xref: /openbmc/linux/fs/ntfs3/frecord.c (revision 195c52bdd5d5ecfdabf5a7c6159efe299e534f84)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *
4  * Copyright (C) 2019-2021 Paragon Software GmbH, All rights reserved.
5  *
6  */
7 
8 #include <linux/blkdev.h>
9 #include <linux/buffer_head.h>
10 #include <linux/fiemap.h>
11 #include <linux/fs.h>
12 #include <linux/nls.h>
13 #include <linux/vmalloc.h>
14 
15 #include "debug.h"
16 #include "ntfs.h"
17 #include "ntfs_fs.h"
18 #ifdef CONFIG_NTFS3_LZX_XPRESS
19 #include "lib/lib.h"
20 #endif
21 
22 static struct mft_inode *ni_ins_mi(struct ntfs_inode *ni, struct rb_root *tree,
23 				   CLST ino, struct rb_node *ins)
24 {
25 	struct rb_node **p = &tree->rb_node;
26 	struct rb_node *pr = NULL;
27 
28 	while (*p) {
29 		struct mft_inode *mi;
30 
31 		pr = *p;
32 		mi = rb_entry(pr, struct mft_inode, node);
33 		if (mi->rno > ino)
34 			p = &pr->rb_left;
35 		else if (mi->rno < ino)
36 			p = &pr->rb_right;
37 		else
38 			return mi;
39 	}
40 
41 	if (!ins)
42 		return NULL;
43 
44 	rb_link_node(ins, pr, p);
45 	rb_insert_color(ins, tree);
46 	return rb_entry(ins, struct mft_inode, node);
47 }
48 
49 /*
50  * ni_find_mi
51  *
52  * finds mft_inode by record number
53  */
54 static struct mft_inode *ni_find_mi(struct ntfs_inode *ni, CLST rno)
55 {
56 	return ni_ins_mi(ni, &ni->mi_tree, rno, NULL);
57 }
58 
59 /*
60  * ni_add_mi
61  *
62  * adds new mft_inode into ntfs_inode
63  */
64 static void ni_add_mi(struct ntfs_inode *ni, struct mft_inode *mi)
65 {
66 	ni_ins_mi(ni, &ni->mi_tree, mi->rno, &mi->node);
67 }
68 
69 /*
70  * ni_remove_mi
71  *
72  * removes mft_inode from ntfs_inode
73  */
74 void ni_remove_mi(struct ntfs_inode *ni, struct mft_inode *mi)
75 {
76 	rb_erase(&mi->node, &ni->mi_tree);
77 }
78 
79 /*
80  * ni_std
81  *
82  * returns pointer into std_info from primary record
83  */
84 struct ATTR_STD_INFO *ni_std(struct ntfs_inode *ni)
85 {
86 	const struct ATTRIB *attr;
87 
88 	attr = mi_find_attr(&ni->mi, NULL, ATTR_STD, NULL, 0, NULL);
89 	return attr ? resident_data_ex(attr, sizeof(struct ATTR_STD_INFO))
90 		    : NULL;
91 }
92 
93 /*
94  * ni_std5
95  *
96  * returns pointer into std_info from primary record
97  */
98 struct ATTR_STD_INFO5 *ni_std5(struct ntfs_inode *ni)
99 {
100 	const struct ATTRIB *attr;
101 
102 	attr = mi_find_attr(&ni->mi, NULL, ATTR_STD, NULL, 0, NULL);
103 
104 	return attr ? resident_data_ex(attr, sizeof(struct ATTR_STD_INFO5))
105 		    : NULL;
106 }
107 
108 /*
109  * ni_clear
110  *
111  * clears resources allocated by ntfs_inode
112  */
113 void ni_clear(struct ntfs_inode *ni)
114 {
115 	struct rb_node *node;
116 
117 	if (!ni->vfs_inode.i_nlink && is_rec_inuse(ni->mi.mrec))
118 		ni_delete_all(ni);
119 
120 	al_destroy(ni);
121 
122 	for (node = rb_first(&ni->mi_tree); node;) {
123 		struct rb_node *next = rb_next(node);
124 		struct mft_inode *mi = rb_entry(node, struct mft_inode, node);
125 
126 		rb_erase(node, &ni->mi_tree);
127 		mi_put(mi);
128 		node = next;
129 	}
130 
131 	/* bad inode always has mode == S_IFREG */
132 	if (ni->ni_flags & NI_FLAG_DIR)
133 		indx_clear(&ni->dir);
134 	else {
135 		run_close(&ni->file.run);
136 #ifdef CONFIG_NTFS3_LZX_XPRESS
137 		if (ni->file.offs_page) {
138 			/* on-demand allocated page for offsets */
139 			put_page(ni->file.offs_page);
140 			ni->file.offs_page = NULL;
141 		}
142 #endif
143 	}
144 
145 	mi_clear(&ni->mi);
146 }
147 
148 /*
149  * ni_load_mi_ex
150  *
151  * finds mft_inode by record number.
152  */
153 int ni_load_mi_ex(struct ntfs_inode *ni, CLST rno, struct mft_inode **mi)
154 {
155 	int err;
156 	struct mft_inode *r;
157 
158 	r = ni_find_mi(ni, rno);
159 	if (r)
160 		goto out;
161 
162 	err = mi_get(ni->mi.sbi, rno, &r);
163 	if (err)
164 		return err;
165 
166 	ni_add_mi(ni, r);
167 
168 out:
169 	if (mi)
170 		*mi = r;
171 	return 0;
172 }
173 
174 /*
175  * ni_load_mi
176  *
177  * load mft_inode corresponded list_entry
178  */
179 int ni_load_mi(struct ntfs_inode *ni, struct ATTR_LIST_ENTRY *le,
180 	       struct mft_inode **mi)
181 {
182 	CLST rno;
183 
184 	if (!le) {
185 		*mi = &ni->mi;
186 		return 0;
187 	}
188 
189 	rno = ino_get(&le->ref);
190 	if (rno == ni->mi.rno) {
191 		*mi = &ni->mi;
192 		return 0;
193 	}
194 	return ni_load_mi_ex(ni, rno, mi);
195 }
196 
197 /*
198  * ni_find_attr
199  *
200  * returns attribute and record this attribute belongs to
201  */
202 struct ATTRIB *ni_find_attr(struct ntfs_inode *ni, struct ATTRIB *attr,
203 			    struct ATTR_LIST_ENTRY **le_o, enum ATTR_TYPE type,
204 			    const __le16 *name, u8 name_len, const CLST *vcn,
205 			    struct mft_inode **mi)
206 {
207 	struct ATTR_LIST_ENTRY *le;
208 	struct mft_inode *m;
209 
210 	if (!ni->attr_list.size ||
211 	    (!name_len && (type == ATTR_LIST || type == ATTR_STD))) {
212 		if (le_o)
213 			*le_o = NULL;
214 		if (mi)
215 			*mi = &ni->mi;
216 
217 		/* Look for required attribute in primary record */
218 		return mi_find_attr(&ni->mi, attr, type, name, name_len, NULL);
219 	}
220 
221 	/* first look for list entry of required type */
222 	le = al_find_ex(ni, le_o ? *le_o : NULL, type, name, name_len, vcn);
223 	if (!le)
224 		return NULL;
225 
226 	if (le_o)
227 		*le_o = le;
228 
229 	/* Load record that contains this attribute */
230 	if (ni_load_mi(ni, le, &m))
231 		return NULL;
232 
233 	/* Look for required attribute */
234 	attr = mi_find_attr(m, NULL, type, name, name_len, &le->id);
235 
236 	if (!attr)
237 		goto out;
238 
239 	if (!attr->non_res) {
240 		if (vcn && *vcn)
241 			goto out;
242 	} else if (!vcn) {
243 		if (attr->nres.svcn)
244 			goto out;
245 	} else if (le64_to_cpu(attr->nres.svcn) > *vcn ||
246 		   *vcn > le64_to_cpu(attr->nres.evcn)) {
247 		goto out;
248 	}
249 
250 	if (mi)
251 		*mi = m;
252 	return attr;
253 
254 out:
255 	ntfs_set_state(ni->mi.sbi, NTFS_DIRTY_ERROR);
256 	return NULL;
257 }
258 
259 /*
260  * ni_enum_attr_ex
261  *
262  * enumerates attributes in ntfs_inode
263  */
264 struct ATTRIB *ni_enum_attr_ex(struct ntfs_inode *ni, struct ATTRIB *attr,
265 			       struct ATTR_LIST_ENTRY **le,
266 			       struct mft_inode **mi)
267 {
268 	struct mft_inode *mi2;
269 	struct ATTR_LIST_ENTRY *le2;
270 
271 	/* Do we have an attribute list? */
272 	if (!ni->attr_list.size) {
273 		*le = NULL;
274 		if (mi)
275 			*mi = &ni->mi;
276 		/* Enum attributes in primary record */
277 		return mi_enum_attr(&ni->mi, attr);
278 	}
279 
280 	/* get next list entry */
281 	le2 = *le = al_enumerate(ni, attr ? *le : NULL);
282 	if (!le2)
283 		return NULL;
284 
285 	/* Load record that contains the required attribute */
286 	if (ni_load_mi(ni, le2, &mi2))
287 		return NULL;
288 
289 	if (mi)
290 		*mi = mi2;
291 
292 	/* Find attribute in loaded record */
293 	return rec_find_attr_le(mi2, le2);
294 }
295 
296 /*
297  * ni_load_attr
298  *
299  * loads attribute that contains given vcn
300  */
301 struct ATTRIB *ni_load_attr(struct ntfs_inode *ni, enum ATTR_TYPE type,
302 			    const __le16 *name, u8 name_len, CLST vcn,
303 			    struct mft_inode **pmi)
304 {
305 	struct ATTR_LIST_ENTRY *le;
306 	struct ATTRIB *attr;
307 	struct mft_inode *mi;
308 	struct ATTR_LIST_ENTRY *next;
309 
310 	if (!ni->attr_list.size) {
311 		if (pmi)
312 			*pmi = &ni->mi;
313 		return mi_find_attr(&ni->mi, NULL, type, name, name_len, NULL);
314 	}
315 
316 	le = al_find_ex(ni, NULL, type, name, name_len, NULL);
317 	if (!le)
318 		return NULL;
319 
320 	/*
321 	 * Unfortunately ATTR_LIST_ENTRY contains only start vcn
322 	 * So to find the ATTRIB segment that contains 'vcn' we should
323 	 * enumerate some entries
324 	 */
325 	if (vcn) {
326 		for (;; le = next) {
327 			next = al_find_ex(ni, le, type, name, name_len, NULL);
328 			if (!next || le64_to_cpu(next->vcn) > vcn)
329 				break;
330 		}
331 	}
332 
333 	if (ni_load_mi(ni, le, &mi))
334 		return NULL;
335 
336 	if (pmi)
337 		*pmi = mi;
338 
339 	attr = mi_find_attr(mi, NULL, type, name, name_len, &le->id);
340 	if (!attr)
341 		return NULL;
342 
343 	if (!attr->non_res)
344 		return attr;
345 
346 	if (le64_to_cpu(attr->nres.svcn) <= vcn &&
347 	    vcn <= le64_to_cpu(attr->nres.evcn))
348 		return attr;
349 
350 	return NULL;
351 }
352 
353 /*
354  * ni_load_all_mi
355  *
356  * loads all subrecords
357  */
358 int ni_load_all_mi(struct ntfs_inode *ni)
359 {
360 	int err;
361 	struct ATTR_LIST_ENTRY *le;
362 
363 	if (!ni->attr_list.size)
364 		return 0;
365 
366 	le = NULL;
367 
368 	while ((le = al_enumerate(ni, le))) {
369 		CLST rno = ino_get(&le->ref);
370 
371 		if (rno == ni->mi.rno)
372 			continue;
373 
374 		err = ni_load_mi_ex(ni, rno, NULL);
375 		if (err)
376 			return err;
377 	}
378 
379 	return 0;
380 }
381 
382 /*
383  * ni_add_subrecord
384  *
385  * allocate + format + attach a new subrecord
386  */
387 bool ni_add_subrecord(struct ntfs_inode *ni, CLST rno, struct mft_inode **mi)
388 {
389 	struct mft_inode *m;
390 
391 	m = kzalloc(sizeof(struct mft_inode), GFP_NOFS);
392 	if (!m)
393 		return false;
394 
395 	if (mi_format_new(m, ni->mi.sbi, rno, 0, ni->mi.rno == MFT_REC_MFT)) {
396 		mi_put(m);
397 		return false;
398 	}
399 
400 	mi_get_ref(&ni->mi, &m->mrec->parent_ref);
401 
402 	ni_add_mi(ni, m);
403 	*mi = m;
404 	return true;
405 }
406 
407 /*
408  * ni_remove_attr
409  *
410  * removes all attributes for the given type/name/id
411  */
412 int ni_remove_attr(struct ntfs_inode *ni, enum ATTR_TYPE type,
413 		   const __le16 *name, size_t name_len, bool base_only,
414 		   const __le16 *id)
415 {
416 	int err;
417 	struct ATTRIB *attr;
418 	struct ATTR_LIST_ENTRY *le;
419 	struct mft_inode *mi;
420 	u32 type_in;
421 	int diff;
422 
423 	if (base_only || type == ATTR_LIST || !ni->attr_list.size) {
424 		attr = mi_find_attr(&ni->mi, NULL, type, name, name_len, id);
425 		if (!attr)
426 			return -ENOENT;
427 
428 		mi_remove_attr(&ni->mi, attr);
429 		return 0;
430 	}
431 
432 	type_in = le32_to_cpu(type);
433 	le = NULL;
434 
435 	for (;;) {
436 		le = al_enumerate(ni, le);
437 		if (!le)
438 			return 0;
439 
440 next_le2:
441 		diff = le32_to_cpu(le->type) - type_in;
442 		if (diff < 0)
443 			continue;
444 
445 		if (diff > 0)
446 			return 0;
447 
448 		if (le->name_len != name_len)
449 			continue;
450 
451 		if (name_len &&
452 		    memcmp(le_name(le), name, name_len * sizeof(short)))
453 			continue;
454 
455 		if (id && le->id != *id)
456 			continue;
457 		err = ni_load_mi(ni, le, &mi);
458 		if (err)
459 			return err;
460 
461 		al_remove_le(ni, le);
462 
463 		attr = mi_find_attr(mi, NULL, type, name, name_len, id);
464 		if (!attr)
465 			return -ENOENT;
466 
467 		mi_remove_attr(mi, attr);
468 
469 		if (PtrOffset(ni->attr_list.le, le) >= ni->attr_list.size)
470 			return 0;
471 		goto next_le2;
472 	}
473 }
474 
475 /*
476  * ni_ins_new_attr
477  *
478  * inserts the attribute into record
479  * Returns not full constructed attribute or NULL if not possible to create
480  */
481 static struct ATTRIB *ni_ins_new_attr(struct ntfs_inode *ni,
482 				      struct mft_inode *mi,
483 				      struct ATTR_LIST_ENTRY *le,
484 				      enum ATTR_TYPE type, const __le16 *name,
485 				      u8 name_len, u32 asize, u16 name_off,
486 				      CLST svcn)
487 {
488 	int err;
489 	struct ATTRIB *attr;
490 	bool le_added = false;
491 	struct MFT_REF ref;
492 
493 	mi_get_ref(mi, &ref);
494 
495 	if (type != ATTR_LIST && !le && ni->attr_list.size) {
496 		err = al_add_le(ni, type, name, name_len, svcn, cpu_to_le16(-1),
497 				&ref, &le);
498 		if (err) {
499 			/* no memory or no space */
500 			return NULL;
501 		}
502 		le_added = true;
503 
504 		/*
505 		 * al_add_le -> attr_set_size (list) -> ni_expand_list
506 		 * which moves some attributes out of primary record
507 		 * this means that name may point into moved memory
508 		 * reinit 'name' from le
509 		 */
510 		name = le->name;
511 	}
512 
513 	attr = mi_insert_attr(mi, type, name, name_len, asize, name_off);
514 	if (!attr) {
515 		if (le_added)
516 			al_remove_le(ni, le);
517 		return NULL;
518 	}
519 
520 	if (type == ATTR_LIST) {
521 		/*attr list is not in list entry array*/
522 		goto out;
523 	}
524 
525 	if (!le)
526 		goto out;
527 
528 	/* Update ATTRIB Id and record reference */
529 	le->id = attr->id;
530 	ni->attr_list.dirty = true;
531 	le->ref = ref;
532 
533 out:
534 	return attr;
535 }
536 
537 /*
538  * random write access to sparsed or compressed file may result to
539  * not optimized packed runs.
540  * Here it is the place to optimize it
541  */
542 static int ni_repack(struct ntfs_inode *ni)
543 {
544 	int err = 0;
545 	struct ntfs_sb_info *sbi = ni->mi.sbi;
546 	struct mft_inode *mi, *mi_p = NULL;
547 	struct ATTRIB *attr = NULL, *attr_p;
548 	struct ATTR_LIST_ENTRY *le = NULL, *le_p;
549 	CLST alloc = 0;
550 	u8 cluster_bits = sbi->cluster_bits;
551 	CLST svcn, evcn = 0, svcn_p, evcn_p, next_svcn;
552 	u32 roff, rs = sbi->record_size;
553 	struct runs_tree run;
554 
555 	run_init(&run);
556 
557 	while ((attr = ni_enum_attr_ex(ni, attr, &le, &mi))) {
558 		if (!attr->non_res)
559 			continue;
560 
561 		svcn = le64_to_cpu(attr->nres.svcn);
562 		if (svcn != le64_to_cpu(le->vcn)) {
563 			err = -EINVAL;
564 			break;
565 		}
566 
567 		if (!svcn) {
568 			alloc = le64_to_cpu(attr->nres.alloc_size) >>
569 				cluster_bits;
570 			mi_p = NULL;
571 		} else if (svcn != evcn + 1) {
572 			err = -EINVAL;
573 			break;
574 		}
575 
576 		evcn = le64_to_cpu(attr->nres.evcn);
577 
578 		if (svcn > evcn + 1) {
579 			err = -EINVAL;
580 			break;
581 		}
582 
583 		if (!mi_p) {
584 			/* do not try if too little free space */
585 			if (le32_to_cpu(mi->mrec->used) + 8 >= rs)
586 				continue;
587 
588 			/* do not try if last attribute segment */
589 			if (evcn + 1 == alloc)
590 				continue;
591 			run_close(&run);
592 		}
593 
594 		roff = le16_to_cpu(attr->nres.run_off);
595 		err = run_unpack(&run, sbi, ni->mi.rno, svcn, evcn, svcn,
596 				 Add2Ptr(attr, roff),
597 				 le32_to_cpu(attr->size) - roff);
598 		if (err < 0)
599 			break;
600 
601 		if (!mi_p) {
602 			mi_p = mi;
603 			attr_p = attr;
604 			svcn_p = svcn;
605 			evcn_p = evcn;
606 			le_p = le;
607 			err = 0;
608 			continue;
609 		}
610 
611 		/*
612 		 * run contains data from two records: mi_p and mi
613 		 * try to pack in one
614 		 */
615 		err = mi_pack_runs(mi_p, attr_p, &run, evcn + 1 - svcn_p);
616 		if (err)
617 			break;
618 
619 		next_svcn = le64_to_cpu(attr_p->nres.evcn) + 1;
620 
621 		if (next_svcn >= evcn + 1) {
622 			/* we can remove this attribute segment */
623 			al_remove_le(ni, le);
624 			mi_remove_attr(mi, attr);
625 			le = le_p;
626 			continue;
627 		}
628 
629 		attr->nres.svcn = le->vcn = cpu_to_le64(next_svcn);
630 		mi->dirty = true;
631 		ni->attr_list.dirty = true;
632 
633 		if (evcn + 1 == alloc) {
634 			err = mi_pack_runs(mi, attr, &run,
635 					   evcn + 1 - next_svcn);
636 			if (err)
637 				break;
638 			mi_p = NULL;
639 		} else {
640 			mi_p = mi;
641 			attr_p = attr;
642 			svcn_p = next_svcn;
643 			evcn_p = evcn;
644 			le_p = le;
645 			run_truncate_head(&run, next_svcn);
646 		}
647 	}
648 
649 	if (err) {
650 		ntfs_inode_warn(&ni->vfs_inode, "repack problem");
651 		ntfs_set_state(sbi, NTFS_DIRTY_ERROR);
652 
653 		/* Pack loaded but not packed runs */
654 		if (mi_p)
655 			mi_pack_runs(mi_p, attr_p, &run, evcn_p + 1 - svcn_p);
656 	}
657 
658 	run_close(&run);
659 	return err;
660 }
661 
662 /*
663  * ni_try_remove_attr_list
664  *
665  * Can we remove attribute list?
666  * Check the case when primary record contains enough space for all attributes
667  */
668 static int ni_try_remove_attr_list(struct ntfs_inode *ni)
669 {
670 	int err = 0;
671 	struct ntfs_sb_info *sbi = ni->mi.sbi;
672 	struct ATTRIB *attr, *attr_list, *attr_ins;
673 	struct ATTR_LIST_ENTRY *le;
674 	struct mft_inode *mi;
675 	u32 asize, free;
676 	struct MFT_REF ref;
677 	__le16 id;
678 
679 	if (!ni->attr_list.dirty)
680 		return 0;
681 
682 	err = ni_repack(ni);
683 	if (err)
684 		return err;
685 
686 	attr_list = mi_find_attr(&ni->mi, NULL, ATTR_LIST, NULL, 0, NULL);
687 	if (!attr_list)
688 		return 0;
689 
690 	asize = le32_to_cpu(attr_list->size);
691 
692 	/* free space in primary record without attribute list */
693 	free = sbi->record_size - le32_to_cpu(ni->mi.mrec->used) + asize;
694 	mi_get_ref(&ni->mi, &ref);
695 
696 	le = NULL;
697 	while ((le = al_enumerate(ni, le))) {
698 		if (!memcmp(&le->ref, &ref, sizeof(ref)))
699 			continue;
700 
701 		if (le->vcn)
702 			return 0;
703 
704 		mi = ni_find_mi(ni, ino_get(&le->ref));
705 		if (!mi)
706 			return 0;
707 
708 		attr = mi_find_attr(mi, NULL, le->type, le_name(le),
709 				    le->name_len, &le->id);
710 		if (!attr)
711 			return 0;
712 
713 		asize = le32_to_cpu(attr->size);
714 		if (asize > free)
715 			return 0;
716 
717 		free -= asize;
718 	}
719 
720 	/* Is seems that attribute list can be removed from primary record */
721 	mi_remove_attr(&ni->mi, attr_list);
722 
723 	/*
724 	 * Repeat the cycle above and move all attributes to primary record.
725 	 * It should be success!
726 	 */
727 	le = NULL;
728 	while ((le = al_enumerate(ni, le))) {
729 		if (!memcmp(&le->ref, &ref, sizeof(ref)))
730 			continue;
731 
732 		mi = ni_find_mi(ni, ino_get(&le->ref));
733 
734 		attr = mi_find_attr(mi, NULL, le->type, le_name(le),
735 				    le->name_len, &le->id);
736 		asize = le32_to_cpu(attr->size);
737 
738 		/* insert into primary record */
739 		attr_ins = mi_insert_attr(&ni->mi, le->type, le_name(le),
740 					  le->name_len, asize,
741 					  le16_to_cpu(attr->name_off));
742 		id = attr_ins->id;
743 
744 		/* copy all except id */
745 		memcpy(attr_ins, attr, asize);
746 		attr_ins->id = id;
747 
748 		/* remove from original record */
749 		mi_remove_attr(mi, attr);
750 	}
751 
752 	run_deallocate(sbi, &ni->attr_list.run, true);
753 	run_close(&ni->attr_list.run);
754 	ni->attr_list.size = 0;
755 	kfree(ni->attr_list.le);
756 	ni->attr_list.le = NULL;
757 	ni->attr_list.dirty = false;
758 
759 	return 0;
760 }
761 
762 /*
763  * ni_create_attr_list
764  *
765  * generates an attribute list for this primary record
766  */
767 int ni_create_attr_list(struct ntfs_inode *ni)
768 {
769 	struct ntfs_sb_info *sbi = ni->mi.sbi;
770 	int err;
771 	u32 lsize;
772 	struct ATTRIB *attr;
773 	struct ATTRIB *arr_move[7];
774 	struct ATTR_LIST_ENTRY *le, *le_b[7];
775 	struct MFT_REC *rec;
776 	bool is_mft;
777 	CLST rno = 0;
778 	struct mft_inode *mi;
779 	u32 free_b, nb, to_free, rs;
780 	u16 sz;
781 
782 	is_mft = ni->mi.rno == MFT_REC_MFT;
783 	rec = ni->mi.mrec;
784 	rs = sbi->record_size;
785 
786 	/*
787 	 * Skip estimating exact memory requirement
788 	 * Looks like one record_size is always enough
789 	 */
790 	le = kmalloc(al_aligned(rs), GFP_NOFS);
791 	if (!le) {
792 		err = -ENOMEM;
793 		goto out;
794 	}
795 
796 	mi_get_ref(&ni->mi, &le->ref);
797 	ni->attr_list.le = le;
798 
799 	attr = NULL;
800 	nb = 0;
801 	free_b = 0;
802 	attr = NULL;
803 
804 	for (; (attr = mi_enum_attr(&ni->mi, attr)); le = Add2Ptr(le, sz)) {
805 		sz = le_size(attr->name_len);
806 		le->type = attr->type;
807 		le->size = cpu_to_le16(sz);
808 		le->name_len = attr->name_len;
809 		le->name_off = offsetof(struct ATTR_LIST_ENTRY, name);
810 		le->vcn = 0;
811 		if (le != ni->attr_list.le)
812 			le->ref = ni->attr_list.le->ref;
813 		le->id = attr->id;
814 
815 		if (attr->name_len)
816 			memcpy(le->name, attr_name(attr),
817 			       sizeof(short) * attr->name_len);
818 		else if (attr->type == ATTR_STD)
819 			continue;
820 		else if (attr->type == ATTR_LIST)
821 			continue;
822 		else if (is_mft && attr->type == ATTR_DATA)
823 			continue;
824 
825 		if (!nb || nb < ARRAY_SIZE(arr_move)) {
826 			le_b[nb] = le;
827 			arr_move[nb++] = attr;
828 			free_b += le32_to_cpu(attr->size);
829 		}
830 	}
831 
832 	lsize = PtrOffset(ni->attr_list.le, le);
833 	ni->attr_list.size = lsize;
834 
835 	to_free = le32_to_cpu(rec->used) + lsize + SIZEOF_RESIDENT;
836 	if (to_free <= rs) {
837 		to_free = 0;
838 	} else {
839 		to_free -= rs;
840 
841 		if (to_free > free_b) {
842 			err = -EINVAL;
843 			goto out1;
844 		}
845 	}
846 
847 	/* Allocate child mft. */
848 	err = ntfs_look_free_mft(sbi, &rno, is_mft, ni, &mi);
849 	if (err)
850 		goto out1;
851 
852 	/* Call 'mi_remove_attr' in reverse order to keep pointers 'arr_move' valid */
853 	while (to_free > 0) {
854 		struct ATTRIB *b = arr_move[--nb];
855 		u32 asize = le32_to_cpu(b->size);
856 		u16 name_off = le16_to_cpu(b->name_off);
857 
858 		attr = mi_insert_attr(mi, b->type, Add2Ptr(b, name_off),
859 				      b->name_len, asize, name_off);
860 		WARN_ON(!attr);
861 
862 		mi_get_ref(mi, &le_b[nb]->ref);
863 		le_b[nb]->id = attr->id;
864 
865 		/* copy all except id */
866 		memcpy(attr, b, asize);
867 		attr->id = le_b[nb]->id;
868 
869 		WARN_ON(!mi_remove_attr(&ni->mi, b));
870 
871 		if (to_free <= asize)
872 			break;
873 		to_free -= asize;
874 		WARN_ON(!nb);
875 	}
876 
877 	attr = mi_insert_attr(&ni->mi, ATTR_LIST, NULL, 0,
878 			      lsize + SIZEOF_RESIDENT, SIZEOF_RESIDENT);
879 	WARN_ON(!attr);
880 
881 	attr->non_res = 0;
882 	attr->flags = 0;
883 	attr->res.data_size = cpu_to_le32(lsize);
884 	attr->res.data_off = SIZEOF_RESIDENT_LE;
885 	attr->res.flags = 0;
886 	attr->res.res = 0;
887 
888 	memcpy(resident_data_ex(attr, lsize), ni->attr_list.le, lsize);
889 
890 	ni->attr_list.dirty = false;
891 
892 	mark_inode_dirty(&ni->vfs_inode);
893 	goto out;
894 
895 out1:
896 	kfree(ni->attr_list.le);
897 	ni->attr_list.le = NULL;
898 	ni->attr_list.size = 0;
899 
900 out:
901 	return err;
902 }
903 
904 /*
905  * ni_ins_attr_ext
906  *
907  * This method adds an external attribute to the ntfs_inode.
908  */
909 static int ni_ins_attr_ext(struct ntfs_inode *ni, struct ATTR_LIST_ENTRY *le,
910 			   enum ATTR_TYPE type, const __le16 *name, u8 name_len,
911 			   u32 asize, CLST svcn, u16 name_off, bool force_ext,
912 			   struct ATTRIB **ins_attr, struct mft_inode **ins_mi)
913 {
914 	struct ATTRIB *attr;
915 	struct mft_inode *mi;
916 	CLST rno;
917 	u64 vbo;
918 	struct rb_node *node;
919 	int err;
920 	bool is_mft, is_mft_data;
921 	struct ntfs_sb_info *sbi = ni->mi.sbi;
922 
923 	is_mft = ni->mi.rno == MFT_REC_MFT;
924 	is_mft_data = is_mft && type == ATTR_DATA && !name_len;
925 
926 	if (asize > sbi->max_bytes_per_attr) {
927 		err = -EINVAL;
928 		goto out;
929 	}
930 
931 	/*
932 	 * standard information and attr_list cannot be made external.
933 	 * The Log File cannot have any external attributes
934 	 */
935 	if (type == ATTR_STD || type == ATTR_LIST ||
936 	    ni->mi.rno == MFT_REC_LOG) {
937 		err = -EINVAL;
938 		goto out;
939 	}
940 
941 	/* Create attribute list if it is not already existed */
942 	if (!ni->attr_list.size) {
943 		err = ni_create_attr_list(ni);
944 		if (err)
945 			goto out;
946 	}
947 
948 	vbo = is_mft_data ? ((u64)svcn << sbi->cluster_bits) : 0;
949 
950 	if (force_ext)
951 		goto insert_ext;
952 
953 	/* Load all subrecords into memory. */
954 	err = ni_load_all_mi(ni);
955 	if (err)
956 		goto out;
957 
958 	/* Check each of loaded subrecord */
959 	for (node = rb_first(&ni->mi_tree); node; node = rb_next(node)) {
960 		mi = rb_entry(node, struct mft_inode, node);
961 
962 		if (is_mft_data &&
963 		    (mi_enum_attr(mi, NULL) ||
964 		     vbo <= ((u64)mi->rno << sbi->record_bits))) {
965 			/* We can't accept this record 'case MFT's bootstrapping */
966 			continue;
967 		}
968 		if (is_mft &&
969 		    mi_find_attr(mi, NULL, ATTR_DATA, NULL, 0, NULL)) {
970 			/*
971 			 * This child record already has a ATTR_DATA.
972 			 * So it can't accept any other records.
973 			 */
974 			continue;
975 		}
976 
977 		if ((type != ATTR_NAME || name_len) &&
978 		    mi_find_attr(mi, NULL, type, name, name_len, NULL)) {
979 			/* Only indexed attributes can share same record */
980 			continue;
981 		}
982 
983 		/* Try to insert attribute into this subrecord */
984 		attr = ni_ins_new_attr(ni, mi, le, type, name, name_len, asize,
985 				       name_off, svcn);
986 		if (!attr)
987 			continue;
988 
989 		if (ins_attr)
990 			*ins_attr = attr;
991 		return 0;
992 	}
993 
994 insert_ext:
995 	/* We have to allocate a new child subrecord*/
996 	err = ntfs_look_free_mft(sbi, &rno, is_mft_data, ni, &mi);
997 	if (err)
998 		goto out;
999 
1000 	if (is_mft_data && vbo <= ((u64)rno << sbi->record_bits)) {
1001 		err = -EINVAL;
1002 		goto out1;
1003 	}
1004 
1005 	attr = ni_ins_new_attr(ni, mi, le, type, name, name_len, asize,
1006 			       name_off, svcn);
1007 	if (!attr)
1008 		goto out2;
1009 
1010 	if (ins_attr)
1011 		*ins_attr = attr;
1012 	if (ins_mi)
1013 		*ins_mi = mi;
1014 
1015 	return 0;
1016 
1017 out2:
1018 	ni_remove_mi(ni, mi);
1019 	mi_put(mi);
1020 	err = -EINVAL;
1021 
1022 out1:
1023 	ntfs_mark_rec_free(sbi, rno);
1024 
1025 out:
1026 	return err;
1027 }
1028 
1029 /*
1030  * ni_insert_attr
1031  *
1032  * inserts an attribute into the file.
1033  *
1034  * If the primary record has room, it will just insert the attribute.
1035  * If not, it may make the attribute external.
1036  * For $MFT::Data it may make room for the attribute by
1037  * making other attributes external.
1038  *
1039  * NOTE:
1040  * The ATTR_LIST and ATTR_STD cannot be made external.
1041  * This function does not fill new attribute full
1042  * It only fills 'size'/'type'/'id'/'name_len' fields
1043  */
1044 static int ni_insert_attr(struct ntfs_inode *ni, enum ATTR_TYPE type,
1045 			  const __le16 *name, u8 name_len, u32 asize,
1046 			  u16 name_off, CLST svcn, struct ATTRIB **ins_attr,
1047 			  struct mft_inode **ins_mi)
1048 {
1049 	struct ntfs_sb_info *sbi = ni->mi.sbi;
1050 	int err;
1051 	struct ATTRIB *attr, *eattr;
1052 	struct MFT_REC *rec;
1053 	bool is_mft;
1054 	struct ATTR_LIST_ENTRY *le;
1055 	u32 list_reserve, max_free, free, used, t32;
1056 	__le16 id;
1057 	u16 t16;
1058 
1059 	is_mft = ni->mi.rno == MFT_REC_MFT;
1060 	rec = ni->mi.mrec;
1061 
1062 	list_reserve = SIZEOF_NONRESIDENT + 3 * (1 + 2 * sizeof(u32));
1063 	used = le32_to_cpu(rec->used);
1064 	free = sbi->record_size - used;
1065 
1066 	if (is_mft && type != ATTR_LIST) {
1067 		/* Reserve space for the ATTRIB List. */
1068 		if (free < list_reserve)
1069 			free = 0;
1070 		else
1071 			free -= list_reserve;
1072 	}
1073 
1074 	if (asize <= free) {
1075 		attr = ni_ins_new_attr(ni, &ni->mi, NULL, type, name, name_len,
1076 				       asize, name_off, svcn);
1077 		if (attr) {
1078 			if (ins_attr)
1079 				*ins_attr = attr;
1080 			if (ins_mi)
1081 				*ins_mi = &ni->mi;
1082 			err = 0;
1083 			goto out;
1084 		}
1085 	}
1086 
1087 	if (!is_mft || type != ATTR_DATA || svcn) {
1088 		/* This ATTRIB will be external. */
1089 		err = ni_ins_attr_ext(ni, NULL, type, name, name_len, asize,
1090 				      svcn, name_off, false, ins_attr, ins_mi);
1091 		goto out;
1092 	}
1093 
1094 	/*
1095 	 * Here we have: "is_mft && type == ATTR_DATA && !svcn
1096 	 *
1097 	 * The first chunk of the $MFT::Data ATTRIB must be the base record.
1098 	 * Evict as many other attributes as possible.
1099 	 */
1100 	max_free = free;
1101 
1102 	/* Estimate the result of moving all possible attributes away.*/
1103 	attr = NULL;
1104 
1105 	while ((attr = mi_enum_attr(&ni->mi, attr))) {
1106 		if (attr->type == ATTR_STD)
1107 			continue;
1108 		if (attr->type == ATTR_LIST)
1109 			continue;
1110 		max_free += le32_to_cpu(attr->size);
1111 	}
1112 
1113 	if (max_free < asize + list_reserve) {
1114 		/* Impossible to insert this attribute into primary record */
1115 		err = -EINVAL;
1116 		goto out;
1117 	}
1118 
1119 	/* Start real attribute moving */
1120 	attr = NULL;
1121 
1122 	for (;;) {
1123 		attr = mi_enum_attr(&ni->mi, attr);
1124 		if (!attr) {
1125 			/* We should never be here 'cause we have already check this case */
1126 			err = -EINVAL;
1127 			goto out;
1128 		}
1129 
1130 		/* Skip attributes that MUST be primary record */
1131 		if (attr->type == ATTR_STD || attr->type == ATTR_LIST)
1132 			continue;
1133 
1134 		le = NULL;
1135 		if (ni->attr_list.size) {
1136 			le = al_find_le(ni, NULL, attr);
1137 			if (!le) {
1138 				/* Really this is a serious bug */
1139 				err = -EINVAL;
1140 				goto out;
1141 			}
1142 		}
1143 
1144 		t32 = le32_to_cpu(attr->size);
1145 		t16 = le16_to_cpu(attr->name_off);
1146 		err = ni_ins_attr_ext(ni, le, attr->type, Add2Ptr(attr, t16),
1147 				      attr->name_len, t32, attr_svcn(attr), t16,
1148 				      false, &eattr, NULL);
1149 		if (err)
1150 			return err;
1151 
1152 		id = eattr->id;
1153 		memcpy(eattr, attr, t32);
1154 		eattr->id = id;
1155 
1156 		/* remove attrib from primary record */
1157 		mi_remove_attr(&ni->mi, attr);
1158 
1159 		/* attr now points to next attribute */
1160 		if (attr->type == ATTR_END)
1161 			goto out;
1162 	}
1163 	while (asize + list_reserve > sbi->record_size - le32_to_cpu(rec->used))
1164 		;
1165 
1166 	attr = ni_ins_new_attr(ni, &ni->mi, NULL, type, name, name_len, asize,
1167 			       name_off, svcn);
1168 	if (!attr) {
1169 		err = -EINVAL;
1170 		goto out;
1171 	}
1172 
1173 	if (ins_attr)
1174 		*ins_attr = attr;
1175 	if (ins_mi)
1176 		*ins_mi = &ni->mi;
1177 
1178 out:
1179 	return err;
1180 }
1181 
1182 /*
1183  * ni_expand_mft_list
1184  *
1185  * This method splits ATTR_DATA of $MFT
1186  */
1187 static int ni_expand_mft_list(struct ntfs_inode *ni)
1188 {
1189 	int err = 0;
1190 	struct runs_tree *run = &ni->file.run;
1191 	u32 asize, run_size, done = 0;
1192 	struct ATTRIB *attr;
1193 	struct rb_node *node;
1194 	CLST mft_min, mft_new, svcn, evcn, plen;
1195 	struct mft_inode *mi, *mi_min, *mi_new;
1196 	struct ntfs_sb_info *sbi = ni->mi.sbi;
1197 
1198 	/* Find the nearest Mft */
1199 	mft_min = 0;
1200 	mft_new = 0;
1201 	mi_min = NULL;
1202 
1203 	for (node = rb_first(&ni->mi_tree); node; node = rb_next(node)) {
1204 		mi = rb_entry(node, struct mft_inode, node);
1205 
1206 		attr = mi_enum_attr(mi, NULL);
1207 
1208 		if (!attr) {
1209 			mft_min = mi->rno;
1210 			mi_min = mi;
1211 			break;
1212 		}
1213 	}
1214 
1215 	if (ntfs_look_free_mft(sbi, &mft_new, true, ni, &mi_new)) {
1216 		mft_new = 0;
1217 		// really this is not critical
1218 	} else if (mft_min > mft_new) {
1219 		mft_min = mft_new;
1220 		mi_min = mi_new;
1221 	} else {
1222 		ntfs_mark_rec_free(sbi, mft_new);
1223 		mft_new = 0;
1224 		ni_remove_mi(ni, mi_new);
1225 	}
1226 
1227 	attr = mi_find_attr(&ni->mi, NULL, ATTR_DATA, NULL, 0, NULL);
1228 	if (!attr) {
1229 		err = -EINVAL;
1230 		goto out;
1231 	}
1232 
1233 	asize = le32_to_cpu(attr->size);
1234 
1235 	evcn = le64_to_cpu(attr->nres.evcn);
1236 	svcn = bytes_to_cluster(sbi, (u64)(mft_min + 1) << sbi->record_bits);
1237 	if (evcn + 1 >= svcn) {
1238 		err = -EINVAL;
1239 		goto out;
1240 	}
1241 
1242 	/*
1243 	 * split primary attribute [0 evcn] in two parts [0 svcn) + [svcn evcn]
1244 	 *
1245 	 * Update first part of ATTR_DATA in 'primary MFT
1246 	 */
1247 	err = run_pack(run, 0, svcn, Add2Ptr(attr, SIZEOF_NONRESIDENT),
1248 		       asize - SIZEOF_NONRESIDENT, &plen);
1249 	if (err < 0)
1250 		goto out;
1251 
1252 	run_size = ALIGN(err, 8);
1253 	err = 0;
1254 
1255 	if (plen < svcn) {
1256 		err = -EINVAL;
1257 		goto out;
1258 	}
1259 
1260 	attr->nres.evcn = cpu_to_le64(svcn - 1);
1261 	attr->size = cpu_to_le32(run_size + SIZEOF_NONRESIDENT);
1262 	/* 'done' - how many bytes of primary MFT becomes free */
1263 	done = asize - run_size - SIZEOF_NONRESIDENT;
1264 	le32_sub_cpu(&ni->mi.mrec->used, done);
1265 
1266 	/* Estimate the size of second part: run_buf=NULL */
1267 	err = run_pack(run, svcn, evcn + 1 - svcn, NULL, sbi->record_size,
1268 		       &plen);
1269 	if (err < 0)
1270 		goto out;
1271 
1272 	run_size = ALIGN(err, 8);
1273 	err = 0;
1274 
1275 	if (plen < evcn + 1 - svcn) {
1276 		err = -EINVAL;
1277 		goto out;
1278 	}
1279 
1280 	/*
1281 	 * This function may implicitly call expand attr_list
1282 	 * Insert second part of ATTR_DATA in 'mi_min'
1283 	 */
1284 	attr = ni_ins_new_attr(ni, mi_min, NULL, ATTR_DATA, NULL, 0,
1285 			       SIZEOF_NONRESIDENT + run_size,
1286 			       SIZEOF_NONRESIDENT, svcn);
1287 	if (!attr) {
1288 		err = -EINVAL;
1289 		goto out;
1290 	}
1291 
1292 	attr->non_res = 1;
1293 	attr->name_off = SIZEOF_NONRESIDENT_LE;
1294 	attr->flags = 0;
1295 
1296 	run_pack(run, svcn, evcn + 1 - svcn, Add2Ptr(attr, SIZEOF_NONRESIDENT),
1297 		 run_size, &plen);
1298 
1299 	attr->nres.svcn = cpu_to_le64(svcn);
1300 	attr->nres.evcn = cpu_to_le64(evcn);
1301 	attr->nres.run_off = cpu_to_le16(SIZEOF_NONRESIDENT);
1302 
1303 out:
1304 	if (mft_new) {
1305 		ntfs_mark_rec_free(sbi, mft_new);
1306 		ni_remove_mi(ni, mi_new);
1307 	}
1308 
1309 	return !err && !done ? -EOPNOTSUPP : err;
1310 }
1311 
1312 /*
1313  * ni_expand_list
1314  *
1315  * This method moves all possible attributes out of primary record
1316  */
1317 int ni_expand_list(struct ntfs_inode *ni)
1318 {
1319 	int err = 0;
1320 	u32 asize, done = 0;
1321 	struct ATTRIB *attr, *ins_attr;
1322 	struct ATTR_LIST_ENTRY *le;
1323 	bool is_mft = ni->mi.rno == MFT_REC_MFT;
1324 	struct MFT_REF ref;
1325 
1326 	mi_get_ref(&ni->mi, &ref);
1327 	le = NULL;
1328 
1329 	while ((le = al_enumerate(ni, le))) {
1330 		if (le->type == ATTR_STD)
1331 			continue;
1332 
1333 		if (memcmp(&ref, &le->ref, sizeof(struct MFT_REF)))
1334 			continue;
1335 
1336 		if (is_mft && le->type == ATTR_DATA)
1337 			continue;
1338 
1339 		/* Find attribute in primary record */
1340 		attr = rec_find_attr_le(&ni->mi, le);
1341 		if (!attr) {
1342 			err = -EINVAL;
1343 			goto out;
1344 		}
1345 
1346 		asize = le32_to_cpu(attr->size);
1347 
1348 		/* Always insert into new record to avoid collisions (deep recursive) */
1349 		err = ni_ins_attr_ext(ni, le, attr->type, attr_name(attr),
1350 				      attr->name_len, asize, attr_svcn(attr),
1351 				      le16_to_cpu(attr->name_off), true,
1352 				      &ins_attr, NULL);
1353 
1354 		if (err)
1355 			goto out;
1356 
1357 		memcpy(ins_attr, attr, asize);
1358 		ins_attr->id = le->id;
1359 		mi_remove_attr(&ni->mi, attr);
1360 
1361 		done += asize;
1362 		goto out;
1363 	}
1364 
1365 	if (!is_mft) {
1366 		err = -EFBIG; /* attr list is too big(?) */
1367 		goto out;
1368 	}
1369 
1370 	/* split mft data as much as possible */
1371 	err = ni_expand_mft_list(ni);
1372 	if (err)
1373 		goto out;
1374 
1375 out:
1376 	return !err && !done ? -EOPNOTSUPP : err;
1377 }
1378 
1379 /*
1380  * ni_insert_nonresident
1381  *
1382  * inserts new nonresident attribute
1383  */
1384 int ni_insert_nonresident(struct ntfs_inode *ni, enum ATTR_TYPE type,
1385 			  const __le16 *name, u8 name_len,
1386 			  const struct runs_tree *run, CLST svcn, CLST len,
1387 			  __le16 flags, struct ATTRIB **new_attr,
1388 			  struct mft_inode **mi)
1389 {
1390 	int err;
1391 	CLST plen;
1392 	struct ATTRIB *attr;
1393 	bool is_ext =
1394 		(flags & (ATTR_FLAG_SPARSED | ATTR_FLAG_COMPRESSED)) && !svcn;
1395 	u32 name_size = ALIGN(name_len * sizeof(short), 8);
1396 	u32 name_off = is_ext ? SIZEOF_NONRESIDENT_EX : SIZEOF_NONRESIDENT;
1397 	u32 run_off = name_off + name_size;
1398 	u32 run_size, asize;
1399 	struct ntfs_sb_info *sbi = ni->mi.sbi;
1400 
1401 	err = run_pack(run, svcn, len, NULL, sbi->max_bytes_per_attr - run_off,
1402 		       &plen);
1403 	if (err < 0)
1404 		goto out;
1405 
1406 	run_size = ALIGN(err, 8);
1407 
1408 	if (plen < len) {
1409 		err = -EINVAL;
1410 		goto out;
1411 	}
1412 
1413 	asize = run_off + run_size;
1414 
1415 	if (asize > sbi->max_bytes_per_attr) {
1416 		err = -EINVAL;
1417 		goto out;
1418 	}
1419 
1420 	err = ni_insert_attr(ni, type, name, name_len, asize, name_off, svcn,
1421 			     &attr, mi);
1422 
1423 	if (err)
1424 		goto out;
1425 
1426 	attr->non_res = 1;
1427 	attr->name_off = cpu_to_le16(name_off);
1428 	attr->flags = flags;
1429 
1430 	run_pack(run, svcn, len, Add2Ptr(attr, run_off), run_size, &plen);
1431 
1432 	attr->nres.svcn = cpu_to_le64(svcn);
1433 	attr->nres.evcn = cpu_to_le64((u64)svcn + len - 1);
1434 
1435 	err = 0;
1436 	if (new_attr)
1437 		*new_attr = attr;
1438 
1439 	*(__le64 *)&attr->nres.run_off = cpu_to_le64(run_off);
1440 
1441 	attr->nres.alloc_size =
1442 		svcn ? 0 : cpu_to_le64((u64)len << ni->mi.sbi->cluster_bits);
1443 	attr->nres.data_size = attr->nres.alloc_size;
1444 	attr->nres.valid_size = attr->nres.alloc_size;
1445 
1446 	if (is_ext) {
1447 		if (flags & ATTR_FLAG_COMPRESSED)
1448 			attr->nres.c_unit = COMPRESSION_UNIT;
1449 		attr->nres.total_size = attr->nres.alloc_size;
1450 	}
1451 
1452 out:
1453 	return err;
1454 }
1455 
1456 /*
1457  * ni_insert_resident
1458  *
1459  * inserts new resident attribute
1460  */
1461 int ni_insert_resident(struct ntfs_inode *ni, u32 data_size,
1462 		       enum ATTR_TYPE type, const __le16 *name, u8 name_len,
1463 		       struct ATTRIB **new_attr, struct mft_inode **mi)
1464 {
1465 	int err;
1466 	u32 name_size = ALIGN(name_len * sizeof(short), 8);
1467 	u32 asize = SIZEOF_RESIDENT + name_size + ALIGN(data_size, 8);
1468 	struct ATTRIB *attr;
1469 
1470 	err = ni_insert_attr(ni, type, name, name_len, asize, SIZEOF_RESIDENT,
1471 			     0, &attr, mi);
1472 	if (err)
1473 		return err;
1474 
1475 	attr->non_res = 0;
1476 	attr->flags = 0;
1477 
1478 	attr->res.data_size = cpu_to_le32(data_size);
1479 	attr->res.data_off = cpu_to_le16(SIZEOF_RESIDENT + name_size);
1480 	if (type == ATTR_NAME)
1481 		attr->res.flags = RESIDENT_FLAG_INDEXED;
1482 	attr->res.res = 0;
1483 
1484 	if (new_attr)
1485 		*new_attr = attr;
1486 
1487 	return 0;
1488 }
1489 
1490 /*
1491  * ni_remove_attr_le
1492  *
1493  * removes attribute from record
1494  */
1495 int ni_remove_attr_le(struct ntfs_inode *ni, struct ATTRIB *attr,
1496 		      struct ATTR_LIST_ENTRY *le)
1497 {
1498 	int err;
1499 	struct mft_inode *mi;
1500 
1501 	err = ni_load_mi(ni, le, &mi);
1502 	if (err)
1503 		return err;
1504 
1505 	mi_remove_attr(mi, attr);
1506 
1507 	if (le)
1508 		al_remove_le(ni, le);
1509 
1510 	return 0;
1511 }
1512 
1513 /*
1514  * ni_delete_all
1515  *
1516  * removes all attributes and frees allocates space
1517  * ntfs_evict_inode->ntfs_clear_inode->ni_delete_all (if no links)
1518  */
1519 int ni_delete_all(struct ntfs_inode *ni)
1520 {
1521 	int err;
1522 	struct ATTR_LIST_ENTRY *le = NULL;
1523 	struct ATTRIB *attr = NULL;
1524 	struct rb_node *node;
1525 	u16 roff;
1526 	u32 asize;
1527 	CLST svcn, evcn;
1528 	struct ntfs_sb_info *sbi = ni->mi.sbi;
1529 	bool nt3 = is_ntfs3(sbi);
1530 	struct MFT_REF ref;
1531 
1532 	while ((attr = ni_enum_attr_ex(ni, attr, &le, NULL))) {
1533 		if (!nt3 || attr->name_len) {
1534 			;
1535 		} else if (attr->type == ATTR_REPARSE) {
1536 			mi_get_ref(&ni->mi, &ref);
1537 			ntfs_remove_reparse(sbi, 0, &ref);
1538 		} else if (attr->type == ATTR_ID && !attr->non_res &&
1539 			   le32_to_cpu(attr->res.data_size) >=
1540 				   sizeof(struct GUID)) {
1541 			ntfs_objid_remove(sbi, resident_data(attr));
1542 		}
1543 
1544 		if (!attr->non_res)
1545 			continue;
1546 
1547 		svcn = le64_to_cpu(attr->nres.svcn);
1548 		evcn = le64_to_cpu(attr->nres.evcn);
1549 
1550 		if (evcn + 1 <= svcn)
1551 			continue;
1552 
1553 		asize = le32_to_cpu(attr->size);
1554 		roff = le16_to_cpu(attr->nres.run_off);
1555 
1556 		/*run==1 means unpack and deallocate*/
1557 		run_unpack_ex(RUN_DEALLOCATE, sbi, ni->mi.rno, svcn, evcn, svcn,
1558 			      Add2Ptr(attr, roff), asize - roff);
1559 	}
1560 
1561 	if (ni->attr_list.size) {
1562 		run_deallocate(ni->mi.sbi, &ni->attr_list.run, true);
1563 		al_destroy(ni);
1564 	}
1565 
1566 	/* Free all subrecords */
1567 	for (node = rb_first(&ni->mi_tree); node;) {
1568 		struct rb_node *next = rb_next(node);
1569 		struct mft_inode *mi = rb_entry(node, struct mft_inode, node);
1570 
1571 		clear_rec_inuse(mi->mrec);
1572 		mi->dirty = true;
1573 		mi_write(mi, 0);
1574 
1575 		ntfs_mark_rec_free(sbi, mi->rno);
1576 		ni_remove_mi(ni, mi);
1577 		mi_put(mi);
1578 		node = next;
1579 	}
1580 
1581 	// Free base record
1582 	clear_rec_inuse(ni->mi.mrec);
1583 	ni->mi.dirty = true;
1584 	err = mi_write(&ni->mi, 0);
1585 
1586 	ntfs_mark_rec_free(sbi, ni->mi.rno);
1587 
1588 	return err;
1589 }
1590 
1591 /*
1592  * ni_fname_name
1593  *
1594  * returns file name attribute by its value
1595  */
1596 struct ATTR_FILE_NAME *ni_fname_name(struct ntfs_inode *ni,
1597 				     const struct cpu_str *uni,
1598 				     const struct MFT_REF *home_dir,
1599 				     struct ATTR_LIST_ENTRY **le)
1600 {
1601 	struct ATTRIB *attr = NULL;
1602 	struct ATTR_FILE_NAME *fname;
1603 
1604 	*le = NULL;
1605 
1606 	/* Enumerate all names */
1607 next:
1608 	attr = ni_find_attr(ni, attr, le, ATTR_NAME, NULL, 0, NULL, NULL);
1609 	if (!attr)
1610 		return NULL;
1611 
1612 	fname = resident_data_ex(attr, SIZEOF_ATTRIBUTE_FILENAME);
1613 	if (!fname)
1614 		goto next;
1615 
1616 	if (home_dir && memcmp(home_dir, &fname->home, sizeof(*home_dir)))
1617 		goto next;
1618 
1619 	if (!uni)
1620 		goto next;
1621 
1622 	if (uni->len != fname->name_len)
1623 		goto next;
1624 
1625 	if (ntfs_cmp_names_cpu(uni, (struct le_str *)&fname->name_len, NULL,
1626 			       false))
1627 		goto next;
1628 
1629 	return fname;
1630 }
1631 
1632 /*
1633  * ni_fname_type
1634  *
1635  * returns file name attribute with given type
1636  */
1637 struct ATTR_FILE_NAME *ni_fname_type(struct ntfs_inode *ni, u8 name_type,
1638 				     struct ATTR_LIST_ENTRY **le)
1639 {
1640 	struct ATTRIB *attr = NULL;
1641 	struct ATTR_FILE_NAME *fname;
1642 
1643 	*le = NULL;
1644 
1645 	/* Enumerate all names */
1646 	for (;;) {
1647 		attr = ni_find_attr(ni, attr, le, ATTR_NAME, NULL, 0, NULL,
1648 				    NULL);
1649 		if (!attr)
1650 			return NULL;
1651 
1652 		fname = resident_data_ex(attr, SIZEOF_ATTRIBUTE_FILENAME);
1653 		if (fname && name_type == fname->type)
1654 			return fname;
1655 	}
1656 }
1657 
1658 /*
1659  * Process compressed/sparsed in special way
1660  * NOTE: you need to set ni->std_fa = new_fa
1661  * after this function to keep internal structures in consistency
1662  */
1663 int ni_new_attr_flags(struct ntfs_inode *ni, enum FILE_ATTRIBUTE new_fa)
1664 {
1665 	struct ATTRIB *attr;
1666 	struct mft_inode *mi;
1667 	__le16 new_aflags;
1668 	u32 new_asize;
1669 
1670 	attr = ni_find_attr(ni, NULL, NULL, ATTR_DATA, NULL, 0, NULL, &mi);
1671 	if (!attr)
1672 		return -EINVAL;
1673 
1674 	new_aflags = attr->flags;
1675 
1676 	if (new_fa & FILE_ATTRIBUTE_SPARSE_FILE)
1677 		new_aflags |= ATTR_FLAG_SPARSED;
1678 	else
1679 		new_aflags &= ~ATTR_FLAG_SPARSED;
1680 
1681 	if (new_fa & FILE_ATTRIBUTE_COMPRESSED)
1682 		new_aflags |= ATTR_FLAG_COMPRESSED;
1683 	else
1684 		new_aflags &= ~ATTR_FLAG_COMPRESSED;
1685 
1686 	if (new_aflags == attr->flags)
1687 		return 0;
1688 
1689 	if ((new_aflags & (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED)) ==
1690 	    (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED)) {
1691 		ntfs_inode_warn(&ni->vfs_inode,
1692 				"file can't be sparsed and compressed");
1693 		return -EOPNOTSUPP;
1694 	}
1695 
1696 	if (!attr->non_res)
1697 		goto out;
1698 
1699 	if (attr->nres.data_size) {
1700 		ntfs_inode_warn(
1701 			&ni->vfs_inode,
1702 			"one can change sparsed/compressed only for empty files");
1703 		return -EOPNOTSUPP;
1704 	}
1705 
1706 	/* resize nonresident empty attribute in-place only*/
1707 	new_asize = (new_aflags & (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED))
1708 			    ? (SIZEOF_NONRESIDENT_EX + 8)
1709 			    : (SIZEOF_NONRESIDENT + 8);
1710 
1711 	if (!mi_resize_attr(mi, attr, new_asize - le32_to_cpu(attr->size)))
1712 		return -EOPNOTSUPP;
1713 
1714 	if (new_aflags & ATTR_FLAG_SPARSED) {
1715 		attr->name_off = SIZEOF_NONRESIDENT_EX_LE;
1716 		/* windows uses 16 clusters per frame but supports one cluster per frame too*/
1717 		attr->nres.c_unit = 0;
1718 		ni->vfs_inode.i_mapping->a_ops = &ntfs_aops;
1719 	} else if (new_aflags & ATTR_FLAG_COMPRESSED) {
1720 		attr->name_off = SIZEOF_NONRESIDENT_EX_LE;
1721 		/* the only allowed: 16 clusters per frame */
1722 		attr->nres.c_unit = NTFS_LZNT_CUNIT;
1723 		ni->vfs_inode.i_mapping->a_ops = &ntfs_aops_cmpr;
1724 	} else {
1725 		attr->name_off = SIZEOF_NONRESIDENT_LE;
1726 		/* normal files */
1727 		attr->nres.c_unit = 0;
1728 		ni->vfs_inode.i_mapping->a_ops = &ntfs_aops;
1729 	}
1730 	attr->nres.run_off = attr->name_off;
1731 out:
1732 	attr->flags = new_aflags;
1733 	mi->dirty = true;
1734 
1735 	return 0;
1736 }
1737 
1738 /*
1739  * ni_parse_reparse
1740  *
1741  * buffer is at least 24 bytes
1742  */
1743 enum REPARSE_SIGN ni_parse_reparse(struct ntfs_inode *ni, struct ATTRIB *attr,
1744 				   void *buffer)
1745 {
1746 	const struct REPARSE_DATA_BUFFER *rp = NULL;
1747 	u8 bits;
1748 	u16 len;
1749 	typeof(rp->CompressReparseBuffer) *cmpr;
1750 
1751 	static_assert(sizeof(struct REPARSE_DATA_BUFFER) <= 24);
1752 
1753 	/* Try to estimate reparse point */
1754 	if (!attr->non_res) {
1755 		rp = resident_data_ex(attr, sizeof(struct REPARSE_DATA_BUFFER));
1756 	} else if (le64_to_cpu(attr->nres.data_size) >=
1757 		   sizeof(struct REPARSE_DATA_BUFFER)) {
1758 		struct runs_tree run;
1759 
1760 		run_init(&run);
1761 
1762 		if (!attr_load_runs_vcn(ni, ATTR_REPARSE, NULL, 0, &run, 0) &&
1763 		    !ntfs_read_run_nb(ni->mi.sbi, &run, 0, buffer,
1764 				      sizeof(struct REPARSE_DATA_BUFFER),
1765 				      NULL)) {
1766 			rp = buffer;
1767 		}
1768 
1769 		run_close(&run);
1770 	}
1771 
1772 	if (!rp)
1773 		return REPARSE_NONE;
1774 
1775 	len = le16_to_cpu(rp->ReparseDataLength);
1776 	switch (rp->ReparseTag) {
1777 	case (IO_REPARSE_TAG_MICROSOFT | IO_REPARSE_TAG_SYMBOLIC_LINK):
1778 		break; /* Symbolic link */
1779 	case IO_REPARSE_TAG_MOUNT_POINT:
1780 		break; /* Mount points and junctions */
1781 	case IO_REPARSE_TAG_SYMLINK:
1782 		break;
1783 	case IO_REPARSE_TAG_COMPRESS:
1784 		/*
1785 		 * WOF - Windows Overlay Filter - Used to compress files with
1786 		 * LZX/Xpress.
1787 		 *
1788 		 * Unlike native NTFS file compression, the Windows
1789 		 * Overlay Filter supports only read operations. This means
1790 		 * that it doesn't need to sector-align each compressed chunk,
1791 		 * so the compressed data can be packed more tightly together.
1792 		 * If you open the file for writing, the WOF just decompresses
1793 		 * the entire file, turning it back into a plain file.
1794 		 *
1795 		 * Ntfs3 driver decompresses the entire file only on write or
1796 		 * change size requests.
1797 		 */
1798 
1799 		cmpr = &rp->CompressReparseBuffer;
1800 		if (len < sizeof(*cmpr) ||
1801 		    cmpr->WofVersion != WOF_CURRENT_VERSION ||
1802 		    cmpr->WofProvider != WOF_PROVIDER_SYSTEM ||
1803 		    cmpr->ProviderVer != WOF_PROVIDER_CURRENT_VERSION) {
1804 			return REPARSE_NONE;
1805 		}
1806 
1807 		switch (cmpr->CompressionFormat) {
1808 		case WOF_COMPRESSION_XPRESS4K:
1809 			bits = 0xc; // 4k
1810 			break;
1811 		case WOF_COMPRESSION_XPRESS8K:
1812 			bits = 0xd; // 8k
1813 			break;
1814 		case WOF_COMPRESSION_XPRESS16K:
1815 			bits = 0xe; // 16k
1816 			break;
1817 		case WOF_COMPRESSION_LZX32K:
1818 			bits = 0xf; // 32k
1819 			break;
1820 		default:
1821 			bits = 0x10; // 64k
1822 			break;
1823 		}
1824 		ni_set_ext_compress_bits(ni, bits);
1825 		return REPARSE_COMPRESSED;
1826 
1827 	case IO_REPARSE_TAG_DEDUP:
1828 		ni->ni_flags |= NI_FLAG_DEDUPLICATED;
1829 		return REPARSE_DEDUPLICATED;
1830 
1831 	default:
1832 		if (rp->ReparseTag & IO_REPARSE_TAG_NAME_SURROGATE)
1833 			break;
1834 
1835 		return REPARSE_NONE;
1836 	}
1837 
1838 	/* Looks like normal symlink */
1839 	return REPARSE_LINK;
1840 }
1841 
1842 /*
1843  * helper for file_fiemap
1844  * assumed ni_lock
1845  * TODO: less aggressive locks
1846  */
1847 int ni_fiemap(struct ntfs_inode *ni, struct fiemap_extent_info *fieinfo,
1848 	      __u64 vbo, __u64 len)
1849 {
1850 	int err = 0;
1851 	struct ntfs_sb_info *sbi = ni->mi.sbi;
1852 	u8 cluster_bits = sbi->cluster_bits;
1853 	struct runs_tree *run;
1854 	struct rw_semaphore *run_lock;
1855 	struct ATTRIB *attr;
1856 	CLST vcn = vbo >> cluster_bits;
1857 	CLST lcn, clen;
1858 	u64 valid = ni->i_valid;
1859 	u64 lbo, bytes;
1860 	u64 end, alloc_size;
1861 	size_t idx = -1;
1862 	u32 flags;
1863 	bool ok;
1864 
1865 	if (S_ISDIR(ni->vfs_inode.i_mode)) {
1866 		run = &ni->dir.alloc_run;
1867 		attr = ni_find_attr(ni, NULL, NULL, ATTR_ALLOC, I30_NAME,
1868 				    ARRAY_SIZE(I30_NAME), NULL, NULL);
1869 		run_lock = &ni->dir.run_lock;
1870 	} else {
1871 		run = &ni->file.run;
1872 		attr = ni_find_attr(ni, NULL, NULL, ATTR_DATA, NULL, 0, NULL,
1873 				    NULL);
1874 		if (!attr) {
1875 			err = -EINVAL;
1876 			goto out;
1877 		}
1878 		if (is_attr_compressed(attr)) {
1879 			/*unfortunately cp -r incorrectly treats compressed clusters*/
1880 			err = -EOPNOTSUPP;
1881 			ntfs_inode_warn(
1882 				&ni->vfs_inode,
1883 				"fiemap is not supported for compressed file (cp -r)");
1884 			goto out;
1885 		}
1886 		run_lock = &ni->file.run_lock;
1887 	}
1888 
1889 	if (!attr || !attr->non_res) {
1890 		err = fiemap_fill_next_extent(
1891 			fieinfo, 0, 0,
1892 			attr ? le32_to_cpu(attr->res.data_size) : 0,
1893 			FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_LAST |
1894 				FIEMAP_EXTENT_MERGED);
1895 		goto out;
1896 	}
1897 
1898 	end = vbo + len;
1899 	alloc_size = le64_to_cpu(attr->nres.alloc_size);
1900 	if (end > alloc_size)
1901 		end = alloc_size;
1902 
1903 	down_read(run_lock);
1904 
1905 	while (vbo < end) {
1906 		if (idx == -1) {
1907 			ok = run_lookup_entry(run, vcn, &lcn, &clen, &idx);
1908 		} else {
1909 			CLST vcn_next = vcn;
1910 
1911 			ok = run_get_entry(run, ++idx, &vcn, &lcn, &clen) &&
1912 			     vcn == vcn_next;
1913 			if (!ok)
1914 				vcn = vcn_next;
1915 		}
1916 
1917 		if (!ok) {
1918 			up_read(run_lock);
1919 			down_write(run_lock);
1920 
1921 			err = attr_load_runs_vcn(ni, attr->type,
1922 						 attr_name(attr),
1923 						 attr->name_len, run, vcn);
1924 
1925 			up_write(run_lock);
1926 			down_read(run_lock);
1927 
1928 			if (err)
1929 				break;
1930 
1931 			ok = run_lookup_entry(run, vcn, &lcn, &clen, &idx);
1932 
1933 			if (!ok) {
1934 				err = -EINVAL;
1935 				break;
1936 			}
1937 		}
1938 
1939 		if (!clen) {
1940 			err = -EINVAL; // ?
1941 			break;
1942 		}
1943 
1944 		if (lcn == SPARSE_LCN) {
1945 			vcn += clen;
1946 			vbo = (u64)vcn << cluster_bits;
1947 			continue;
1948 		}
1949 
1950 		flags = FIEMAP_EXTENT_MERGED;
1951 		if (S_ISDIR(ni->vfs_inode.i_mode)) {
1952 			;
1953 		} else if (is_attr_compressed(attr)) {
1954 			CLST clst_data;
1955 
1956 			err = attr_is_frame_compressed(
1957 				ni, attr, vcn >> attr->nres.c_unit, &clst_data);
1958 			if (err)
1959 				break;
1960 			if (clst_data < NTFS_LZNT_CLUSTERS)
1961 				flags |= FIEMAP_EXTENT_ENCODED;
1962 		} else if (is_attr_encrypted(attr)) {
1963 			flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
1964 		}
1965 
1966 		vbo = (u64)vcn << cluster_bits;
1967 		bytes = (u64)clen << cluster_bits;
1968 		lbo = (u64)lcn << cluster_bits;
1969 
1970 		vcn += clen;
1971 
1972 		if (vbo + bytes >= end) {
1973 			bytes = end - vbo;
1974 			flags |= FIEMAP_EXTENT_LAST;
1975 		}
1976 
1977 		if (vbo + bytes <= valid) {
1978 			;
1979 		} else if (vbo >= valid) {
1980 			flags |= FIEMAP_EXTENT_UNWRITTEN;
1981 		} else {
1982 			/* vbo < valid && valid < vbo + bytes */
1983 			u64 dlen = valid - vbo;
1984 
1985 			err = fiemap_fill_next_extent(fieinfo, vbo, lbo, dlen,
1986 						      flags);
1987 			if (err < 0)
1988 				break;
1989 			if (err == 1) {
1990 				err = 0;
1991 				break;
1992 			}
1993 
1994 			vbo = valid;
1995 			bytes -= dlen;
1996 			if (!bytes)
1997 				continue;
1998 
1999 			lbo += dlen;
2000 			flags |= FIEMAP_EXTENT_UNWRITTEN;
2001 		}
2002 
2003 		err = fiemap_fill_next_extent(fieinfo, vbo, lbo, bytes, flags);
2004 		if (err < 0)
2005 			break;
2006 		if (err == 1) {
2007 			err = 0;
2008 			break;
2009 		}
2010 
2011 		vbo += bytes;
2012 	}
2013 
2014 	up_read(run_lock);
2015 
2016 out:
2017 	return err;
2018 }
2019 
2020 /*
2021  * When decompressing, we typically obtain more than one page per reference.
2022  * We inject the additional pages into the page cache.
2023  */
2024 int ni_readpage_cmpr(struct ntfs_inode *ni, struct page *page)
2025 {
2026 	int err;
2027 	struct ntfs_sb_info *sbi = ni->mi.sbi;
2028 	struct address_space *mapping = page->mapping;
2029 	pgoff_t index = page->index;
2030 	u64 frame_vbo, vbo = (u64)index << PAGE_SHIFT;
2031 	struct page **pages = NULL; /*array of at most 16 pages. stack?*/
2032 	u8 frame_bits;
2033 	CLST frame;
2034 	u32 i, idx, frame_size, pages_per_frame;
2035 	gfp_t gfp_mask;
2036 	struct page *pg;
2037 
2038 	if (vbo >= ni->vfs_inode.i_size) {
2039 		SetPageUptodate(page);
2040 		err = 0;
2041 		goto out;
2042 	}
2043 
2044 	if (ni->ni_flags & NI_FLAG_COMPRESSED_MASK) {
2045 		/* xpress or lzx */
2046 		frame_bits = ni_ext_compress_bits(ni);
2047 	} else {
2048 		/* lznt compression*/
2049 		frame_bits = NTFS_LZNT_CUNIT + sbi->cluster_bits;
2050 	}
2051 	frame_size = 1u << frame_bits;
2052 	frame = vbo >> frame_bits;
2053 	frame_vbo = (u64)frame << frame_bits;
2054 	idx = (vbo - frame_vbo) >> PAGE_SHIFT;
2055 
2056 	pages_per_frame = frame_size >> PAGE_SHIFT;
2057 	pages = kzalloc(pages_per_frame * sizeof(struct page *), GFP_NOFS);
2058 	if (!pages) {
2059 		err = -ENOMEM;
2060 		goto out;
2061 	}
2062 
2063 	pages[idx] = page;
2064 	index = frame_vbo >> PAGE_SHIFT;
2065 	gfp_mask = mapping_gfp_mask(mapping);
2066 
2067 	for (i = 0; i < pages_per_frame; i++, index++) {
2068 		if (i == idx)
2069 			continue;
2070 
2071 		pg = find_or_create_page(mapping, index, gfp_mask);
2072 		if (!pg) {
2073 			err = -ENOMEM;
2074 			goto out1;
2075 		}
2076 		pages[i] = pg;
2077 	}
2078 
2079 	err = ni_read_frame(ni, frame_vbo, pages, pages_per_frame);
2080 
2081 out1:
2082 	if (err)
2083 		SetPageError(page);
2084 
2085 	for (i = 0; i < pages_per_frame; i++) {
2086 		pg = pages[i];
2087 		if (i == idx)
2088 			continue;
2089 		unlock_page(pg);
2090 		put_page(pg);
2091 	}
2092 
2093 out:
2094 	/* At this point, err contains 0 or -EIO depending on the "critical" page */
2095 	kfree(pages);
2096 	unlock_page(page);
2097 
2098 	return err;
2099 }
2100 
2101 #ifdef CONFIG_NTFS3_LZX_XPRESS
2102 /*
2103  * decompress lzx/xpress compressed file
2104  * remove ATTR_DATA::WofCompressedData
2105  * remove ATTR_REPARSE
2106  */
2107 int ni_decompress_file(struct ntfs_inode *ni)
2108 {
2109 	struct ntfs_sb_info *sbi = ni->mi.sbi;
2110 	struct inode *inode = &ni->vfs_inode;
2111 	loff_t i_size = inode->i_size;
2112 	struct address_space *mapping = inode->i_mapping;
2113 	gfp_t gfp_mask = mapping_gfp_mask(mapping);
2114 	struct page **pages = NULL;
2115 	struct ATTR_LIST_ENTRY *le;
2116 	struct ATTRIB *attr;
2117 	CLST vcn, cend, lcn, clen, end;
2118 	pgoff_t index;
2119 	u64 vbo;
2120 	u8 frame_bits;
2121 	u32 i, frame_size, pages_per_frame, bytes;
2122 	struct mft_inode *mi;
2123 	int err;
2124 
2125 	/* clusters for decompressed data*/
2126 	cend = bytes_to_cluster(sbi, i_size);
2127 
2128 	if (!i_size)
2129 		goto remove_wof;
2130 
2131 	/* check in advance */
2132 	if (cend > wnd_zeroes(&sbi->used.bitmap)) {
2133 		err = -ENOSPC;
2134 		goto out;
2135 	}
2136 
2137 	frame_bits = ni_ext_compress_bits(ni);
2138 	frame_size = 1u << frame_bits;
2139 	pages_per_frame = frame_size >> PAGE_SHIFT;
2140 	pages = kzalloc(pages_per_frame * sizeof(struct page *), GFP_NOFS);
2141 	if (!pages) {
2142 		err = -ENOMEM;
2143 		goto out;
2144 	}
2145 
2146 	/*
2147 	 * Step 1: decompress data and copy to new allocated clusters
2148 	 */
2149 	index = 0;
2150 	for (vbo = 0; vbo < i_size; vbo += bytes) {
2151 		u32 nr_pages;
2152 		bool new;
2153 
2154 		if (vbo + frame_size > i_size) {
2155 			bytes = i_size - vbo;
2156 			nr_pages = (bytes + PAGE_SIZE - 1) >> PAGE_SHIFT;
2157 		} else {
2158 			nr_pages = pages_per_frame;
2159 			bytes = frame_size;
2160 		}
2161 
2162 		end = bytes_to_cluster(sbi, vbo + bytes);
2163 
2164 		for (vcn = vbo >> sbi->cluster_bits; vcn < end; vcn += clen) {
2165 			err = attr_data_get_block(ni, vcn, cend - vcn, &lcn,
2166 						  &clen, &new);
2167 			if (err)
2168 				goto out;
2169 		}
2170 
2171 		for (i = 0; i < pages_per_frame; i++, index++) {
2172 			struct page *pg;
2173 
2174 			pg = find_or_create_page(mapping, index, gfp_mask);
2175 			if (!pg) {
2176 				while (i--) {
2177 					unlock_page(pages[i]);
2178 					put_page(pages[i]);
2179 				}
2180 				err = -ENOMEM;
2181 				goto out;
2182 			}
2183 			pages[i] = pg;
2184 		}
2185 
2186 		err = ni_read_frame(ni, vbo, pages, pages_per_frame);
2187 
2188 		if (!err) {
2189 			down_read(&ni->file.run_lock);
2190 			err = ntfs_bio_pages(sbi, &ni->file.run, pages,
2191 					     nr_pages, vbo, bytes,
2192 					     REQ_OP_WRITE);
2193 			up_read(&ni->file.run_lock);
2194 		}
2195 
2196 		for (i = 0; i < pages_per_frame; i++) {
2197 			unlock_page(pages[i]);
2198 			put_page(pages[i]);
2199 		}
2200 
2201 		if (err)
2202 			goto out;
2203 
2204 		cond_resched();
2205 	}
2206 
2207 remove_wof:
2208 	/*
2209 	 * Step 2: deallocate attributes ATTR_DATA::WofCompressedData and ATTR_REPARSE
2210 	 */
2211 	attr = NULL;
2212 	le = NULL;
2213 	while ((attr = ni_enum_attr_ex(ni, attr, &le, NULL))) {
2214 		CLST svcn, evcn;
2215 		u32 asize, roff;
2216 
2217 		if (attr->type == ATTR_REPARSE) {
2218 			struct MFT_REF ref;
2219 
2220 			mi_get_ref(&ni->mi, &ref);
2221 			ntfs_remove_reparse(sbi, 0, &ref);
2222 		}
2223 
2224 		if (!attr->non_res)
2225 			continue;
2226 
2227 		if (attr->type != ATTR_REPARSE &&
2228 		    (attr->type != ATTR_DATA ||
2229 		     attr->name_len != ARRAY_SIZE(WOF_NAME) ||
2230 		     memcmp(attr_name(attr), WOF_NAME, sizeof(WOF_NAME))))
2231 			continue;
2232 
2233 		svcn = le64_to_cpu(attr->nres.svcn);
2234 		evcn = le64_to_cpu(attr->nres.evcn);
2235 
2236 		if (evcn + 1 <= svcn)
2237 			continue;
2238 
2239 		asize = le32_to_cpu(attr->size);
2240 		roff = le16_to_cpu(attr->nres.run_off);
2241 
2242 		/*run==1 means unpack and deallocate*/
2243 		run_unpack_ex(RUN_DEALLOCATE, sbi, ni->mi.rno, svcn, evcn, svcn,
2244 			      Add2Ptr(attr, roff), asize - roff);
2245 	}
2246 
2247 	/*
2248 	 * Step 3: remove attribute ATTR_DATA::WofCompressedData
2249 	 */
2250 	err = ni_remove_attr(ni, ATTR_DATA, WOF_NAME, ARRAY_SIZE(WOF_NAME),
2251 			     false, NULL);
2252 	if (err)
2253 		goto out;
2254 
2255 	/*
2256 	 * Step 4: remove ATTR_REPARSE
2257 	 */
2258 	err = ni_remove_attr(ni, ATTR_REPARSE, NULL, 0, false, NULL);
2259 	if (err)
2260 		goto out;
2261 
2262 	/*
2263 	 * Step 5: remove sparse flag from data attribute
2264 	 */
2265 	attr = ni_find_attr(ni, NULL, NULL, ATTR_DATA, NULL, 0, NULL, &mi);
2266 	if (!attr) {
2267 		err = -EINVAL;
2268 		goto out;
2269 	}
2270 
2271 	if (attr->non_res && is_attr_sparsed(attr)) {
2272 		/* sparsed attribute header is 8 bytes bigger than normal*/
2273 		struct MFT_REC *rec = mi->mrec;
2274 		u32 used = le32_to_cpu(rec->used);
2275 		u32 asize = le32_to_cpu(attr->size);
2276 		u16 roff = le16_to_cpu(attr->nres.run_off);
2277 		char *rbuf = Add2Ptr(attr, roff);
2278 
2279 		memmove(rbuf - 8, rbuf, used - PtrOffset(rec, rbuf));
2280 		attr->size = cpu_to_le32(asize - 8);
2281 		attr->flags &= ~ATTR_FLAG_SPARSED;
2282 		attr->nres.run_off = cpu_to_le16(roff - 8);
2283 		attr->nres.c_unit = 0;
2284 		rec->used = cpu_to_le32(used - 8);
2285 		mi->dirty = true;
2286 		ni->std_fa &= ~(FILE_ATTRIBUTE_SPARSE_FILE |
2287 				FILE_ATTRIBUTE_REPARSE_POINT);
2288 
2289 		mark_inode_dirty(inode);
2290 	}
2291 
2292 	/* clear cached flag */
2293 	ni->ni_flags &= ~NI_FLAG_COMPRESSED_MASK;
2294 	if (ni->file.offs_page) {
2295 		put_page(ni->file.offs_page);
2296 		ni->file.offs_page = NULL;
2297 	}
2298 	mapping->a_ops = &ntfs_aops;
2299 
2300 out:
2301 	kfree(pages);
2302 	if (err) {
2303 		make_bad_inode(inode);
2304 		ntfs_set_state(sbi, NTFS_DIRTY_ERROR);
2305 	}
2306 
2307 	return err;
2308 }
2309 
2310 /* external compression lzx/xpress */
2311 static int decompress_lzx_xpress(struct ntfs_sb_info *sbi, const char *cmpr,
2312 				 size_t cmpr_size, void *unc, size_t unc_size,
2313 				 u32 frame_size)
2314 {
2315 	int err;
2316 	void *ctx;
2317 
2318 	if (cmpr_size == unc_size) {
2319 		/* frame not compressed */
2320 		memcpy(unc, cmpr, unc_size);
2321 		return 0;
2322 	}
2323 
2324 	err = 0;
2325 	if (frame_size == 0x8000) {
2326 		mutex_lock(&sbi->compress.mtx_lzx);
2327 		/* LZX: frame compressed */
2328 		ctx = sbi->compress.lzx;
2329 		if (!ctx) {
2330 			/* Lazy initialize lzx decompress context */
2331 			ctx = lzx_allocate_decompressor();
2332 			if (!ctx) {
2333 				err = -ENOMEM;
2334 				goto out1;
2335 			}
2336 
2337 			sbi->compress.lzx = ctx;
2338 		}
2339 
2340 		if (lzx_decompress(ctx, cmpr, cmpr_size, unc, unc_size)) {
2341 			/* treat all errors as "invalid argument" */
2342 			err = -EINVAL;
2343 		}
2344 out1:
2345 		mutex_unlock(&sbi->compress.mtx_lzx);
2346 	} else {
2347 		/* XPRESS: frame compressed */
2348 		mutex_lock(&sbi->compress.mtx_xpress);
2349 		ctx = sbi->compress.xpress;
2350 		if (!ctx) {
2351 			/* Lazy initialize xpress decompress context */
2352 			ctx = xpress_allocate_decompressor();
2353 			if (!ctx) {
2354 				err = -ENOMEM;
2355 				goto out2;
2356 			}
2357 
2358 			sbi->compress.xpress = ctx;
2359 		}
2360 
2361 		if (xpress_decompress(ctx, cmpr, cmpr_size, unc, unc_size)) {
2362 			/* treat all errors as "invalid argument" */
2363 			err = -EINVAL;
2364 		}
2365 out2:
2366 		mutex_unlock(&sbi->compress.mtx_xpress);
2367 	}
2368 	return err;
2369 }
2370 #endif
2371 
2372 /*
2373  * ni_read_frame
2374  *
2375  * pages - array of locked pages
2376  */
2377 int ni_read_frame(struct ntfs_inode *ni, u64 frame_vbo, struct page **pages,
2378 		  u32 pages_per_frame)
2379 {
2380 	int err;
2381 	struct ntfs_sb_info *sbi = ni->mi.sbi;
2382 	u8 cluster_bits = sbi->cluster_bits;
2383 	char *frame_ondisk = NULL;
2384 	char *frame_mem = NULL;
2385 	struct page **pages_disk = NULL;
2386 	struct ATTR_LIST_ENTRY *le = NULL;
2387 	struct runs_tree *run = &ni->file.run;
2388 	u64 valid_size = ni->i_valid;
2389 	u64 vbo_disk;
2390 	size_t unc_size;
2391 	u32 frame_size, i, npages_disk, ondisk_size;
2392 	struct page *pg;
2393 	struct ATTRIB *attr;
2394 	CLST frame, clst_data;
2395 
2396 	/*
2397 	 * To simplify decompress algorithm do vmap for source and target pages
2398 	 */
2399 	for (i = 0; i < pages_per_frame; i++)
2400 		kmap(pages[i]);
2401 
2402 	frame_size = pages_per_frame << PAGE_SHIFT;
2403 	frame_mem = vmap(pages, pages_per_frame, VM_MAP, PAGE_KERNEL);
2404 	if (!frame_mem) {
2405 		err = -ENOMEM;
2406 		goto out;
2407 	}
2408 
2409 	attr = ni_find_attr(ni, NULL, &le, ATTR_DATA, NULL, 0, NULL, NULL);
2410 	if (!attr) {
2411 		err = -ENOENT;
2412 		goto out1;
2413 	}
2414 
2415 	if (!attr->non_res) {
2416 		u32 data_size = le32_to_cpu(attr->res.data_size);
2417 
2418 		memset(frame_mem, 0, frame_size);
2419 		if (frame_vbo < data_size) {
2420 			ondisk_size = data_size - frame_vbo;
2421 			memcpy(frame_mem, resident_data(attr) + frame_vbo,
2422 			       min(ondisk_size, frame_size));
2423 		}
2424 		err = 0;
2425 		goto out1;
2426 	}
2427 
2428 	if (frame_vbo >= valid_size) {
2429 		memset(frame_mem, 0, frame_size);
2430 		err = 0;
2431 		goto out1;
2432 	}
2433 
2434 	if (ni->ni_flags & NI_FLAG_COMPRESSED_MASK) {
2435 #ifndef CONFIG_NTFS3_LZX_XPRESS
2436 		err = -EOPNOTSUPP;
2437 		goto out1;
2438 #else
2439 		u32 frame_bits = ni_ext_compress_bits(ni);
2440 		u64 frame64 = frame_vbo >> frame_bits;
2441 		u64 frames, vbo_data;
2442 
2443 		if (frame_size != (1u << frame_bits)) {
2444 			err = -EINVAL;
2445 			goto out1;
2446 		}
2447 		switch (frame_size) {
2448 		case 0x1000:
2449 		case 0x2000:
2450 		case 0x4000:
2451 		case 0x8000:
2452 			break;
2453 		default:
2454 			/* unknown compression */
2455 			err = -EOPNOTSUPP;
2456 			goto out1;
2457 		}
2458 
2459 		attr = ni_find_attr(ni, attr, &le, ATTR_DATA, WOF_NAME,
2460 				    ARRAY_SIZE(WOF_NAME), NULL, NULL);
2461 		if (!attr) {
2462 			ntfs_inode_err(
2463 				&ni->vfs_inode,
2464 				"external compressed file should contains data attribute \"WofCompressedData\"");
2465 			err = -EINVAL;
2466 			goto out1;
2467 		}
2468 
2469 		if (!attr->non_res) {
2470 			run = NULL;
2471 		} else {
2472 			run = run_alloc();
2473 			if (!run) {
2474 				err = -ENOMEM;
2475 				goto out1;
2476 			}
2477 		}
2478 
2479 		frames = (ni->vfs_inode.i_size - 1) >> frame_bits;
2480 
2481 		err = attr_wof_frame_info(ni, attr, run, frame64, frames,
2482 					  frame_bits, &ondisk_size, &vbo_data);
2483 		if (err)
2484 			goto out2;
2485 
2486 		if (frame64 == frames) {
2487 			unc_size = 1 + ((ni->vfs_inode.i_size - 1) &
2488 					(frame_size - 1));
2489 			ondisk_size = attr_size(attr) - vbo_data;
2490 		} else {
2491 			unc_size = frame_size;
2492 		}
2493 
2494 		if (ondisk_size > frame_size) {
2495 			err = -EINVAL;
2496 			goto out2;
2497 		}
2498 
2499 		if (!attr->non_res) {
2500 			if (vbo_data + ondisk_size >
2501 			    le32_to_cpu(attr->res.data_size)) {
2502 				err = -EINVAL;
2503 				goto out1;
2504 			}
2505 
2506 			err = decompress_lzx_xpress(
2507 				sbi, Add2Ptr(resident_data(attr), vbo_data),
2508 				ondisk_size, frame_mem, unc_size, frame_size);
2509 			goto out1;
2510 		}
2511 		vbo_disk = vbo_data;
2512 		/* load all runs to read [vbo_disk-vbo_to) */
2513 		err = attr_load_runs_range(ni, ATTR_DATA, WOF_NAME,
2514 					   ARRAY_SIZE(WOF_NAME), run, vbo_disk,
2515 					   vbo_data + ondisk_size);
2516 		if (err)
2517 			goto out2;
2518 		npages_disk = (ondisk_size + (vbo_disk & (PAGE_SIZE - 1)) +
2519 			       PAGE_SIZE - 1) >>
2520 			      PAGE_SHIFT;
2521 #endif
2522 	} else if (is_attr_compressed(attr)) {
2523 		/* lznt compression*/
2524 		if (sbi->cluster_size > NTFS_LZNT_MAX_CLUSTER) {
2525 			err = -EOPNOTSUPP;
2526 			goto out1;
2527 		}
2528 
2529 		if (attr->nres.c_unit != NTFS_LZNT_CUNIT) {
2530 			err = -EOPNOTSUPP;
2531 			goto out1;
2532 		}
2533 
2534 		down_write(&ni->file.run_lock);
2535 		run_truncate_around(run, le64_to_cpu(attr->nres.svcn));
2536 		frame = frame_vbo >> (cluster_bits + NTFS_LZNT_CUNIT);
2537 		err = attr_is_frame_compressed(ni, attr, frame, &clst_data);
2538 		up_write(&ni->file.run_lock);
2539 		if (err)
2540 			goto out1;
2541 
2542 		if (!clst_data) {
2543 			memset(frame_mem, 0, frame_size);
2544 			goto out1;
2545 		}
2546 
2547 		frame_size = sbi->cluster_size << NTFS_LZNT_CUNIT;
2548 		ondisk_size = clst_data << cluster_bits;
2549 
2550 		if (clst_data >= NTFS_LZNT_CLUSTERS) {
2551 			/* frame is not compressed */
2552 			down_read(&ni->file.run_lock);
2553 			err = ntfs_bio_pages(sbi, run, pages, pages_per_frame,
2554 					     frame_vbo, ondisk_size,
2555 					     REQ_OP_READ);
2556 			up_read(&ni->file.run_lock);
2557 			goto out1;
2558 		}
2559 		vbo_disk = frame_vbo;
2560 		npages_disk = (ondisk_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2561 	} else {
2562 		__builtin_unreachable();
2563 		err = -EINVAL;
2564 		goto out1;
2565 	}
2566 
2567 	pages_disk = kzalloc(npages_disk * sizeof(struct page *), GFP_NOFS);
2568 	if (!pages_disk) {
2569 		err = -ENOMEM;
2570 		goto out2;
2571 	}
2572 
2573 	for (i = 0; i < npages_disk; i++) {
2574 		pg = alloc_page(GFP_KERNEL);
2575 		if (!pg) {
2576 			err = -ENOMEM;
2577 			goto out3;
2578 		}
2579 		pages_disk[i] = pg;
2580 		lock_page(pg);
2581 		kmap(pg);
2582 	}
2583 
2584 	/* read 'ondisk_size' bytes from disk */
2585 	down_read(&ni->file.run_lock);
2586 	err = ntfs_bio_pages(sbi, run, pages_disk, npages_disk, vbo_disk,
2587 			     ondisk_size, REQ_OP_READ);
2588 	up_read(&ni->file.run_lock);
2589 	if (err)
2590 		goto out3;
2591 
2592 	/*
2593 	 * To simplify decompress algorithm do vmap for source and target pages
2594 	 */
2595 	frame_ondisk = vmap(pages_disk, npages_disk, VM_MAP, PAGE_KERNEL_RO);
2596 	if (!frame_ondisk) {
2597 		err = -ENOMEM;
2598 		goto out3;
2599 	}
2600 
2601 	/* decompress: frame_ondisk -> frame_mem */
2602 #ifdef CONFIG_NTFS3_LZX_XPRESS
2603 	if (run != &ni->file.run) {
2604 		/* LZX or XPRESS */
2605 		err = decompress_lzx_xpress(
2606 			sbi, frame_ondisk + (vbo_disk & (PAGE_SIZE - 1)),
2607 			ondisk_size, frame_mem, unc_size, frame_size);
2608 	} else
2609 #endif
2610 	{
2611 		/* LZNT - native ntfs compression */
2612 		unc_size = decompress_lznt(frame_ondisk, ondisk_size, frame_mem,
2613 					   frame_size);
2614 		if ((ssize_t)unc_size < 0)
2615 			err = unc_size;
2616 		else if (!unc_size || unc_size > frame_size)
2617 			err = -EINVAL;
2618 	}
2619 	if (!err && valid_size < frame_vbo + frame_size) {
2620 		size_t ok = valid_size - frame_vbo;
2621 
2622 		memset(frame_mem + ok, 0, frame_size - ok);
2623 	}
2624 
2625 	vunmap(frame_ondisk);
2626 
2627 out3:
2628 	for (i = 0; i < npages_disk; i++) {
2629 		pg = pages_disk[i];
2630 		if (pg) {
2631 			kunmap(pg);
2632 			unlock_page(pg);
2633 			put_page(pg);
2634 		}
2635 	}
2636 	kfree(pages_disk);
2637 
2638 out2:
2639 #ifdef CONFIG_NTFS3_LZX_XPRESS
2640 	if (run != &ni->file.run)
2641 		run_free(run);
2642 #endif
2643 out1:
2644 	vunmap(frame_mem);
2645 out:
2646 	for (i = 0; i < pages_per_frame; i++) {
2647 		pg = pages[i];
2648 		kunmap(pg);
2649 		ClearPageError(pg);
2650 		SetPageUptodate(pg);
2651 	}
2652 
2653 	return err;
2654 }
2655 
2656 /*
2657  * ni_write_frame
2658  *
2659  * pages - array of locked pages
2660  */
2661 int ni_write_frame(struct ntfs_inode *ni, struct page **pages,
2662 		   u32 pages_per_frame)
2663 {
2664 	int err;
2665 	struct ntfs_sb_info *sbi = ni->mi.sbi;
2666 	u8 frame_bits = NTFS_LZNT_CUNIT + sbi->cluster_bits;
2667 	u32 frame_size = sbi->cluster_size << NTFS_LZNT_CUNIT;
2668 	u64 frame_vbo = (u64)pages[0]->index << PAGE_SHIFT;
2669 	CLST frame = frame_vbo >> frame_bits;
2670 	char *frame_ondisk = NULL;
2671 	struct page **pages_disk = NULL;
2672 	struct ATTR_LIST_ENTRY *le = NULL;
2673 	char *frame_mem;
2674 	struct ATTRIB *attr;
2675 	struct mft_inode *mi;
2676 	u32 i;
2677 	struct page *pg;
2678 	size_t compr_size, ondisk_size;
2679 	struct lznt *lznt;
2680 
2681 	attr = ni_find_attr(ni, NULL, &le, ATTR_DATA, NULL, 0, NULL, &mi);
2682 	if (!attr) {
2683 		err = -ENOENT;
2684 		goto out;
2685 	}
2686 
2687 	if (WARN_ON(!is_attr_compressed(attr))) {
2688 		err = -EINVAL;
2689 		goto out;
2690 	}
2691 
2692 	if (sbi->cluster_size > NTFS_LZNT_MAX_CLUSTER) {
2693 		err = -EOPNOTSUPP;
2694 		goto out;
2695 	}
2696 
2697 	if (!attr->non_res) {
2698 		down_write(&ni->file.run_lock);
2699 		err = attr_make_nonresident(ni, attr, le, mi,
2700 					    le32_to_cpu(attr->res.data_size),
2701 					    &ni->file.run, &attr, pages[0]);
2702 		up_write(&ni->file.run_lock);
2703 		if (err)
2704 			goto out;
2705 	}
2706 
2707 	if (attr->nres.c_unit != NTFS_LZNT_CUNIT) {
2708 		err = -EOPNOTSUPP;
2709 		goto out;
2710 	}
2711 
2712 	pages_disk = kzalloc(pages_per_frame * sizeof(struct page *),
2713 			     GFP_NOFS);
2714 	if (!pages_disk) {
2715 		err = -ENOMEM;
2716 		goto out;
2717 	}
2718 
2719 	for (i = 0; i < pages_per_frame; i++) {
2720 		pg = alloc_page(GFP_KERNEL);
2721 		if (!pg) {
2722 			err = -ENOMEM;
2723 			goto out1;
2724 		}
2725 		pages_disk[i] = pg;
2726 		lock_page(pg);
2727 		kmap(pg);
2728 	}
2729 
2730 	/*
2731 	 * To simplify compress algorithm do vmap for source and target pages
2732 	 */
2733 	frame_ondisk = vmap(pages_disk, pages_per_frame, VM_MAP, PAGE_KERNEL);
2734 	if (!frame_ondisk) {
2735 		err = -ENOMEM;
2736 		goto out1;
2737 	}
2738 
2739 	for (i = 0; i < pages_per_frame; i++)
2740 		kmap(pages[i]);
2741 
2742 	/* map in-memory frame for read-only */
2743 	frame_mem = vmap(pages, pages_per_frame, VM_MAP, PAGE_KERNEL_RO);
2744 	if (!frame_mem) {
2745 		err = -ENOMEM;
2746 		goto out2;
2747 	}
2748 
2749 	mutex_lock(&sbi->compress.mtx_lznt);
2750 	lznt = NULL;
2751 	if (!sbi->compress.lznt) {
2752 		/*
2753 		 * lznt implements two levels of compression:
2754 		 * 0 - standard compression
2755 		 * 1 - best compression, requires a lot of cpu
2756 		 * use mount option?
2757 		 */
2758 		lznt = get_lznt_ctx(0);
2759 		if (!lznt) {
2760 			mutex_unlock(&sbi->compress.mtx_lznt);
2761 			err = -ENOMEM;
2762 			goto out3;
2763 		}
2764 
2765 		sbi->compress.lznt = lznt;
2766 		lznt = NULL;
2767 	}
2768 
2769 	/* compress: frame_mem -> frame_ondisk */
2770 	compr_size = compress_lznt(frame_mem, frame_size, frame_ondisk,
2771 				   frame_size, sbi->compress.lznt);
2772 	mutex_unlock(&sbi->compress.mtx_lznt);
2773 	kfree(lznt);
2774 
2775 	if (compr_size + sbi->cluster_size > frame_size) {
2776 		/* frame is not compressed */
2777 		compr_size = frame_size;
2778 		ondisk_size = frame_size;
2779 	} else if (compr_size) {
2780 		/* frame is compressed */
2781 		ondisk_size = ntfs_up_cluster(sbi, compr_size);
2782 		memset(frame_ondisk + compr_size, 0, ondisk_size - compr_size);
2783 	} else {
2784 		/* frame is sparsed */
2785 		ondisk_size = 0;
2786 	}
2787 
2788 	down_write(&ni->file.run_lock);
2789 	run_truncate_around(&ni->file.run, le64_to_cpu(attr->nres.svcn));
2790 	err = attr_allocate_frame(ni, frame, compr_size, ni->i_valid);
2791 	up_write(&ni->file.run_lock);
2792 	if (err)
2793 		goto out2;
2794 
2795 	if (!ondisk_size)
2796 		goto out2;
2797 
2798 	down_read(&ni->file.run_lock);
2799 	err = ntfs_bio_pages(sbi, &ni->file.run,
2800 			     ondisk_size < frame_size ? pages_disk : pages,
2801 			     pages_per_frame, frame_vbo, ondisk_size,
2802 			     REQ_OP_WRITE);
2803 	up_read(&ni->file.run_lock);
2804 
2805 out3:
2806 	vunmap(frame_mem);
2807 
2808 out2:
2809 	for (i = 0; i < pages_per_frame; i++)
2810 		kunmap(pages[i]);
2811 
2812 	vunmap(frame_ondisk);
2813 out1:
2814 	for (i = 0; i < pages_per_frame; i++) {
2815 		pg = pages_disk[i];
2816 		if (pg) {
2817 			kunmap(pg);
2818 			unlock_page(pg);
2819 			put_page(pg);
2820 		}
2821 	}
2822 	kfree(pages_disk);
2823 out:
2824 	return err;
2825 }
2826 
2827 /*
2828  * update duplicate info of ATTR_FILE_NAME in MFT and in parent directories
2829  */
2830 static bool ni_update_parent(struct ntfs_inode *ni, struct NTFS_DUP_INFO *dup,
2831 			     int sync)
2832 {
2833 	struct ATTRIB *attr;
2834 	struct mft_inode *mi;
2835 	struct ATTR_LIST_ENTRY *le = NULL;
2836 	struct ntfs_sb_info *sbi = ni->mi.sbi;
2837 	struct super_block *sb = sbi->sb;
2838 	bool re_dirty = false;
2839 	bool active = sb->s_flags & SB_ACTIVE;
2840 	bool upd_parent = ni->ni_flags & NI_FLAG_UPDATE_PARENT;
2841 
2842 	if (ni->mi.mrec->flags & RECORD_FLAG_DIR) {
2843 		dup->fa |= FILE_ATTRIBUTE_DIRECTORY;
2844 		attr = NULL;
2845 		dup->alloc_size = 0;
2846 		dup->data_size = 0;
2847 	} else {
2848 		dup->fa &= ~FILE_ATTRIBUTE_DIRECTORY;
2849 
2850 		attr = ni_find_attr(ni, NULL, &le, ATTR_DATA, NULL, 0, NULL,
2851 				    &mi);
2852 		if (!attr) {
2853 			dup->alloc_size = dup->data_size = 0;
2854 		} else if (!attr->non_res) {
2855 			u32 data_size = le32_to_cpu(attr->res.data_size);
2856 
2857 			dup->alloc_size = cpu_to_le64(ALIGN(data_size, 8));
2858 			dup->data_size = cpu_to_le64(data_size);
2859 		} else {
2860 			u64 new_valid = ni->i_valid;
2861 			u64 data_size = le64_to_cpu(attr->nres.data_size);
2862 			__le64 valid_le;
2863 
2864 			dup->alloc_size = is_attr_ext(attr)
2865 						  ? attr->nres.total_size
2866 						  : attr->nres.alloc_size;
2867 			dup->data_size = attr->nres.data_size;
2868 
2869 			if (new_valid > data_size)
2870 				new_valid = data_size;
2871 
2872 			valid_le = cpu_to_le64(new_valid);
2873 			if (valid_le != attr->nres.valid_size) {
2874 				attr->nres.valid_size = valid_le;
2875 				mi->dirty = true;
2876 			}
2877 		}
2878 	}
2879 
2880 	/* TODO: fill reparse info */
2881 	dup->reparse = 0;
2882 	dup->ea_size = 0;
2883 
2884 	if (ni->ni_flags & NI_FLAG_EA) {
2885 		attr = ni_find_attr(ni, attr, &le, ATTR_EA_INFO, NULL, 0, NULL,
2886 				    NULL);
2887 		if (attr) {
2888 			const struct EA_INFO *info;
2889 
2890 			info = resident_data_ex(attr, sizeof(struct EA_INFO));
2891 			dup->ea_size = info->size_pack;
2892 		}
2893 	}
2894 
2895 	attr = NULL;
2896 	le = NULL;
2897 
2898 	while ((attr = ni_find_attr(ni, attr, &le, ATTR_NAME, NULL, 0, NULL,
2899 				    &mi))) {
2900 		struct inode *dir;
2901 		struct ATTR_FILE_NAME *fname;
2902 
2903 		fname = resident_data_ex(attr, SIZEOF_ATTRIBUTE_FILENAME);
2904 		if (!fname)
2905 			continue;
2906 
2907 		if (memcmp(&fname->dup, dup, sizeof(fname->dup))) {
2908 			memcpy(&fname->dup, dup, sizeof(fname->dup));
2909 			mi->dirty = true;
2910 		} else if (!upd_parent) {
2911 			continue;
2912 		}
2913 
2914 		if (!active)
2915 			continue; /*avoid __wait_on_freeing_inode(inode); */
2916 
2917 		/*ntfs_iget5 may sleep*/
2918 		dir = ntfs_iget5(sb, &fname->home, NULL);
2919 		if (IS_ERR(dir)) {
2920 			ntfs_inode_warn(
2921 				&ni->vfs_inode,
2922 				"failed to open parent directory r=%lx to update",
2923 				(long)ino_get(&fname->home));
2924 			continue;
2925 		}
2926 
2927 		if (!is_bad_inode(dir)) {
2928 			struct ntfs_inode *dir_ni = ntfs_i(dir);
2929 
2930 			if (!ni_trylock(dir_ni)) {
2931 				re_dirty = true;
2932 			} else {
2933 				indx_update_dup(dir_ni, sbi, fname, dup, sync);
2934 				ni_unlock(dir_ni);
2935 			}
2936 		}
2937 		iput(dir);
2938 	}
2939 
2940 	return re_dirty;
2941 }
2942 
2943 /*
2944  * ni_write_inode
2945  *
2946  * write mft base record and all subrecords to disk
2947  */
2948 int ni_write_inode(struct inode *inode, int sync, const char *hint)
2949 {
2950 	int err = 0, err2;
2951 	struct ntfs_inode *ni = ntfs_i(inode);
2952 	struct super_block *sb = inode->i_sb;
2953 	struct ntfs_sb_info *sbi = sb->s_fs_info;
2954 	bool re_dirty = false;
2955 	struct ATTR_STD_INFO *std;
2956 	struct rb_node *node, *next;
2957 	struct NTFS_DUP_INFO dup;
2958 
2959 	if (is_bad_inode(inode) || sb_rdonly(sb))
2960 		return 0;
2961 
2962 	if (!ni_trylock(ni)) {
2963 		/* 'ni' is under modification, skip for now */
2964 		mark_inode_dirty_sync(inode);
2965 		return 0;
2966 	}
2967 
2968 	if (is_rec_inuse(ni->mi.mrec) &&
2969 	    !(sbi->flags & NTFS_FLAGS_LOG_REPLAYING) && inode->i_nlink) {
2970 		bool modified = false;
2971 
2972 		/* update times in standard attribute */
2973 		std = ni_std(ni);
2974 		if (!std) {
2975 			err = -EINVAL;
2976 			goto out;
2977 		}
2978 
2979 		/* Update the access times if they have changed. */
2980 		dup.m_time = kernel2nt(&inode->i_mtime);
2981 		if (std->m_time != dup.m_time) {
2982 			std->m_time = dup.m_time;
2983 			modified = true;
2984 		}
2985 
2986 		dup.c_time = kernel2nt(&inode->i_ctime);
2987 		if (std->c_time != dup.c_time) {
2988 			std->c_time = dup.c_time;
2989 			modified = true;
2990 		}
2991 
2992 		dup.a_time = kernel2nt(&inode->i_atime);
2993 		if (std->a_time != dup.a_time) {
2994 			std->a_time = dup.a_time;
2995 			modified = true;
2996 		}
2997 
2998 		dup.fa = ni->std_fa;
2999 		if (std->fa != dup.fa) {
3000 			std->fa = dup.fa;
3001 			modified = true;
3002 		}
3003 
3004 		if (modified)
3005 			ni->mi.dirty = true;
3006 
3007 		if (!ntfs_is_meta_file(sbi, inode->i_ino) &&
3008 		    (modified || (ni->ni_flags & NI_FLAG_UPDATE_PARENT))) {
3009 			dup.cr_time = std->cr_time;
3010 			/* Not critical if this function fail */
3011 			re_dirty = ni_update_parent(ni, &dup, sync);
3012 
3013 			if (re_dirty)
3014 				ni->ni_flags |= NI_FLAG_UPDATE_PARENT;
3015 			else
3016 				ni->ni_flags &= ~NI_FLAG_UPDATE_PARENT;
3017 		}
3018 
3019 		/* update attribute list */
3020 		if (ni->attr_list.size && ni->attr_list.dirty) {
3021 			if (inode->i_ino != MFT_REC_MFT || sync) {
3022 				err = ni_try_remove_attr_list(ni);
3023 				if (err)
3024 					goto out;
3025 			}
3026 
3027 			err = al_update(ni);
3028 			if (err)
3029 				goto out;
3030 		}
3031 	}
3032 
3033 	for (node = rb_first(&ni->mi_tree); node; node = next) {
3034 		struct mft_inode *mi = rb_entry(node, struct mft_inode, node);
3035 		bool is_empty;
3036 
3037 		next = rb_next(node);
3038 
3039 		if (!mi->dirty)
3040 			continue;
3041 
3042 		is_empty = !mi_enum_attr(mi, NULL);
3043 
3044 		if (is_empty)
3045 			clear_rec_inuse(mi->mrec);
3046 
3047 		err2 = mi_write(mi, sync);
3048 		if (!err && err2)
3049 			err = err2;
3050 
3051 		if (is_empty) {
3052 			ntfs_mark_rec_free(sbi, mi->rno);
3053 			rb_erase(node, &ni->mi_tree);
3054 			mi_put(mi);
3055 		}
3056 	}
3057 
3058 	if (ni->mi.dirty) {
3059 		err2 = mi_write(&ni->mi, sync);
3060 		if (!err && err2)
3061 			err = err2;
3062 	}
3063 out:
3064 	ni_unlock(ni);
3065 
3066 	if (err) {
3067 		ntfs_err(sb, "%s r=%lx failed, %d.", hint, inode->i_ino, err);
3068 		ntfs_set_state(sbi, NTFS_DIRTY_ERROR);
3069 		return err;
3070 	}
3071 
3072 	if (re_dirty && (sb->s_flags & SB_ACTIVE))
3073 		mark_inode_dirty_sync(inode);
3074 
3075 	return 0;
3076 }
3077