xref: /openbmc/linux/fs/ntfs/aops.c (revision 1da177e4c3f41524e886b7f1b8a0c1fc7321cac2)
1 /**
2  * aops.c - NTFS kernel address space operations and page cache handling.
3  *	    Part of the Linux-NTFS project.
4  *
5  * Copyright (c) 2001-2004 Anton Altaparmakov
6  * Copyright (c) 2002 Richard Russon
7  *
8  * This program/include file is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU General Public License as published
10  * by the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  * This program/include file is distributed in the hope that it will be
14  * useful, but WITHOUT ANY WARRANTY; without even the implied warranty
15  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program (in the main directory of the Linux-NTFS
20  * distribution in the file COPYING); if not, write to the Free Software
21  * Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
22  */
23 
24 #include <linux/errno.h>
25 #include <linux/mm.h>
26 #include <linux/pagemap.h>
27 #include <linux/swap.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 
31 #include "aops.h"
32 #include "attrib.h"
33 #include "debug.h"
34 #include "inode.h"
35 #include "mft.h"
36 #include "runlist.h"
37 #include "types.h"
38 #include "ntfs.h"
39 
40 /**
41  * ntfs_end_buffer_async_read - async io completion for reading attributes
42  * @bh:		buffer head on which io is completed
43  * @uptodate:	whether @bh is now uptodate or not
44  *
45  * Asynchronous I/O completion handler for reading pages belonging to the
46  * attribute address space of an inode.  The inodes can either be files or
47  * directories or they can be fake inodes describing some attribute.
48  *
49  * If NInoMstProtected(), perform the post read mst fixups when all IO on the
50  * page has been completed and mark the page uptodate or set the error bit on
51  * the page.  To determine the size of the records that need fixing up, we
52  * cheat a little bit by setting the index_block_size in ntfs_inode to the ntfs
53  * record size, and index_block_size_bits, to the log(base 2) of the ntfs
54  * record size.
55  */
56 static void ntfs_end_buffer_async_read(struct buffer_head *bh, int uptodate)
57 {
58 	static DEFINE_SPINLOCK(page_uptodate_lock);
59 	unsigned long flags;
60 	struct buffer_head *tmp;
61 	struct page *page;
62 	ntfs_inode *ni;
63 	int page_uptodate = 1;
64 
65 	page = bh->b_page;
66 	ni = NTFS_I(page->mapping->host);
67 
68 	if (likely(uptodate)) {
69 		s64 file_ofs;
70 
71 		set_buffer_uptodate(bh);
72 
73 		file_ofs = ((s64)page->index << PAGE_CACHE_SHIFT) +
74 				bh_offset(bh);
75 		/* Check for the current buffer head overflowing. */
76 		if (file_ofs + bh->b_size > ni->initialized_size) {
77 			char *addr;
78 			int ofs = 0;
79 
80 			if (file_ofs < ni->initialized_size)
81 				ofs = ni->initialized_size - file_ofs;
82 			addr = kmap_atomic(page, KM_BIO_SRC_IRQ);
83 			memset(addr + bh_offset(bh) + ofs, 0, bh->b_size - ofs);
84 			flush_dcache_page(page);
85 			kunmap_atomic(addr, KM_BIO_SRC_IRQ);
86 		}
87 	} else {
88 		clear_buffer_uptodate(bh);
89 		ntfs_error(ni->vol->sb, "Buffer I/O error, logical block %llu.",
90 				(unsigned long long)bh->b_blocknr);
91 		SetPageError(page);
92 	}
93 	spin_lock_irqsave(&page_uptodate_lock, flags);
94 	clear_buffer_async_read(bh);
95 	unlock_buffer(bh);
96 	tmp = bh;
97 	do {
98 		if (!buffer_uptodate(tmp))
99 			page_uptodate = 0;
100 		if (buffer_async_read(tmp)) {
101 			if (likely(buffer_locked(tmp)))
102 				goto still_busy;
103 			/* Async buffers must be locked. */
104 			BUG();
105 		}
106 		tmp = tmp->b_this_page;
107 	} while (tmp != bh);
108 	spin_unlock_irqrestore(&page_uptodate_lock, flags);
109 	/*
110 	 * If none of the buffers had errors then we can set the page uptodate,
111 	 * but we first have to perform the post read mst fixups, if the
112 	 * attribute is mst protected, i.e. if NInoMstProteced(ni) is true.
113 	 * Note we ignore fixup errors as those are detected when
114 	 * map_mft_record() is called which gives us per record granularity
115 	 * rather than per page granularity.
116 	 */
117 	if (!NInoMstProtected(ni)) {
118 		if (likely(page_uptodate && !PageError(page)))
119 			SetPageUptodate(page);
120 	} else {
121 		char *addr;
122 		unsigned int i, recs;
123 		u32 rec_size;
124 
125 		rec_size = ni->itype.index.block_size;
126 		recs = PAGE_CACHE_SIZE / rec_size;
127 		/* Should have been verified before we got here... */
128 		BUG_ON(!recs);
129 		addr = kmap_atomic(page, KM_BIO_SRC_IRQ);
130 		for (i = 0; i < recs; i++)
131 			post_read_mst_fixup((NTFS_RECORD*)(addr +
132 					i * rec_size), rec_size);
133 		flush_dcache_page(page);
134 		kunmap_atomic(addr, KM_BIO_SRC_IRQ);
135 		if (likely(!PageError(page) && page_uptodate))
136 			SetPageUptodate(page);
137 	}
138 	unlock_page(page);
139 	return;
140 still_busy:
141 	spin_unlock_irqrestore(&page_uptodate_lock, flags);
142 	return;
143 }
144 
145 /**
146  * ntfs_read_block - fill a @page of an address space with data
147  * @page:	page cache page to fill with data
148  *
149  * Fill the page @page of the address space belonging to the @page->host inode.
150  * We read each buffer asynchronously and when all buffers are read in, our io
151  * completion handler ntfs_end_buffer_read_async(), if required, automatically
152  * applies the mst fixups to the page before finally marking it uptodate and
153  * unlocking it.
154  *
155  * We only enforce allocated_size limit because i_size is checked for in
156  * generic_file_read().
157  *
158  * Return 0 on success and -errno on error.
159  *
160  * Contains an adapted version of fs/buffer.c::block_read_full_page().
161  */
162 static int ntfs_read_block(struct page *page)
163 {
164 	VCN vcn;
165 	LCN lcn;
166 	ntfs_inode *ni;
167 	ntfs_volume *vol;
168 	runlist_element *rl;
169 	struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
170 	sector_t iblock, lblock, zblock;
171 	unsigned int blocksize, vcn_ofs;
172 	int i, nr;
173 	unsigned char blocksize_bits;
174 
175 	ni = NTFS_I(page->mapping->host);
176 	vol = ni->vol;
177 
178 	/* $MFT/$DATA must have its complete runlist in memory at all times. */
179 	BUG_ON(!ni->runlist.rl && !ni->mft_no && !NInoAttr(ni));
180 
181 	blocksize_bits = VFS_I(ni)->i_blkbits;
182 	blocksize = 1 << blocksize_bits;
183 
184 	if (!page_has_buffers(page))
185 		create_empty_buffers(page, blocksize, 0);
186 	bh = head = page_buffers(page);
187 	if (unlikely(!bh)) {
188 		unlock_page(page);
189 		return -ENOMEM;
190 	}
191 
192 	iblock = (s64)page->index << (PAGE_CACHE_SHIFT - blocksize_bits);
193 	lblock = (ni->allocated_size + blocksize - 1) >> blocksize_bits;
194 	zblock = (ni->initialized_size + blocksize - 1) >> blocksize_bits;
195 
196 	/* Loop through all the buffers in the page. */
197 	rl = NULL;
198 	nr = i = 0;
199 	do {
200 		u8 *kaddr;
201 
202 		if (unlikely(buffer_uptodate(bh)))
203 			continue;
204 		if (unlikely(buffer_mapped(bh))) {
205 			arr[nr++] = bh;
206 			continue;
207 		}
208 		bh->b_bdev = vol->sb->s_bdev;
209 		/* Is the block within the allowed limits? */
210 		if (iblock < lblock) {
211 			BOOL is_retry = FALSE;
212 
213 			/* Convert iblock into corresponding vcn and offset. */
214 			vcn = (VCN)iblock << blocksize_bits >>
215 					vol->cluster_size_bits;
216 			vcn_ofs = ((VCN)iblock << blocksize_bits) &
217 					vol->cluster_size_mask;
218 			if (!rl) {
219 lock_retry_remap:
220 				down_read(&ni->runlist.lock);
221 				rl = ni->runlist.rl;
222 			}
223 			if (likely(rl != NULL)) {
224 				/* Seek to element containing target vcn. */
225 				while (rl->length && rl[1].vcn <= vcn)
226 					rl++;
227 				lcn = ntfs_rl_vcn_to_lcn(rl, vcn);
228 			} else
229 				lcn = LCN_RL_NOT_MAPPED;
230 			/* Successful remap. */
231 			if (lcn >= 0) {
232 				/* Setup buffer head to correct block. */
233 				bh->b_blocknr = ((lcn << vol->cluster_size_bits)
234 						+ vcn_ofs) >> blocksize_bits;
235 				set_buffer_mapped(bh);
236 				/* Only read initialized data blocks. */
237 				if (iblock < zblock) {
238 					arr[nr++] = bh;
239 					continue;
240 				}
241 				/* Fully non-initialized data block, zero it. */
242 				goto handle_zblock;
243 			}
244 			/* It is a hole, need to zero it. */
245 			if (lcn == LCN_HOLE)
246 				goto handle_hole;
247 			/* If first try and runlist unmapped, map and retry. */
248 			if (!is_retry && lcn == LCN_RL_NOT_MAPPED) {
249 				int err;
250 				is_retry = TRUE;
251 				/*
252 				 * Attempt to map runlist, dropping lock for
253 				 * the duration.
254 				 */
255 				up_read(&ni->runlist.lock);
256 				err = ntfs_map_runlist(ni, vcn);
257 				if (likely(!err))
258 					goto lock_retry_remap;
259 				rl = NULL;
260 				lcn = err;
261 			}
262 			/* Hard error, zero out region. */
263 			bh->b_blocknr = -1;
264 			SetPageError(page);
265 			ntfs_error(vol->sb, "Failed to read from inode 0x%lx, "
266 					"attribute type 0x%x, vcn 0x%llx, "
267 					"offset 0x%x because its location on "
268 					"disk could not be determined%s "
269 					"(error code %lli).", ni->mft_no,
270 					ni->type, (unsigned long long)vcn,
271 					vcn_ofs, is_retry ? " even after "
272 					"retrying" : "", (long long)lcn);
273 		}
274 		/*
275 		 * Either iblock was outside lblock limits or
276 		 * ntfs_rl_vcn_to_lcn() returned error.  Just zero that portion
277 		 * of the page and set the buffer uptodate.
278 		 */
279 handle_hole:
280 		bh->b_blocknr = -1UL;
281 		clear_buffer_mapped(bh);
282 handle_zblock:
283 		kaddr = kmap_atomic(page, KM_USER0);
284 		memset(kaddr + i * blocksize, 0, blocksize);
285 		flush_dcache_page(page);
286 		kunmap_atomic(kaddr, KM_USER0);
287 		set_buffer_uptodate(bh);
288 	} while (i++, iblock++, (bh = bh->b_this_page) != head);
289 
290 	/* Release the lock if we took it. */
291 	if (rl)
292 		up_read(&ni->runlist.lock);
293 
294 	/* Check we have at least one buffer ready for i/o. */
295 	if (nr) {
296 		struct buffer_head *tbh;
297 
298 		/* Lock the buffers. */
299 		for (i = 0; i < nr; i++) {
300 			tbh = arr[i];
301 			lock_buffer(tbh);
302 			tbh->b_end_io = ntfs_end_buffer_async_read;
303 			set_buffer_async_read(tbh);
304 		}
305 		/* Finally, start i/o on the buffers. */
306 		for (i = 0; i < nr; i++) {
307 			tbh = arr[i];
308 			if (likely(!buffer_uptodate(tbh)))
309 				submit_bh(READ, tbh);
310 			else
311 				ntfs_end_buffer_async_read(tbh, 1);
312 		}
313 		return 0;
314 	}
315 	/* No i/o was scheduled on any of the buffers. */
316 	if (likely(!PageError(page)))
317 		SetPageUptodate(page);
318 	else /* Signal synchronous i/o error. */
319 		nr = -EIO;
320 	unlock_page(page);
321 	return nr;
322 }
323 
324 /**
325  * ntfs_readpage - fill a @page of a @file with data from the device
326  * @file:	open file to which the page @page belongs or NULL
327  * @page:	page cache page to fill with data
328  *
329  * For non-resident attributes, ntfs_readpage() fills the @page of the open
330  * file @file by calling the ntfs version of the generic block_read_full_page()
331  * function, ntfs_read_block(), which in turn creates and reads in the buffers
332  * associated with the page asynchronously.
333  *
334  * For resident attributes, OTOH, ntfs_readpage() fills @page by copying the
335  * data from the mft record (which at this stage is most likely in memory) and
336  * fills the remainder with zeroes. Thus, in this case, I/O is synchronous, as
337  * even if the mft record is not cached at this point in time, we need to wait
338  * for it to be read in before we can do the copy.
339  *
340  * Return 0 on success and -errno on error.
341  */
342 static int ntfs_readpage(struct file *file, struct page *page)
343 {
344 	loff_t i_size;
345 	ntfs_inode *ni, *base_ni;
346 	u8 *kaddr;
347 	ntfs_attr_search_ctx *ctx;
348 	MFT_RECORD *mrec;
349 	u32 attr_len;
350 	int err = 0;
351 
352 	BUG_ON(!PageLocked(page));
353 	/*
354 	 * This can potentially happen because we clear PageUptodate() during
355 	 * ntfs_writepage() of MstProtected() attributes.
356 	 */
357 	if (PageUptodate(page)) {
358 		unlock_page(page);
359 		return 0;
360 	}
361 	ni = NTFS_I(page->mapping->host);
362 
363 	/* NInoNonResident() == NInoIndexAllocPresent() */
364 	if (NInoNonResident(ni)) {
365 		/*
366 		 * Only unnamed $DATA attributes can be compressed or
367 		 * encrypted.
368 		 */
369 		if (ni->type == AT_DATA && !ni->name_len) {
370 			/* If file is encrypted, deny access, just like NT4. */
371 			if (NInoEncrypted(ni)) {
372 				err = -EACCES;
373 				goto err_out;
374 			}
375 			/* Compressed data streams are handled in compress.c. */
376 			if (NInoCompressed(ni))
377 				return ntfs_read_compressed_block(page);
378 		}
379 		/* Normal data stream. */
380 		return ntfs_read_block(page);
381 	}
382 	/*
383 	 * Attribute is resident, implying it is not compressed or encrypted.
384 	 * This also means the attribute is smaller than an mft record and
385 	 * hence smaller than a page, so can simply zero out any pages with
386 	 * index above 0.  We can also do this if the file size is 0.
387 	 */
388 	if (unlikely(page->index > 0 || !i_size_read(VFS_I(ni)))) {
389 		kaddr = kmap_atomic(page, KM_USER0);
390 		memset(kaddr, 0, PAGE_CACHE_SIZE);
391 		flush_dcache_page(page);
392 		kunmap_atomic(kaddr, KM_USER0);
393 		goto done;
394 	}
395 	if (!NInoAttr(ni))
396 		base_ni = ni;
397 	else
398 		base_ni = ni->ext.base_ntfs_ino;
399 	/* Map, pin, and lock the mft record. */
400 	mrec = map_mft_record(base_ni);
401 	if (IS_ERR(mrec)) {
402 		err = PTR_ERR(mrec);
403 		goto err_out;
404 	}
405 	ctx = ntfs_attr_get_search_ctx(base_ni, mrec);
406 	if (unlikely(!ctx)) {
407 		err = -ENOMEM;
408 		goto unm_err_out;
409 	}
410 	err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
411 			CASE_SENSITIVE, 0, NULL, 0, ctx);
412 	if (unlikely(err))
413 		goto put_unm_err_out;
414 	attr_len = le32_to_cpu(ctx->attr->data.resident.value_length);
415 	i_size = i_size_read(VFS_I(ni));
416 	if (unlikely(attr_len > i_size))
417 		attr_len = i_size;
418 	kaddr = kmap_atomic(page, KM_USER0);
419 	/* Copy the data to the page. */
420 	memcpy(kaddr, (u8*)ctx->attr +
421 			le16_to_cpu(ctx->attr->data.resident.value_offset),
422 			attr_len);
423 	/* Zero the remainder of the page. */
424 	memset(kaddr + attr_len, 0, PAGE_CACHE_SIZE - attr_len);
425 	flush_dcache_page(page);
426 	kunmap_atomic(kaddr, KM_USER0);
427 put_unm_err_out:
428 	ntfs_attr_put_search_ctx(ctx);
429 unm_err_out:
430 	unmap_mft_record(base_ni);
431 done:
432 	SetPageUptodate(page);
433 err_out:
434 	unlock_page(page);
435 	return err;
436 }
437 
438 #ifdef NTFS_RW
439 
440 /**
441  * ntfs_write_block - write a @page to the backing store
442  * @page:	page cache page to write out
443  * @wbc:	writeback control structure
444  *
445  * This function is for writing pages belonging to non-resident, non-mst
446  * protected attributes to their backing store.
447  *
448  * For a page with buffers, map and write the dirty buffers asynchronously
449  * under page writeback. For a page without buffers, create buffers for the
450  * page, then proceed as above.
451  *
452  * If a page doesn't have buffers the page dirty state is definitive. If a page
453  * does have buffers, the page dirty state is just a hint, and the buffer dirty
454  * state is definitive. (A hint which has rules: dirty buffers against a clean
455  * page is illegal. Other combinations are legal and need to be handled. In
456  * particular a dirty page containing clean buffers for example.)
457  *
458  * Return 0 on success and -errno on error.
459  *
460  * Based on ntfs_read_block() and __block_write_full_page().
461  */
462 static int ntfs_write_block(struct page *page, struct writeback_control *wbc)
463 {
464 	VCN vcn;
465 	LCN lcn;
466 	sector_t block, dblock, iblock;
467 	struct inode *vi;
468 	ntfs_inode *ni;
469 	ntfs_volume *vol;
470 	runlist_element *rl;
471 	struct buffer_head *bh, *head;
472 	unsigned int blocksize, vcn_ofs;
473 	int err;
474 	BOOL need_end_writeback;
475 	unsigned char blocksize_bits;
476 
477 	vi = page->mapping->host;
478 	ni = NTFS_I(vi);
479 	vol = ni->vol;
480 
481 	ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, page index "
482 			"0x%lx.", ni->mft_no, ni->type, page->index);
483 
484 	BUG_ON(!NInoNonResident(ni));
485 	BUG_ON(NInoMstProtected(ni));
486 
487 	blocksize_bits = vi->i_blkbits;
488 	blocksize = 1 << blocksize_bits;
489 
490 	if (!page_has_buffers(page)) {
491 		BUG_ON(!PageUptodate(page));
492 		create_empty_buffers(page, blocksize,
493 				(1 << BH_Uptodate) | (1 << BH_Dirty));
494 	}
495 	bh = head = page_buffers(page);
496 	if (unlikely(!bh)) {
497 		ntfs_warning(vol->sb, "Error allocating page buffers. "
498 				"Redirtying page so we try again later.");
499 		/*
500 		 * Put the page back on mapping->dirty_pages, but leave its
501 		 * buffer's dirty state as-is.
502 		 */
503 		redirty_page_for_writepage(wbc, page);
504 		unlock_page(page);
505 		return 0;
506 	}
507 
508 	/* NOTE: Different naming scheme to ntfs_read_block()! */
509 
510 	/* The first block in the page. */
511 	block = (s64)page->index << (PAGE_CACHE_SHIFT - blocksize_bits);
512 
513 	/* The first out of bounds block for the data size. */
514 	dblock = (vi->i_size + blocksize - 1) >> blocksize_bits;
515 
516 	/* The last (fully or partially) initialized block. */
517 	iblock = ni->initialized_size >> blocksize_bits;
518 
519 	/*
520 	 * Be very careful.  We have no exclusion from __set_page_dirty_buffers
521 	 * here, and the (potentially unmapped) buffers may become dirty at
522 	 * any time.  If a buffer becomes dirty here after we've inspected it
523 	 * then we just miss that fact, and the page stays dirty.
524 	 *
525 	 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
526 	 * handle that here by just cleaning them.
527 	 */
528 
529 	/*
530 	 * Loop through all the buffers in the page, mapping all the dirty
531 	 * buffers to disk addresses and handling any aliases from the
532 	 * underlying block device's mapping.
533 	 */
534 	rl = NULL;
535 	err = 0;
536 	do {
537 		BOOL is_retry = FALSE;
538 
539 		if (unlikely(block >= dblock)) {
540 			/*
541 			 * Mapped buffers outside i_size will occur, because
542 			 * this page can be outside i_size when there is a
543 			 * truncate in progress. The contents of such buffers
544 			 * were zeroed by ntfs_writepage().
545 			 *
546 			 * FIXME: What about the small race window where
547 			 * ntfs_writepage() has not done any clearing because
548 			 * the page was within i_size but before we get here,
549 			 * vmtruncate() modifies i_size?
550 			 */
551 			clear_buffer_dirty(bh);
552 			set_buffer_uptodate(bh);
553 			continue;
554 		}
555 
556 		/* Clean buffers are not written out, so no need to map them. */
557 		if (!buffer_dirty(bh))
558 			continue;
559 
560 		/* Make sure we have enough initialized size. */
561 		if (unlikely((block >= iblock) &&
562 				(ni->initialized_size < vi->i_size))) {
563 			/*
564 			 * If this page is fully outside initialized size, zero
565 			 * out all pages between the current initialized size
566 			 * and the current page. Just use ntfs_readpage() to do
567 			 * the zeroing transparently.
568 			 */
569 			if (block > iblock) {
570 				// TODO:
571 				// For each page do:
572 				// - read_cache_page()
573 				// Again for each page do:
574 				// - wait_on_page_locked()
575 				// - Check (PageUptodate(page) &&
576 				//			!PageError(page))
577 				// Update initialized size in the attribute and
578 				// in the inode.
579 				// Again, for each page do:
580 				//	__set_page_dirty_buffers();
581 				// page_cache_release()
582 				// We don't need to wait on the writes.
583 				// Update iblock.
584 			}
585 			/*
586 			 * The current page straddles initialized size. Zero
587 			 * all non-uptodate buffers and set them uptodate (and
588 			 * dirty?). Note, there aren't any non-uptodate buffers
589 			 * if the page is uptodate.
590 			 * FIXME: For an uptodate page, the buffers may need to
591 			 * be written out because they were not initialized on
592 			 * disk before.
593 			 */
594 			if (!PageUptodate(page)) {
595 				// TODO:
596 				// Zero any non-uptodate buffers up to i_size.
597 				// Set them uptodate and dirty.
598 			}
599 			// TODO:
600 			// Update initialized size in the attribute and in the
601 			// inode (up to i_size).
602 			// Update iblock.
603 			// FIXME: This is inefficient. Try to batch the two
604 			// size changes to happen in one go.
605 			ntfs_error(vol->sb, "Writing beyond initialized size "
606 					"is not supported yet. Sorry.");
607 			err = -EOPNOTSUPP;
608 			break;
609 			// Do NOT set_buffer_new() BUT DO clear buffer range
610 			// outside write request range.
611 			// set_buffer_uptodate() on complete buffers as well as
612 			// set_buffer_dirty().
613 		}
614 
615 		/* No need to map buffers that are already mapped. */
616 		if (buffer_mapped(bh))
617 			continue;
618 
619 		/* Unmapped, dirty buffer. Need to map it. */
620 		bh->b_bdev = vol->sb->s_bdev;
621 
622 		/* Convert block into corresponding vcn and offset. */
623 		vcn = (VCN)block << blocksize_bits;
624 		vcn_ofs = vcn & vol->cluster_size_mask;
625 		vcn >>= vol->cluster_size_bits;
626 		if (!rl) {
627 lock_retry_remap:
628 			down_read(&ni->runlist.lock);
629 			rl = ni->runlist.rl;
630 		}
631 		if (likely(rl != NULL)) {
632 			/* Seek to element containing target vcn. */
633 			while (rl->length && rl[1].vcn <= vcn)
634 				rl++;
635 			lcn = ntfs_rl_vcn_to_lcn(rl, vcn);
636 		} else
637 			lcn = LCN_RL_NOT_MAPPED;
638 		/* Successful remap. */
639 		if (lcn >= 0) {
640 			/* Setup buffer head to point to correct block. */
641 			bh->b_blocknr = ((lcn << vol->cluster_size_bits) +
642 					vcn_ofs) >> blocksize_bits;
643 			set_buffer_mapped(bh);
644 			continue;
645 		}
646 		/* It is a hole, need to instantiate it. */
647 		if (lcn == LCN_HOLE) {
648 			// TODO: Instantiate the hole.
649 			// clear_buffer_new(bh);
650 			// unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
651 			ntfs_error(vol->sb, "Writing into sparse regions is "
652 					"not supported yet. Sorry.");
653 			err = -EOPNOTSUPP;
654 			break;
655 		}
656 		/* If first try and runlist unmapped, map and retry. */
657 		if (!is_retry && lcn == LCN_RL_NOT_MAPPED) {
658 			is_retry = TRUE;
659 			/*
660 			 * Attempt to map runlist, dropping lock for
661 			 * the duration.
662 			 */
663 			up_read(&ni->runlist.lock);
664 			err = ntfs_map_runlist(ni, vcn);
665 			if (likely(!err))
666 				goto lock_retry_remap;
667 			rl = NULL;
668 			lcn = err;
669 		}
670 		/* Failed to map the buffer, even after retrying. */
671 		bh->b_blocknr = -1;
672 		ntfs_error(vol->sb, "Failed to write to inode 0x%lx, "
673 				"attribute type 0x%x, vcn 0x%llx, offset 0x%x "
674 				"because its location on disk could not be "
675 				"determined%s (error code %lli).", ni->mft_no,
676 				ni->type, (unsigned long long)vcn,
677 				vcn_ofs, is_retry ? " even after "
678 				"retrying" : "", (long long)lcn);
679 		if (!err)
680 			err = -EIO;
681 		break;
682 	} while (block++, (bh = bh->b_this_page) != head);
683 
684 	/* Release the lock if we took it. */
685 	if (rl)
686 		up_read(&ni->runlist.lock);
687 
688 	/* For the error case, need to reset bh to the beginning. */
689 	bh = head;
690 
691 	/* Just an optimization, so ->readpage() isn't called later. */
692 	if (unlikely(!PageUptodate(page))) {
693 		int uptodate = 1;
694 		do {
695 			if (!buffer_uptodate(bh)) {
696 				uptodate = 0;
697 				bh = head;
698 				break;
699 			}
700 		} while ((bh = bh->b_this_page) != head);
701 		if (uptodate)
702 			SetPageUptodate(page);
703 	}
704 
705 	/* Setup all mapped, dirty buffers for async write i/o. */
706 	do {
707 		get_bh(bh);
708 		if (buffer_mapped(bh) && buffer_dirty(bh)) {
709 			lock_buffer(bh);
710 			if (test_clear_buffer_dirty(bh)) {
711 				BUG_ON(!buffer_uptodate(bh));
712 				mark_buffer_async_write(bh);
713 			} else
714 				unlock_buffer(bh);
715 		} else if (unlikely(err)) {
716 			/*
717 			 * For the error case. The buffer may have been set
718 			 * dirty during attachment to a dirty page.
719 			 */
720 			if (err != -ENOMEM)
721 				clear_buffer_dirty(bh);
722 		}
723 	} while ((bh = bh->b_this_page) != head);
724 
725 	if (unlikely(err)) {
726 		// TODO: Remove the -EOPNOTSUPP check later on...
727 		if (unlikely(err == -EOPNOTSUPP))
728 			err = 0;
729 		else if (err == -ENOMEM) {
730 			ntfs_warning(vol->sb, "Error allocating memory. "
731 					"Redirtying page so we try again "
732 					"later.");
733 			/*
734 			 * Put the page back on mapping->dirty_pages, but
735 			 * leave its buffer's dirty state as-is.
736 			 */
737 			redirty_page_for_writepage(wbc, page);
738 			err = 0;
739 		} else
740 			SetPageError(page);
741 	}
742 
743 	BUG_ON(PageWriteback(page));
744 	set_page_writeback(page);	/* Keeps try_to_free_buffers() away. */
745 	unlock_page(page);
746 
747 	/*
748 	 * Submit the prepared buffers for i/o. Note the page is unlocked,
749 	 * and the async write i/o completion handler can end_page_writeback()
750 	 * at any time after the *first* submit_bh(). So the buffers can then
751 	 * disappear...
752 	 */
753 	need_end_writeback = TRUE;
754 	do {
755 		struct buffer_head *next = bh->b_this_page;
756 		if (buffer_async_write(bh)) {
757 			submit_bh(WRITE, bh);
758 			need_end_writeback = FALSE;
759 		}
760 		put_bh(bh);
761 		bh = next;
762 	} while (bh != head);
763 
764 	/* If no i/o was started, need to end_page_writeback(). */
765 	if (unlikely(need_end_writeback))
766 		end_page_writeback(page);
767 
768 	ntfs_debug("Done.");
769 	return err;
770 }
771 
772 /**
773  * ntfs_write_mst_block - write a @page to the backing store
774  * @page:	page cache page to write out
775  * @wbc:	writeback control structure
776  *
777  * This function is for writing pages belonging to non-resident, mst protected
778  * attributes to their backing store.  The only supported attributes are index
779  * allocation and $MFT/$DATA.  Both directory inodes and index inodes are
780  * supported for the index allocation case.
781  *
782  * The page must remain locked for the duration of the write because we apply
783  * the mst fixups, write, and then undo the fixups, so if we were to unlock the
784  * page before undoing the fixups, any other user of the page will see the
785  * page contents as corrupt.
786  *
787  * We clear the page uptodate flag for the duration of the function to ensure
788  * exclusion for the $MFT/$DATA case against someone mapping an mft record we
789  * are about to apply the mst fixups to.
790  *
791  * Return 0 on success and -errno on error.
792  *
793  * Based on ntfs_write_block(), ntfs_mft_writepage(), and
794  * write_mft_record_nolock().
795  */
796 static int ntfs_write_mst_block(struct page *page,
797 		struct writeback_control *wbc)
798 {
799 	sector_t block, dblock, rec_block;
800 	struct inode *vi = page->mapping->host;
801 	ntfs_inode *ni = NTFS_I(vi);
802 	ntfs_volume *vol = ni->vol;
803 	u8 *kaddr;
804 	unsigned char bh_size_bits = vi->i_blkbits;
805 	unsigned int bh_size = 1 << bh_size_bits;
806 	unsigned int rec_size = ni->itype.index.block_size;
807 	ntfs_inode *locked_nis[PAGE_CACHE_SIZE / rec_size];
808 	struct buffer_head *bh, *head, *tbh, *rec_start_bh;
809 	int max_bhs = PAGE_CACHE_SIZE / bh_size;
810 	struct buffer_head *bhs[max_bhs];
811 	runlist_element *rl;
812 	int i, nr_locked_nis, nr_recs, nr_bhs, bhs_per_rec, err, err2;
813 	unsigned rec_size_bits;
814 	BOOL sync, is_mft, page_is_dirty, rec_is_dirty;
815 
816 	ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, page index "
817 			"0x%lx.", vi->i_ino, ni->type, page->index);
818 	BUG_ON(!NInoNonResident(ni));
819 	BUG_ON(!NInoMstProtected(ni));
820 	is_mft = (S_ISREG(vi->i_mode) && !vi->i_ino);
821 	/*
822 	 * NOTE: ntfs_write_mst_block() would be called for $MFTMirr if a page
823 	 * in its page cache were to be marked dirty.  However this should
824 	 * never happen with the current driver and considering we do not
825 	 * handle this case here we do want to BUG(), at least for now.
826 	 */
827 	BUG_ON(!(is_mft || S_ISDIR(vi->i_mode) ||
828 			(NInoAttr(ni) && ni->type == AT_INDEX_ALLOCATION)));
829 	BUG_ON(!max_bhs);
830 
831 	/* Were we called for sync purposes? */
832 	sync = (wbc->sync_mode == WB_SYNC_ALL);
833 
834 	/* Make sure we have mapped buffers. */
835 	BUG_ON(!page_has_buffers(page));
836 	bh = head = page_buffers(page);
837 	BUG_ON(!bh);
838 
839 	rec_size_bits = ni->itype.index.block_size_bits;
840 	BUG_ON(!(PAGE_CACHE_SIZE >> rec_size_bits));
841 	bhs_per_rec = rec_size >> bh_size_bits;
842 	BUG_ON(!bhs_per_rec);
843 
844 	/* The first block in the page. */
845 	rec_block = block = (sector_t)page->index <<
846 			(PAGE_CACHE_SHIFT - bh_size_bits);
847 
848 	/* The first out of bounds block for the data size. */
849 	dblock = (vi->i_size + bh_size - 1) >> bh_size_bits;
850 
851 	rl = NULL;
852 	err = err2 = nr_bhs = nr_recs = nr_locked_nis = 0;
853 	page_is_dirty = rec_is_dirty = FALSE;
854 	rec_start_bh = NULL;
855 	do {
856 		BOOL is_retry = FALSE;
857 
858 		if (likely(block < rec_block)) {
859 			if (unlikely(block >= dblock)) {
860 				clear_buffer_dirty(bh);
861 				continue;
862 			}
863 			/*
864 			 * This block is not the first one in the record.  We
865 			 * ignore the buffer's dirty state because we could
866 			 * have raced with a parallel mark_ntfs_record_dirty().
867 			 */
868 			if (!rec_is_dirty)
869 				continue;
870 			if (unlikely(err2)) {
871 				if (err2 != -ENOMEM)
872 					clear_buffer_dirty(bh);
873 				continue;
874 			}
875 		} else /* if (block == rec_block) */ {
876 			BUG_ON(block > rec_block);
877 			/* This block is the first one in the record. */
878 			rec_block += bhs_per_rec;
879 			err2 = 0;
880 			if (unlikely(block >= dblock)) {
881 				clear_buffer_dirty(bh);
882 				continue;
883 			}
884 			if (!buffer_dirty(bh)) {
885 				/* Clean records are not written out. */
886 				rec_is_dirty = FALSE;
887 				continue;
888 			}
889 			rec_is_dirty = TRUE;
890 			rec_start_bh = bh;
891 		}
892 		/* Need to map the buffer if it is not mapped already. */
893 		if (unlikely(!buffer_mapped(bh))) {
894 			VCN vcn;
895 			LCN lcn;
896 			unsigned int vcn_ofs;
897 
898 			/* Obtain the vcn and offset of the current block. */
899 			vcn = (VCN)block << bh_size_bits;
900 			vcn_ofs = vcn & vol->cluster_size_mask;
901 			vcn >>= vol->cluster_size_bits;
902 			if (!rl) {
903 lock_retry_remap:
904 				down_read(&ni->runlist.lock);
905 				rl = ni->runlist.rl;
906 			}
907 			if (likely(rl != NULL)) {
908 				/* Seek to element containing target vcn. */
909 				while (rl->length && rl[1].vcn <= vcn)
910 					rl++;
911 				lcn = ntfs_rl_vcn_to_lcn(rl, vcn);
912 			} else
913 				lcn = LCN_RL_NOT_MAPPED;
914 			/* Successful remap. */
915 			if (likely(lcn >= 0)) {
916 				/* Setup buffer head to correct block. */
917 				bh->b_blocknr = ((lcn <<
918 						vol->cluster_size_bits) +
919 						vcn_ofs) >> bh_size_bits;
920 				set_buffer_mapped(bh);
921 			} else {
922 				/*
923 				 * Remap failed.  Retry to map the runlist once
924 				 * unless we are working on $MFT which always
925 				 * has the whole of its runlist in memory.
926 				 */
927 				if (!is_mft && !is_retry &&
928 						lcn == LCN_RL_NOT_MAPPED) {
929 					is_retry = TRUE;
930 					/*
931 					 * Attempt to map runlist, dropping
932 					 * lock for the duration.
933 					 */
934 					up_read(&ni->runlist.lock);
935 					err2 = ntfs_map_runlist(ni, vcn);
936 					if (likely(!err2))
937 						goto lock_retry_remap;
938 					if (err2 == -ENOMEM)
939 						page_is_dirty = TRUE;
940 					lcn = err2;
941 				} else
942 					err2 = -EIO;
943 				/* Hard error.  Abort writing this record. */
944 				if (!err || err == -ENOMEM)
945 					err = err2;
946 				bh->b_blocknr = -1;
947 				ntfs_error(vol->sb, "Cannot write ntfs record "
948 						"0x%llx (inode 0x%lx, "
949 						"attribute type 0x%x) because "
950 						"its location on disk could "
951 						"not be determined (error "
952 						"code %lli).", (s64)block <<
953 						bh_size_bits >>
954 						vol->mft_record_size_bits,
955 						ni->mft_no, ni->type,
956 						(long long)lcn);
957 				/*
958 				 * If this is not the first buffer, remove the
959 				 * buffers in this record from the list of
960 				 * buffers to write and clear their dirty bit
961 				 * if not error -ENOMEM.
962 				 */
963 				if (rec_start_bh != bh) {
964 					while (bhs[--nr_bhs] != rec_start_bh)
965 						;
966 					if (err2 != -ENOMEM) {
967 						do {
968 							clear_buffer_dirty(
969 								rec_start_bh);
970 						} while ((rec_start_bh =
971 								rec_start_bh->
972 								b_this_page) !=
973 								bh);
974 					}
975 				}
976 				continue;
977 			}
978 		}
979 		BUG_ON(!buffer_uptodate(bh));
980 		BUG_ON(nr_bhs >= max_bhs);
981 		bhs[nr_bhs++] = bh;
982 	} while (block++, (bh = bh->b_this_page) != head);
983 	if (unlikely(rl))
984 		up_read(&ni->runlist.lock);
985 	/* If there were no dirty buffers, we are done. */
986 	if (!nr_bhs)
987 		goto done;
988 	/* Map the page so we can access its contents. */
989 	kaddr = kmap(page);
990 	/* Clear the page uptodate flag whilst the mst fixups are applied. */
991 	BUG_ON(!PageUptodate(page));
992 	ClearPageUptodate(page);
993 	for (i = 0; i < nr_bhs; i++) {
994 		unsigned int ofs;
995 
996 		/* Skip buffers which are not at the beginning of records. */
997 		if (i % bhs_per_rec)
998 			continue;
999 		tbh = bhs[i];
1000 		ofs = bh_offset(tbh);
1001 		if (is_mft) {
1002 			ntfs_inode *tni;
1003 			unsigned long mft_no;
1004 
1005 			/* Get the mft record number. */
1006 			mft_no = (((s64)page->index << PAGE_CACHE_SHIFT) + ofs)
1007 					>> rec_size_bits;
1008 			/* Check whether to write this mft record. */
1009 			tni = NULL;
1010 			if (!ntfs_may_write_mft_record(vol, mft_no,
1011 					(MFT_RECORD*)(kaddr + ofs), &tni)) {
1012 				/*
1013 				 * The record should not be written.  This
1014 				 * means we need to redirty the page before
1015 				 * returning.
1016 				 */
1017 				page_is_dirty = TRUE;
1018 				/*
1019 				 * Remove the buffers in this mft record from
1020 				 * the list of buffers to write.
1021 				 */
1022 				do {
1023 					bhs[i] = NULL;
1024 				} while (++i % bhs_per_rec);
1025 				continue;
1026 			}
1027 			/*
1028 			 * The record should be written.  If a locked ntfs
1029 			 * inode was returned, add it to the array of locked
1030 			 * ntfs inodes.
1031 			 */
1032 			if (tni)
1033 				locked_nis[nr_locked_nis++] = tni;
1034 		}
1035 		/* Apply the mst protection fixups. */
1036 		err2 = pre_write_mst_fixup((NTFS_RECORD*)(kaddr + ofs),
1037 				rec_size);
1038 		if (unlikely(err2)) {
1039 			if (!err || err == -ENOMEM)
1040 				err = -EIO;
1041 			ntfs_error(vol->sb, "Failed to apply mst fixups "
1042 					"(inode 0x%lx, attribute type 0x%x, "
1043 					"page index 0x%lx, page offset 0x%x)!"
1044 					"  Unmount and run chkdsk.", vi->i_ino,
1045 					ni->type, page->index, ofs);
1046 			/*
1047 			 * Mark all the buffers in this record clean as we do
1048 			 * not want to write corrupt data to disk.
1049 			 */
1050 			do {
1051 				clear_buffer_dirty(bhs[i]);
1052 				bhs[i] = NULL;
1053 			} while (++i % bhs_per_rec);
1054 			continue;
1055 		}
1056 		nr_recs++;
1057 	}
1058 	/* If no records are to be written out, we are done. */
1059 	if (!nr_recs)
1060 		goto unm_done;
1061 	flush_dcache_page(page);
1062 	/* Lock buffers and start synchronous write i/o on them. */
1063 	for (i = 0; i < nr_bhs; i++) {
1064 		tbh = bhs[i];
1065 		if (!tbh)
1066 			continue;
1067 		if (unlikely(test_set_buffer_locked(tbh)))
1068 			BUG();
1069 		/* The buffer dirty state is now irrelevant, just clean it. */
1070 		clear_buffer_dirty(tbh);
1071 		BUG_ON(!buffer_uptodate(tbh));
1072 		BUG_ON(!buffer_mapped(tbh));
1073 		get_bh(tbh);
1074 		tbh->b_end_io = end_buffer_write_sync;
1075 		submit_bh(WRITE, tbh);
1076 	}
1077 	/* Synchronize the mft mirror now if not @sync. */
1078 	if (is_mft && !sync)
1079 		goto do_mirror;
1080 do_wait:
1081 	/* Wait on i/o completion of buffers. */
1082 	for (i = 0; i < nr_bhs; i++) {
1083 		tbh = bhs[i];
1084 		if (!tbh)
1085 			continue;
1086 		wait_on_buffer(tbh);
1087 		if (unlikely(!buffer_uptodate(tbh))) {
1088 			ntfs_error(vol->sb, "I/O error while writing ntfs "
1089 					"record buffer (inode 0x%lx, "
1090 					"attribute type 0x%x, page index "
1091 					"0x%lx, page offset 0x%lx)!  Unmount "
1092 					"and run chkdsk.", vi->i_ino, ni->type,
1093 					page->index, bh_offset(tbh));
1094 			if (!err || err == -ENOMEM)
1095 				err = -EIO;
1096 			/*
1097 			 * Set the buffer uptodate so the page and buffer
1098 			 * states do not become out of sync.
1099 			 */
1100 			set_buffer_uptodate(tbh);
1101 		}
1102 	}
1103 	/* If @sync, now synchronize the mft mirror. */
1104 	if (is_mft && sync) {
1105 do_mirror:
1106 		for (i = 0; i < nr_bhs; i++) {
1107 			unsigned long mft_no;
1108 			unsigned int ofs;
1109 
1110 			/*
1111 			 * Skip buffers which are not at the beginning of
1112 			 * records.
1113 			 */
1114 			if (i % bhs_per_rec)
1115 				continue;
1116 			tbh = bhs[i];
1117 			/* Skip removed buffers (and hence records). */
1118 			if (!tbh)
1119 				continue;
1120 			ofs = bh_offset(tbh);
1121 			/* Get the mft record number. */
1122 			mft_no = (((s64)page->index << PAGE_CACHE_SHIFT) + ofs)
1123 					>> rec_size_bits;
1124 			if (mft_no < vol->mftmirr_size)
1125 				ntfs_sync_mft_mirror(vol, mft_no,
1126 						(MFT_RECORD*)(kaddr + ofs),
1127 						sync);
1128 		}
1129 		if (!sync)
1130 			goto do_wait;
1131 	}
1132 	/* Remove the mst protection fixups again. */
1133 	for (i = 0; i < nr_bhs; i++) {
1134 		if (!(i % bhs_per_rec)) {
1135 			tbh = bhs[i];
1136 			if (!tbh)
1137 				continue;
1138 			post_write_mst_fixup((NTFS_RECORD*)(kaddr +
1139 					bh_offset(tbh)));
1140 		}
1141 	}
1142 	flush_dcache_page(page);
1143 unm_done:
1144 	/* Unlock any locked inodes. */
1145 	while (nr_locked_nis-- > 0) {
1146 		ntfs_inode *tni, *base_tni;
1147 
1148 		tni = locked_nis[nr_locked_nis];
1149 		/* Get the base inode. */
1150 		down(&tni->extent_lock);
1151 		if (tni->nr_extents >= 0)
1152 			base_tni = tni;
1153 		else {
1154 			base_tni = tni->ext.base_ntfs_ino;
1155 			BUG_ON(!base_tni);
1156 		}
1157 		up(&tni->extent_lock);
1158 		ntfs_debug("Unlocking %s inode 0x%lx.",
1159 				tni == base_tni ? "base" : "extent",
1160 				tni->mft_no);
1161 		up(&tni->mrec_lock);
1162 		atomic_dec(&tni->count);
1163 		iput(VFS_I(base_tni));
1164 	}
1165 	SetPageUptodate(page);
1166 	kunmap(page);
1167 done:
1168 	if (unlikely(err && err != -ENOMEM)) {
1169 		/*
1170 		 * Set page error if there is only one ntfs record in the page.
1171 		 * Otherwise we would loose per-record granularity.
1172 		 */
1173 		if (ni->itype.index.block_size == PAGE_CACHE_SIZE)
1174 			SetPageError(page);
1175 		NVolSetErrors(vol);
1176 	}
1177 	if (page_is_dirty) {
1178 		ntfs_debug("Page still contains one or more dirty ntfs "
1179 				"records.  Redirtying the page starting at "
1180 				"record 0x%lx.", page->index <<
1181 				(PAGE_CACHE_SHIFT - rec_size_bits));
1182 		redirty_page_for_writepage(wbc, page);
1183 		unlock_page(page);
1184 	} else {
1185 		/*
1186 		 * Keep the VM happy.  This must be done otherwise the
1187 		 * radix-tree tag PAGECACHE_TAG_DIRTY remains set even though
1188 		 * the page is clean.
1189 		 */
1190 		BUG_ON(PageWriteback(page));
1191 		set_page_writeback(page);
1192 		unlock_page(page);
1193 		end_page_writeback(page);
1194 	}
1195 	if (likely(!err))
1196 		ntfs_debug("Done.");
1197 	return err;
1198 }
1199 
1200 /**
1201  * ntfs_writepage - write a @page to the backing store
1202  * @page:	page cache page to write out
1203  * @wbc:	writeback control structure
1204  *
1205  * This is called from the VM when it wants to have a dirty ntfs page cache
1206  * page cleaned.  The VM has already locked the page and marked it clean.
1207  *
1208  * For non-resident attributes, ntfs_writepage() writes the @page by calling
1209  * the ntfs version of the generic block_write_full_page() function,
1210  * ntfs_write_block(), which in turn if necessary creates and writes the
1211  * buffers associated with the page asynchronously.
1212  *
1213  * For resident attributes, OTOH, ntfs_writepage() writes the @page by copying
1214  * the data to the mft record (which at this stage is most likely in memory).
1215  * The mft record is then marked dirty and written out asynchronously via the
1216  * vfs inode dirty code path for the inode the mft record belongs to or via the
1217  * vm page dirty code path for the page the mft record is in.
1218  *
1219  * Based on ntfs_readpage() and fs/buffer.c::block_write_full_page().
1220  *
1221  * Return 0 on success and -errno on error.
1222  */
1223 static int ntfs_writepage(struct page *page, struct writeback_control *wbc)
1224 {
1225 	loff_t i_size;
1226 	struct inode *vi;
1227 	ntfs_inode *ni, *base_ni;
1228 	char *kaddr;
1229 	ntfs_attr_search_ctx *ctx;
1230 	MFT_RECORD *m;
1231 	u32 attr_len;
1232 	int err;
1233 
1234 	BUG_ON(!PageLocked(page));
1235 
1236 	vi = page->mapping->host;
1237 	i_size = i_size_read(vi);
1238 
1239 	/* Is the page fully outside i_size? (truncate in progress) */
1240 	if (unlikely(page->index >= (i_size + PAGE_CACHE_SIZE - 1) >>
1241 			PAGE_CACHE_SHIFT)) {
1242 		/*
1243 		 * The page may have dirty, unmapped buffers.  Make them
1244 		 * freeable here, so the page does not leak.
1245 		 */
1246 		block_invalidatepage(page, 0);
1247 		unlock_page(page);
1248 		ntfs_debug("Write outside i_size - truncated?");
1249 		return 0;
1250 	}
1251 	ni = NTFS_I(vi);
1252 
1253 	/* NInoNonResident() == NInoIndexAllocPresent() */
1254 	if (NInoNonResident(ni)) {
1255 		/*
1256 		 * Only unnamed $DATA attributes can be compressed, encrypted,
1257 		 * and/or sparse.
1258 		 */
1259 		if (ni->type == AT_DATA && !ni->name_len) {
1260 			/* If file is encrypted, deny access, just like NT4. */
1261 			if (NInoEncrypted(ni)) {
1262 				unlock_page(page);
1263 				ntfs_debug("Denying write access to encrypted "
1264 						"file.");
1265 				return -EACCES;
1266 			}
1267 			/* Compressed data streams are handled in compress.c. */
1268 			if (NInoCompressed(ni)) {
1269 				// TODO: Implement and replace this check with
1270 				// return ntfs_write_compressed_block(page);
1271 				unlock_page(page);
1272 				ntfs_error(vi->i_sb, "Writing to compressed "
1273 						"files is not supported yet. "
1274 						"Sorry.");
1275 				return -EOPNOTSUPP;
1276 			}
1277 			// TODO: Implement and remove this check.
1278 			if (NInoSparse(ni)) {
1279 				unlock_page(page);
1280 				ntfs_error(vi->i_sb, "Writing to sparse files "
1281 						"is not supported yet. Sorry.");
1282 				return -EOPNOTSUPP;
1283 			}
1284 		}
1285 		/* We have to zero every time due to mmap-at-end-of-file. */
1286 		if (page->index >= (i_size >> PAGE_CACHE_SHIFT)) {
1287 			/* The page straddles i_size. */
1288 			unsigned int ofs = i_size & ~PAGE_CACHE_MASK;
1289 			kaddr = kmap_atomic(page, KM_USER0);
1290 			memset(kaddr + ofs, 0, PAGE_CACHE_SIZE - ofs);
1291 			flush_dcache_page(page);
1292 			kunmap_atomic(kaddr, KM_USER0);
1293 		}
1294 		/* Handle mst protected attributes. */
1295 		if (NInoMstProtected(ni))
1296 			return ntfs_write_mst_block(page, wbc);
1297 		/* Normal data stream. */
1298 		return ntfs_write_block(page, wbc);
1299 	}
1300 	/*
1301 	 * Attribute is resident, implying it is not compressed, encrypted,
1302 	 * sparse, or mst protected.  This also means the attribute is smaller
1303 	 * than an mft record and hence smaller than a page, so can simply
1304 	 * return error on any pages with index above 0.
1305 	 */
1306 	BUG_ON(page_has_buffers(page));
1307 	BUG_ON(!PageUptodate(page));
1308 	if (unlikely(page->index > 0)) {
1309 		ntfs_error(vi->i_sb, "BUG()! page->index (0x%lx) > 0.  "
1310 				"Aborting write.", page->index);
1311 		BUG_ON(PageWriteback(page));
1312 		set_page_writeback(page);
1313 		unlock_page(page);
1314 		end_page_writeback(page);
1315 		return -EIO;
1316 	}
1317 	if (!NInoAttr(ni))
1318 		base_ni = ni;
1319 	else
1320 		base_ni = ni->ext.base_ntfs_ino;
1321 	/* Map, pin, and lock the mft record. */
1322 	m = map_mft_record(base_ni);
1323 	if (IS_ERR(m)) {
1324 		err = PTR_ERR(m);
1325 		m = NULL;
1326 		ctx = NULL;
1327 		goto err_out;
1328 	}
1329 	ctx = ntfs_attr_get_search_ctx(base_ni, m);
1330 	if (unlikely(!ctx)) {
1331 		err = -ENOMEM;
1332 		goto err_out;
1333 	}
1334 	err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
1335 			CASE_SENSITIVE, 0, NULL, 0, ctx);
1336 	if (unlikely(err))
1337 		goto err_out;
1338 	/*
1339 	 * Keep the VM happy.  This must be done otherwise the radix-tree tag
1340 	 * PAGECACHE_TAG_DIRTY remains set even though the page is clean.
1341 	 */
1342 	BUG_ON(PageWriteback(page));
1343 	set_page_writeback(page);
1344 	unlock_page(page);
1345 
1346 	/*
1347 	 * Here, we don't need to zero the out of bounds area everytime because
1348 	 * the below memcpy() already takes care of the mmap-at-end-of-file
1349 	 * requirements. If the file is converted to a non-resident one, then
1350 	 * the code path use is switched to the non-resident one where the
1351 	 * zeroing happens on each ntfs_writepage() invocation.
1352 	 *
1353 	 * The above also applies nicely when i_size is decreased.
1354 	 *
1355 	 * When i_size is increased, the memory between the old and new i_size
1356 	 * _must_ be zeroed (or overwritten with new data). Otherwise we will
1357 	 * expose data to userspace/disk which should never have been exposed.
1358 	 *
1359 	 * FIXME: Ensure that i_size increases do the zeroing/overwriting and
1360 	 * if we cannot guarantee that, then enable the zeroing below.  If the
1361 	 * zeroing below is enabled, we MUST move the unlock_page() from above
1362 	 * to after the kunmap_atomic(), i.e. just before the
1363 	 * end_page_writeback().
1364 	 * UPDATE: ntfs_prepare/commit_write() do the zeroing on i_size
1365 	 * increases for resident attributes so those are ok.
1366 	 * TODO: ntfs_truncate(), others?
1367 	 */
1368 
1369 	attr_len = le32_to_cpu(ctx->attr->data.resident.value_length);
1370 	i_size = i_size_read(VFS_I(ni));
1371 	kaddr = kmap_atomic(page, KM_USER0);
1372 	if (unlikely(attr_len > i_size)) {
1373 		/* Zero out of bounds area in the mft record. */
1374 		memset((u8*)ctx->attr + le16_to_cpu(
1375 				ctx->attr->data.resident.value_offset) +
1376 				i_size, 0, attr_len - i_size);
1377 		attr_len = i_size;
1378 	}
1379 	/* Copy the data from the page to the mft record. */
1380 	memcpy((u8*)ctx->attr +
1381 			le16_to_cpu(ctx->attr->data.resident.value_offset),
1382 			kaddr, attr_len);
1383 	flush_dcache_mft_record_page(ctx->ntfs_ino);
1384 	/* Zero out of bounds area in the page cache page. */
1385 	memset(kaddr + attr_len, 0, PAGE_CACHE_SIZE - attr_len);
1386 	flush_dcache_page(page);
1387 	kunmap_atomic(kaddr, KM_USER0);
1388 
1389 	end_page_writeback(page);
1390 
1391 	/* Mark the mft record dirty, so it gets written back. */
1392 	mark_mft_record_dirty(ctx->ntfs_ino);
1393 	ntfs_attr_put_search_ctx(ctx);
1394 	unmap_mft_record(base_ni);
1395 	return 0;
1396 err_out:
1397 	if (err == -ENOMEM) {
1398 		ntfs_warning(vi->i_sb, "Error allocating memory. Redirtying "
1399 				"page so we try again later.");
1400 		/*
1401 		 * Put the page back on mapping->dirty_pages, but leave its
1402 		 * buffers' dirty state as-is.
1403 		 */
1404 		redirty_page_for_writepage(wbc, page);
1405 		err = 0;
1406 	} else {
1407 		ntfs_error(vi->i_sb, "Resident attribute write failed with "
1408 				"error %i.  Setting page error flag.", err);
1409 		SetPageError(page);
1410 	}
1411 	unlock_page(page);
1412 	if (ctx)
1413 		ntfs_attr_put_search_ctx(ctx);
1414 	if (m)
1415 		unmap_mft_record(base_ni);
1416 	return err;
1417 }
1418 
1419 /**
1420  * ntfs_prepare_nonresident_write -
1421  *
1422  */
1423 static int ntfs_prepare_nonresident_write(struct page *page,
1424 		unsigned from, unsigned to)
1425 {
1426 	VCN vcn;
1427 	LCN lcn;
1428 	sector_t block, ablock, iblock;
1429 	struct inode *vi;
1430 	ntfs_inode *ni;
1431 	ntfs_volume *vol;
1432 	runlist_element *rl;
1433 	struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
1434 	unsigned int vcn_ofs, block_start, block_end, blocksize;
1435 	int err;
1436 	BOOL is_retry;
1437 	unsigned char blocksize_bits;
1438 
1439 	vi = page->mapping->host;
1440 	ni = NTFS_I(vi);
1441 	vol = ni->vol;
1442 
1443 	ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, page index "
1444 			"0x%lx, from = %u, to = %u.", ni->mft_no, ni->type,
1445 			page->index, from, to);
1446 
1447 	BUG_ON(!NInoNonResident(ni));
1448 
1449 	blocksize_bits = vi->i_blkbits;
1450 	blocksize = 1 << blocksize_bits;
1451 
1452 	/*
1453 	 * create_empty_buffers() will create uptodate/dirty buffers if the
1454 	 * page is uptodate/dirty.
1455 	 */
1456 	if (!page_has_buffers(page))
1457 		create_empty_buffers(page, blocksize, 0);
1458 	bh = head = page_buffers(page);
1459 	if (unlikely(!bh))
1460 		return -ENOMEM;
1461 
1462 	/* The first block in the page. */
1463 	block = (s64)page->index << (PAGE_CACHE_SHIFT - blocksize_bits);
1464 
1465 	/*
1466 	 * The first out of bounds block for the allocated size. No need to
1467 	 * round up as allocated_size is in multiples of cluster size and the
1468 	 * minimum cluster size is 512 bytes, which is equal to the smallest
1469 	 * blocksize.
1470 	 */
1471 	ablock = ni->allocated_size >> blocksize_bits;
1472 
1473 	/* The last (fully or partially) initialized block. */
1474 	iblock = ni->initialized_size >> blocksize_bits;
1475 
1476 	/* Loop through all the buffers in the page. */
1477 	block_start = 0;
1478 	rl = NULL;
1479 	err = 0;
1480 	do {
1481 		block_end = block_start + blocksize;
1482 		/*
1483 		 * If buffer @bh is outside the write, just mark it uptodate
1484 		 * if the page is uptodate and continue with the next buffer.
1485 		 */
1486 		if (block_end <= from || block_start >= to) {
1487 			if (PageUptodate(page)) {
1488 				if (!buffer_uptodate(bh))
1489 					set_buffer_uptodate(bh);
1490 			}
1491 			continue;
1492 		}
1493 		/*
1494 		 * @bh is at least partially being written to.
1495 		 * Make sure it is not marked as new.
1496 		 */
1497 		//if (buffer_new(bh))
1498 		//	clear_buffer_new(bh);
1499 
1500 		if (block >= ablock) {
1501 			// TODO: block is above allocated_size, need to
1502 			// allocate it. Best done in one go to accommodate not
1503 			// only block but all above blocks up to and including:
1504 			// ((page->index << PAGE_CACHE_SHIFT) + to + blocksize
1505 			// - 1) >> blobksize_bits. Obviously will need to round
1506 			// up to next cluster boundary, too. This should be
1507 			// done with a helper function, so it can be reused.
1508 			ntfs_error(vol->sb, "Writing beyond allocated size "
1509 					"is not supported yet. Sorry.");
1510 			err = -EOPNOTSUPP;
1511 			goto err_out;
1512 			// Need to update ablock.
1513 			// Need to set_buffer_new() on all block bhs that are
1514 			// newly allocated.
1515 		}
1516 		/*
1517 		 * Now we have enough allocated size to fulfill the whole
1518 		 * request, i.e. block < ablock is true.
1519 		 */
1520 		if (unlikely((block >= iblock) &&
1521 				(ni->initialized_size < vi->i_size))) {
1522 			/*
1523 			 * If this page is fully outside initialized size, zero
1524 			 * out all pages between the current initialized size
1525 			 * and the current page. Just use ntfs_readpage() to do
1526 			 * the zeroing transparently.
1527 			 */
1528 			if (block > iblock) {
1529 				// TODO:
1530 				// For each page do:
1531 				// - read_cache_page()
1532 				// Again for each page do:
1533 				// - wait_on_page_locked()
1534 				// - Check (PageUptodate(page) &&
1535 				//			!PageError(page))
1536 				// Update initialized size in the attribute and
1537 				// in the inode.
1538 				// Again, for each page do:
1539 				//	__set_page_dirty_buffers();
1540 				// page_cache_release()
1541 				// We don't need to wait on the writes.
1542 				// Update iblock.
1543 			}
1544 			/*
1545 			 * The current page straddles initialized size. Zero
1546 			 * all non-uptodate buffers and set them uptodate (and
1547 			 * dirty?). Note, there aren't any non-uptodate buffers
1548 			 * if the page is uptodate.
1549 			 * FIXME: For an uptodate page, the buffers may need to
1550 			 * be written out because they were not initialized on
1551 			 * disk before.
1552 			 */
1553 			if (!PageUptodate(page)) {
1554 				// TODO:
1555 				// Zero any non-uptodate buffers up to i_size.
1556 				// Set them uptodate and dirty.
1557 			}
1558 			// TODO:
1559 			// Update initialized size in the attribute and in the
1560 			// inode (up to i_size).
1561 			// Update iblock.
1562 			// FIXME: This is inefficient. Try to batch the two
1563 			// size changes to happen in one go.
1564 			ntfs_error(vol->sb, "Writing beyond initialized size "
1565 					"is not supported yet. Sorry.");
1566 			err = -EOPNOTSUPP;
1567 			goto err_out;
1568 			// Do NOT set_buffer_new() BUT DO clear buffer range
1569 			// outside write request range.
1570 			// set_buffer_uptodate() on complete buffers as well as
1571 			// set_buffer_dirty().
1572 		}
1573 
1574 		/* Need to map unmapped buffers. */
1575 		if (!buffer_mapped(bh)) {
1576 			/* Unmapped buffer. Need to map it. */
1577 			bh->b_bdev = vol->sb->s_bdev;
1578 
1579 			/* Convert block into corresponding vcn and offset. */
1580 			vcn = (VCN)block << blocksize_bits >>
1581 					vol->cluster_size_bits;
1582 			vcn_ofs = ((VCN)block << blocksize_bits) &
1583 					vol->cluster_size_mask;
1584 
1585 			is_retry = FALSE;
1586 			if (!rl) {
1587 lock_retry_remap:
1588 				down_read(&ni->runlist.lock);
1589 				rl = ni->runlist.rl;
1590 			}
1591 			if (likely(rl != NULL)) {
1592 				/* Seek to element containing target vcn. */
1593 				while (rl->length && rl[1].vcn <= vcn)
1594 					rl++;
1595 				lcn = ntfs_rl_vcn_to_lcn(rl, vcn);
1596 			} else
1597 				lcn = LCN_RL_NOT_MAPPED;
1598 			if (unlikely(lcn < 0)) {
1599 				/*
1600 				 * We extended the attribute allocation above.
1601 				 * If we hit an ENOENT here it means that the
1602 				 * allocation was insufficient which is a bug.
1603 				 */
1604 				BUG_ON(lcn == LCN_ENOENT);
1605 
1606 				/* It is a hole, need to instantiate it. */
1607 				if (lcn == LCN_HOLE) {
1608 					// TODO: Instantiate the hole.
1609 					// clear_buffer_new(bh);
1610 					// unmap_underlying_metadata(bh->b_bdev,
1611 					//		bh->b_blocknr);
1612 					// For non-uptodate buffers, need to
1613 					// zero out the region outside the
1614 					// request in this bh or all bhs,
1615 					// depending on what we implemented
1616 					// above.
1617 					// Need to flush_dcache_page().
1618 					// Or could use set_buffer_new()
1619 					// instead?
1620 					ntfs_error(vol->sb, "Writing into "
1621 							"sparse regions is "
1622 							"not supported yet. "
1623 							"Sorry.");
1624 					err = -EOPNOTSUPP;
1625 					goto err_out;
1626 				} else if (!is_retry &&
1627 						lcn == LCN_RL_NOT_MAPPED) {
1628 					is_retry = TRUE;
1629 					/*
1630 					 * Attempt to map runlist, dropping
1631 					 * lock for the duration.
1632 					 */
1633 					up_read(&ni->runlist.lock);
1634 					err = ntfs_map_runlist(ni, vcn);
1635 					if (likely(!err))
1636 						goto lock_retry_remap;
1637 					rl = NULL;
1638 					lcn = err;
1639 				}
1640 				/*
1641 				 * Failed to map the buffer, even after
1642 				 * retrying.
1643 				 */
1644 				bh->b_blocknr = -1;
1645 				ntfs_error(vol->sb, "Failed to write to inode "
1646 						"0x%lx, attribute type 0x%x, "
1647 						"vcn 0x%llx, offset 0x%x "
1648 						"because its location on disk "
1649 						"could not be determined%s "
1650 						"(error code %lli).",
1651 						ni->mft_no, ni->type,
1652 						(unsigned long long)vcn,
1653 						vcn_ofs, is_retry ? " even "
1654 						"after retrying" : "",
1655 						(long long)lcn);
1656 				if (!err)
1657 					err = -EIO;
1658 				goto err_out;
1659 			}
1660 			/* We now have a successful remap, i.e. lcn >= 0. */
1661 
1662 			/* Setup buffer head to correct block. */
1663 			bh->b_blocknr = ((lcn << vol->cluster_size_bits)
1664 					+ vcn_ofs) >> blocksize_bits;
1665 			set_buffer_mapped(bh);
1666 
1667 			// FIXME: Something analogous to this is needed for
1668 			// each newly allocated block, i.e. BH_New.
1669 			// FIXME: Might need to take this out of the
1670 			// if (!buffer_mapped(bh)) {}, depending on how we
1671 			// implement things during the allocated_size and
1672 			// initialized_size extension code above.
1673 			if (buffer_new(bh)) {
1674 				clear_buffer_new(bh);
1675 				unmap_underlying_metadata(bh->b_bdev,
1676 						bh->b_blocknr);
1677 				if (PageUptodate(page)) {
1678 					set_buffer_uptodate(bh);
1679 					continue;
1680 				}
1681 				/*
1682 				 * Page is _not_ uptodate, zero surrounding
1683 				 * region. NOTE: This is how we decide if to
1684 				 * zero or not!
1685 				 */
1686 				if (block_end > to || block_start < from) {
1687 					void *kaddr;
1688 
1689 					kaddr = kmap_atomic(page, KM_USER0);
1690 					if (block_end > to)
1691 						memset(kaddr + to, 0,
1692 								block_end - to);
1693 					if (block_start < from)
1694 						memset(kaddr + block_start, 0,
1695 								from -
1696 								block_start);
1697 					flush_dcache_page(page);
1698 					kunmap_atomic(kaddr, KM_USER0);
1699 				}
1700 				continue;
1701 			}
1702 		}
1703 		/* @bh is mapped, set it uptodate if the page is uptodate. */
1704 		if (PageUptodate(page)) {
1705 			if (!buffer_uptodate(bh))
1706 				set_buffer_uptodate(bh);
1707 			continue;
1708 		}
1709 		/*
1710 		 * The page is not uptodate. The buffer is mapped. If it is not
1711 		 * uptodate, and it is only partially being written to, we need
1712 		 * to read the buffer in before the write, i.e. right now.
1713 		 */
1714 		if (!buffer_uptodate(bh) &&
1715 				(block_start < from || block_end > to)) {
1716 			ll_rw_block(READ, 1, &bh);
1717 			*wait_bh++ = bh;
1718 		}
1719 	} while (block++, block_start = block_end,
1720 			(bh = bh->b_this_page) != head);
1721 
1722 	/* Release the lock if we took it. */
1723 	if (rl) {
1724 		up_read(&ni->runlist.lock);
1725 		rl = NULL;
1726 	}
1727 
1728 	/* If we issued read requests, let them complete. */
1729 	while (wait_bh > wait) {
1730 		wait_on_buffer(*--wait_bh);
1731 		if (!buffer_uptodate(*wait_bh))
1732 			return -EIO;
1733 	}
1734 
1735 	ntfs_debug("Done.");
1736 	return 0;
1737 err_out:
1738 	/*
1739 	 * Zero out any newly allocated blocks to avoid exposing stale data.
1740 	 * If BH_New is set, we know that the block was newly allocated in the
1741 	 * above loop.
1742 	 * FIXME: What about initialized_size increments? Have we done all the
1743 	 * required zeroing above? If not this error handling is broken, and
1744 	 * in particular the if (block_end <= from) check is completely bogus.
1745 	 */
1746 	bh = head;
1747 	block_start = 0;
1748 	is_retry = FALSE;
1749 	do {
1750 		block_end = block_start + blocksize;
1751 		if (block_end <= from)
1752 			continue;
1753 		if (block_start >= to)
1754 			break;
1755 		if (buffer_new(bh)) {
1756 			void *kaddr;
1757 
1758 			clear_buffer_new(bh);
1759 			kaddr = kmap_atomic(page, KM_USER0);
1760 			memset(kaddr + block_start, 0, bh->b_size);
1761 			kunmap_atomic(kaddr, KM_USER0);
1762 			set_buffer_uptodate(bh);
1763 			mark_buffer_dirty(bh);
1764 			is_retry = TRUE;
1765 		}
1766 	} while (block_start = block_end, (bh = bh->b_this_page) != head);
1767 	if (is_retry)
1768 		flush_dcache_page(page);
1769 	if (rl)
1770 		up_read(&ni->runlist.lock);
1771 	return err;
1772 }
1773 
1774 /**
1775  * ntfs_prepare_write - prepare a page for receiving data
1776  *
1777  * This is called from generic_file_write() with i_sem held on the inode
1778  * (@page->mapping->host).  The @page is locked but not kmap()ped.  The source
1779  * data has not yet been copied into the @page.
1780  *
1781  * Need to extend the attribute/fill in holes if necessary, create blocks and
1782  * make partially overwritten blocks uptodate,
1783  *
1784  * i_size is not to be modified yet.
1785  *
1786  * Return 0 on success or -errno on error.
1787  *
1788  * Should be using block_prepare_write() [support for sparse files] or
1789  * cont_prepare_write() [no support for sparse files].  Cannot do that due to
1790  * ntfs specifics but can look at them for implementation guidance.
1791  *
1792  * Note: In the range, @from is inclusive and @to is exclusive, i.e. @from is
1793  * the first byte in the page that will be written to and @to is the first byte
1794  * after the last byte that will be written to.
1795  */
1796 static int ntfs_prepare_write(struct file *file, struct page *page,
1797 		unsigned from, unsigned to)
1798 {
1799 	s64 new_size;
1800 	struct inode *vi = page->mapping->host;
1801 	ntfs_inode *base_ni = NULL, *ni = NTFS_I(vi);
1802 	ntfs_volume *vol = ni->vol;
1803 	ntfs_attr_search_ctx *ctx = NULL;
1804 	MFT_RECORD *m = NULL;
1805 	ATTR_RECORD *a;
1806 	u8 *kaddr;
1807 	u32 attr_len;
1808 	int err;
1809 
1810 	ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, page index "
1811 			"0x%lx, from = %u, to = %u.", vi->i_ino, ni->type,
1812 			page->index, from, to);
1813 	BUG_ON(!PageLocked(page));
1814 	BUG_ON(from > PAGE_CACHE_SIZE);
1815 	BUG_ON(to > PAGE_CACHE_SIZE);
1816 	BUG_ON(from > to);
1817 	BUG_ON(NInoMstProtected(ni));
1818 	/*
1819 	 * If a previous ntfs_truncate() failed, repeat it and abort if it
1820 	 * fails again.
1821 	 */
1822 	if (unlikely(NInoTruncateFailed(ni))) {
1823 		down_write(&vi->i_alloc_sem);
1824 		err = ntfs_truncate(vi);
1825 		up_write(&vi->i_alloc_sem);
1826 		if (err || NInoTruncateFailed(ni)) {
1827 			if (!err)
1828 				err = -EIO;
1829 			goto err_out;
1830 		}
1831 	}
1832 	/* If the attribute is not resident, deal with it elsewhere. */
1833 	if (NInoNonResident(ni)) {
1834 		/*
1835 		 * Only unnamed $DATA attributes can be compressed, encrypted,
1836 		 * and/or sparse.
1837 		 */
1838 		if (ni->type == AT_DATA && !ni->name_len) {
1839 			/* If file is encrypted, deny access, just like NT4. */
1840 			if (NInoEncrypted(ni)) {
1841 				ntfs_debug("Denying write access to encrypted "
1842 						"file.");
1843 				return -EACCES;
1844 			}
1845 			/* Compressed data streams are handled in compress.c. */
1846 			if (NInoCompressed(ni)) {
1847 				// TODO: Implement and replace this check with
1848 				// return ntfs_write_compressed_block(page);
1849 				ntfs_error(vi->i_sb, "Writing to compressed "
1850 						"files is not supported yet. "
1851 						"Sorry.");
1852 				return -EOPNOTSUPP;
1853 			}
1854 			// TODO: Implement and remove this check.
1855 			if (NInoSparse(ni)) {
1856 				ntfs_error(vi->i_sb, "Writing to sparse files "
1857 						"is not supported yet. Sorry.");
1858 				return -EOPNOTSUPP;
1859 			}
1860 		}
1861 		/* Normal data stream. */
1862 		return ntfs_prepare_nonresident_write(page, from, to);
1863 	}
1864 	/*
1865 	 * Attribute is resident, implying it is not compressed, encrypted, or
1866 	 * sparse.
1867 	 */
1868 	BUG_ON(page_has_buffers(page));
1869 	new_size = ((s64)page->index << PAGE_CACHE_SHIFT) + to;
1870 	/* If we do not need to resize the attribute allocation we are done. */
1871 	if (new_size <= vi->i_size)
1872 		goto done;
1873 
1874 	// FIXME: We abort for now as this code is not safe.
1875 	ntfs_error(vi->i_sb, "Changing the file size is not supported yet.  "
1876 			"Sorry.");
1877 	return -EOPNOTSUPP;
1878 
1879 	/* Map, pin, and lock the (base) mft record. */
1880 	if (!NInoAttr(ni))
1881 		base_ni = ni;
1882 	else
1883 		base_ni = ni->ext.base_ntfs_ino;
1884 	m = map_mft_record(base_ni);
1885 	if (IS_ERR(m)) {
1886 		err = PTR_ERR(m);
1887 		m = NULL;
1888 		ctx = NULL;
1889 		goto err_out;
1890 	}
1891 	ctx = ntfs_attr_get_search_ctx(base_ni, m);
1892 	if (unlikely(!ctx)) {
1893 		err = -ENOMEM;
1894 		goto err_out;
1895 	}
1896 	err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
1897 			CASE_SENSITIVE, 0, NULL, 0, ctx);
1898 	if (unlikely(err)) {
1899 		if (err == -ENOENT)
1900 			err = -EIO;
1901 		goto err_out;
1902 	}
1903 	m = ctx->mrec;
1904 	a = ctx->attr;
1905 	/* The total length of the attribute value. */
1906 	attr_len = le32_to_cpu(a->data.resident.value_length);
1907 	BUG_ON(vi->i_size != attr_len);
1908 	/* Check if new size is allowed in $AttrDef. */
1909 	err = ntfs_attr_size_bounds_check(vol, ni->type, new_size);
1910 	if (unlikely(err)) {
1911 		if (err == -ERANGE) {
1912 			ntfs_error(vol->sb, "Write would cause the inode "
1913 					"0x%lx to exceed the maximum size for "
1914 					"its attribute type (0x%x).  Aborting "
1915 					"write.", vi->i_ino,
1916 					le32_to_cpu(ni->type));
1917 		} else {
1918 			ntfs_error(vol->sb, "Inode 0x%lx has unknown "
1919 					"attribute type 0x%x.  Aborting "
1920 					"write.", vi->i_ino,
1921 					le32_to_cpu(ni->type));
1922 			err = -EIO;
1923 		}
1924 		goto err_out2;
1925 	}
1926 	/*
1927 	 * Extend the attribute record to be able to store the new attribute
1928 	 * size.
1929 	 */
1930 	if (new_size >= vol->mft_record_size || ntfs_attr_record_resize(m, a,
1931 			le16_to_cpu(a->data.resident.value_offset) +
1932 			new_size)) {
1933 		/* Not enough space in the mft record. */
1934 		ntfs_error(vol->sb, "Not enough space in the mft record for "
1935 				"the resized attribute value.  This is not "
1936 				"supported yet.  Aborting write.");
1937 		err = -EOPNOTSUPP;
1938 		goto err_out2;
1939 	}
1940 	/*
1941 	 * We have enough space in the mft record to fit the write.  This
1942 	 * implies the attribute is smaller than the mft record and hence the
1943 	 * attribute must be in a single page and hence page->index must be 0.
1944 	 */
1945 	BUG_ON(page->index);
1946 	/*
1947 	 * If the beginning of the write is past the old size, enlarge the
1948 	 * attribute value up to the beginning of the write and fill it with
1949 	 * zeroes.
1950 	 */
1951 	if (from > attr_len) {
1952 		memset((u8*)a + le16_to_cpu(a->data.resident.value_offset) +
1953 				attr_len, 0, from - attr_len);
1954 		a->data.resident.value_length = cpu_to_le32(from);
1955 		/* Zero the corresponding area in the page as well. */
1956 		if (PageUptodate(page)) {
1957 			kaddr = kmap_atomic(page, KM_USER0);
1958 			memset(kaddr + attr_len, 0, from - attr_len);
1959 			kunmap_atomic(kaddr, KM_USER0);
1960 			flush_dcache_page(page);
1961 		}
1962 	}
1963 	flush_dcache_mft_record_page(ctx->ntfs_ino);
1964 	mark_mft_record_dirty(ctx->ntfs_ino);
1965 	ntfs_attr_put_search_ctx(ctx);
1966 	unmap_mft_record(base_ni);
1967 	/*
1968 	 * Because resident attributes are handled by memcpy() to/from the
1969 	 * corresponding MFT record, and because this form of i/o is byte
1970 	 * aligned rather than block aligned, there is no need to bring the
1971 	 * page uptodate here as in the non-resident case where we need to
1972 	 * bring the buffers straddled by the write uptodate before
1973 	 * generic_file_write() does the copying from userspace.
1974 	 *
1975 	 * We thus defer the uptodate bringing of the page region outside the
1976 	 * region written to to ntfs_commit_write(), which makes the code
1977 	 * simpler and saves one atomic kmap which is good.
1978 	 */
1979 done:
1980 	ntfs_debug("Done.");
1981 	return 0;
1982 err_out:
1983 	if (err == -ENOMEM)
1984 		ntfs_warning(vi->i_sb, "Error allocating memory required to "
1985 				"prepare the write.");
1986 	else {
1987 		ntfs_error(vi->i_sb, "Resident attribute prepare write failed "
1988 				"with error %i.", err);
1989 		NVolSetErrors(vol);
1990 		make_bad_inode(vi);
1991 	}
1992 err_out2:
1993 	if (ctx)
1994 		ntfs_attr_put_search_ctx(ctx);
1995 	if (m)
1996 		unmap_mft_record(base_ni);
1997 	return err;
1998 }
1999 
2000 /**
2001  * ntfs_commit_nonresident_write -
2002  *
2003  */
2004 static int ntfs_commit_nonresident_write(struct page *page,
2005 		unsigned from, unsigned to)
2006 {
2007 	s64 pos = ((s64)page->index << PAGE_CACHE_SHIFT) + to;
2008 	struct inode *vi = page->mapping->host;
2009 	struct buffer_head *bh, *head;
2010 	unsigned int block_start, block_end, blocksize;
2011 	BOOL partial;
2012 
2013 	ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, page index "
2014 			"0x%lx, from = %u, to = %u.", vi->i_ino,
2015 			NTFS_I(vi)->type, page->index, from, to);
2016 	blocksize = 1 << vi->i_blkbits;
2017 
2018 	// FIXME: We need a whole slew of special cases in here for compressed
2019 	// files for example...
2020 	// For now, we know ntfs_prepare_write() would have failed so we can't
2021 	// get here in any of the cases which we have to special case, so we
2022 	// are just a ripped off, unrolled generic_commit_write().
2023 
2024 	bh = head = page_buffers(page);
2025 	block_start = 0;
2026 	partial = FALSE;
2027 	do {
2028 		block_end = block_start + blocksize;
2029 		if (block_end <= from || block_start >= to) {
2030 			if (!buffer_uptodate(bh))
2031 				partial = TRUE;
2032 		} else {
2033 			set_buffer_uptodate(bh);
2034 			mark_buffer_dirty(bh);
2035 		}
2036 	} while (block_start = block_end, (bh = bh->b_this_page) != head);
2037 	/*
2038 	 * If this is a partial write which happened to make all buffers
2039 	 * uptodate then we can optimize away a bogus ->readpage() for the next
2040 	 * read().  Here we 'discover' whether the page went uptodate as a
2041 	 * result of this (potentially partial) write.
2042 	 */
2043 	if (!partial)
2044 		SetPageUptodate(page);
2045 	/*
2046 	 * Not convinced about this at all.  See disparity comment above.  For
2047 	 * now we know ntfs_prepare_write() would have failed in the write
2048 	 * exceeds i_size case, so this will never trigger which is fine.
2049 	 */
2050 	if (pos > vi->i_size) {
2051 		ntfs_error(vi->i_sb, "Writing beyond the existing file size is "
2052 				"not supported yet.  Sorry.");
2053 		return -EOPNOTSUPP;
2054 		// vi->i_size = pos;
2055 		// mark_inode_dirty(vi);
2056 	}
2057 	ntfs_debug("Done.");
2058 	return 0;
2059 }
2060 
2061 /**
2062  * ntfs_commit_write - commit the received data
2063  *
2064  * This is called from generic_file_write() with i_sem held on the inode
2065  * (@page->mapping->host).  The @page is locked but not kmap()ped.  The source
2066  * data has already been copied into the @page.  ntfs_prepare_write() has been
2067  * called before the data copied and it returned success so we can take the
2068  * results of various BUG checks and some error handling for granted.
2069  *
2070  * Need to mark modified blocks dirty so they get written out later when
2071  * ntfs_writepage() is invoked by the VM.
2072  *
2073  * Return 0 on success or -errno on error.
2074  *
2075  * Should be using generic_commit_write().  This marks buffers uptodate and
2076  * dirty, sets the page uptodate if all buffers in the page are uptodate, and
2077  * updates i_size if the end of io is beyond i_size.  In that case, it also
2078  * marks the inode dirty.
2079  *
2080  * Cannot use generic_commit_write() due to ntfs specialities but can look at
2081  * it for implementation guidance.
2082  *
2083  * If things have gone as outlined in ntfs_prepare_write(), then we do not
2084  * need to do any page content modifications here at all, except in the write
2085  * to resident attribute case, where we need to do the uptodate bringing here
2086  * which we combine with the copying into the mft record which means we save
2087  * one atomic kmap.
2088  */
2089 static int ntfs_commit_write(struct file *file, struct page *page,
2090 		unsigned from, unsigned to)
2091 {
2092 	struct inode *vi = page->mapping->host;
2093 	ntfs_inode *base_ni, *ni = NTFS_I(vi);
2094 	char *kaddr, *kattr;
2095 	ntfs_attr_search_ctx *ctx;
2096 	MFT_RECORD *m;
2097 	ATTR_RECORD *a;
2098 	u32 attr_len;
2099 	int err;
2100 
2101 	ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, page index "
2102 			"0x%lx, from = %u, to = %u.", vi->i_ino, ni->type,
2103 			page->index, from, to);
2104 	/* If the attribute is not resident, deal with it elsewhere. */
2105 	if (NInoNonResident(ni)) {
2106 		/* Only unnamed $DATA attributes can be compressed/encrypted. */
2107 		if (ni->type == AT_DATA && !ni->name_len) {
2108 			/* Encrypted files need separate handling. */
2109 			if (NInoEncrypted(ni)) {
2110 				// We never get here at present!
2111 				BUG();
2112 			}
2113 			/* Compressed data streams are handled in compress.c. */
2114 			if (NInoCompressed(ni)) {
2115 				// TODO: Implement this!
2116 				// return ntfs_write_compressed_block(page);
2117 				// We never get here at present!
2118 				BUG();
2119 			}
2120 		}
2121 		/* Normal data stream. */
2122 		return ntfs_commit_nonresident_write(page, from, to);
2123 	}
2124 	/*
2125 	 * Attribute is resident, implying it is not compressed, encrypted, or
2126 	 * sparse.
2127 	 */
2128 	if (!NInoAttr(ni))
2129 		base_ni = ni;
2130 	else
2131 		base_ni = ni->ext.base_ntfs_ino;
2132 	/* Map, pin, and lock the mft record. */
2133 	m = map_mft_record(base_ni);
2134 	if (IS_ERR(m)) {
2135 		err = PTR_ERR(m);
2136 		m = NULL;
2137 		ctx = NULL;
2138 		goto err_out;
2139 	}
2140 	ctx = ntfs_attr_get_search_ctx(base_ni, m);
2141 	if (unlikely(!ctx)) {
2142 		err = -ENOMEM;
2143 		goto err_out;
2144 	}
2145 	err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
2146 			CASE_SENSITIVE, 0, NULL, 0, ctx);
2147 	if (unlikely(err)) {
2148 		if (err == -ENOENT)
2149 			err = -EIO;
2150 		goto err_out;
2151 	}
2152 	a = ctx->attr;
2153 	/* The total length of the attribute value. */
2154 	attr_len = le32_to_cpu(a->data.resident.value_length);
2155 	BUG_ON(from > attr_len);
2156 	kattr = (u8*)a + le16_to_cpu(a->data.resident.value_offset);
2157 	kaddr = kmap_atomic(page, KM_USER0);
2158 	/* Copy the received data from the page to the mft record. */
2159 	memcpy(kattr + from, kaddr + from, to - from);
2160 	/* Update the attribute length if necessary. */
2161 	if (to > attr_len) {
2162 		attr_len = to;
2163 		a->data.resident.value_length = cpu_to_le32(attr_len);
2164 	}
2165 	/*
2166 	 * If the page is not uptodate, bring the out of bounds area(s)
2167 	 * uptodate by copying data from the mft record to the page.
2168 	 */
2169 	if (!PageUptodate(page)) {
2170 		if (from > 0)
2171 			memcpy(kaddr, kattr, from);
2172 		if (to < attr_len)
2173 			memcpy(kaddr + to, kattr + to, attr_len - to);
2174 		/* Zero the region outside the end of the attribute value. */
2175 		if (attr_len < PAGE_CACHE_SIZE)
2176 			memset(kaddr + attr_len, 0, PAGE_CACHE_SIZE - attr_len);
2177 		/*
2178 		 * The probability of not having done any of the above is
2179 		 * extremely small, so we just flush unconditionally.
2180 		 */
2181 		flush_dcache_page(page);
2182 		SetPageUptodate(page);
2183 	}
2184 	kunmap_atomic(kaddr, KM_USER0);
2185 	/* Update i_size if necessary. */
2186 	if (vi->i_size < attr_len) {
2187 		ni->allocated_size = ni->initialized_size = attr_len;
2188 		i_size_write(vi, attr_len);
2189 	}
2190 	/* Mark the mft record dirty, so it gets written back. */
2191 	flush_dcache_mft_record_page(ctx->ntfs_ino);
2192 	mark_mft_record_dirty(ctx->ntfs_ino);
2193 	ntfs_attr_put_search_ctx(ctx);
2194 	unmap_mft_record(base_ni);
2195 	ntfs_debug("Done.");
2196 	return 0;
2197 err_out:
2198 	if (err == -ENOMEM) {
2199 		ntfs_warning(vi->i_sb, "Error allocating memory required to "
2200 				"commit the write.");
2201 		if (PageUptodate(page)) {
2202 			ntfs_warning(vi->i_sb, "Page is uptodate, setting "
2203 					"dirty so the write will be retried "
2204 					"later on by the VM.");
2205 			/*
2206 			 * Put the page on mapping->dirty_pages, but leave its
2207 			 * buffers' dirty state as-is.
2208 			 */
2209 			__set_page_dirty_nobuffers(page);
2210 			err = 0;
2211 		} else
2212 			ntfs_error(vi->i_sb, "Page is not uptodate.  Written "
2213 					"data has been lost.");
2214 	} else {
2215 		ntfs_error(vi->i_sb, "Resident attribute commit write failed "
2216 				"with error %i.", err);
2217 		NVolSetErrors(ni->vol);
2218 		make_bad_inode(vi);
2219 	}
2220 	if (ctx)
2221 		ntfs_attr_put_search_ctx(ctx);
2222 	if (m)
2223 		unmap_mft_record(base_ni);
2224 	return err;
2225 }
2226 
2227 #endif	/* NTFS_RW */
2228 
2229 /**
2230  * ntfs_aops - general address space operations for inodes and attributes
2231  */
2232 struct address_space_operations ntfs_aops = {
2233 	.readpage	= ntfs_readpage,	/* Fill page with data. */
2234 	.sync_page	= block_sync_page,	/* Currently, just unplugs the
2235 						   disk request queue. */
2236 #ifdef NTFS_RW
2237 	.writepage	= ntfs_writepage,	/* Write dirty page to disk. */
2238 	.prepare_write	= ntfs_prepare_write,	/* Prepare page and buffers
2239 						   ready to receive data. */
2240 	.commit_write	= ntfs_commit_write,	/* Commit received data. */
2241 #endif /* NTFS_RW */
2242 };
2243 
2244 /**
2245  * ntfs_mst_aops - general address space operations for mst protecteed inodes
2246  *		   and attributes
2247  */
2248 struct address_space_operations ntfs_mst_aops = {
2249 	.readpage	= ntfs_readpage,	/* Fill page with data. */
2250 	.sync_page	= block_sync_page,	/* Currently, just unplugs the
2251 						   disk request queue. */
2252 #ifdef NTFS_RW
2253 	.writepage	= ntfs_writepage,	/* Write dirty page to disk. */
2254 	.set_page_dirty	= __set_page_dirty_nobuffers,	/* Set the page dirty
2255 						   without touching the buffers
2256 						   belonging to the page. */
2257 #endif /* NTFS_RW */
2258 };
2259 
2260 #ifdef NTFS_RW
2261 
2262 /**
2263  * mark_ntfs_record_dirty - mark an ntfs record dirty
2264  * @page:	page containing the ntfs record to mark dirty
2265  * @ofs:	byte offset within @page at which the ntfs record begins
2266  *
2267  * Set the buffers and the page in which the ntfs record is located dirty.
2268  *
2269  * The latter also marks the vfs inode the ntfs record belongs to dirty
2270  * (I_DIRTY_PAGES only).
2271  *
2272  * If the page does not have buffers, we create them and set them uptodate.
2273  * The page may not be locked which is why we need to handle the buffers under
2274  * the mapping->private_lock.  Once the buffers are marked dirty we no longer
2275  * need the lock since try_to_free_buffers() does not free dirty buffers.
2276  */
2277 void mark_ntfs_record_dirty(struct page *page, const unsigned int ofs) {
2278 	struct address_space *mapping = page->mapping;
2279 	ntfs_inode *ni = NTFS_I(mapping->host);
2280 	struct buffer_head *bh, *head, *buffers_to_free = NULL;
2281 	unsigned int end, bh_size, bh_ofs;
2282 
2283 	BUG_ON(!PageUptodate(page));
2284 	end = ofs + ni->itype.index.block_size;
2285 	bh_size = 1 << VFS_I(ni)->i_blkbits;
2286 	spin_lock(&mapping->private_lock);
2287 	if (unlikely(!page_has_buffers(page))) {
2288 		spin_unlock(&mapping->private_lock);
2289 		bh = head = alloc_page_buffers(page, bh_size, 1);
2290 		spin_lock(&mapping->private_lock);
2291 		if (likely(!page_has_buffers(page))) {
2292 			struct buffer_head *tail;
2293 
2294 			do {
2295 				set_buffer_uptodate(bh);
2296 				tail = bh;
2297 				bh = bh->b_this_page;
2298 			} while (bh);
2299 			tail->b_this_page = head;
2300 			attach_page_buffers(page, head);
2301 		} else
2302 			buffers_to_free = bh;
2303 	}
2304 	bh = head = page_buffers(page);
2305 	do {
2306 		bh_ofs = bh_offset(bh);
2307 		if (bh_ofs + bh_size <= ofs)
2308 			continue;
2309 		if (unlikely(bh_ofs >= end))
2310 			break;
2311 		set_buffer_dirty(bh);
2312 	} while ((bh = bh->b_this_page) != head);
2313 	spin_unlock(&mapping->private_lock);
2314 	__set_page_dirty_nobuffers(page);
2315 	if (unlikely(buffers_to_free)) {
2316 		do {
2317 			bh = buffers_to_free->b_this_page;
2318 			free_buffer_head(buffers_to_free);
2319 			buffers_to_free = bh;
2320 		} while (buffers_to_free);
2321 	}
2322 }
2323 
2324 #endif /* NTFS_RW */
2325