_to_le64(t64 & ~((u64)t32 - 1));
4481 		dp->oldest_lsn = cpu_to_le64(rec_lsn);
4482 
4483 copy_lcns:
4484 		/*
4485 		 * Copy the Lcns from the log record into the Dirty Page Entry.
4486 		 * TODO: For different page size support, must somehow make
4487 		 * whole routine a loop, case Lcns do not fit below.
4488 		 */
4489 		t16 = le16_to_cpu(lrh->lcns_follow);
4490 		for (i = 0; i < t16; i++) {
4491 			size_t j = (size_t)(le64_to_cpu(lrh->target_vcn) -
4492 					    le64_to_cpu(dp->vcn));
4493 			dp->page_lcns[j + i] = lrh->page_lcns[i];
4494 		}
4495 
4496 		goto next_log_record_analyze;
4497 
4498 	case DeleteDirtyClusters: {
4499 		u32 range_count =
4500 			le16_to_cpu(lrh->redo_len) / sizeof(struct LCN_RANGE);
4501 		const struct LCN_RANGE *r =
4502 			Add2Ptr(lrh, le16_to_cpu(lrh->redo_off));
4503 
4504 		/* Loop through all of the Lcn ranges this log record. */
4505 		for (i = 0; i < range_count; i++, r++) {
4506 			u64 lcn0 = le64_to_cpu(r->lcn);
4507 			u64 lcn_e = lcn0 + le64_to_cpu(r->len) - 1;
4508 
4509 			dp = NULL;
4510 			while ((dp = enum_rstbl(dptbl, dp))) {
4511 				u32 j;
4512 
4513 				t32 = le32_to_cpu(dp->lcns_follow);
4514 				for (j = 0; j < t32; j++) {
4515 					t64 = le64_to_cpu(dp->page_lcns[j]);
4516 					if (t64 >= lcn0 && t64 <= lcn_e)
4517 						dp->page_lcns[j] = 0;
4518 				}
4519 			}
4520 		}
4521 		goto next_log_record_analyze;
4522 		;
4523 	}
4524 
4525 	case OpenNonresidentAttribute:
4526 		t16 = le16_to_cpu(lrh->target_attr);
4527 		if (t16 >= bytes_per_rt(oatbl)) {
4528 			/*
4529 			 * Compute how big the table needs to be.
4530 			 * Add 10 extra entries for some cushion.
4531 			 */
4532 			u32 new_e = t16 / le16_to_cpu(oatbl->size);
4533 
4534 			new_e += 10 - le16_to_cpu(oatbl->used);
4535 
4536 			oatbl = extend_rsttbl(oatbl, new_e, ~0u);
4537 			log->open_attr_tbl = oatbl;
4538 			if (!oatbl) {
4539 				err = -ENOMEM;
4540 				goto out;
4541 			}
4542 		}
4543 
4544 		/* Point to the entry being opened. */
4545 		oe = alloc_rsttbl_from_idx(&oatbl, t16);
4546 		log->open_attr_tbl = oatbl;
4547 		if (!oe) {
4548 			err = -ENOMEM;
4549 			goto out;
4550 		}
4551 
4552 		/* Initialize this entry from the log record. */
4553 		t16 = le16_to_cpu(lrh->redo_off);
4554 		if (!rst->major_ver) {
4555 			/* Convert version '0' into version '1'. */
4556 			struct OPEN_ATTR_ENRTY_32 *oe0 = Add2Ptr(lrh, t16);
4557 
4558 			oe->bytes_per_index = oe0->bytes_per_index;
4559 			oe->type = oe0->type;
4560 			oe->is_dirty_pages = oe0->is_dirty_pages;
4561 			oe->name_len = 0; //oe0.name_len;
4562 			oe->ref = oe0->ref;
4563 			oe->open_record_lsn = oe0->open_record_lsn;
4564 		} else {
4565 			memcpy(oe, Add2Ptr(lrh, t16), bytes_per_attr_entry);
4566 		}
4567 
4568 		t16 = le16_to_cpu(lrh->undo_len);
4569 		if (t16) {
4570 			oe->ptr = kmalloc(t16, GFP_NOFS);
4571 			if (!oe->ptr) {
4572 				err = -ENOMEM;
4573 				goto out;
4574 			}
4575 			oe->name_len = t16 / sizeof(short);
4576 			memcpy(oe->ptr,
4577 			       Add2Ptr(lrh, le16_to_cpu(lrh->undo_off)), t16);
4578 			oe->is_attr_name = 1;
4579 		} else {
4580 			oe->ptr = NULL;
4581 			oe->is_attr_name = 0;
4582 		}
4583 
4584 		goto next_log_record_analyze;
4585 
4586 	case HotFix:
4587 		t16 = le16_to_cpu(lrh->target_attr);
4588 		t64 = le64_to_cpu(lrh->target_vcn);
4589 		dp = find_dp(dptbl, t16, t64);
4590 		if (dp) {
4591 			size_t j = le64_to_cpu(lrh->target_vcn) -
4592 				   le64_to_cpu(dp->vcn);
4593 			if (dp->page_lcns[j])
4594 				dp->page_lcns[j] = lrh->page_lcns[0];
4595 		}
4596 		goto next_log_record_analyze;
4597 
4598 	case EndTopLevelAction:
4599 		tr = Add2Ptr(trtbl, transact_id);
4600 		tr->prev_lsn = cpu_to_le64(rec_lsn);
4601 		tr->undo_next_lsn = frh->client_undo_next_lsn;
4602 		goto next_log_record_analyze;
4603 
4604 	case PrepareTransaction:
4605 		tr = Add2Ptr(trtbl, transact_id);
4606 		tr->transact_state = TransactionPrepared;
4607 		goto next_log_record_analyze;
4608 
4609 	case CommitTransaction:
4610 		tr = Add2Ptr(trtbl, transact_id);
4611 		tr->transact_state = TransactionCommitted;
4612 		goto next_log_record_analyze;
4613 
4614 	case ForgetTransaction:
4615 		free_rsttbl_idx(trtbl, transact_id);
4616 		goto next_log_record_analyze;
4617 
4618 	case Noop:
4619 	case OpenAttributeTableDump:
4620 	case AttributeNamesDump:
4621 	case DirtyPageTableDump:
4622 	case TransactionTableDump:
4623 		/* The following cases require no action the Analysis Pass. */
4624 		goto next_log_record_analyze;
4625 
4626 	default:
4627 		/*
4628 		 * All codes will be explicitly handled.
4629 		 * If we see a code we do not expect, then we are trouble.
4630 		 */
4631 		goto next_log_record_analyze;
4632 	}
4633 
4634 end_log_records_enumerate:
4635 	lcb_put(lcb);
4636 	lcb = NULL;
4637 
4638 	/*
4639 	 * Scan the Dirty Page Table and Transaction Table for
4640 	 * the lowest lsn, and return it as the Redo lsn.
4641 	 */
4642 	dp = NULL;
4643 	while ((dp = enum_rstbl(dptbl, dp))) {
4644 		t64 = le64_to_cpu(dp->oldest_lsn);
4645 		if (t64 && t64 < rlsn)
4646 			rlsn = t64;
4647 	}
4648 
4649 	tr = NULL;
4650 	while ((tr = enum_rstbl(trtbl, tr))) {
4651 		t64 = le64_to_cpu(tr->first_lsn);
4652 		if (t64 && t64 < rlsn)
4653 			rlsn = t64;
4654 	}
4655 
4656 	/*
4657 	 * Only proceed if the Dirty Page Table or Transaction
4658 	 * table are not empty.
4659 	 */
4660 	if ((!dptbl || !dptbl->total) && (!trtbl || !trtbl->total))
4661 		goto end_reply;
4662 
4663 	sbi->flags |= NTFS_FLAGS_NEED_REPLAY;
4664 	if (is_ro)
4665 		goto out;
4666 
4667 	/* Reopen all of the attributes with dirty pages. */
4668 	oe = NULL;
4669 next_open_attribute:
4670 
4671 	oe = enum_rstbl(oatbl, oe);
4672 	if (!oe) {
4673 		err = 0;
4674 		dp = NULL;
4675 		goto next_dirty_page;
4676 	}
4677 
4678 	oa = kzalloc(sizeof(struct OpenAttr), GFP_NOFS);
4679 	if (!oa) {
4680 		err = -ENOMEM;
4681 		goto out;
4682 	}
4683 
4684 	inode = ntfs_iget5(sbi->sb, &oe->ref, NULL);
4685 	if (IS_ERR(inode))
4686 		goto fake_attr;
4687 
4688 	if (is_bad_inode(inode)) {
4689 		iput(inode);
4690 fake_attr:
4691 		if (oa->ni) {
4692 			iput(&oa->ni->vfs_inode);
4693 			oa->ni = NULL;
4694 		}
4695 
4696 		attr = attr_create_nonres_log(sbi, oe->type, 0, oe->ptr,
4697 					      oe->name_len, 0);
4698 		if (!attr) {
4699 			kfree(oa);
4700 			err = -ENOMEM;
4701 			goto out;
4702 		}
4703 		oa->attr = attr;
4704 		oa->run1 = &oa->run0;
4705 		goto final_oe;
4706 	}
4707 
4708 	ni_oe = ntfs_i(inode);
4709 	oa->ni = ni_oe;
4710 
4711 	attr = ni_find_attr(ni_oe, NULL, NULL, oe->type, oe->ptr, oe->name_len,
4712 			    NULL, NULL);
4713 
4714 	if (!attr)
4715 		goto fake_attr;
4716 
4717 	t32 = le32_to_cpu(attr->size);
4718 	oa->attr = kmemdup(attr, t32, GFP_NOFS);
4719 	if (!oa->attr)
4720 		goto fake_attr;
4721 
4722 	if (!S_ISDIR(inode->i_mode)) {
4723 		if (attr->type == ATTR_DATA && !attr->name_len) {
4724 			oa->run1 = &ni_oe->file.run;
4725 			goto final_oe;
4726 		}
4727 	} else {
4728 		if (attr->type == ATTR_ALLOC &&
4729 		    attr->name_len == ARRAY_SIZE(I30_NAME) &&
4730 		    !memcmp(attr_name(attr), I30_NAME, sizeof(I30_NAME))) {
4731 			oa->run1 = &ni_oe->dir.alloc_run;
4732 			goto final_oe;
4733 		}
4734 	}
4735 
4736 	if (attr->non_res) {
4737 		u16 roff = le16_to_cpu(attr->nres.run_off);
4738 		CLST svcn = le64_to_cpu(attr->nres.svcn);
4739 
4740 		if (roff > t32) {
4741 			kfree(oa->attr);
4742 			oa->attr = NULL;
4743 			goto fake_attr;
4744 		}
4745 
4746 		err = run_unpack(&oa->run0, sbi, inode->i_ino, svcn,
4747 				 le64_to_cpu(attr->nres.evcn), svcn,
4748 				 Add2Ptr(attr, roff), t32 - roff);
4749 		if (err < 0) {
4750 			kfree(oa->attr);
4751 			oa->attr = NULL;
4752 			goto fake_attr;
4753 		}
4754 		err = 0;
4755 	}
4756 	oa->run1 = &oa->run0;
4757 	attr = oa->attr;
4758 
4759 final_oe:
4760 	if (oe->is_attr_name == 1)
4761 		kfree(oe->ptr);
4762 	oe->is_attr_name = 0;
4763 	oe->ptr = oa;
4764 	oe->name_len = attr->name_len;
4765 
4766 	goto next_open_attribute;
4767 
4768 	/*
4769 	 * Now loop through the dirty page table to extract all of the Vcn/Lcn.
4770 	 * Mapping that we have, and insert it into the appropriate run.
4771 	 */
4772 next_dirty_page:
4773 	dp = enum_rstbl(dptbl, dp);
4774 	if (!dp)
4775 		goto do_redo_1;
4776 
4777 	oe = Add2Ptr(oatbl, le32_to_cpu(dp->target_attr));
4778 
4779 	if (oe->next != RESTART_ENTRY_ALLOCATED_LE)
4780 		goto next_dirty_page;
4781 
4782 	oa = oe->ptr;
4783 	if (!oa)
4784 		goto next_dirty_page;
4785 
4786 	i = -1;
4787 next_dirty_page_vcn:
4788 	i += 1;
4789 	if (i >= le32_to_cpu(dp->lcns_follow))
4790 		goto next_dirty_page;
4791 
4792 	vcn = le64_to_cpu(dp->vcn) + i;
4793 	size = (vcn + 1) << sbi->cluster_bits;
4794 
4795 	if (!dp->page_lcns[i])
4796 		goto next_dirty_page_vcn;
4797 
4798 	rno = ino_get(&oe->ref);
4799 	if (rno <= MFT_REC_MIRR &&
4800 	    size < (MFT_REC_VOL + 1) * sbi->record_size &&
4801 	    oe->type == ATTR_DATA) {
4802 		goto next_dirty_page_vcn;
4803 	}
4804 
4805 	lcn = le64_to_cpu(dp->page_lcns[i]);
4806 
4807 	if ((!run_lookup_entry(oa->run1, vcn, &lcn0, &len0, NULL) ||
4808 	     lcn0 != lcn) &&
4809 	    !run_add_entry(oa->run1, vcn, lcn, 1, false)) {
4810 		err = -ENOMEM;
4811 		goto out;
4812 	}
4813 	attr = oa->attr;
4814 	if (size > le64_to_cpu(attr->nres.alloc_size)) {
4815 		attr->nres.valid_size = attr->nres.data_size =
4816 			attr->nres.alloc_size = cpu_to_le64(size);
4817 	}
4818 	goto next_dirty_page_vcn;
4819 
4820 do_redo_1:
4821 	/*
4822 	 * Perform the Redo Pass, to restore all of the dirty pages to the same
4823 	 * contents that they had immediately before the crash. If the dirty
4824 	 * page table is empty, then we can skip the entire Redo Pass.
4825 	 */
4826 	if (!dptbl || !dptbl->total)
4827 		goto do_undo_action;
4828 
4829 	rec_lsn = rlsn;
4830 
4831 	/*
4832 	 * Read the record at the Redo lsn, before falling
4833 	 * into common code to handle each record.
4834 	 */
4835 	err = read_log_rec_lcb(log, rlsn, lcb_ctx_next, &lcb);
4836 	if (err)
4837 		goto out;
4838 
4839 	/*
4840 	 * Now loop to read all of our log records forwards, until
4841 	 * we hit the end of the file, cleaning up at the end.
4842 	 */
4843 do_action_next:
4844 	frh = lcb->lrh;
4845 
4846 	if (LfsClientRecord != frh->record_type)
4847 		goto read_next_log_do_action;
4848 
4849 	transact_id = le32_to_cpu(frh->transact_id);
4850 	rec_len = le32_to_cpu(frh->client_data_len);
4851 	lrh = lcb->log_rec;
4852 
4853 	if (!check_log_rec(lrh, rec_len, transact_id, bytes_per_attr_entry)) {
4854 		err = -EINVAL;
4855 		goto out;
4856 	}
4857 
4858 	/* Ignore log records that do not update pages. */
4859 	if (lrh->lcns_follow)
4860 		goto find_dirty_page;
4861 
4862 	goto read_next_log_do_action;
4863 
4864 find_dirty_page:
4865 	t16 = le16_to_cpu(lrh->target_attr);
4866 	t64 = le64_to_cpu(lrh->target_vcn);
4867 	dp = find_dp(dptbl, t16, t64);
4868 
4869 	if (!dp)
4870 		goto read_next_log_do_action;
4871 
4872 	if (rec_lsn < le64_to_cpu(dp->oldest_lsn))
4873 		goto read_next_log_do_action;
4874 
4875 	t16 = le16_to_cpu(lrh->target_attr);
4876 	if (t16 >= bytes_per_rt(oatbl)) {
4877 		err = -EINVAL;
4878 		goto out;
4879 	}
4880 
4881 	oe = Add2Ptr(oatbl, t16);
4882 
4883 	if (oe->next != RESTART_ENTRY_ALLOCATED_LE) {
4884 		err = -EINVAL;
4885 		goto out;
4886 	}
4887 
4888 	oa = oe->ptr;
4889 
4890 	if (!oa) {
4891 		err = -EINVAL;
4892 		goto out;
4893 	}
4894 	attr = oa->attr;
4895 
4896 	vcn = le64_to_cpu(lrh->target_vcn);
4897 
4898 	if (!run_lookup_entry(oa->run1, vcn, &lcn, NULL, NULL) ||
4899 	    lcn == SPARSE_LCN) {
4900 		goto read_next_log_do_action;
4901 	}
4902 
4903 	/* Point to the Redo data and get its length. */
4904 	data = Add2Ptr(lrh, le16_to_cpu(lrh->redo_off));
4905 	dlen = le16_to_cpu(lrh->redo_len);
4906 
4907 	/* Shorten length by any Lcns which were deleted. */
4908 	saved_len = dlen;
4909 
4910 	for (i = le16_to_cpu(lrh->lcns_follow); i; i--) {
4911 		size_t j;
4912 		u32 alen, voff;
4913 
4914 		voff = le16_to_cpu(lrh->record_off) +
4915 		       le16_to_cpu(lrh->attr_off);
4916 		voff += le16_to_cpu(lrh->cluster_off) << SECTOR_SHIFT;
4917 
4918 		/* If the Vcn question is allocated, we can just get out. */
4919 		j = le64_to_cpu(lrh->target_vcn) - le64_to_cpu(dp->vcn);
4920 		if (dp->page_lcns[j + i - 1])
4921 			break;
4922 
4923 		if (!saved_len)
4924 			saved_len = 1;
4925 
4926 		/*
4927 		 * Calculate the allocated space left relative to the
4928 		 * log record Vcn, after removing this unallocated Vcn.
4929 		 */
4930 		alen = (i - 1) << sbi->cluster_bits;
4931 
4932 		/*
4933 		 * If the update described this log record goes beyond
4934 		 * the allocated space, then we will have to reduce the length.
4935 		 */
4936 		if (voff >= alen)
4937 			dlen = 0;
4938 		else if (voff + dlen > alen)
4939 			dlen = alen - voff;
4940 	}
4941 
4942 	/*
4943 	 * If the resulting dlen from above is now zero,
4944 	 * we can skip this log record.
4945 	 */
4946 	if (!dlen && saved_len)
4947 		goto read_next_log_do_action;
4948 
4949 	t16 = le16_to_cpu(lrh->redo_op);
4950 	if (can_skip_action(t16))
4951 		goto read_next_log_do_action;
4952 
4953 	/* Apply the Redo operation a common routine. */
4954 	err = do_action(log, oe, lrh, t16, data, dlen, rec_len, &rec_lsn);
4955 	if (err)
4956 		goto out;
4957 
4958 	/* Keep reading and looping back until end of file. */
4959 read_next_log_do_action:
4960 	err = read_next_log_rec(log, lcb, &rec_lsn);
4961 	if (!err && rec_lsn)
4962 		goto do_action_next;
4963 
4964 	lcb_put(lcb);
4965 	lcb = NULL;
4966 
4967 do_undo_action:
4968 	/* Scan Transaction Table. */
4969 	tr = NULL;
4970 transaction_table_next:
4971 	tr = enum_rstbl(trtbl, tr);
4972 	if (!tr)
4973 		goto undo_action_done;
4974 
4975 	if (TransactionActive != tr->transact_state || !tr->undo_next_lsn) {
4976 		free_rsttbl_idx(trtbl, PtrOffset(trtbl, tr));
4977 		goto transaction_table_next;
4978 	}
4979 
4980 	log->transaction_id = PtrOffset(trtbl, tr);
4981 	undo_next_lsn = le64_to_cpu(tr->undo_next_lsn);
4982 
4983 	/*
4984 	 * We only have to do anything if the transaction has
4985 	 * something its undo_next_lsn field.
4986 	 */
4987 	if (!undo_next_lsn)
4988 		goto commit_undo;
4989 
4990 	/* Read the first record to be undone by this transaction. */
4991 	err = read_log_rec_lcb(log, undo_next_lsn, lcb_ctx_undo_next, &lcb);
4992 	if (err)
4993 		goto out;
4994 
4995 	/*
4996 	 * Now loop to read all of our log records forwards,
4997 	 * until we hit the end of the file, cleaning up at the end.
4998 	 */
4999 undo_action_next:
5000 
5001 	lrh = lcb->log_rec;
5002 	frh = lcb->lrh;
5003 	transact_id = le32_to_cpu(frh->transact_id);
5004 	rec_len = le32_to_cpu(frh->client_data_len);
5005 
5006 	if (!check_log_rec(lrh, rec_len, transact_id, bytes_per_attr_entry)) {
5007 		err = -EINVAL;
5008 		goto out;
5009 	}
5010 
5011 	if (lrh->undo_op == cpu_to_le16(Noop))
5012 		goto read_next_log_undo_action;
5013 
5014 	oe = Add2Ptr(oatbl, le16_to_cpu(lrh->target_attr));
5015 	oa = oe->ptr;
5016 
5017 	t16 = le16_to_cpu(lrh->lcns_follow);
5018 	if (!t16)
5019 		goto add_allocated_vcns;
5020 
5021 	is_mapped = run_lookup_entry(oa->run1, le64_to_cpu(lrh->target_vcn),
5022 				     &lcn, &clen, NULL);
5023 
5024 	/*
5025 	 * If the mapping isn't already the table or the  mapping
5026 	 * corresponds to a hole the mapping, we need to make sure
5027 	 * there is no partial page already memory.
5028 	 */
5029 	if (is_mapped && lcn != SPARSE_LCN && clen >= t16)
5030 		goto add_allocated_vcns;
5031 
5032 	vcn = le64_to_cpu(lrh->target_vcn);
5033 	vcn &= ~(u64)(log->clst_per_page - 1);
5034 
5035 add_allocated_vcns:
5036 	for (i = 0, vcn = le64_to_cpu(lrh->target_vcn),
5037 	    size = (vcn + 1) << sbi->cluster_bits;
5038 	     i < t16; i++, vcn += 1, size += sbi->cluster_size) {
5039 		attr = oa->attr;
5040 		if (!attr->non_res) {
5041 			if (size > le32_to_cpu(attr->res.data_size))
5042 				attr->res.data_size = cpu_to_le32(size);
5043 		} else {
5044 			if (size > le64_to_cpu(attr->nres.data_size))
5045 				attr->nres.valid_size = attr->nres.data_size =
5046 					attr->nres.alloc_size =
5047 						cpu_to_le64(size);
5048 		}
5049 	}
5050 
5051 	t16 = le16_to_cpu(lrh->undo_op);
5052 	if (can_skip_action(t16))
5053 		goto read_next_log_undo_action;
5054 
5055 	/* Point to the Redo data and get its length. */
5056 	data = Add2Ptr(lrh, le16_to_cpu(lrh->undo_off));
5057 	dlen = le16_to_cpu(lrh->undo_len);
5058 
5059 	/* It is time to apply the undo action. */
5060 	err = do_action(log, oe, lrh, t16, data, dlen, rec_len, NULL);
5061 
5062 read_next_log_undo_action:
5063 	/*
5064 	 * Keep reading and looping back until we have read the
5065 	 * last record for this transaction.
5066 	 */
5067 	err = read_next_log_rec(log, lcb, &rec_lsn);
5068 	if (err)
5069 		goto out;
5070 
5071 	if (rec_lsn)
5072 		goto undo_action_next;
5073 
5074 	lcb_put(lcb);
5075 	lcb = NULL;
5076 
5077 commit_undo:
5078 	free_rsttbl_idx(trtbl, log->transaction_id);
5079 
5080 	log->transaction_id = 0;
5081 
5082 	goto transaction_table_next;
5083 
5084 undo_action_done:
5085 
5086 	ntfs_update_mftmirr(sbi, 0);
5087 
5088 	sbi->flags &= ~NTFS_FLAGS_NEED_REPLAY;
5089 
5090 end_reply:
5091 
5092 	err = 0;
5093 	if (is_ro)
5094 		goto out;
5095 
5096 	rh = kzalloc(log->page_size, GFP_NOFS);
5097 	if (!rh) {
5098 		err = -ENOMEM;
5099 		goto out;
5100 	}
5101 
5102 	rh->rhdr.sign = NTFS_RSTR_SIGNATURE;
5103 	rh->rhdr.fix_off = cpu_to_le16(offsetof(struct RESTART_HDR, fixups));
5104 	t16 = (log->page_size >> SECTOR_SHIFT) + 1;
5105 	rh->rhdr.fix_num = cpu_to_le16(t16);
5106 	rh->sys_page_size = cpu_to_le32(log->page_size);
5107 	rh->page_size = cpu_to_le32(log->page_size);
5108 
5109 	t16 = ALIGN(offsetof(struct RESTART_HDR, fixups) + sizeof(short) * t16,
5110 		    8);
5111 	rh->ra_off = cpu_to_le16(t16);
5112 	rh->minor_ver = cpu_to_le16(1); // 0x1A:
5113 	rh->major_ver = cpu_to_le16(1); // 0x1C:
5114 
5115 	ra2 = Add2Ptr(rh, t16);
5116 	memcpy(ra2, ra, sizeof(struct RESTART_AREA));
5117 
5118 	ra2->client_idx[0] = 0;
5119 	ra2->client_idx[1] = LFS_NO_CLIENT_LE;
5120 	ra2->flags = cpu_to_le16(2);
5121 
5122 	le32_add_cpu(&ra2->open_log_count, 1);
5123 
5124 	ntfs_fix_pre_write(&rh->rhdr, log->page_size);
5125 
5126 	err = ntfs_sb_write_run(sbi, &ni->file.run, 0, rh, log->page_size, 0);
5127 	if (!err)
5128 		err = ntfs_sb_write_run(sbi, &log->ni->file.run, log->page_size,
5129 					rh, log->page_size, 0);
5130 
5131 	kfree(rh);
5132 	if (err)
5133 		goto out;
5134 
5135 out:
5136 	kfree(rst);
5137 	if (lcb)
5138 		lcb_put(lcb);
5139 
5140 	/*
5141 	 * Scan the Open Attribute Table to close all of
5142 	 * the open attributes.
5143 	 */
5144 	oe = NULL;
5145 	while ((oe = enum_rstbl(oatbl, oe))) {
5146 		rno = ino_get(&oe->ref);
5147 
5148 		if (oe->is_attr_name == 1) {
5149 			kfree(oe->ptr);
5150 			oe->ptr = NULL;
5151 			continue;
5152 		}
5153 
5154 		if (oe->is_attr_name)
5155 			continue;
5156 
5157 		oa = oe->ptr;
5158 		if (!oa)
5159 			continue;
5160 
5161 		run_close(&oa->run0);
5162 		kfree(oa->attr);
5163 		if (oa->ni)
5164 			iput(&oa->ni->vfs_inode);
5165 		kfree(oa);
5166 	}
5167 
5168 	kfree(trtbl);
5169 	kfree(oatbl);
5170 	kfree(dptbl);
5171 	kfree(attr_names);
5172 	kfree(log->rst_info.r_page);
5173 
5174 	kfree(ra);
5175 	kfree(log->one_page_buf);
5176 
5177 	if (err)
5178 		sbi->flags |= NTFS_FLAGS_NEED_REPLAY;
5179 
5180 	if (err == -EROFS)
5181 		err = 0;
5182 	else if (log->set_dirty)
5183 		ntfs_set_state(sbi, NTFS_DIRTY_ERROR);
5184 
5185 	kfree(log);
5186 
5187 	return err;
5188 }
5189