xref: /openbmc/linux/fs/notify/mark.c (revision 36f10f55ff1d2867bfc48ed898a9cc0dc6b49dd2)
1 /*
2  *  Copyright (C) 2008 Red Hat, Inc., Eric Paris <eparis@redhat.com>
3  *
4  *  This program is free software; you can redistribute it and/or modify
5  *  it under the terms of the GNU General Public License as published by
6  *  the Free Software Foundation; either version 2, or (at your option)
7  *  any later version.
8  *
9  *  This program is distributed in the hope that it will be useful,
10  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
11  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  *  GNU General Public License for more details.
13  *
14  *  You should have received a copy of the GNU General Public License
15  *  along with this program; see the file COPYING.  If not, write to
16  *  the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
17  */
18 
19 /*
20  * fsnotify inode mark locking/lifetime/and refcnting
21  *
22  * REFCNT:
23  * The group->recnt and mark->refcnt tell how many "things" in the kernel
24  * currently are referencing the objects. Both kind of objects typically will
25  * live inside the kernel with a refcnt of 2, one for its creation and one for
26  * the reference a group and a mark hold to each other.
27  * If you are holding the appropriate locks, you can take a reference and the
28  * object itself is guaranteed to survive until the reference is dropped.
29  *
30  * LOCKING:
31  * There are 3 locks involved with fsnotify inode marks and they MUST be taken
32  * in order as follows:
33  *
34  * group->mark_mutex
35  * mark->lock
36  * mark->connector->lock
37  *
38  * group->mark_mutex protects the marks_list anchored inside a given group and
39  * each mark is hooked via the g_list.  It also protects the groups private
40  * data (i.e group limits).
41 
42  * mark->lock protects the marks attributes like its masks and flags.
43  * Furthermore it protects the access to a reference of the group that the mark
44  * is assigned to as well as the access to a reference of the inode/vfsmount
45  * that is being watched by the mark.
46  *
47  * mark->connector->lock protects the list of marks anchored inside an
48  * inode / vfsmount and each mark is hooked via the i_list.
49  *
50  * A list of notification marks relating to inode / mnt is contained in
51  * fsnotify_mark_connector. That structure is alive as long as there are any
52  * marks in the list and is also protected by fsnotify_mark_srcu. A mark gets
53  * detached from fsnotify_mark_connector when last reference to the mark is
54  * dropped.  Thus having mark reference is enough to protect mark->connector
55  * pointer and to make sure fsnotify_mark_connector cannot disappear. Also
56  * because we remove mark from g_list before dropping mark reference associated
57  * with that, any mark found through g_list is guaranteed to have
58  * mark->connector set until we drop group->mark_mutex.
59  *
60  * LIFETIME:
61  * Inode marks survive between when they are added to an inode and when their
62  * refcnt==0. Marks are also protected by fsnotify_mark_srcu.
63  *
64  * The inode mark can be cleared for a number of different reasons including:
65  * - The inode is unlinked for the last time.  (fsnotify_inode_remove)
66  * - The inode is being evicted from cache. (fsnotify_inode_delete)
67  * - The fs the inode is on is unmounted.  (fsnotify_inode_delete/fsnotify_unmount_inodes)
68  * - Something explicitly requests that it be removed.  (fsnotify_destroy_mark)
69  * - The fsnotify_group associated with the mark is going away and all such marks
70  *   need to be cleaned up. (fsnotify_clear_marks_by_group)
71  *
72  * This has the very interesting property of being able to run concurrently with
73  * any (or all) other directions.
74  */
75 
76 #include <linux/fs.h>
77 #include <linux/init.h>
78 #include <linux/kernel.h>
79 #include <linux/kthread.h>
80 #include <linux/module.h>
81 #include <linux/mutex.h>
82 #include <linux/slab.h>
83 #include <linux/spinlock.h>
84 #include <linux/srcu.h>
85 
86 #include <linux/atomic.h>
87 
88 #include <linux/fsnotify_backend.h>
89 #include "fsnotify.h"
90 
91 #define FSNOTIFY_REAPER_DELAY	(1)	/* 1 jiffy */
92 
93 struct srcu_struct fsnotify_mark_srcu;
94 struct kmem_cache *fsnotify_mark_connector_cachep;
95 
96 static DEFINE_SPINLOCK(destroy_lock);
97 static LIST_HEAD(destroy_list);
98 static struct fsnotify_mark_connector *connector_destroy_list;
99 
100 static void fsnotify_mark_destroy_workfn(struct work_struct *work);
101 static DECLARE_DELAYED_WORK(reaper_work, fsnotify_mark_destroy_workfn);
102 
103 static void fsnotify_connector_destroy_workfn(struct work_struct *work);
104 static DECLARE_WORK(connector_reaper_work, fsnotify_connector_destroy_workfn);
105 
106 void fsnotify_get_mark(struct fsnotify_mark *mark)
107 {
108 	WARN_ON_ONCE(!refcount_read(&mark->refcnt));
109 	refcount_inc(&mark->refcnt);
110 }
111 
112 static void __fsnotify_recalc_mask(struct fsnotify_mark_connector *conn)
113 {
114 	u32 new_mask = 0;
115 	struct fsnotify_mark *mark;
116 
117 	assert_spin_locked(&conn->lock);
118 	hlist_for_each_entry(mark, &conn->list, obj_list) {
119 		if (mark->flags & FSNOTIFY_MARK_FLAG_ATTACHED)
120 			new_mask |= mark->mask;
121 	}
122 	if (conn->type == FSNOTIFY_OBJ_TYPE_INODE)
123 		fsnotify_conn_inode(conn)->i_fsnotify_mask = new_mask;
124 	else if (conn->type == FSNOTIFY_OBJ_TYPE_VFSMOUNT)
125 		fsnotify_conn_mount(conn)->mnt_fsnotify_mask = new_mask;
126 }
127 
128 /*
129  * Calculate mask of events for a list of marks. The caller must make sure
130  * connector and connector->obj cannot disappear under us.  Callers achieve
131  * this by holding a mark->lock or mark->group->mark_mutex for a mark on this
132  * list.
133  */
134 void fsnotify_recalc_mask(struct fsnotify_mark_connector *conn)
135 {
136 	if (!conn)
137 		return;
138 
139 	spin_lock(&conn->lock);
140 	__fsnotify_recalc_mask(conn);
141 	spin_unlock(&conn->lock);
142 	if (conn->type == FSNOTIFY_OBJ_TYPE_INODE)
143 		__fsnotify_update_child_dentry_flags(
144 					fsnotify_conn_inode(conn));
145 }
146 
147 /* Free all connectors queued for freeing once SRCU period ends */
148 static void fsnotify_connector_destroy_workfn(struct work_struct *work)
149 {
150 	struct fsnotify_mark_connector *conn, *free;
151 
152 	spin_lock(&destroy_lock);
153 	conn = connector_destroy_list;
154 	connector_destroy_list = NULL;
155 	spin_unlock(&destroy_lock);
156 
157 	synchronize_srcu(&fsnotify_mark_srcu);
158 	while (conn) {
159 		free = conn;
160 		conn = conn->destroy_next;
161 		kmem_cache_free(fsnotify_mark_connector_cachep, free);
162 	}
163 }
164 
165 static struct inode *fsnotify_detach_connector_from_object(
166 					struct fsnotify_mark_connector *conn)
167 {
168 	struct inode *inode = NULL;
169 
170 	if (conn->type == FSNOTIFY_OBJ_TYPE_DETACHED)
171 		return NULL;
172 
173 	if (conn->type == FSNOTIFY_OBJ_TYPE_INODE) {
174 		inode = fsnotify_conn_inode(conn);
175 		inode->i_fsnotify_mask = 0;
176 	} else if (conn->type == FSNOTIFY_OBJ_TYPE_VFSMOUNT) {
177 		fsnotify_conn_mount(conn)->mnt_fsnotify_mask = 0;
178 	}
179 
180 	rcu_assign_pointer(*(conn->obj), NULL);
181 	conn->obj = NULL;
182 	conn->type = FSNOTIFY_OBJ_TYPE_DETACHED;
183 
184 	return inode;
185 }
186 
187 static void fsnotify_final_mark_destroy(struct fsnotify_mark *mark)
188 {
189 	struct fsnotify_group *group = mark->group;
190 
191 	if (WARN_ON_ONCE(!group))
192 		return;
193 	group->ops->free_mark(mark);
194 	fsnotify_put_group(group);
195 }
196 
197 void fsnotify_put_mark(struct fsnotify_mark *mark)
198 {
199 	struct fsnotify_mark_connector *conn;
200 	struct inode *inode = NULL;
201 	bool free_conn = false;
202 
203 	/* Catch marks that were actually never attached to object */
204 	if (!mark->connector) {
205 		if (refcount_dec_and_test(&mark->refcnt))
206 			fsnotify_final_mark_destroy(mark);
207 		return;
208 	}
209 
210 	/*
211 	 * We have to be careful so that traversals of obj_list under lock can
212 	 * safely grab mark reference.
213 	 */
214 	if (!refcount_dec_and_lock(&mark->refcnt, &mark->connector->lock))
215 		return;
216 
217 	conn = mark->connector;
218 	hlist_del_init_rcu(&mark->obj_list);
219 	if (hlist_empty(&conn->list)) {
220 		inode = fsnotify_detach_connector_from_object(conn);
221 		free_conn = true;
222 	} else {
223 		__fsnotify_recalc_mask(conn);
224 	}
225 	mark->connector = NULL;
226 	spin_unlock(&conn->lock);
227 
228 	iput(inode);
229 
230 	if (free_conn) {
231 		spin_lock(&destroy_lock);
232 		conn->destroy_next = connector_destroy_list;
233 		connector_destroy_list = conn;
234 		spin_unlock(&destroy_lock);
235 		queue_work(system_unbound_wq, &connector_reaper_work);
236 	}
237 	/*
238 	 * Note that we didn't update flags telling whether inode cares about
239 	 * what's happening with children. We update these flags from
240 	 * __fsnotify_parent() lazily when next event happens on one of our
241 	 * children.
242 	 */
243 	spin_lock(&destroy_lock);
244 	list_add(&mark->g_list, &destroy_list);
245 	spin_unlock(&destroy_lock);
246 	queue_delayed_work(system_unbound_wq, &reaper_work,
247 			   FSNOTIFY_REAPER_DELAY);
248 }
249 
250 /*
251  * Get mark reference when we found the mark via lockless traversal of object
252  * list. Mark can be already removed from the list by now and on its way to be
253  * destroyed once SRCU period ends.
254  *
255  * Also pin the group so it doesn't disappear under us.
256  */
257 static bool fsnotify_get_mark_safe(struct fsnotify_mark *mark)
258 {
259 	if (!mark)
260 		return true;
261 
262 	if (refcount_inc_not_zero(&mark->refcnt)) {
263 		spin_lock(&mark->lock);
264 		if (mark->flags & FSNOTIFY_MARK_FLAG_ATTACHED) {
265 			/* mark is attached, group is still alive then */
266 			atomic_inc(&mark->group->user_waits);
267 			spin_unlock(&mark->lock);
268 			return true;
269 		}
270 		spin_unlock(&mark->lock);
271 		fsnotify_put_mark(mark);
272 	}
273 	return false;
274 }
275 
276 /*
277  * Puts marks and wakes up group destruction if necessary.
278  *
279  * Pairs with fsnotify_get_mark_safe()
280  */
281 static void fsnotify_put_mark_wake(struct fsnotify_mark *mark)
282 {
283 	if (mark) {
284 		struct fsnotify_group *group = mark->group;
285 
286 		fsnotify_put_mark(mark);
287 		/*
288 		 * We abuse notification_waitq on group shutdown for waiting for
289 		 * all marks pinned when waiting for userspace.
290 		 */
291 		if (atomic_dec_and_test(&group->user_waits) && group->shutdown)
292 			wake_up(&group->notification_waitq);
293 	}
294 }
295 
296 bool fsnotify_prepare_user_wait(struct fsnotify_iter_info *iter_info)
297 {
298 	int type;
299 
300 	fsnotify_foreach_obj_type(type) {
301 		/* This can fail if mark is being removed */
302 		if (!fsnotify_get_mark_safe(iter_info->marks[type]))
303 			goto fail;
304 	}
305 
306 	/*
307 	 * Now that both marks are pinned by refcount in the inode / vfsmount
308 	 * lists, we can drop SRCU lock, and safely resume the list iteration
309 	 * once userspace returns.
310 	 */
311 	srcu_read_unlock(&fsnotify_mark_srcu, iter_info->srcu_idx);
312 
313 	return true;
314 
315 fail:
316 	for (type--; type >= 0; type--)
317 		fsnotify_put_mark_wake(iter_info->marks[type]);
318 	return false;
319 }
320 
321 void fsnotify_finish_user_wait(struct fsnotify_iter_info *iter_info)
322 {
323 	int type;
324 
325 	iter_info->srcu_idx = srcu_read_lock(&fsnotify_mark_srcu);
326 	fsnotify_foreach_obj_type(type)
327 		fsnotify_put_mark_wake(iter_info->marks[type]);
328 }
329 
330 /*
331  * Mark mark as detached, remove it from group list. Mark still stays in object
332  * list until its last reference is dropped. Note that we rely on mark being
333  * removed from group list before corresponding reference to it is dropped. In
334  * particular we rely on mark->connector being valid while we hold
335  * group->mark_mutex if we found the mark through g_list.
336  *
337  * Must be called with group->mark_mutex held. The caller must either hold
338  * reference to the mark or be protected by fsnotify_mark_srcu.
339  */
340 void fsnotify_detach_mark(struct fsnotify_mark *mark)
341 {
342 	struct fsnotify_group *group = mark->group;
343 
344 	WARN_ON_ONCE(!mutex_is_locked(&group->mark_mutex));
345 	WARN_ON_ONCE(!srcu_read_lock_held(&fsnotify_mark_srcu) &&
346 		     refcount_read(&mark->refcnt) < 1 +
347 			!!(mark->flags & FSNOTIFY_MARK_FLAG_ATTACHED));
348 
349 	spin_lock(&mark->lock);
350 	/* something else already called this function on this mark */
351 	if (!(mark->flags & FSNOTIFY_MARK_FLAG_ATTACHED)) {
352 		spin_unlock(&mark->lock);
353 		return;
354 	}
355 	mark->flags &= ~FSNOTIFY_MARK_FLAG_ATTACHED;
356 	list_del_init(&mark->g_list);
357 	spin_unlock(&mark->lock);
358 
359 	atomic_dec(&group->num_marks);
360 
361 	/* Drop mark reference acquired in fsnotify_add_mark_locked() */
362 	fsnotify_put_mark(mark);
363 }
364 
365 /*
366  * Free fsnotify mark. The mark is actually only marked as being freed.  The
367  * freeing is actually happening only once last reference to the mark is
368  * dropped from a workqueue which first waits for srcu period end.
369  *
370  * Caller must have a reference to the mark or be protected by
371  * fsnotify_mark_srcu.
372  */
373 void fsnotify_free_mark(struct fsnotify_mark *mark)
374 {
375 	struct fsnotify_group *group = mark->group;
376 
377 	spin_lock(&mark->lock);
378 	/* something else already called this function on this mark */
379 	if (!(mark->flags & FSNOTIFY_MARK_FLAG_ALIVE)) {
380 		spin_unlock(&mark->lock);
381 		return;
382 	}
383 	mark->flags &= ~FSNOTIFY_MARK_FLAG_ALIVE;
384 	spin_unlock(&mark->lock);
385 
386 	/*
387 	 * Some groups like to know that marks are being freed.  This is a
388 	 * callback to the group function to let it know that this mark
389 	 * is being freed.
390 	 */
391 	if (group->ops->freeing_mark)
392 		group->ops->freeing_mark(mark, group);
393 }
394 
395 void fsnotify_destroy_mark(struct fsnotify_mark *mark,
396 			   struct fsnotify_group *group)
397 {
398 	mutex_lock_nested(&group->mark_mutex, SINGLE_DEPTH_NESTING);
399 	fsnotify_detach_mark(mark);
400 	mutex_unlock(&group->mark_mutex);
401 	fsnotify_free_mark(mark);
402 }
403 
404 /*
405  * Sorting function for lists of fsnotify marks.
406  *
407  * Fanotify supports different notification classes (reflected as priority of
408  * notification group). Events shall be passed to notification groups in
409  * decreasing priority order. To achieve this marks in notification lists for
410  * inodes and vfsmounts are sorted so that priorities of corresponding groups
411  * are descending.
412  *
413  * Furthermore correct handling of the ignore mask requires processing inode
414  * and vfsmount marks of each group together. Using the group address as
415  * further sort criterion provides a unique sorting order and thus we can
416  * merge inode and vfsmount lists of marks in linear time and find groups
417  * present in both lists.
418  *
419  * A return value of 1 signifies that b has priority over a.
420  * A return value of 0 signifies that the two marks have to be handled together.
421  * A return value of -1 signifies that a has priority over b.
422  */
423 int fsnotify_compare_groups(struct fsnotify_group *a, struct fsnotify_group *b)
424 {
425 	if (a == b)
426 		return 0;
427 	if (!a)
428 		return 1;
429 	if (!b)
430 		return -1;
431 	if (a->priority < b->priority)
432 		return 1;
433 	if (a->priority > b->priority)
434 		return -1;
435 	if (a < b)
436 		return 1;
437 	return -1;
438 }
439 
440 static int fsnotify_attach_connector_to_object(fsnotify_connp_t *connp,
441 					       unsigned int type)
442 {
443 	struct inode *inode = NULL;
444 	struct fsnotify_mark_connector *conn;
445 
446 	conn = kmem_cache_alloc(fsnotify_mark_connector_cachep, GFP_KERNEL);
447 	if (!conn)
448 		return -ENOMEM;
449 	spin_lock_init(&conn->lock);
450 	INIT_HLIST_HEAD(&conn->list);
451 	conn->type = type;
452 	conn->obj = connp;
453 	if (conn->type == FSNOTIFY_OBJ_TYPE_INODE)
454 		inode = igrab(fsnotify_conn_inode(conn));
455 	/*
456 	 * cmpxchg() provides the barrier so that readers of *connp can see
457 	 * only initialized structure
458 	 */
459 	if (cmpxchg(connp, NULL, conn)) {
460 		/* Someone else created list structure for us */
461 		if (inode)
462 			iput(inode);
463 		kmem_cache_free(fsnotify_mark_connector_cachep, conn);
464 	}
465 
466 	return 0;
467 }
468 
469 /*
470  * Get mark connector, make sure it is alive and return with its lock held.
471  * This is for users that get connector pointer from inode or mount. Users that
472  * hold reference to a mark on the list may directly lock connector->lock as
473  * they are sure list cannot go away under them.
474  */
475 static struct fsnotify_mark_connector *fsnotify_grab_connector(
476 						fsnotify_connp_t *connp)
477 {
478 	struct fsnotify_mark_connector *conn;
479 	int idx;
480 
481 	idx = srcu_read_lock(&fsnotify_mark_srcu);
482 	conn = srcu_dereference(*connp, &fsnotify_mark_srcu);
483 	if (!conn)
484 		goto out;
485 	spin_lock(&conn->lock);
486 	if (conn->type == FSNOTIFY_OBJ_TYPE_DETACHED) {
487 		spin_unlock(&conn->lock);
488 		srcu_read_unlock(&fsnotify_mark_srcu, idx);
489 		return NULL;
490 	}
491 out:
492 	srcu_read_unlock(&fsnotify_mark_srcu, idx);
493 	return conn;
494 }
495 
496 /*
497  * Add mark into proper place in given list of marks. These marks may be used
498  * for the fsnotify backend to determine which event types should be delivered
499  * to which group and for which inodes. These marks are ordered according to
500  * priority, highest number first, and then by the group's location in memory.
501  */
502 static int fsnotify_add_mark_list(struct fsnotify_mark *mark,
503 				  fsnotify_connp_t *connp, unsigned int type,
504 				  int allow_dups)
505 {
506 	struct fsnotify_mark *lmark, *last = NULL;
507 	struct fsnotify_mark_connector *conn;
508 	int cmp;
509 	int err = 0;
510 
511 	if (WARN_ON(!fsnotify_valid_obj_type(type)))
512 		return -EINVAL;
513 restart:
514 	spin_lock(&mark->lock);
515 	conn = fsnotify_grab_connector(connp);
516 	if (!conn) {
517 		spin_unlock(&mark->lock);
518 		err = fsnotify_attach_connector_to_object(connp, type);
519 		if (err)
520 			return err;
521 		goto restart;
522 	}
523 
524 	/* is mark the first mark? */
525 	if (hlist_empty(&conn->list)) {
526 		hlist_add_head_rcu(&mark->obj_list, &conn->list);
527 		goto added;
528 	}
529 
530 	/* should mark be in the middle of the current list? */
531 	hlist_for_each_entry(lmark, &conn->list, obj_list) {
532 		last = lmark;
533 
534 		if ((lmark->group == mark->group) &&
535 		    (lmark->flags & FSNOTIFY_MARK_FLAG_ATTACHED) &&
536 		    !allow_dups) {
537 			err = -EEXIST;
538 			goto out_err;
539 		}
540 
541 		cmp = fsnotify_compare_groups(lmark->group, mark->group);
542 		if (cmp >= 0) {
543 			hlist_add_before_rcu(&mark->obj_list, &lmark->obj_list);
544 			goto added;
545 		}
546 	}
547 
548 	BUG_ON(last == NULL);
549 	/* mark should be the last entry.  last is the current last entry */
550 	hlist_add_behind_rcu(&mark->obj_list, &last->obj_list);
551 added:
552 	mark->connector = conn;
553 out_err:
554 	spin_unlock(&conn->lock);
555 	spin_unlock(&mark->lock);
556 	return err;
557 }
558 
559 /*
560  * Attach an initialized mark to a given group and fs object.
561  * These marks may be used for the fsnotify backend to determine which
562  * event types should be delivered to which group.
563  */
564 int fsnotify_add_mark_locked(struct fsnotify_mark *mark,
565 			     fsnotify_connp_t *connp, unsigned int type,
566 			     int allow_dups)
567 {
568 	struct fsnotify_group *group = mark->group;
569 	int ret = 0;
570 
571 	BUG_ON(!mutex_is_locked(&group->mark_mutex));
572 
573 	/*
574 	 * LOCKING ORDER!!!!
575 	 * group->mark_mutex
576 	 * mark->lock
577 	 * mark->connector->lock
578 	 */
579 	spin_lock(&mark->lock);
580 	mark->flags |= FSNOTIFY_MARK_FLAG_ALIVE | FSNOTIFY_MARK_FLAG_ATTACHED;
581 
582 	list_add(&mark->g_list, &group->marks_list);
583 	atomic_inc(&group->num_marks);
584 	fsnotify_get_mark(mark); /* for g_list */
585 	spin_unlock(&mark->lock);
586 
587 	ret = fsnotify_add_mark_list(mark, connp, type, allow_dups);
588 	if (ret)
589 		goto err;
590 
591 	if (mark->mask)
592 		fsnotify_recalc_mask(mark->connector);
593 
594 	return ret;
595 err:
596 	spin_lock(&mark->lock);
597 	mark->flags &= ~(FSNOTIFY_MARK_FLAG_ALIVE |
598 			 FSNOTIFY_MARK_FLAG_ATTACHED);
599 	list_del_init(&mark->g_list);
600 	spin_unlock(&mark->lock);
601 	atomic_dec(&group->num_marks);
602 
603 	fsnotify_put_mark(mark);
604 	return ret;
605 }
606 
607 int fsnotify_add_mark(struct fsnotify_mark *mark, fsnotify_connp_t *connp,
608 		      unsigned int type, int allow_dups)
609 {
610 	int ret;
611 	struct fsnotify_group *group = mark->group;
612 
613 	mutex_lock(&group->mark_mutex);
614 	ret = fsnotify_add_mark_locked(mark, connp, type, allow_dups);
615 	mutex_unlock(&group->mark_mutex);
616 	return ret;
617 }
618 
619 /*
620  * Given a list of marks, find the mark associated with given group. If found
621  * take a reference to that mark and return it, else return NULL.
622  */
623 struct fsnotify_mark *fsnotify_find_mark(fsnotify_connp_t *connp,
624 					 struct fsnotify_group *group)
625 {
626 	struct fsnotify_mark_connector *conn;
627 	struct fsnotify_mark *mark;
628 
629 	conn = fsnotify_grab_connector(connp);
630 	if (!conn)
631 		return NULL;
632 
633 	hlist_for_each_entry(mark, &conn->list, obj_list) {
634 		if (mark->group == group &&
635 		    (mark->flags & FSNOTIFY_MARK_FLAG_ATTACHED)) {
636 			fsnotify_get_mark(mark);
637 			spin_unlock(&conn->lock);
638 			return mark;
639 		}
640 	}
641 	spin_unlock(&conn->lock);
642 	return NULL;
643 }
644 
645 /* Clear any marks in a group with given type mask */
646 void fsnotify_clear_marks_by_group(struct fsnotify_group *group,
647 				   unsigned int type_mask)
648 {
649 	struct fsnotify_mark *lmark, *mark;
650 	LIST_HEAD(to_free);
651 	struct list_head *head = &to_free;
652 
653 	/* Skip selection step if we want to clear all marks. */
654 	if (type_mask == FSNOTIFY_OBJ_ALL_TYPES_MASK) {
655 		head = &group->marks_list;
656 		goto clear;
657 	}
658 	/*
659 	 * We have to be really careful here. Anytime we drop mark_mutex, e.g.
660 	 * fsnotify_clear_marks_by_inode() can come and free marks. Even in our
661 	 * to_free list so we have to use mark_mutex even when accessing that
662 	 * list. And freeing mark requires us to drop mark_mutex. So we can
663 	 * reliably free only the first mark in the list. That's why we first
664 	 * move marks to free to to_free list in one go and then free marks in
665 	 * to_free list one by one.
666 	 */
667 	mutex_lock_nested(&group->mark_mutex, SINGLE_DEPTH_NESTING);
668 	list_for_each_entry_safe(mark, lmark, &group->marks_list, g_list) {
669 		if ((1U << mark->connector->type) & type_mask)
670 			list_move(&mark->g_list, &to_free);
671 	}
672 	mutex_unlock(&group->mark_mutex);
673 
674 clear:
675 	while (1) {
676 		mutex_lock_nested(&group->mark_mutex, SINGLE_DEPTH_NESTING);
677 		if (list_empty(head)) {
678 			mutex_unlock(&group->mark_mutex);
679 			break;
680 		}
681 		mark = list_first_entry(head, struct fsnotify_mark, g_list);
682 		fsnotify_get_mark(mark);
683 		fsnotify_detach_mark(mark);
684 		mutex_unlock(&group->mark_mutex);
685 		fsnotify_free_mark(mark);
686 		fsnotify_put_mark(mark);
687 	}
688 }
689 
690 /* Destroy all marks attached to an object via connector */
691 void fsnotify_destroy_marks(fsnotify_connp_t *connp)
692 {
693 	struct fsnotify_mark_connector *conn;
694 	struct fsnotify_mark *mark, *old_mark = NULL;
695 	struct inode *inode;
696 
697 	conn = fsnotify_grab_connector(connp);
698 	if (!conn)
699 		return;
700 	/*
701 	 * We have to be careful since we can race with e.g.
702 	 * fsnotify_clear_marks_by_group() and once we drop the conn->lock, the
703 	 * list can get modified. However we are holding mark reference and
704 	 * thus our mark cannot be removed from obj_list so we can continue
705 	 * iteration after regaining conn->lock.
706 	 */
707 	hlist_for_each_entry(mark, &conn->list, obj_list) {
708 		fsnotify_get_mark(mark);
709 		spin_unlock(&conn->lock);
710 		if (old_mark)
711 			fsnotify_put_mark(old_mark);
712 		old_mark = mark;
713 		fsnotify_destroy_mark(mark, mark->group);
714 		spin_lock(&conn->lock);
715 	}
716 	/*
717 	 * Detach list from object now so that we don't pin inode until all
718 	 * mark references get dropped. It would lead to strange results such
719 	 * as delaying inode deletion or blocking unmount.
720 	 */
721 	inode = fsnotify_detach_connector_from_object(conn);
722 	spin_unlock(&conn->lock);
723 	if (old_mark)
724 		fsnotify_put_mark(old_mark);
725 	iput(inode);
726 }
727 
728 /*
729  * Nothing fancy, just initialize lists and locks and counters.
730  */
731 void fsnotify_init_mark(struct fsnotify_mark *mark,
732 			struct fsnotify_group *group)
733 {
734 	memset(mark, 0, sizeof(*mark));
735 	spin_lock_init(&mark->lock);
736 	refcount_set(&mark->refcnt, 1);
737 	fsnotify_get_group(group);
738 	mark->group = group;
739 }
740 
741 /*
742  * Destroy all marks in destroy_list, waits for SRCU period to finish before
743  * actually freeing marks.
744  */
745 static void fsnotify_mark_destroy_workfn(struct work_struct *work)
746 {
747 	struct fsnotify_mark *mark, *next;
748 	struct list_head private_destroy_list;
749 
750 	spin_lock(&destroy_lock);
751 	/* exchange the list head */
752 	list_replace_init(&destroy_list, &private_destroy_list);
753 	spin_unlock(&destroy_lock);
754 
755 	synchronize_srcu(&fsnotify_mark_srcu);
756 
757 	list_for_each_entry_safe(mark, next, &private_destroy_list, g_list) {
758 		list_del_init(&mark->g_list);
759 		fsnotify_final_mark_destroy(mark);
760 	}
761 }
762 
763 /* Wait for all marks queued for destruction to be actually destroyed */
764 void fsnotify_wait_marks_destroyed(void)
765 {
766 	flush_delayed_work(&reaper_work);
767 }
768