xref: /openbmc/linux/fs/ntfs/super.c (revision 78af34f03d33d2ba179c9d35685860170b94a285)
1 /*
2  * super.c - NTFS kernel super block handling. Part of the Linux-NTFS project.
3  *
4  * Copyright (c) 2001-2006 Anton Altaparmakov
5  * Copyright (c) 2001,2002 Richard Russon
6  *
7  * This program/include file is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License as published
9  * by the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * This program/include file is distributed in the hope that it will be
13  * useful, but WITHOUT ANY WARRANTY; without even the implied warranty
14  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program (in the main directory of the Linux-NTFS
19  * distribution in the file COPYING); if not, write to the Free Software
20  * Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
21  */
22 
23 #include <linux/stddef.h>
24 #include <linux/init.h>
25 #include <linux/slab.h>
26 #include <linux/string.h>
27 #include <linux/spinlock.h>
28 #include <linux/blkdev.h>	/* For bdev_hardsect_size(). */
29 #include <linux/backing-dev.h>
30 #include <linux/buffer_head.h>
31 #include <linux/vfs.h>
32 #include <linux/moduleparam.h>
33 #include <linux/smp_lock.h>
34 
35 #include "sysctl.h"
36 #include "logfile.h"
37 #include "quota.h"
38 #include "usnjrnl.h"
39 #include "dir.h"
40 #include "debug.h"
41 #include "index.h"
42 #include "aops.h"
43 #include "layout.h"
44 #include "malloc.h"
45 #include "ntfs.h"
46 
47 /* Number of mounted filesystems which have compression enabled. */
48 static unsigned long ntfs_nr_compression_users;
49 
50 /* A global default upcase table and a corresponding reference count. */
51 static ntfschar *default_upcase = NULL;
52 static unsigned long ntfs_nr_upcase_users = 0;
53 
54 /* Error constants/strings used in inode.c::ntfs_show_options(). */
55 typedef enum {
56 	/* One of these must be present, default is ON_ERRORS_CONTINUE. */
57 	ON_ERRORS_PANIC			= 0x01,
58 	ON_ERRORS_REMOUNT_RO		= 0x02,
59 	ON_ERRORS_CONTINUE		= 0x04,
60 	/* Optional, can be combined with any of the above. */
61 	ON_ERRORS_RECOVER		= 0x10,
62 } ON_ERRORS_ACTIONS;
63 
64 const option_t on_errors_arr[] = {
65 	{ ON_ERRORS_PANIC,	"panic" },
66 	{ ON_ERRORS_REMOUNT_RO,	"remount-ro", },
67 	{ ON_ERRORS_CONTINUE,	"continue", },
68 	{ ON_ERRORS_RECOVER,	"recover" },
69 	{ 0,			NULL }
70 };
71 
72 /**
73  * simple_getbool -
74  *
75  * Copied from old ntfs driver (which copied from vfat driver).
76  */
77 static int simple_getbool(char *s, BOOL *setval)
78 {
79 	if (s) {
80 		if (!strcmp(s, "1") || !strcmp(s, "yes") || !strcmp(s, "true"))
81 			*setval = TRUE;
82 		else if (!strcmp(s, "0") || !strcmp(s, "no") ||
83 							!strcmp(s, "false"))
84 			*setval = FALSE;
85 		else
86 			return 0;
87 	} else
88 		*setval = TRUE;
89 	return 1;
90 }
91 
92 /**
93  * parse_options - parse the (re)mount options
94  * @vol:	ntfs volume
95  * @opt:	string containing the (re)mount options
96  *
97  * Parse the recognized options in @opt for the ntfs volume described by @vol.
98  */
99 static BOOL parse_options(ntfs_volume *vol, char *opt)
100 {
101 	char *p, *v, *ov;
102 	static char *utf8 = "utf8";
103 	int errors = 0, sloppy = 0;
104 	uid_t uid = (uid_t)-1;
105 	gid_t gid = (gid_t)-1;
106 	mode_t fmask = (mode_t)-1, dmask = (mode_t)-1;
107 	int mft_zone_multiplier = -1, on_errors = -1;
108 	int show_sys_files = -1, case_sensitive = -1, disable_sparse = -1;
109 	struct nls_table *nls_map = NULL, *old_nls;
110 
111 	/* I am lazy... (-8 */
112 #define NTFS_GETOPT_WITH_DEFAULT(option, variable, default_value)	\
113 	if (!strcmp(p, option)) {					\
114 		if (!v || !*v)						\
115 			variable = default_value;			\
116 		else {							\
117 			variable = simple_strtoul(ov = v, &v, 0);	\
118 			if (*v)						\
119 				goto needs_val;				\
120 		}							\
121 	}
122 #define NTFS_GETOPT(option, variable)					\
123 	if (!strcmp(p, option)) {					\
124 		if (!v || !*v)						\
125 			goto needs_arg;					\
126 		variable = simple_strtoul(ov = v, &v, 0);		\
127 		if (*v)							\
128 			goto needs_val;					\
129 	}
130 #define NTFS_GETOPT_OCTAL(option, variable)				\
131 	if (!strcmp(p, option)) {					\
132 		if (!v || !*v)						\
133 			goto needs_arg;					\
134 		variable = simple_strtoul(ov = v, &v, 8);		\
135 		if (*v)							\
136 			goto needs_val;					\
137 	}
138 #define NTFS_GETOPT_BOOL(option, variable)				\
139 	if (!strcmp(p, option)) {					\
140 		BOOL val;						\
141 		if (!simple_getbool(v, &val))				\
142 			goto needs_bool;				\
143 		variable = val;						\
144 	}
145 #define NTFS_GETOPT_OPTIONS_ARRAY(option, variable, opt_array)		\
146 	if (!strcmp(p, option)) {					\
147 		int _i;							\
148 		if (!v || !*v)						\
149 			goto needs_arg;					\
150 		ov = v;							\
151 		if (variable == -1)					\
152 			variable = 0;					\
153 		for (_i = 0; opt_array[_i].str && *opt_array[_i].str; _i++) \
154 			if (!strcmp(opt_array[_i].str, v)) {		\
155 				variable |= opt_array[_i].val;		\
156 				break;					\
157 			}						\
158 		if (!opt_array[_i].str || !*opt_array[_i].str)		\
159 			goto needs_val;					\
160 	}
161 	if (!opt || !*opt)
162 		goto no_mount_options;
163 	ntfs_debug("Entering with mount options string: %s", opt);
164 	while ((p = strsep(&opt, ","))) {
165 		if ((v = strchr(p, '=')))
166 			*v++ = 0;
167 		NTFS_GETOPT("uid", uid)
168 		else NTFS_GETOPT("gid", gid)
169 		else NTFS_GETOPT_OCTAL("umask", fmask = dmask)
170 		else NTFS_GETOPT_OCTAL("fmask", fmask)
171 		else NTFS_GETOPT_OCTAL("dmask", dmask)
172 		else NTFS_GETOPT("mft_zone_multiplier", mft_zone_multiplier)
173 		else NTFS_GETOPT_WITH_DEFAULT("sloppy", sloppy, TRUE)
174 		else NTFS_GETOPT_BOOL("show_sys_files", show_sys_files)
175 		else NTFS_GETOPT_BOOL("case_sensitive", case_sensitive)
176 		else NTFS_GETOPT_BOOL("disable_sparse", disable_sparse)
177 		else NTFS_GETOPT_OPTIONS_ARRAY("errors", on_errors,
178 				on_errors_arr)
179 		else if (!strcmp(p, "posix") || !strcmp(p, "show_inodes"))
180 			ntfs_warning(vol->sb, "Ignoring obsolete option %s.",
181 					p);
182 		else if (!strcmp(p, "nls") || !strcmp(p, "iocharset")) {
183 			if (!strcmp(p, "iocharset"))
184 				ntfs_warning(vol->sb, "Option iocharset is "
185 						"deprecated. Please use "
186 						"option nls=<charsetname> in "
187 						"the future.");
188 			if (!v || !*v)
189 				goto needs_arg;
190 use_utf8:
191 			old_nls = nls_map;
192 			nls_map = load_nls(v);
193 			if (!nls_map) {
194 				if (!old_nls) {
195 					ntfs_error(vol->sb, "NLS character set "
196 							"%s not found.", v);
197 					return FALSE;
198 				}
199 				ntfs_error(vol->sb, "NLS character set %s not "
200 						"found. Using previous one %s.",
201 						v, old_nls->charset);
202 				nls_map = old_nls;
203 			} else /* nls_map */ {
204 				if (old_nls)
205 					unload_nls(old_nls);
206 			}
207 		} else if (!strcmp(p, "utf8")) {
208 			BOOL val = FALSE;
209 			ntfs_warning(vol->sb, "Option utf8 is no longer "
210 				   "supported, using option nls=utf8. Please "
211 				   "use option nls=utf8 in the future and "
212 				   "make sure utf8 is compiled either as a "
213 				   "module or into the kernel.");
214 			if (!v || !*v)
215 				val = TRUE;
216 			else if (!simple_getbool(v, &val))
217 				goto needs_bool;
218 			if (val) {
219 				v = utf8;
220 				goto use_utf8;
221 			}
222 		} else {
223 			ntfs_error(vol->sb, "Unrecognized mount option %s.", p);
224 			if (errors < INT_MAX)
225 				errors++;
226 		}
227 #undef NTFS_GETOPT_OPTIONS_ARRAY
228 #undef NTFS_GETOPT_BOOL
229 #undef NTFS_GETOPT
230 #undef NTFS_GETOPT_WITH_DEFAULT
231 	}
232 no_mount_options:
233 	if (errors && !sloppy)
234 		return FALSE;
235 	if (sloppy)
236 		ntfs_warning(vol->sb, "Sloppy option given. Ignoring "
237 				"unrecognized mount option(s) and continuing.");
238 	/* Keep this first! */
239 	if (on_errors != -1) {
240 		if (!on_errors) {
241 			ntfs_error(vol->sb, "Invalid errors option argument "
242 					"or bug in options parser.");
243 			return FALSE;
244 		}
245 	}
246 	if (nls_map) {
247 		if (vol->nls_map && vol->nls_map != nls_map) {
248 			ntfs_error(vol->sb, "Cannot change NLS character set "
249 					"on remount.");
250 			return FALSE;
251 		} /* else (!vol->nls_map) */
252 		ntfs_debug("Using NLS character set %s.", nls_map->charset);
253 		vol->nls_map = nls_map;
254 	} else /* (!nls_map) */ {
255 		if (!vol->nls_map) {
256 			vol->nls_map = load_nls_default();
257 			if (!vol->nls_map) {
258 				ntfs_error(vol->sb, "Failed to load default "
259 						"NLS character set.");
260 				return FALSE;
261 			}
262 			ntfs_debug("Using default NLS character set (%s).",
263 					vol->nls_map->charset);
264 		}
265 	}
266 	if (mft_zone_multiplier != -1) {
267 		if (vol->mft_zone_multiplier && vol->mft_zone_multiplier !=
268 				mft_zone_multiplier) {
269 			ntfs_error(vol->sb, "Cannot change mft_zone_multiplier "
270 					"on remount.");
271 			return FALSE;
272 		}
273 		if (mft_zone_multiplier < 1 || mft_zone_multiplier > 4) {
274 			ntfs_error(vol->sb, "Invalid mft_zone_multiplier. "
275 					"Using default value, i.e. 1.");
276 			mft_zone_multiplier = 1;
277 		}
278 		vol->mft_zone_multiplier = mft_zone_multiplier;
279 	}
280 	if (!vol->mft_zone_multiplier)
281 		vol->mft_zone_multiplier = 1;
282 	if (on_errors != -1)
283 		vol->on_errors = on_errors;
284 	if (!vol->on_errors || vol->on_errors == ON_ERRORS_RECOVER)
285 		vol->on_errors |= ON_ERRORS_CONTINUE;
286 	if (uid != (uid_t)-1)
287 		vol->uid = uid;
288 	if (gid != (gid_t)-1)
289 		vol->gid = gid;
290 	if (fmask != (mode_t)-1)
291 		vol->fmask = fmask;
292 	if (dmask != (mode_t)-1)
293 		vol->dmask = dmask;
294 	if (show_sys_files != -1) {
295 		if (show_sys_files)
296 			NVolSetShowSystemFiles(vol);
297 		else
298 			NVolClearShowSystemFiles(vol);
299 	}
300 	if (case_sensitive != -1) {
301 		if (case_sensitive)
302 			NVolSetCaseSensitive(vol);
303 		else
304 			NVolClearCaseSensitive(vol);
305 	}
306 	if (disable_sparse != -1) {
307 		if (disable_sparse)
308 			NVolClearSparseEnabled(vol);
309 		else {
310 			if (!NVolSparseEnabled(vol) &&
311 					vol->major_ver && vol->major_ver < 3)
312 				ntfs_warning(vol->sb, "Not enabling sparse "
313 						"support due to NTFS volume "
314 						"version %i.%i (need at least "
315 						"version 3.0).", vol->major_ver,
316 						vol->minor_ver);
317 			else
318 				NVolSetSparseEnabled(vol);
319 		}
320 	}
321 	return TRUE;
322 needs_arg:
323 	ntfs_error(vol->sb, "The %s option requires an argument.", p);
324 	return FALSE;
325 needs_bool:
326 	ntfs_error(vol->sb, "The %s option requires a boolean argument.", p);
327 	return FALSE;
328 needs_val:
329 	ntfs_error(vol->sb, "Invalid %s option argument: %s", p, ov);
330 	return FALSE;
331 }
332 
333 #ifdef NTFS_RW
334 
335 /**
336  * ntfs_write_volume_flags - write new flags to the volume information flags
337  * @vol:	ntfs volume on which to modify the flags
338  * @flags:	new flags value for the volume information flags
339  *
340  * Internal function.  You probably want to use ntfs_{set,clear}_volume_flags()
341  * instead (see below).
342  *
343  * Replace the volume information flags on the volume @vol with the value
344  * supplied in @flags.  Note, this overwrites the volume information flags, so
345  * make sure to combine the flags you want to modify with the old flags and use
346  * the result when calling ntfs_write_volume_flags().
347  *
348  * Return 0 on success and -errno on error.
349  */
350 static int ntfs_write_volume_flags(ntfs_volume *vol, const VOLUME_FLAGS flags)
351 {
352 	ntfs_inode *ni = NTFS_I(vol->vol_ino);
353 	MFT_RECORD *m;
354 	VOLUME_INFORMATION *vi;
355 	ntfs_attr_search_ctx *ctx;
356 	int err;
357 
358 	ntfs_debug("Entering, old flags = 0x%x, new flags = 0x%x.",
359 			le16_to_cpu(vol->vol_flags), le16_to_cpu(flags));
360 	if (vol->vol_flags == flags)
361 		goto done;
362 	BUG_ON(!ni);
363 	m = map_mft_record(ni);
364 	if (IS_ERR(m)) {
365 		err = PTR_ERR(m);
366 		goto err_out;
367 	}
368 	ctx = ntfs_attr_get_search_ctx(ni, m);
369 	if (!ctx) {
370 		err = -ENOMEM;
371 		goto put_unm_err_out;
372 	}
373 	err = ntfs_attr_lookup(AT_VOLUME_INFORMATION, NULL, 0, 0, 0, NULL, 0,
374 			ctx);
375 	if (err)
376 		goto put_unm_err_out;
377 	vi = (VOLUME_INFORMATION*)((u8*)ctx->attr +
378 			le16_to_cpu(ctx->attr->data.resident.value_offset));
379 	vol->vol_flags = vi->flags = flags;
380 	flush_dcache_mft_record_page(ctx->ntfs_ino);
381 	mark_mft_record_dirty(ctx->ntfs_ino);
382 	ntfs_attr_put_search_ctx(ctx);
383 	unmap_mft_record(ni);
384 done:
385 	ntfs_debug("Done.");
386 	return 0;
387 put_unm_err_out:
388 	if (ctx)
389 		ntfs_attr_put_search_ctx(ctx);
390 	unmap_mft_record(ni);
391 err_out:
392 	ntfs_error(vol->sb, "Failed with error code %i.", -err);
393 	return err;
394 }
395 
396 /**
397  * ntfs_set_volume_flags - set bits in the volume information flags
398  * @vol:	ntfs volume on which to modify the flags
399  * @flags:	flags to set on the volume
400  *
401  * Set the bits in @flags in the volume information flags on the volume @vol.
402  *
403  * Return 0 on success and -errno on error.
404  */
405 static inline int ntfs_set_volume_flags(ntfs_volume *vol, VOLUME_FLAGS flags)
406 {
407 	flags &= VOLUME_FLAGS_MASK;
408 	return ntfs_write_volume_flags(vol, vol->vol_flags | flags);
409 }
410 
411 /**
412  * ntfs_clear_volume_flags - clear bits in the volume information flags
413  * @vol:	ntfs volume on which to modify the flags
414  * @flags:	flags to clear on the volume
415  *
416  * Clear the bits in @flags in the volume information flags on the volume @vol.
417  *
418  * Return 0 on success and -errno on error.
419  */
420 static inline int ntfs_clear_volume_flags(ntfs_volume *vol, VOLUME_FLAGS flags)
421 {
422 	flags &= VOLUME_FLAGS_MASK;
423 	flags = vol->vol_flags & cpu_to_le16(~le16_to_cpu(flags));
424 	return ntfs_write_volume_flags(vol, flags);
425 }
426 
427 #endif /* NTFS_RW */
428 
429 /**
430  * ntfs_remount - change the mount options of a mounted ntfs filesystem
431  * @sb:		superblock of mounted ntfs filesystem
432  * @flags:	remount flags
433  * @opt:	remount options string
434  *
435  * Change the mount options of an already mounted ntfs filesystem.
436  *
437  * NOTE:  The VFS sets the @sb->s_flags remount flags to @flags after
438  * ntfs_remount() returns successfully (i.e. returns 0).  Otherwise,
439  * @sb->s_flags are not changed.
440  */
441 static int ntfs_remount(struct super_block *sb, int *flags, char *opt)
442 {
443 	ntfs_volume *vol = NTFS_SB(sb);
444 
445 	ntfs_debug("Entering with remount options string: %s", opt);
446 #ifndef NTFS_RW
447 	/* For read-only compiled driver, enforce read-only flag. */
448 	*flags |= MS_RDONLY;
449 #else /* NTFS_RW */
450 	/*
451 	 * For the read-write compiled driver, if we are remounting read-write,
452 	 * make sure there are no volume errors and that no unsupported volume
453 	 * flags are set.  Also, empty the logfile journal as it would become
454 	 * stale as soon as something is written to the volume and mark the
455 	 * volume dirty so that chkdsk is run if the volume is not umounted
456 	 * cleanly.  Finally, mark the quotas out of date so Windows rescans
457 	 * the volume on boot and updates them.
458 	 *
459 	 * When remounting read-only, mark the volume clean if no volume errors
460 	 * have occured.
461 	 */
462 	if ((sb->s_flags & MS_RDONLY) && !(*flags & MS_RDONLY)) {
463 		static const char *es = ".  Cannot remount read-write.";
464 
465 		/* Remounting read-write. */
466 		if (NVolErrors(vol)) {
467 			ntfs_error(sb, "Volume has errors and is read-only%s",
468 					es);
469 			return -EROFS;
470 		}
471 		if (vol->vol_flags & VOLUME_IS_DIRTY) {
472 			ntfs_error(sb, "Volume is dirty and read-only%s", es);
473 			return -EROFS;
474 		}
475 		if (vol->vol_flags & VOLUME_MUST_MOUNT_RO_MASK) {
476 			ntfs_error(sb, "Volume has unsupported flags set and "
477 					"is read-only%s", es);
478 			return -EROFS;
479 		}
480 		if (ntfs_set_volume_flags(vol, VOLUME_IS_DIRTY)) {
481 			ntfs_error(sb, "Failed to set dirty bit in volume "
482 					"information flags%s", es);
483 			return -EROFS;
484 		}
485 #if 0
486 		// TODO: Enable this code once we start modifying anything that
487 		//	 is different between NTFS 1.2 and 3.x...
488 		/* Set NT4 compatibility flag on newer NTFS version volumes. */
489 		if ((vol->major_ver > 1)) {
490 			if (ntfs_set_volume_flags(vol, VOLUME_MOUNTED_ON_NT4)) {
491 				ntfs_error(sb, "Failed to set NT4 "
492 						"compatibility flag%s", es);
493 				NVolSetErrors(vol);
494 				return -EROFS;
495 			}
496 		}
497 #endif
498 		if (!ntfs_empty_logfile(vol->logfile_ino)) {
499 			ntfs_error(sb, "Failed to empty journal $LogFile%s",
500 					es);
501 			NVolSetErrors(vol);
502 			return -EROFS;
503 		}
504 		if (!ntfs_mark_quotas_out_of_date(vol)) {
505 			ntfs_error(sb, "Failed to mark quotas out of date%s",
506 					es);
507 			NVolSetErrors(vol);
508 			return -EROFS;
509 		}
510 		if (!ntfs_stamp_usnjrnl(vol)) {
511 			ntfs_error(sb, "Failed to stamp transation log "
512 					"($UsnJrnl)%s", es);
513 			NVolSetErrors(vol);
514 			return -EROFS;
515 		}
516 	} else if (!(sb->s_flags & MS_RDONLY) && (*flags & MS_RDONLY)) {
517 		/* Remounting read-only. */
518 		if (!NVolErrors(vol)) {
519 			if (ntfs_clear_volume_flags(vol, VOLUME_IS_DIRTY))
520 				ntfs_warning(sb, "Failed to clear dirty bit "
521 						"in volume information "
522 						"flags.  Run chkdsk.");
523 		}
524 	}
525 #endif /* NTFS_RW */
526 
527 	// TODO: Deal with *flags.
528 
529 	if (!parse_options(vol, opt))
530 		return -EINVAL;
531 	ntfs_debug("Done.");
532 	return 0;
533 }
534 
535 /**
536  * is_boot_sector_ntfs - check whether a boot sector is a valid NTFS boot sector
537  * @sb:		Super block of the device to which @b belongs.
538  * @b:		Boot sector of device @sb to check.
539  * @silent:	If TRUE, all output will be silenced.
540  *
541  * is_boot_sector_ntfs() checks whether the boot sector @b is a valid NTFS boot
542  * sector. Returns TRUE if it is valid and FALSE if not.
543  *
544  * @sb is only needed for warning/error output, i.e. it can be NULL when silent
545  * is TRUE.
546  */
547 static BOOL is_boot_sector_ntfs(const struct super_block *sb,
548 		const NTFS_BOOT_SECTOR *b, const BOOL silent)
549 {
550 	/*
551 	 * Check that checksum == sum of u32 values from b to the checksum
552 	 * field.  If checksum is zero, no checking is done.  We will work when
553 	 * the checksum test fails, since some utilities update the boot sector
554 	 * ignoring the checksum which leaves the checksum out-of-date.  We
555 	 * report a warning if this is the case.
556 	 */
557 	if ((void*)b < (void*)&b->checksum && b->checksum && !silent) {
558 		le32 *u;
559 		u32 i;
560 
561 		for (i = 0, u = (le32*)b; u < (le32*)(&b->checksum); ++u)
562 			i += le32_to_cpup(u);
563 		if (le32_to_cpu(b->checksum) != i)
564 			ntfs_warning(sb, "Invalid boot sector checksum.");
565 	}
566 	/* Check OEMidentifier is "NTFS    " */
567 	if (b->oem_id != magicNTFS)
568 		goto not_ntfs;
569 	/* Check bytes per sector value is between 256 and 4096. */
570 	if (le16_to_cpu(b->bpb.bytes_per_sector) < 0x100 ||
571 			le16_to_cpu(b->bpb.bytes_per_sector) > 0x1000)
572 		goto not_ntfs;
573 	/* Check sectors per cluster value is valid. */
574 	switch (b->bpb.sectors_per_cluster) {
575 	case 1: case 2: case 4: case 8: case 16: case 32: case 64: case 128:
576 		break;
577 	default:
578 		goto not_ntfs;
579 	}
580 	/* Check the cluster size is not above the maximum (64kiB). */
581 	if ((u32)le16_to_cpu(b->bpb.bytes_per_sector) *
582 			b->bpb.sectors_per_cluster > NTFS_MAX_CLUSTER_SIZE)
583 		goto not_ntfs;
584 	/* Check reserved/unused fields are really zero. */
585 	if (le16_to_cpu(b->bpb.reserved_sectors) ||
586 			le16_to_cpu(b->bpb.root_entries) ||
587 			le16_to_cpu(b->bpb.sectors) ||
588 			le16_to_cpu(b->bpb.sectors_per_fat) ||
589 			le32_to_cpu(b->bpb.large_sectors) || b->bpb.fats)
590 		goto not_ntfs;
591 	/* Check clusters per file mft record value is valid. */
592 	if ((u8)b->clusters_per_mft_record < 0xe1 ||
593 			(u8)b->clusters_per_mft_record > 0xf7)
594 		switch (b->clusters_per_mft_record) {
595 		case 1: case 2: case 4: case 8: case 16: case 32: case 64:
596 			break;
597 		default:
598 			goto not_ntfs;
599 		}
600 	/* Check clusters per index block value is valid. */
601 	if ((u8)b->clusters_per_index_record < 0xe1 ||
602 			(u8)b->clusters_per_index_record > 0xf7)
603 		switch (b->clusters_per_index_record) {
604 		case 1: case 2: case 4: case 8: case 16: case 32: case 64:
605 			break;
606 		default:
607 			goto not_ntfs;
608 		}
609 	/*
610 	 * Check for valid end of sector marker. We will work without it, but
611 	 * many BIOSes will refuse to boot from a bootsector if the magic is
612 	 * incorrect, so we emit a warning.
613 	 */
614 	if (!silent && b->end_of_sector_marker != const_cpu_to_le16(0xaa55))
615 		ntfs_warning(sb, "Invalid end of sector marker.");
616 	return TRUE;
617 not_ntfs:
618 	return FALSE;
619 }
620 
621 /**
622  * read_ntfs_boot_sector - read the NTFS boot sector of a device
623  * @sb:		super block of device to read the boot sector from
624  * @silent:	if true, suppress all output
625  *
626  * Reads the boot sector from the device and validates it. If that fails, tries
627  * to read the backup boot sector, first from the end of the device a-la NT4 and
628  * later and then from the middle of the device a-la NT3.51 and before.
629  *
630  * If a valid boot sector is found but it is not the primary boot sector, we
631  * repair the primary boot sector silently (unless the device is read-only or
632  * the primary boot sector is not accessible).
633  *
634  * NOTE: To call this function, @sb must have the fields s_dev, the ntfs super
635  * block (u.ntfs_sb), nr_blocks and the device flags (s_flags) initialized
636  * to their respective values.
637  *
638  * Return the unlocked buffer head containing the boot sector or NULL on error.
639  */
640 static struct buffer_head *read_ntfs_boot_sector(struct super_block *sb,
641 		const int silent)
642 {
643 	const char *read_err_str = "Unable to read %s boot sector.";
644 	struct buffer_head *bh_primary, *bh_backup;
645 	sector_t nr_blocks = NTFS_SB(sb)->nr_blocks;
646 
647 	/* Try to read primary boot sector. */
648 	if ((bh_primary = sb_bread(sb, 0))) {
649 		if (is_boot_sector_ntfs(sb, (NTFS_BOOT_SECTOR*)
650 				bh_primary->b_data, silent))
651 			return bh_primary;
652 		if (!silent)
653 			ntfs_error(sb, "Primary boot sector is invalid.");
654 	} else if (!silent)
655 		ntfs_error(sb, read_err_str, "primary");
656 	if (!(NTFS_SB(sb)->on_errors & ON_ERRORS_RECOVER)) {
657 		if (bh_primary)
658 			brelse(bh_primary);
659 		if (!silent)
660 			ntfs_error(sb, "Mount option errors=recover not used. "
661 					"Aborting without trying to recover.");
662 		return NULL;
663 	}
664 	/* Try to read NT4+ backup boot sector. */
665 	if ((bh_backup = sb_bread(sb, nr_blocks - 1))) {
666 		if (is_boot_sector_ntfs(sb, (NTFS_BOOT_SECTOR*)
667 				bh_backup->b_data, silent))
668 			goto hotfix_primary_boot_sector;
669 		brelse(bh_backup);
670 	} else if (!silent)
671 		ntfs_error(sb, read_err_str, "backup");
672 	/* Try to read NT3.51- backup boot sector. */
673 	if ((bh_backup = sb_bread(sb, nr_blocks >> 1))) {
674 		if (is_boot_sector_ntfs(sb, (NTFS_BOOT_SECTOR*)
675 				bh_backup->b_data, silent))
676 			goto hotfix_primary_boot_sector;
677 		if (!silent)
678 			ntfs_error(sb, "Could not find a valid backup boot "
679 					"sector.");
680 		brelse(bh_backup);
681 	} else if (!silent)
682 		ntfs_error(sb, read_err_str, "backup");
683 	/* We failed. Cleanup and return. */
684 	if (bh_primary)
685 		brelse(bh_primary);
686 	return NULL;
687 hotfix_primary_boot_sector:
688 	if (bh_primary) {
689 		/*
690 		 * If we managed to read sector zero and the volume is not
691 		 * read-only, copy the found, valid backup boot sector to the
692 		 * primary boot sector.  Note we only copy the actual boot
693 		 * sector structure, not the actual whole device sector as that
694 		 * may be bigger and would potentially damage the $Boot system
695 		 * file (FIXME: Would be nice to know if the backup boot sector
696 		 * on a large sector device contains the whole boot loader or
697 		 * just the first 512 bytes).
698 		 */
699 		if (!(sb->s_flags & MS_RDONLY)) {
700 			ntfs_warning(sb, "Hot-fix: Recovering invalid primary "
701 					"boot sector from backup copy.");
702 			memcpy(bh_primary->b_data, bh_backup->b_data,
703 					NTFS_BLOCK_SIZE);
704 			mark_buffer_dirty(bh_primary);
705 			sync_dirty_buffer(bh_primary);
706 			if (buffer_uptodate(bh_primary)) {
707 				brelse(bh_backup);
708 				return bh_primary;
709 			}
710 			ntfs_error(sb, "Hot-fix: Device write error while "
711 					"recovering primary boot sector.");
712 		} else {
713 			ntfs_warning(sb, "Hot-fix: Recovery of primary boot "
714 					"sector failed: Read-only mount.");
715 		}
716 		brelse(bh_primary);
717 	}
718 	ntfs_warning(sb, "Using backup boot sector.");
719 	return bh_backup;
720 }
721 
722 /**
723  * parse_ntfs_boot_sector - parse the boot sector and store the data in @vol
724  * @vol:	volume structure to initialise with data from boot sector
725  * @b:		boot sector to parse
726  *
727  * Parse the ntfs boot sector @b and store all imporant information therein in
728  * the ntfs super block @vol.  Return TRUE on success and FALSE on error.
729  */
730 static BOOL parse_ntfs_boot_sector(ntfs_volume *vol, const NTFS_BOOT_SECTOR *b)
731 {
732 	unsigned int sectors_per_cluster_bits, nr_hidden_sects;
733 	int clusters_per_mft_record, clusters_per_index_record;
734 	s64 ll;
735 
736 	vol->sector_size = le16_to_cpu(b->bpb.bytes_per_sector);
737 	vol->sector_size_bits = ffs(vol->sector_size) - 1;
738 	ntfs_debug("vol->sector_size = %i (0x%x)", vol->sector_size,
739 			vol->sector_size);
740 	ntfs_debug("vol->sector_size_bits = %i (0x%x)", vol->sector_size_bits,
741 			vol->sector_size_bits);
742 	if (vol->sector_size < vol->sb->s_blocksize) {
743 		ntfs_error(vol->sb, "Sector size (%i) is smaller than the "
744 				"device block size (%lu).  This is not "
745 				"supported.  Sorry.", vol->sector_size,
746 				vol->sb->s_blocksize);
747 		return FALSE;
748 	}
749 	ntfs_debug("sectors_per_cluster = 0x%x", b->bpb.sectors_per_cluster);
750 	sectors_per_cluster_bits = ffs(b->bpb.sectors_per_cluster) - 1;
751 	ntfs_debug("sectors_per_cluster_bits = 0x%x",
752 			sectors_per_cluster_bits);
753 	nr_hidden_sects = le32_to_cpu(b->bpb.hidden_sectors);
754 	ntfs_debug("number of hidden sectors = 0x%x", nr_hidden_sects);
755 	vol->cluster_size = vol->sector_size << sectors_per_cluster_bits;
756 	vol->cluster_size_mask = vol->cluster_size - 1;
757 	vol->cluster_size_bits = ffs(vol->cluster_size) - 1;
758 	ntfs_debug("vol->cluster_size = %i (0x%x)", vol->cluster_size,
759 			vol->cluster_size);
760 	ntfs_debug("vol->cluster_size_mask = 0x%x", vol->cluster_size_mask);
761 	ntfs_debug("vol->cluster_size_bits = %i", vol->cluster_size_bits);
762 	if (vol->cluster_size < vol->sector_size) {
763 		ntfs_error(vol->sb, "Cluster size (%i) is smaller than the "
764 				"sector size (%i).  This is not supported.  "
765 				"Sorry.", vol->cluster_size, vol->sector_size);
766 		return FALSE;
767 	}
768 	clusters_per_mft_record = b->clusters_per_mft_record;
769 	ntfs_debug("clusters_per_mft_record = %i (0x%x)",
770 			clusters_per_mft_record, clusters_per_mft_record);
771 	if (clusters_per_mft_record > 0)
772 		vol->mft_record_size = vol->cluster_size <<
773 				(ffs(clusters_per_mft_record) - 1);
774 	else
775 		/*
776 		 * When mft_record_size < cluster_size, clusters_per_mft_record
777 		 * = -log2(mft_record_size) bytes. mft_record_size normaly is
778 		 * 1024 bytes, which is encoded as 0xF6 (-10 in decimal).
779 		 */
780 		vol->mft_record_size = 1 << -clusters_per_mft_record;
781 	vol->mft_record_size_mask = vol->mft_record_size - 1;
782 	vol->mft_record_size_bits = ffs(vol->mft_record_size) - 1;
783 	ntfs_debug("vol->mft_record_size = %i (0x%x)", vol->mft_record_size,
784 			vol->mft_record_size);
785 	ntfs_debug("vol->mft_record_size_mask = 0x%x",
786 			vol->mft_record_size_mask);
787 	ntfs_debug("vol->mft_record_size_bits = %i (0x%x)",
788 			vol->mft_record_size_bits, vol->mft_record_size_bits);
789 	/*
790 	 * We cannot support mft record sizes above the PAGE_CACHE_SIZE since
791 	 * we store $MFT/$DATA, the table of mft records in the page cache.
792 	 */
793 	if (vol->mft_record_size > PAGE_CACHE_SIZE) {
794 		ntfs_error(vol->sb, "Mft record size (%i) exceeds the "
795 				"PAGE_CACHE_SIZE on your system (%lu).  "
796 				"This is not supported.  Sorry.",
797 				vol->mft_record_size, PAGE_CACHE_SIZE);
798 		return FALSE;
799 	}
800 	/* We cannot support mft record sizes below the sector size. */
801 	if (vol->mft_record_size < vol->sector_size) {
802 		ntfs_error(vol->sb, "Mft record size (%i) is smaller than the "
803 				"sector size (%i).  This is not supported.  "
804 				"Sorry.", vol->mft_record_size,
805 				vol->sector_size);
806 		return FALSE;
807 	}
808 	clusters_per_index_record = b->clusters_per_index_record;
809 	ntfs_debug("clusters_per_index_record = %i (0x%x)",
810 			clusters_per_index_record, clusters_per_index_record);
811 	if (clusters_per_index_record > 0)
812 		vol->index_record_size = vol->cluster_size <<
813 				(ffs(clusters_per_index_record) - 1);
814 	else
815 		/*
816 		 * When index_record_size < cluster_size,
817 		 * clusters_per_index_record = -log2(index_record_size) bytes.
818 		 * index_record_size normaly equals 4096 bytes, which is
819 		 * encoded as 0xF4 (-12 in decimal).
820 		 */
821 		vol->index_record_size = 1 << -clusters_per_index_record;
822 	vol->index_record_size_mask = vol->index_record_size - 1;
823 	vol->index_record_size_bits = ffs(vol->index_record_size) - 1;
824 	ntfs_debug("vol->index_record_size = %i (0x%x)",
825 			vol->index_record_size, vol->index_record_size);
826 	ntfs_debug("vol->index_record_size_mask = 0x%x",
827 			vol->index_record_size_mask);
828 	ntfs_debug("vol->index_record_size_bits = %i (0x%x)",
829 			vol->index_record_size_bits,
830 			vol->index_record_size_bits);
831 	/* We cannot support index record sizes below the sector size. */
832 	if (vol->index_record_size < vol->sector_size) {
833 		ntfs_error(vol->sb, "Index record size (%i) is smaller than "
834 				"the sector size (%i).  This is not "
835 				"supported.  Sorry.", vol->index_record_size,
836 				vol->sector_size);
837 		return FALSE;
838 	}
839 	/*
840 	 * Get the size of the volume in clusters and check for 64-bit-ness.
841 	 * Windows currently only uses 32 bits to save the clusters so we do
842 	 * the same as it is much faster on 32-bit CPUs.
843 	 */
844 	ll = sle64_to_cpu(b->number_of_sectors) >> sectors_per_cluster_bits;
845 	if ((u64)ll >= 1ULL << 32) {
846 		ntfs_error(vol->sb, "Cannot handle 64-bit clusters.  Sorry.");
847 		return FALSE;
848 	}
849 	vol->nr_clusters = ll;
850 	ntfs_debug("vol->nr_clusters = 0x%llx", (long long)vol->nr_clusters);
851 	/*
852 	 * On an architecture where unsigned long is 32-bits, we restrict the
853 	 * volume size to 2TiB (2^41). On a 64-bit architecture, the compiler
854 	 * will hopefully optimize the whole check away.
855 	 */
856 	if (sizeof(unsigned long) < 8) {
857 		if ((ll << vol->cluster_size_bits) >= (1ULL << 41)) {
858 			ntfs_error(vol->sb, "Volume size (%lluTiB) is too "
859 					"large for this architecture.  "
860 					"Maximum supported is 2TiB.  Sorry.",
861 					(unsigned long long)ll >> (40 -
862 					vol->cluster_size_bits));
863 			return FALSE;
864 		}
865 	}
866 	ll = sle64_to_cpu(b->mft_lcn);
867 	if (ll >= vol->nr_clusters) {
868 		ntfs_error(vol->sb, "MFT LCN (%lli, 0x%llx) is beyond end of "
869 				"volume.  Weird.", (unsigned long long)ll,
870 				(unsigned long long)ll);
871 		return FALSE;
872 	}
873 	vol->mft_lcn = ll;
874 	ntfs_debug("vol->mft_lcn = 0x%llx", (long long)vol->mft_lcn);
875 	ll = sle64_to_cpu(b->mftmirr_lcn);
876 	if (ll >= vol->nr_clusters) {
877 		ntfs_error(vol->sb, "MFTMirr LCN (%lli, 0x%llx) is beyond end "
878 				"of volume.  Weird.", (unsigned long long)ll,
879 				(unsigned long long)ll);
880 		return FALSE;
881 	}
882 	vol->mftmirr_lcn = ll;
883 	ntfs_debug("vol->mftmirr_lcn = 0x%llx", (long long)vol->mftmirr_lcn);
884 #ifdef NTFS_RW
885 	/*
886 	 * Work out the size of the mft mirror in number of mft records. If the
887 	 * cluster size is less than or equal to the size taken by four mft
888 	 * records, the mft mirror stores the first four mft records. If the
889 	 * cluster size is bigger than the size taken by four mft records, the
890 	 * mft mirror contains as many mft records as will fit into one
891 	 * cluster.
892 	 */
893 	if (vol->cluster_size <= (4 << vol->mft_record_size_bits))
894 		vol->mftmirr_size = 4;
895 	else
896 		vol->mftmirr_size = vol->cluster_size >>
897 				vol->mft_record_size_bits;
898 	ntfs_debug("vol->mftmirr_size = %i", vol->mftmirr_size);
899 #endif /* NTFS_RW */
900 	vol->serial_no = le64_to_cpu(b->volume_serial_number);
901 	ntfs_debug("vol->serial_no = 0x%llx",
902 			(unsigned long long)vol->serial_no);
903 	return TRUE;
904 }
905 
906 /**
907  * ntfs_setup_allocators - initialize the cluster and mft allocators
908  * @vol:	volume structure for which to setup the allocators
909  *
910  * Setup the cluster (lcn) and mft allocators to the starting values.
911  */
912 static void ntfs_setup_allocators(ntfs_volume *vol)
913 {
914 #ifdef NTFS_RW
915 	LCN mft_zone_size, mft_lcn;
916 #endif /* NTFS_RW */
917 
918 	ntfs_debug("vol->mft_zone_multiplier = 0x%x",
919 			vol->mft_zone_multiplier);
920 #ifdef NTFS_RW
921 	/* Determine the size of the MFT zone. */
922 	mft_zone_size = vol->nr_clusters;
923 	switch (vol->mft_zone_multiplier) {  /* % of volume size in clusters */
924 	case 4:
925 		mft_zone_size >>= 1;			/* 50%   */
926 		break;
927 	case 3:
928 		mft_zone_size = (mft_zone_size +
929 				(mft_zone_size >> 1)) >> 2;	/* 37.5% */
930 		break;
931 	case 2:
932 		mft_zone_size >>= 2;			/* 25%   */
933 		break;
934 	/* case 1: */
935 	default:
936 		mft_zone_size >>= 3;			/* 12.5% */
937 		break;
938 	}
939 	/* Setup the mft zone. */
940 	vol->mft_zone_start = vol->mft_zone_pos = vol->mft_lcn;
941 	ntfs_debug("vol->mft_zone_pos = 0x%llx",
942 			(unsigned long long)vol->mft_zone_pos);
943 	/*
944 	 * Calculate the mft_lcn for an unmodified NTFS volume (see mkntfs
945 	 * source) and if the actual mft_lcn is in the expected place or even
946 	 * further to the front of the volume, extend the mft_zone to cover the
947 	 * beginning of the volume as well.  This is in order to protect the
948 	 * area reserved for the mft bitmap as well within the mft_zone itself.
949 	 * On non-standard volumes we do not protect it as the overhead would
950 	 * be higher than the speed increase we would get by doing it.
951 	 */
952 	mft_lcn = (8192 + 2 * vol->cluster_size - 1) / vol->cluster_size;
953 	if (mft_lcn * vol->cluster_size < 16 * 1024)
954 		mft_lcn = (16 * 1024 + vol->cluster_size - 1) /
955 				vol->cluster_size;
956 	if (vol->mft_zone_start <= mft_lcn)
957 		vol->mft_zone_start = 0;
958 	ntfs_debug("vol->mft_zone_start = 0x%llx",
959 			(unsigned long long)vol->mft_zone_start);
960 	/*
961 	 * Need to cap the mft zone on non-standard volumes so that it does
962 	 * not point outside the boundaries of the volume.  We do this by
963 	 * halving the zone size until we are inside the volume.
964 	 */
965 	vol->mft_zone_end = vol->mft_lcn + mft_zone_size;
966 	while (vol->mft_zone_end >= vol->nr_clusters) {
967 		mft_zone_size >>= 1;
968 		vol->mft_zone_end = vol->mft_lcn + mft_zone_size;
969 	}
970 	ntfs_debug("vol->mft_zone_end = 0x%llx",
971 			(unsigned long long)vol->mft_zone_end);
972 	/*
973 	 * Set the current position within each data zone to the start of the
974 	 * respective zone.
975 	 */
976 	vol->data1_zone_pos = vol->mft_zone_end;
977 	ntfs_debug("vol->data1_zone_pos = 0x%llx",
978 			(unsigned long long)vol->data1_zone_pos);
979 	vol->data2_zone_pos = 0;
980 	ntfs_debug("vol->data2_zone_pos = 0x%llx",
981 			(unsigned long long)vol->data2_zone_pos);
982 
983 	/* Set the mft data allocation position to mft record 24. */
984 	vol->mft_data_pos = 24;
985 	ntfs_debug("vol->mft_data_pos = 0x%llx",
986 			(unsigned long long)vol->mft_data_pos);
987 #endif /* NTFS_RW */
988 }
989 
990 #ifdef NTFS_RW
991 
992 /**
993  * load_and_init_mft_mirror - load and setup the mft mirror inode for a volume
994  * @vol:	ntfs super block describing device whose mft mirror to load
995  *
996  * Return TRUE on success or FALSE on error.
997  */
998 static BOOL load_and_init_mft_mirror(ntfs_volume *vol)
999 {
1000 	struct inode *tmp_ino;
1001 	ntfs_inode *tmp_ni;
1002 
1003 	ntfs_debug("Entering.");
1004 	/* Get mft mirror inode. */
1005 	tmp_ino = ntfs_iget(vol->sb, FILE_MFTMirr);
1006 	if (IS_ERR(tmp_ino) || is_bad_inode(tmp_ino)) {
1007 		if (!IS_ERR(tmp_ino))
1008 			iput(tmp_ino);
1009 		/* Caller will display error message. */
1010 		return FALSE;
1011 	}
1012 	/*
1013 	 * Re-initialize some specifics about $MFTMirr's inode as
1014 	 * ntfs_read_inode() will have set up the default ones.
1015 	 */
1016 	/* Set uid and gid to root. */
1017 	tmp_ino->i_uid = tmp_ino->i_gid = 0;
1018 	/* Regular file.  No access for anyone. */
1019 	tmp_ino->i_mode = S_IFREG;
1020 	/* No VFS initiated operations allowed for $MFTMirr. */
1021 	tmp_ino->i_op = &ntfs_empty_inode_ops;
1022 	tmp_ino->i_fop = &ntfs_empty_file_ops;
1023 	/* Put in our special address space operations. */
1024 	tmp_ino->i_mapping->a_ops = &ntfs_mst_aops;
1025 	tmp_ni = NTFS_I(tmp_ino);
1026 	/* The $MFTMirr, like the $MFT is multi sector transfer protected. */
1027 	NInoSetMstProtected(tmp_ni);
1028 	NInoSetSparseDisabled(tmp_ni);
1029 	/*
1030 	 * Set up our little cheat allowing us to reuse the async read io
1031 	 * completion handler for directories.
1032 	 */
1033 	tmp_ni->itype.index.block_size = vol->mft_record_size;
1034 	tmp_ni->itype.index.block_size_bits = vol->mft_record_size_bits;
1035 	vol->mftmirr_ino = tmp_ino;
1036 	ntfs_debug("Done.");
1037 	return TRUE;
1038 }
1039 
1040 /**
1041  * check_mft_mirror - compare contents of the mft mirror with the mft
1042  * @vol:	ntfs super block describing device whose mft mirror to check
1043  *
1044  * Return TRUE on success or FALSE on error.
1045  *
1046  * Note, this function also results in the mft mirror runlist being completely
1047  * mapped into memory.  The mft mirror write code requires this and will BUG()
1048  * should it find an unmapped runlist element.
1049  */
1050 static BOOL check_mft_mirror(ntfs_volume *vol)
1051 {
1052 	struct super_block *sb = vol->sb;
1053 	ntfs_inode *mirr_ni;
1054 	struct page *mft_page, *mirr_page;
1055 	u8 *kmft, *kmirr;
1056 	runlist_element *rl, rl2[2];
1057 	pgoff_t index;
1058 	int mrecs_per_page, i;
1059 
1060 	ntfs_debug("Entering.");
1061 	/* Compare contents of $MFT and $MFTMirr. */
1062 	mrecs_per_page = PAGE_CACHE_SIZE / vol->mft_record_size;
1063 	BUG_ON(!mrecs_per_page);
1064 	BUG_ON(!vol->mftmirr_size);
1065 	mft_page = mirr_page = NULL;
1066 	kmft = kmirr = NULL;
1067 	index = i = 0;
1068 	do {
1069 		u32 bytes;
1070 
1071 		/* Switch pages if necessary. */
1072 		if (!(i % mrecs_per_page)) {
1073 			if (index) {
1074 				ntfs_unmap_page(mft_page);
1075 				ntfs_unmap_page(mirr_page);
1076 			}
1077 			/* Get the $MFT page. */
1078 			mft_page = ntfs_map_page(vol->mft_ino->i_mapping,
1079 					index);
1080 			if (IS_ERR(mft_page)) {
1081 				ntfs_error(sb, "Failed to read $MFT.");
1082 				return FALSE;
1083 			}
1084 			kmft = page_address(mft_page);
1085 			/* Get the $MFTMirr page. */
1086 			mirr_page = ntfs_map_page(vol->mftmirr_ino->i_mapping,
1087 					index);
1088 			if (IS_ERR(mirr_page)) {
1089 				ntfs_error(sb, "Failed to read $MFTMirr.");
1090 				goto mft_unmap_out;
1091 			}
1092 			kmirr = page_address(mirr_page);
1093 			++index;
1094 		}
1095 		/* Make sure the record is ok. */
1096 		if (ntfs_is_baad_recordp((le32*)kmft)) {
1097 			ntfs_error(sb, "Incomplete multi sector transfer "
1098 					"detected in mft record %i.", i);
1099 mm_unmap_out:
1100 			ntfs_unmap_page(mirr_page);
1101 mft_unmap_out:
1102 			ntfs_unmap_page(mft_page);
1103 			return FALSE;
1104 		}
1105 		if (ntfs_is_baad_recordp((le32*)kmirr)) {
1106 			ntfs_error(sb, "Incomplete multi sector transfer "
1107 					"detected in mft mirror record %i.", i);
1108 			goto mm_unmap_out;
1109 		}
1110 		/* Get the amount of data in the current record. */
1111 		bytes = le32_to_cpu(((MFT_RECORD*)kmft)->bytes_in_use);
1112 		if (!bytes || bytes > vol->mft_record_size) {
1113 			bytes = le32_to_cpu(((MFT_RECORD*)kmirr)->bytes_in_use);
1114 			if (!bytes || bytes > vol->mft_record_size)
1115 				bytes = vol->mft_record_size;
1116 		}
1117 		/* Compare the two records. */
1118 		if (memcmp(kmft, kmirr, bytes)) {
1119 			ntfs_error(sb, "$MFT and $MFTMirr (record %i) do not "
1120 					"match.  Run ntfsfix or chkdsk.", i);
1121 			goto mm_unmap_out;
1122 		}
1123 		kmft += vol->mft_record_size;
1124 		kmirr += vol->mft_record_size;
1125 	} while (++i < vol->mftmirr_size);
1126 	/* Release the last pages. */
1127 	ntfs_unmap_page(mft_page);
1128 	ntfs_unmap_page(mirr_page);
1129 
1130 	/* Construct the mft mirror runlist by hand. */
1131 	rl2[0].vcn = 0;
1132 	rl2[0].lcn = vol->mftmirr_lcn;
1133 	rl2[0].length = (vol->mftmirr_size * vol->mft_record_size +
1134 			vol->cluster_size - 1) / vol->cluster_size;
1135 	rl2[1].vcn = rl2[0].length;
1136 	rl2[1].lcn = LCN_ENOENT;
1137 	rl2[1].length = 0;
1138 	/*
1139 	 * Because we have just read all of the mft mirror, we know we have
1140 	 * mapped the full runlist for it.
1141 	 */
1142 	mirr_ni = NTFS_I(vol->mftmirr_ino);
1143 	down_read(&mirr_ni->runlist.lock);
1144 	rl = mirr_ni->runlist.rl;
1145 	/* Compare the two runlists.  They must be identical. */
1146 	i = 0;
1147 	do {
1148 		if (rl2[i].vcn != rl[i].vcn || rl2[i].lcn != rl[i].lcn ||
1149 				rl2[i].length != rl[i].length) {
1150 			ntfs_error(sb, "$MFTMirr location mismatch.  "
1151 					"Run chkdsk.");
1152 			up_read(&mirr_ni->runlist.lock);
1153 			return FALSE;
1154 		}
1155 	} while (rl2[i++].length);
1156 	up_read(&mirr_ni->runlist.lock);
1157 	ntfs_debug("Done.");
1158 	return TRUE;
1159 }
1160 
1161 /**
1162  * load_and_check_logfile - load and check the logfile inode for a volume
1163  * @vol:	ntfs super block describing device whose logfile to load
1164  *
1165  * Return TRUE on success or FALSE on error.
1166  */
1167 static BOOL load_and_check_logfile(ntfs_volume *vol,
1168 		RESTART_PAGE_HEADER **rp)
1169 {
1170 	struct inode *tmp_ino;
1171 
1172 	ntfs_debug("Entering.");
1173 	tmp_ino = ntfs_iget(vol->sb, FILE_LogFile);
1174 	if (IS_ERR(tmp_ino) || is_bad_inode(tmp_ino)) {
1175 		if (!IS_ERR(tmp_ino))
1176 			iput(tmp_ino);
1177 		/* Caller will display error message. */
1178 		return FALSE;
1179 	}
1180 	if (!ntfs_check_logfile(tmp_ino, rp)) {
1181 		iput(tmp_ino);
1182 		/* ntfs_check_logfile() will have displayed error output. */
1183 		return FALSE;
1184 	}
1185 	NInoSetSparseDisabled(NTFS_I(tmp_ino));
1186 	vol->logfile_ino = tmp_ino;
1187 	ntfs_debug("Done.");
1188 	return TRUE;
1189 }
1190 
1191 #define NTFS_HIBERFIL_HEADER_SIZE	4096
1192 
1193 /**
1194  * check_windows_hibernation_status - check if Windows is suspended on a volume
1195  * @vol:	ntfs super block of device to check
1196  *
1197  * Check if Windows is hibernated on the ntfs volume @vol.  This is done by
1198  * looking for the file hiberfil.sys in the root directory of the volume.  If
1199  * the file is not present Windows is definitely not suspended.
1200  *
1201  * If hiberfil.sys exists and is less than 4kiB in size it means Windows is
1202  * definitely suspended (this volume is not the system volume).  Caveat:  on a
1203  * system with many volumes it is possible that the < 4kiB check is bogus but
1204  * for now this should do fine.
1205  *
1206  * If hiberfil.sys exists and is larger than 4kiB in size, we need to read the
1207  * hiberfil header (which is the first 4kiB).  If this begins with "hibr",
1208  * Windows is definitely suspended.  If it is completely full of zeroes,
1209  * Windows is definitely not hibernated.  Any other case is treated as if
1210  * Windows is suspended.  This caters for the above mentioned caveat of a
1211  * system with many volumes where no "hibr" magic would be present and there is
1212  * no zero header.
1213  *
1214  * Return 0 if Windows is not hibernated on the volume, >0 if Windows is
1215  * hibernated on the volume, and -errno on error.
1216  */
1217 static int check_windows_hibernation_status(ntfs_volume *vol)
1218 {
1219 	MFT_REF mref;
1220 	struct inode *vi;
1221 	ntfs_inode *ni;
1222 	struct page *page;
1223 	u32 *kaddr, *kend;
1224 	ntfs_name *name = NULL;
1225 	int ret = 1;
1226 	static const ntfschar hiberfil[13] = { const_cpu_to_le16('h'),
1227 			const_cpu_to_le16('i'), const_cpu_to_le16('b'),
1228 			const_cpu_to_le16('e'), const_cpu_to_le16('r'),
1229 			const_cpu_to_le16('f'), const_cpu_to_le16('i'),
1230 			const_cpu_to_le16('l'), const_cpu_to_le16('.'),
1231 			const_cpu_to_le16('s'), const_cpu_to_le16('y'),
1232 			const_cpu_to_le16('s'), 0 };
1233 
1234 	ntfs_debug("Entering.");
1235 	/*
1236 	 * Find the inode number for the hibernation file by looking up the
1237 	 * filename hiberfil.sys in the root directory.
1238 	 */
1239 	mutex_lock(&vol->root_ino->i_mutex);
1240 	mref = ntfs_lookup_inode_by_name(NTFS_I(vol->root_ino), hiberfil, 12,
1241 			&name);
1242 	mutex_unlock(&vol->root_ino->i_mutex);
1243 	if (IS_ERR_MREF(mref)) {
1244 		ret = MREF_ERR(mref);
1245 		/* If the file does not exist, Windows is not hibernated. */
1246 		if (ret == -ENOENT) {
1247 			ntfs_debug("hiberfil.sys not present.  Windows is not "
1248 					"hibernated on the volume.");
1249 			return 0;
1250 		}
1251 		/* A real error occured. */
1252 		ntfs_error(vol->sb, "Failed to find inode number for "
1253 				"hiberfil.sys.");
1254 		return ret;
1255 	}
1256 	/* We do not care for the type of match that was found. */
1257 	kfree(name);
1258 	/* Get the inode. */
1259 	vi = ntfs_iget(vol->sb, MREF(mref));
1260 	if (IS_ERR(vi) || is_bad_inode(vi)) {
1261 		if (!IS_ERR(vi))
1262 			iput(vi);
1263 		ntfs_error(vol->sb, "Failed to load hiberfil.sys.");
1264 		return IS_ERR(vi) ? PTR_ERR(vi) : -EIO;
1265 	}
1266 	if (unlikely(i_size_read(vi) < NTFS_HIBERFIL_HEADER_SIZE)) {
1267 		ntfs_debug("hiberfil.sys is smaller than 4kiB (0x%llx).  "
1268 				"Windows is hibernated on the volume.  This "
1269 				"is not the system volume.", i_size_read(vi));
1270 		goto iput_out;
1271 	}
1272 	ni = NTFS_I(vi);
1273 	page = ntfs_map_page(vi->i_mapping, 0);
1274 	if (IS_ERR(page)) {
1275 		ntfs_error(vol->sb, "Failed to read from hiberfil.sys.");
1276 		ret = PTR_ERR(page);
1277 		goto iput_out;
1278 	}
1279 	kaddr = (u32*)page_address(page);
1280 	if (*(le32*)kaddr == const_cpu_to_le32(0x72626968)/*'hibr'*/) {
1281 		ntfs_debug("Magic \"hibr\" found in hiberfil.sys.  Windows is "
1282 				"hibernated on the volume.  This is the "
1283 				"system volume.");
1284 		goto unm_iput_out;
1285 	}
1286 	kend = kaddr + NTFS_HIBERFIL_HEADER_SIZE/sizeof(*kaddr);
1287 	do {
1288 		if (unlikely(*kaddr)) {
1289 			ntfs_debug("hiberfil.sys is larger than 4kiB "
1290 					"(0x%llx), does not contain the "
1291 					"\"hibr\" magic, and does not have a "
1292 					"zero header.  Windows is hibernated "
1293 					"on the volume.  This is not the "
1294 					"system volume.", i_size_read(vi));
1295 			goto unm_iput_out;
1296 		}
1297 	} while (++kaddr < kend);
1298 	ntfs_debug("hiberfil.sys contains a zero header.  Windows is not "
1299 			"hibernated on the volume.  This is the system "
1300 			"volume.");
1301 	ret = 0;
1302 unm_iput_out:
1303 	ntfs_unmap_page(page);
1304 iput_out:
1305 	iput(vi);
1306 	return ret;
1307 }
1308 
1309 /**
1310  * load_and_init_quota - load and setup the quota file for a volume if present
1311  * @vol:	ntfs super block describing device whose quota file to load
1312  *
1313  * Return TRUE on success or FALSE on error.  If $Quota is not present, we
1314  * leave vol->quota_ino as NULL and return success.
1315  */
1316 static BOOL load_and_init_quota(ntfs_volume *vol)
1317 {
1318 	MFT_REF mref;
1319 	struct inode *tmp_ino;
1320 	ntfs_name *name = NULL;
1321 	static const ntfschar Quota[7] = { const_cpu_to_le16('$'),
1322 			const_cpu_to_le16('Q'), const_cpu_to_le16('u'),
1323 			const_cpu_to_le16('o'), const_cpu_to_le16('t'),
1324 			const_cpu_to_le16('a'), 0 };
1325 	static ntfschar Q[3] = { const_cpu_to_le16('$'),
1326 			const_cpu_to_le16('Q'), 0 };
1327 
1328 	ntfs_debug("Entering.");
1329 	/*
1330 	 * Find the inode number for the quota file by looking up the filename
1331 	 * $Quota in the extended system files directory $Extend.
1332 	 */
1333 	mutex_lock(&vol->extend_ino->i_mutex);
1334 	mref = ntfs_lookup_inode_by_name(NTFS_I(vol->extend_ino), Quota, 6,
1335 			&name);
1336 	mutex_unlock(&vol->extend_ino->i_mutex);
1337 	if (IS_ERR_MREF(mref)) {
1338 		/*
1339 		 * If the file does not exist, quotas are disabled and have
1340 		 * never been enabled on this volume, just return success.
1341 		 */
1342 		if (MREF_ERR(mref) == -ENOENT) {
1343 			ntfs_debug("$Quota not present.  Volume does not have "
1344 					"quotas enabled.");
1345 			/*
1346 			 * No need to try to set quotas out of date if they are
1347 			 * not enabled.
1348 			 */
1349 			NVolSetQuotaOutOfDate(vol);
1350 			return TRUE;
1351 		}
1352 		/* A real error occured. */
1353 		ntfs_error(vol->sb, "Failed to find inode number for $Quota.");
1354 		return FALSE;
1355 	}
1356 	/* We do not care for the type of match that was found. */
1357 	kfree(name);
1358 	/* Get the inode. */
1359 	tmp_ino = ntfs_iget(vol->sb, MREF(mref));
1360 	if (IS_ERR(tmp_ino) || is_bad_inode(tmp_ino)) {
1361 		if (!IS_ERR(tmp_ino))
1362 			iput(tmp_ino);
1363 		ntfs_error(vol->sb, "Failed to load $Quota.");
1364 		return FALSE;
1365 	}
1366 	vol->quota_ino = tmp_ino;
1367 	/* Get the $Q index allocation attribute. */
1368 	tmp_ino = ntfs_index_iget(vol->quota_ino, Q, 2);
1369 	if (IS_ERR(tmp_ino)) {
1370 		ntfs_error(vol->sb, "Failed to load $Quota/$Q index.");
1371 		return FALSE;
1372 	}
1373 	vol->quota_q_ino = tmp_ino;
1374 	ntfs_debug("Done.");
1375 	return TRUE;
1376 }
1377 
1378 /**
1379  * load_and_init_usnjrnl - load and setup the transaction log if present
1380  * @vol:	ntfs super block describing device whose usnjrnl file to load
1381  *
1382  * Return TRUE on success or FALSE on error.
1383  *
1384  * If $UsnJrnl is not present or in the process of being disabled, we set
1385  * NVolUsnJrnlStamped() and return success.
1386  *
1387  * If the $UsnJrnl $DATA/$J attribute has a size equal to the lowest valid usn,
1388  * i.e. transaction logging has only just been enabled or the journal has been
1389  * stamped and nothing has been logged since, we also set NVolUsnJrnlStamped()
1390  * and return success.
1391  */
1392 static BOOL load_and_init_usnjrnl(ntfs_volume *vol)
1393 {
1394 	MFT_REF mref;
1395 	struct inode *tmp_ino;
1396 	ntfs_inode *tmp_ni;
1397 	struct page *page;
1398 	ntfs_name *name = NULL;
1399 	USN_HEADER *uh;
1400 	static const ntfschar UsnJrnl[9] = { const_cpu_to_le16('$'),
1401 			const_cpu_to_le16('U'), const_cpu_to_le16('s'),
1402 			const_cpu_to_le16('n'), const_cpu_to_le16('J'),
1403 			const_cpu_to_le16('r'), const_cpu_to_le16('n'),
1404 			const_cpu_to_le16('l'), 0 };
1405 	static ntfschar Max[5] = { const_cpu_to_le16('$'),
1406 			const_cpu_to_le16('M'), const_cpu_to_le16('a'),
1407 			const_cpu_to_le16('x'), 0 };
1408 	static ntfschar J[3] = { const_cpu_to_le16('$'),
1409 			const_cpu_to_le16('J'), 0 };
1410 
1411 	ntfs_debug("Entering.");
1412 	/*
1413 	 * Find the inode number for the transaction log file by looking up the
1414 	 * filename $UsnJrnl in the extended system files directory $Extend.
1415 	 */
1416 	mutex_lock(&vol->extend_ino->i_mutex);
1417 	mref = ntfs_lookup_inode_by_name(NTFS_I(vol->extend_ino), UsnJrnl, 8,
1418 			&name);
1419 	mutex_unlock(&vol->extend_ino->i_mutex);
1420 	if (IS_ERR_MREF(mref)) {
1421 		/*
1422 		 * If the file does not exist, transaction logging is disabled,
1423 		 * just return success.
1424 		 */
1425 		if (MREF_ERR(mref) == -ENOENT) {
1426 			ntfs_debug("$UsnJrnl not present.  Volume does not "
1427 					"have transaction logging enabled.");
1428 not_enabled:
1429 			/*
1430 			 * No need to try to stamp the transaction log if
1431 			 * transaction logging is not enabled.
1432 			 */
1433 			NVolSetUsnJrnlStamped(vol);
1434 			return TRUE;
1435 		}
1436 		/* A real error occured. */
1437 		ntfs_error(vol->sb, "Failed to find inode number for "
1438 				"$UsnJrnl.");
1439 		return FALSE;
1440 	}
1441 	/* We do not care for the type of match that was found. */
1442 	kfree(name);
1443 	/* Get the inode. */
1444 	tmp_ino = ntfs_iget(vol->sb, MREF(mref));
1445 	if (unlikely(IS_ERR(tmp_ino) || is_bad_inode(tmp_ino))) {
1446 		if (!IS_ERR(tmp_ino))
1447 			iput(tmp_ino);
1448 		ntfs_error(vol->sb, "Failed to load $UsnJrnl.");
1449 		return FALSE;
1450 	}
1451 	vol->usnjrnl_ino = tmp_ino;
1452 	/*
1453 	 * If the transaction log is in the process of being deleted, we can
1454 	 * ignore it.
1455 	 */
1456 	if (unlikely(vol->vol_flags & VOLUME_DELETE_USN_UNDERWAY)) {
1457 		ntfs_debug("$UsnJrnl in the process of being disabled.  "
1458 				"Volume does not have transaction logging "
1459 				"enabled.");
1460 		goto not_enabled;
1461 	}
1462 	/* Get the $DATA/$Max attribute. */
1463 	tmp_ino = ntfs_attr_iget(vol->usnjrnl_ino, AT_DATA, Max, 4);
1464 	if (IS_ERR(tmp_ino)) {
1465 		ntfs_error(vol->sb, "Failed to load $UsnJrnl/$DATA/$Max "
1466 				"attribute.");
1467 		return FALSE;
1468 	}
1469 	vol->usnjrnl_max_ino = tmp_ino;
1470 	if (unlikely(i_size_read(tmp_ino) < sizeof(USN_HEADER))) {
1471 		ntfs_error(vol->sb, "Found corrupt $UsnJrnl/$DATA/$Max "
1472 				"attribute (size is 0x%llx but should be at "
1473 				"least 0x%zx bytes).", i_size_read(tmp_ino),
1474 				sizeof(USN_HEADER));
1475 		return FALSE;
1476 	}
1477 	/* Get the $DATA/$J attribute. */
1478 	tmp_ino = ntfs_attr_iget(vol->usnjrnl_ino, AT_DATA, J, 2);
1479 	if (IS_ERR(tmp_ino)) {
1480 		ntfs_error(vol->sb, "Failed to load $UsnJrnl/$DATA/$J "
1481 				"attribute.");
1482 		return FALSE;
1483 	}
1484 	vol->usnjrnl_j_ino = tmp_ino;
1485 	/* Verify $J is non-resident and sparse. */
1486 	tmp_ni = NTFS_I(vol->usnjrnl_j_ino);
1487 	if (unlikely(!NInoNonResident(tmp_ni) || !NInoSparse(tmp_ni))) {
1488 		ntfs_error(vol->sb, "$UsnJrnl/$DATA/$J attribute is resident "
1489 				"and/or not sparse.");
1490 		return FALSE;
1491 	}
1492 	/* Read the USN_HEADER from $DATA/$Max. */
1493 	page = ntfs_map_page(vol->usnjrnl_max_ino->i_mapping, 0);
1494 	if (IS_ERR(page)) {
1495 		ntfs_error(vol->sb, "Failed to read from $UsnJrnl/$DATA/$Max "
1496 				"attribute.");
1497 		return FALSE;
1498 	}
1499 	uh = (USN_HEADER*)page_address(page);
1500 	/* Sanity check the $Max. */
1501 	if (unlikely(sle64_to_cpu(uh->allocation_delta) >
1502 			sle64_to_cpu(uh->maximum_size))) {
1503 		ntfs_error(vol->sb, "Allocation delta (0x%llx) exceeds "
1504 				"maximum size (0x%llx).  $UsnJrnl is corrupt.",
1505 				(long long)sle64_to_cpu(uh->allocation_delta),
1506 				(long long)sle64_to_cpu(uh->maximum_size));
1507 		ntfs_unmap_page(page);
1508 		return FALSE;
1509 	}
1510 	/*
1511 	 * If the transaction log has been stamped and nothing has been written
1512 	 * to it since, we do not need to stamp it.
1513 	 */
1514 	if (unlikely(sle64_to_cpu(uh->lowest_valid_usn) >=
1515 			i_size_read(vol->usnjrnl_j_ino))) {
1516 		if (likely(sle64_to_cpu(uh->lowest_valid_usn) ==
1517 				i_size_read(vol->usnjrnl_j_ino))) {
1518 			ntfs_unmap_page(page);
1519 			ntfs_debug("$UsnJrnl is enabled but nothing has been "
1520 					"logged since it was last stamped.  "
1521 					"Treating this as if the volume does "
1522 					"not have transaction logging "
1523 					"enabled.");
1524 			goto not_enabled;
1525 		}
1526 		ntfs_error(vol->sb, "$UsnJrnl has lowest valid usn (0x%llx) "
1527 				"which is out of bounds (0x%llx).  $UsnJrnl "
1528 				"is corrupt.",
1529 				(long long)sle64_to_cpu(uh->lowest_valid_usn),
1530 				i_size_read(vol->usnjrnl_j_ino));
1531 		ntfs_unmap_page(page);
1532 		return FALSE;
1533 	}
1534 	ntfs_unmap_page(page);
1535 	ntfs_debug("Done.");
1536 	return TRUE;
1537 }
1538 
1539 /**
1540  * load_and_init_attrdef - load the attribute definitions table for a volume
1541  * @vol:	ntfs super block describing device whose attrdef to load
1542  *
1543  * Return TRUE on success or FALSE on error.
1544  */
1545 static BOOL load_and_init_attrdef(ntfs_volume *vol)
1546 {
1547 	loff_t i_size;
1548 	struct super_block *sb = vol->sb;
1549 	struct inode *ino;
1550 	struct page *page;
1551 	pgoff_t index, max_index;
1552 	unsigned int size;
1553 
1554 	ntfs_debug("Entering.");
1555 	/* Read attrdef table and setup vol->attrdef and vol->attrdef_size. */
1556 	ino = ntfs_iget(sb, FILE_AttrDef);
1557 	if (IS_ERR(ino) || is_bad_inode(ino)) {
1558 		if (!IS_ERR(ino))
1559 			iput(ino);
1560 		goto failed;
1561 	}
1562 	NInoSetSparseDisabled(NTFS_I(ino));
1563 	/* The size of FILE_AttrDef must be above 0 and fit inside 31 bits. */
1564 	i_size = i_size_read(ino);
1565 	if (i_size <= 0 || i_size > 0x7fffffff)
1566 		goto iput_failed;
1567 	vol->attrdef = (ATTR_DEF*)ntfs_malloc_nofs(i_size);
1568 	if (!vol->attrdef)
1569 		goto iput_failed;
1570 	index = 0;
1571 	max_index = i_size >> PAGE_CACHE_SHIFT;
1572 	size = PAGE_CACHE_SIZE;
1573 	while (index < max_index) {
1574 		/* Read the attrdef table and copy it into the linear buffer. */
1575 read_partial_attrdef_page:
1576 		page = ntfs_map_page(ino->i_mapping, index);
1577 		if (IS_ERR(page))
1578 			goto free_iput_failed;
1579 		memcpy((u8*)vol->attrdef + (index++ << PAGE_CACHE_SHIFT),
1580 				page_address(page), size);
1581 		ntfs_unmap_page(page);
1582 	};
1583 	if (size == PAGE_CACHE_SIZE) {
1584 		size = i_size & ~PAGE_CACHE_MASK;
1585 		if (size)
1586 			goto read_partial_attrdef_page;
1587 	}
1588 	vol->attrdef_size = i_size;
1589 	ntfs_debug("Read %llu bytes from $AttrDef.", i_size);
1590 	iput(ino);
1591 	return TRUE;
1592 free_iput_failed:
1593 	ntfs_free(vol->attrdef);
1594 	vol->attrdef = NULL;
1595 iput_failed:
1596 	iput(ino);
1597 failed:
1598 	ntfs_error(sb, "Failed to initialize attribute definition table.");
1599 	return FALSE;
1600 }
1601 
1602 #endif /* NTFS_RW */
1603 
1604 /**
1605  * load_and_init_upcase - load the upcase table for an ntfs volume
1606  * @vol:	ntfs super block describing device whose upcase to load
1607  *
1608  * Return TRUE on success or FALSE on error.
1609  */
1610 static BOOL load_and_init_upcase(ntfs_volume *vol)
1611 {
1612 	loff_t i_size;
1613 	struct super_block *sb = vol->sb;
1614 	struct inode *ino;
1615 	struct page *page;
1616 	pgoff_t index, max_index;
1617 	unsigned int size;
1618 	int i, max;
1619 
1620 	ntfs_debug("Entering.");
1621 	/* Read upcase table and setup vol->upcase and vol->upcase_len. */
1622 	ino = ntfs_iget(sb, FILE_UpCase);
1623 	if (IS_ERR(ino) || is_bad_inode(ino)) {
1624 		if (!IS_ERR(ino))
1625 			iput(ino);
1626 		goto upcase_failed;
1627 	}
1628 	/*
1629 	 * The upcase size must not be above 64k Unicode characters, must not
1630 	 * be zero and must be a multiple of sizeof(ntfschar).
1631 	 */
1632 	i_size = i_size_read(ino);
1633 	if (!i_size || i_size & (sizeof(ntfschar) - 1) ||
1634 			i_size > 64ULL * 1024 * sizeof(ntfschar))
1635 		goto iput_upcase_failed;
1636 	vol->upcase = (ntfschar*)ntfs_malloc_nofs(i_size);
1637 	if (!vol->upcase)
1638 		goto iput_upcase_failed;
1639 	index = 0;
1640 	max_index = i_size >> PAGE_CACHE_SHIFT;
1641 	size = PAGE_CACHE_SIZE;
1642 	while (index < max_index) {
1643 		/* Read the upcase table and copy it into the linear buffer. */
1644 read_partial_upcase_page:
1645 		page = ntfs_map_page(ino->i_mapping, index);
1646 		if (IS_ERR(page))
1647 			goto iput_upcase_failed;
1648 		memcpy((char*)vol->upcase + (index++ << PAGE_CACHE_SHIFT),
1649 				page_address(page), size);
1650 		ntfs_unmap_page(page);
1651 	};
1652 	if (size == PAGE_CACHE_SIZE) {
1653 		size = i_size & ~PAGE_CACHE_MASK;
1654 		if (size)
1655 			goto read_partial_upcase_page;
1656 	}
1657 	vol->upcase_len = i_size >> UCHAR_T_SIZE_BITS;
1658 	ntfs_debug("Read %llu bytes from $UpCase (expected %zu bytes).",
1659 			i_size, 64 * 1024 * sizeof(ntfschar));
1660 	iput(ino);
1661 	down(&ntfs_lock);
1662 	if (!default_upcase) {
1663 		ntfs_debug("Using volume specified $UpCase since default is "
1664 				"not present.");
1665 		up(&ntfs_lock);
1666 		return TRUE;
1667 	}
1668 	max = default_upcase_len;
1669 	if (max > vol->upcase_len)
1670 		max = vol->upcase_len;
1671 	for (i = 0; i < max; i++)
1672 		if (vol->upcase[i] != default_upcase[i])
1673 			break;
1674 	if (i == max) {
1675 		ntfs_free(vol->upcase);
1676 		vol->upcase = default_upcase;
1677 		vol->upcase_len = max;
1678 		ntfs_nr_upcase_users++;
1679 		up(&ntfs_lock);
1680 		ntfs_debug("Volume specified $UpCase matches default. Using "
1681 				"default.");
1682 		return TRUE;
1683 	}
1684 	up(&ntfs_lock);
1685 	ntfs_debug("Using volume specified $UpCase since it does not match "
1686 			"the default.");
1687 	return TRUE;
1688 iput_upcase_failed:
1689 	iput(ino);
1690 	ntfs_free(vol->upcase);
1691 	vol->upcase = NULL;
1692 upcase_failed:
1693 	down(&ntfs_lock);
1694 	if (default_upcase) {
1695 		vol->upcase = default_upcase;
1696 		vol->upcase_len = default_upcase_len;
1697 		ntfs_nr_upcase_users++;
1698 		up(&ntfs_lock);
1699 		ntfs_error(sb, "Failed to load $UpCase from the volume. Using "
1700 				"default.");
1701 		return TRUE;
1702 	}
1703 	up(&ntfs_lock);
1704 	ntfs_error(sb, "Failed to initialize upcase table.");
1705 	return FALSE;
1706 }
1707 
1708 /**
1709  * load_system_files - open the system files using normal functions
1710  * @vol:	ntfs super block describing device whose system files to load
1711  *
1712  * Open the system files with normal access functions and complete setting up
1713  * the ntfs super block @vol.
1714  *
1715  * Return TRUE on success or FALSE on error.
1716  */
1717 static BOOL load_system_files(ntfs_volume *vol)
1718 {
1719 	struct super_block *sb = vol->sb;
1720 	MFT_RECORD *m;
1721 	VOLUME_INFORMATION *vi;
1722 	ntfs_attr_search_ctx *ctx;
1723 #ifdef NTFS_RW
1724 	RESTART_PAGE_HEADER *rp;
1725 	int err;
1726 #endif /* NTFS_RW */
1727 
1728 	ntfs_debug("Entering.");
1729 #ifdef NTFS_RW
1730 	/* Get mft mirror inode compare the contents of $MFT and $MFTMirr. */
1731 	if (!load_and_init_mft_mirror(vol) || !check_mft_mirror(vol)) {
1732 		static const char *es1 = "Failed to load $MFTMirr";
1733 		static const char *es2 = "$MFTMirr does not match $MFT";
1734 		static const char *es3 = ".  Run ntfsfix and/or chkdsk.";
1735 
1736 		/* If a read-write mount, convert it to a read-only mount. */
1737 		if (!(sb->s_flags & MS_RDONLY)) {
1738 			if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
1739 					ON_ERRORS_CONTINUE))) {
1740 				ntfs_error(sb, "%s and neither on_errors="
1741 						"continue nor on_errors="
1742 						"remount-ro was specified%s",
1743 						!vol->mftmirr_ino ? es1 : es2,
1744 						es3);
1745 				goto iput_mirr_err_out;
1746 			}
1747 			sb->s_flags |= MS_RDONLY;
1748 			ntfs_error(sb, "%s.  Mounting read-only%s",
1749 					!vol->mftmirr_ino ? es1 : es2, es3);
1750 		} else
1751 			ntfs_warning(sb, "%s.  Will not be able to remount "
1752 					"read-write%s",
1753 					!vol->mftmirr_ino ? es1 : es2, es3);
1754 		/* This will prevent a read-write remount. */
1755 		NVolSetErrors(vol);
1756 	}
1757 #endif /* NTFS_RW */
1758 	/* Get mft bitmap attribute inode. */
1759 	vol->mftbmp_ino = ntfs_attr_iget(vol->mft_ino, AT_BITMAP, NULL, 0);
1760 	if (IS_ERR(vol->mftbmp_ino)) {
1761 		ntfs_error(sb, "Failed to load $MFT/$BITMAP attribute.");
1762 		goto iput_mirr_err_out;
1763 	}
1764 	/* Read upcase table and setup @vol->upcase and @vol->upcase_len. */
1765 	if (!load_and_init_upcase(vol))
1766 		goto iput_mftbmp_err_out;
1767 #ifdef NTFS_RW
1768 	/*
1769 	 * Read attribute definitions table and setup @vol->attrdef and
1770 	 * @vol->attrdef_size.
1771 	 */
1772 	if (!load_and_init_attrdef(vol))
1773 		goto iput_upcase_err_out;
1774 #endif /* NTFS_RW */
1775 	/*
1776 	 * Get the cluster allocation bitmap inode and verify the size, no
1777 	 * need for any locking at this stage as we are already running
1778 	 * exclusively as we are mount in progress task.
1779 	 */
1780 	vol->lcnbmp_ino = ntfs_iget(sb, FILE_Bitmap);
1781 	if (IS_ERR(vol->lcnbmp_ino) || is_bad_inode(vol->lcnbmp_ino)) {
1782 		if (!IS_ERR(vol->lcnbmp_ino))
1783 			iput(vol->lcnbmp_ino);
1784 		goto bitmap_failed;
1785 	}
1786 	NInoSetSparseDisabled(NTFS_I(vol->lcnbmp_ino));
1787 	if ((vol->nr_clusters + 7) >> 3 > i_size_read(vol->lcnbmp_ino)) {
1788 		iput(vol->lcnbmp_ino);
1789 bitmap_failed:
1790 		ntfs_error(sb, "Failed to load $Bitmap.");
1791 		goto iput_attrdef_err_out;
1792 	}
1793 	/*
1794 	 * Get the volume inode and setup our cache of the volume flags and
1795 	 * version.
1796 	 */
1797 	vol->vol_ino = ntfs_iget(sb, FILE_Volume);
1798 	if (IS_ERR(vol->vol_ino) || is_bad_inode(vol->vol_ino)) {
1799 		if (!IS_ERR(vol->vol_ino))
1800 			iput(vol->vol_ino);
1801 volume_failed:
1802 		ntfs_error(sb, "Failed to load $Volume.");
1803 		goto iput_lcnbmp_err_out;
1804 	}
1805 	m = map_mft_record(NTFS_I(vol->vol_ino));
1806 	if (IS_ERR(m)) {
1807 iput_volume_failed:
1808 		iput(vol->vol_ino);
1809 		goto volume_failed;
1810 	}
1811 	if (!(ctx = ntfs_attr_get_search_ctx(NTFS_I(vol->vol_ino), m))) {
1812 		ntfs_error(sb, "Failed to get attribute search context.");
1813 		goto get_ctx_vol_failed;
1814 	}
1815 	if (ntfs_attr_lookup(AT_VOLUME_INFORMATION, NULL, 0, 0, 0, NULL, 0,
1816 			ctx) || ctx->attr->non_resident || ctx->attr->flags) {
1817 err_put_vol:
1818 		ntfs_attr_put_search_ctx(ctx);
1819 get_ctx_vol_failed:
1820 		unmap_mft_record(NTFS_I(vol->vol_ino));
1821 		goto iput_volume_failed;
1822 	}
1823 	vi = (VOLUME_INFORMATION*)((char*)ctx->attr +
1824 			le16_to_cpu(ctx->attr->data.resident.value_offset));
1825 	/* Some bounds checks. */
1826 	if ((u8*)vi < (u8*)ctx->attr || (u8*)vi +
1827 			le32_to_cpu(ctx->attr->data.resident.value_length) >
1828 			(u8*)ctx->attr + le32_to_cpu(ctx->attr->length))
1829 		goto err_put_vol;
1830 	/* Copy the volume flags and version to the ntfs_volume structure. */
1831 	vol->vol_flags = vi->flags;
1832 	vol->major_ver = vi->major_ver;
1833 	vol->minor_ver = vi->minor_ver;
1834 	ntfs_attr_put_search_ctx(ctx);
1835 	unmap_mft_record(NTFS_I(vol->vol_ino));
1836 	printk(KERN_INFO "NTFS volume version %i.%i.\n", vol->major_ver,
1837 			vol->minor_ver);
1838 	if (vol->major_ver < 3 && NVolSparseEnabled(vol)) {
1839 		ntfs_warning(vol->sb, "Disabling sparse support due to NTFS "
1840 				"volume version %i.%i (need at least version "
1841 				"3.0).", vol->major_ver, vol->minor_ver);
1842 		NVolClearSparseEnabled(vol);
1843 	}
1844 #ifdef NTFS_RW
1845 	/* Make sure that no unsupported volume flags are set. */
1846 	if (vol->vol_flags & VOLUME_MUST_MOUNT_RO_MASK) {
1847 		static const char *es1a = "Volume is dirty";
1848 		static const char *es1b = "Volume has unsupported flags set";
1849 		static const char *es2 = ".  Run chkdsk and mount in Windows.";
1850 		const char *es1;
1851 
1852 		es1 = vol->vol_flags & VOLUME_IS_DIRTY ? es1a : es1b;
1853 		/* If a read-write mount, convert it to a read-only mount. */
1854 		if (!(sb->s_flags & MS_RDONLY)) {
1855 			if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
1856 					ON_ERRORS_CONTINUE))) {
1857 				ntfs_error(sb, "%s and neither on_errors="
1858 						"continue nor on_errors="
1859 						"remount-ro was specified%s",
1860 						es1, es2);
1861 				goto iput_vol_err_out;
1862 			}
1863 			sb->s_flags |= MS_RDONLY;
1864 			ntfs_error(sb, "%s.  Mounting read-only%s", es1, es2);
1865 		} else
1866 			ntfs_warning(sb, "%s.  Will not be able to remount "
1867 					"read-write%s", es1, es2);
1868 		/*
1869 		 * Do not set NVolErrors() because ntfs_remount() re-checks the
1870 		 * flags which we need to do in case any flags have changed.
1871 		 */
1872 	}
1873 	/*
1874 	 * Get the inode for the logfile, check it and determine if the volume
1875 	 * was shutdown cleanly.
1876 	 */
1877 	rp = NULL;
1878 	if (!load_and_check_logfile(vol, &rp) ||
1879 			!ntfs_is_logfile_clean(vol->logfile_ino, rp)) {
1880 		static const char *es1a = "Failed to load $LogFile";
1881 		static const char *es1b = "$LogFile is not clean";
1882 		static const char *es2 = ".  Mount in Windows.";
1883 		const char *es1;
1884 
1885 		es1 = !vol->logfile_ino ? es1a : es1b;
1886 		/* If a read-write mount, convert it to a read-only mount. */
1887 		if (!(sb->s_flags & MS_RDONLY)) {
1888 			if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
1889 					ON_ERRORS_CONTINUE))) {
1890 				ntfs_error(sb, "%s and neither on_errors="
1891 						"continue nor on_errors="
1892 						"remount-ro was specified%s",
1893 						es1, es2);
1894 				if (vol->logfile_ino) {
1895 					BUG_ON(!rp);
1896 					ntfs_free(rp);
1897 				}
1898 				goto iput_logfile_err_out;
1899 			}
1900 			sb->s_flags |= MS_RDONLY;
1901 			ntfs_error(sb, "%s.  Mounting read-only%s", es1, es2);
1902 		} else
1903 			ntfs_warning(sb, "%s.  Will not be able to remount "
1904 					"read-write%s", es1, es2);
1905 		/* This will prevent a read-write remount. */
1906 		NVolSetErrors(vol);
1907 	}
1908 	ntfs_free(rp);
1909 #endif /* NTFS_RW */
1910 	/* Get the root directory inode so we can do path lookups. */
1911 	vol->root_ino = ntfs_iget(sb, FILE_root);
1912 	if (IS_ERR(vol->root_ino) || is_bad_inode(vol->root_ino)) {
1913 		if (!IS_ERR(vol->root_ino))
1914 			iput(vol->root_ino);
1915 		ntfs_error(sb, "Failed to load root directory.");
1916 		goto iput_logfile_err_out;
1917 	}
1918 #ifdef NTFS_RW
1919 	/*
1920 	 * Check if Windows is suspended to disk on the target volume.  If it
1921 	 * is hibernated, we must not write *anything* to the disk so set
1922 	 * NVolErrors() without setting the dirty volume flag and mount
1923 	 * read-only.  This will prevent read-write remounting and it will also
1924 	 * prevent all writes.
1925 	 */
1926 	err = check_windows_hibernation_status(vol);
1927 	if (unlikely(err)) {
1928 		static const char *es1a = "Failed to determine if Windows is "
1929 				"hibernated";
1930 		static const char *es1b = "Windows is hibernated";
1931 		static const char *es2 = ".  Run chkdsk.";
1932 		const char *es1;
1933 
1934 		es1 = err < 0 ? es1a : es1b;
1935 		/* If a read-write mount, convert it to a read-only mount. */
1936 		if (!(sb->s_flags & MS_RDONLY)) {
1937 			if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
1938 					ON_ERRORS_CONTINUE))) {
1939 				ntfs_error(sb, "%s and neither on_errors="
1940 						"continue nor on_errors="
1941 						"remount-ro was specified%s",
1942 						es1, es2);
1943 				goto iput_root_err_out;
1944 			}
1945 			sb->s_flags |= MS_RDONLY;
1946 			ntfs_error(sb, "%s.  Mounting read-only%s", es1, es2);
1947 		} else
1948 			ntfs_warning(sb, "%s.  Will not be able to remount "
1949 					"read-write%s", es1, es2);
1950 		/* This will prevent a read-write remount. */
1951 		NVolSetErrors(vol);
1952 	}
1953 	/* If (still) a read-write mount, mark the volume dirty. */
1954 	if (!(sb->s_flags & MS_RDONLY) &&
1955 			ntfs_set_volume_flags(vol, VOLUME_IS_DIRTY)) {
1956 		static const char *es1 = "Failed to set dirty bit in volume "
1957 				"information flags";
1958 		static const char *es2 = ".  Run chkdsk.";
1959 
1960 		/* Convert to a read-only mount. */
1961 		if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
1962 				ON_ERRORS_CONTINUE))) {
1963 			ntfs_error(sb, "%s and neither on_errors=continue nor "
1964 					"on_errors=remount-ro was specified%s",
1965 					es1, es2);
1966 			goto iput_root_err_out;
1967 		}
1968 		ntfs_error(sb, "%s.  Mounting read-only%s", es1, es2);
1969 		sb->s_flags |= MS_RDONLY;
1970 		/*
1971 		 * Do not set NVolErrors() because ntfs_remount() might manage
1972 		 * to set the dirty flag in which case all would be well.
1973 		 */
1974 	}
1975 #if 0
1976 	// TODO: Enable this code once we start modifying anything that is
1977 	//	 different between NTFS 1.2 and 3.x...
1978 	/*
1979 	 * If (still) a read-write mount, set the NT4 compatibility flag on
1980 	 * newer NTFS version volumes.
1981 	 */
1982 	if (!(sb->s_flags & MS_RDONLY) && (vol->major_ver > 1) &&
1983 			ntfs_set_volume_flags(vol, VOLUME_MOUNTED_ON_NT4)) {
1984 		static const char *es1 = "Failed to set NT4 compatibility flag";
1985 		static const char *es2 = ".  Run chkdsk.";
1986 
1987 		/* Convert to a read-only mount. */
1988 		if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
1989 				ON_ERRORS_CONTINUE))) {
1990 			ntfs_error(sb, "%s and neither on_errors=continue nor "
1991 					"on_errors=remount-ro was specified%s",
1992 					es1, es2);
1993 			goto iput_root_err_out;
1994 		}
1995 		ntfs_error(sb, "%s.  Mounting read-only%s", es1, es2);
1996 		sb->s_flags |= MS_RDONLY;
1997 		NVolSetErrors(vol);
1998 	}
1999 #endif
2000 	/* If (still) a read-write mount, empty the logfile. */
2001 	if (!(sb->s_flags & MS_RDONLY) &&
2002 			!ntfs_empty_logfile(vol->logfile_ino)) {
2003 		static const char *es1 = "Failed to empty $LogFile";
2004 		static const char *es2 = ".  Mount in Windows.";
2005 
2006 		/* Convert to a read-only mount. */
2007 		if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
2008 				ON_ERRORS_CONTINUE))) {
2009 			ntfs_error(sb, "%s and neither on_errors=continue nor "
2010 					"on_errors=remount-ro was specified%s",
2011 					es1, es2);
2012 			goto iput_root_err_out;
2013 		}
2014 		ntfs_error(sb, "%s.  Mounting read-only%s", es1, es2);
2015 		sb->s_flags |= MS_RDONLY;
2016 		NVolSetErrors(vol);
2017 	}
2018 #endif /* NTFS_RW */
2019 	/* If on NTFS versions before 3.0, we are done. */
2020 	if (unlikely(vol->major_ver < 3))
2021 		return TRUE;
2022 	/* NTFS 3.0+ specific initialization. */
2023 	/* Get the security descriptors inode. */
2024 	vol->secure_ino = ntfs_iget(sb, FILE_Secure);
2025 	if (IS_ERR(vol->secure_ino) || is_bad_inode(vol->secure_ino)) {
2026 		if (!IS_ERR(vol->secure_ino))
2027 			iput(vol->secure_ino);
2028 		ntfs_error(sb, "Failed to load $Secure.");
2029 		goto iput_root_err_out;
2030 	}
2031 	// TODO: Initialize security.
2032 	/* Get the extended system files' directory inode. */
2033 	vol->extend_ino = ntfs_iget(sb, FILE_Extend);
2034 	if (IS_ERR(vol->extend_ino) || is_bad_inode(vol->extend_ino)) {
2035 		if (!IS_ERR(vol->extend_ino))
2036 			iput(vol->extend_ino);
2037 		ntfs_error(sb, "Failed to load $Extend.");
2038 		goto iput_sec_err_out;
2039 	}
2040 #ifdef NTFS_RW
2041 	/* Find the quota file, load it if present, and set it up. */
2042 	if (!load_and_init_quota(vol)) {
2043 		static const char *es1 = "Failed to load $Quota";
2044 		static const char *es2 = ".  Run chkdsk.";
2045 
2046 		/* If a read-write mount, convert it to a read-only mount. */
2047 		if (!(sb->s_flags & MS_RDONLY)) {
2048 			if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
2049 					ON_ERRORS_CONTINUE))) {
2050 				ntfs_error(sb, "%s and neither on_errors="
2051 						"continue nor on_errors="
2052 						"remount-ro was specified%s",
2053 						es1, es2);
2054 				goto iput_quota_err_out;
2055 			}
2056 			sb->s_flags |= MS_RDONLY;
2057 			ntfs_error(sb, "%s.  Mounting read-only%s", es1, es2);
2058 		} else
2059 			ntfs_warning(sb, "%s.  Will not be able to remount "
2060 					"read-write%s", es1, es2);
2061 		/* This will prevent a read-write remount. */
2062 		NVolSetErrors(vol);
2063 	}
2064 	/* If (still) a read-write mount, mark the quotas out of date. */
2065 	if (!(sb->s_flags & MS_RDONLY) &&
2066 			!ntfs_mark_quotas_out_of_date(vol)) {
2067 		static const char *es1 = "Failed to mark quotas out of date";
2068 		static const char *es2 = ".  Run chkdsk.";
2069 
2070 		/* Convert to a read-only mount. */
2071 		if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
2072 				ON_ERRORS_CONTINUE))) {
2073 			ntfs_error(sb, "%s and neither on_errors=continue nor "
2074 					"on_errors=remount-ro was specified%s",
2075 					es1, es2);
2076 			goto iput_quota_err_out;
2077 		}
2078 		ntfs_error(sb, "%s.  Mounting read-only%s", es1, es2);
2079 		sb->s_flags |= MS_RDONLY;
2080 		NVolSetErrors(vol);
2081 	}
2082 	/*
2083 	 * Find the transaction log file ($UsnJrnl), load it if present, check
2084 	 * it, and set it up.
2085 	 */
2086 	if (!load_and_init_usnjrnl(vol)) {
2087 		static const char *es1 = "Failed to load $UsnJrnl";
2088 		static const char *es2 = ".  Run chkdsk.";
2089 
2090 		/* If a read-write mount, convert it to a read-only mount. */
2091 		if (!(sb->s_flags & MS_RDONLY)) {
2092 			if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
2093 					ON_ERRORS_CONTINUE))) {
2094 				ntfs_error(sb, "%s and neither on_errors="
2095 						"continue nor on_errors="
2096 						"remount-ro was specified%s",
2097 						es1, es2);
2098 				goto iput_usnjrnl_err_out;
2099 			}
2100 			sb->s_flags |= MS_RDONLY;
2101 			ntfs_error(sb, "%s.  Mounting read-only%s", es1, es2);
2102 		} else
2103 			ntfs_warning(sb, "%s.  Will not be able to remount "
2104 					"read-write%s", es1, es2);
2105 		/* This will prevent a read-write remount. */
2106 		NVolSetErrors(vol);
2107 	}
2108 	/* If (still) a read-write mount, stamp the transaction log. */
2109 	if (!(sb->s_flags & MS_RDONLY) && !ntfs_stamp_usnjrnl(vol)) {
2110 		static const char *es1 = "Failed to stamp transaction log "
2111 				"($UsnJrnl)";
2112 		static const char *es2 = ".  Run chkdsk.";
2113 
2114 		/* Convert to a read-only mount. */
2115 		if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
2116 				ON_ERRORS_CONTINUE))) {
2117 			ntfs_error(sb, "%s and neither on_errors=continue nor "
2118 					"on_errors=remount-ro was specified%s",
2119 					es1, es2);
2120 			goto iput_usnjrnl_err_out;
2121 		}
2122 		ntfs_error(sb, "%s.  Mounting read-only%s", es1, es2);
2123 		sb->s_flags |= MS_RDONLY;
2124 		NVolSetErrors(vol);
2125 	}
2126 #endif /* NTFS_RW */
2127 	return TRUE;
2128 #ifdef NTFS_RW
2129 iput_usnjrnl_err_out:
2130 	if (vol->usnjrnl_j_ino)
2131 		iput(vol->usnjrnl_j_ino);
2132 	if (vol->usnjrnl_max_ino)
2133 		iput(vol->usnjrnl_max_ino);
2134 	if (vol->usnjrnl_ino)
2135 		iput(vol->usnjrnl_ino);
2136 iput_quota_err_out:
2137 	if (vol->quota_q_ino)
2138 		iput(vol->quota_q_ino);
2139 	if (vol->quota_ino)
2140 		iput(vol->quota_ino);
2141 	iput(vol->extend_ino);
2142 #endif /* NTFS_RW */
2143 iput_sec_err_out:
2144 	iput(vol->secure_ino);
2145 iput_root_err_out:
2146 	iput(vol->root_ino);
2147 iput_logfile_err_out:
2148 #ifdef NTFS_RW
2149 	if (vol->logfile_ino)
2150 		iput(vol->logfile_ino);
2151 iput_vol_err_out:
2152 #endif /* NTFS_RW */
2153 	iput(vol->vol_ino);
2154 iput_lcnbmp_err_out:
2155 	iput(vol->lcnbmp_ino);
2156 iput_attrdef_err_out:
2157 	vol->attrdef_size = 0;
2158 	if (vol->attrdef) {
2159 		ntfs_free(vol->attrdef);
2160 		vol->attrdef = NULL;
2161 	}
2162 #ifdef NTFS_RW
2163 iput_upcase_err_out:
2164 #endif /* NTFS_RW */
2165 	vol->upcase_len = 0;
2166 	down(&ntfs_lock);
2167 	if (vol->upcase == default_upcase) {
2168 		ntfs_nr_upcase_users--;
2169 		vol->upcase = NULL;
2170 	}
2171 	up(&ntfs_lock);
2172 	if (vol->upcase) {
2173 		ntfs_free(vol->upcase);
2174 		vol->upcase = NULL;
2175 	}
2176 iput_mftbmp_err_out:
2177 	iput(vol->mftbmp_ino);
2178 iput_mirr_err_out:
2179 #ifdef NTFS_RW
2180 	if (vol->mftmirr_ino)
2181 		iput(vol->mftmirr_ino);
2182 #endif /* NTFS_RW */
2183 	return FALSE;
2184 }
2185 
2186 /**
2187  * ntfs_put_super - called by the vfs to unmount a volume
2188  * @sb:		vfs superblock of volume to unmount
2189  *
2190  * ntfs_put_super() is called by the VFS (from fs/super.c::do_umount()) when
2191  * the volume is being unmounted (umount system call has been invoked) and it
2192  * releases all inodes and memory belonging to the NTFS specific part of the
2193  * super block.
2194  */
2195 static void ntfs_put_super(struct super_block *sb)
2196 {
2197 	ntfs_volume *vol = NTFS_SB(sb);
2198 
2199 	ntfs_debug("Entering.");
2200 #ifdef NTFS_RW
2201 	/*
2202 	 * Commit all inodes while they are still open in case some of them
2203 	 * cause others to be dirtied.
2204 	 */
2205 	ntfs_commit_inode(vol->vol_ino);
2206 
2207 	/* NTFS 3.0+ specific. */
2208 	if (vol->major_ver >= 3) {
2209 		if (vol->usnjrnl_j_ino)
2210 			ntfs_commit_inode(vol->usnjrnl_j_ino);
2211 		if (vol->usnjrnl_max_ino)
2212 			ntfs_commit_inode(vol->usnjrnl_max_ino);
2213 		if (vol->usnjrnl_ino)
2214 			ntfs_commit_inode(vol->usnjrnl_ino);
2215 		if (vol->quota_q_ino)
2216 			ntfs_commit_inode(vol->quota_q_ino);
2217 		if (vol->quota_ino)
2218 			ntfs_commit_inode(vol->quota_ino);
2219 		if (vol->extend_ino)
2220 			ntfs_commit_inode(vol->extend_ino);
2221 		if (vol->secure_ino)
2222 			ntfs_commit_inode(vol->secure_ino);
2223 	}
2224 
2225 	ntfs_commit_inode(vol->root_ino);
2226 
2227 	down_write(&vol->lcnbmp_lock);
2228 	ntfs_commit_inode(vol->lcnbmp_ino);
2229 	up_write(&vol->lcnbmp_lock);
2230 
2231 	down_write(&vol->mftbmp_lock);
2232 	ntfs_commit_inode(vol->mftbmp_ino);
2233 	up_write(&vol->mftbmp_lock);
2234 
2235 	if (vol->logfile_ino)
2236 		ntfs_commit_inode(vol->logfile_ino);
2237 
2238 	if (vol->mftmirr_ino)
2239 		ntfs_commit_inode(vol->mftmirr_ino);
2240 	ntfs_commit_inode(vol->mft_ino);
2241 
2242 	/*
2243 	 * If a read-write mount and no volume errors have occured, mark the
2244 	 * volume clean.  Also, re-commit all affected inodes.
2245 	 */
2246 	if (!(sb->s_flags & MS_RDONLY)) {
2247 		if (!NVolErrors(vol)) {
2248 			if (ntfs_clear_volume_flags(vol, VOLUME_IS_DIRTY))
2249 				ntfs_warning(sb, "Failed to clear dirty bit "
2250 						"in volume information "
2251 						"flags.  Run chkdsk.");
2252 			ntfs_commit_inode(vol->vol_ino);
2253 			ntfs_commit_inode(vol->root_ino);
2254 			if (vol->mftmirr_ino)
2255 				ntfs_commit_inode(vol->mftmirr_ino);
2256 			ntfs_commit_inode(vol->mft_ino);
2257 		} else {
2258 			ntfs_warning(sb, "Volume has errors.  Leaving volume "
2259 					"marked dirty.  Run chkdsk.");
2260 		}
2261 	}
2262 #endif /* NTFS_RW */
2263 
2264 	iput(vol->vol_ino);
2265 	vol->vol_ino = NULL;
2266 
2267 	/* NTFS 3.0+ specific clean up. */
2268 	if (vol->major_ver >= 3) {
2269 #ifdef NTFS_RW
2270 		if (vol->usnjrnl_j_ino) {
2271 			iput(vol->usnjrnl_j_ino);
2272 			vol->usnjrnl_j_ino = NULL;
2273 		}
2274 		if (vol->usnjrnl_max_ino) {
2275 			iput(vol->usnjrnl_max_ino);
2276 			vol->usnjrnl_max_ino = NULL;
2277 		}
2278 		if (vol->usnjrnl_ino) {
2279 			iput(vol->usnjrnl_ino);
2280 			vol->usnjrnl_ino = NULL;
2281 		}
2282 		if (vol->quota_q_ino) {
2283 			iput(vol->quota_q_ino);
2284 			vol->quota_q_ino = NULL;
2285 		}
2286 		if (vol->quota_ino) {
2287 			iput(vol->quota_ino);
2288 			vol->quota_ino = NULL;
2289 		}
2290 #endif /* NTFS_RW */
2291 		if (vol->extend_ino) {
2292 			iput(vol->extend_ino);
2293 			vol->extend_ino = NULL;
2294 		}
2295 		if (vol->secure_ino) {
2296 			iput(vol->secure_ino);
2297 			vol->secure_ino = NULL;
2298 		}
2299 	}
2300 
2301 	iput(vol->root_ino);
2302 	vol->root_ino = NULL;
2303 
2304 	down_write(&vol->lcnbmp_lock);
2305 	iput(vol->lcnbmp_ino);
2306 	vol->lcnbmp_ino = NULL;
2307 	up_write(&vol->lcnbmp_lock);
2308 
2309 	down_write(&vol->mftbmp_lock);
2310 	iput(vol->mftbmp_ino);
2311 	vol->mftbmp_ino = NULL;
2312 	up_write(&vol->mftbmp_lock);
2313 
2314 #ifdef NTFS_RW
2315 	if (vol->logfile_ino) {
2316 		iput(vol->logfile_ino);
2317 		vol->logfile_ino = NULL;
2318 	}
2319 	if (vol->mftmirr_ino) {
2320 		/* Re-commit the mft mirror and mft just in case. */
2321 		ntfs_commit_inode(vol->mftmirr_ino);
2322 		ntfs_commit_inode(vol->mft_ino);
2323 		iput(vol->mftmirr_ino);
2324 		vol->mftmirr_ino = NULL;
2325 	}
2326 	/*
2327 	 * If any dirty inodes are left, throw away all mft data page cache
2328 	 * pages to allow a clean umount.  This should never happen any more
2329 	 * due to mft.c::ntfs_mft_writepage() cleaning all the dirty pages as
2330 	 * the underlying mft records are written out and cleaned.  If it does,
2331 	 * happen anyway, we want to know...
2332 	 */
2333 	ntfs_commit_inode(vol->mft_ino);
2334 	write_inode_now(vol->mft_ino, 1);
2335 	if (!list_empty(&sb->s_dirty)) {
2336 		const char *s1, *s2;
2337 
2338 		mutex_lock(&vol->mft_ino->i_mutex);
2339 		truncate_inode_pages(vol->mft_ino->i_mapping, 0);
2340 		mutex_unlock(&vol->mft_ino->i_mutex);
2341 		write_inode_now(vol->mft_ino, 1);
2342 		if (!list_empty(&sb->s_dirty)) {
2343 			static const char *_s1 = "inodes";
2344 			static const char *_s2 = "";
2345 			s1 = _s1;
2346 			s2 = _s2;
2347 		} else {
2348 			static const char *_s1 = "mft pages";
2349 			static const char *_s2 = "They have been thrown "
2350 					"away.  ";
2351 			s1 = _s1;
2352 			s2 = _s2;
2353 		}
2354 		ntfs_error(sb, "Dirty %s found at umount time.  %sYou should "
2355 				"run chkdsk.  Please email "
2356 				"linux-ntfs-dev@lists.sourceforge.net and say "
2357 				"that you saw this message.  Thank you.", s1,
2358 				s2);
2359 	}
2360 #endif /* NTFS_RW */
2361 
2362 	iput(vol->mft_ino);
2363 	vol->mft_ino = NULL;
2364 
2365 	/* Throw away the table of attribute definitions. */
2366 	vol->attrdef_size = 0;
2367 	if (vol->attrdef) {
2368 		ntfs_free(vol->attrdef);
2369 		vol->attrdef = NULL;
2370 	}
2371 	vol->upcase_len = 0;
2372 	/*
2373 	 * Destroy the global default upcase table if necessary.  Also decrease
2374 	 * the number of upcase users if we are a user.
2375 	 */
2376 	down(&ntfs_lock);
2377 	if (vol->upcase == default_upcase) {
2378 		ntfs_nr_upcase_users--;
2379 		vol->upcase = NULL;
2380 	}
2381 	if (!ntfs_nr_upcase_users && default_upcase) {
2382 		ntfs_free(default_upcase);
2383 		default_upcase = NULL;
2384 	}
2385 	if (vol->cluster_size <= 4096 && !--ntfs_nr_compression_users)
2386 		free_compression_buffers();
2387 	up(&ntfs_lock);
2388 	if (vol->upcase) {
2389 		ntfs_free(vol->upcase);
2390 		vol->upcase = NULL;
2391 	}
2392 	if (vol->nls_map) {
2393 		unload_nls(vol->nls_map);
2394 		vol->nls_map = NULL;
2395 	}
2396 	sb->s_fs_info = NULL;
2397 	kfree(vol);
2398 	return;
2399 }
2400 
2401 /**
2402  * get_nr_free_clusters - return the number of free clusters on a volume
2403  * @vol:	ntfs volume for which to obtain free cluster count
2404  *
2405  * Calculate the number of free clusters on the mounted NTFS volume @vol. We
2406  * actually calculate the number of clusters in use instead because this
2407  * allows us to not care about partial pages as these will be just zero filled
2408  * and hence not be counted as allocated clusters.
2409  *
2410  * The only particularity is that clusters beyond the end of the logical ntfs
2411  * volume will be marked as allocated to prevent errors which means we have to
2412  * discount those at the end. This is important as the cluster bitmap always
2413  * has a size in multiples of 8 bytes, i.e. up to 63 clusters could be outside
2414  * the logical volume and marked in use when they are not as they do not exist.
2415  *
2416  * If any pages cannot be read we assume all clusters in the erroring pages are
2417  * in use. This means we return an underestimate on errors which is better than
2418  * an overestimate.
2419  */
2420 static s64 get_nr_free_clusters(ntfs_volume *vol)
2421 {
2422 	s64 nr_free = vol->nr_clusters;
2423 	u32 *kaddr;
2424 	struct address_space *mapping = vol->lcnbmp_ino->i_mapping;
2425 	filler_t *readpage = (filler_t*)mapping->a_ops->readpage;
2426 	struct page *page;
2427 	pgoff_t index, max_index;
2428 
2429 	ntfs_debug("Entering.");
2430 	/* Serialize accesses to the cluster bitmap. */
2431 	down_read(&vol->lcnbmp_lock);
2432 	/*
2433 	 * Convert the number of bits into bytes rounded up, then convert into
2434 	 * multiples of PAGE_CACHE_SIZE, rounding up so that if we have one
2435 	 * full and one partial page max_index = 2.
2436 	 */
2437 	max_index = (((vol->nr_clusters + 7) >> 3) + PAGE_CACHE_SIZE - 1) >>
2438 			PAGE_CACHE_SHIFT;
2439 	/* Use multiples of 4 bytes, thus max_size is PAGE_CACHE_SIZE / 4. */
2440 	ntfs_debug("Reading $Bitmap, max_index = 0x%lx, max_size = 0x%lx.",
2441 			max_index, PAGE_CACHE_SIZE / 4);
2442 	for (index = 0; index < max_index; index++) {
2443 		unsigned int i;
2444 		/*
2445 		 * Read the page from page cache, getting it from backing store
2446 		 * if necessary, and increment the use count.
2447 		 */
2448 		page = read_cache_page(mapping, index, (filler_t*)readpage,
2449 				NULL);
2450 		/* Ignore pages which errored synchronously. */
2451 		if (IS_ERR(page)) {
2452 			ntfs_debug("Sync read_cache_page() error. Skipping "
2453 					"page (index 0x%lx).", index);
2454 			nr_free -= PAGE_CACHE_SIZE * 8;
2455 			continue;
2456 		}
2457 		wait_on_page_locked(page);
2458 		/* Ignore pages which errored asynchronously. */
2459 		if (!PageUptodate(page)) {
2460 			ntfs_debug("Async read_cache_page() error. Skipping "
2461 					"page (index 0x%lx).", index);
2462 			page_cache_release(page);
2463 			nr_free -= PAGE_CACHE_SIZE * 8;
2464 			continue;
2465 		}
2466 		kaddr = (u32*)kmap_atomic(page, KM_USER0);
2467 		/*
2468 		 * For each 4 bytes, subtract the number of set bits. If this
2469 		 * is the last page and it is partial we don't really care as
2470 		 * it just means we do a little extra work but it won't affect
2471 		 * the result as all out of range bytes are set to zero by
2472 		 * ntfs_readpage().
2473 		 */
2474 	  	for (i = 0; i < PAGE_CACHE_SIZE / 4; i++)
2475 			nr_free -= (s64)hweight32(kaddr[i]);
2476 		kunmap_atomic(kaddr, KM_USER0);
2477 		page_cache_release(page);
2478 	}
2479 	ntfs_debug("Finished reading $Bitmap, last index = 0x%lx.", index - 1);
2480 	/*
2481 	 * Fixup for eventual bits outside logical ntfs volume (see function
2482 	 * description above).
2483 	 */
2484 	if (vol->nr_clusters & 63)
2485 		nr_free += 64 - (vol->nr_clusters & 63);
2486 	up_read(&vol->lcnbmp_lock);
2487 	/* If errors occured we may well have gone below zero, fix this. */
2488 	if (nr_free < 0)
2489 		nr_free = 0;
2490 	ntfs_debug("Exiting.");
2491 	return nr_free;
2492 }
2493 
2494 /**
2495  * __get_nr_free_mft_records - return the number of free inodes on a volume
2496  * @vol:	ntfs volume for which to obtain free inode count
2497  * @nr_free:	number of mft records in filesystem
2498  * @max_index:	maximum number of pages containing set bits
2499  *
2500  * Calculate the number of free mft records (inodes) on the mounted NTFS
2501  * volume @vol. We actually calculate the number of mft records in use instead
2502  * because this allows us to not care about partial pages as these will be just
2503  * zero filled and hence not be counted as allocated mft record.
2504  *
2505  * If any pages cannot be read we assume all mft records in the erroring pages
2506  * are in use. This means we return an underestimate on errors which is better
2507  * than an overestimate.
2508  *
2509  * NOTE: Caller must hold mftbmp_lock rw_semaphore for reading or writing.
2510  */
2511 static unsigned long __get_nr_free_mft_records(ntfs_volume *vol,
2512 		s64 nr_free, const pgoff_t max_index)
2513 {
2514 	u32 *kaddr;
2515 	struct address_space *mapping = vol->mftbmp_ino->i_mapping;
2516 	filler_t *readpage = (filler_t*)mapping->a_ops->readpage;
2517 	struct page *page;
2518 	pgoff_t index;
2519 
2520 	ntfs_debug("Entering.");
2521 	/* Use multiples of 4 bytes, thus max_size is PAGE_CACHE_SIZE / 4. */
2522 	ntfs_debug("Reading $MFT/$BITMAP, max_index = 0x%lx, max_size = "
2523 			"0x%lx.", max_index, PAGE_CACHE_SIZE / 4);
2524 	for (index = 0; index < max_index; index++) {
2525 		unsigned int i;
2526 		/*
2527 		 * Read the page from page cache, getting it from backing store
2528 		 * if necessary, and increment the use count.
2529 		 */
2530 		page = read_cache_page(mapping, index, (filler_t*)readpage,
2531 				NULL);
2532 		/* Ignore pages which errored synchronously. */
2533 		if (IS_ERR(page)) {
2534 			ntfs_debug("Sync read_cache_page() error. Skipping "
2535 					"page (index 0x%lx).", index);
2536 			nr_free -= PAGE_CACHE_SIZE * 8;
2537 			continue;
2538 		}
2539 		wait_on_page_locked(page);
2540 		/* Ignore pages which errored asynchronously. */
2541 		if (!PageUptodate(page)) {
2542 			ntfs_debug("Async read_cache_page() error. Skipping "
2543 					"page (index 0x%lx).", index);
2544 			page_cache_release(page);
2545 			nr_free -= PAGE_CACHE_SIZE * 8;
2546 			continue;
2547 		}
2548 		kaddr = (u32*)kmap_atomic(page, KM_USER0);
2549 		/*
2550 		 * For each 4 bytes, subtract the number of set bits. If this
2551 		 * is the last page and it is partial we don't really care as
2552 		 * it just means we do a little extra work but it won't affect
2553 		 * the result as all out of range bytes are set to zero by
2554 		 * ntfs_readpage().
2555 		 */
2556 	  	for (i = 0; i < PAGE_CACHE_SIZE / 4; i++)
2557 			nr_free -= (s64)hweight32(kaddr[i]);
2558 		kunmap_atomic(kaddr, KM_USER0);
2559 		page_cache_release(page);
2560 	}
2561 	ntfs_debug("Finished reading $MFT/$BITMAP, last index = 0x%lx.",
2562 			index - 1);
2563 	/* If errors occured we may well have gone below zero, fix this. */
2564 	if (nr_free < 0)
2565 		nr_free = 0;
2566 	ntfs_debug("Exiting.");
2567 	return nr_free;
2568 }
2569 
2570 /**
2571  * ntfs_statfs - return information about mounted NTFS volume
2572  * @sb:		super block of mounted volume
2573  * @sfs:	statfs structure in which to return the information
2574  *
2575  * Return information about the mounted NTFS volume @sb in the statfs structure
2576  * pointed to by @sfs (this is initialized with zeros before ntfs_statfs is
2577  * called). We interpret the values to be correct of the moment in time at
2578  * which we are called. Most values are variable otherwise and this isn't just
2579  * the free values but the totals as well. For example we can increase the
2580  * total number of file nodes if we run out and we can keep doing this until
2581  * there is no more space on the volume left at all.
2582  *
2583  * Called from vfs_statfs which is used to handle the statfs, fstatfs, and
2584  * ustat system calls.
2585  *
2586  * Return 0 on success or -errno on error.
2587  */
2588 static int ntfs_statfs(struct super_block *sb, struct kstatfs *sfs)
2589 {
2590 	s64 size;
2591 	ntfs_volume *vol = NTFS_SB(sb);
2592 	ntfs_inode *mft_ni = NTFS_I(vol->mft_ino);
2593 	pgoff_t max_index;
2594 	unsigned long flags;
2595 
2596 	ntfs_debug("Entering.");
2597 	/* Type of filesystem. */
2598 	sfs->f_type   = NTFS_SB_MAGIC;
2599 	/* Optimal transfer block size. */
2600 	sfs->f_bsize  = PAGE_CACHE_SIZE;
2601 	/*
2602 	 * Total data blocks in filesystem in units of f_bsize and since
2603 	 * inodes are also stored in data blocs ($MFT is a file) this is just
2604 	 * the total clusters.
2605 	 */
2606 	sfs->f_blocks = vol->nr_clusters << vol->cluster_size_bits >>
2607 				PAGE_CACHE_SHIFT;
2608 	/* Free data blocks in filesystem in units of f_bsize. */
2609 	size	      = get_nr_free_clusters(vol) << vol->cluster_size_bits >>
2610 				PAGE_CACHE_SHIFT;
2611 	if (size < 0LL)
2612 		size = 0LL;
2613 	/* Free blocks avail to non-superuser, same as above on NTFS. */
2614 	sfs->f_bavail = sfs->f_bfree = size;
2615 	/* Serialize accesses to the inode bitmap. */
2616 	down_read(&vol->mftbmp_lock);
2617 	read_lock_irqsave(&mft_ni->size_lock, flags);
2618 	size = i_size_read(vol->mft_ino) >> vol->mft_record_size_bits;
2619 	/*
2620 	 * Convert the maximum number of set bits into bytes rounded up, then
2621 	 * convert into multiples of PAGE_CACHE_SIZE, rounding up so that if we
2622 	 * have one full and one partial page max_index = 2.
2623 	 */
2624 	max_index = ((((mft_ni->initialized_size >> vol->mft_record_size_bits)
2625 			+ 7) >> 3) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
2626 	read_unlock_irqrestore(&mft_ni->size_lock, flags);
2627 	/* Number of inodes in filesystem (at this point in time). */
2628 	sfs->f_files = size;
2629 	/* Free inodes in fs (based on current total count). */
2630 	sfs->f_ffree = __get_nr_free_mft_records(vol, size, max_index);
2631 	up_read(&vol->mftbmp_lock);
2632 	/*
2633 	 * File system id. This is extremely *nix flavour dependent and even
2634 	 * within Linux itself all fs do their own thing. I interpret this to
2635 	 * mean a unique id associated with the mounted fs and not the id
2636 	 * associated with the filesystem driver, the latter is already given
2637 	 * by the filesystem type in sfs->f_type. Thus we use the 64-bit
2638 	 * volume serial number splitting it into two 32-bit parts. We enter
2639 	 * the least significant 32-bits in f_fsid[0] and the most significant
2640 	 * 32-bits in f_fsid[1].
2641 	 */
2642 	sfs->f_fsid.val[0] = vol->serial_no & 0xffffffff;
2643 	sfs->f_fsid.val[1] = (vol->serial_no >> 32) & 0xffffffff;
2644 	/* Maximum length of filenames. */
2645 	sfs->f_namelen	   = NTFS_MAX_NAME_LEN;
2646 	return 0;
2647 }
2648 
2649 /**
2650  * The complete super operations.
2651  */
2652 static struct super_operations ntfs_sops = {
2653 	.alloc_inode	= ntfs_alloc_big_inode,	  /* VFS: Allocate new inode. */
2654 	.destroy_inode	= ntfs_destroy_big_inode, /* VFS: Deallocate inode. */
2655 	.put_inode	= ntfs_put_inode,	  /* VFS: Called just before
2656 						     the inode reference count
2657 						     is decreased. */
2658 #ifdef NTFS_RW
2659 	//.dirty_inode	= NULL,			/* VFS: Called from
2660 	//					   __mark_inode_dirty(). */
2661 	.write_inode	= ntfs_write_inode,	/* VFS: Write dirty inode to
2662 						   disk. */
2663 	//.drop_inode	= NULL,			/* VFS: Called just after the
2664 	//					   inode reference count has
2665 	//					   been decreased to zero.
2666 	//					   NOTE: The inode lock is
2667 	//					   held. See fs/inode.c::
2668 	//					   generic_drop_inode(). */
2669 	//.delete_inode	= NULL,			/* VFS: Delete inode from disk.
2670 	//					   Called when i_count becomes
2671 	//					   0 and i_nlink is also 0. */
2672 	//.write_super	= NULL,			/* Flush dirty super block to
2673 	//					   disk. */
2674 	//.sync_fs	= NULL,			/* ? */
2675 	//.write_super_lockfs	= NULL,		/* ? */
2676 	//.unlockfs	= NULL,			/* ? */
2677 #endif /* NTFS_RW */
2678 	.put_super	= ntfs_put_super,	/* Syscall: umount. */
2679 	.statfs		= ntfs_statfs,		/* Syscall: statfs */
2680 	.remount_fs	= ntfs_remount,		/* Syscall: mount -o remount. */
2681 	.clear_inode	= ntfs_clear_big_inode,	/* VFS: Called when an inode is
2682 						   removed from memory. */
2683 	//.umount_begin	= NULL,			/* Forced umount. */
2684 	.show_options	= ntfs_show_options,	/* Show mount options in
2685 						   proc. */
2686 };
2687 
2688 /**
2689  * ntfs_fill_super - mount an ntfs filesystem
2690  * @sb:		super block of ntfs filesystem to mount
2691  * @opt:	string containing the mount options
2692  * @silent:	silence error output
2693  *
2694  * ntfs_fill_super() is called by the VFS to mount the device described by @sb
2695  * with the mount otions in @data with the NTFS filesystem.
2696  *
2697  * If @silent is true, remain silent even if errors are detected. This is used
2698  * during bootup, when the kernel tries to mount the root filesystem with all
2699  * registered filesystems one after the other until one succeeds. This implies
2700  * that all filesystems except the correct one will quite correctly and
2701  * expectedly return an error, but nobody wants to see error messages when in
2702  * fact this is what is supposed to happen.
2703  *
2704  * NOTE: @sb->s_flags contains the mount options flags.
2705  */
2706 static int ntfs_fill_super(struct super_block *sb, void *opt, const int silent)
2707 {
2708 	ntfs_volume *vol;
2709 	struct buffer_head *bh;
2710 	struct inode *tmp_ino;
2711 	int blocksize, result;
2712 
2713 	ntfs_debug("Entering.");
2714 #ifndef NTFS_RW
2715 	sb->s_flags |= MS_RDONLY;
2716 #endif /* ! NTFS_RW */
2717 	/* Allocate a new ntfs_volume and place it in sb->s_fs_info. */
2718 	sb->s_fs_info = kmalloc(sizeof(ntfs_volume), GFP_NOFS);
2719 	vol = NTFS_SB(sb);
2720 	if (!vol) {
2721 		if (!silent)
2722 			ntfs_error(sb, "Allocation of NTFS volume structure "
2723 					"failed. Aborting mount...");
2724 		return -ENOMEM;
2725 	}
2726 	/* Initialize ntfs_volume structure. */
2727 	*vol = (ntfs_volume) {
2728 		.sb = sb,
2729 		/*
2730 		 * Default is group and other don't have any access to files or
2731 		 * directories while owner has full access. Further, files by
2732 		 * default are not executable but directories are of course
2733 		 * browseable.
2734 		 */
2735 		.fmask = 0177,
2736 		.dmask = 0077,
2737 	};
2738 	init_rwsem(&vol->mftbmp_lock);
2739 	init_rwsem(&vol->lcnbmp_lock);
2740 
2741 	unlock_kernel();
2742 
2743 	/* By default, enable sparse support. */
2744 	NVolSetSparseEnabled(vol);
2745 
2746 	/* Important to get the mount options dealt with now. */
2747 	if (!parse_options(vol, (char*)opt))
2748 		goto err_out_now;
2749 
2750 	/* We support sector sizes up to the PAGE_CACHE_SIZE. */
2751 	if (bdev_hardsect_size(sb->s_bdev) > PAGE_CACHE_SIZE) {
2752 		if (!silent)
2753 			ntfs_error(sb, "Device has unsupported sector size "
2754 					"(%i).  The maximum supported sector "
2755 					"size on this architecture is %lu "
2756 					"bytes.",
2757 					bdev_hardsect_size(sb->s_bdev),
2758 					PAGE_CACHE_SIZE);
2759 		goto err_out_now;
2760 	}
2761 	/*
2762 	 * Setup the device access block size to NTFS_BLOCK_SIZE or the hard
2763 	 * sector size, whichever is bigger.
2764 	 */
2765 	blocksize = sb_min_blocksize(sb, NTFS_BLOCK_SIZE);
2766 	if (blocksize < NTFS_BLOCK_SIZE) {
2767 		if (!silent)
2768 			ntfs_error(sb, "Unable to set device block size.");
2769 		goto err_out_now;
2770 	}
2771 	BUG_ON(blocksize != sb->s_blocksize);
2772 	ntfs_debug("Set device block size to %i bytes (block size bits %i).",
2773 			blocksize, sb->s_blocksize_bits);
2774 	/* Determine the size of the device in units of block_size bytes. */
2775 	if (!i_size_read(sb->s_bdev->bd_inode)) {
2776 		if (!silent)
2777 			ntfs_error(sb, "Unable to determine device size.");
2778 		goto err_out_now;
2779 	}
2780 	vol->nr_blocks = i_size_read(sb->s_bdev->bd_inode) >>
2781 			sb->s_blocksize_bits;
2782 	/* Read the boot sector and return unlocked buffer head to it. */
2783 	if (!(bh = read_ntfs_boot_sector(sb, silent))) {
2784 		if (!silent)
2785 			ntfs_error(sb, "Not an NTFS volume.");
2786 		goto err_out_now;
2787 	}
2788 	/*
2789 	 * Extract the data from the boot sector and setup the ntfs volume
2790 	 * using it.
2791 	 */
2792 	result = parse_ntfs_boot_sector(vol, (NTFS_BOOT_SECTOR*)bh->b_data);
2793 	brelse(bh);
2794 	if (!result) {
2795 		if (!silent)
2796 			ntfs_error(sb, "Unsupported NTFS filesystem.");
2797 		goto err_out_now;
2798 	}
2799 	/*
2800 	 * If the boot sector indicates a sector size bigger than the current
2801 	 * device block size, switch the device block size to the sector size.
2802 	 * TODO: It may be possible to support this case even when the set
2803 	 * below fails, we would just be breaking up the i/o for each sector
2804 	 * into multiple blocks for i/o purposes but otherwise it should just
2805 	 * work.  However it is safer to leave disabled until someone hits this
2806 	 * error message and then we can get them to try it without the setting
2807 	 * so we know for sure that it works.
2808 	 */
2809 	if (vol->sector_size > blocksize) {
2810 		blocksize = sb_set_blocksize(sb, vol->sector_size);
2811 		if (blocksize != vol->sector_size) {
2812 			if (!silent)
2813 				ntfs_error(sb, "Unable to set device block "
2814 						"size to sector size (%i).",
2815 						vol->sector_size);
2816 			goto err_out_now;
2817 		}
2818 		BUG_ON(blocksize != sb->s_blocksize);
2819 		vol->nr_blocks = i_size_read(sb->s_bdev->bd_inode) >>
2820 				sb->s_blocksize_bits;
2821 		ntfs_debug("Changed device block size to %i bytes (block size "
2822 				"bits %i) to match volume sector size.",
2823 				blocksize, sb->s_blocksize_bits);
2824 	}
2825 	/* Initialize the cluster and mft allocators. */
2826 	ntfs_setup_allocators(vol);
2827 	/* Setup remaining fields in the super block. */
2828 	sb->s_magic = NTFS_SB_MAGIC;
2829 	/*
2830 	 * Ntfs allows 63 bits for the file size, i.e. correct would be:
2831 	 *	sb->s_maxbytes = ~0ULL >> 1;
2832 	 * But the kernel uses a long as the page cache page index which on
2833 	 * 32-bit architectures is only 32-bits. MAX_LFS_FILESIZE is kernel
2834 	 * defined to the maximum the page cache page index can cope with
2835 	 * without overflowing the index or to 2^63 - 1, whichever is smaller.
2836 	 */
2837 	sb->s_maxbytes = MAX_LFS_FILESIZE;
2838 	/* Ntfs measures time in 100ns intervals. */
2839 	sb->s_time_gran = 100;
2840 	/*
2841 	 * Now load the metadata required for the page cache and our address
2842 	 * space operations to function. We do this by setting up a specialised
2843 	 * read_inode method and then just calling the normal iget() to obtain
2844 	 * the inode for $MFT which is sufficient to allow our normal inode
2845 	 * operations and associated address space operations to function.
2846 	 */
2847 	sb->s_op = &ntfs_sops;
2848 	tmp_ino = new_inode(sb);
2849 	if (!tmp_ino) {
2850 		if (!silent)
2851 			ntfs_error(sb, "Failed to load essential metadata.");
2852 		goto err_out_now;
2853 	}
2854 	tmp_ino->i_ino = FILE_MFT;
2855 	insert_inode_hash(tmp_ino);
2856 	if (ntfs_read_inode_mount(tmp_ino) < 0) {
2857 		if (!silent)
2858 			ntfs_error(sb, "Failed to load essential metadata.");
2859 		goto iput_tmp_ino_err_out_now;
2860 	}
2861 	down(&ntfs_lock);
2862 	/*
2863 	 * The current mount is a compression user if the cluster size is
2864 	 * less than or equal 4kiB.
2865 	 */
2866 	if (vol->cluster_size <= 4096 && !ntfs_nr_compression_users++) {
2867 		result = allocate_compression_buffers();
2868 		if (result) {
2869 			ntfs_error(NULL, "Failed to allocate buffers "
2870 					"for compression engine.");
2871 			ntfs_nr_compression_users--;
2872 			up(&ntfs_lock);
2873 			goto iput_tmp_ino_err_out_now;
2874 		}
2875 	}
2876 	/*
2877 	 * Generate the global default upcase table if necessary.  Also
2878 	 * temporarily increment the number of upcase users to avoid race
2879 	 * conditions with concurrent (u)mounts.
2880 	 */
2881 	if (!default_upcase)
2882 		default_upcase = generate_default_upcase();
2883 	ntfs_nr_upcase_users++;
2884 	up(&ntfs_lock);
2885 	/*
2886 	 * From now on, ignore @silent parameter. If we fail below this line,
2887 	 * it will be due to a corrupt fs or a system error, so we report it.
2888 	 */
2889 	/*
2890 	 * Open the system files with normal access functions and complete
2891 	 * setting up the ntfs super block.
2892 	 */
2893 	if (!load_system_files(vol)) {
2894 		ntfs_error(sb, "Failed to load system files.");
2895 		goto unl_upcase_iput_tmp_ino_err_out_now;
2896 	}
2897 	if ((sb->s_root = d_alloc_root(vol->root_ino))) {
2898 		/* We increment i_count simulating an ntfs_iget(). */
2899 		atomic_inc(&vol->root_ino->i_count);
2900 		ntfs_debug("Exiting, status successful.");
2901 		/* Release the default upcase if it has no users. */
2902 		down(&ntfs_lock);
2903 		if (!--ntfs_nr_upcase_users && default_upcase) {
2904 			ntfs_free(default_upcase);
2905 			default_upcase = NULL;
2906 		}
2907 		up(&ntfs_lock);
2908 		sb->s_export_op = &ntfs_export_ops;
2909 		lock_kernel();
2910 		return 0;
2911 	}
2912 	ntfs_error(sb, "Failed to allocate root directory.");
2913 	/* Clean up after the successful load_system_files() call from above. */
2914 	// TODO: Use ntfs_put_super() instead of repeating all this code...
2915 	// FIXME: Should mark the volume clean as the error is most likely
2916 	// 	  -ENOMEM.
2917 	iput(vol->vol_ino);
2918 	vol->vol_ino = NULL;
2919 	/* NTFS 3.0+ specific clean up. */
2920 	if (vol->major_ver >= 3) {
2921 #ifdef NTFS_RW
2922 		if (vol->usnjrnl_j_ino) {
2923 			iput(vol->usnjrnl_j_ino);
2924 			vol->usnjrnl_j_ino = NULL;
2925 		}
2926 		if (vol->usnjrnl_max_ino) {
2927 			iput(vol->usnjrnl_max_ino);
2928 			vol->usnjrnl_max_ino = NULL;
2929 		}
2930 		if (vol->usnjrnl_ino) {
2931 			iput(vol->usnjrnl_ino);
2932 			vol->usnjrnl_ino = NULL;
2933 		}
2934 		if (vol->quota_q_ino) {
2935 			iput(vol->quota_q_ino);
2936 			vol->quota_q_ino = NULL;
2937 		}
2938 		if (vol->quota_ino) {
2939 			iput(vol->quota_ino);
2940 			vol->quota_ino = NULL;
2941 		}
2942 #endif /* NTFS_RW */
2943 		if (vol->extend_ino) {
2944 			iput(vol->extend_ino);
2945 			vol->extend_ino = NULL;
2946 		}
2947 		if (vol->secure_ino) {
2948 			iput(vol->secure_ino);
2949 			vol->secure_ino = NULL;
2950 		}
2951 	}
2952 	iput(vol->root_ino);
2953 	vol->root_ino = NULL;
2954 	iput(vol->lcnbmp_ino);
2955 	vol->lcnbmp_ino = NULL;
2956 	iput(vol->mftbmp_ino);
2957 	vol->mftbmp_ino = NULL;
2958 #ifdef NTFS_RW
2959 	if (vol->logfile_ino) {
2960 		iput(vol->logfile_ino);
2961 		vol->logfile_ino = NULL;
2962 	}
2963 	if (vol->mftmirr_ino) {
2964 		iput(vol->mftmirr_ino);
2965 		vol->mftmirr_ino = NULL;
2966 	}
2967 #endif /* NTFS_RW */
2968 	/* Throw away the table of attribute definitions. */
2969 	vol->attrdef_size = 0;
2970 	if (vol->attrdef) {
2971 		ntfs_free(vol->attrdef);
2972 		vol->attrdef = NULL;
2973 	}
2974 	vol->upcase_len = 0;
2975 	down(&ntfs_lock);
2976 	if (vol->upcase == default_upcase) {
2977 		ntfs_nr_upcase_users--;
2978 		vol->upcase = NULL;
2979 	}
2980 	up(&ntfs_lock);
2981 	if (vol->upcase) {
2982 		ntfs_free(vol->upcase);
2983 		vol->upcase = NULL;
2984 	}
2985 	if (vol->nls_map) {
2986 		unload_nls(vol->nls_map);
2987 		vol->nls_map = NULL;
2988 	}
2989 	/* Error exit code path. */
2990 unl_upcase_iput_tmp_ino_err_out_now:
2991 	/*
2992 	 * Decrease the number of upcase users and destroy the global default
2993 	 * upcase table if necessary.
2994 	 */
2995 	down(&ntfs_lock);
2996 	if (!--ntfs_nr_upcase_users && default_upcase) {
2997 		ntfs_free(default_upcase);
2998 		default_upcase = NULL;
2999 	}
3000 	if (vol->cluster_size <= 4096 && !--ntfs_nr_compression_users)
3001 		free_compression_buffers();
3002 	up(&ntfs_lock);
3003 iput_tmp_ino_err_out_now:
3004 	iput(tmp_ino);
3005 	if (vol->mft_ino && vol->mft_ino != tmp_ino)
3006 		iput(vol->mft_ino);
3007 	vol->mft_ino = NULL;
3008 	/*
3009 	 * This is needed to get ntfs_clear_extent_inode() called for each
3010 	 * inode we have ever called ntfs_iget()/iput() on, otherwise we A)
3011 	 * leak resources and B) a subsequent mount fails automatically due to
3012 	 * ntfs_iget() never calling down into our ntfs_read_locked_inode()
3013 	 * method again... FIXME: Do we need to do this twice now because of
3014 	 * attribute inodes? I think not, so leave as is for now... (AIA)
3015 	 */
3016 	if (invalidate_inodes(sb)) {
3017 		ntfs_error(sb, "Busy inodes left. This is most likely a NTFS "
3018 				"driver bug.");
3019 		/* Copied from fs/super.c. I just love this message. (-; */
3020 		printk("NTFS: Busy inodes after umount. Self-destruct in 5 "
3021 				"seconds.  Have a nice day...\n");
3022 	}
3023 	/* Errors at this stage are irrelevant. */
3024 err_out_now:
3025 	lock_kernel();
3026 	sb->s_fs_info = NULL;
3027 	kfree(vol);
3028 	ntfs_debug("Failed, returning -EINVAL.");
3029 	return -EINVAL;
3030 }
3031 
3032 /*
3033  * This is a slab cache to optimize allocations and deallocations of Unicode
3034  * strings of the maximum length allowed by NTFS, which is NTFS_MAX_NAME_LEN
3035  * (255) Unicode characters + a terminating NULL Unicode character.
3036  */
3037 struct kmem_cache *ntfs_name_cache;
3038 
3039 /* Slab caches for efficient allocation/deallocation of inodes. */
3040 struct kmem_cache *ntfs_inode_cache;
3041 struct kmem_cache *ntfs_big_inode_cache;
3042 
3043 /* Init once constructor for the inode slab cache. */
3044 static void ntfs_big_inode_init_once(void *foo, struct kmem_cache *cachep,
3045 		unsigned long flags)
3046 {
3047 	ntfs_inode *ni = (ntfs_inode *)foo;
3048 
3049 	if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) ==
3050 			SLAB_CTOR_CONSTRUCTOR)
3051 		inode_init_once(VFS_I(ni));
3052 }
3053 
3054 /*
3055  * Slab caches to optimize allocations and deallocations of attribute search
3056  * contexts and index contexts, respectively.
3057  */
3058 struct kmem_cache *ntfs_attr_ctx_cache;
3059 struct kmem_cache *ntfs_index_ctx_cache;
3060 
3061 /* Driver wide semaphore. */
3062 DECLARE_MUTEX(ntfs_lock);
3063 
3064 static struct super_block *ntfs_get_sb(struct file_system_type *fs_type,
3065 	int flags, const char *dev_name, void *data)
3066 {
3067 	return get_sb_bdev(fs_type, flags, dev_name, data, ntfs_fill_super);
3068 }
3069 
3070 static struct file_system_type ntfs_fs_type = {
3071 	.owner		= THIS_MODULE,
3072 	.name		= "ntfs",
3073 	.get_sb		= ntfs_get_sb,
3074 	.kill_sb	= kill_block_super,
3075 	.fs_flags	= FS_REQUIRES_DEV,
3076 };
3077 
3078 /* Stable names for the slab caches. */
3079 static const char ntfs_index_ctx_cache_name[] = "ntfs_index_ctx_cache";
3080 static const char ntfs_attr_ctx_cache_name[] = "ntfs_attr_ctx_cache";
3081 static const char ntfs_name_cache_name[] = "ntfs_name_cache";
3082 static const char ntfs_inode_cache_name[] = "ntfs_inode_cache";
3083 static const char ntfs_big_inode_cache_name[] = "ntfs_big_inode_cache";
3084 
3085 static int __init init_ntfs_fs(void)
3086 {
3087 	int err = 0;
3088 
3089 	/* This may be ugly but it results in pretty output so who cares. (-8 */
3090 	printk(KERN_INFO "NTFS driver " NTFS_VERSION " [Flags: R/"
3091 #ifdef NTFS_RW
3092 			"W"
3093 #else
3094 			"O"
3095 #endif
3096 #ifdef DEBUG
3097 			" DEBUG"
3098 #endif
3099 #ifdef MODULE
3100 			" MODULE"
3101 #endif
3102 			"].\n");
3103 
3104 	ntfs_debug("Debug messages are enabled.");
3105 
3106 	ntfs_index_ctx_cache = kmem_cache_create(ntfs_index_ctx_cache_name,
3107 			sizeof(ntfs_index_context), 0 /* offset */,
3108 			SLAB_HWCACHE_ALIGN, NULL /* ctor */, NULL /* dtor */);
3109 	if (!ntfs_index_ctx_cache) {
3110 		printk(KERN_CRIT "NTFS: Failed to create %s!\n",
3111 				ntfs_index_ctx_cache_name);
3112 		goto ictx_err_out;
3113 	}
3114 	ntfs_attr_ctx_cache = kmem_cache_create(ntfs_attr_ctx_cache_name,
3115 			sizeof(ntfs_attr_search_ctx), 0 /* offset */,
3116 			SLAB_HWCACHE_ALIGN, NULL /* ctor */, NULL /* dtor */);
3117 	if (!ntfs_attr_ctx_cache) {
3118 		printk(KERN_CRIT "NTFS: Failed to create %s!\n",
3119 				ntfs_attr_ctx_cache_name);
3120 		goto actx_err_out;
3121 	}
3122 
3123 	ntfs_name_cache = kmem_cache_create(ntfs_name_cache_name,
3124 			(NTFS_MAX_NAME_LEN+1) * sizeof(ntfschar), 0,
3125 			SLAB_HWCACHE_ALIGN, NULL, NULL);
3126 	if (!ntfs_name_cache) {
3127 		printk(KERN_CRIT "NTFS: Failed to create %s!\n",
3128 				ntfs_name_cache_name);
3129 		goto name_err_out;
3130 	}
3131 
3132 	ntfs_inode_cache = kmem_cache_create(ntfs_inode_cache_name,
3133 			sizeof(ntfs_inode), 0,
3134 			SLAB_RECLAIM_ACCOUNT, NULL, NULL);
3135 	if (!ntfs_inode_cache) {
3136 		printk(KERN_CRIT "NTFS: Failed to create %s!\n",
3137 				ntfs_inode_cache_name);
3138 		goto inode_err_out;
3139 	}
3140 
3141 	ntfs_big_inode_cache = kmem_cache_create(ntfs_big_inode_cache_name,
3142 			sizeof(big_ntfs_inode), 0,
3143 			SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT,
3144 			ntfs_big_inode_init_once, NULL);
3145 	if (!ntfs_big_inode_cache) {
3146 		printk(KERN_CRIT "NTFS: Failed to create %s!\n",
3147 				ntfs_big_inode_cache_name);
3148 		goto big_inode_err_out;
3149 	}
3150 
3151 	/* Register the ntfs sysctls. */
3152 	err = ntfs_sysctl(1);
3153 	if (err) {
3154 		printk(KERN_CRIT "NTFS: Failed to register NTFS sysctls!\n");
3155 		goto sysctl_err_out;
3156 	}
3157 
3158 	err = register_filesystem(&ntfs_fs_type);
3159 	if (!err) {
3160 		ntfs_debug("NTFS driver registered successfully.");
3161 		return 0; /* Success! */
3162 	}
3163 	printk(KERN_CRIT "NTFS: Failed to register NTFS filesystem driver!\n");
3164 
3165 sysctl_err_out:
3166 	kmem_cache_destroy(ntfs_big_inode_cache);
3167 big_inode_err_out:
3168 	kmem_cache_destroy(ntfs_inode_cache);
3169 inode_err_out:
3170 	kmem_cache_destroy(ntfs_name_cache);
3171 name_err_out:
3172 	kmem_cache_destroy(ntfs_attr_ctx_cache);
3173 actx_err_out:
3174 	kmem_cache_destroy(ntfs_index_ctx_cache);
3175 ictx_err_out:
3176 	if (!err) {
3177 		printk(KERN_CRIT "NTFS: Aborting NTFS filesystem driver "
3178 				"registration...\n");
3179 		err = -ENOMEM;
3180 	}
3181 	return err;
3182 }
3183 
3184 static void __exit exit_ntfs_fs(void)
3185 {
3186 	int err = 0;
3187 
3188 	ntfs_debug("Unregistering NTFS driver.");
3189 
3190 	unregister_filesystem(&ntfs_fs_type);
3191 
3192 	if (kmem_cache_destroy(ntfs_big_inode_cache) && (err = 1))
3193 		printk(KERN_CRIT "NTFS: Failed to destory %s.\n",
3194 				ntfs_big_inode_cache_name);
3195 	if (kmem_cache_destroy(ntfs_inode_cache) && (err = 1))
3196 		printk(KERN_CRIT "NTFS: Failed to destory %s.\n",
3197 				ntfs_inode_cache_name);
3198 	if (kmem_cache_destroy(ntfs_name_cache) && (err = 1))
3199 		printk(KERN_CRIT "NTFS: Failed to destory %s.\n",
3200 				ntfs_name_cache_name);
3201 	if (kmem_cache_destroy(ntfs_attr_ctx_cache) && (err = 1))
3202 		printk(KERN_CRIT "NTFS: Failed to destory %s.\n",
3203 				ntfs_attr_ctx_cache_name);
3204 	if (kmem_cache_destroy(ntfs_index_ctx_cache) && (err = 1))
3205 		printk(KERN_CRIT "NTFS: Failed to destory %s.\n",
3206 				ntfs_index_ctx_cache_name);
3207 	if (err)
3208 		printk(KERN_CRIT "NTFS: This causes memory to leak! There is "
3209 				"probably a BUG in the driver! Please report "
3210 				"you saw this message to "
3211 				"linux-ntfs-dev@lists.sourceforge.net\n");
3212 	/* Unregister the ntfs sysctls. */
3213 	ntfs_sysctl(0);
3214 }
3215 
3216 MODULE_AUTHOR("Anton Altaparmakov <aia21@cantab.net>");
3217 MODULE_DESCRIPTION("NTFS 1.2/3.x driver - Copyright (c) 2001-2005 Anton Altaparmakov");
3218 MODULE_VERSION(NTFS_VERSION);
3219 MODULE_LICENSE("GPL");
3220 #ifdef DEBUG
3221 module_param(debug_msgs, bool, 0);
3222 MODULE_PARM_DESC(debug_msgs, "Enable debug messages.");
3223 #endif
3224 
3225 module_init(init_ntfs_fs)
3226 module_exit(exit_ntfs_fs)
3227