1 /** 2 * inode.c - NTFS kernel inode handling. Part of the Linux-NTFS project. 3 * 4 * Copyright (c) 2001-2005 Anton Altaparmakov 5 * 6 * This program/include file is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License as published 8 * by the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program/include file is distributed in the hope that it will be 12 * useful, but WITHOUT ANY WARRANTY; without even the implied warranty 13 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program (in the main directory of the Linux-NTFS 18 * distribution in the file COPYING); if not, write to the Free Software 19 * Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 20 */ 21 22 #include <linux/pagemap.h> 23 #include <linux/buffer_head.h> 24 #include <linux/smp_lock.h> 25 #include <linux/quotaops.h> 26 #include <linux/mount.h> 27 28 #include "aops.h" 29 #include "dir.h" 30 #include "debug.h" 31 #include "inode.h" 32 #include "attrib.h" 33 #include "lcnalloc.h" 34 #include "malloc.h" 35 #include "mft.h" 36 #include "time.h" 37 #include "ntfs.h" 38 39 /** 40 * ntfs_test_inode - compare two (possibly fake) inodes for equality 41 * @vi: vfs inode which to test 42 * @na: ntfs attribute which is being tested with 43 * 44 * Compare the ntfs attribute embedded in the ntfs specific part of the vfs 45 * inode @vi for equality with the ntfs attribute @na. 46 * 47 * If searching for the normal file/directory inode, set @na->type to AT_UNUSED. 48 * @na->name and @na->name_len are then ignored. 49 * 50 * Return 1 if the attributes match and 0 if not. 51 * 52 * NOTE: This function runs with the inode_lock spin lock held so it is not 53 * allowed to sleep. 54 */ 55 int ntfs_test_inode(struct inode *vi, ntfs_attr *na) 56 { 57 ntfs_inode *ni; 58 59 if (vi->i_ino != na->mft_no) 60 return 0; 61 ni = NTFS_I(vi); 62 /* If !NInoAttr(ni), @vi is a normal file or directory inode. */ 63 if (likely(!NInoAttr(ni))) { 64 /* If not looking for a normal inode this is a mismatch. */ 65 if (unlikely(na->type != AT_UNUSED)) 66 return 0; 67 } else { 68 /* A fake inode describing an attribute. */ 69 if (ni->type != na->type) 70 return 0; 71 if (ni->name_len != na->name_len) 72 return 0; 73 if (na->name_len && memcmp(ni->name, na->name, 74 na->name_len * sizeof(ntfschar))) 75 return 0; 76 } 77 /* Match! */ 78 return 1; 79 } 80 81 /** 82 * ntfs_init_locked_inode - initialize an inode 83 * @vi: vfs inode to initialize 84 * @na: ntfs attribute which to initialize @vi to 85 * 86 * Initialize the vfs inode @vi with the values from the ntfs attribute @na in 87 * order to enable ntfs_test_inode() to do its work. 88 * 89 * If initializing the normal file/directory inode, set @na->type to AT_UNUSED. 90 * In that case, @na->name and @na->name_len should be set to NULL and 0, 91 * respectively. Although that is not strictly necessary as 92 * ntfs_read_inode_locked() will fill them in later. 93 * 94 * Return 0 on success and -errno on error. 95 * 96 * NOTE: This function runs with the inode_lock spin lock held so it is not 97 * allowed to sleep. (Hence the GFP_ATOMIC allocation.) 98 */ 99 static int ntfs_init_locked_inode(struct inode *vi, ntfs_attr *na) 100 { 101 ntfs_inode *ni = NTFS_I(vi); 102 103 vi->i_ino = na->mft_no; 104 105 ni->type = na->type; 106 if (na->type == AT_INDEX_ALLOCATION) 107 NInoSetMstProtected(ni); 108 109 ni->name = na->name; 110 ni->name_len = na->name_len; 111 112 /* If initializing a normal inode, we are done. */ 113 if (likely(na->type == AT_UNUSED)) { 114 BUG_ON(na->name); 115 BUG_ON(na->name_len); 116 return 0; 117 } 118 119 /* It is a fake inode. */ 120 NInoSetAttr(ni); 121 122 /* 123 * We have I30 global constant as an optimization as it is the name 124 * in >99.9% of named attributes! The other <0.1% incur a GFP_ATOMIC 125 * allocation but that is ok. And most attributes are unnamed anyway, 126 * thus the fraction of named attributes with name != I30 is actually 127 * absolutely tiny. 128 */ 129 if (na->name_len && na->name != I30) { 130 unsigned int i; 131 132 BUG_ON(!na->name); 133 i = na->name_len * sizeof(ntfschar); 134 ni->name = (ntfschar*)kmalloc(i + sizeof(ntfschar), GFP_ATOMIC); 135 if (!ni->name) 136 return -ENOMEM; 137 memcpy(ni->name, na->name, i); 138 ni->name[i] = 0; 139 } 140 return 0; 141 } 142 143 typedef int (*set_t)(struct inode *, void *); 144 static int ntfs_read_locked_inode(struct inode *vi); 145 static int ntfs_read_locked_attr_inode(struct inode *base_vi, struct inode *vi); 146 static int ntfs_read_locked_index_inode(struct inode *base_vi, 147 struct inode *vi); 148 149 /** 150 * ntfs_iget - obtain a struct inode corresponding to a specific normal inode 151 * @sb: super block of mounted volume 152 * @mft_no: mft record number / inode number to obtain 153 * 154 * Obtain the struct inode corresponding to a specific normal inode (i.e. a 155 * file or directory). 156 * 157 * If the inode is in the cache, it is just returned with an increased 158 * reference count. Otherwise, a new struct inode is allocated and initialized, 159 * and finally ntfs_read_locked_inode() is called to read in the inode and 160 * fill in the remainder of the inode structure. 161 * 162 * Return the struct inode on success. Check the return value with IS_ERR() and 163 * if true, the function failed and the error code is obtained from PTR_ERR(). 164 */ 165 struct inode *ntfs_iget(struct super_block *sb, unsigned long mft_no) 166 { 167 struct inode *vi; 168 ntfs_attr na; 169 int err; 170 171 na.mft_no = mft_no; 172 na.type = AT_UNUSED; 173 na.name = NULL; 174 na.name_len = 0; 175 176 vi = iget5_locked(sb, mft_no, (test_t)ntfs_test_inode, 177 (set_t)ntfs_init_locked_inode, &na); 178 if (unlikely(!vi)) 179 return ERR_PTR(-ENOMEM); 180 181 err = 0; 182 183 /* If this is a freshly allocated inode, need to read it now. */ 184 if (vi->i_state & I_NEW) { 185 err = ntfs_read_locked_inode(vi); 186 unlock_new_inode(vi); 187 } 188 /* 189 * There is no point in keeping bad inodes around if the failure was 190 * due to ENOMEM. We want to be able to retry again later. 191 */ 192 if (unlikely(err == -ENOMEM)) { 193 iput(vi); 194 vi = ERR_PTR(err); 195 } 196 return vi; 197 } 198 199 /** 200 * ntfs_attr_iget - obtain a struct inode corresponding to an attribute 201 * @base_vi: vfs base inode containing the attribute 202 * @type: attribute type 203 * @name: Unicode name of the attribute (NULL if unnamed) 204 * @name_len: length of @name in Unicode characters (0 if unnamed) 205 * 206 * Obtain the (fake) struct inode corresponding to the attribute specified by 207 * @type, @name, and @name_len, which is present in the base mft record 208 * specified by the vfs inode @base_vi. 209 * 210 * If the attribute inode is in the cache, it is just returned with an 211 * increased reference count. Otherwise, a new struct inode is allocated and 212 * initialized, and finally ntfs_read_locked_attr_inode() is called to read the 213 * attribute and fill in the inode structure. 214 * 215 * Note, for index allocation attributes, you need to use ntfs_index_iget() 216 * instead of ntfs_attr_iget() as working with indices is a lot more complex. 217 * 218 * Return the struct inode of the attribute inode on success. Check the return 219 * value with IS_ERR() and if true, the function failed and the error code is 220 * obtained from PTR_ERR(). 221 */ 222 struct inode *ntfs_attr_iget(struct inode *base_vi, ATTR_TYPE type, 223 ntfschar *name, u32 name_len) 224 { 225 struct inode *vi; 226 ntfs_attr na; 227 int err; 228 229 /* Make sure no one calls ntfs_attr_iget() for indices. */ 230 BUG_ON(type == AT_INDEX_ALLOCATION); 231 232 na.mft_no = base_vi->i_ino; 233 na.type = type; 234 na.name = name; 235 na.name_len = name_len; 236 237 vi = iget5_locked(base_vi->i_sb, na.mft_no, (test_t)ntfs_test_inode, 238 (set_t)ntfs_init_locked_inode, &na); 239 if (unlikely(!vi)) 240 return ERR_PTR(-ENOMEM); 241 242 err = 0; 243 244 /* If this is a freshly allocated inode, need to read it now. */ 245 if (vi->i_state & I_NEW) { 246 err = ntfs_read_locked_attr_inode(base_vi, vi); 247 unlock_new_inode(vi); 248 } 249 /* 250 * There is no point in keeping bad attribute inodes around. This also 251 * simplifies things in that we never need to check for bad attribute 252 * inodes elsewhere. 253 */ 254 if (unlikely(err)) { 255 iput(vi); 256 vi = ERR_PTR(err); 257 } 258 return vi; 259 } 260 261 /** 262 * ntfs_index_iget - obtain a struct inode corresponding to an index 263 * @base_vi: vfs base inode containing the index related attributes 264 * @name: Unicode name of the index 265 * @name_len: length of @name in Unicode characters 266 * 267 * Obtain the (fake) struct inode corresponding to the index specified by @name 268 * and @name_len, which is present in the base mft record specified by the vfs 269 * inode @base_vi. 270 * 271 * If the index inode is in the cache, it is just returned with an increased 272 * reference count. Otherwise, a new struct inode is allocated and 273 * initialized, and finally ntfs_read_locked_index_inode() is called to read 274 * the index related attributes and fill in the inode structure. 275 * 276 * Return the struct inode of the index inode on success. Check the return 277 * value with IS_ERR() and if true, the function failed and the error code is 278 * obtained from PTR_ERR(). 279 */ 280 struct inode *ntfs_index_iget(struct inode *base_vi, ntfschar *name, 281 u32 name_len) 282 { 283 struct inode *vi; 284 ntfs_attr na; 285 int err; 286 287 na.mft_no = base_vi->i_ino; 288 na.type = AT_INDEX_ALLOCATION; 289 na.name = name; 290 na.name_len = name_len; 291 292 vi = iget5_locked(base_vi->i_sb, na.mft_no, (test_t)ntfs_test_inode, 293 (set_t)ntfs_init_locked_inode, &na); 294 if (unlikely(!vi)) 295 return ERR_PTR(-ENOMEM); 296 297 err = 0; 298 299 /* If this is a freshly allocated inode, need to read it now. */ 300 if (vi->i_state & I_NEW) { 301 err = ntfs_read_locked_index_inode(base_vi, vi); 302 unlock_new_inode(vi); 303 } 304 /* 305 * There is no point in keeping bad index inodes around. This also 306 * simplifies things in that we never need to check for bad index 307 * inodes elsewhere. 308 */ 309 if (unlikely(err)) { 310 iput(vi); 311 vi = ERR_PTR(err); 312 } 313 return vi; 314 } 315 316 struct inode *ntfs_alloc_big_inode(struct super_block *sb) 317 { 318 ntfs_inode *ni; 319 320 ntfs_debug("Entering."); 321 ni = kmem_cache_alloc(ntfs_big_inode_cache, SLAB_NOFS); 322 if (likely(ni != NULL)) { 323 ni->state = 0; 324 return VFS_I(ni); 325 } 326 ntfs_error(sb, "Allocation of NTFS big inode structure failed."); 327 return NULL; 328 } 329 330 void ntfs_destroy_big_inode(struct inode *inode) 331 { 332 ntfs_inode *ni = NTFS_I(inode); 333 334 ntfs_debug("Entering."); 335 BUG_ON(ni->page); 336 if (!atomic_dec_and_test(&ni->count)) 337 BUG(); 338 kmem_cache_free(ntfs_big_inode_cache, NTFS_I(inode)); 339 } 340 341 static inline ntfs_inode *ntfs_alloc_extent_inode(void) 342 { 343 ntfs_inode *ni; 344 345 ntfs_debug("Entering."); 346 ni = kmem_cache_alloc(ntfs_inode_cache, SLAB_NOFS); 347 if (likely(ni != NULL)) { 348 ni->state = 0; 349 return ni; 350 } 351 ntfs_error(NULL, "Allocation of NTFS inode structure failed."); 352 return NULL; 353 } 354 355 static void ntfs_destroy_extent_inode(ntfs_inode *ni) 356 { 357 ntfs_debug("Entering."); 358 BUG_ON(ni->page); 359 if (!atomic_dec_and_test(&ni->count)) 360 BUG(); 361 kmem_cache_free(ntfs_inode_cache, ni); 362 } 363 364 /** 365 * __ntfs_init_inode - initialize ntfs specific part of an inode 366 * @sb: super block of mounted volume 367 * @ni: freshly allocated ntfs inode which to initialize 368 * 369 * Initialize an ntfs inode to defaults. 370 * 371 * NOTE: ni->mft_no, ni->state, ni->type, ni->name, and ni->name_len are left 372 * untouched. Make sure to initialize them elsewhere. 373 * 374 * Return zero on success and -ENOMEM on error. 375 */ 376 void __ntfs_init_inode(struct super_block *sb, ntfs_inode *ni) 377 { 378 ntfs_debug("Entering."); 379 rwlock_init(&ni->size_lock); 380 ni->initialized_size = ni->allocated_size = 0; 381 ni->seq_no = 0; 382 atomic_set(&ni->count, 1); 383 ni->vol = NTFS_SB(sb); 384 ntfs_init_runlist(&ni->runlist); 385 init_MUTEX(&ni->mrec_lock); 386 ni->page = NULL; 387 ni->page_ofs = 0; 388 ni->attr_list_size = 0; 389 ni->attr_list = NULL; 390 ntfs_init_runlist(&ni->attr_list_rl); 391 ni->itype.index.bmp_ino = NULL; 392 ni->itype.index.block_size = 0; 393 ni->itype.index.vcn_size = 0; 394 ni->itype.index.collation_rule = 0; 395 ni->itype.index.block_size_bits = 0; 396 ni->itype.index.vcn_size_bits = 0; 397 init_MUTEX(&ni->extent_lock); 398 ni->nr_extents = 0; 399 ni->ext.base_ntfs_ino = NULL; 400 } 401 402 inline ntfs_inode *ntfs_new_extent_inode(struct super_block *sb, 403 unsigned long mft_no) 404 { 405 ntfs_inode *ni = ntfs_alloc_extent_inode(); 406 407 ntfs_debug("Entering."); 408 if (likely(ni != NULL)) { 409 __ntfs_init_inode(sb, ni); 410 ni->mft_no = mft_no; 411 ni->type = AT_UNUSED; 412 ni->name = NULL; 413 ni->name_len = 0; 414 } 415 return ni; 416 } 417 418 /** 419 * ntfs_is_extended_system_file - check if a file is in the $Extend directory 420 * @ctx: initialized attribute search context 421 * 422 * Search all file name attributes in the inode described by the attribute 423 * search context @ctx and check if any of the names are in the $Extend system 424 * directory. 425 * 426 * Return values: 427 * 1: file is in $Extend directory 428 * 0: file is not in $Extend directory 429 * -errno: failed to determine if the file is in the $Extend directory 430 */ 431 static int ntfs_is_extended_system_file(ntfs_attr_search_ctx *ctx) 432 { 433 int nr_links, err; 434 435 /* Restart search. */ 436 ntfs_attr_reinit_search_ctx(ctx); 437 438 /* Get number of hard links. */ 439 nr_links = le16_to_cpu(ctx->mrec->link_count); 440 441 /* Loop through all hard links. */ 442 while (!(err = ntfs_attr_lookup(AT_FILE_NAME, NULL, 0, 0, 0, NULL, 0, 443 ctx))) { 444 FILE_NAME_ATTR *file_name_attr; 445 ATTR_RECORD *attr = ctx->attr; 446 u8 *p, *p2; 447 448 nr_links--; 449 /* 450 * Maximum sanity checking as we are called on an inode that 451 * we suspect might be corrupt. 452 */ 453 p = (u8*)attr + le32_to_cpu(attr->length); 454 if (p < (u8*)ctx->mrec || (u8*)p > (u8*)ctx->mrec + 455 le32_to_cpu(ctx->mrec->bytes_in_use)) { 456 err_corrupt_attr: 457 ntfs_error(ctx->ntfs_ino->vol->sb, "Corrupt file name " 458 "attribute. You should run chkdsk."); 459 return -EIO; 460 } 461 if (attr->non_resident) { 462 ntfs_error(ctx->ntfs_ino->vol->sb, "Non-resident file " 463 "name. You should run chkdsk."); 464 return -EIO; 465 } 466 if (attr->flags) { 467 ntfs_error(ctx->ntfs_ino->vol->sb, "File name with " 468 "invalid flags. You should run " 469 "chkdsk."); 470 return -EIO; 471 } 472 if (!(attr->data.resident.flags & RESIDENT_ATTR_IS_INDEXED)) { 473 ntfs_error(ctx->ntfs_ino->vol->sb, "Unindexed file " 474 "name. You should run chkdsk."); 475 return -EIO; 476 } 477 file_name_attr = (FILE_NAME_ATTR*)((u8*)attr + 478 le16_to_cpu(attr->data.resident.value_offset)); 479 p2 = (u8*)attr + le32_to_cpu(attr->data.resident.value_length); 480 if (p2 < (u8*)attr || p2 > p) 481 goto err_corrupt_attr; 482 /* This attribute is ok, but is it in the $Extend directory? */ 483 if (MREF_LE(file_name_attr->parent_directory) == FILE_Extend) 484 return 1; /* YES, it's an extended system file. */ 485 } 486 if (unlikely(err != -ENOENT)) 487 return err; 488 if (unlikely(nr_links)) { 489 ntfs_error(ctx->ntfs_ino->vol->sb, "Inode hard link count " 490 "doesn't match number of name attributes. You " 491 "should run chkdsk."); 492 return -EIO; 493 } 494 return 0; /* NO, it is not an extended system file. */ 495 } 496 497 /** 498 * ntfs_read_locked_inode - read an inode from its device 499 * @vi: inode to read 500 * 501 * ntfs_read_locked_inode() is called from ntfs_iget() to read the inode 502 * described by @vi into memory from the device. 503 * 504 * The only fields in @vi that we need to/can look at when the function is 505 * called are i_sb, pointing to the mounted device's super block, and i_ino, 506 * the number of the inode to load. 507 * 508 * ntfs_read_locked_inode() maps, pins and locks the mft record number i_ino 509 * for reading and sets up the necessary @vi fields as well as initializing 510 * the ntfs inode. 511 * 512 * Q: What locks are held when the function is called? 513 * A: i_state has I_LOCK set, hence the inode is locked, also 514 * i_count is set to 1, so it is not going to go away 515 * i_flags is set to 0 and we have no business touching it. Only an ioctl() 516 * is allowed to write to them. We should of course be honouring them but 517 * we need to do that using the IS_* macros defined in include/linux/fs.h. 518 * In any case ntfs_read_locked_inode() has nothing to do with i_flags. 519 * 520 * Return 0 on success and -errno on error. In the error case, the inode will 521 * have had make_bad_inode() executed on it. 522 */ 523 static int ntfs_read_locked_inode(struct inode *vi) 524 { 525 ntfs_volume *vol = NTFS_SB(vi->i_sb); 526 ntfs_inode *ni; 527 MFT_RECORD *m; 528 ATTR_RECORD *a; 529 STANDARD_INFORMATION *si; 530 ntfs_attr_search_ctx *ctx; 531 int err = 0; 532 533 ntfs_debug("Entering for i_ino 0x%lx.", vi->i_ino); 534 535 /* Setup the generic vfs inode parts now. */ 536 537 /* This is the optimal IO size (for stat), not the fs block size. */ 538 vi->i_blksize = PAGE_CACHE_SIZE; 539 /* 540 * This is for checking whether an inode has changed w.r.t. a file so 541 * that the file can be updated if necessary (compare with f_version). 542 */ 543 vi->i_version = 1; 544 545 vi->i_uid = vol->uid; 546 vi->i_gid = vol->gid; 547 vi->i_mode = 0; 548 549 /* 550 * Initialize the ntfs specific part of @vi special casing 551 * FILE_MFT which we need to do at mount time. 552 */ 553 if (vi->i_ino != FILE_MFT) 554 ntfs_init_big_inode(vi); 555 ni = NTFS_I(vi); 556 557 m = map_mft_record(ni); 558 if (IS_ERR(m)) { 559 err = PTR_ERR(m); 560 goto err_out; 561 } 562 ctx = ntfs_attr_get_search_ctx(ni, m); 563 if (!ctx) { 564 err = -ENOMEM; 565 goto unm_err_out; 566 } 567 568 if (!(m->flags & MFT_RECORD_IN_USE)) { 569 ntfs_error(vi->i_sb, "Inode is not in use!"); 570 goto unm_err_out; 571 } 572 if (m->base_mft_record) { 573 ntfs_error(vi->i_sb, "Inode is an extent inode!"); 574 goto unm_err_out; 575 } 576 577 /* Transfer information from mft record into vfs and ntfs inodes. */ 578 vi->i_generation = ni->seq_no = le16_to_cpu(m->sequence_number); 579 580 /* 581 * FIXME: Keep in mind that link_count is two for files which have both 582 * a long file name and a short file name as separate entries, so if 583 * we are hiding short file names this will be too high. Either we need 584 * to account for the short file names by subtracting them or we need 585 * to make sure we delete files even though i_nlink is not zero which 586 * might be tricky due to vfs interactions. Need to think about this 587 * some more when implementing the unlink command. 588 */ 589 vi->i_nlink = le16_to_cpu(m->link_count); 590 /* 591 * FIXME: Reparse points can have the directory bit set even though 592 * they would be S_IFLNK. Need to deal with this further below when we 593 * implement reparse points / symbolic links but it will do for now. 594 * Also if not a directory, it could be something else, rather than 595 * a regular file. But again, will do for now. 596 */ 597 /* Everyone gets all permissions. */ 598 vi->i_mode |= S_IRWXUGO; 599 /* If read-only, noone gets write permissions. */ 600 if (IS_RDONLY(vi)) 601 vi->i_mode &= ~S_IWUGO; 602 if (m->flags & MFT_RECORD_IS_DIRECTORY) { 603 vi->i_mode |= S_IFDIR; 604 /* 605 * Apply the directory permissions mask set in the mount 606 * options. 607 */ 608 vi->i_mode &= ~vol->dmask; 609 /* Things break without this kludge! */ 610 if (vi->i_nlink > 1) 611 vi->i_nlink = 1; 612 } else { 613 vi->i_mode |= S_IFREG; 614 /* Apply the file permissions mask set in the mount options. */ 615 vi->i_mode &= ~vol->fmask; 616 } 617 /* 618 * Find the standard information attribute in the mft record. At this 619 * stage we haven't setup the attribute list stuff yet, so this could 620 * in fact fail if the standard information is in an extent record, but 621 * I don't think this actually ever happens. 622 */ 623 err = ntfs_attr_lookup(AT_STANDARD_INFORMATION, NULL, 0, 0, 0, NULL, 0, 624 ctx); 625 if (unlikely(err)) { 626 if (err == -ENOENT) { 627 /* 628 * TODO: We should be performing a hot fix here (if the 629 * recover mount option is set) by creating a new 630 * attribute. 631 */ 632 ntfs_error(vi->i_sb, "$STANDARD_INFORMATION attribute " 633 "is missing."); 634 } 635 goto unm_err_out; 636 } 637 a = ctx->attr; 638 /* Get the standard information attribute value. */ 639 si = (STANDARD_INFORMATION*)((u8*)a + 640 le16_to_cpu(a->data.resident.value_offset)); 641 642 /* Transfer information from the standard information into vi. */ 643 /* 644 * Note: The i_?times do not quite map perfectly onto the NTFS times, 645 * but they are close enough, and in the end it doesn't really matter 646 * that much... 647 */ 648 /* 649 * mtime is the last change of the data within the file. Not changed 650 * when only metadata is changed, e.g. a rename doesn't affect mtime. 651 */ 652 vi->i_mtime = ntfs2utc(si->last_data_change_time); 653 /* 654 * ctime is the last change of the metadata of the file. This obviously 655 * always changes, when mtime is changed. ctime can be changed on its 656 * own, mtime is then not changed, e.g. when a file is renamed. 657 */ 658 vi->i_ctime = ntfs2utc(si->last_mft_change_time); 659 /* 660 * Last access to the data within the file. Not changed during a rename 661 * for example but changed whenever the file is written to. 662 */ 663 vi->i_atime = ntfs2utc(si->last_access_time); 664 665 /* Find the attribute list attribute if present. */ 666 ntfs_attr_reinit_search_ctx(ctx); 667 err = ntfs_attr_lookup(AT_ATTRIBUTE_LIST, NULL, 0, 0, 0, NULL, 0, ctx); 668 if (err) { 669 if (unlikely(err != -ENOENT)) { 670 ntfs_error(vi->i_sb, "Failed to lookup attribute list " 671 "attribute."); 672 goto unm_err_out; 673 } 674 } else /* if (!err) */ { 675 if (vi->i_ino == FILE_MFT) 676 goto skip_attr_list_load; 677 ntfs_debug("Attribute list found in inode 0x%lx.", vi->i_ino); 678 NInoSetAttrList(ni); 679 a = ctx->attr; 680 if (a->flags & ATTR_IS_ENCRYPTED || 681 a->flags & ATTR_COMPRESSION_MASK || 682 a->flags & ATTR_IS_SPARSE) { 683 ntfs_error(vi->i_sb, "Attribute list attribute is " 684 "compressed/encrypted/sparse."); 685 goto unm_err_out; 686 } 687 /* Now allocate memory for the attribute list. */ 688 ni->attr_list_size = (u32)ntfs_attr_size(a); 689 ni->attr_list = ntfs_malloc_nofs(ni->attr_list_size); 690 if (!ni->attr_list) { 691 ntfs_error(vi->i_sb, "Not enough memory to allocate " 692 "buffer for attribute list."); 693 err = -ENOMEM; 694 goto unm_err_out; 695 } 696 if (a->non_resident) { 697 NInoSetAttrListNonResident(ni); 698 if (a->data.non_resident.lowest_vcn) { 699 ntfs_error(vi->i_sb, "Attribute list has non " 700 "zero lowest_vcn."); 701 goto unm_err_out; 702 } 703 /* 704 * Setup the runlist. No need for locking as we have 705 * exclusive access to the inode at this time. 706 */ 707 ni->attr_list_rl.rl = ntfs_mapping_pairs_decompress(vol, 708 a, NULL); 709 if (IS_ERR(ni->attr_list_rl.rl)) { 710 err = PTR_ERR(ni->attr_list_rl.rl); 711 ni->attr_list_rl.rl = NULL; 712 ntfs_error(vi->i_sb, "Mapping pairs " 713 "decompression failed."); 714 goto unm_err_out; 715 } 716 /* Now load the attribute list. */ 717 if ((err = load_attribute_list(vol, &ni->attr_list_rl, 718 ni->attr_list, ni->attr_list_size, 719 sle64_to_cpu(a->data.non_resident. 720 initialized_size)))) { 721 ntfs_error(vi->i_sb, "Failed to load " 722 "attribute list attribute."); 723 goto unm_err_out; 724 } 725 } else /* if (!a->non_resident) */ { 726 if ((u8*)a + le16_to_cpu(a->data.resident.value_offset) 727 + le32_to_cpu( 728 a->data.resident.value_length) > 729 (u8*)ctx->mrec + vol->mft_record_size) { 730 ntfs_error(vi->i_sb, "Corrupt attribute list " 731 "in inode."); 732 goto unm_err_out; 733 } 734 /* Now copy the attribute list. */ 735 memcpy(ni->attr_list, (u8*)a + le16_to_cpu( 736 a->data.resident.value_offset), 737 le32_to_cpu( 738 a->data.resident.value_length)); 739 } 740 } 741 skip_attr_list_load: 742 /* 743 * If an attribute list is present we now have the attribute list value 744 * in ntfs_ino->attr_list and it is ntfs_ino->attr_list_size bytes. 745 */ 746 if (S_ISDIR(vi->i_mode)) { 747 loff_t bvi_size; 748 struct inode *bvi; 749 ntfs_inode *bni; 750 INDEX_ROOT *ir; 751 u8 *ir_end, *index_end; 752 753 /* It is a directory, find index root attribute. */ 754 ntfs_attr_reinit_search_ctx(ctx); 755 err = ntfs_attr_lookup(AT_INDEX_ROOT, I30, 4, CASE_SENSITIVE, 756 0, NULL, 0, ctx); 757 if (unlikely(err)) { 758 if (err == -ENOENT) { 759 // FIXME: File is corrupt! Hot-fix with empty 760 // index root attribute if recovery option is 761 // set. 762 ntfs_error(vi->i_sb, "$INDEX_ROOT attribute " 763 "is missing."); 764 } 765 goto unm_err_out; 766 } 767 a = ctx->attr; 768 /* Set up the state. */ 769 if (unlikely(a->non_resident)) { 770 ntfs_error(vol->sb, "$INDEX_ROOT attribute is not " 771 "resident."); 772 goto unm_err_out; 773 } 774 /* Ensure the attribute name is placed before the value. */ 775 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >= 776 le16_to_cpu(a->data.resident.value_offset)))) { 777 ntfs_error(vol->sb, "$INDEX_ROOT attribute name is " 778 "placed after the attribute value."); 779 goto unm_err_out; 780 } 781 /* 782 * Compressed/encrypted index root just means that the newly 783 * created files in that directory should be created compressed/ 784 * encrypted. However index root cannot be both compressed and 785 * encrypted. 786 */ 787 if (a->flags & ATTR_COMPRESSION_MASK) 788 NInoSetCompressed(ni); 789 if (a->flags & ATTR_IS_ENCRYPTED) { 790 if (a->flags & ATTR_COMPRESSION_MASK) { 791 ntfs_error(vi->i_sb, "Found encrypted and " 792 "compressed attribute."); 793 goto unm_err_out; 794 } 795 NInoSetEncrypted(ni); 796 } 797 if (a->flags & ATTR_IS_SPARSE) 798 NInoSetSparse(ni); 799 ir = (INDEX_ROOT*)((u8*)a + 800 le16_to_cpu(a->data.resident.value_offset)); 801 ir_end = (u8*)ir + le32_to_cpu(a->data.resident.value_length); 802 if (ir_end > (u8*)ctx->mrec + vol->mft_record_size) { 803 ntfs_error(vi->i_sb, "$INDEX_ROOT attribute is " 804 "corrupt."); 805 goto unm_err_out; 806 } 807 index_end = (u8*)&ir->index + 808 le32_to_cpu(ir->index.index_length); 809 if (index_end > ir_end) { 810 ntfs_error(vi->i_sb, "Directory index is corrupt."); 811 goto unm_err_out; 812 } 813 if (ir->type != AT_FILE_NAME) { 814 ntfs_error(vi->i_sb, "Indexed attribute is not " 815 "$FILE_NAME."); 816 goto unm_err_out; 817 } 818 if (ir->collation_rule != COLLATION_FILE_NAME) { 819 ntfs_error(vi->i_sb, "Index collation rule is not " 820 "COLLATION_FILE_NAME."); 821 goto unm_err_out; 822 } 823 ni->itype.index.collation_rule = ir->collation_rule; 824 ni->itype.index.block_size = le32_to_cpu(ir->index_block_size); 825 if (ni->itype.index.block_size & 826 (ni->itype.index.block_size - 1)) { 827 ntfs_error(vi->i_sb, "Index block size (%u) is not a " 828 "power of two.", 829 ni->itype.index.block_size); 830 goto unm_err_out; 831 } 832 if (ni->itype.index.block_size > PAGE_CACHE_SIZE) { 833 ntfs_error(vi->i_sb, "Index block size (%u) > " 834 "PAGE_CACHE_SIZE (%ld) is not " 835 "supported. Sorry.", 836 ni->itype.index.block_size, 837 PAGE_CACHE_SIZE); 838 err = -EOPNOTSUPP; 839 goto unm_err_out; 840 } 841 if (ni->itype.index.block_size < NTFS_BLOCK_SIZE) { 842 ntfs_error(vi->i_sb, "Index block size (%u) < " 843 "NTFS_BLOCK_SIZE (%i) is not " 844 "supported. Sorry.", 845 ni->itype.index.block_size, 846 NTFS_BLOCK_SIZE); 847 err = -EOPNOTSUPP; 848 goto unm_err_out; 849 } 850 ni->itype.index.block_size_bits = 851 ffs(ni->itype.index.block_size) - 1; 852 /* Determine the size of a vcn in the directory index. */ 853 if (vol->cluster_size <= ni->itype.index.block_size) { 854 ni->itype.index.vcn_size = vol->cluster_size; 855 ni->itype.index.vcn_size_bits = vol->cluster_size_bits; 856 } else { 857 ni->itype.index.vcn_size = vol->sector_size; 858 ni->itype.index.vcn_size_bits = vol->sector_size_bits; 859 } 860 861 /* Setup the index allocation attribute, even if not present. */ 862 NInoSetMstProtected(ni); 863 ni->type = AT_INDEX_ALLOCATION; 864 ni->name = I30; 865 ni->name_len = 4; 866 867 if (!(ir->index.flags & LARGE_INDEX)) { 868 /* No index allocation. */ 869 vi->i_size = ni->initialized_size = 870 ni->allocated_size = 0; 871 /* We are done with the mft record, so we release it. */ 872 ntfs_attr_put_search_ctx(ctx); 873 unmap_mft_record(ni); 874 m = NULL; 875 ctx = NULL; 876 goto skip_large_dir_stuff; 877 } /* LARGE_INDEX: Index allocation present. Setup state. */ 878 NInoSetIndexAllocPresent(ni); 879 /* Find index allocation attribute. */ 880 ntfs_attr_reinit_search_ctx(ctx); 881 err = ntfs_attr_lookup(AT_INDEX_ALLOCATION, I30, 4, 882 CASE_SENSITIVE, 0, NULL, 0, ctx); 883 if (unlikely(err)) { 884 if (err == -ENOENT) 885 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION " 886 "attribute is not present but " 887 "$INDEX_ROOT indicated it is."); 888 else 889 ntfs_error(vi->i_sb, "Failed to lookup " 890 "$INDEX_ALLOCATION " 891 "attribute."); 892 goto unm_err_out; 893 } 894 a = ctx->attr; 895 if (!a->non_resident) { 896 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute " 897 "is resident."); 898 goto unm_err_out; 899 } 900 /* 901 * Ensure the attribute name is placed before the mapping pairs 902 * array. 903 */ 904 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >= 905 le16_to_cpu( 906 a->data.non_resident.mapping_pairs_offset)))) { 907 ntfs_error(vol->sb, "$INDEX_ALLOCATION attribute name " 908 "is placed after the mapping pairs " 909 "array."); 910 goto unm_err_out; 911 } 912 if (a->flags & ATTR_IS_ENCRYPTED) { 913 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute " 914 "is encrypted."); 915 goto unm_err_out; 916 } 917 if (a->flags & ATTR_IS_SPARSE) { 918 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute " 919 "is sparse."); 920 goto unm_err_out; 921 } 922 if (a->flags & ATTR_COMPRESSION_MASK) { 923 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute " 924 "is compressed."); 925 goto unm_err_out; 926 } 927 if (a->data.non_resident.lowest_vcn) { 928 ntfs_error(vi->i_sb, "First extent of " 929 "$INDEX_ALLOCATION attribute has non " 930 "zero lowest_vcn."); 931 goto unm_err_out; 932 } 933 vi->i_size = sle64_to_cpu(a->data.non_resident.data_size); 934 ni->initialized_size = sle64_to_cpu( 935 a->data.non_resident.initialized_size); 936 ni->allocated_size = sle64_to_cpu( 937 a->data.non_resident.allocated_size); 938 /* 939 * We are done with the mft record, so we release it. Otherwise 940 * we would deadlock in ntfs_attr_iget(). 941 */ 942 ntfs_attr_put_search_ctx(ctx); 943 unmap_mft_record(ni); 944 m = NULL; 945 ctx = NULL; 946 /* Get the index bitmap attribute inode. */ 947 bvi = ntfs_attr_iget(vi, AT_BITMAP, I30, 4); 948 if (IS_ERR(bvi)) { 949 ntfs_error(vi->i_sb, "Failed to get bitmap attribute."); 950 err = PTR_ERR(bvi); 951 goto unm_err_out; 952 } 953 ni->itype.index.bmp_ino = bvi; 954 bni = NTFS_I(bvi); 955 if (NInoCompressed(bni) || NInoEncrypted(bni) || 956 NInoSparse(bni)) { 957 ntfs_error(vi->i_sb, "$BITMAP attribute is compressed " 958 "and/or encrypted and/or sparse."); 959 goto unm_err_out; 960 } 961 /* Consistency check bitmap size vs. index allocation size. */ 962 bvi_size = i_size_read(bvi); 963 if ((bvi_size << 3) < (vi->i_size >> 964 ni->itype.index.block_size_bits)) { 965 ntfs_error(vi->i_sb, "Index bitmap too small (0x%llx) " 966 "for index allocation (0x%llx).", 967 bvi_size << 3, vi->i_size); 968 goto unm_err_out; 969 } 970 skip_large_dir_stuff: 971 /* Setup the operations for this inode. */ 972 vi->i_op = &ntfs_dir_inode_ops; 973 vi->i_fop = &ntfs_dir_ops; 974 } else { 975 /* It is a file. */ 976 ntfs_attr_reinit_search_ctx(ctx); 977 978 /* Setup the data attribute, even if not present. */ 979 ni->type = AT_DATA; 980 ni->name = NULL; 981 ni->name_len = 0; 982 983 /* Find first extent of the unnamed data attribute. */ 984 err = ntfs_attr_lookup(AT_DATA, NULL, 0, 0, 0, NULL, 0, ctx); 985 if (unlikely(err)) { 986 vi->i_size = ni->initialized_size = 987 ni->allocated_size = 0; 988 if (err != -ENOENT) { 989 ntfs_error(vi->i_sb, "Failed to lookup $DATA " 990 "attribute."); 991 goto unm_err_out; 992 } 993 /* 994 * FILE_Secure does not have an unnamed $DATA 995 * attribute, so we special case it here. 996 */ 997 if (vi->i_ino == FILE_Secure) 998 goto no_data_attr_special_case; 999 /* 1000 * Most if not all the system files in the $Extend 1001 * system directory do not have unnamed data 1002 * attributes so we need to check if the parent 1003 * directory of the file is FILE_Extend and if it is 1004 * ignore this error. To do this we need to get the 1005 * name of this inode from the mft record as the name 1006 * contains the back reference to the parent directory. 1007 */ 1008 if (ntfs_is_extended_system_file(ctx) > 0) 1009 goto no_data_attr_special_case; 1010 // FIXME: File is corrupt! Hot-fix with empty data 1011 // attribute if recovery option is set. 1012 ntfs_error(vi->i_sb, "$DATA attribute is missing."); 1013 goto unm_err_out; 1014 } 1015 a = ctx->attr; 1016 /* Setup the state. */ 1017 if (a->flags & (ATTR_COMPRESSION_MASK | ATTR_IS_SPARSE)) { 1018 if (a->flags & ATTR_COMPRESSION_MASK) { 1019 NInoSetCompressed(ni); 1020 if (vol->cluster_size > 4096) { 1021 ntfs_error(vi->i_sb, "Found " 1022 "compressed data but " 1023 "compression is " 1024 "disabled due to " 1025 "cluster size (%i) > " 1026 "4kiB.", 1027 vol->cluster_size); 1028 goto unm_err_out; 1029 } 1030 if ((a->flags & ATTR_COMPRESSION_MASK) 1031 != ATTR_IS_COMPRESSED) { 1032 ntfs_error(vi->i_sb, "Found unknown " 1033 "compression method " 1034 "or corrupt file."); 1035 goto unm_err_out; 1036 } 1037 } 1038 if (a->flags & ATTR_IS_SPARSE) 1039 NInoSetSparse(ni); 1040 } 1041 if (a->flags & ATTR_IS_ENCRYPTED) { 1042 if (NInoCompressed(ni)) { 1043 ntfs_error(vi->i_sb, "Found encrypted and " 1044 "compressed data."); 1045 goto unm_err_out; 1046 } 1047 NInoSetEncrypted(ni); 1048 } 1049 if (a->non_resident) { 1050 NInoSetNonResident(ni); 1051 if (NInoCompressed(ni) || NInoSparse(ni)) { 1052 if (a->data.non_resident.compression_unit != 1053 4) { 1054 ntfs_error(vi->i_sb, "Found " 1055 "nonstandard " 1056 "compression unit (%u " 1057 "instead of 4). " 1058 "Cannot handle this.", 1059 a->data.non_resident. 1060 compression_unit); 1061 err = -EOPNOTSUPP; 1062 goto unm_err_out; 1063 } 1064 ni->itype.compressed.block_clusters = 1U << 1065 a->data.non_resident. 1066 compression_unit; 1067 ni->itype.compressed.block_size = 1U << ( 1068 a->data.non_resident. 1069 compression_unit + 1070 vol->cluster_size_bits); 1071 ni->itype.compressed.block_size_bits = ffs( 1072 ni->itype.compressed. 1073 block_size) - 1; 1074 ni->itype.compressed.size = sle64_to_cpu( 1075 a->data.non_resident. 1076 compressed_size); 1077 } 1078 if (a->data.non_resident.lowest_vcn) { 1079 ntfs_error(vi->i_sb, "First extent of $DATA " 1080 "attribute has non zero " 1081 "lowest_vcn."); 1082 goto unm_err_out; 1083 } 1084 vi->i_size = sle64_to_cpu( 1085 a->data.non_resident.data_size); 1086 ni->initialized_size = sle64_to_cpu( 1087 a->data.non_resident.initialized_size); 1088 ni->allocated_size = sle64_to_cpu( 1089 a->data.non_resident.allocated_size); 1090 } else { /* Resident attribute. */ 1091 vi->i_size = ni->initialized_size = le32_to_cpu( 1092 a->data.resident.value_length); 1093 ni->allocated_size = le32_to_cpu(a->length) - 1094 le16_to_cpu( 1095 a->data.resident.value_offset); 1096 if (vi->i_size > ni->allocated_size) { 1097 ntfs_error(vi->i_sb, "Resident data attribute " 1098 "is corrupt (size exceeds " 1099 "allocation)."); 1100 goto unm_err_out; 1101 } 1102 } 1103 no_data_attr_special_case: 1104 /* We are done with the mft record, so we release it. */ 1105 ntfs_attr_put_search_ctx(ctx); 1106 unmap_mft_record(ni); 1107 m = NULL; 1108 ctx = NULL; 1109 /* Setup the operations for this inode. */ 1110 vi->i_op = &ntfs_file_inode_ops; 1111 vi->i_fop = &ntfs_file_ops; 1112 } 1113 if (NInoMstProtected(ni)) 1114 vi->i_mapping->a_ops = &ntfs_mst_aops; 1115 else 1116 vi->i_mapping->a_ops = &ntfs_aops; 1117 /* 1118 * The number of 512-byte blocks used on disk (for stat). This is in so 1119 * far inaccurate as it doesn't account for any named streams or other 1120 * special non-resident attributes, but that is how Windows works, too, 1121 * so we are at least consistent with Windows, if not entirely 1122 * consistent with the Linux Way. Doing it the Linux Way would cause a 1123 * significant slowdown as it would involve iterating over all 1124 * attributes in the mft record and adding the allocated/compressed 1125 * sizes of all non-resident attributes present to give us the Linux 1126 * correct size that should go into i_blocks (after division by 512). 1127 */ 1128 if (S_ISREG(vi->i_mode) && (NInoCompressed(ni) || NInoSparse(ni))) 1129 vi->i_blocks = ni->itype.compressed.size >> 9; 1130 else 1131 vi->i_blocks = ni->allocated_size >> 9; 1132 ntfs_debug("Done."); 1133 return 0; 1134 1135 unm_err_out: 1136 if (!err) 1137 err = -EIO; 1138 if (ctx) 1139 ntfs_attr_put_search_ctx(ctx); 1140 if (m) 1141 unmap_mft_record(ni); 1142 err_out: 1143 ntfs_error(vol->sb, "Failed with error code %i. Marking corrupt " 1144 "inode 0x%lx as bad. Run chkdsk.", err, vi->i_ino); 1145 make_bad_inode(vi); 1146 if (err != -EOPNOTSUPP && err != -ENOMEM) 1147 NVolSetErrors(vol); 1148 return err; 1149 } 1150 1151 /** 1152 * ntfs_read_locked_attr_inode - read an attribute inode from its base inode 1153 * @base_vi: base inode 1154 * @vi: attribute inode to read 1155 * 1156 * ntfs_read_locked_attr_inode() is called from ntfs_attr_iget() to read the 1157 * attribute inode described by @vi into memory from the base mft record 1158 * described by @base_ni. 1159 * 1160 * ntfs_read_locked_attr_inode() maps, pins and locks the base inode for 1161 * reading and looks up the attribute described by @vi before setting up the 1162 * necessary fields in @vi as well as initializing the ntfs inode. 1163 * 1164 * Q: What locks are held when the function is called? 1165 * A: i_state has I_LOCK set, hence the inode is locked, also 1166 * i_count is set to 1, so it is not going to go away 1167 * 1168 * Return 0 on success and -errno on error. In the error case, the inode will 1169 * have had make_bad_inode() executed on it. 1170 * 1171 * Note this cannot be called for AT_INDEX_ALLOCATION. 1172 */ 1173 static int ntfs_read_locked_attr_inode(struct inode *base_vi, struct inode *vi) 1174 { 1175 ntfs_volume *vol = NTFS_SB(vi->i_sb); 1176 ntfs_inode *ni, *base_ni; 1177 MFT_RECORD *m; 1178 ATTR_RECORD *a; 1179 ntfs_attr_search_ctx *ctx; 1180 int err = 0; 1181 1182 ntfs_debug("Entering for i_ino 0x%lx.", vi->i_ino); 1183 1184 ntfs_init_big_inode(vi); 1185 1186 ni = NTFS_I(vi); 1187 base_ni = NTFS_I(base_vi); 1188 1189 /* Just mirror the values from the base inode. */ 1190 vi->i_blksize = base_vi->i_blksize; 1191 vi->i_version = base_vi->i_version; 1192 vi->i_uid = base_vi->i_uid; 1193 vi->i_gid = base_vi->i_gid; 1194 vi->i_nlink = base_vi->i_nlink; 1195 vi->i_mtime = base_vi->i_mtime; 1196 vi->i_ctime = base_vi->i_ctime; 1197 vi->i_atime = base_vi->i_atime; 1198 vi->i_generation = ni->seq_no = base_ni->seq_no; 1199 1200 /* Set inode type to zero but preserve permissions. */ 1201 vi->i_mode = base_vi->i_mode & ~S_IFMT; 1202 1203 m = map_mft_record(base_ni); 1204 if (IS_ERR(m)) { 1205 err = PTR_ERR(m); 1206 goto err_out; 1207 } 1208 ctx = ntfs_attr_get_search_ctx(base_ni, m); 1209 if (!ctx) { 1210 err = -ENOMEM; 1211 goto unm_err_out; 1212 } 1213 /* Find the attribute. */ 1214 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len, 1215 CASE_SENSITIVE, 0, NULL, 0, ctx); 1216 if (unlikely(err)) 1217 goto unm_err_out; 1218 a = ctx->attr; 1219 if (a->flags & (ATTR_COMPRESSION_MASK | ATTR_IS_SPARSE)) { 1220 if (a->flags & ATTR_COMPRESSION_MASK) { 1221 NInoSetCompressed(ni); 1222 if ((ni->type != AT_DATA) || (ni->type == AT_DATA && 1223 ni->name_len)) { 1224 ntfs_error(vi->i_sb, "Found compressed " 1225 "non-data or named data " 1226 "attribute. Please report " 1227 "you saw this message to " 1228 "linux-ntfs-dev@lists." 1229 "sourceforge.net"); 1230 goto unm_err_out; 1231 } 1232 if (vol->cluster_size > 4096) { 1233 ntfs_error(vi->i_sb, "Found compressed " 1234 "attribute but compression is " 1235 "disabled due to cluster size " 1236 "(%i) > 4kiB.", 1237 vol->cluster_size); 1238 goto unm_err_out; 1239 } 1240 if ((a->flags & ATTR_COMPRESSION_MASK) != 1241 ATTR_IS_COMPRESSED) { 1242 ntfs_error(vi->i_sb, "Found unknown " 1243 "compression method."); 1244 goto unm_err_out; 1245 } 1246 } 1247 /* 1248 * The compressed/sparse flag set in an index root just means 1249 * to compress all files. 1250 */ 1251 if (NInoMstProtected(ni) && ni->type != AT_INDEX_ROOT) { 1252 ntfs_error(vi->i_sb, "Found mst protected attribute " 1253 "but the attribute is %s. Please " 1254 "report you saw this message to " 1255 "linux-ntfs-dev@lists.sourceforge.net", 1256 NInoCompressed(ni) ? "compressed" : 1257 "sparse"); 1258 goto unm_err_out; 1259 } 1260 if (a->flags & ATTR_IS_SPARSE) 1261 NInoSetSparse(ni); 1262 } 1263 if (a->flags & ATTR_IS_ENCRYPTED) { 1264 if (NInoCompressed(ni)) { 1265 ntfs_error(vi->i_sb, "Found encrypted and compressed " 1266 "data."); 1267 goto unm_err_out; 1268 } 1269 /* 1270 * The encryption flag set in an index root just means to 1271 * encrypt all files. 1272 */ 1273 if (NInoMstProtected(ni) && ni->type != AT_INDEX_ROOT) { 1274 ntfs_error(vi->i_sb, "Found mst protected attribute " 1275 "but the attribute is encrypted. " 1276 "Please report you saw this message " 1277 "to linux-ntfs-dev@lists.sourceforge." 1278 "net"); 1279 goto unm_err_out; 1280 } 1281 if (ni->type != AT_DATA) { 1282 ntfs_error(vi->i_sb, "Found encrypted non-data " 1283 "attribute."); 1284 goto unm_err_out; 1285 } 1286 NInoSetEncrypted(ni); 1287 } 1288 if (!a->non_resident) { 1289 /* Ensure the attribute name is placed before the value. */ 1290 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >= 1291 le16_to_cpu(a->data.resident.value_offset)))) { 1292 ntfs_error(vol->sb, "Attribute name is placed after " 1293 "the attribute value."); 1294 goto unm_err_out; 1295 } 1296 if (NInoMstProtected(ni)) { 1297 ntfs_error(vi->i_sb, "Found mst protected attribute " 1298 "but the attribute is resident. " 1299 "Please report you saw this message to " 1300 "linux-ntfs-dev@lists.sourceforge.net"); 1301 goto unm_err_out; 1302 } 1303 vi->i_size = ni->initialized_size = le32_to_cpu( 1304 a->data.resident.value_length); 1305 ni->allocated_size = le32_to_cpu(a->length) - 1306 le16_to_cpu(a->data.resident.value_offset); 1307 if (vi->i_size > ni->allocated_size) { 1308 ntfs_error(vi->i_sb, "Resident attribute is corrupt " 1309 "(size exceeds allocation)."); 1310 goto unm_err_out; 1311 } 1312 } else { 1313 NInoSetNonResident(ni); 1314 /* 1315 * Ensure the attribute name is placed before the mapping pairs 1316 * array. 1317 */ 1318 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >= 1319 le16_to_cpu( 1320 a->data.non_resident.mapping_pairs_offset)))) { 1321 ntfs_error(vol->sb, "Attribute name is placed after " 1322 "the mapping pairs array."); 1323 goto unm_err_out; 1324 } 1325 if (NInoCompressed(ni) || NInoSparse(ni)) { 1326 if (a->data.non_resident.compression_unit != 4) { 1327 ntfs_error(vi->i_sb, "Found nonstandard " 1328 "compression unit (%u instead " 1329 "of 4). Cannot handle this.", 1330 a->data.non_resident. 1331 compression_unit); 1332 err = -EOPNOTSUPP; 1333 goto unm_err_out; 1334 } 1335 ni->itype.compressed.block_clusters = 1U << 1336 a->data.non_resident.compression_unit; 1337 ni->itype.compressed.block_size = 1U << ( 1338 a->data.non_resident.compression_unit + 1339 vol->cluster_size_bits); 1340 ni->itype.compressed.block_size_bits = ffs( 1341 ni->itype.compressed.block_size) - 1; 1342 ni->itype.compressed.size = sle64_to_cpu( 1343 a->data.non_resident.compressed_size); 1344 } 1345 if (a->data.non_resident.lowest_vcn) { 1346 ntfs_error(vi->i_sb, "First extent of attribute has " 1347 "non-zero lowest_vcn."); 1348 goto unm_err_out; 1349 } 1350 vi->i_size = sle64_to_cpu(a->data.non_resident.data_size); 1351 ni->initialized_size = sle64_to_cpu( 1352 a->data.non_resident.initialized_size); 1353 ni->allocated_size = sle64_to_cpu( 1354 a->data.non_resident.allocated_size); 1355 } 1356 /* Setup the operations for this attribute inode. */ 1357 vi->i_op = NULL; 1358 vi->i_fop = NULL; 1359 if (NInoMstProtected(ni)) 1360 vi->i_mapping->a_ops = &ntfs_mst_aops; 1361 else 1362 vi->i_mapping->a_ops = &ntfs_aops; 1363 if ((NInoCompressed(ni) || NInoSparse(ni)) && ni->type != AT_INDEX_ROOT) 1364 vi->i_blocks = ni->itype.compressed.size >> 9; 1365 else 1366 vi->i_blocks = ni->allocated_size >> 9; 1367 /* 1368 * Make sure the base inode does not go away and attach it to the 1369 * attribute inode. 1370 */ 1371 igrab(base_vi); 1372 ni->ext.base_ntfs_ino = base_ni; 1373 ni->nr_extents = -1; 1374 1375 ntfs_attr_put_search_ctx(ctx); 1376 unmap_mft_record(base_ni); 1377 1378 ntfs_debug("Done."); 1379 return 0; 1380 1381 unm_err_out: 1382 if (!err) 1383 err = -EIO; 1384 if (ctx) 1385 ntfs_attr_put_search_ctx(ctx); 1386 unmap_mft_record(base_ni); 1387 err_out: 1388 ntfs_error(vol->sb, "Failed with error code %i while reading attribute " 1389 "inode (mft_no 0x%lx, type 0x%x, name_len %i). " 1390 "Marking corrupt inode and base inode 0x%lx as bad. " 1391 "Run chkdsk.", err, vi->i_ino, ni->type, ni->name_len, 1392 base_vi->i_ino); 1393 make_bad_inode(vi); 1394 make_bad_inode(base_vi); 1395 if (err != -ENOMEM) 1396 NVolSetErrors(vol); 1397 return err; 1398 } 1399 1400 /** 1401 * ntfs_read_locked_index_inode - read an index inode from its base inode 1402 * @base_vi: base inode 1403 * @vi: index inode to read 1404 * 1405 * ntfs_read_locked_index_inode() is called from ntfs_index_iget() to read the 1406 * index inode described by @vi into memory from the base mft record described 1407 * by @base_ni. 1408 * 1409 * ntfs_read_locked_index_inode() maps, pins and locks the base inode for 1410 * reading and looks up the attributes relating to the index described by @vi 1411 * before setting up the necessary fields in @vi as well as initializing the 1412 * ntfs inode. 1413 * 1414 * Note, index inodes are essentially attribute inodes (NInoAttr() is true) 1415 * with the attribute type set to AT_INDEX_ALLOCATION. Apart from that, they 1416 * are setup like directory inodes since directories are a special case of 1417 * indices ao they need to be treated in much the same way. Most importantly, 1418 * for small indices the index allocation attribute might not actually exist. 1419 * However, the index root attribute always exists but this does not need to 1420 * have an inode associated with it and this is why we define a new inode type 1421 * index. Also, like for directories, we need to have an attribute inode for 1422 * the bitmap attribute corresponding to the index allocation attribute and we 1423 * can store this in the appropriate field of the inode, just like we do for 1424 * normal directory inodes. 1425 * 1426 * Q: What locks are held when the function is called? 1427 * A: i_state has I_LOCK set, hence the inode is locked, also 1428 * i_count is set to 1, so it is not going to go away 1429 * 1430 * Return 0 on success and -errno on error. In the error case, the inode will 1431 * have had make_bad_inode() executed on it. 1432 */ 1433 static int ntfs_read_locked_index_inode(struct inode *base_vi, struct inode *vi) 1434 { 1435 loff_t bvi_size; 1436 ntfs_volume *vol = NTFS_SB(vi->i_sb); 1437 ntfs_inode *ni, *base_ni, *bni; 1438 struct inode *bvi; 1439 MFT_RECORD *m; 1440 ATTR_RECORD *a; 1441 ntfs_attr_search_ctx *ctx; 1442 INDEX_ROOT *ir; 1443 u8 *ir_end, *index_end; 1444 int err = 0; 1445 1446 ntfs_debug("Entering for i_ino 0x%lx.", vi->i_ino); 1447 ntfs_init_big_inode(vi); 1448 ni = NTFS_I(vi); 1449 base_ni = NTFS_I(base_vi); 1450 /* Just mirror the values from the base inode. */ 1451 vi->i_blksize = base_vi->i_blksize; 1452 vi->i_version = base_vi->i_version; 1453 vi->i_uid = base_vi->i_uid; 1454 vi->i_gid = base_vi->i_gid; 1455 vi->i_nlink = base_vi->i_nlink; 1456 vi->i_mtime = base_vi->i_mtime; 1457 vi->i_ctime = base_vi->i_ctime; 1458 vi->i_atime = base_vi->i_atime; 1459 vi->i_generation = ni->seq_no = base_ni->seq_no; 1460 /* Set inode type to zero but preserve permissions. */ 1461 vi->i_mode = base_vi->i_mode & ~S_IFMT; 1462 /* Map the mft record for the base inode. */ 1463 m = map_mft_record(base_ni); 1464 if (IS_ERR(m)) { 1465 err = PTR_ERR(m); 1466 goto err_out; 1467 } 1468 ctx = ntfs_attr_get_search_ctx(base_ni, m); 1469 if (!ctx) { 1470 err = -ENOMEM; 1471 goto unm_err_out; 1472 } 1473 /* Find the index root attribute. */ 1474 err = ntfs_attr_lookup(AT_INDEX_ROOT, ni->name, ni->name_len, 1475 CASE_SENSITIVE, 0, NULL, 0, ctx); 1476 if (unlikely(err)) { 1477 if (err == -ENOENT) 1478 ntfs_error(vi->i_sb, "$INDEX_ROOT attribute is " 1479 "missing."); 1480 goto unm_err_out; 1481 } 1482 a = ctx->attr; 1483 /* Set up the state. */ 1484 if (unlikely(a->non_resident)) { 1485 ntfs_error(vol->sb, "$INDEX_ROOT attribute is not resident."); 1486 goto unm_err_out; 1487 } 1488 /* Ensure the attribute name is placed before the value. */ 1489 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >= 1490 le16_to_cpu(a->data.resident.value_offset)))) { 1491 ntfs_error(vol->sb, "$INDEX_ROOT attribute name is placed " 1492 "after the attribute value."); 1493 goto unm_err_out; 1494 } 1495 /* 1496 * Compressed/encrypted/sparse index root is not allowed, except for 1497 * directories of course but those are not dealt with here. 1498 */ 1499 if (a->flags & (ATTR_COMPRESSION_MASK | ATTR_IS_ENCRYPTED | 1500 ATTR_IS_SPARSE)) { 1501 ntfs_error(vi->i_sb, "Found compressed/encrypted/sparse index " 1502 "root attribute."); 1503 goto unm_err_out; 1504 } 1505 ir = (INDEX_ROOT*)((u8*)a + le16_to_cpu(a->data.resident.value_offset)); 1506 ir_end = (u8*)ir + le32_to_cpu(a->data.resident.value_length); 1507 if (ir_end > (u8*)ctx->mrec + vol->mft_record_size) { 1508 ntfs_error(vi->i_sb, "$INDEX_ROOT attribute is corrupt."); 1509 goto unm_err_out; 1510 } 1511 index_end = (u8*)&ir->index + le32_to_cpu(ir->index.index_length); 1512 if (index_end > ir_end) { 1513 ntfs_error(vi->i_sb, "Index is corrupt."); 1514 goto unm_err_out; 1515 } 1516 if (ir->type) { 1517 ntfs_error(vi->i_sb, "Index type is not 0 (type is 0x%x).", 1518 le32_to_cpu(ir->type)); 1519 goto unm_err_out; 1520 } 1521 ni->itype.index.collation_rule = ir->collation_rule; 1522 ntfs_debug("Index collation rule is 0x%x.", 1523 le32_to_cpu(ir->collation_rule)); 1524 ni->itype.index.block_size = le32_to_cpu(ir->index_block_size); 1525 if (ni->itype.index.block_size & (ni->itype.index.block_size - 1)) { 1526 ntfs_error(vi->i_sb, "Index block size (%u) is not a power of " 1527 "two.", ni->itype.index.block_size); 1528 goto unm_err_out; 1529 } 1530 if (ni->itype.index.block_size > PAGE_CACHE_SIZE) { 1531 ntfs_error(vi->i_sb, "Index block size (%u) > PAGE_CACHE_SIZE " 1532 "(%ld) is not supported. Sorry.", 1533 ni->itype.index.block_size, PAGE_CACHE_SIZE); 1534 err = -EOPNOTSUPP; 1535 goto unm_err_out; 1536 } 1537 if (ni->itype.index.block_size < NTFS_BLOCK_SIZE) { 1538 ntfs_error(vi->i_sb, "Index block size (%u) < NTFS_BLOCK_SIZE " 1539 "(%i) is not supported. Sorry.", 1540 ni->itype.index.block_size, NTFS_BLOCK_SIZE); 1541 err = -EOPNOTSUPP; 1542 goto unm_err_out; 1543 } 1544 ni->itype.index.block_size_bits = ffs(ni->itype.index.block_size) - 1; 1545 /* Determine the size of a vcn in the index. */ 1546 if (vol->cluster_size <= ni->itype.index.block_size) { 1547 ni->itype.index.vcn_size = vol->cluster_size; 1548 ni->itype.index.vcn_size_bits = vol->cluster_size_bits; 1549 } else { 1550 ni->itype.index.vcn_size = vol->sector_size; 1551 ni->itype.index.vcn_size_bits = vol->sector_size_bits; 1552 } 1553 /* Check for presence of index allocation attribute. */ 1554 if (!(ir->index.flags & LARGE_INDEX)) { 1555 /* No index allocation. */ 1556 vi->i_size = ni->initialized_size = ni->allocated_size = 0; 1557 /* We are done with the mft record, so we release it. */ 1558 ntfs_attr_put_search_ctx(ctx); 1559 unmap_mft_record(base_ni); 1560 m = NULL; 1561 ctx = NULL; 1562 goto skip_large_index_stuff; 1563 } /* LARGE_INDEX: Index allocation present. Setup state. */ 1564 NInoSetIndexAllocPresent(ni); 1565 /* Find index allocation attribute. */ 1566 ntfs_attr_reinit_search_ctx(ctx); 1567 err = ntfs_attr_lookup(AT_INDEX_ALLOCATION, ni->name, ni->name_len, 1568 CASE_SENSITIVE, 0, NULL, 0, ctx); 1569 if (unlikely(err)) { 1570 if (err == -ENOENT) 1571 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is " 1572 "not present but $INDEX_ROOT " 1573 "indicated it is."); 1574 else 1575 ntfs_error(vi->i_sb, "Failed to lookup " 1576 "$INDEX_ALLOCATION attribute."); 1577 goto unm_err_out; 1578 } 1579 if (!a->non_resident) { 1580 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is " 1581 "resident."); 1582 goto unm_err_out; 1583 } 1584 /* 1585 * Ensure the attribute name is placed before the mapping pairs array. 1586 */ 1587 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >= 1588 le16_to_cpu( 1589 a->data.non_resident.mapping_pairs_offset)))) { 1590 ntfs_error(vol->sb, "$INDEX_ALLOCATION attribute name is " 1591 "placed after the mapping pairs array."); 1592 goto unm_err_out; 1593 } 1594 if (a->flags & ATTR_IS_ENCRYPTED) { 1595 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is " 1596 "encrypted."); 1597 goto unm_err_out; 1598 } 1599 if (a->flags & ATTR_IS_SPARSE) { 1600 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is sparse."); 1601 goto unm_err_out; 1602 } 1603 if (a->flags & ATTR_COMPRESSION_MASK) { 1604 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is " 1605 "compressed."); 1606 goto unm_err_out; 1607 } 1608 if (a->data.non_resident.lowest_vcn) { 1609 ntfs_error(vi->i_sb, "First extent of $INDEX_ALLOCATION " 1610 "attribute has non zero lowest_vcn."); 1611 goto unm_err_out; 1612 } 1613 vi->i_size = sle64_to_cpu(a->data.non_resident.data_size); 1614 ni->initialized_size = sle64_to_cpu( 1615 a->data.non_resident.initialized_size); 1616 ni->allocated_size = sle64_to_cpu(a->data.non_resident.allocated_size); 1617 /* 1618 * We are done with the mft record, so we release it. Otherwise 1619 * we would deadlock in ntfs_attr_iget(). 1620 */ 1621 ntfs_attr_put_search_ctx(ctx); 1622 unmap_mft_record(base_ni); 1623 m = NULL; 1624 ctx = NULL; 1625 /* Get the index bitmap attribute inode. */ 1626 bvi = ntfs_attr_iget(base_vi, AT_BITMAP, ni->name, ni->name_len); 1627 if (IS_ERR(bvi)) { 1628 ntfs_error(vi->i_sb, "Failed to get bitmap attribute."); 1629 err = PTR_ERR(bvi); 1630 goto unm_err_out; 1631 } 1632 bni = NTFS_I(bvi); 1633 if (NInoCompressed(bni) || NInoEncrypted(bni) || 1634 NInoSparse(bni)) { 1635 ntfs_error(vi->i_sb, "$BITMAP attribute is compressed and/or " 1636 "encrypted and/or sparse."); 1637 goto iput_unm_err_out; 1638 } 1639 /* Consistency check bitmap size vs. index allocation size. */ 1640 bvi_size = i_size_read(bvi); 1641 if ((bvi_size << 3) < (vi->i_size >> ni->itype.index.block_size_bits)) { 1642 ntfs_error(vi->i_sb, "Index bitmap too small (0x%llx) for " 1643 "index allocation (0x%llx).", bvi_size << 3, 1644 vi->i_size); 1645 goto iput_unm_err_out; 1646 } 1647 ni->itype.index.bmp_ino = bvi; 1648 skip_large_index_stuff: 1649 /* Setup the operations for this index inode. */ 1650 vi->i_op = NULL; 1651 vi->i_fop = NULL; 1652 vi->i_mapping->a_ops = &ntfs_mst_aops; 1653 vi->i_blocks = ni->allocated_size >> 9; 1654 /* 1655 * Make sure the base inode doesn't go away and attach it to the 1656 * index inode. 1657 */ 1658 igrab(base_vi); 1659 ni->ext.base_ntfs_ino = base_ni; 1660 ni->nr_extents = -1; 1661 1662 ntfs_debug("Done."); 1663 return 0; 1664 1665 iput_unm_err_out: 1666 iput(bvi); 1667 unm_err_out: 1668 if (!err) 1669 err = -EIO; 1670 if (ctx) 1671 ntfs_attr_put_search_ctx(ctx); 1672 if (m) 1673 unmap_mft_record(base_ni); 1674 err_out: 1675 ntfs_error(vi->i_sb, "Failed with error code %i while reading index " 1676 "inode (mft_no 0x%lx, name_len %i.", err, vi->i_ino, 1677 ni->name_len); 1678 make_bad_inode(vi); 1679 if (err != -EOPNOTSUPP && err != -ENOMEM) 1680 NVolSetErrors(vol); 1681 return err; 1682 } 1683 1684 /** 1685 * ntfs_read_inode_mount - special read_inode for mount time use only 1686 * @vi: inode to read 1687 * 1688 * Read inode FILE_MFT at mount time, only called with super_block lock 1689 * held from within the read_super() code path. 1690 * 1691 * This function exists because when it is called the page cache for $MFT/$DATA 1692 * is not initialized and hence we cannot get at the contents of mft records 1693 * by calling map_mft_record*(). 1694 * 1695 * Further it needs to cope with the circular references problem, i.e. cannot 1696 * load any attributes other than $ATTRIBUTE_LIST until $DATA is loaded, because 1697 * we do not know where the other extent mft records are yet and again, because 1698 * we cannot call map_mft_record*() yet. Obviously this applies only when an 1699 * attribute list is actually present in $MFT inode. 1700 * 1701 * We solve these problems by starting with the $DATA attribute before anything 1702 * else and iterating using ntfs_attr_lookup($DATA) over all extents. As each 1703 * extent is found, we ntfs_mapping_pairs_decompress() including the implied 1704 * ntfs_runlists_merge(). Each step of the iteration necessarily provides 1705 * sufficient information for the next step to complete. 1706 * 1707 * This should work but there are two possible pit falls (see inline comments 1708 * below), but only time will tell if they are real pits or just smoke... 1709 */ 1710 int ntfs_read_inode_mount(struct inode *vi) 1711 { 1712 VCN next_vcn, last_vcn, highest_vcn; 1713 s64 block; 1714 struct super_block *sb = vi->i_sb; 1715 ntfs_volume *vol = NTFS_SB(sb); 1716 struct buffer_head *bh; 1717 ntfs_inode *ni; 1718 MFT_RECORD *m = NULL; 1719 ATTR_RECORD *a; 1720 ntfs_attr_search_ctx *ctx; 1721 unsigned int i, nr_blocks; 1722 int err; 1723 1724 ntfs_debug("Entering."); 1725 1726 /* Initialize the ntfs specific part of @vi. */ 1727 ntfs_init_big_inode(vi); 1728 1729 ni = NTFS_I(vi); 1730 1731 /* Setup the data attribute. It is special as it is mst protected. */ 1732 NInoSetNonResident(ni); 1733 NInoSetMstProtected(ni); 1734 NInoSetSparseDisabled(ni); 1735 ni->type = AT_DATA; 1736 ni->name = NULL; 1737 ni->name_len = 0; 1738 /* 1739 * This sets up our little cheat allowing us to reuse the async read io 1740 * completion handler for directories. 1741 */ 1742 ni->itype.index.block_size = vol->mft_record_size; 1743 ni->itype.index.block_size_bits = vol->mft_record_size_bits; 1744 1745 /* Very important! Needed to be able to call map_mft_record*(). */ 1746 vol->mft_ino = vi; 1747 1748 /* Allocate enough memory to read the first mft record. */ 1749 if (vol->mft_record_size > 64 * 1024) { 1750 ntfs_error(sb, "Unsupported mft record size %i (max 64kiB).", 1751 vol->mft_record_size); 1752 goto err_out; 1753 } 1754 i = vol->mft_record_size; 1755 if (i < sb->s_blocksize) 1756 i = sb->s_blocksize; 1757 m = (MFT_RECORD*)ntfs_malloc_nofs(i); 1758 if (!m) { 1759 ntfs_error(sb, "Failed to allocate buffer for $MFT record 0."); 1760 goto err_out; 1761 } 1762 1763 /* Determine the first block of the $MFT/$DATA attribute. */ 1764 block = vol->mft_lcn << vol->cluster_size_bits >> 1765 sb->s_blocksize_bits; 1766 nr_blocks = vol->mft_record_size >> sb->s_blocksize_bits; 1767 if (!nr_blocks) 1768 nr_blocks = 1; 1769 1770 /* Load $MFT/$DATA's first mft record. */ 1771 for (i = 0; i < nr_blocks; i++) { 1772 bh = sb_bread(sb, block++); 1773 if (!bh) { 1774 ntfs_error(sb, "Device read failed."); 1775 goto err_out; 1776 } 1777 memcpy((char*)m + (i << sb->s_blocksize_bits), bh->b_data, 1778 sb->s_blocksize); 1779 brelse(bh); 1780 } 1781 1782 /* Apply the mst fixups. */ 1783 if (post_read_mst_fixup((NTFS_RECORD*)m, vol->mft_record_size)) { 1784 /* FIXME: Try to use the $MFTMirr now. */ 1785 ntfs_error(sb, "MST fixup failed. $MFT is corrupt."); 1786 goto err_out; 1787 } 1788 1789 /* Need this to sanity check attribute list references to $MFT. */ 1790 vi->i_generation = ni->seq_no = le16_to_cpu(m->sequence_number); 1791 1792 /* Provides readpage() and sync_page() for map_mft_record(). */ 1793 vi->i_mapping->a_ops = &ntfs_mst_aops; 1794 1795 ctx = ntfs_attr_get_search_ctx(ni, m); 1796 if (!ctx) { 1797 err = -ENOMEM; 1798 goto err_out; 1799 } 1800 1801 /* Find the attribute list attribute if present. */ 1802 err = ntfs_attr_lookup(AT_ATTRIBUTE_LIST, NULL, 0, 0, 0, NULL, 0, ctx); 1803 if (err) { 1804 if (unlikely(err != -ENOENT)) { 1805 ntfs_error(sb, "Failed to lookup attribute list " 1806 "attribute. You should run chkdsk."); 1807 goto put_err_out; 1808 } 1809 } else /* if (!err) */ { 1810 ATTR_LIST_ENTRY *al_entry, *next_al_entry; 1811 u8 *al_end; 1812 1813 ntfs_debug("Attribute list attribute found in $MFT."); 1814 NInoSetAttrList(ni); 1815 a = ctx->attr; 1816 if (a->flags & ATTR_IS_ENCRYPTED || 1817 a->flags & ATTR_COMPRESSION_MASK || 1818 a->flags & ATTR_IS_SPARSE) { 1819 ntfs_error(sb, "Attribute list attribute is " 1820 "compressed/encrypted/sparse. Not " 1821 "allowed. $MFT is corrupt. You should " 1822 "run chkdsk."); 1823 goto put_err_out; 1824 } 1825 /* Now allocate memory for the attribute list. */ 1826 ni->attr_list_size = (u32)ntfs_attr_size(a); 1827 ni->attr_list = ntfs_malloc_nofs(ni->attr_list_size); 1828 if (!ni->attr_list) { 1829 ntfs_error(sb, "Not enough memory to allocate buffer " 1830 "for attribute list."); 1831 goto put_err_out; 1832 } 1833 if (a->non_resident) { 1834 NInoSetAttrListNonResident(ni); 1835 if (a->data.non_resident.lowest_vcn) { 1836 ntfs_error(sb, "Attribute list has non zero " 1837 "lowest_vcn. $MFT is corrupt. " 1838 "You should run chkdsk."); 1839 goto put_err_out; 1840 } 1841 /* Setup the runlist. */ 1842 ni->attr_list_rl.rl = ntfs_mapping_pairs_decompress(vol, 1843 a, NULL); 1844 if (IS_ERR(ni->attr_list_rl.rl)) { 1845 err = PTR_ERR(ni->attr_list_rl.rl); 1846 ni->attr_list_rl.rl = NULL; 1847 ntfs_error(sb, "Mapping pairs decompression " 1848 "failed with error code %i.", 1849 -err); 1850 goto put_err_out; 1851 } 1852 /* Now load the attribute list. */ 1853 if ((err = load_attribute_list(vol, &ni->attr_list_rl, 1854 ni->attr_list, ni->attr_list_size, 1855 sle64_to_cpu(a->data. 1856 non_resident.initialized_size)))) { 1857 ntfs_error(sb, "Failed to load attribute list " 1858 "attribute with error code %i.", 1859 -err); 1860 goto put_err_out; 1861 } 1862 } else /* if (!ctx.attr->non_resident) */ { 1863 if ((u8*)a + le16_to_cpu( 1864 a->data.resident.value_offset) + 1865 le32_to_cpu( 1866 a->data.resident.value_length) > 1867 (u8*)ctx->mrec + vol->mft_record_size) { 1868 ntfs_error(sb, "Corrupt attribute list " 1869 "attribute."); 1870 goto put_err_out; 1871 } 1872 /* Now copy the attribute list. */ 1873 memcpy(ni->attr_list, (u8*)a + le16_to_cpu( 1874 a->data.resident.value_offset), 1875 le32_to_cpu( 1876 a->data.resident.value_length)); 1877 } 1878 /* The attribute list is now setup in memory. */ 1879 /* 1880 * FIXME: I don't know if this case is actually possible. 1881 * According to logic it is not possible but I have seen too 1882 * many weird things in MS software to rely on logic... Thus we 1883 * perform a manual search and make sure the first $MFT/$DATA 1884 * extent is in the base inode. If it is not we abort with an 1885 * error and if we ever see a report of this error we will need 1886 * to do some magic in order to have the necessary mft record 1887 * loaded and in the right place in the page cache. But 1888 * hopefully logic will prevail and this never happens... 1889 */ 1890 al_entry = (ATTR_LIST_ENTRY*)ni->attr_list; 1891 al_end = (u8*)al_entry + ni->attr_list_size; 1892 for (;; al_entry = next_al_entry) { 1893 /* Out of bounds check. */ 1894 if ((u8*)al_entry < ni->attr_list || 1895 (u8*)al_entry > al_end) 1896 goto em_put_err_out; 1897 /* Catch the end of the attribute list. */ 1898 if ((u8*)al_entry == al_end) 1899 goto em_put_err_out; 1900 if (!al_entry->length) 1901 goto em_put_err_out; 1902 if ((u8*)al_entry + 6 > al_end || (u8*)al_entry + 1903 le16_to_cpu(al_entry->length) > al_end) 1904 goto em_put_err_out; 1905 next_al_entry = (ATTR_LIST_ENTRY*)((u8*)al_entry + 1906 le16_to_cpu(al_entry->length)); 1907 if (le32_to_cpu(al_entry->type) > 1908 const_le32_to_cpu(AT_DATA)) 1909 goto em_put_err_out; 1910 if (AT_DATA != al_entry->type) 1911 continue; 1912 /* We want an unnamed attribute. */ 1913 if (al_entry->name_length) 1914 goto em_put_err_out; 1915 /* Want the first entry, i.e. lowest_vcn == 0. */ 1916 if (al_entry->lowest_vcn) 1917 goto em_put_err_out; 1918 /* First entry has to be in the base mft record. */ 1919 if (MREF_LE(al_entry->mft_reference) != vi->i_ino) { 1920 /* MFT references do not match, logic fails. */ 1921 ntfs_error(sb, "BUG: The first $DATA extent " 1922 "of $MFT is not in the base " 1923 "mft record. Please report " 1924 "you saw this message to " 1925 "linux-ntfs-dev@lists." 1926 "sourceforge.net"); 1927 goto put_err_out; 1928 } else { 1929 /* Sequence numbers must match. */ 1930 if (MSEQNO_LE(al_entry->mft_reference) != 1931 ni->seq_no) 1932 goto em_put_err_out; 1933 /* Got it. All is ok. We can stop now. */ 1934 break; 1935 } 1936 } 1937 } 1938 1939 ntfs_attr_reinit_search_ctx(ctx); 1940 1941 /* Now load all attribute extents. */ 1942 a = NULL; 1943 next_vcn = last_vcn = highest_vcn = 0; 1944 while (!(err = ntfs_attr_lookup(AT_DATA, NULL, 0, 0, next_vcn, NULL, 0, 1945 ctx))) { 1946 runlist_element *nrl; 1947 1948 /* Cache the current attribute. */ 1949 a = ctx->attr; 1950 /* $MFT must be non-resident. */ 1951 if (!a->non_resident) { 1952 ntfs_error(sb, "$MFT must be non-resident but a " 1953 "resident extent was found. $MFT is " 1954 "corrupt. Run chkdsk."); 1955 goto put_err_out; 1956 } 1957 /* $MFT must be uncompressed and unencrypted. */ 1958 if (a->flags & ATTR_COMPRESSION_MASK || 1959 a->flags & ATTR_IS_ENCRYPTED || 1960 a->flags & ATTR_IS_SPARSE) { 1961 ntfs_error(sb, "$MFT must be uncompressed, " 1962 "non-sparse, and unencrypted but a " 1963 "compressed/sparse/encrypted extent " 1964 "was found. $MFT is corrupt. Run " 1965 "chkdsk."); 1966 goto put_err_out; 1967 } 1968 /* 1969 * Decompress the mapping pairs array of this extent and merge 1970 * the result into the existing runlist. No need for locking 1971 * as we have exclusive access to the inode at this time and we 1972 * are a mount in progress task, too. 1973 */ 1974 nrl = ntfs_mapping_pairs_decompress(vol, a, ni->runlist.rl); 1975 if (IS_ERR(nrl)) { 1976 ntfs_error(sb, "ntfs_mapping_pairs_decompress() " 1977 "failed with error code %ld. $MFT is " 1978 "corrupt.", PTR_ERR(nrl)); 1979 goto put_err_out; 1980 } 1981 ni->runlist.rl = nrl; 1982 1983 /* Are we in the first extent? */ 1984 if (!next_vcn) { 1985 if (a->data.non_resident.lowest_vcn) { 1986 ntfs_error(sb, "First extent of $DATA " 1987 "attribute has non zero " 1988 "lowest_vcn. $MFT is corrupt. " 1989 "You should run chkdsk."); 1990 goto put_err_out; 1991 } 1992 /* Get the last vcn in the $DATA attribute. */ 1993 last_vcn = sle64_to_cpu( 1994 a->data.non_resident.allocated_size) 1995 >> vol->cluster_size_bits; 1996 /* Fill in the inode size. */ 1997 vi->i_size = sle64_to_cpu( 1998 a->data.non_resident.data_size); 1999 ni->initialized_size = sle64_to_cpu( 2000 a->data.non_resident.initialized_size); 2001 ni->allocated_size = sle64_to_cpu( 2002 a->data.non_resident.allocated_size); 2003 /* 2004 * Verify the number of mft records does not exceed 2005 * 2^32 - 1. 2006 */ 2007 if ((vi->i_size >> vol->mft_record_size_bits) >= 2008 (1ULL << 32)) { 2009 ntfs_error(sb, "$MFT is too big! Aborting."); 2010 goto put_err_out; 2011 } 2012 /* 2013 * We have got the first extent of the runlist for 2014 * $MFT which means it is now relatively safe to call 2015 * the normal ntfs_read_inode() function. 2016 * Complete reading the inode, this will actually 2017 * re-read the mft record for $MFT, this time entering 2018 * it into the page cache with which we complete the 2019 * kick start of the volume. It should be safe to do 2020 * this now as the first extent of $MFT/$DATA is 2021 * already known and we would hope that we don't need 2022 * further extents in order to find the other 2023 * attributes belonging to $MFT. Only time will tell if 2024 * this is really the case. If not we will have to play 2025 * magic at this point, possibly duplicating a lot of 2026 * ntfs_read_inode() at this point. We will need to 2027 * ensure we do enough of its work to be able to call 2028 * ntfs_read_inode() on extents of $MFT/$DATA. But lets 2029 * hope this never happens... 2030 */ 2031 ntfs_read_locked_inode(vi); 2032 if (is_bad_inode(vi)) { 2033 ntfs_error(sb, "ntfs_read_inode() of $MFT " 2034 "failed. BUG or corrupt $MFT. " 2035 "Run chkdsk and if no errors " 2036 "are found, please report you " 2037 "saw this message to " 2038 "linux-ntfs-dev@lists." 2039 "sourceforge.net"); 2040 ntfs_attr_put_search_ctx(ctx); 2041 /* Revert to the safe super operations. */ 2042 ntfs_free(m); 2043 return -1; 2044 } 2045 /* 2046 * Re-initialize some specifics about $MFT's inode as 2047 * ntfs_read_inode() will have set up the default ones. 2048 */ 2049 /* Set uid and gid to root. */ 2050 vi->i_uid = vi->i_gid = 0; 2051 /* Regular file. No access for anyone. */ 2052 vi->i_mode = S_IFREG; 2053 /* No VFS initiated operations allowed for $MFT. */ 2054 vi->i_op = &ntfs_empty_inode_ops; 2055 vi->i_fop = &ntfs_empty_file_ops; 2056 } 2057 2058 /* Get the lowest vcn for the next extent. */ 2059 highest_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn); 2060 next_vcn = highest_vcn + 1; 2061 2062 /* Only one extent or error, which we catch below. */ 2063 if (next_vcn <= 0) 2064 break; 2065 2066 /* Avoid endless loops due to corruption. */ 2067 if (next_vcn < sle64_to_cpu( 2068 a->data.non_resident.lowest_vcn)) { 2069 ntfs_error(sb, "$MFT has corrupt attribute list " 2070 "attribute. Run chkdsk."); 2071 goto put_err_out; 2072 } 2073 } 2074 if (err != -ENOENT) { 2075 ntfs_error(sb, "Failed to lookup $MFT/$DATA attribute extent. " 2076 "$MFT is corrupt. Run chkdsk."); 2077 goto put_err_out; 2078 } 2079 if (!a) { 2080 ntfs_error(sb, "$MFT/$DATA attribute not found. $MFT is " 2081 "corrupt. Run chkdsk."); 2082 goto put_err_out; 2083 } 2084 if (highest_vcn && highest_vcn != last_vcn - 1) { 2085 ntfs_error(sb, "Failed to load the complete runlist for " 2086 "$MFT/$DATA. Driver bug or corrupt $MFT. " 2087 "Run chkdsk."); 2088 ntfs_debug("highest_vcn = 0x%llx, last_vcn - 1 = 0x%llx", 2089 (unsigned long long)highest_vcn, 2090 (unsigned long long)last_vcn - 1); 2091 goto put_err_out; 2092 } 2093 ntfs_attr_put_search_ctx(ctx); 2094 ntfs_debug("Done."); 2095 ntfs_free(m); 2096 return 0; 2097 2098 em_put_err_out: 2099 ntfs_error(sb, "Couldn't find first extent of $DATA attribute in " 2100 "attribute list. $MFT is corrupt. Run chkdsk."); 2101 put_err_out: 2102 ntfs_attr_put_search_ctx(ctx); 2103 err_out: 2104 ntfs_error(sb, "Failed. Marking inode as bad."); 2105 make_bad_inode(vi); 2106 ntfs_free(m); 2107 return -1; 2108 } 2109 2110 /** 2111 * ntfs_put_inode - handler for when the inode reference count is decremented 2112 * @vi: vfs inode 2113 * 2114 * The VFS calls ntfs_put_inode() every time the inode reference count (i_count) 2115 * is about to be decremented (but before the decrement itself. 2116 * 2117 * If the inode @vi is a directory with two references, one of which is being 2118 * dropped, we need to put the attribute inode for the directory index bitmap, 2119 * if it is present, otherwise the directory inode would remain pinned for 2120 * ever. 2121 */ 2122 void ntfs_put_inode(struct inode *vi) 2123 { 2124 if (S_ISDIR(vi->i_mode) && atomic_read(&vi->i_count) == 2) { 2125 ntfs_inode *ni = NTFS_I(vi); 2126 if (NInoIndexAllocPresent(ni)) { 2127 struct inode *bvi = NULL; 2128 down(&vi->i_sem); 2129 if (atomic_read(&vi->i_count) == 2) { 2130 bvi = ni->itype.index.bmp_ino; 2131 if (bvi) 2132 ni->itype.index.bmp_ino = NULL; 2133 } 2134 up(&vi->i_sem); 2135 if (bvi) 2136 iput(bvi); 2137 } 2138 } 2139 } 2140 2141 static void __ntfs_clear_inode(ntfs_inode *ni) 2142 { 2143 /* Free all alocated memory. */ 2144 down_write(&ni->runlist.lock); 2145 if (ni->runlist.rl) { 2146 ntfs_free(ni->runlist.rl); 2147 ni->runlist.rl = NULL; 2148 } 2149 up_write(&ni->runlist.lock); 2150 2151 if (ni->attr_list) { 2152 ntfs_free(ni->attr_list); 2153 ni->attr_list = NULL; 2154 } 2155 2156 down_write(&ni->attr_list_rl.lock); 2157 if (ni->attr_list_rl.rl) { 2158 ntfs_free(ni->attr_list_rl.rl); 2159 ni->attr_list_rl.rl = NULL; 2160 } 2161 up_write(&ni->attr_list_rl.lock); 2162 2163 if (ni->name_len && ni->name != I30) { 2164 /* Catch bugs... */ 2165 BUG_ON(!ni->name); 2166 kfree(ni->name); 2167 } 2168 } 2169 2170 void ntfs_clear_extent_inode(ntfs_inode *ni) 2171 { 2172 ntfs_debug("Entering for inode 0x%lx.", ni->mft_no); 2173 2174 BUG_ON(NInoAttr(ni)); 2175 BUG_ON(ni->nr_extents != -1); 2176 2177 #ifdef NTFS_RW 2178 if (NInoDirty(ni)) { 2179 if (!is_bad_inode(VFS_I(ni->ext.base_ntfs_ino))) 2180 ntfs_error(ni->vol->sb, "Clearing dirty extent inode! " 2181 "Losing data! This is a BUG!!!"); 2182 // FIXME: Do something!!! 2183 } 2184 #endif /* NTFS_RW */ 2185 2186 __ntfs_clear_inode(ni); 2187 2188 /* Bye, bye... */ 2189 ntfs_destroy_extent_inode(ni); 2190 } 2191 2192 /** 2193 * ntfs_clear_big_inode - clean up the ntfs specific part of an inode 2194 * @vi: vfs inode pending annihilation 2195 * 2196 * When the VFS is going to remove an inode from memory, ntfs_clear_big_inode() 2197 * is called, which deallocates all memory belonging to the NTFS specific part 2198 * of the inode and returns. 2199 * 2200 * If the MFT record is dirty, we commit it before doing anything else. 2201 */ 2202 void ntfs_clear_big_inode(struct inode *vi) 2203 { 2204 ntfs_inode *ni = NTFS_I(vi); 2205 2206 /* 2207 * If the inode @vi is an index inode we need to put the attribute 2208 * inode for the index bitmap, if it is present, otherwise the index 2209 * inode would disappear and the attribute inode for the index bitmap 2210 * would no longer be referenced from anywhere and thus it would remain 2211 * pinned for ever. 2212 */ 2213 if (NInoAttr(ni) && (ni->type == AT_INDEX_ALLOCATION) && 2214 NInoIndexAllocPresent(ni) && ni->itype.index.bmp_ino) { 2215 iput(ni->itype.index.bmp_ino); 2216 ni->itype.index.bmp_ino = NULL; 2217 } 2218 #ifdef NTFS_RW 2219 if (NInoDirty(ni)) { 2220 BOOL was_bad = (is_bad_inode(vi)); 2221 2222 /* Committing the inode also commits all extent inodes. */ 2223 ntfs_commit_inode(vi); 2224 2225 if (!was_bad && (is_bad_inode(vi) || NInoDirty(ni))) { 2226 ntfs_error(vi->i_sb, "Failed to commit dirty inode " 2227 "0x%lx. Losing data!", vi->i_ino); 2228 // FIXME: Do something!!! 2229 } 2230 } 2231 #endif /* NTFS_RW */ 2232 2233 /* No need to lock at this stage as no one else has a reference. */ 2234 if (ni->nr_extents > 0) { 2235 int i; 2236 2237 for (i = 0; i < ni->nr_extents; i++) 2238 ntfs_clear_extent_inode(ni->ext.extent_ntfs_inos[i]); 2239 kfree(ni->ext.extent_ntfs_inos); 2240 } 2241 2242 __ntfs_clear_inode(ni); 2243 2244 if (NInoAttr(ni)) { 2245 /* Release the base inode if we are holding it. */ 2246 if (ni->nr_extents == -1) { 2247 iput(VFS_I(ni->ext.base_ntfs_ino)); 2248 ni->nr_extents = 0; 2249 ni->ext.base_ntfs_ino = NULL; 2250 } 2251 } 2252 return; 2253 } 2254 2255 /** 2256 * ntfs_show_options - show mount options in /proc/mounts 2257 * @sf: seq_file in which to write our mount options 2258 * @mnt: vfs mount whose mount options to display 2259 * 2260 * Called by the VFS once for each mounted ntfs volume when someone reads 2261 * /proc/mounts in order to display the NTFS specific mount options of each 2262 * mount. The mount options of the vfs mount @mnt are written to the seq file 2263 * @sf and success is returned. 2264 */ 2265 int ntfs_show_options(struct seq_file *sf, struct vfsmount *mnt) 2266 { 2267 ntfs_volume *vol = NTFS_SB(mnt->mnt_sb); 2268 int i; 2269 2270 seq_printf(sf, ",uid=%i", vol->uid); 2271 seq_printf(sf, ",gid=%i", vol->gid); 2272 if (vol->fmask == vol->dmask) 2273 seq_printf(sf, ",umask=0%o", vol->fmask); 2274 else { 2275 seq_printf(sf, ",fmask=0%o", vol->fmask); 2276 seq_printf(sf, ",dmask=0%o", vol->dmask); 2277 } 2278 seq_printf(sf, ",nls=%s", vol->nls_map->charset); 2279 if (NVolCaseSensitive(vol)) 2280 seq_printf(sf, ",case_sensitive"); 2281 if (NVolShowSystemFiles(vol)) 2282 seq_printf(sf, ",show_sys_files"); 2283 if (!NVolSparseEnabled(vol)) 2284 seq_printf(sf, ",disable_sparse"); 2285 for (i = 0; on_errors_arr[i].val; i++) { 2286 if (on_errors_arr[i].val & vol->on_errors) 2287 seq_printf(sf, ",errors=%s", on_errors_arr[i].str); 2288 } 2289 seq_printf(sf, ",mft_zone_multiplier=%i", vol->mft_zone_multiplier); 2290 return 0; 2291 } 2292 2293 #ifdef NTFS_RW 2294 2295 static const char *es = " Leaving inconsistent metadata. Unmount and run " 2296 "chkdsk."; 2297 2298 /** 2299 * ntfs_truncate - called when the i_size of an ntfs inode is changed 2300 * @vi: inode for which the i_size was changed 2301 * 2302 * We only support i_size changes for normal files at present, i.e. not 2303 * compressed and not encrypted. This is enforced in ntfs_setattr(), see 2304 * below. 2305 * 2306 * The kernel guarantees that @vi is a regular file (S_ISREG() is true) and 2307 * that the change is allowed. 2308 * 2309 * This implies for us that @vi is a file inode rather than a directory, index, 2310 * or attribute inode as well as that @vi is a base inode. 2311 * 2312 * Returns 0 on success or -errno on error. 2313 * 2314 * Called with ->i_sem held. In all but one case ->i_alloc_sem is held for 2315 * writing. The only case in the kernel where ->i_alloc_sem is not held is 2316 * mm/filemap.c::generic_file_buffered_write() where vmtruncate() is called 2317 * with the current i_size as the offset. The analogous place in NTFS is in 2318 * fs/ntfs/file.c::ntfs_file_buffered_write() where we call vmtruncate() again 2319 * without holding ->i_alloc_sem. 2320 */ 2321 int ntfs_truncate(struct inode *vi) 2322 { 2323 s64 new_size, old_size, nr_freed, new_alloc_size, old_alloc_size; 2324 VCN highest_vcn; 2325 unsigned long flags; 2326 ntfs_inode *base_ni, *ni = NTFS_I(vi); 2327 ntfs_volume *vol = ni->vol; 2328 ntfs_attr_search_ctx *ctx; 2329 MFT_RECORD *m; 2330 ATTR_RECORD *a; 2331 const char *te = " Leaving file length out of sync with i_size."; 2332 int err, mp_size, size_change, alloc_change; 2333 u32 attr_len; 2334 2335 ntfs_debug("Entering for inode 0x%lx.", vi->i_ino); 2336 BUG_ON(NInoAttr(ni)); 2337 BUG_ON(S_ISDIR(vi->i_mode)); 2338 BUG_ON(NInoMstProtected(ni)); 2339 BUG_ON(ni->nr_extents < 0); 2340 retry_truncate: 2341 /* 2342 * Lock the runlist for writing and map the mft record to ensure it is 2343 * safe to mess with the attribute runlist and sizes. 2344 */ 2345 down_write(&ni->runlist.lock); 2346 if (!NInoAttr(ni)) 2347 base_ni = ni; 2348 else 2349 base_ni = ni->ext.base_ntfs_ino; 2350 m = map_mft_record(base_ni); 2351 if (IS_ERR(m)) { 2352 err = PTR_ERR(m); 2353 ntfs_error(vi->i_sb, "Failed to map mft record for inode 0x%lx " 2354 "(error code %d).%s", vi->i_ino, err, te); 2355 ctx = NULL; 2356 m = NULL; 2357 goto old_bad_out; 2358 } 2359 ctx = ntfs_attr_get_search_ctx(base_ni, m); 2360 if (unlikely(!ctx)) { 2361 ntfs_error(vi->i_sb, "Failed to allocate a search context for " 2362 "inode 0x%lx (not enough memory).%s", 2363 vi->i_ino, te); 2364 err = -ENOMEM; 2365 goto old_bad_out; 2366 } 2367 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len, 2368 CASE_SENSITIVE, 0, NULL, 0, ctx); 2369 if (unlikely(err)) { 2370 if (err == -ENOENT) { 2371 ntfs_error(vi->i_sb, "Open attribute is missing from " 2372 "mft record. Inode 0x%lx is corrupt. " 2373 "Run chkdsk.%s", vi->i_ino, te); 2374 err = -EIO; 2375 } else 2376 ntfs_error(vi->i_sb, "Failed to lookup attribute in " 2377 "inode 0x%lx (error code %d).%s", 2378 vi->i_ino, err, te); 2379 goto old_bad_out; 2380 } 2381 m = ctx->mrec; 2382 a = ctx->attr; 2383 /* 2384 * The i_size of the vfs inode is the new size for the attribute value. 2385 */ 2386 new_size = i_size_read(vi); 2387 /* The current size of the attribute value is the old size. */ 2388 old_size = ntfs_attr_size(a); 2389 /* Calculate the new allocated size. */ 2390 if (NInoNonResident(ni)) 2391 new_alloc_size = (new_size + vol->cluster_size - 1) & 2392 ~(s64)vol->cluster_size_mask; 2393 else 2394 new_alloc_size = (new_size + 7) & ~7; 2395 /* The current allocated size is the old allocated size. */ 2396 read_lock_irqsave(&ni->size_lock, flags); 2397 old_alloc_size = ni->allocated_size; 2398 read_unlock_irqrestore(&ni->size_lock, flags); 2399 /* 2400 * The change in the file size. This will be 0 if no change, >0 if the 2401 * size is growing, and <0 if the size is shrinking. 2402 */ 2403 size_change = -1; 2404 if (new_size - old_size >= 0) { 2405 size_change = 1; 2406 if (new_size == old_size) 2407 size_change = 0; 2408 } 2409 /* As above for the allocated size. */ 2410 alloc_change = -1; 2411 if (new_alloc_size - old_alloc_size >= 0) { 2412 alloc_change = 1; 2413 if (new_alloc_size == old_alloc_size) 2414 alloc_change = 0; 2415 } 2416 /* 2417 * If neither the size nor the allocation are being changed there is 2418 * nothing to do. 2419 */ 2420 if (!size_change && !alloc_change) 2421 goto unm_done; 2422 /* If the size is changing, check if new size is allowed in $AttrDef. */ 2423 if (size_change) { 2424 err = ntfs_attr_size_bounds_check(vol, ni->type, new_size); 2425 if (unlikely(err)) { 2426 if (err == -ERANGE) { 2427 ntfs_error(vol->sb, "Truncate would cause the " 2428 "inode 0x%lx to %simum size " 2429 "for its attribute type " 2430 "(0x%x). Aborting truncate.", 2431 vi->i_ino, 2432 new_size > old_size ? "exceed " 2433 "the max" : "go under the min", 2434 le32_to_cpu(ni->type)); 2435 err = -EFBIG; 2436 } else { 2437 ntfs_error(vol->sb, "Inode 0x%lx has unknown " 2438 "attribute type 0x%x. " 2439 "Aborting truncate.", 2440 vi->i_ino, 2441 le32_to_cpu(ni->type)); 2442 err = -EIO; 2443 } 2444 /* Reset the vfs inode size to the old size. */ 2445 i_size_write(vi, old_size); 2446 goto err_out; 2447 } 2448 } 2449 if (NInoCompressed(ni) || NInoEncrypted(ni)) { 2450 ntfs_warning(vi->i_sb, "Changes in inode size are not " 2451 "supported yet for %s files, ignoring.", 2452 NInoCompressed(ni) ? "compressed" : 2453 "encrypted"); 2454 err = -EOPNOTSUPP; 2455 goto bad_out; 2456 } 2457 if (a->non_resident) 2458 goto do_non_resident_truncate; 2459 BUG_ON(NInoNonResident(ni)); 2460 /* Resize the attribute record to best fit the new attribute size. */ 2461 if (new_size < vol->mft_record_size && 2462 !ntfs_resident_attr_value_resize(m, a, new_size)) { 2463 unsigned long flags; 2464 2465 /* The resize succeeded! */ 2466 flush_dcache_mft_record_page(ctx->ntfs_ino); 2467 mark_mft_record_dirty(ctx->ntfs_ino); 2468 write_lock_irqsave(&ni->size_lock, flags); 2469 /* Update the sizes in the ntfs inode and all is done. */ 2470 ni->allocated_size = le32_to_cpu(a->length) - 2471 le16_to_cpu(a->data.resident.value_offset); 2472 /* 2473 * Note ntfs_resident_attr_value_resize() has already done any 2474 * necessary data clearing in the attribute record. When the 2475 * file is being shrunk vmtruncate() will already have cleared 2476 * the top part of the last partial page, i.e. since this is 2477 * the resident case this is the page with index 0. However, 2478 * when the file is being expanded, the page cache page data 2479 * between the old data_size, i.e. old_size, and the new_size 2480 * has not been zeroed. Fortunately, we do not need to zero it 2481 * either since on one hand it will either already be zero due 2482 * to both readpage and writepage clearing partial page data 2483 * beyond i_size in which case there is nothing to do or in the 2484 * case of the file being mmap()ped at the same time, POSIX 2485 * specifies that the behaviour is unspecified thus we do not 2486 * have to do anything. This means that in our implementation 2487 * in the rare case that the file is mmap()ped and a write 2488 * occured into the mmap()ped region just beyond the file size 2489 * and writepage has not yet been called to write out the page 2490 * (which would clear the area beyond the file size) and we now 2491 * extend the file size to incorporate this dirty region 2492 * outside the file size, a write of the page would result in 2493 * this data being written to disk instead of being cleared. 2494 * Given both POSIX and the Linux mmap(2) man page specify that 2495 * this corner case is undefined, we choose to leave it like 2496 * that as this is much simpler for us as we cannot lock the 2497 * relevant page now since we are holding too many ntfs locks 2498 * which would result in a lock reversal deadlock. 2499 */ 2500 ni->initialized_size = new_size; 2501 write_unlock_irqrestore(&ni->size_lock, flags); 2502 goto unm_done; 2503 } 2504 /* If the above resize failed, this must be an attribute extension. */ 2505 BUG_ON(size_change < 0); 2506 /* 2507 * We have to drop all the locks so we can call 2508 * ntfs_attr_make_non_resident(). This could be optimised by try- 2509 * locking the first page cache page and only if that fails dropping 2510 * the locks, locking the page, and redoing all the locking and 2511 * lookups. While this would be a huge optimisation, it is not worth 2512 * it as this is definitely a slow code path as it only ever can happen 2513 * once for any given file. 2514 */ 2515 ntfs_attr_put_search_ctx(ctx); 2516 unmap_mft_record(base_ni); 2517 up_write(&ni->runlist.lock); 2518 /* 2519 * Not enough space in the mft record, try to make the attribute 2520 * non-resident and if successful restart the truncation process. 2521 */ 2522 err = ntfs_attr_make_non_resident(ni, old_size); 2523 if (likely(!err)) 2524 goto retry_truncate; 2525 /* 2526 * Could not make non-resident. If this is due to this not being 2527 * permitted for this attribute type or there not being enough space, 2528 * try to make other attributes non-resident. Otherwise fail. 2529 */ 2530 if (unlikely(err != -EPERM && err != -ENOSPC)) { 2531 ntfs_error(vol->sb, "Cannot truncate inode 0x%lx, attribute " 2532 "type 0x%x, because the conversion from " 2533 "resident to non-resident attribute failed " 2534 "with error code %i.", vi->i_ino, 2535 (unsigned)le32_to_cpu(ni->type), err); 2536 if (err != -ENOMEM) 2537 err = -EIO; 2538 goto conv_err_out; 2539 } 2540 /* TODO: Not implemented from here, abort. */ 2541 if (err == -ENOSPC) 2542 ntfs_error(vol->sb, "Not enough space in the mft record/on " 2543 "disk for the non-resident attribute value. " 2544 "This case is not implemented yet."); 2545 else /* if (err == -EPERM) */ 2546 ntfs_error(vol->sb, "This attribute type may not be " 2547 "non-resident. This case is not implemented " 2548 "yet."); 2549 err = -EOPNOTSUPP; 2550 goto conv_err_out; 2551 #if 0 2552 // TODO: Attempt to make other attributes non-resident. 2553 if (!err) 2554 goto do_resident_extend; 2555 /* 2556 * Both the attribute list attribute and the standard information 2557 * attribute must remain in the base inode. Thus, if this is one of 2558 * these attributes, we have to try to move other attributes out into 2559 * extent mft records instead. 2560 */ 2561 if (ni->type == AT_ATTRIBUTE_LIST || 2562 ni->type == AT_STANDARD_INFORMATION) { 2563 // TODO: Attempt to move other attributes into extent mft 2564 // records. 2565 err = -EOPNOTSUPP; 2566 if (!err) 2567 goto do_resident_extend; 2568 goto err_out; 2569 } 2570 // TODO: Attempt to move this attribute to an extent mft record, but 2571 // only if it is not already the only attribute in an mft record in 2572 // which case there would be nothing to gain. 2573 err = -EOPNOTSUPP; 2574 if (!err) 2575 goto do_resident_extend; 2576 /* There is nothing we can do to make enough space. )-: */ 2577 goto err_out; 2578 #endif 2579 do_non_resident_truncate: 2580 BUG_ON(!NInoNonResident(ni)); 2581 if (alloc_change < 0) { 2582 highest_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn); 2583 if (highest_vcn > 0 && 2584 old_alloc_size >> vol->cluster_size_bits > 2585 highest_vcn + 1) { 2586 /* 2587 * This attribute has multiple extents. Not yet 2588 * supported. 2589 */ 2590 ntfs_error(vol->sb, "Cannot truncate inode 0x%lx, " 2591 "attribute type 0x%x, because the " 2592 "attribute is highly fragmented (it " 2593 "consists of multiple extents) and " 2594 "this case is not implemented yet.", 2595 vi->i_ino, 2596 (unsigned)le32_to_cpu(ni->type)); 2597 err = -EOPNOTSUPP; 2598 goto bad_out; 2599 } 2600 } 2601 /* 2602 * If the size is shrinking, need to reduce the initialized_size and 2603 * the data_size before reducing the allocation. 2604 */ 2605 if (size_change < 0) { 2606 /* 2607 * Make the valid size smaller (i_size is already up-to-date). 2608 */ 2609 write_lock_irqsave(&ni->size_lock, flags); 2610 if (new_size < ni->initialized_size) { 2611 ni->initialized_size = new_size; 2612 a->data.non_resident.initialized_size = 2613 cpu_to_sle64(new_size); 2614 } 2615 a->data.non_resident.data_size = cpu_to_sle64(new_size); 2616 write_unlock_irqrestore(&ni->size_lock, flags); 2617 flush_dcache_mft_record_page(ctx->ntfs_ino); 2618 mark_mft_record_dirty(ctx->ntfs_ino); 2619 /* If the allocated size is not changing, we are done. */ 2620 if (!alloc_change) 2621 goto unm_done; 2622 /* 2623 * If the size is shrinking it makes no sense for the 2624 * allocation to be growing. 2625 */ 2626 BUG_ON(alloc_change > 0); 2627 } else /* if (size_change >= 0) */ { 2628 /* 2629 * The file size is growing or staying the same but the 2630 * allocation can be shrinking, growing or staying the same. 2631 */ 2632 if (alloc_change > 0) { 2633 /* 2634 * We need to extend the allocation and possibly update 2635 * the data size. If we are updating the data size, 2636 * since we are not touching the initialized_size we do 2637 * not need to worry about the actual data on disk. 2638 * And as far as the page cache is concerned, there 2639 * will be no pages beyond the old data size and any 2640 * partial region in the last page between the old and 2641 * new data size (or the end of the page if the new 2642 * data size is outside the page) does not need to be 2643 * modified as explained above for the resident 2644 * attribute truncate case. To do this, we simply drop 2645 * the locks we hold and leave all the work to our 2646 * friendly helper ntfs_attr_extend_allocation(). 2647 */ 2648 ntfs_attr_put_search_ctx(ctx); 2649 unmap_mft_record(base_ni); 2650 up_write(&ni->runlist.lock); 2651 err = ntfs_attr_extend_allocation(ni, new_size, 2652 size_change > 0 ? new_size : -1, -1); 2653 /* 2654 * ntfs_attr_extend_allocation() will have done error 2655 * output already. 2656 */ 2657 goto done; 2658 } 2659 if (!alloc_change) 2660 goto alloc_done; 2661 } 2662 /* alloc_change < 0 */ 2663 /* Free the clusters. */ 2664 nr_freed = ntfs_cluster_free(ni, new_alloc_size >> 2665 vol->cluster_size_bits, -1, ctx); 2666 m = ctx->mrec; 2667 a = ctx->attr; 2668 if (unlikely(nr_freed < 0)) { 2669 ntfs_error(vol->sb, "Failed to release cluster(s) (error code " 2670 "%lli). Unmount and run chkdsk to recover " 2671 "the lost cluster(s).", (long long)nr_freed); 2672 NVolSetErrors(vol); 2673 nr_freed = 0; 2674 } 2675 /* Truncate the runlist. */ 2676 err = ntfs_rl_truncate_nolock(vol, &ni->runlist, 2677 new_alloc_size >> vol->cluster_size_bits); 2678 /* 2679 * If the runlist truncation failed and/or the search context is no 2680 * longer valid, we cannot resize the attribute record or build the 2681 * mapping pairs array thus we mark the inode bad so that no access to 2682 * the freed clusters can happen. 2683 */ 2684 if (unlikely(err || IS_ERR(m))) { 2685 ntfs_error(vol->sb, "Failed to %s (error code %li).%s", 2686 IS_ERR(m) ? 2687 "restore attribute search context" : 2688 "truncate attribute runlist", 2689 IS_ERR(m) ? PTR_ERR(m) : err, es); 2690 err = -EIO; 2691 goto bad_out; 2692 } 2693 /* Get the size for the shrunk mapping pairs array for the runlist. */ 2694 mp_size = ntfs_get_size_for_mapping_pairs(vol, ni->runlist.rl, 0, -1); 2695 if (unlikely(mp_size <= 0)) { 2696 ntfs_error(vol->sb, "Cannot shrink allocation of inode 0x%lx, " 2697 "attribute type 0x%x, because determining the " 2698 "size for the mapping pairs failed with error " 2699 "code %i.%s", vi->i_ino, 2700 (unsigned)le32_to_cpu(ni->type), mp_size, es); 2701 err = -EIO; 2702 goto bad_out; 2703 } 2704 /* 2705 * Shrink the attribute record for the new mapping pairs array. Note, 2706 * this cannot fail since we are making the attribute smaller thus by 2707 * definition there is enough space to do so. 2708 */ 2709 attr_len = le32_to_cpu(a->length); 2710 err = ntfs_attr_record_resize(m, a, mp_size + 2711 le16_to_cpu(a->data.non_resident.mapping_pairs_offset)); 2712 BUG_ON(err); 2713 /* 2714 * Generate the mapping pairs array directly into the attribute record. 2715 */ 2716 err = ntfs_mapping_pairs_build(vol, (u8*)a + 2717 le16_to_cpu(a->data.non_resident.mapping_pairs_offset), 2718 mp_size, ni->runlist.rl, 0, -1, NULL); 2719 if (unlikely(err)) { 2720 ntfs_error(vol->sb, "Cannot shrink allocation of inode 0x%lx, " 2721 "attribute type 0x%x, because building the " 2722 "mapping pairs failed with error code %i.%s", 2723 vi->i_ino, (unsigned)le32_to_cpu(ni->type), 2724 err, es); 2725 err = -EIO; 2726 goto bad_out; 2727 } 2728 /* Update the allocated/compressed size as well as the highest vcn. */ 2729 a->data.non_resident.highest_vcn = cpu_to_sle64((new_alloc_size >> 2730 vol->cluster_size_bits) - 1); 2731 write_lock_irqsave(&ni->size_lock, flags); 2732 ni->allocated_size = new_alloc_size; 2733 a->data.non_resident.allocated_size = cpu_to_sle64(new_alloc_size); 2734 if (NInoSparse(ni) || NInoCompressed(ni)) { 2735 if (nr_freed) { 2736 ni->itype.compressed.size -= nr_freed << 2737 vol->cluster_size_bits; 2738 BUG_ON(ni->itype.compressed.size < 0); 2739 a->data.non_resident.compressed_size = cpu_to_sle64( 2740 ni->itype.compressed.size); 2741 vi->i_blocks = ni->itype.compressed.size >> 9; 2742 } 2743 } else 2744 vi->i_blocks = new_alloc_size >> 9; 2745 write_unlock_irqrestore(&ni->size_lock, flags); 2746 /* 2747 * We have shrunk the allocation. If this is a shrinking truncate we 2748 * have already dealt with the initialized_size and the data_size above 2749 * and we are done. If the truncate is only changing the allocation 2750 * and not the data_size, we are also done. If this is an extending 2751 * truncate, need to extend the data_size now which is ensured by the 2752 * fact that @size_change is positive. 2753 */ 2754 alloc_done: 2755 /* 2756 * If the size is growing, need to update it now. If it is shrinking, 2757 * we have already updated it above (before the allocation change). 2758 */ 2759 if (size_change > 0) 2760 a->data.non_resident.data_size = cpu_to_sle64(new_size); 2761 /* Ensure the modified mft record is written out. */ 2762 flush_dcache_mft_record_page(ctx->ntfs_ino); 2763 mark_mft_record_dirty(ctx->ntfs_ino); 2764 unm_done: 2765 ntfs_attr_put_search_ctx(ctx); 2766 unmap_mft_record(base_ni); 2767 up_write(&ni->runlist.lock); 2768 done: 2769 /* Update the mtime and ctime on the base inode. */ 2770 inode_update_time(VFS_I(base_ni), 1); 2771 if (likely(!err)) { 2772 NInoClearTruncateFailed(ni); 2773 ntfs_debug("Done."); 2774 } 2775 return err; 2776 old_bad_out: 2777 old_size = -1; 2778 bad_out: 2779 if (err != -ENOMEM && err != -EOPNOTSUPP) { 2780 make_bad_inode(vi); 2781 make_bad_inode(VFS_I(base_ni)); 2782 NVolSetErrors(vol); 2783 } 2784 if (err != -EOPNOTSUPP) 2785 NInoSetTruncateFailed(ni); 2786 else if (old_size >= 0) 2787 i_size_write(vi, old_size); 2788 err_out: 2789 if (ctx) 2790 ntfs_attr_put_search_ctx(ctx); 2791 if (m) 2792 unmap_mft_record(base_ni); 2793 up_write(&ni->runlist.lock); 2794 out: 2795 ntfs_debug("Failed. Returning error code %i.", err); 2796 return err; 2797 conv_err_out: 2798 if (err != -ENOMEM && err != -EOPNOTSUPP) { 2799 make_bad_inode(vi); 2800 make_bad_inode(VFS_I(base_ni)); 2801 NVolSetErrors(vol); 2802 } 2803 if (err != -EOPNOTSUPP) 2804 NInoSetTruncateFailed(ni); 2805 else 2806 i_size_write(vi, old_size); 2807 goto out; 2808 } 2809 2810 /** 2811 * ntfs_truncate_vfs - wrapper for ntfs_truncate() that has no return value 2812 * @vi: inode for which the i_size was changed 2813 * 2814 * Wrapper for ntfs_truncate() that has no return value. 2815 * 2816 * See ntfs_truncate() description above for details. 2817 */ 2818 void ntfs_truncate_vfs(struct inode *vi) { 2819 ntfs_truncate(vi); 2820 } 2821 2822 /** 2823 * ntfs_setattr - called from notify_change() when an attribute is being changed 2824 * @dentry: dentry whose attributes to change 2825 * @attr: structure describing the attributes and the changes 2826 * 2827 * We have to trap VFS attempts to truncate the file described by @dentry as 2828 * soon as possible, because we do not implement changes in i_size yet. So we 2829 * abort all i_size changes here. 2830 * 2831 * We also abort all changes of user, group, and mode as we do not implement 2832 * the NTFS ACLs yet. 2833 * 2834 * Called with ->i_sem held. For the ATTR_SIZE (i.e. ->truncate) case, also 2835 * called with ->i_alloc_sem held for writing. 2836 * 2837 * Basically this is a copy of generic notify_change() and inode_setattr() 2838 * functionality, except we intercept and abort changes in i_size. 2839 */ 2840 int ntfs_setattr(struct dentry *dentry, struct iattr *attr) 2841 { 2842 struct inode *vi = dentry->d_inode; 2843 int err; 2844 unsigned int ia_valid = attr->ia_valid; 2845 2846 err = inode_change_ok(vi, attr); 2847 if (err) 2848 goto out; 2849 /* We do not support NTFS ACLs yet. */ 2850 if (ia_valid & (ATTR_UID | ATTR_GID | ATTR_MODE)) { 2851 ntfs_warning(vi->i_sb, "Changes in user/group/mode are not " 2852 "supported yet, ignoring."); 2853 err = -EOPNOTSUPP; 2854 goto out; 2855 } 2856 if (ia_valid & ATTR_SIZE) { 2857 if (attr->ia_size != i_size_read(vi)) { 2858 ntfs_inode *ni = NTFS_I(vi); 2859 /* 2860 * FIXME: For now we do not support resizing of 2861 * compressed or encrypted files yet. 2862 */ 2863 if (NInoCompressed(ni) || NInoEncrypted(ni)) { 2864 ntfs_warning(vi->i_sb, "Changes in inode size " 2865 "are not supported yet for " 2866 "%s files, ignoring.", 2867 NInoCompressed(ni) ? 2868 "compressed" : "encrypted"); 2869 err = -EOPNOTSUPP; 2870 } else 2871 err = vmtruncate(vi, attr->ia_size); 2872 if (err || ia_valid == ATTR_SIZE) 2873 goto out; 2874 } else { 2875 /* 2876 * We skipped the truncate but must still update 2877 * timestamps. 2878 */ 2879 ia_valid |= ATTR_MTIME | ATTR_CTIME; 2880 } 2881 } 2882 if (ia_valid & ATTR_ATIME) 2883 vi->i_atime = timespec_trunc(attr->ia_atime, 2884 vi->i_sb->s_time_gran); 2885 if (ia_valid & ATTR_MTIME) 2886 vi->i_mtime = timespec_trunc(attr->ia_mtime, 2887 vi->i_sb->s_time_gran); 2888 if (ia_valid & ATTR_CTIME) 2889 vi->i_ctime = timespec_trunc(attr->ia_ctime, 2890 vi->i_sb->s_time_gran); 2891 mark_inode_dirty(vi); 2892 out: 2893 return err; 2894 } 2895 2896 /** 2897 * ntfs_write_inode - write out a dirty inode 2898 * @vi: inode to write out 2899 * @sync: if true, write out synchronously 2900 * 2901 * Write out a dirty inode to disk including any extent inodes if present. 2902 * 2903 * If @sync is true, commit the inode to disk and wait for io completion. This 2904 * is done using write_mft_record(). 2905 * 2906 * If @sync is false, just schedule the write to happen but do not wait for i/o 2907 * completion. In 2.6 kernels, scheduling usually happens just by virtue of 2908 * marking the page (and in this case mft record) dirty but we do not implement 2909 * this yet as write_mft_record() largely ignores the @sync parameter and 2910 * always performs synchronous writes. 2911 * 2912 * Return 0 on success and -errno on error. 2913 */ 2914 int ntfs_write_inode(struct inode *vi, int sync) 2915 { 2916 sle64 nt; 2917 ntfs_inode *ni = NTFS_I(vi); 2918 ntfs_attr_search_ctx *ctx; 2919 MFT_RECORD *m; 2920 STANDARD_INFORMATION *si; 2921 int err = 0; 2922 BOOL modified = FALSE; 2923 2924 ntfs_debug("Entering for %sinode 0x%lx.", NInoAttr(ni) ? "attr " : "", 2925 vi->i_ino); 2926 /* 2927 * Dirty attribute inodes are written via their real inodes so just 2928 * clean them here. Access time updates are taken care off when the 2929 * real inode is written. 2930 */ 2931 if (NInoAttr(ni)) { 2932 NInoClearDirty(ni); 2933 ntfs_debug("Done."); 2934 return 0; 2935 } 2936 /* Map, pin, and lock the mft record belonging to the inode. */ 2937 m = map_mft_record(ni); 2938 if (IS_ERR(m)) { 2939 err = PTR_ERR(m); 2940 goto err_out; 2941 } 2942 /* Update the access times in the standard information attribute. */ 2943 ctx = ntfs_attr_get_search_ctx(ni, m); 2944 if (unlikely(!ctx)) { 2945 err = -ENOMEM; 2946 goto unm_err_out; 2947 } 2948 err = ntfs_attr_lookup(AT_STANDARD_INFORMATION, NULL, 0, 2949 CASE_SENSITIVE, 0, NULL, 0, ctx); 2950 if (unlikely(err)) { 2951 ntfs_attr_put_search_ctx(ctx); 2952 goto unm_err_out; 2953 } 2954 si = (STANDARD_INFORMATION*)((u8*)ctx->attr + 2955 le16_to_cpu(ctx->attr->data.resident.value_offset)); 2956 /* Update the access times if they have changed. */ 2957 nt = utc2ntfs(vi->i_mtime); 2958 if (si->last_data_change_time != nt) { 2959 ntfs_debug("Updating mtime for inode 0x%lx: old = 0x%llx, " 2960 "new = 0x%llx", vi->i_ino, (long long) 2961 sle64_to_cpu(si->last_data_change_time), 2962 (long long)sle64_to_cpu(nt)); 2963 si->last_data_change_time = nt; 2964 modified = TRUE; 2965 } 2966 nt = utc2ntfs(vi->i_ctime); 2967 if (si->last_mft_change_time != nt) { 2968 ntfs_debug("Updating ctime for inode 0x%lx: old = 0x%llx, " 2969 "new = 0x%llx", vi->i_ino, (long long) 2970 sle64_to_cpu(si->last_mft_change_time), 2971 (long long)sle64_to_cpu(nt)); 2972 si->last_mft_change_time = nt; 2973 modified = TRUE; 2974 } 2975 nt = utc2ntfs(vi->i_atime); 2976 if (si->last_access_time != nt) { 2977 ntfs_debug("Updating atime for inode 0x%lx: old = 0x%llx, " 2978 "new = 0x%llx", vi->i_ino, 2979 (long long)sle64_to_cpu(si->last_access_time), 2980 (long long)sle64_to_cpu(nt)); 2981 si->last_access_time = nt; 2982 modified = TRUE; 2983 } 2984 /* 2985 * If we just modified the standard information attribute we need to 2986 * mark the mft record it is in dirty. We do this manually so that 2987 * mark_inode_dirty() is not called which would redirty the inode and 2988 * hence result in an infinite loop of trying to write the inode. 2989 * There is no need to mark the base inode nor the base mft record 2990 * dirty, since we are going to write this mft record below in any case 2991 * and the base mft record may actually not have been modified so it 2992 * might not need to be written out. 2993 * NOTE: It is not a problem when the inode for $MFT itself is being 2994 * written out as mark_ntfs_record_dirty() will only set I_DIRTY_PAGES 2995 * on the $MFT inode and hence ntfs_write_inode() will not be 2996 * re-invoked because of it which in turn is ok since the dirtied mft 2997 * record will be cleaned and written out to disk below, i.e. before 2998 * this function returns. 2999 */ 3000 if (modified && !NInoTestSetDirty(ctx->ntfs_ino)) 3001 mark_ntfs_record_dirty(ctx->ntfs_ino->page, 3002 ctx->ntfs_ino->page_ofs); 3003 ntfs_attr_put_search_ctx(ctx); 3004 /* Now the access times are updated, write the base mft record. */ 3005 if (NInoDirty(ni)) 3006 err = write_mft_record(ni, m, sync); 3007 /* Write all attached extent mft records. */ 3008 down(&ni->extent_lock); 3009 if (ni->nr_extents > 0) { 3010 ntfs_inode **extent_nis = ni->ext.extent_ntfs_inos; 3011 int i; 3012 3013 ntfs_debug("Writing %i extent inodes.", ni->nr_extents); 3014 for (i = 0; i < ni->nr_extents; i++) { 3015 ntfs_inode *tni = extent_nis[i]; 3016 3017 if (NInoDirty(tni)) { 3018 MFT_RECORD *tm = map_mft_record(tni); 3019 int ret; 3020 3021 if (IS_ERR(tm)) { 3022 if (!err || err == -ENOMEM) 3023 err = PTR_ERR(tm); 3024 continue; 3025 } 3026 ret = write_mft_record(tni, tm, sync); 3027 unmap_mft_record(tni); 3028 if (unlikely(ret)) { 3029 if (!err || err == -ENOMEM) 3030 err = ret; 3031 } 3032 } 3033 } 3034 } 3035 up(&ni->extent_lock); 3036 unmap_mft_record(ni); 3037 if (unlikely(err)) 3038 goto err_out; 3039 ntfs_debug("Done."); 3040 return 0; 3041 unm_err_out: 3042 unmap_mft_record(ni); 3043 err_out: 3044 if (err == -ENOMEM) { 3045 ntfs_warning(vi->i_sb, "Not enough memory to write inode. " 3046 "Marking the inode dirty again, so the VFS " 3047 "retries later."); 3048 mark_inode_dirty(vi); 3049 } else { 3050 ntfs_error(vi->i_sb, "Failed (error code %i): Marking inode " 3051 "as bad. You should run chkdsk.", -err); 3052 make_bad_inode(vi); 3053 NVolSetErrors(ni->vol); 3054 } 3055 return err; 3056 } 3057 3058 #endif /* NTFS_RW */ 3059