1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * 4 * Copyright (C) 2019-2021 Paragon Software GmbH, All rights reserved. 5 * 6 */ 7 8 #include <linux/blkdev.h> 9 #include <linux/buffer_head.h> 10 #include <linux/fiemap.h> 11 #include <linux/fs.h> 12 #include <linux/nls.h> 13 #include <linux/vmalloc.h> 14 15 #include "debug.h" 16 #include "ntfs.h" 17 #include "ntfs_fs.h" 18 #ifdef CONFIG_NTFS3_LZX_XPRESS 19 #include "lib/lib.h" 20 #endif 21 22 static struct mft_inode *ni_ins_mi(struct ntfs_inode *ni, struct rb_root *tree, 23 CLST ino, struct rb_node *ins) 24 { 25 struct rb_node **p = &tree->rb_node; 26 struct rb_node *pr = NULL; 27 28 while (*p) { 29 struct mft_inode *mi; 30 31 pr = *p; 32 mi = rb_entry(pr, struct mft_inode, node); 33 if (mi->rno > ino) 34 p = &pr->rb_left; 35 else if (mi->rno < ino) 36 p = &pr->rb_right; 37 else 38 return mi; 39 } 40 41 if (!ins) 42 return NULL; 43 44 rb_link_node(ins, pr, p); 45 rb_insert_color(ins, tree); 46 return rb_entry(ins, struct mft_inode, node); 47 } 48 49 /* 50 * ni_find_mi - Find mft_inode by record number. 51 */ 52 static struct mft_inode *ni_find_mi(struct ntfs_inode *ni, CLST rno) 53 { 54 return ni_ins_mi(ni, &ni->mi_tree, rno, NULL); 55 } 56 57 /* 58 * ni_add_mi - Add new mft_inode into ntfs_inode. 59 */ 60 static void ni_add_mi(struct ntfs_inode *ni, struct mft_inode *mi) 61 { 62 ni_ins_mi(ni, &ni->mi_tree, mi->rno, &mi->node); 63 } 64 65 /* 66 * ni_remove_mi - Remove mft_inode from ntfs_inode. 67 */ 68 void ni_remove_mi(struct ntfs_inode *ni, struct mft_inode *mi) 69 { 70 rb_erase(&mi->node, &ni->mi_tree); 71 } 72 73 /* ni_std 74 * 75 * Return: Pointer into std_info from primary record. 76 */ 77 struct ATTR_STD_INFO *ni_std(struct ntfs_inode *ni) 78 { 79 const struct ATTRIB *attr; 80 81 attr = mi_find_attr(&ni->mi, NULL, ATTR_STD, NULL, 0, NULL); 82 return attr ? resident_data_ex(attr, sizeof(struct ATTR_STD_INFO)) 83 : NULL; 84 } 85 86 /* 87 * ni_std5 88 * 89 * Return: Pointer into std_info from primary record. 90 */ 91 struct ATTR_STD_INFO5 *ni_std5(struct ntfs_inode *ni) 92 { 93 const struct ATTRIB *attr; 94 95 attr = mi_find_attr(&ni->mi, NULL, ATTR_STD, NULL, 0, NULL); 96 97 return attr ? resident_data_ex(attr, sizeof(struct ATTR_STD_INFO5)) 98 : NULL; 99 } 100 101 /* 102 * ni_clear - Clear resources allocated by ntfs_inode. 103 */ 104 void ni_clear(struct ntfs_inode *ni) 105 { 106 struct rb_node *node; 107 108 if (!ni->vfs_inode.i_nlink && is_rec_inuse(ni->mi.mrec)) 109 ni_delete_all(ni); 110 111 al_destroy(ni); 112 113 for (node = rb_first(&ni->mi_tree); node;) { 114 struct rb_node *next = rb_next(node); 115 struct mft_inode *mi = rb_entry(node, struct mft_inode, node); 116 117 rb_erase(node, &ni->mi_tree); 118 mi_put(mi); 119 node = next; 120 } 121 122 /* Bad inode always has mode == S_IFREG. */ 123 if (ni->ni_flags & NI_FLAG_DIR) 124 indx_clear(&ni->dir); 125 else { 126 run_close(&ni->file.run); 127 #ifdef CONFIG_NTFS3_LZX_XPRESS 128 if (ni->file.offs_page) { 129 /* On-demand allocated page for offsets. */ 130 put_page(ni->file.offs_page); 131 ni->file.offs_page = NULL; 132 } 133 #endif 134 } 135 136 mi_clear(&ni->mi); 137 } 138 139 /* 140 * ni_load_mi_ex - Find mft_inode by record number. 141 */ 142 int ni_load_mi_ex(struct ntfs_inode *ni, CLST rno, struct mft_inode **mi) 143 { 144 int err; 145 struct mft_inode *r; 146 147 r = ni_find_mi(ni, rno); 148 if (r) 149 goto out; 150 151 err = mi_get(ni->mi.sbi, rno, &r); 152 if (err) 153 return err; 154 155 ni_add_mi(ni, r); 156 157 out: 158 if (mi) 159 *mi = r; 160 return 0; 161 } 162 163 /* 164 * ni_load_mi - Load mft_inode corresponded list_entry. 165 */ 166 int ni_load_mi(struct ntfs_inode *ni, const struct ATTR_LIST_ENTRY *le, 167 struct mft_inode **mi) 168 { 169 CLST rno; 170 171 if (!le) { 172 *mi = &ni->mi; 173 return 0; 174 } 175 176 rno = ino_get(&le->ref); 177 if (rno == ni->mi.rno) { 178 *mi = &ni->mi; 179 return 0; 180 } 181 return ni_load_mi_ex(ni, rno, mi); 182 } 183 184 /* 185 * ni_find_attr 186 * 187 * Return: Attribute and record this attribute belongs to. 188 */ 189 struct ATTRIB *ni_find_attr(struct ntfs_inode *ni, struct ATTRIB *attr, 190 struct ATTR_LIST_ENTRY **le_o, enum ATTR_TYPE type, 191 const __le16 *name, u8 name_len, const CLST *vcn, 192 struct mft_inode **mi) 193 { 194 struct ATTR_LIST_ENTRY *le; 195 struct mft_inode *m; 196 197 if (!ni->attr_list.size || 198 (!name_len && (type == ATTR_LIST || type == ATTR_STD))) { 199 if (le_o) 200 *le_o = NULL; 201 if (mi) 202 *mi = &ni->mi; 203 204 /* Look for required attribute in primary record. */ 205 return mi_find_attr(&ni->mi, attr, type, name, name_len, NULL); 206 } 207 208 /* First look for list entry of required type. */ 209 le = al_find_ex(ni, le_o ? *le_o : NULL, type, name, name_len, vcn); 210 if (!le) 211 return NULL; 212 213 if (le_o) 214 *le_o = le; 215 216 /* Load record that contains this attribute. */ 217 if (ni_load_mi(ni, le, &m)) 218 return NULL; 219 220 /* Look for required attribute. */ 221 attr = mi_find_attr(m, NULL, type, name, name_len, &le->id); 222 223 if (!attr) 224 goto out; 225 226 if (!attr->non_res) { 227 if (vcn && *vcn) 228 goto out; 229 } else if (!vcn) { 230 if (attr->nres.svcn) 231 goto out; 232 } else if (le64_to_cpu(attr->nres.svcn) > *vcn || 233 *vcn > le64_to_cpu(attr->nres.evcn)) { 234 goto out; 235 } 236 237 if (mi) 238 *mi = m; 239 return attr; 240 241 out: 242 ntfs_set_state(ni->mi.sbi, NTFS_DIRTY_ERROR); 243 return NULL; 244 } 245 246 /* 247 * ni_enum_attr_ex - Enumerates attributes in ntfs_inode. 248 */ 249 struct ATTRIB *ni_enum_attr_ex(struct ntfs_inode *ni, struct ATTRIB *attr, 250 struct ATTR_LIST_ENTRY **le, 251 struct mft_inode **mi) 252 { 253 struct mft_inode *mi2; 254 struct ATTR_LIST_ENTRY *le2; 255 256 /* Do we have an attribute list? */ 257 if (!ni->attr_list.size) { 258 *le = NULL; 259 if (mi) 260 *mi = &ni->mi; 261 /* Enum attributes in primary record. */ 262 return mi_enum_attr(&ni->mi, attr); 263 } 264 265 /* Get next list entry. */ 266 le2 = *le = al_enumerate(ni, attr ? *le : NULL); 267 if (!le2) 268 return NULL; 269 270 /* Load record that contains the required attribute. */ 271 if (ni_load_mi(ni, le2, &mi2)) 272 return NULL; 273 274 if (mi) 275 *mi = mi2; 276 277 /* Find attribute in loaded record. */ 278 return rec_find_attr_le(mi2, le2); 279 } 280 281 /* 282 * ni_load_attr - Load attribute that contains given VCN. 283 */ 284 struct ATTRIB *ni_load_attr(struct ntfs_inode *ni, enum ATTR_TYPE type, 285 const __le16 *name, u8 name_len, CLST vcn, 286 struct mft_inode **pmi) 287 { 288 struct ATTR_LIST_ENTRY *le; 289 struct ATTRIB *attr; 290 struct mft_inode *mi; 291 struct ATTR_LIST_ENTRY *next; 292 293 if (!ni->attr_list.size) { 294 if (pmi) 295 *pmi = &ni->mi; 296 return mi_find_attr(&ni->mi, NULL, type, name, name_len, NULL); 297 } 298 299 le = al_find_ex(ni, NULL, type, name, name_len, NULL); 300 if (!le) 301 return NULL; 302 303 /* 304 * Unfortunately ATTR_LIST_ENTRY contains only start VCN. 305 * So to find the ATTRIB segment that contains 'vcn' we should 306 * enumerate some entries. 307 */ 308 if (vcn) { 309 for (;; le = next) { 310 next = al_find_ex(ni, le, type, name, name_len, NULL); 311 if (!next || le64_to_cpu(next->vcn) > vcn) 312 break; 313 } 314 } 315 316 if (ni_load_mi(ni, le, &mi)) 317 return NULL; 318 319 if (pmi) 320 *pmi = mi; 321 322 attr = mi_find_attr(mi, NULL, type, name, name_len, &le->id); 323 if (!attr) 324 return NULL; 325 326 if (!attr->non_res) 327 return attr; 328 329 if (le64_to_cpu(attr->nres.svcn) <= vcn && 330 vcn <= le64_to_cpu(attr->nres.evcn)) 331 return attr; 332 333 return NULL; 334 } 335 336 /* 337 * ni_load_all_mi - Load all subrecords. 338 */ 339 int ni_load_all_mi(struct ntfs_inode *ni) 340 { 341 int err; 342 struct ATTR_LIST_ENTRY *le; 343 344 if (!ni->attr_list.size) 345 return 0; 346 347 le = NULL; 348 349 while ((le = al_enumerate(ni, le))) { 350 CLST rno = ino_get(&le->ref); 351 352 if (rno == ni->mi.rno) 353 continue; 354 355 err = ni_load_mi_ex(ni, rno, NULL); 356 if (err) 357 return err; 358 } 359 360 return 0; 361 } 362 363 /* 364 * ni_add_subrecord - Allocate + format + attach a new subrecord. 365 */ 366 bool ni_add_subrecord(struct ntfs_inode *ni, CLST rno, struct mft_inode **mi) 367 { 368 struct mft_inode *m; 369 370 m = kzalloc(sizeof(struct mft_inode), GFP_NOFS); 371 if (!m) 372 return false; 373 374 if (mi_format_new(m, ni->mi.sbi, rno, 0, ni->mi.rno == MFT_REC_MFT)) { 375 mi_put(m); 376 return false; 377 } 378 379 mi_get_ref(&ni->mi, &m->mrec->parent_ref); 380 381 ni_add_mi(ni, m); 382 *mi = m; 383 return true; 384 } 385 386 /* 387 * ni_remove_attr - Remove all attributes for the given type/name/id. 388 */ 389 int ni_remove_attr(struct ntfs_inode *ni, enum ATTR_TYPE type, 390 const __le16 *name, size_t name_len, bool base_only, 391 const __le16 *id) 392 { 393 int err; 394 struct ATTRIB *attr; 395 struct ATTR_LIST_ENTRY *le; 396 struct mft_inode *mi; 397 u32 type_in; 398 int diff; 399 400 if (base_only || type == ATTR_LIST || !ni->attr_list.size) { 401 attr = mi_find_attr(&ni->mi, NULL, type, name, name_len, id); 402 if (!attr) 403 return -ENOENT; 404 405 mi_remove_attr(ni, &ni->mi, attr); 406 return 0; 407 } 408 409 type_in = le32_to_cpu(type); 410 le = NULL; 411 412 for (;;) { 413 le = al_enumerate(ni, le); 414 if (!le) 415 return 0; 416 417 next_le2: 418 diff = le32_to_cpu(le->type) - type_in; 419 if (diff < 0) 420 continue; 421 422 if (diff > 0) 423 return 0; 424 425 if (le->name_len != name_len) 426 continue; 427 428 if (name_len && 429 memcmp(le_name(le), name, name_len * sizeof(short))) 430 continue; 431 432 if (id && le->id != *id) 433 continue; 434 err = ni_load_mi(ni, le, &mi); 435 if (err) 436 return err; 437 438 al_remove_le(ni, le); 439 440 attr = mi_find_attr(mi, NULL, type, name, name_len, id); 441 if (!attr) 442 return -ENOENT; 443 444 mi_remove_attr(ni, mi, attr); 445 446 if (PtrOffset(ni->attr_list.le, le) >= ni->attr_list.size) 447 return 0; 448 goto next_le2; 449 } 450 } 451 452 /* 453 * ni_ins_new_attr - Insert the attribute into record. 454 * 455 * Return: Not full constructed attribute or NULL if not possible to create. 456 */ 457 static struct ATTRIB * 458 ni_ins_new_attr(struct ntfs_inode *ni, struct mft_inode *mi, 459 struct ATTR_LIST_ENTRY *le, enum ATTR_TYPE type, 460 const __le16 *name, u8 name_len, u32 asize, u16 name_off, 461 CLST svcn, struct ATTR_LIST_ENTRY **ins_le) 462 { 463 int err; 464 struct ATTRIB *attr; 465 bool le_added = false; 466 struct MFT_REF ref; 467 468 mi_get_ref(mi, &ref); 469 470 if (type != ATTR_LIST && !le && ni->attr_list.size) { 471 err = al_add_le(ni, type, name, name_len, svcn, cpu_to_le16(-1), 472 &ref, &le); 473 if (err) { 474 /* No memory or no space. */ 475 return NULL; 476 } 477 le_added = true; 478 479 /* 480 * al_add_le -> attr_set_size (list) -> ni_expand_list 481 * which moves some attributes out of primary record 482 * this means that name may point into moved memory 483 * reinit 'name' from le. 484 */ 485 name = le->name; 486 } 487 488 attr = mi_insert_attr(mi, type, name, name_len, asize, name_off); 489 if (!attr) { 490 if (le_added) 491 al_remove_le(ni, le); 492 return NULL; 493 } 494 495 if (type == ATTR_LIST) { 496 /* Attr list is not in list entry array. */ 497 goto out; 498 } 499 500 if (!le) 501 goto out; 502 503 /* Update ATTRIB Id and record reference. */ 504 le->id = attr->id; 505 ni->attr_list.dirty = true; 506 le->ref = ref; 507 508 out: 509 if (ins_le) 510 *ins_le = le; 511 return attr; 512 } 513 514 /* 515 * ni_repack 516 * 517 * Random write access to sparsed or compressed file may result to 518 * not optimized packed runs. 519 * Here is the place to optimize it. 520 */ 521 static int ni_repack(struct ntfs_inode *ni) 522 { 523 int err = 0; 524 struct ntfs_sb_info *sbi = ni->mi.sbi; 525 struct mft_inode *mi, *mi_p = NULL; 526 struct ATTRIB *attr = NULL, *attr_p; 527 struct ATTR_LIST_ENTRY *le = NULL, *le_p; 528 CLST alloc = 0; 529 u8 cluster_bits = sbi->cluster_bits; 530 CLST svcn, evcn = 0, svcn_p, evcn_p, next_svcn; 531 u32 roff, rs = sbi->record_size; 532 struct runs_tree run; 533 534 run_init(&run); 535 536 while ((attr = ni_enum_attr_ex(ni, attr, &le, &mi))) { 537 if (!attr->non_res) 538 continue; 539 540 svcn = le64_to_cpu(attr->nres.svcn); 541 if (svcn != le64_to_cpu(le->vcn)) { 542 err = -EINVAL; 543 break; 544 } 545 546 if (!svcn) { 547 alloc = le64_to_cpu(attr->nres.alloc_size) >> 548 cluster_bits; 549 mi_p = NULL; 550 } else if (svcn != evcn + 1) { 551 err = -EINVAL; 552 break; 553 } 554 555 evcn = le64_to_cpu(attr->nres.evcn); 556 557 if (svcn > evcn + 1) { 558 err = -EINVAL; 559 break; 560 } 561 562 if (!mi_p) { 563 /* Do not try if not enogh free space. */ 564 if (le32_to_cpu(mi->mrec->used) + 8 >= rs) 565 continue; 566 567 /* Do not try if last attribute segment. */ 568 if (evcn + 1 == alloc) 569 continue; 570 run_close(&run); 571 } 572 573 roff = le16_to_cpu(attr->nres.run_off); 574 err = run_unpack(&run, sbi, ni->mi.rno, svcn, evcn, svcn, 575 Add2Ptr(attr, roff), 576 le32_to_cpu(attr->size) - roff); 577 if (err < 0) 578 break; 579 580 if (!mi_p) { 581 mi_p = mi; 582 attr_p = attr; 583 svcn_p = svcn; 584 evcn_p = evcn; 585 le_p = le; 586 err = 0; 587 continue; 588 } 589 590 /* 591 * Run contains data from two records: mi_p and mi 592 * Try to pack in one. 593 */ 594 err = mi_pack_runs(mi_p, attr_p, &run, evcn + 1 - svcn_p); 595 if (err) 596 break; 597 598 next_svcn = le64_to_cpu(attr_p->nres.evcn) + 1; 599 600 if (next_svcn >= evcn + 1) { 601 /* We can remove this attribute segment. */ 602 al_remove_le(ni, le); 603 mi_remove_attr(NULL, mi, attr); 604 le = le_p; 605 continue; 606 } 607 608 attr->nres.svcn = le->vcn = cpu_to_le64(next_svcn); 609 mi->dirty = true; 610 ni->attr_list.dirty = true; 611 612 if (evcn + 1 == alloc) { 613 err = mi_pack_runs(mi, attr, &run, 614 evcn + 1 - next_svcn); 615 if (err) 616 break; 617 mi_p = NULL; 618 } else { 619 mi_p = mi; 620 attr_p = attr; 621 svcn_p = next_svcn; 622 evcn_p = evcn; 623 le_p = le; 624 run_truncate_head(&run, next_svcn); 625 } 626 } 627 628 if (err) { 629 ntfs_inode_warn(&ni->vfs_inode, "repack problem"); 630 ntfs_set_state(sbi, NTFS_DIRTY_ERROR); 631 632 /* Pack loaded but not packed runs. */ 633 if (mi_p) 634 mi_pack_runs(mi_p, attr_p, &run, evcn_p + 1 - svcn_p); 635 } 636 637 run_close(&run); 638 return err; 639 } 640 641 /* 642 * ni_try_remove_attr_list 643 * 644 * Can we remove attribute list? 645 * Check the case when primary record contains enough space for all attributes. 646 */ 647 static int ni_try_remove_attr_list(struct ntfs_inode *ni) 648 { 649 int err = 0; 650 struct ntfs_sb_info *sbi = ni->mi.sbi; 651 struct ATTRIB *attr, *attr_list, *attr_ins; 652 struct ATTR_LIST_ENTRY *le; 653 struct mft_inode *mi; 654 u32 asize, free; 655 struct MFT_REF ref; 656 __le16 id; 657 658 if (!ni->attr_list.dirty) 659 return 0; 660 661 err = ni_repack(ni); 662 if (err) 663 return err; 664 665 attr_list = mi_find_attr(&ni->mi, NULL, ATTR_LIST, NULL, 0, NULL); 666 if (!attr_list) 667 return 0; 668 669 asize = le32_to_cpu(attr_list->size); 670 671 /* Free space in primary record without attribute list. */ 672 free = sbi->record_size - le32_to_cpu(ni->mi.mrec->used) + asize; 673 mi_get_ref(&ni->mi, &ref); 674 675 le = NULL; 676 while ((le = al_enumerate(ni, le))) { 677 if (!memcmp(&le->ref, &ref, sizeof(ref))) 678 continue; 679 680 if (le->vcn) 681 return 0; 682 683 mi = ni_find_mi(ni, ino_get(&le->ref)); 684 if (!mi) 685 return 0; 686 687 attr = mi_find_attr(mi, NULL, le->type, le_name(le), 688 le->name_len, &le->id); 689 if (!attr) 690 return 0; 691 692 asize = le32_to_cpu(attr->size); 693 if (asize > free) 694 return 0; 695 696 free -= asize; 697 } 698 699 /* It seems that attribute list can be removed from primary record. */ 700 mi_remove_attr(NULL, &ni->mi, attr_list); 701 702 /* 703 * Repeat the cycle above and move all attributes to primary record. 704 * It should be success! 705 */ 706 le = NULL; 707 while ((le = al_enumerate(ni, le))) { 708 if (!memcmp(&le->ref, &ref, sizeof(ref))) 709 continue; 710 711 mi = ni_find_mi(ni, ino_get(&le->ref)); 712 713 attr = mi_find_attr(mi, NULL, le->type, le_name(le), 714 le->name_len, &le->id); 715 asize = le32_to_cpu(attr->size); 716 717 /* Insert into primary record. */ 718 attr_ins = mi_insert_attr(&ni->mi, le->type, le_name(le), 719 le->name_len, asize, 720 le16_to_cpu(attr->name_off)); 721 id = attr_ins->id; 722 723 /* Copy all except id. */ 724 memcpy(attr_ins, attr, asize); 725 attr_ins->id = id; 726 727 /* Remove from original record. */ 728 mi_remove_attr(NULL, mi, attr); 729 } 730 731 run_deallocate(sbi, &ni->attr_list.run, true); 732 run_close(&ni->attr_list.run); 733 ni->attr_list.size = 0; 734 kfree(ni->attr_list.le); 735 ni->attr_list.le = NULL; 736 ni->attr_list.dirty = false; 737 738 return 0; 739 } 740 741 /* 742 * ni_create_attr_list - Generates an attribute list for this primary record. 743 */ 744 int ni_create_attr_list(struct ntfs_inode *ni) 745 { 746 struct ntfs_sb_info *sbi = ni->mi.sbi; 747 int err; 748 u32 lsize; 749 struct ATTRIB *attr; 750 struct ATTRIB *arr_move[7]; 751 struct ATTR_LIST_ENTRY *le, *le_b[7]; 752 struct MFT_REC *rec; 753 bool is_mft; 754 CLST rno = 0; 755 struct mft_inode *mi; 756 u32 free_b, nb, to_free, rs; 757 u16 sz; 758 759 is_mft = ni->mi.rno == MFT_REC_MFT; 760 rec = ni->mi.mrec; 761 rs = sbi->record_size; 762 763 /* 764 * Skip estimating exact memory requirement. 765 * Looks like one record_size is always enough. 766 */ 767 le = kmalloc(al_aligned(rs), GFP_NOFS); 768 if (!le) { 769 err = -ENOMEM; 770 goto out; 771 } 772 773 mi_get_ref(&ni->mi, &le->ref); 774 ni->attr_list.le = le; 775 776 attr = NULL; 777 nb = 0; 778 free_b = 0; 779 attr = NULL; 780 781 for (; (attr = mi_enum_attr(&ni->mi, attr)); le = Add2Ptr(le, sz)) { 782 sz = le_size(attr->name_len); 783 le->type = attr->type; 784 le->size = cpu_to_le16(sz); 785 le->name_len = attr->name_len; 786 le->name_off = offsetof(struct ATTR_LIST_ENTRY, name); 787 le->vcn = 0; 788 if (le != ni->attr_list.le) 789 le->ref = ni->attr_list.le->ref; 790 le->id = attr->id; 791 792 if (attr->name_len) 793 memcpy(le->name, attr_name(attr), 794 sizeof(short) * attr->name_len); 795 else if (attr->type == ATTR_STD) 796 continue; 797 else if (attr->type == ATTR_LIST) 798 continue; 799 else if (is_mft && attr->type == ATTR_DATA) 800 continue; 801 802 if (!nb || nb < ARRAY_SIZE(arr_move)) { 803 le_b[nb] = le; 804 arr_move[nb++] = attr; 805 free_b += le32_to_cpu(attr->size); 806 } 807 } 808 809 lsize = PtrOffset(ni->attr_list.le, le); 810 ni->attr_list.size = lsize; 811 812 to_free = le32_to_cpu(rec->used) + lsize + SIZEOF_RESIDENT; 813 if (to_free <= rs) { 814 to_free = 0; 815 } else { 816 to_free -= rs; 817 818 if (to_free > free_b) { 819 err = -EINVAL; 820 goto out1; 821 } 822 } 823 824 /* Allocate child MFT. */ 825 err = ntfs_look_free_mft(sbi, &rno, is_mft, ni, &mi); 826 if (err) 827 goto out1; 828 829 /* Call mi_remove_attr() in reverse order to keep pointers 'arr_move' valid. */ 830 while (to_free > 0) { 831 struct ATTRIB *b = arr_move[--nb]; 832 u32 asize = le32_to_cpu(b->size); 833 u16 name_off = le16_to_cpu(b->name_off); 834 835 attr = mi_insert_attr(mi, b->type, Add2Ptr(b, name_off), 836 b->name_len, asize, name_off); 837 WARN_ON(!attr); 838 839 mi_get_ref(mi, &le_b[nb]->ref); 840 le_b[nb]->id = attr->id; 841 842 /* Copy all except id. */ 843 memcpy(attr, b, asize); 844 attr->id = le_b[nb]->id; 845 846 /* Remove from primary record. */ 847 WARN_ON(!mi_remove_attr(NULL, &ni->mi, b)); 848 849 if (to_free <= asize) 850 break; 851 to_free -= asize; 852 WARN_ON(!nb); 853 } 854 855 attr = mi_insert_attr(&ni->mi, ATTR_LIST, NULL, 0, 856 lsize + SIZEOF_RESIDENT, SIZEOF_RESIDENT); 857 WARN_ON(!attr); 858 859 attr->non_res = 0; 860 attr->flags = 0; 861 attr->res.data_size = cpu_to_le32(lsize); 862 attr->res.data_off = SIZEOF_RESIDENT_LE; 863 attr->res.flags = 0; 864 attr->res.res = 0; 865 866 memcpy(resident_data_ex(attr, lsize), ni->attr_list.le, lsize); 867 868 ni->attr_list.dirty = false; 869 870 mark_inode_dirty(&ni->vfs_inode); 871 goto out; 872 873 out1: 874 kfree(ni->attr_list.le); 875 ni->attr_list.le = NULL; 876 ni->attr_list.size = 0; 877 878 out: 879 return err; 880 } 881 882 /* 883 * ni_ins_attr_ext - Add an external attribute to the ntfs_inode. 884 */ 885 static int ni_ins_attr_ext(struct ntfs_inode *ni, struct ATTR_LIST_ENTRY *le, 886 enum ATTR_TYPE type, const __le16 *name, u8 name_len, 887 u32 asize, CLST svcn, u16 name_off, bool force_ext, 888 struct ATTRIB **ins_attr, struct mft_inode **ins_mi, 889 struct ATTR_LIST_ENTRY **ins_le) 890 { 891 struct ATTRIB *attr; 892 struct mft_inode *mi; 893 CLST rno; 894 u64 vbo; 895 struct rb_node *node; 896 int err; 897 bool is_mft, is_mft_data; 898 struct ntfs_sb_info *sbi = ni->mi.sbi; 899 900 is_mft = ni->mi.rno == MFT_REC_MFT; 901 is_mft_data = is_mft && type == ATTR_DATA && !name_len; 902 903 if (asize > sbi->max_bytes_per_attr) { 904 err = -EINVAL; 905 goto out; 906 } 907 908 /* 909 * Standard information and attr_list cannot be made external. 910 * The Log File cannot have any external attributes. 911 */ 912 if (type == ATTR_STD || type == ATTR_LIST || 913 ni->mi.rno == MFT_REC_LOG) { 914 err = -EINVAL; 915 goto out; 916 } 917 918 /* Create attribute list if it is not already existed. */ 919 if (!ni->attr_list.size) { 920 err = ni_create_attr_list(ni); 921 if (err) 922 goto out; 923 } 924 925 vbo = is_mft_data ? ((u64)svcn << sbi->cluster_bits) : 0; 926 927 if (force_ext) 928 goto insert_ext; 929 930 /* Load all subrecords into memory. */ 931 err = ni_load_all_mi(ni); 932 if (err) 933 goto out; 934 935 /* Check each of loaded subrecord. */ 936 for (node = rb_first(&ni->mi_tree); node; node = rb_next(node)) { 937 mi = rb_entry(node, struct mft_inode, node); 938 939 if (is_mft_data && 940 (mi_enum_attr(mi, NULL) || 941 vbo <= ((u64)mi->rno << sbi->record_bits))) { 942 /* We can't accept this record 'case MFT's bootstrapping. */ 943 continue; 944 } 945 if (is_mft && 946 mi_find_attr(mi, NULL, ATTR_DATA, NULL, 0, NULL)) { 947 /* 948 * This child record already has a ATTR_DATA. 949 * So it can't accept any other records. 950 */ 951 continue; 952 } 953 954 if ((type != ATTR_NAME || name_len) && 955 mi_find_attr(mi, NULL, type, name, name_len, NULL)) { 956 /* Only indexed attributes can share same record. */ 957 continue; 958 } 959 960 /* Try to insert attribute into this subrecord. */ 961 attr = ni_ins_new_attr(ni, mi, le, type, name, name_len, asize, 962 name_off, svcn, ins_le); 963 if (!attr) 964 continue; 965 966 if (ins_attr) 967 *ins_attr = attr; 968 if (ins_mi) 969 *ins_mi = mi; 970 return 0; 971 } 972 973 insert_ext: 974 /* We have to allocate a new child subrecord. */ 975 err = ntfs_look_free_mft(sbi, &rno, is_mft_data, ni, &mi); 976 if (err) 977 goto out; 978 979 if (is_mft_data && vbo <= ((u64)rno << sbi->record_bits)) { 980 err = -EINVAL; 981 goto out1; 982 } 983 984 attr = ni_ins_new_attr(ni, mi, le, type, name, name_len, asize, 985 name_off, svcn, ins_le); 986 if (!attr) 987 goto out2; 988 989 if (ins_attr) 990 *ins_attr = attr; 991 if (ins_mi) 992 *ins_mi = mi; 993 994 return 0; 995 996 out2: 997 ni_remove_mi(ni, mi); 998 mi_put(mi); 999 err = -EINVAL; 1000 1001 out1: 1002 ntfs_mark_rec_free(sbi, rno); 1003 1004 out: 1005 return err; 1006 } 1007 1008 /* 1009 * ni_insert_attr - Insert an attribute into the file. 1010 * 1011 * If the primary record has room, it will just insert the attribute. 1012 * If not, it may make the attribute external. 1013 * For $MFT::Data it may make room for the attribute by 1014 * making other attributes external. 1015 * 1016 * NOTE: 1017 * The ATTR_LIST and ATTR_STD cannot be made external. 1018 * This function does not fill new attribute full. 1019 * It only fills 'size'/'type'/'id'/'name_len' fields. 1020 */ 1021 static int ni_insert_attr(struct ntfs_inode *ni, enum ATTR_TYPE type, 1022 const __le16 *name, u8 name_len, u32 asize, 1023 u16 name_off, CLST svcn, struct ATTRIB **ins_attr, 1024 struct mft_inode **ins_mi, 1025 struct ATTR_LIST_ENTRY **ins_le) 1026 { 1027 struct ntfs_sb_info *sbi = ni->mi.sbi; 1028 int err; 1029 struct ATTRIB *attr, *eattr; 1030 struct MFT_REC *rec; 1031 bool is_mft; 1032 struct ATTR_LIST_ENTRY *le; 1033 u32 list_reserve, max_free, free, used, t32; 1034 __le16 id; 1035 u16 t16; 1036 1037 is_mft = ni->mi.rno == MFT_REC_MFT; 1038 rec = ni->mi.mrec; 1039 1040 list_reserve = SIZEOF_NONRESIDENT + 3 * (1 + 2 * sizeof(u32)); 1041 used = le32_to_cpu(rec->used); 1042 free = sbi->record_size - used; 1043 1044 if (is_mft && type != ATTR_LIST) { 1045 /* Reserve space for the ATTRIB list. */ 1046 if (free < list_reserve) 1047 free = 0; 1048 else 1049 free -= list_reserve; 1050 } 1051 1052 if (asize <= free) { 1053 attr = ni_ins_new_attr(ni, &ni->mi, NULL, type, name, name_len, 1054 asize, name_off, svcn, ins_le); 1055 if (attr) { 1056 if (ins_attr) 1057 *ins_attr = attr; 1058 if (ins_mi) 1059 *ins_mi = &ni->mi; 1060 err = 0; 1061 goto out; 1062 } 1063 } 1064 1065 if (!is_mft || type != ATTR_DATA || svcn) { 1066 /* This ATTRIB will be external. */ 1067 err = ni_ins_attr_ext(ni, NULL, type, name, name_len, asize, 1068 svcn, name_off, false, ins_attr, ins_mi, 1069 ins_le); 1070 goto out; 1071 } 1072 1073 /* 1074 * Here we have: "is_mft && type == ATTR_DATA && !svcn" 1075 * 1076 * The first chunk of the $MFT::Data ATTRIB must be the base record. 1077 * Evict as many other attributes as possible. 1078 */ 1079 max_free = free; 1080 1081 /* Estimate the result of moving all possible attributes away.*/ 1082 attr = NULL; 1083 1084 while ((attr = mi_enum_attr(&ni->mi, attr))) { 1085 if (attr->type == ATTR_STD) 1086 continue; 1087 if (attr->type == ATTR_LIST) 1088 continue; 1089 max_free += le32_to_cpu(attr->size); 1090 } 1091 1092 if (max_free < asize + list_reserve) { 1093 /* Impossible to insert this attribute into primary record. */ 1094 err = -EINVAL; 1095 goto out; 1096 } 1097 1098 /* Start real attribute moving */ 1099 attr = NULL; 1100 1101 for (;;) { 1102 attr = mi_enum_attr(&ni->mi, attr); 1103 if (!attr) { 1104 /* We should never be here 'cause we have already check this case. */ 1105 err = -EINVAL; 1106 goto out; 1107 } 1108 1109 /* Skip attributes that MUST be primary record. */ 1110 if (attr->type == ATTR_STD || attr->type == ATTR_LIST) 1111 continue; 1112 1113 le = NULL; 1114 if (ni->attr_list.size) { 1115 le = al_find_le(ni, NULL, attr); 1116 if (!le) { 1117 /* Really this is a serious bug. */ 1118 err = -EINVAL; 1119 goto out; 1120 } 1121 } 1122 1123 t32 = le32_to_cpu(attr->size); 1124 t16 = le16_to_cpu(attr->name_off); 1125 err = ni_ins_attr_ext(ni, le, attr->type, Add2Ptr(attr, t16), 1126 attr->name_len, t32, attr_svcn(attr), t16, 1127 false, &eattr, NULL, NULL); 1128 if (err) 1129 return err; 1130 1131 id = eattr->id; 1132 memcpy(eattr, attr, t32); 1133 eattr->id = id; 1134 1135 /* Remove from primary record. */ 1136 mi_remove_attr(NULL, &ni->mi, attr); 1137 1138 /* attr now points to next attribute. */ 1139 if (attr->type == ATTR_END) 1140 goto out; 1141 } 1142 while (asize + list_reserve > sbi->record_size - le32_to_cpu(rec->used)) 1143 ; 1144 1145 attr = ni_ins_new_attr(ni, &ni->mi, NULL, type, name, name_len, asize, 1146 name_off, svcn, ins_le); 1147 if (!attr) { 1148 err = -EINVAL; 1149 goto out; 1150 } 1151 1152 if (ins_attr) 1153 *ins_attr = attr; 1154 if (ins_mi) 1155 *ins_mi = &ni->mi; 1156 1157 out: 1158 return err; 1159 } 1160 1161 /* ni_expand_mft_list - Split ATTR_DATA of $MFT. */ 1162 static int ni_expand_mft_list(struct ntfs_inode *ni) 1163 { 1164 int err = 0; 1165 struct runs_tree *run = &ni->file.run; 1166 u32 asize, run_size, done = 0; 1167 struct ATTRIB *attr; 1168 struct rb_node *node; 1169 CLST mft_min, mft_new, svcn, evcn, plen; 1170 struct mft_inode *mi, *mi_min, *mi_new; 1171 struct ntfs_sb_info *sbi = ni->mi.sbi; 1172 1173 /* Find the nearest MFT. */ 1174 mft_min = 0; 1175 mft_new = 0; 1176 mi_min = NULL; 1177 1178 for (node = rb_first(&ni->mi_tree); node; node = rb_next(node)) { 1179 mi = rb_entry(node, struct mft_inode, node); 1180 1181 attr = mi_enum_attr(mi, NULL); 1182 1183 if (!attr) { 1184 mft_min = mi->rno; 1185 mi_min = mi; 1186 break; 1187 } 1188 } 1189 1190 if (ntfs_look_free_mft(sbi, &mft_new, true, ni, &mi_new)) { 1191 mft_new = 0; 1192 /* Really this is not critical. */ 1193 } else if (mft_min > mft_new) { 1194 mft_min = mft_new; 1195 mi_min = mi_new; 1196 } else { 1197 ntfs_mark_rec_free(sbi, mft_new); 1198 mft_new = 0; 1199 ni_remove_mi(ni, mi_new); 1200 } 1201 1202 attr = mi_find_attr(&ni->mi, NULL, ATTR_DATA, NULL, 0, NULL); 1203 if (!attr) { 1204 err = -EINVAL; 1205 goto out; 1206 } 1207 1208 asize = le32_to_cpu(attr->size); 1209 1210 evcn = le64_to_cpu(attr->nres.evcn); 1211 svcn = bytes_to_cluster(sbi, (u64)(mft_min + 1) << sbi->record_bits); 1212 if (evcn + 1 >= svcn) { 1213 err = -EINVAL; 1214 goto out; 1215 } 1216 1217 /* 1218 * Split primary attribute [0 evcn] in two parts [0 svcn) + [svcn evcn]. 1219 * 1220 * Update first part of ATTR_DATA in 'primary MFT. 1221 */ 1222 err = run_pack(run, 0, svcn, Add2Ptr(attr, SIZEOF_NONRESIDENT), 1223 asize - SIZEOF_NONRESIDENT, &plen); 1224 if (err < 0) 1225 goto out; 1226 1227 run_size = ALIGN(err, 8); 1228 err = 0; 1229 1230 if (plen < svcn) { 1231 err = -EINVAL; 1232 goto out; 1233 } 1234 1235 attr->nres.evcn = cpu_to_le64(svcn - 1); 1236 attr->size = cpu_to_le32(run_size + SIZEOF_NONRESIDENT); 1237 /* 'done' - How many bytes of primary MFT becomes free. */ 1238 done = asize - run_size - SIZEOF_NONRESIDENT; 1239 le32_sub_cpu(&ni->mi.mrec->used, done); 1240 1241 /* Estimate the size of second part: run_buf=NULL. */ 1242 err = run_pack(run, svcn, evcn + 1 - svcn, NULL, sbi->record_size, 1243 &plen); 1244 if (err < 0) 1245 goto out; 1246 1247 run_size = ALIGN(err, 8); 1248 err = 0; 1249 1250 if (plen < evcn + 1 - svcn) { 1251 err = -EINVAL; 1252 goto out; 1253 } 1254 1255 /* 1256 * This function may implicitly call expand attr_list. 1257 * Insert second part of ATTR_DATA in 'mi_min'. 1258 */ 1259 attr = ni_ins_new_attr(ni, mi_min, NULL, ATTR_DATA, NULL, 0, 1260 SIZEOF_NONRESIDENT + run_size, 1261 SIZEOF_NONRESIDENT, svcn, NULL); 1262 if (!attr) { 1263 err = -EINVAL; 1264 goto out; 1265 } 1266 1267 attr->non_res = 1; 1268 attr->name_off = SIZEOF_NONRESIDENT_LE; 1269 attr->flags = 0; 1270 1271 run_pack(run, svcn, evcn + 1 - svcn, Add2Ptr(attr, SIZEOF_NONRESIDENT), 1272 run_size, &plen); 1273 1274 attr->nres.svcn = cpu_to_le64(svcn); 1275 attr->nres.evcn = cpu_to_le64(evcn); 1276 attr->nres.run_off = cpu_to_le16(SIZEOF_NONRESIDENT); 1277 1278 out: 1279 if (mft_new) { 1280 ntfs_mark_rec_free(sbi, mft_new); 1281 ni_remove_mi(ni, mi_new); 1282 } 1283 1284 return !err && !done ? -EOPNOTSUPP : err; 1285 } 1286 1287 /* 1288 * ni_expand_list - Move all possible attributes out of primary record. 1289 */ 1290 int ni_expand_list(struct ntfs_inode *ni) 1291 { 1292 int err = 0; 1293 u32 asize, done = 0; 1294 struct ATTRIB *attr, *ins_attr; 1295 struct ATTR_LIST_ENTRY *le; 1296 bool is_mft = ni->mi.rno == MFT_REC_MFT; 1297 struct MFT_REF ref; 1298 1299 mi_get_ref(&ni->mi, &ref); 1300 le = NULL; 1301 1302 while ((le = al_enumerate(ni, le))) { 1303 if (le->type == ATTR_STD) 1304 continue; 1305 1306 if (memcmp(&ref, &le->ref, sizeof(struct MFT_REF))) 1307 continue; 1308 1309 if (is_mft && le->type == ATTR_DATA) 1310 continue; 1311 1312 /* Find attribute in primary record. */ 1313 attr = rec_find_attr_le(&ni->mi, le); 1314 if (!attr) { 1315 err = -EINVAL; 1316 goto out; 1317 } 1318 1319 asize = le32_to_cpu(attr->size); 1320 1321 /* Always insert into new record to avoid collisions (deep recursive). */ 1322 err = ni_ins_attr_ext(ni, le, attr->type, attr_name(attr), 1323 attr->name_len, asize, attr_svcn(attr), 1324 le16_to_cpu(attr->name_off), true, 1325 &ins_attr, NULL, NULL); 1326 1327 if (err) 1328 goto out; 1329 1330 memcpy(ins_attr, attr, asize); 1331 ins_attr->id = le->id; 1332 /* Remove from primary record. */ 1333 mi_remove_attr(NULL, &ni->mi, attr); 1334 1335 done += asize; 1336 goto out; 1337 } 1338 1339 if (!is_mft) { 1340 err = -EFBIG; /* Attr list is too big(?) */ 1341 goto out; 1342 } 1343 1344 /* Split MFT data as much as possible. */ 1345 err = ni_expand_mft_list(ni); 1346 if (err) 1347 goto out; 1348 1349 out: 1350 return !err && !done ? -EOPNOTSUPP : err; 1351 } 1352 1353 /* 1354 * ni_insert_nonresident - Insert new nonresident attribute. 1355 */ 1356 int ni_insert_nonresident(struct ntfs_inode *ni, enum ATTR_TYPE type, 1357 const __le16 *name, u8 name_len, 1358 const struct runs_tree *run, CLST svcn, CLST len, 1359 __le16 flags, struct ATTRIB **new_attr, 1360 struct mft_inode **mi) 1361 { 1362 int err; 1363 CLST plen; 1364 struct ATTRIB *attr; 1365 bool is_ext = 1366 (flags & (ATTR_FLAG_SPARSED | ATTR_FLAG_COMPRESSED)) && !svcn; 1367 u32 name_size = ALIGN(name_len * sizeof(short), 8); 1368 u32 name_off = is_ext ? SIZEOF_NONRESIDENT_EX : SIZEOF_NONRESIDENT; 1369 u32 run_off = name_off + name_size; 1370 u32 run_size, asize; 1371 struct ntfs_sb_info *sbi = ni->mi.sbi; 1372 1373 err = run_pack(run, svcn, len, NULL, sbi->max_bytes_per_attr - run_off, 1374 &plen); 1375 if (err < 0) 1376 goto out; 1377 1378 run_size = ALIGN(err, 8); 1379 1380 if (plen < len) { 1381 err = -EINVAL; 1382 goto out; 1383 } 1384 1385 asize = run_off + run_size; 1386 1387 if (asize > sbi->max_bytes_per_attr) { 1388 err = -EINVAL; 1389 goto out; 1390 } 1391 1392 err = ni_insert_attr(ni, type, name, name_len, asize, name_off, svcn, 1393 &attr, mi, NULL); 1394 1395 if (err) 1396 goto out; 1397 1398 attr->non_res = 1; 1399 attr->name_off = cpu_to_le16(name_off); 1400 attr->flags = flags; 1401 1402 run_pack(run, svcn, len, Add2Ptr(attr, run_off), run_size, &plen); 1403 1404 attr->nres.svcn = cpu_to_le64(svcn); 1405 attr->nres.evcn = cpu_to_le64((u64)svcn + len - 1); 1406 1407 err = 0; 1408 if (new_attr) 1409 *new_attr = attr; 1410 1411 *(__le64 *)&attr->nres.run_off = cpu_to_le64(run_off); 1412 1413 attr->nres.alloc_size = 1414 svcn ? 0 : cpu_to_le64((u64)len << ni->mi.sbi->cluster_bits); 1415 attr->nres.data_size = attr->nres.alloc_size; 1416 attr->nres.valid_size = attr->nres.alloc_size; 1417 1418 if (is_ext) { 1419 if (flags & ATTR_FLAG_COMPRESSED) 1420 attr->nres.c_unit = COMPRESSION_UNIT; 1421 attr->nres.total_size = attr->nres.alloc_size; 1422 } 1423 1424 out: 1425 return err; 1426 } 1427 1428 /* 1429 * ni_insert_resident - Inserts new resident attribute. 1430 */ 1431 int ni_insert_resident(struct ntfs_inode *ni, u32 data_size, 1432 enum ATTR_TYPE type, const __le16 *name, u8 name_len, 1433 struct ATTRIB **new_attr, struct mft_inode **mi, 1434 struct ATTR_LIST_ENTRY **le) 1435 { 1436 int err; 1437 u32 name_size = ALIGN(name_len * sizeof(short), 8); 1438 u32 asize = SIZEOF_RESIDENT + name_size + ALIGN(data_size, 8); 1439 struct ATTRIB *attr; 1440 1441 err = ni_insert_attr(ni, type, name, name_len, asize, SIZEOF_RESIDENT, 1442 0, &attr, mi, le); 1443 if (err) 1444 return err; 1445 1446 attr->non_res = 0; 1447 attr->flags = 0; 1448 1449 attr->res.data_size = cpu_to_le32(data_size); 1450 attr->res.data_off = cpu_to_le16(SIZEOF_RESIDENT + name_size); 1451 if (type == ATTR_NAME) { 1452 attr->res.flags = RESIDENT_FLAG_INDEXED; 1453 1454 /* is_attr_indexed(attr)) == true */ 1455 le16_add_cpu(&ni->mi.mrec->hard_links, +1); 1456 ni->mi.dirty = true; 1457 } 1458 attr->res.res = 0; 1459 1460 if (new_attr) 1461 *new_attr = attr; 1462 1463 return 0; 1464 } 1465 1466 /* 1467 * ni_remove_attr_le - Remove attribute from record. 1468 */ 1469 void ni_remove_attr_le(struct ntfs_inode *ni, struct ATTRIB *attr, 1470 struct mft_inode *mi, struct ATTR_LIST_ENTRY *le) 1471 { 1472 mi_remove_attr(ni, mi, attr); 1473 1474 if (le) 1475 al_remove_le(ni, le); 1476 } 1477 1478 /* 1479 * ni_delete_all - Remove all attributes and frees allocates space. 1480 * 1481 * ntfs_evict_inode->ntfs_clear_inode->ni_delete_all (if no links). 1482 */ 1483 int ni_delete_all(struct ntfs_inode *ni) 1484 { 1485 int err; 1486 struct ATTR_LIST_ENTRY *le = NULL; 1487 struct ATTRIB *attr = NULL; 1488 struct rb_node *node; 1489 u16 roff; 1490 u32 asize; 1491 CLST svcn, evcn; 1492 struct ntfs_sb_info *sbi = ni->mi.sbi; 1493 bool nt3 = is_ntfs3(sbi); 1494 struct MFT_REF ref; 1495 1496 while ((attr = ni_enum_attr_ex(ni, attr, &le, NULL))) { 1497 if (!nt3 || attr->name_len) { 1498 ; 1499 } else if (attr->type == ATTR_REPARSE) { 1500 mi_get_ref(&ni->mi, &ref); 1501 ntfs_remove_reparse(sbi, 0, &ref); 1502 } else if (attr->type == ATTR_ID && !attr->non_res && 1503 le32_to_cpu(attr->res.data_size) >= 1504 sizeof(struct GUID)) { 1505 ntfs_objid_remove(sbi, resident_data(attr)); 1506 } 1507 1508 if (!attr->non_res) 1509 continue; 1510 1511 svcn = le64_to_cpu(attr->nres.svcn); 1512 evcn = le64_to_cpu(attr->nres.evcn); 1513 1514 if (evcn + 1 <= svcn) 1515 continue; 1516 1517 asize = le32_to_cpu(attr->size); 1518 roff = le16_to_cpu(attr->nres.run_off); 1519 1520 /* run==1 means unpack and deallocate. */ 1521 run_unpack_ex(RUN_DEALLOCATE, sbi, ni->mi.rno, svcn, evcn, svcn, 1522 Add2Ptr(attr, roff), asize - roff); 1523 } 1524 1525 if (ni->attr_list.size) { 1526 run_deallocate(ni->mi.sbi, &ni->attr_list.run, true); 1527 al_destroy(ni); 1528 } 1529 1530 /* Free all subrecords. */ 1531 for (node = rb_first(&ni->mi_tree); node;) { 1532 struct rb_node *next = rb_next(node); 1533 struct mft_inode *mi = rb_entry(node, struct mft_inode, node); 1534 1535 clear_rec_inuse(mi->mrec); 1536 mi->dirty = true; 1537 mi_write(mi, 0); 1538 1539 ntfs_mark_rec_free(sbi, mi->rno); 1540 ni_remove_mi(ni, mi); 1541 mi_put(mi); 1542 node = next; 1543 } 1544 1545 /* Free base record */ 1546 clear_rec_inuse(ni->mi.mrec); 1547 ni->mi.dirty = true; 1548 err = mi_write(&ni->mi, 0); 1549 1550 ntfs_mark_rec_free(sbi, ni->mi.rno); 1551 1552 return err; 1553 } 1554 1555 /* ni_fname_name 1556 * 1557 * Return: File name attribute by its value. 1558 */ 1559 struct ATTR_FILE_NAME *ni_fname_name(struct ntfs_inode *ni, 1560 const struct cpu_str *uni, 1561 const struct MFT_REF *home_dir, 1562 struct mft_inode **mi, 1563 struct ATTR_LIST_ENTRY **le) 1564 { 1565 struct ATTRIB *attr = NULL; 1566 struct ATTR_FILE_NAME *fname; 1567 1568 *le = NULL; 1569 1570 /* Enumerate all names. */ 1571 next: 1572 attr = ni_find_attr(ni, attr, le, ATTR_NAME, NULL, 0, NULL, mi); 1573 if (!attr) 1574 return NULL; 1575 1576 fname = resident_data_ex(attr, SIZEOF_ATTRIBUTE_FILENAME); 1577 if (!fname) 1578 goto next; 1579 1580 if (home_dir && memcmp(home_dir, &fname->home, sizeof(*home_dir))) 1581 goto next; 1582 1583 if (!uni) 1584 goto next; 1585 1586 if (uni->len != fname->name_len) 1587 goto next; 1588 1589 if (ntfs_cmp_names_cpu(uni, (struct le_str *)&fname->name_len, NULL, 1590 false)) 1591 goto next; 1592 1593 return fname; 1594 } 1595 1596 /* 1597 * ni_fname_type 1598 * 1599 * Return: File name attribute with given type. 1600 */ 1601 struct ATTR_FILE_NAME *ni_fname_type(struct ntfs_inode *ni, u8 name_type, 1602 struct mft_inode **mi, 1603 struct ATTR_LIST_ENTRY **le) 1604 { 1605 struct ATTRIB *attr = NULL; 1606 struct ATTR_FILE_NAME *fname; 1607 1608 *le = NULL; 1609 1610 if (FILE_NAME_POSIX == name_type) 1611 return NULL; 1612 1613 /* Enumerate all names. */ 1614 for (;;) { 1615 attr = ni_find_attr(ni, attr, le, ATTR_NAME, NULL, 0, NULL, mi); 1616 if (!attr) 1617 return NULL; 1618 1619 fname = resident_data_ex(attr, SIZEOF_ATTRIBUTE_FILENAME); 1620 if (fname && name_type == fname->type) 1621 return fname; 1622 } 1623 } 1624 1625 /* 1626 * ni_new_attr_flags 1627 * 1628 * Process compressed/sparsed in special way. 1629 * NOTE: You need to set ni->std_fa = new_fa 1630 * after this function to keep internal structures in consistency. 1631 */ 1632 int ni_new_attr_flags(struct ntfs_inode *ni, enum FILE_ATTRIBUTE new_fa) 1633 { 1634 struct ATTRIB *attr; 1635 struct mft_inode *mi; 1636 __le16 new_aflags; 1637 u32 new_asize; 1638 1639 attr = ni_find_attr(ni, NULL, NULL, ATTR_DATA, NULL, 0, NULL, &mi); 1640 if (!attr) 1641 return -EINVAL; 1642 1643 new_aflags = attr->flags; 1644 1645 if (new_fa & FILE_ATTRIBUTE_SPARSE_FILE) 1646 new_aflags |= ATTR_FLAG_SPARSED; 1647 else 1648 new_aflags &= ~ATTR_FLAG_SPARSED; 1649 1650 if (new_fa & FILE_ATTRIBUTE_COMPRESSED) 1651 new_aflags |= ATTR_FLAG_COMPRESSED; 1652 else 1653 new_aflags &= ~ATTR_FLAG_COMPRESSED; 1654 1655 if (new_aflags == attr->flags) 1656 return 0; 1657 1658 if ((new_aflags & (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED)) == 1659 (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED)) { 1660 ntfs_inode_warn(&ni->vfs_inode, 1661 "file can't be sparsed and compressed"); 1662 return -EOPNOTSUPP; 1663 } 1664 1665 if (!attr->non_res) 1666 goto out; 1667 1668 if (attr->nres.data_size) { 1669 ntfs_inode_warn( 1670 &ni->vfs_inode, 1671 "one can change sparsed/compressed only for empty files"); 1672 return -EOPNOTSUPP; 1673 } 1674 1675 /* Resize nonresident empty attribute in-place only. */ 1676 new_asize = (new_aflags & (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED)) 1677 ? (SIZEOF_NONRESIDENT_EX + 8) 1678 : (SIZEOF_NONRESIDENT + 8); 1679 1680 if (!mi_resize_attr(mi, attr, new_asize - le32_to_cpu(attr->size))) 1681 return -EOPNOTSUPP; 1682 1683 if (new_aflags & ATTR_FLAG_SPARSED) { 1684 attr->name_off = SIZEOF_NONRESIDENT_EX_LE; 1685 /* Windows uses 16 clusters per frame but supports one cluster per frame too. */ 1686 attr->nres.c_unit = 0; 1687 ni->vfs_inode.i_mapping->a_ops = &ntfs_aops; 1688 } else if (new_aflags & ATTR_FLAG_COMPRESSED) { 1689 attr->name_off = SIZEOF_NONRESIDENT_EX_LE; 1690 /* The only allowed: 16 clusters per frame. */ 1691 attr->nres.c_unit = NTFS_LZNT_CUNIT; 1692 ni->vfs_inode.i_mapping->a_ops = &ntfs_aops_cmpr; 1693 } else { 1694 attr->name_off = SIZEOF_NONRESIDENT_LE; 1695 /* Normal files. */ 1696 attr->nres.c_unit = 0; 1697 ni->vfs_inode.i_mapping->a_ops = &ntfs_aops; 1698 } 1699 attr->nres.run_off = attr->name_off; 1700 out: 1701 attr->flags = new_aflags; 1702 mi->dirty = true; 1703 1704 return 0; 1705 } 1706 1707 /* 1708 * ni_parse_reparse 1709 * 1710 * Buffer is at least 24 bytes. 1711 */ 1712 enum REPARSE_SIGN ni_parse_reparse(struct ntfs_inode *ni, struct ATTRIB *attr, 1713 void *buffer) 1714 { 1715 const struct REPARSE_DATA_BUFFER *rp = NULL; 1716 u8 bits; 1717 u16 len; 1718 typeof(rp->CompressReparseBuffer) *cmpr; 1719 1720 static_assert(sizeof(struct REPARSE_DATA_BUFFER) <= 24); 1721 1722 /* Try to estimate reparse point. */ 1723 if (!attr->non_res) { 1724 rp = resident_data_ex(attr, sizeof(struct REPARSE_DATA_BUFFER)); 1725 } else if (le64_to_cpu(attr->nres.data_size) >= 1726 sizeof(struct REPARSE_DATA_BUFFER)) { 1727 struct runs_tree run; 1728 1729 run_init(&run); 1730 1731 if (!attr_load_runs_vcn(ni, ATTR_REPARSE, NULL, 0, &run, 0) && 1732 !ntfs_read_run_nb(ni->mi.sbi, &run, 0, buffer, 1733 sizeof(struct REPARSE_DATA_BUFFER), 1734 NULL)) { 1735 rp = buffer; 1736 } 1737 1738 run_close(&run); 1739 } 1740 1741 if (!rp) 1742 return REPARSE_NONE; 1743 1744 len = le16_to_cpu(rp->ReparseDataLength); 1745 switch (rp->ReparseTag) { 1746 case (IO_REPARSE_TAG_MICROSOFT | IO_REPARSE_TAG_SYMBOLIC_LINK): 1747 break; /* Symbolic link. */ 1748 case IO_REPARSE_TAG_MOUNT_POINT: 1749 break; /* Mount points and junctions. */ 1750 case IO_REPARSE_TAG_SYMLINK: 1751 break; 1752 case IO_REPARSE_TAG_COMPRESS: 1753 /* 1754 * WOF - Windows Overlay Filter - Used to compress files with 1755 * LZX/Xpress. 1756 * 1757 * Unlike native NTFS file compression, the Windows 1758 * Overlay Filter supports only read operations. This means 1759 * that it doesn't need to sector-align each compressed chunk, 1760 * so the compressed data can be packed more tightly together. 1761 * If you open the file for writing, the WOF just decompresses 1762 * the entire file, turning it back into a plain file. 1763 * 1764 * Ntfs3 driver decompresses the entire file only on write or 1765 * change size requests. 1766 */ 1767 1768 cmpr = &rp->CompressReparseBuffer; 1769 if (len < sizeof(*cmpr) || 1770 cmpr->WofVersion != WOF_CURRENT_VERSION || 1771 cmpr->WofProvider != WOF_PROVIDER_SYSTEM || 1772 cmpr->ProviderVer != WOF_PROVIDER_CURRENT_VERSION) { 1773 return REPARSE_NONE; 1774 } 1775 1776 switch (cmpr->CompressionFormat) { 1777 case WOF_COMPRESSION_XPRESS4K: 1778 bits = 0xc; // 4k 1779 break; 1780 case WOF_COMPRESSION_XPRESS8K: 1781 bits = 0xd; // 8k 1782 break; 1783 case WOF_COMPRESSION_XPRESS16K: 1784 bits = 0xe; // 16k 1785 break; 1786 case WOF_COMPRESSION_LZX32K: 1787 bits = 0xf; // 32k 1788 break; 1789 default: 1790 bits = 0x10; // 64k 1791 break; 1792 } 1793 ni_set_ext_compress_bits(ni, bits); 1794 return REPARSE_COMPRESSED; 1795 1796 case IO_REPARSE_TAG_DEDUP: 1797 ni->ni_flags |= NI_FLAG_DEDUPLICATED; 1798 return REPARSE_DEDUPLICATED; 1799 1800 default: 1801 if (rp->ReparseTag & IO_REPARSE_TAG_NAME_SURROGATE) 1802 break; 1803 1804 return REPARSE_NONE; 1805 } 1806 1807 /* Looks like normal symlink. */ 1808 return REPARSE_LINK; 1809 } 1810 1811 /* 1812 * ni_fiemap - Helper for file_fiemap(). 1813 * 1814 * Assumed ni_lock. 1815 * TODO: Less aggressive locks. 1816 */ 1817 int ni_fiemap(struct ntfs_inode *ni, struct fiemap_extent_info *fieinfo, 1818 __u64 vbo, __u64 len) 1819 { 1820 int err = 0; 1821 struct ntfs_sb_info *sbi = ni->mi.sbi; 1822 u8 cluster_bits = sbi->cluster_bits; 1823 struct runs_tree *run; 1824 struct rw_semaphore *run_lock; 1825 struct ATTRIB *attr; 1826 CLST vcn = vbo >> cluster_bits; 1827 CLST lcn, clen; 1828 u64 valid = ni->i_valid; 1829 u64 lbo, bytes; 1830 u64 end, alloc_size; 1831 size_t idx = -1; 1832 u32 flags; 1833 bool ok; 1834 1835 if (S_ISDIR(ni->vfs_inode.i_mode)) { 1836 run = &ni->dir.alloc_run; 1837 attr = ni_find_attr(ni, NULL, NULL, ATTR_ALLOC, I30_NAME, 1838 ARRAY_SIZE(I30_NAME), NULL, NULL); 1839 run_lock = &ni->dir.run_lock; 1840 } else { 1841 run = &ni->file.run; 1842 attr = ni_find_attr(ni, NULL, NULL, ATTR_DATA, NULL, 0, NULL, 1843 NULL); 1844 if (!attr) { 1845 err = -EINVAL; 1846 goto out; 1847 } 1848 if (is_attr_compressed(attr)) { 1849 /* Unfortunately cp -r incorrectly treats compressed clusters. */ 1850 err = -EOPNOTSUPP; 1851 ntfs_inode_warn( 1852 &ni->vfs_inode, 1853 "fiemap is not supported for compressed file (cp -r)"); 1854 goto out; 1855 } 1856 run_lock = &ni->file.run_lock; 1857 } 1858 1859 if (!attr || !attr->non_res) { 1860 err = fiemap_fill_next_extent( 1861 fieinfo, 0, 0, 1862 attr ? le32_to_cpu(attr->res.data_size) : 0, 1863 FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_LAST | 1864 FIEMAP_EXTENT_MERGED); 1865 goto out; 1866 } 1867 1868 end = vbo + len; 1869 alloc_size = le64_to_cpu(attr->nres.alloc_size); 1870 if (end > alloc_size) 1871 end = alloc_size; 1872 1873 down_read(run_lock); 1874 1875 while (vbo < end) { 1876 if (idx == -1) { 1877 ok = run_lookup_entry(run, vcn, &lcn, &clen, &idx); 1878 } else { 1879 CLST vcn_next = vcn; 1880 1881 ok = run_get_entry(run, ++idx, &vcn, &lcn, &clen) && 1882 vcn == vcn_next; 1883 if (!ok) 1884 vcn = vcn_next; 1885 } 1886 1887 if (!ok) { 1888 up_read(run_lock); 1889 down_write(run_lock); 1890 1891 err = attr_load_runs_vcn(ni, attr->type, 1892 attr_name(attr), 1893 attr->name_len, run, vcn); 1894 1895 up_write(run_lock); 1896 down_read(run_lock); 1897 1898 if (err) 1899 break; 1900 1901 ok = run_lookup_entry(run, vcn, &lcn, &clen, &idx); 1902 1903 if (!ok) { 1904 err = -EINVAL; 1905 break; 1906 } 1907 } 1908 1909 if (!clen) { 1910 err = -EINVAL; // ? 1911 break; 1912 } 1913 1914 if (lcn == SPARSE_LCN) { 1915 vcn += clen; 1916 vbo = (u64)vcn << cluster_bits; 1917 continue; 1918 } 1919 1920 flags = FIEMAP_EXTENT_MERGED; 1921 if (S_ISDIR(ni->vfs_inode.i_mode)) { 1922 ; 1923 } else if (is_attr_compressed(attr)) { 1924 CLST clst_data; 1925 1926 err = attr_is_frame_compressed( 1927 ni, attr, vcn >> attr->nres.c_unit, &clst_data); 1928 if (err) 1929 break; 1930 if (clst_data < NTFS_LZNT_CLUSTERS) 1931 flags |= FIEMAP_EXTENT_ENCODED; 1932 } else if (is_attr_encrypted(attr)) { 1933 flags |= FIEMAP_EXTENT_DATA_ENCRYPTED; 1934 } 1935 1936 vbo = (u64)vcn << cluster_bits; 1937 bytes = (u64)clen << cluster_bits; 1938 lbo = (u64)lcn << cluster_bits; 1939 1940 vcn += clen; 1941 1942 if (vbo + bytes >= end) { 1943 bytes = end - vbo; 1944 flags |= FIEMAP_EXTENT_LAST; 1945 } 1946 1947 if (vbo + bytes <= valid) { 1948 ; 1949 } else if (vbo >= valid) { 1950 flags |= FIEMAP_EXTENT_UNWRITTEN; 1951 } else { 1952 /* vbo < valid && valid < vbo + bytes */ 1953 u64 dlen = valid - vbo; 1954 1955 err = fiemap_fill_next_extent(fieinfo, vbo, lbo, dlen, 1956 flags); 1957 if (err < 0) 1958 break; 1959 if (err == 1) { 1960 err = 0; 1961 break; 1962 } 1963 1964 vbo = valid; 1965 bytes -= dlen; 1966 if (!bytes) 1967 continue; 1968 1969 lbo += dlen; 1970 flags |= FIEMAP_EXTENT_UNWRITTEN; 1971 } 1972 1973 err = fiemap_fill_next_extent(fieinfo, vbo, lbo, bytes, flags); 1974 if (err < 0) 1975 break; 1976 if (err == 1) { 1977 err = 0; 1978 break; 1979 } 1980 1981 vbo += bytes; 1982 } 1983 1984 up_read(run_lock); 1985 1986 out: 1987 return err; 1988 } 1989 1990 /* 1991 * ni_readpage_cmpr 1992 * 1993 * When decompressing, we typically obtain more than one page per reference. 1994 * We inject the additional pages into the page cache. 1995 */ 1996 int ni_readpage_cmpr(struct ntfs_inode *ni, struct page *page) 1997 { 1998 int err; 1999 struct ntfs_sb_info *sbi = ni->mi.sbi; 2000 struct address_space *mapping = page->mapping; 2001 pgoff_t index = page->index; 2002 u64 frame_vbo, vbo = (u64)index << PAGE_SHIFT; 2003 struct page **pages = NULL; /* Array of at most 16 pages. stack? */ 2004 u8 frame_bits; 2005 CLST frame; 2006 u32 i, idx, frame_size, pages_per_frame; 2007 gfp_t gfp_mask; 2008 struct page *pg; 2009 2010 if (vbo >= ni->vfs_inode.i_size) { 2011 SetPageUptodate(page); 2012 err = 0; 2013 goto out; 2014 } 2015 2016 if (ni->ni_flags & NI_FLAG_COMPRESSED_MASK) { 2017 /* Xpress or LZX. */ 2018 frame_bits = ni_ext_compress_bits(ni); 2019 } else { 2020 /* LZNT compression. */ 2021 frame_bits = NTFS_LZNT_CUNIT + sbi->cluster_bits; 2022 } 2023 frame_size = 1u << frame_bits; 2024 frame = vbo >> frame_bits; 2025 frame_vbo = (u64)frame << frame_bits; 2026 idx = (vbo - frame_vbo) >> PAGE_SHIFT; 2027 2028 pages_per_frame = frame_size >> PAGE_SHIFT; 2029 pages = kcalloc(pages_per_frame, sizeof(struct page *), GFP_NOFS); 2030 if (!pages) { 2031 err = -ENOMEM; 2032 goto out; 2033 } 2034 2035 pages[idx] = page; 2036 index = frame_vbo >> PAGE_SHIFT; 2037 gfp_mask = mapping_gfp_mask(mapping); 2038 2039 for (i = 0; i < pages_per_frame; i++, index++) { 2040 if (i == idx) 2041 continue; 2042 2043 pg = find_or_create_page(mapping, index, gfp_mask); 2044 if (!pg) { 2045 err = -ENOMEM; 2046 goto out1; 2047 } 2048 pages[i] = pg; 2049 } 2050 2051 err = ni_read_frame(ni, frame_vbo, pages, pages_per_frame); 2052 2053 out1: 2054 if (err) 2055 SetPageError(page); 2056 2057 for (i = 0; i < pages_per_frame; i++) { 2058 pg = pages[i]; 2059 if (i == idx) 2060 continue; 2061 unlock_page(pg); 2062 put_page(pg); 2063 } 2064 2065 out: 2066 /* At this point, err contains 0 or -EIO depending on the "critical" page. */ 2067 kfree(pages); 2068 unlock_page(page); 2069 2070 return err; 2071 } 2072 2073 #ifdef CONFIG_NTFS3_LZX_XPRESS 2074 /* 2075 * ni_decompress_file - Decompress LZX/Xpress compressed file. 2076 * 2077 * Remove ATTR_DATA::WofCompressedData. 2078 * Remove ATTR_REPARSE. 2079 */ 2080 int ni_decompress_file(struct ntfs_inode *ni) 2081 { 2082 struct ntfs_sb_info *sbi = ni->mi.sbi; 2083 struct inode *inode = &ni->vfs_inode; 2084 loff_t i_size = inode->i_size; 2085 struct address_space *mapping = inode->i_mapping; 2086 gfp_t gfp_mask = mapping_gfp_mask(mapping); 2087 struct page **pages = NULL; 2088 struct ATTR_LIST_ENTRY *le; 2089 struct ATTRIB *attr; 2090 CLST vcn, cend, lcn, clen, end; 2091 pgoff_t index; 2092 u64 vbo; 2093 u8 frame_bits; 2094 u32 i, frame_size, pages_per_frame, bytes; 2095 struct mft_inode *mi; 2096 int err; 2097 2098 /* Clusters for decompressed data. */ 2099 cend = bytes_to_cluster(sbi, i_size); 2100 2101 if (!i_size) 2102 goto remove_wof; 2103 2104 /* Check in advance. */ 2105 if (cend > wnd_zeroes(&sbi->used.bitmap)) { 2106 err = -ENOSPC; 2107 goto out; 2108 } 2109 2110 frame_bits = ni_ext_compress_bits(ni); 2111 frame_size = 1u << frame_bits; 2112 pages_per_frame = frame_size >> PAGE_SHIFT; 2113 pages = kcalloc(pages_per_frame, sizeof(struct page *), GFP_NOFS); 2114 if (!pages) { 2115 err = -ENOMEM; 2116 goto out; 2117 } 2118 2119 /* 2120 * Step 1: Decompress data and copy to new allocated clusters. 2121 */ 2122 index = 0; 2123 for (vbo = 0; vbo < i_size; vbo += bytes) { 2124 u32 nr_pages; 2125 bool new; 2126 2127 if (vbo + frame_size > i_size) { 2128 bytes = i_size - vbo; 2129 nr_pages = (bytes + PAGE_SIZE - 1) >> PAGE_SHIFT; 2130 } else { 2131 nr_pages = pages_per_frame; 2132 bytes = frame_size; 2133 } 2134 2135 end = bytes_to_cluster(sbi, vbo + bytes); 2136 2137 for (vcn = vbo >> sbi->cluster_bits; vcn < end; vcn += clen) { 2138 err = attr_data_get_block(ni, vcn, cend - vcn, &lcn, 2139 &clen, &new); 2140 if (err) 2141 goto out; 2142 } 2143 2144 for (i = 0; i < pages_per_frame; i++, index++) { 2145 struct page *pg; 2146 2147 pg = find_or_create_page(mapping, index, gfp_mask); 2148 if (!pg) { 2149 while (i--) { 2150 unlock_page(pages[i]); 2151 put_page(pages[i]); 2152 } 2153 err = -ENOMEM; 2154 goto out; 2155 } 2156 pages[i] = pg; 2157 } 2158 2159 err = ni_read_frame(ni, vbo, pages, pages_per_frame); 2160 2161 if (!err) { 2162 down_read(&ni->file.run_lock); 2163 err = ntfs_bio_pages(sbi, &ni->file.run, pages, 2164 nr_pages, vbo, bytes, 2165 REQ_OP_WRITE); 2166 up_read(&ni->file.run_lock); 2167 } 2168 2169 for (i = 0; i < pages_per_frame; i++) { 2170 unlock_page(pages[i]); 2171 put_page(pages[i]); 2172 } 2173 2174 if (err) 2175 goto out; 2176 2177 cond_resched(); 2178 } 2179 2180 remove_wof: 2181 /* 2182 * Step 2: Deallocate attributes ATTR_DATA::WofCompressedData 2183 * and ATTR_REPARSE. 2184 */ 2185 attr = NULL; 2186 le = NULL; 2187 while ((attr = ni_enum_attr_ex(ni, attr, &le, NULL))) { 2188 CLST svcn, evcn; 2189 u32 asize, roff; 2190 2191 if (attr->type == ATTR_REPARSE) { 2192 struct MFT_REF ref; 2193 2194 mi_get_ref(&ni->mi, &ref); 2195 ntfs_remove_reparse(sbi, 0, &ref); 2196 } 2197 2198 if (!attr->non_res) 2199 continue; 2200 2201 if (attr->type != ATTR_REPARSE && 2202 (attr->type != ATTR_DATA || 2203 attr->name_len != ARRAY_SIZE(WOF_NAME) || 2204 memcmp(attr_name(attr), WOF_NAME, sizeof(WOF_NAME)))) 2205 continue; 2206 2207 svcn = le64_to_cpu(attr->nres.svcn); 2208 evcn = le64_to_cpu(attr->nres.evcn); 2209 2210 if (evcn + 1 <= svcn) 2211 continue; 2212 2213 asize = le32_to_cpu(attr->size); 2214 roff = le16_to_cpu(attr->nres.run_off); 2215 2216 /*run==1 Means unpack and deallocate. */ 2217 run_unpack_ex(RUN_DEALLOCATE, sbi, ni->mi.rno, svcn, evcn, svcn, 2218 Add2Ptr(attr, roff), asize - roff); 2219 } 2220 2221 /* 2222 * Step 3: Remove attribute ATTR_DATA::WofCompressedData. 2223 */ 2224 err = ni_remove_attr(ni, ATTR_DATA, WOF_NAME, ARRAY_SIZE(WOF_NAME), 2225 false, NULL); 2226 if (err) 2227 goto out; 2228 2229 /* 2230 * Step 4: Remove ATTR_REPARSE. 2231 */ 2232 err = ni_remove_attr(ni, ATTR_REPARSE, NULL, 0, false, NULL); 2233 if (err) 2234 goto out; 2235 2236 /* 2237 * Step 5: Remove sparse flag from data attribute. 2238 */ 2239 attr = ni_find_attr(ni, NULL, NULL, ATTR_DATA, NULL, 0, NULL, &mi); 2240 if (!attr) { 2241 err = -EINVAL; 2242 goto out; 2243 } 2244 2245 if (attr->non_res && is_attr_sparsed(attr)) { 2246 /* Sarsed attribute header is 8 bytes bigger than normal. */ 2247 struct MFT_REC *rec = mi->mrec; 2248 u32 used = le32_to_cpu(rec->used); 2249 u32 asize = le32_to_cpu(attr->size); 2250 u16 roff = le16_to_cpu(attr->nres.run_off); 2251 char *rbuf = Add2Ptr(attr, roff); 2252 2253 memmove(rbuf - 8, rbuf, used - PtrOffset(rec, rbuf)); 2254 attr->size = cpu_to_le32(asize - 8); 2255 attr->flags &= ~ATTR_FLAG_SPARSED; 2256 attr->nres.run_off = cpu_to_le16(roff - 8); 2257 attr->nres.c_unit = 0; 2258 rec->used = cpu_to_le32(used - 8); 2259 mi->dirty = true; 2260 ni->std_fa &= ~(FILE_ATTRIBUTE_SPARSE_FILE | 2261 FILE_ATTRIBUTE_REPARSE_POINT); 2262 2263 mark_inode_dirty(inode); 2264 } 2265 2266 /* Clear cached flag. */ 2267 ni->ni_flags &= ~NI_FLAG_COMPRESSED_MASK; 2268 if (ni->file.offs_page) { 2269 put_page(ni->file.offs_page); 2270 ni->file.offs_page = NULL; 2271 } 2272 mapping->a_ops = &ntfs_aops; 2273 2274 out: 2275 kfree(pages); 2276 if (err) { 2277 make_bad_inode(inode); 2278 ntfs_set_state(sbi, NTFS_DIRTY_ERROR); 2279 } 2280 2281 return err; 2282 } 2283 2284 /* 2285 * decompress_lzx_xpress - External compression LZX/Xpress. 2286 */ 2287 static int decompress_lzx_xpress(struct ntfs_sb_info *sbi, const char *cmpr, 2288 size_t cmpr_size, void *unc, size_t unc_size, 2289 u32 frame_size) 2290 { 2291 int err; 2292 void *ctx; 2293 2294 if (cmpr_size == unc_size) { 2295 /* Frame not compressed. */ 2296 memcpy(unc, cmpr, unc_size); 2297 return 0; 2298 } 2299 2300 err = 0; 2301 if (frame_size == 0x8000) { 2302 mutex_lock(&sbi->compress.mtx_lzx); 2303 /* LZX: Frame compressed. */ 2304 ctx = sbi->compress.lzx; 2305 if (!ctx) { 2306 /* Lazy initialize LZX decompress context. */ 2307 ctx = lzx_allocate_decompressor(); 2308 if (!ctx) { 2309 err = -ENOMEM; 2310 goto out1; 2311 } 2312 2313 sbi->compress.lzx = ctx; 2314 } 2315 2316 if (lzx_decompress(ctx, cmpr, cmpr_size, unc, unc_size)) { 2317 /* Treat all errors as "invalid argument". */ 2318 err = -EINVAL; 2319 } 2320 out1: 2321 mutex_unlock(&sbi->compress.mtx_lzx); 2322 } else { 2323 /* XPRESS: Frame compressed. */ 2324 mutex_lock(&sbi->compress.mtx_xpress); 2325 ctx = sbi->compress.xpress; 2326 if (!ctx) { 2327 /* Lazy initialize Xpress decompress context */ 2328 ctx = xpress_allocate_decompressor(); 2329 if (!ctx) { 2330 err = -ENOMEM; 2331 goto out2; 2332 } 2333 2334 sbi->compress.xpress = ctx; 2335 } 2336 2337 if (xpress_decompress(ctx, cmpr, cmpr_size, unc, unc_size)) { 2338 /* Treat all errors as "invalid argument". */ 2339 err = -EINVAL; 2340 } 2341 out2: 2342 mutex_unlock(&sbi->compress.mtx_xpress); 2343 } 2344 return err; 2345 } 2346 #endif 2347 2348 /* 2349 * ni_read_frame 2350 * 2351 * Pages - array of locked pages. 2352 */ 2353 int ni_read_frame(struct ntfs_inode *ni, u64 frame_vbo, struct page **pages, 2354 u32 pages_per_frame) 2355 { 2356 int err; 2357 struct ntfs_sb_info *sbi = ni->mi.sbi; 2358 u8 cluster_bits = sbi->cluster_bits; 2359 char *frame_ondisk = NULL; 2360 char *frame_mem = NULL; 2361 struct page **pages_disk = NULL; 2362 struct ATTR_LIST_ENTRY *le = NULL; 2363 struct runs_tree *run = &ni->file.run; 2364 u64 valid_size = ni->i_valid; 2365 u64 vbo_disk; 2366 size_t unc_size; 2367 u32 frame_size, i, npages_disk, ondisk_size; 2368 struct page *pg; 2369 struct ATTRIB *attr; 2370 CLST frame, clst_data; 2371 2372 /* 2373 * To simplify decompress algorithm do vmap for source 2374 * and target pages. 2375 */ 2376 for (i = 0; i < pages_per_frame; i++) 2377 kmap(pages[i]); 2378 2379 frame_size = pages_per_frame << PAGE_SHIFT; 2380 frame_mem = vmap(pages, pages_per_frame, VM_MAP, PAGE_KERNEL); 2381 if (!frame_mem) { 2382 err = -ENOMEM; 2383 goto out; 2384 } 2385 2386 attr = ni_find_attr(ni, NULL, &le, ATTR_DATA, NULL, 0, NULL, NULL); 2387 if (!attr) { 2388 err = -ENOENT; 2389 goto out1; 2390 } 2391 2392 if (!attr->non_res) { 2393 u32 data_size = le32_to_cpu(attr->res.data_size); 2394 2395 memset(frame_mem, 0, frame_size); 2396 if (frame_vbo < data_size) { 2397 ondisk_size = data_size - frame_vbo; 2398 memcpy(frame_mem, resident_data(attr) + frame_vbo, 2399 min(ondisk_size, frame_size)); 2400 } 2401 err = 0; 2402 goto out1; 2403 } 2404 2405 if (frame_vbo >= valid_size) { 2406 memset(frame_mem, 0, frame_size); 2407 err = 0; 2408 goto out1; 2409 } 2410 2411 if (ni->ni_flags & NI_FLAG_COMPRESSED_MASK) { 2412 #ifndef CONFIG_NTFS3_LZX_XPRESS 2413 err = -EOPNOTSUPP; 2414 goto out1; 2415 #else 2416 u32 frame_bits = ni_ext_compress_bits(ni); 2417 u64 frame64 = frame_vbo >> frame_bits; 2418 u64 frames, vbo_data; 2419 2420 if (frame_size != (1u << frame_bits)) { 2421 err = -EINVAL; 2422 goto out1; 2423 } 2424 switch (frame_size) { 2425 case 0x1000: 2426 case 0x2000: 2427 case 0x4000: 2428 case 0x8000: 2429 break; 2430 default: 2431 /* Unknown compression. */ 2432 err = -EOPNOTSUPP; 2433 goto out1; 2434 } 2435 2436 attr = ni_find_attr(ni, attr, &le, ATTR_DATA, WOF_NAME, 2437 ARRAY_SIZE(WOF_NAME), NULL, NULL); 2438 if (!attr) { 2439 ntfs_inode_err( 2440 &ni->vfs_inode, 2441 "external compressed file should contains data attribute \"WofCompressedData\""); 2442 err = -EINVAL; 2443 goto out1; 2444 } 2445 2446 if (!attr->non_res) { 2447 run = NULL; 2448 } else { 2449 run = run_alloc(); 2450 if (!run) { 2451 err = -ENOMEM; 2452 goto out1; 2453 } 2454 } 2455 2456 frames = (ni->vfs_inode.i_size - 1) >> frame_bits; 2457 2458 err = attr_wof_frame_info(ni, attr, run, frame64, frames, 2459 frame_bits, &ondisk_size, &vbo_data); 2460 if (err) 2461 goto out2; 2462 2463 if (frame64 == frames) { 2464 unc_size = 1 + ((ni->vfs_inode.i_size - 1) & 2465 (frame_size - 1)); 2466 ondisk_size = attr_size(attr) - vbo_data; 2467 } else { 2468 unc_size = frame_size; 2469 } 2470 2471 if (ondisk_size > frame_size) { 2472 err = -EINVAL; 2473 goto out2; 2474 } 2475 2476 if (!attr->non_res) { 2477 if (vbo_data + ondisk_size > 2478 le32_to_cpu(attr->res.data_size)) { 2479 err = -EINVAL; 2480 goto out1; 2481 } 2482 2483 err = decompress_lzx_xpress( 2484 sbi, Add2Ptr(resident_data(attr), vbo_data), 2485 ondisk_size, frame_mem, unc_size, frame_size); 2486 goto out1; 2487 } 2488 vbo_disk = vbo_data; 2489 /* Load all runs to read [vbo_disk-vbo_to). */ 2490 err = attr_load_runs_range(ni, ATTR_DATA, WOF_NAME, 2491 ARRAY_SIZE(WOF_NAME), run, vbo_disk, 2492 vbo_data + ondisk_size); 2493 if (err) 2494 goto out2; 2495 npages_disk = (ondisk_size + (vbo_disk & (PAGE_SIZE - 1)) + 2496 PAGE_SIZE - 1) >> 2497 PAGE_SHIFT; 2498 #endif 2499 } else if (is_attr_compressed(attr)) { 2500 /* LZNT compression. */ 2501 if (sbi->cluster_size > NTFS_LZNT_MAX_CLUSTER) { 2502 err = -EOPNOTSUPP; 2503 goto out1; 2504 } 2505 2506 if (attr->nres.c_unit != NTFS_LZNT_CUNIT) { 2507 err = -EOPNOTSUPP; 2508 goto out1; 2509 } 2510 2511 down_write(&ni->file.run_lock); 2512 run_truncate_around(run, le64_to_cpu(attr->nres.svcn)); 2513 frame = frame_vbo >> (cluster_bits + NTFS_LZNT_CUNIT); 2514 err = attr_is_frame_compressed(ni, attr, frame, &clst_data); 2515 up_write(&ni->file.run_lock); 2516 if (err) 2517 goto out1; 2518 2519 if (!clst_data) { 2520 memset(frame_mem, 0, frame_size); 2521 goto out1; 2522 } 2523 2524 frame_size = sbi->cluster_size << NTFS_LZNT_CUNIT; 2525 ondisk_size = clst_data << cluster_bits; 2526 2527 if (clst_data >= NTFS_LZNT_CLUSTERS) { 2528 /* Frame is not compressed. */ 2529 down_read(&ni->file.run_lock); 2530 err = ntfs_bio_pages(sbi, run, pages, pages_per_frame, 2531 frame_vbo, ondisk_size, 2532 REQ_OP_READ); 2533 up_read(&ni->file.run_lock); 2534 goto out1; 2535 } 2536 vbo_disk = frame_vbo; 2537 npages_disk = (ondisk_size + PAGE_SIZE - 1) >> PAGE_SHIFT; 2538 } else { 2539 __builtin_unreachable(); 2540 err = -EINVAL; 2541 goto out1; 2542 } 2543 2544 pages_disk = kzalloc(npages_disk * sizeof(struct page *), GFP_NOFS); 2545 if (!pages_disk) { 2546 err = -ENOMEM; 2547 goto out2; 2548 } 2549 2550 for (i = 0; i < npages_disk; i++) { 2551 pg = alloc_page(GFP_KERNEL); 2552 if (!pg) { 2553 err = -ENOMEM; 2554 goto out3; 2555 } 2556 pages_disk[i] = pg; 2557 lock_page(pg); 2558 kmap(pg); 2559 } 2560 2561 /* Read 'ondisk_size' bytes from disk. */ 2562 down_read(&ni->file.run_lock); 2563 err = ntfs_bio_pages(sbi, run, pages_disk, npages_disk, vbo_disk, 2564 ondisk_size, REQ_OP_READ); 2565 up_read(&ni->file.run_lock); 2566 if (err) 2567 goto out3; 2568 2569 /* 2570 * To simplify decompress algorithm do vmap for source and target pages. 2571 */ 2572 frame_ondisk = vmap(pages_disk, npages_disk, VM_MAP, PAGE_KERNEL_RO); 2573 if (!frame_ondisk) { 2574 err = -ENOMEM; 2575 goto out3; 2576 } 2577 2578 /* Decompress: Frame_ondisk -> frame_mem. */ 2579 #ifdef CONFIG_NTFS3_LZX_XPRESS 2580 if (run != &ni->file.run) { 2581 /* LZX or XPRESS */ 2582 err = decompress_lzx_xpress( 2583 sbi, frame_ondisk + (vbo_disk & (PAGE_SIZE - 1)), 2584 ondisk_size, frame_mem, unc_size, frame_size); 2585 } else 2586 #endif 2587 { 2588 /* LZNT - Native NTFS compression. */ 2589 unc_size = decompress_lznt(frame_ondisk, ondisk_size, frame_mem, 2590 frame_size); 2591 if ((ssize_t)unc_size < 0) 2592 err = unc_size; 2593 else if (!unc_size || unc_size > frame_size) 2594 err = -EINVAL; 2595 } 2596 if (!err && valid_size < frame_vbo + frame_size) { 2597 size_t ok = valid_size - frame_vbo; 2598 2599 memset(frame_mem + ok, 0, frame_size - ok); 2600 } 2601 2602 vunmap(frame_ondisk); 2603 2604 out3: 2605 for (i = 0; i < npages_disk; i++) { 2606 pg = pages_disk[i]; 2607 if (pg) { 2608 kunmap(pg); 2609 unlock_page(pg); 2610 put_page(pg); 2611 } 2612 } 2613 kfree(pages_disk); 2614 2615 out2: 2616 #ifdef CONFIG_NTFS3_LZX_XPRESS 2617 if (run != &ni->file.run) 2618 run_free(run); 2619 #endif 2620 out1: 2621 vunmap(frame_mem); 2622 out: 2623 for (i = 0; i < pages_per_frame; i++) { 2624 pg = pages[i]; 2625 kunmap(pg); 2626 ClearPageError(pg); 2627 SetPageUptodate(pg); 2628 } 2629 2630 return err; 2631 } 2632 2633 /* 2634 * ni_write_frame 2635 * 2636 * Pages - Array of locked pages. 2637 */ 2638 int ni_write_frame(struct ntfs_inode *ni, struct page **pages, 2639 u32 pages_per_frame) 2640 { 2641 int err; 2642 struct ntfs_sb_info *sbi = ni->mi.sbi; 2643 u8 frame_bits = NTFS_LZNT_CUNIT + sbi->cluster_bits; 2644 u32 frame_size = sbi->cluster_size << NTFS_LZNT_CUNIT; 2645 u64 frame_vbo = (u64)pages[0]->index << PAGE_SHIFT; 2646 CLST frame = frame_vbo >> frame_bits; 2647 char *frame_ondisk = NULL; 2648 struct page **pages_disk = NULL; 2649 struct ATTR_LIST_ENTRY *le = NULL; 2650 char *frame_mem; 2651 struct ATTRIB *attr; 2652 struct mft_inode *mi; 2653 u32 i; 2654 struct page *pg; 2655 size_t compr_size, ondisk_size; 2656 struct lznt *lznt; 2657 2658 attr = ni_find_attr(ni, NULL, &le, ATTR_DATA, NULL, 0, NULL, &mi); 2659 if (!attr) { 2660 err = -ENOENT; 2661 goto out; 2662 } 2663 2664 if (WARN_ON(!is_attr_compressed(attr))) { 2665 err = -EINVAL; 2666 goto out; 2667 } 2668 2669 if (sbi->cluster_size > NTFS_LZNT_MAX_CLUSTER) { 2670 err = -EOPNOTSUPP; 2671 goto out; 2672 } 2673 2674 if (!attr->non_res) { 2675 down_write(&ni->file.run_lock); 2676 err = attr_make_nonresident(ni, attr, le, mi, 2677 le32_to_cpu(attr->res.data_size), 2678 &ni->file.run, &attr, pages[0]); 2679 up_write(&ni->file.run_lock); 2680 if (err) 2681 goto out; 2682 } 2683 2684 if (attr->nres.c_unit != NTFS_LZNT_CUNIT) { 2685 err = -EOPNOTSUPP; 2686 goto out; 2687 } 2688 2689 pages_disk = kcalloc(pages_per_frame, sizeof(struct page *), GFP_NOFS); 2690 if (!pages_disk) { 2691 err = -ENOMEM; 2692 goto out; 2693 } 2694 2695 for (i = 0; i < pages_per_frame; i++) { 2696 pg = alloc_page(GFP_KERNEL); 2697 if (!pg) { 2698 err = -ENOMEM; 2699 goto out1; 2700 } 2701 pages_disk[i] = pg; 2702 lock_page(pg); 2703 kmap(pg); 2704 } 2705 2706 /* To simplify compress algorithm do vmap for source and target pages. */ 2707 frame_ondisk = vmap(pages_disk, pages_per_frame, VM_MAP, PAGE_KERNEL); 2708 if (!frame_ondisk) { 2709 err = -ENOMEM; 2710 goto out1; 2711 } 2712 2713 for (i = 0; i < pages_per_frame; i++) 2714 kmap(pages[i]); 2715 2716 /* Map in-memory frame for read-only. */ 2717 frame_mem = vmap(pages, pages_per_frame, VM_MAP, PAGE_KERNEL_RO); 2718 if (!frame_mem) { 2719 err = -ENOMEM; 2720 goto out2; 2721 } 2722 2723 mutex_lock(&sbi->compress.mtx_lznt); 2724 lznt = NULL; 2725 if (!sbi->compress.lznt) { 2726 /* 2727 * LZNT implements two levels of compression: 2728 * 0 - Standard compression 2729 * 1 - Best compression, requires a lot of cpu 2730 * use mount option? 2731 */ 2732 lznt = get_lznt_ctx(0); 2733 if (!lznt) { 2734 mutex_unlock(&sbi->compress.mtx_lznt); 2735 err = -ENOMEM; 2736 goto out3; 2737 } 2738 2739 sbi->compress.lznt = lznt; 2740 lznt = NULL; 2741 } 2742 2743 /* Compress: frame_mem -> frame_ondisk. */ 2744 compr_size = compress_lznt(frame_mem, frame_size, frame_ondisk, 2745 frame_size, sbi->compress.lznt); 2746 mutex_unlock(&sbi->compress.mtx_lznt); 2747 kfree(lznt); 2748 2749 if (compr_size + sbi->cluster_size > frame_size) { 2750 /* Frame is not compressed. */ 2751 compr_size = frame_size; 2752 ondisk_size = frame_size; 2753 } else if (compr_size) { 2754 /* Frame is compressed. */ 2755 ondisk_size = ntfs_up_cluster(sbi, compr_size); 2756 memset(frame_ondisk + compr_size, 0, ondisk_size - compr_size); 2757 } else { 2758 /* Frame is sparsed. */ 2759 ondisk_size = 0; 2760 } 2761 2762 down_write(&ni->file.run_lock); 2763 run_truncate_around(&ni->file.run, le64_to_cpu(attr->nres.svcn)); 2764 err = attr_allocate_frame(ni, frame, compr_size, ni->i_valid); 2765 up_write(&ni->file.run_lock); 2766 if (err) 2767 goto out2; 2768 2769 if (!ondisk_size) 2770 goto out2; 2771 2772 down_read(&ni->file.run_lock); 2773 err = ntfs_bio_pages(sbi, &ni->file.run, 2774 ondisk_size < frame_size ? pages_disk : pages, 2775 pages_per_frame, frame_vbo, ondisk_size, 2776 REQ_OP_WRITE); 2777 up_read(&ni->file.run_lock); 2778 2779 out3: 2780 vunmap(frame_mem); 2781 2782 out2: 2783 for (i = 0; i < pages_per_frame; i++) 2784 kunmap(pages[i]); 2785 2786 vunmap(frame_ondisk); 2787 out1: 2788 for (i = 0; i < pages_per_frame; i++) { 2789 pg = pages_disk[i]; 2790 if (pg) { 2791 kunmap(pg); 2792 unlock_page(pg); 2793 put_page(pg); 2794 } 2795 } 2796 kfree(pages_disk); 2797 out: 2798 return err; 2799 } 2800 2801 /* 2802 * ni_remove_name - Removes name 'de' from MFT and from directory. 2803 * 'de2' and 'undo_step' are used to restore MFT/dir, if error occurs. 2804 */ 2805 int ni_remove_name(struct ntfs_inode *dir_ni, struct ntfs_inode *ni, 2806 struct NTFS_DE *de, struct NTFS_DE **de2, int *undo_step) 2807 { 2808 int err; 2809 struct ntfs_sb_info *sbi = ni->mi.sbi; 2810 struct ATTR_FILE_NAME *de_name = (struct ATTR_FILE_NAME *)(de + 1); 2811 struct ATTR_FILE_NAME *fname; 2812 struct ATTR_LIST_ENTRY *le; 2813 struct mft_inode *mi; 2814 u16 de_key_size = le16_to_cpu(de->key_size); 2815 u8 name_type; 2816 2817 *undo_step = 0; 2818 2819 /* Find name in record. */ 2820 mi_get_ref(&dir_ni->mi, &de_name->home); 2821 2822 fname = ni_fname_name(ni, (struct cpu_str *)&de_name->name_len, 2823 &de_name->home, &mi, &le); 2824 if (!fname) 2825 return -ENOENT; 2826 2827 memcpy(&de_name->dup, &fname->dup, sizeof(struct NTFS_DUP_INFO)); 2828 name_type = paired_name(fname->type); 2829 2830 /* Mark ntfs as dirty. It will be cleared at umount. */ 2831 ntfs_set_state(sbi, NTFS_DIRTY_DIRTY); 2832 2833 /* Step 1: Remove name from directory. */ 2834 err = indx_delete_entry(&dir_ni->dir, dir_ni, fname, de_key_size, sbi); 2835 if (err) 2836 return err; 2837 2838 /* Step 2: Remove name from MFT. */ 2839 ni_remove_attr_le(ni, attr_from_name(fname), mi, le); 2840 2841 *undo_step = 2; 2842 2843 /* Get paired name. */ 2844 fname = ni_fname_type(ni, name_type, &mi, &le); 2845 if (fname) { 2846 u16 de2_key_size = fname_full_size(fname); 2847 2848 *de2 = Add2Ptr(de, 1024); 2849 (*de2)->key_size = cpu_to_le16(de2_key_size); 2850 2851 memcpy(*de2 + 1, fname, de2_key_size); 2852 2853 /* Step 3: Remove paired name from directory. */ 2854 err = indx_delete_entry(&dir_ni->dir, dir_ni, fname, 2855 de2_key_size, sbi); 2856 if (err) 2857 return err; 2858 2859 /* Step 4: Remove paired name from MFT. */ 2860 ni_remove_attr_le(ni, attr_from_name(fname), mi, le); 2861 2862 *undo_step = 4; 2863 } 2864 return 0; 2865 } 2866 2867 /* 2868 * ni_remove_name_undo - Paired function for ni_remove_name. 2869 * 2870 * Return: True if ok 2871 */ 2872 bool ni_remove_name_undo(struct ntfs_inode *dir_ni, struct ntfs_inode *ni, 2873 struct NTFS_DE *de, struct NTFS_DE *de2, int undo_step) 2874 { 2875 struct ntfs_sb_info *sbi = ni->mi.sbi; 2876 struct ATTRIB *attr; 2877 u16 de_key_size = de2 ? le16_to_cpu(de2->key_size) : 0; 2878 2879 switch (undo_step) { 2880 case 4: 2881 if (ni_insert_resident(ni, de_key_size, ATTR_NAME, NULL, 0, 2882 &attr, NULL, NULL)) { 2883 return false; 2884 } 2885 memcpy(Add2Ptr(attr, SIZEOF_RESIDENT), de2 + 1, de_key_size); 2886 2887 mi_get_ref(&ni->mi, &de2->ref); 2888 de2->size = cpu_to_le16(ALIGN(de_key_size, 8) + 2889 sizeof(struct NTFS_DE)); 2890 de2->flags = 0; 2891 de2->res = 0; 2892 2893 if (indx_insert_entry(&dir_ni->dir, dir_ni, de2, sbi, NULL, 2894 1)) { 2895 return false; 2896 } 2897 fallthrough; 2898 2899 case 2: 2900 de_key_size = le16_to_cpu(de->key_size); 2901 2902 if (ni_insert_resident(ni, de_key_size, ATTR_NAME, NULL, 0, 2903 &attr, NULL, NULL)) { 2904 return false; 2905 } 2906 2907 memcpy(Add2Ptr(attr, SIZEOF_RESIDENT), de + 1, de_key_size); 2908 mi_get_ref(&ni->mi, &de->ref); 2909 2910 if (indx_insert_entry(&dir_ni->dir, dir_ni, de, sbi, NULL, 1)) { 2911 return false; 2912 } 2913 } 2914 2915 return true; 2916 } 2917 2918 /* 2919 * ni_add_name - Add new name in MFT and in directory. 2920 */ 2921 int ni_add_name(struct ntfs_inode *dir_ni, struct ntfs_inode *ni, 2922 struct NTFS_DE *de) 2923 { 2924 int err; 2925 struct ATTRIB *attr; 2926 struct ATTR_LIST_ENTRY *le; 2927 struct mft_inode *mi; 2928 struct ATTR_FILE_NAME *de_name = (struct ATTR_FILE_NAME *)(de + 1); 2929 u16 de_key_size = le16_to_cpu(de->key_size); 2930 2931 mi_get_ref(&ni->mi, &de->ref); 2932 mi_get_ref(&dir_ni->mi, &de_name->home); 2933 2934 /* Insert new name in MFT. */ 2935 err = ni_insert_resident(ni, de_key_size, ATTR_NAME, NULL, 0, &attr, 2936 &mi, &le); 2937 if (err) 2938 return err; 2939 2940 memcpy(Add2Ptr(attr, SIZEOF_RESIDENT), de_name, de_key_size); 2941 2942 /* Insert new name in directory. */ 2943 err = indx_insert_entry(&dir_ni->dir, dir_ni, de, ni->mi.sbi, NULL, 0); 2944 if (err) 2945 ni_remove_attr_le(ni, attr, mi, le); 2946 2947 return err; 2948 } 2949 2950 /* 2951 * ni_rename - Remove one name and insert new name. 2952 */ 2953 int ni_rename(struct ntfs_inode *dir_ni, struct ntfs_inode *new_dir_ni, 2954 struct ntfs_inode *ni, struct NTFS_DE *de, struct NTFS_DE *new_de, 2955 bool *is_bad) 2956 { 2957 int err; 2958 struct NTFS_DE *de2 = NULL; 2959 int undo = 0; 2960 2961 /* 2962 * There are two possible ways to rename: 2963 * 1) Add new name and remove old name. 2964 * 2) Remove old name and add new name. 2965 * 2966 * In most cases (not all!) adding new name in MFT and in directory can 2967 * allocate additional cluster(s). 2968 * Second way may result to bad inode if we can't add new name 2969 * and then can't restore (add) old name. 2970 */ 2971 2972 /* 2973 * Way 1 - Add new + remove old. 2974 */ 2975 err = ni_add_name(new_dir_ni, ni, new_de); 2976 if (!err) { 2977 err = ni_remove_name(dir_ni, ni, de, &de2, &undo); 2978 if (err && ni_remove_name(new_dir_ni, ni, new_de, &de2, &undo)) 2979 *is_bad = true; 2980 } 2981 2982 /* 2983 * Way 2 - Remove old + add new. 2984 */ 2985 /* 2986 * err = ni_remove_name(dir_ni, ni, de, &de2, &undo); 2987 * if (!err) { 2988 * err = ni_add_name(new_dir_ni, ni, new_de); 2989 * if (err && !ni_remove_name_undo(dir_ni, ni, de, de2, undo)) 2990 * *is_bad = true; 2991 * } 2992 */ 2993 2994 return err; 2995 } 2996 2997 /* 2998 * ni_is_dirty - Return: True if 'ni' requires ni_write_inode. 2999 */ 3000 bool ni_is_dirty(struct inode *inode) 3001 { 3002 struct ntfs_inode *ni = ntfs_i(inode); 3003 struct rb_node *node; 3004 3005 if (ni->mi.dirty || ni->attr_list.dirty || 3006 (ni->ni_flags & NI_FLAG_UPDATE_PARENT)) 3007 return true; 3008 3009 for (node = rb_first(&ni->mi_tree); node; node = rb_next(node)) { 3010 if (rb_entry(node, struct mft_inode, node)->dirty) 3011 return true; 3012 } 3013 3014 return false; 3015 } 3016 3017 /* 3018 * ni_update_parent 3019 * 3020 * Update duplicate info of ATTR_FILE_NAME in MFT and in parent directories. 3021 */ 3022 static bool ni_update_parent(struct ntfs_inode *ni, struct NTFS_DUP_INFO *dup, 3023 int sync) 3024 { 3025 struct ATTRIB *attr; 3026 struct mft_inode *mi; 3027 struct ATTR_LIST_ENTRY *le = NULL; 3028 struct ntfs_sb_info *sbi = ni->mi.sbi; 3029 struct super_block *sb = sbi->sb; 3030 bool re_dirty = false; 3031 3032 if (ni->mi.mrec->flags & RECORD_FLAG_DIR) { 3033 dup->fa |= FILE_ATTRIBUTE_DIRECTORY; 3034 attr = NULL; 3035 dup->alloc_size = 0; 3036 dup->data_size = 0; 3037 } else { 3038 dup->fa &= ~FILE_ATTRIBUTE_DIRECTORY; 3039 3040 attr = ni_find_attr(ni, NULL, &le, ATTR_DATA, NULL, 0, NULL, 3041 &mi); 3042 if (!attr) { 3043 dup->alloc_size = dup->data_size = 0; 3044 } else if (!attr->non_res) { 3045 u32 data_size = le32_to_cpu(attr->res.data_size); 3046 3047 dup->alloc_size = cpu_to_le64(ALIGN(data_size, 8)); 3048 dup->data_size = cpu_to_le64(data_size); 3049 } else { 3050 u64 new_valid = ni->i_valid; 3051 u64 data_size = le64_to_cpu(attr->nres.data_size); 3052 __le64 valid_le; 3053 3054 dup->alloc_size = is_attr_ext(attr) 3055 ? attr->nres.total_size 3056 : attr->nres.alloc_size; 3057 dup->data_size = attr->nres.data_size; 3058 3059 if (new_valid > data_size) 3060 new_valid = data_size; 3061 3062 valid_le = cpu_to_le64(new_valid); 3063 if (valid_le != attr->nres.valid_size) { 3064 attr->nres.valid_size = valid_le; 3065 mi->dirty = true; 3066 } 3067 } 3068 } 3069 3070 /* TODO: Fill reparse info. */ 3071 dup->reparse = 0; 3072 dup->ea_size = 0; 3073 3074 if (ni->ni_flags & NI_FLAG_EA) { 3075 attr = ni_find_attr(ni, attr, &le, ATTR_EA_INFO, NULL, 0, NULL, 3076 NULL); 3077 if (attr) { 3078 const struct EA_INFO *info; 3079 3080 info = resident_data_ex(attr, sizeof(struct EA_INFO)); 3081 dup->ea_size = info->size_pack; 3082 } 3083 } 3084 3085 attr = NULL; 3086 le = NULL; 3087 3088 while ((attr = ni_find_attr(ni, attr, &le, ATTR_NAME, NULL, 0, NULL, 3089 &mi))) { 3090 struct inode *dir; 3091 struct ATTR_FILE_NAME *fname; 3092 3093 fname = resident_data_ex(attr, SIZEOF_ATTRIBUTE_FILENAME); 3094 if (!fname || !memcmp(&fname->dup, dup, sizeof(fname->dup))) 3095 continue; 3096 3097 /* ntfs_iget5 may sleep. */ 3098 dir = ntfs_iget5(sb, &fname->home, NULL); 3099 if (IS_ERR(dir)) { 3100 ntfs_inode_warn( 3101 &ni->vfs_inode, 3102 "failed to open parent directory r=%lx to update", 3103 (long)ino_get(&fname->home)); 3104 continue; 3105 } 3106 3107 if (!is_bad_inode(dir)) { 3108 struct ntfs_inode *dir_ni = ntfs_i(dir); 3109 3110 if (!ni_trylock(dir_ni)) { 3111 re_dirty = true; 3112 } else { 3113 indx_update_dup(dir_ni, sbi, fname, dup, sync); 3114 ni_unlock(dir_ni); 3115 memcpy(&fname->dup, dup, sizeof(fname->dup)); 3116 mi->dirty = true; 3117 } 3118 } 3119 iput(dir); 3120 } 3121 3122 return re_dirty; 3123 } 3124 3125 /* 3126 * ni_write_inode - Write MFT base record and all subrecords to disk. 3127 */ 3128 int ni_write_inode(struct inode *inode, int sync, const char *hint) 3129 { 3130 int err = 0, err2; 3131 struct ntfs_inode *ni = ntfs_i(inode); 3132 struct super_block *sb = inode->i_sb; 3133 struct ntfs_sb_info *sbi = sb->s_fs_info; 3134 bool re_dirty = false; 3135 struct ATTR_STD_INFO *std; 3136 struct rb_node *node, *next; 3137 struct NTFS_DUP_INFO dup; 3138 3139 if (is_bad_inode(inode) || sb_rdonly(sb)) 3140 return 0; 3141 3142 if (!ni_trylock(ni)) { 3143 /* 'ni' is under modification, skip for now. */ 3144 mark_inode_dirty_sync(inode); 3145 return 0; 3146 } 3147 3148 if (is_rec_inuse(ni->mi.mrec) && 3149 !(sbi->flags & NTFS_FLAGS_LOG_REPLAYING) && inode->i_nlink) { 3150 bool modified = false; 3151 3152 /* Update times in standard attribute. */ 3153 std = ni_std(ni); 3154 if (!std) { 3155 err = -EINVAL; 3156 goto out; 3157 } 3158 3159 /* Update the access times if they have changed. */ 3160 dup.m_time = kernel2nt(&inode->i_mtime); 3161 if (std->m_time != dup.m_time) { 3162 std->m_time = dup.m_time; 3163 modified = true; 3164 } 3165 3166 dup.c_time = kernel2nt(&inode->i_ctime); 3167 if (std->c_time != dup.c_time) { 3168 std->c_time = dup.c_time; 3169 modified = true; 3170 } 3171 3172 dup.a_time = kernel2nt(&inode->i_atime); 3173 if (std->a_time != dup.a_time) { 3174 std->a_time = dup.a_time; 3175 modified = true; 3176 } 3177 3178 dup.fa = ni->std_fa; 3179 if (std->fa != dup.fa) { 3180 std->fa = dup.fa; 3181 modified = true; 3182 } 3183 3184 if (modified) 3185 ni->mi.dirty = true; 3186 3187 if (!ntfs_is_meta_file(sbi, inode->i_ino) && 3188 (modified || (ni->ni_flags & NI_FLAG_UPDATE_PARENT)) 3189 /* Avoid __wait_on_freeing_inode(inode). */ 3190 && (sb->s_flags & SB_ACTIVE)) { 3191 dup.cr_time = std->cr_time; 3192 /* Not critical if this function fail. */ 3193 re_dirty = ni_update_parent(ni, &dup, sync); 3194 3195 if (re_dirty) 3196 ni->ni_flags |= NI_FLAG_UPDATE_PARENT; 3197 else 3198 ni->ni_flags &= ~NI_FLAG_UPDATE_PARENT; 3199 } 3200 3201 /* Update attribute list. */ 3202 if (ni->attr_list.size && ni->attr_list.dirty) { 3203 if (inode->i_ino != MFT_REC_MFT || sync) { 3204 err = ni_try_remove_attr_list(ni); 3205 if (err) 3206 goto out; 3207 } 3208 3209 err = al_update(ni); 3210 if (err) 3211 goto out; 3212 } 3213 } 3214 3215 for (node = rb_first(&ni->mi_tree); node; node = next) { 3216 struct mft_inode *mi = rb_entry(node, struct mft_inode, node); 3217 bool is_empty; 3218 3219 next = rb_next(node); 3220 3221 if (!mi->dirty) 3222 continue; 3223 3224 is_empty = !mi_enum_attr(mi, NULL); 3225 3226 if (is_empty) 3227 clear_rec_inuse(mi->mrec); 3228 3229 err2 = mi_write(mi, sync); 3230 if (!err && err2) 3231 err = err2; 3232 3233 if (is_empty) { 3234 ntfs_mark_rec_free(sbi, mi->rno); 3235 rb_erase(node, &ni->mi_tree); 3236 mi_put(mi); 3237 } 3238 } 3239 3240 if (ni->mi.dirty) { 3241 err2 = mi_write(&ni->mi, sync); 3242 if (!err && err2) 3243 err = err2; 3244 } 3245 out: 3246 ni_unlock(ni); 3247 3248 if (err) { 3249 ntfs_err(sb, "%s r=%lx failed, %d.", hint, inode->i_ino, err); 3250 ntfs_set_state(sbi, NTFS_DIRTY_ERROR); 3251 return err; 3252 } 3253 3254 if (re_dirty) 3255 mark_inode_dirty_sync(inode); 3256 3257 return 0; 3258 } 3259