xref: /openbmc/linux/fs/nilfs2/the_nilfs.c (revision 7ecaa46cfea453238a369b3019739d50ff5d7c37)
1 /*
2  * the_nilfs.c - the_nilfs shared structure.
3  *
4  * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
19  *
20  * Written by Ryusuke Konishi <ryusuke@osrg.net>
21  *
22  */
23 
24 #include <linux/buffer_head.h>
25 #include <linux/slab.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/crc32.h>
29 #include "nilfs.h"
30 #include "segment.h"
31 #include "alloc.h"
32 #include "cpfile.h"
33 #include "sufile.h"
34 #include "dat.h"
35 #include "segbuf.h"
36 
37 
38 static LIST_HEAD(nilfs_objects);
39 static DEFINE_SPINLOCK(nilfs_lock);
40 
41 void nilfs_set_last_segment(struct the_nilfs *nilfs,
42 			    sector_t start_blocknr, u64 seq, __u64 cno)
43 {
44 	spin_lock(&nilfs->ns_last_segment_lock);
45 	nilfs->ns_last_pseg = start_blocknr;
46 	nilfs->ns_last_seq = seq;
47 	nilfs->ns_last_cno = cno;
48 	spin_unlock(&nilfs->ns_last_segment_lock);
49 }
50 
51 /**
52  * alloc_nilfs - allocate the_nilfs structure
53  * @bdev: block device to which the_nilfs is related
54  *
55  * alloc_nilfs() allocates memory for the_nilfs and
56  * initializes its reference count and locks.
57  *
58  * Return Value: On success, pointer to the_nilfs is returned.
59  * On error, NULL is returned.
60  */
61 static struct the_nilfs *alloc_nilfs(struct block_device *bdev)
62 {
63 	struct the_nilfs *nilfs;
64 
65 	nilfs = kzalloc(sizeof(*nilfs), GFP_KERNEL);
66 	if (!nilfs)
67 		return NULL;
68 
69 	nilfs->ns_bdev = bdev;
70 	atomic_set(&nilfs->ns_count, 1);
71 	atomic_set(&nilfs->ns_ndirtyblks, 0);
72 	init_rwsem(&nilfs->ns_sem);
73 	init_rwsem(&nilfs->ns_super_sem);
74 	mutex_init(&nilfs->ns_mount_mutex);
75 	init_rwsem(&nilfs->ns_writer_sem);
76 	INIT_LIST_HEAD(&nilfs->ns_list);
77 	INIT_LIST_HEAD(&nilfs->ns_supers);
78 	spin_lock_init(&nilfs->ns_last_segment_lock);
79 	nilfs->ns_gc_inodes_h = NULL;
80 	init_rwsem(&nilfs->ns_segctor_sem);
81 
82 	return nilfs;
83 }
84 
85 /**
86  * find_or_create_nilfs - find or create nilfs object
87  * @bdev: block device to which the_nilfs is related
88  *
89  * find_nilfs() looks up an existent nilfs object created on the
90  * device and gets the reference count of the object.  If no nilfs object
91  * is found on the device, a new nilfs object is allocated.
92  *
93  * Return Value: On success, pointer to the nilfs object is returned.
94  * On error, NULL is returned.
95  */
96 struct the_nilfs *find_or_create_nilfs(struct block_device *bdev)
97 {
98 	struct the_nilfs *nilfs, *new = NULL;
99 
100  retry:
101 	spin_lock(&nilfs_lock);
102 	list_for_each_entry(nilfs, &nilfs_objects, ns_list) {
103 		if (nilfs->ns_bdev == bdev) {
104 			get_nilfs(nilfs);
105 			spin_unlock(&nilfs_lock);
106 			if (new)
107 				put_nilfs(new);
108 			return nilfs; /* existing object */
109 		}
110 	}
111 	if (new) {
112 		list_add_tail(&new->ns_list, &nilfs_objects);
113 		spin_unlock(&nilfs_lock);
114 		return new; /* new object */
115 	}
116 	spin_unlock(&nilfs_lock);
117 
118 	new = alloc_nilfs(bdev);
119 	if (new)
120 		goto retry;
121 	return NULL; /* insufficient memory */
122 }
123 
124 /**
125  * put_nilfs - release a reference to the_nilfs
126  * @nilfs: the_nilfs structure to be released
127  *
128  * put_nilfs() decrements a reference counter of the_nilfs.
129  * If the reference count reaches zero, the_nilfs is freed.
130  */
131 void put_nilfs(struct the_nilfs *nilfs)
132 {
133 	spin_lock(&nilfs_lock);
134 	if (!atomic_dec_and_test(&nilfs->ns_count)) {
135 		spin_unlock(&nilfs_lock);
136 		return;
137 	}
138 	list_del_init(&nilfs->ns_list);
139 	spin_unlock(&nilfs_lock);
140 
141 	/*
142 	 * Increment of ns_count never occurs below because the caller
143 	 * of get_nilfs() holds at least one reference to the_nilfs.
144 	 * Thus its exclusion control is not required here.
145 	 */
146 
147 	might_sleep();
148 	if (nilfs_loaded(nilfs)) {
149 		nilfs_mdt_destroy(nilfs->ns_sufile);
150 		nilfs_mdt_destroy(nilfs->ns_cpfile);
151 		nilfs_mdt_destroy(nilfs->ns_dat);
152 		nilfs_mdt_destroy(nilfs->ns_gc_dat);
153 	}
154 	if (nilfs_init(nilfs)) {
155 		nilfs_destroy_gccache(nilfs);
156 		brelse(nilfs->ns_sbh[0]);
157 		brelse(nilfs->ns_sbh[1]);
158 	}
159 	kfree(nilfs);
160 }
161 
162 static int nilfs_load_super_root(struct the_nilfs *nilfs, sector_t sr_block)
163 {
164 	struct buffer_head *bh_sr;
165 	struct nilfs_super_root *raw_sr;
166 	struct nilfs_super_block **sbp = nilfs->ns_sbp;
167 	unsigned dat_entry_size, segment_usage_size, checkpoint_size;
168 	unsigned inode_size;
169 	int err;
170 
171 	err = nilfs_read_super_root_block(nilfs, sr_block, &bh_sr, 1);
172 	if (unlikely(err))
173 		return err;
174 
175 	down_read(&nilfs->ns_sem);
176 	dat_entry_size = le16_to_cpu(sbp[0]->s_dat_entry_size);
177 	checkpoint_size = le16_to_cpu(sbp[0]->s_checkpoint_size);
178 	segment_usage_size = le16_to_cpu(sbp[0]->s_segment_usage_size);
179 	up_read(&nilfs->ns_sem);
180 
181 	inode_size = nilfs->ns_inode_size;
182 
183 	err = -ENOMEM;
184 	nilfs->ns_dat = nilfs_dat_new(nilfs, dat_entry_size);
185 	if (unlikely(!nilfs->ns_dat))
186 		goto failed;
187 
188 	nilfs->ns_gc_dat = nilfs_dat_new(nilfs, dat_entry_size);
189 	if (unlikely(!nilfs->ns_gc_dat))
190 		goto failed_dat;
191 
192 	nilfs->ns_cpfile = nilfs_cpfile_new(nilfs, checkpoint_size);
193 	if (unlikely(!nilfs->ns_cpfile))
194 		goto failed_gc_dat;
195 
196 	nilfs->ns_sufile = nilfs_sufile_new(nilfs, segment_usage_size);
197 	if (unlikely(!nilfs->ns_sufile))
198 		goto failed_cpfile;
199 
200 	nilfs_mdt_set_shadow(nilfs->ns_dat, nilfs->ns_gc_dat);
201 
202 	err = nilfs_dat_read(nilfs->ns_dat, (void *)bh_sr->b_data +
203 			     NILFS_SR_DAT_OFFSET(inode_size));
204 	if (unlikely(err))
205 		goto failed_sufile;
206 
207 	err = nilfs_cpfile_read(nilfs->ns_cpfile, (void *)bh_sr->b_data +
208 				NILFS_SR_CPFILE_OFFSET(inode_size));
209 	if (unlikely(err))
210 		goto failed_sufile;
211 
212 	err = nilfs_sufile_read(nilfs->ns_sufile, (void *)bh_sr->b_data +
213 				NILFS_SR_SUFILE_OFFSET(inode_size));
214 	if (unlikely(err))
215 		goto failed_sufile;
216 
217 	raw_sr = (struct nilfs_super_root *)bh_sr->b_data;
218 	nilfs->ns_nongc_ctime = le64_to_cpu(raw_sr->sr_nongc_ctime);
219 
220  failed:
221 	brelse(bh_sr);
222 	return err;
223 
224  failed_sufile:
225 	nilfs_mdt_destroy(nilfs->ns_sufile);
226 
227  failed_cpfile:
228 	nilfs_mdt_destroy(nilfs->ns_cpfile);
229 
230  failed_gc_dat:
231 	nilfs_mdt_destroy(nilfs->ns_gc_dat);
232 
233  failed_dat:
234 	nilfs_mdt_destroy(nilfs->ns_dat);
235 	goto failed;
236 }
237 
238 static void nilfs_init_recovery_info(struct nilfs_recovery_info *ri)
239 {
240 	memset(ri, 0, sizeof(*ri));
241 	INIT_LIST_HEAD(&ri->ri_used_segments);
242 }
243 
244 static void nilfs_clear_recovery_info(struct nilfs_recovery_info *ri)
245 {
246 	nilfs_dispose_segment_list(&ri->ri_used_segments);
247 }
248 
249 /**
250  * load_nilfs - load and recover the nilfs
251  * @nilfs: the_nilfs structure to be released
252  * @sbi: nilfs_sb_info used to recover past segment
253  *
254  * load_nilfs() searches and load the latest super root,
255  * attaches the last segment, and does recovery if needed.
256  * The caller must call this exclusively for simultaneous mounts.
257  */
258 int load_nilfs(struct the_nilfs *nilfs, struct nilfs_sb_info *sbi)
259 {
260 	struct nilfs_recovery_info ri;
261 	unsigned int s_flags = sbi->s_super->s_flags;
262 	int really_read_only = bdev_read_only(nilfs->ns_bdev);
263 	int valid_fs = nilfs_valid_fs(nilfs);
264 	int err;
265 
266 	if (nilfs_loaded(nilfs)) {
267 		if (valid_fs ||
268 		    ((s_flags & MS_RDONLY) && nilfs_test_opt(sbi, NORECOVERY)))
269 			return 0;
270 		printk(KERN_ERR "NILFS: the filesystem is in an incomplete "
271 		       "recovery state.\n");
272 		return -EINVAL;
273 	}
274 
275 	if (!valid_fs) {
276 		printk(KERN_WARNING "NILFS warning: mounting unchecked fs\n");
277 		if (s_flags & MS_RDONLY) {
278 			printk(KERN_INFO "NILFS: INFO: recovery "
279 			       "required for readonly filesystem.\n");
280 			printk(KERN_INFO "NILFS: write access will "
281 			       "be enabled during recovery.\n");
282 		}
283 	}
284 
285 	nilfs_init_recovery_info(&ri);
286 
287 	err = nilfs_search_super_root(nilfs, &ri);
288 	if (unlikely(err)) {
289 		printk(KERN_ERR "NILFS: error searching super root.\n");
290 		goto failed;
291 	}
292 
293 	err = nilfs_load_super_root(nilfs, ri.ri_super_root);
294 	if (unlikely(err)) {
295 		printk(KERN_ERR "NILFS: error loading super root.\n");
296 		goto failed;
297 	}
298 
299 	if (valid_fs)
300 		goto skip_recovery;
301 
302 	if (s_flags & MS_RDONLY) {
303 		if (nilfs_test_opt(sbi, NORECOVERY)) {
304 			printk(KERN_INFO "NILFS: norecovery option specified. "
305 			       "skipping roll-forward recovery\n");
306 			goto skip_recovery;
307 		}
308 		if (really_read_only) {
309 			printk(KERN_ERR "NILFS: write access "
310 			       "unavailable, cannot proceed.\n");
311 			err = -EROFS;
312 			goto failed_unload;
313 		}
314 		sbi->s_super->s_flags &= ~MS_RDONLY;
315 	} else if (nilfs_test_opt(sbi, NORECOVERY)) {
316 		printk(KERN_ERR "NILFS: recovery cancelled because norecovery "
317 		       "option was specified for a read/write mount\n");
318 		err = -EINVAL;
319 		goto failed_unload;
320 	}
321 
322 	err = nilfs_salvage_orphan_logs(nilfs, sbi, &ri);
323 	if (err)
324 		goto failed_unload;
325 
326 	down_write(&nilfs->ns_sem);
327 	nilfs->ns_mount_state |= NILFS_VALID_FS; /* set "clean" flag */
328 	err = nilfs_cleanup_super(sbi);
329 	up_write(&nilfs->ns_sem);
330 
331 	if (err) {
332 		printk(KERN_ERR "NILFS: failed to update super block. "
333 		       "recovery unfinished.\n");
334 		goto failed_unload;
335 	}
336 	printk(KERN_INFO "NILFS: recovery complete.\n");
337 
338  skip_recovery:
339 	set_nilfs_loaded(nilfs);
340 	nilfs_clear_recovery_info(&ri);
341 	sbi->s_super->s_flags = s_flags;
342 	return 0;
343 
344  failed_unload:
345 	nilfs_mdt_destroy(nilfs->ns_cpfile);
346 	nilfs_mdt_destroy(nilfs->ns_sufile);
347 	nilfs_mdt_destroy(nilfs->ns_dat);
348 
349  failed:
350 	nilfs_clear_recovery_info(&ri);
351 	sbi->s_super->s_flags = s_flags;
352 	return err;
353 }
354 
355 static unsigned long long nilfs_max_size(unsigned int blkbits)
356 {
357 	unsigned int max_bits;
358 	unsigned long long res = MAX_LFS_FILESIZE; /* page cache limit */
359 
360 	max_bits = blkbits + NILFS_BMAP_KEY_BIT; /* bmap size limit */
361 	if (max_bits < 64)
362 		res = min_t(unsigned long long, res, (1ULL << max_bits) - 1);
363 	return res;
364 }
365 
366 static int nilfs_store_disk_layout(struct the_nilfs *nilfs,
367 				   struct nilfs_super_block *sbp)
368 {
369 	if (le32_to_cpu(sbp->s_rev_level) != NILFS_CURRENT_REV) {
370 		printk(KERN_ERR "NILFS: revision mismatch "
371 		       "(superblock rev.=%d.%d, current rev.=%d.%d). "
372 		       "Please check the version of mkfs.nilfs.\n",
373 		       le32_to_cpu(sbp->s_rev_level),
374 		       le16_to_cpu(sbp->s_minor_rev_level),
375 		       NILFS_CURRENT_REV, NILFS_MINOR_REV);
376 		return -EINVAL;
377 	}
378 	nilfs->ns_sbsize = le16_to_cpu(sbp->s_bytes);
379 	if (nilfs->ns_sbsize > BLOCK_SIZE)
380 		return -EINVAL;
381 
382 	nilfs->ns_inode_size = le16_to_cpu(sbp->s_inode_size);
383 	nilfs->ns_first_ino = le32_to_cpu(sbp->s_first_ino);
384 
385 	nilfs->ns_blocks_per_segment = le32_to_cpu(sbp->s_blocks_per_segment);
386 	if (nilfs->ns_blocks_per_segment < NILFS_SEG_MIN_BLOCKS) {
387 		printk(KERN_ERR "NILFS: too short segment.\n");
388 		return -EINVAL;
389 	}
390 
391 	nilfs->ns_first_data_block = le64_to_cpu(sbp->s_first_data_block);
392 	nilfs->ns_nsegments = le64_to_cpu(sbp->s_nsegments);
393 	nilfs->ns_r_segments_percentage =
394 		le32_to_cpu(sbp->s_r_segments_percentage);
395 	nilfs->ns_nrsvsegs =
396 		max_t(unsigned long, NILFS_MIN_NRSVSEGS,
397 		      DIV_ROUND_UP(nilfs->ns_nsegments *
398 				   nilfs->ns_r_segments_percentage, 100));
399 	nilfs->ns_crc_seed = le32_to_cpu(sbp->s_crc_seed);
400 	return 0;
401 }
402 
403 static int nilfs_valid_sb(struct nilfs_super_block *sbp)
404 {
405 	static unsigned char sum[4];
406 	const int sumoff = offsetof(struct nilfs_super_block, s_sum);
407 	size_t bytes;
408 	u32 crc;
409 
410 	if (!sbp || le16_to_cpu(sbp->s_magic) != NILFS_SUPER_MAGIC)
411 		return 0;
412 	bytes = le16_to_cpu(sbp->s_bytes);
413 	if (bytes > BLOCK_SIZE)
414 		return 0;
415 	crc = crc32_le(le32_to_cpu(sbp->s_crc_seed), (unsigned char *)sbp,
416 		       sumoff);
417 	crc = crc32_le(crc, sum, 4);
418 	crc = crc32_le(crc, (unsigned char *)sbp + sumoff + 4,
419 		       bytes - sumoff - 4);
420 	return crc == le32_to_cpu(sbp->s_sum);
421 }
422 
423 static int nilfs_sb2_bad_offset(struct nilfs_super_block *sbp, u64 offset)
424 {
425 	return offset < ((le64_to_cpu(sbp->s_nsegments) *
426 			  le32_to_cpu(sbp->s_blocks_per_segment)) <<
427 			 (le32_to_cpu(sbp->s_log_block_size) + 10));
428 }
429 
430 static void nilfs_release_super_block(struct the_nilfs *nilfs)
431 {
432 	int i;
433 
434 	for (i = 0; i < 2; i++) {
435 		if (nilfs->ns_sbp[i]) {
436 			brelse(nilfs->ns_sbh[i]);
437 			nilfs->ns_sbh[i] = NULL;
438 			nilfs->ns_sbp[i] = NULL;
439 		}
440 	}
441 }
442 
443 void nilfs_fall_back_super_block(struct the_nilfs *nilfs)
444 {
445 	brelse(nilfs->ns_sbh[0]);
446 	nilfs->ns_sbh[0] = nilfs->ns_sbh[1];
447 	nilfs->ns_sbp[0] = nilfs->ns_sbp[1];
448 	nilfs->ns_sbh[1] = NULL;
449 	nilfs->ns_sbp[1] = NULL;
450 }
451 
452 void nilfs_swap_super_block(struct the_nilfs *nilfs)
453 {
454 	struct buffer_head *tsbh = nilfs->ns_sbh[0];
455 	struct nilfs_super_block *tsbp = nilfs->ns_sbp[0];
456 
457 	nilfs->ns_sbh[0] = nilfs->ns_sbh[1];
458 	nilfs->ns_sbp[0] = nilfs->ns_sbp[1];
459 	nilfs->ns_sbh[1] = tsbh;
460 	nilfs->ns_sbp[1] = tsbp;
461 }
462 
463 static int nilfs_load_super_block(struct the_nilfs *nilfs,
464 				  struct super_block *sb, int blocksize,
465 				  struct nilfs_super_block **sbpp)
466 {
467 	struct nilfs_super_block **sbp = nilfs->ns_sbp;
468 	struct buffer_head **sbh = nilfs->ns_sbh;
469 	u64 sb2off = NILFS_SB2_OFFSET_BYTES(nilfs->ns_bdev->bd_inode->i_size);
470 	int valid[2], swp = 0;
471 
472 	sbp[0] = nilfs_read_super_block(sb, NILFS_SB_OFFSET_BYTES, blocksize,
473 					&sbh[0]);
474 	sbp[1] = nilfs_read_super_block(sb, sb2off, blocksize, &sbh[1]);
475 
476 	if (!sbp[0]) {
477 		if (!sbp[1]) {
478 			printk(KERN_ERR "NILFS: unable to read superblock\n");
479 			return -EIO;
480 		}
481 		printk(KERN_WARNING
482 		       "NILFS warning: unable to read primary superblock\n");
483 	} else if (!sbp[1])
484 		printk(KERN_WARNING
485 		       "NILFS warning: unable to read secondary superblock\n");
486 
487 	/*
488 	 * Compare two super blocks and set 1 in swp if the secondary
489 	 * super block is valid and newer.  Otherwise, set 0 in swp.
490 	 */
491 	valid[0] = nilfs_valid_sb(sbp[0]);
492 	valid[1] = nilfs_valid_sb(sbp[1]);
493 	swp = valid[1] && (!valid[0] ||
494 			   le64_to_cpu(sbp[1]->s_last_cno) >
495 			   le64_to_cpu(sbp[0]->s_last_cno));
496 
497 	if (valid[swp] && nilfs_sb2_bad_offset(sbp[swp], sb2off)) {
498 		brelse(sbh[1]);
499 		sbh[1] = NULL;
500 		sbp[1] = NULL;
501 		swp = 0;
502 	}
503 	if (!valid[swp]) {
504 		nilfs_release_super_block(nilfs);
505 		printk(KERN_ERR "NILFS: Can't find nilfs on dev %s.\n",
506 		       sb->s_id);
507 		return -EINVAL;
508 	}
509 
510 	if (swp) {
511 		printk(KERN_WARNING "NILFS warning: broken superblock. "
512 		       "using spare superblock.\n");
513 		nilfs_swap_super_block(nilfs);
514 	}
515 
516 	nilfs->ns_sbwtime[0] = le64_to_cpu(sbp[0]->s_wtime);
517 	nilfs->ns_sbwtime[1] = valid[!swp] ? le64_to_cpu(sbp[1]->s_wtime) : 0;
518 	nilfs->ns_prot_seq = le64_to_cpu(sbp[valid[1] & !swp]->s_last_seq);
519 	*sbpp = sbp[0];
520 	return 0;
521 }
522 
523 /**
524  * init_nilfs - initialize a NILFS instance.
525  * @nilfs: the_nilfs structure
526  * @sbi: nilfs_sb_info
527  * @sb: super block
528  * @data: mount options
529  *
530  * init_nilfs() performs common initialization per block device (e.g.
531  * reading the super block, getting disk layout information, initializing
532  * shared fields in the_nilfs). It takes on some portion of the jobs
533  * typically done by a fill_super() routine. This division arises from
534  * the nature that multiple NILFS instances may be simultaneously
535  * mounted on a device.
536  * For multiple mounts on the same device, only the first mount
537  * invokes these tasks.
538  *
539  * Return Value: On success, 0 is returned. On error, a negative error
540  * code is returned.
541  */
542 int init_nilfs(struct the_nilfs *nilfs, struct nilfs_sb_info *sbi, char *data)
543 {
544 	struct super_block *sb = sbi->s_super;
545 	struct nilfs_super_block *sbp;
546 	struct backing_dev_info *bdi;
547 	int blocksize;
548 	int err;
549 
550 	down_write(&nilfs->ns_sem);
551 	if (nilfs_init(nilfs)) {
552 		/* Load values from existing the_nilfs */
553 		sbp = nilfs->ns_sbp[0];
554 		err = nilfs_store_magic_and_option(sb, sbp, data);
555 		if (err)
556 			goto out;
557 
558 		blocksize = BLOCK_SIZE << le32_to_cpu(sbp->s_log_block_size);
559 		if (sb->s_blocksize != blocksize &&
560 		    !sb_set_blocksize(sb, blocksize)) {
561 			printk(KERN_ERR "NILFS: blocksize %d unfit to device\n",
562 			       blocksize);
563 			err = -EINVAL;
564 		}
565 		sb->s_maxbytes = nilfs_max_size(sb->s_blocksize_bits);
566 		goto out;
567 	}
568 
569 	blocksize = sb_min_blocksize(sb, BLOCK_SIZE);
570 	if (!blocksize) {
571 		printk(KERN_ERR "NILFS: unable to set blocksize\n");
572 		err = -EINVAL;
573 		goto out;
574 	}
575 	err = nilfs_load_super_block(nilfs, sb, blocksize, &sbp);
576 	if (err)
577 		goto out;
578 
579 	err = nilfs_store_magic_and_option(sb, sbp, data);
580 	if (err)
581 		goto failed_sbh;
582 
583 	blocksize = BLOCK_SIZE << le32_to_cpu(sbp->s_log_block_size);
584 	if (sb->s_blocksize != blocksize) {
585 		int hw_blocksize = bdev_logical_block_size(sb->s_bdev);
586 
587 		if (blocksize < hw_blocksize) {
588 			printk(KERN_ERR
589 			       "NILFS: blocksize %d too small for device "
590 			       "(sector-size = %d).\n",
591 			       blocksize, hw_blocksize);
592 			err = -EINVAL;
593 			goto failed_sbh;
594 		}
595 		nilfs_release_super_block(nilfs);
596 		sb_set_blocksize(sb, blocksize);
597 
598 		err = nilfs_load_super_block(nilfs, sb, blocksize, &sbp);
599 		if (err)
600 			goto out;
601 			/* not failed_sbh; sbh is released automatically
602 			   when reloading fails. */
603 	}
604 	nilfs->ns_blocksize_bits = sb->s_blocksize_bits;
605 	nilfs->ns_blocksize = blocksize;
606 
607 	err = nilfs_store_disk_layout(nilfs, sbp);
608 	if (err)
609 		goto failed_sbh;
610 
611 	sb->s_maxbytes = nilfs_max_size(sb->s_blocksize_bits);
612 
613 	nilfs->ns_mount_state = le16_to_cpu(sbp->s_state);
614 
615 	bdi = nilfs->ns_bdev->bd_inode->i_mapping->backing_dev_info;
616 	nilfs->ns_bdi = bdi ? : &default_backing_dev_info;
617 
618 	/* Finding last segment */
619 	nilfs->ns_last_pseg = le64_to_cpu(sbp->s_last_pseg);
620 	nilfs->ns_last_cno = le64_to_cpu(sbp->s_last_cno);
621 	nilfs->ns_last_seq = le64_to_cpu(sbp->s_last_seq);
622 
623 	nilfs->ns_seg_seq = nilfs->ns_last_seq;
624 	nilfs->ns_segnum =
625 		nilfs_get_segnum_of_block(nilfs, nilfs->ns_last_pseg);
626 	nilfs->ns_cno = nilfs->ns_last_cno + 1;
627 	if (nilfs->ns_segnum >= nilfs->ns_nsegments) {
628 		printk(KERN_ERR "NILFS invalid last segment number.\n");
629 		err = -EINVAL;
630 		goto failed_sbh;
631 	}
632 
633 	/* Initialize gcinode cache */
634 	err = nilfs_init_gccache(nilfs);
635 	if (err)
636 		goto failed_sbh;
637 
638 	set_nilfs_init(nilfs);
639 	err = 0;
640  out:
641 	up_write(&nilfs->ns_sem);
642 	return err;
643 
644  failed_sbh:
645 	nilfs_release_super_block(nilfs);
646 	goto out;
647 }
648 
649 int nilfs_discard_segments(struct the_nilfs *nilfs, __u64 *segnump,
650 			    size_t nsegs)
651 {
652 	sector_t seg_start, seg_end;
653 	sector_t start = 0, nblocks = 0;
654 	unsigned int sects_per_block;
655 	__u64 *sn;
656 	int ret = 0;
657 
658 	sects_per_block = (1 << nilfs->ns_blocksize_bits) /
659 		bdev_logical_block_size(nilfs->ns_bdev);
660 	for (sn = segnump; sn < segnump + nsegs; sn++) {
661 		nilfs_get_segment_range(nilfs, *sn, &seg_start, &seg_end);
662 
663 		if (!nblocks) {
664 			start = seg_start;
665 			nblocks = seg_end - seg_start + 1;
666 		} else if (start + nblocks == seg_start) {
667 			nblocks += seg_end - seg_start + 1;
668 		} else {
669 			ret = blkdev_issue_discard(nilfs->ns_bdev,
670 						   start * sects_per_block,
671 						   nblocks * sects_per_block,
672 						   GFP_NOFS,
673 						   BLKDEV_IFL_BARRIER);
674 			if (ret < 0)
675 				return ret;
676 			nblocks = 0;
677 		}
678 	}
679 	if (nblocks)
680 		ret = blkdev_issue_discard(nilfs->ns_bdev,
681 					   start * sects_per_block,
682 					   nblocks * sects_per_block,
683 					   GFP_NOFS, BLKDEV_IFL_BARRIER);
684 	return ret;
685 }
686 
687 int nilfs_count_free_blocks(struct the_nilfs *nilfs, sector_t *nblocks)
688 {
689 	struct inode *dat = nilfs_dat_inode(nilfs);
690 	unsigned long ncleansegs;
691 
692 	down_read(&NILFS_MDT(dat)->mi_sem);	/* XXX */
693 	ncleansegs = nilfs_sufile_get_ncleansegs(nilfs->ns_sufile);
694 	up_read(&NILFS_MDT(dat)->mi_sem);	/* XXX */
695 	*nblocks = (sector_t)ncleansegs * nilfs->ns_blocks_per_segment;
696 	return 0;
697 }
698 
699 int nilfs_near_disk_full(struct the_nilfs *nilfs)
700 {
701 	unsigned long ncleansegs, nincsegs;
702 
703 	ncleansegs = nilfs_sufile_get_ncleansegs(nilfs->ns_sufile);
704 	nincsegs = atomic_read(&nilfs->ns_ndirtyblks) /
705 		nilfs->ns_blocks_per_segment + 1;
706 
707 	return ncleansegs <= nilfs->ns_nrsvsegs + nincsegs;
708 }
709 
710 /**
711  * nilfs_find_sbinfo - find existing nilfs_sb_info structure
712  * @nilfs: nilfs object
713  * @rw_mount: mount type (non-zero value for read/write mount)
714  * @cno: checkpoint number (zero for read-only mount)
715  *
716  * nilfs_find_sbinfo() returns the nilfs_sb_info structure which
717  * @rw_mount and @cno (in case of snapshots) matched.  If no instance
718  * was found, NULL is returned.  Although the super block instance can
719  * be unmounted after this function returns, the nilfs_sb_info struct
720  * is kept on memory until nilfs_put_sbinfo() is called.
721  */
722 struct nilfs_sb_info *nilfs_find_sbinfo(struct the_nilfs *nilfs,
723 					int rw_mount, __u64 cno)
724 {
725 	struct nilfs_sb_info *sbi;
726 
727 	down_read(&nilfs->ns_super_sem);
728 	/*
729 	 * The SNAPSHOT flag and sb->s_flags are supposed to be
730 	 * protected with nilfs->ns_super_sem.
731 	 */
732 	sbi = nilfs->ns_current;
733 	if (rw_mount) {
734 		if (sbi && !(sbi->s_super->s_flags & MS_RDONLY))
735 			goto found; /* read/write mount */
736 		else
737 			goto out;
738 	} else if (cno == 0) {
739 		if (sbi && (sbi->s_super->s_flags & MS_RDONLY))
740 			goto found; /* read-only mount */
741 		else
742 			goto out;
743 	}
744 
745 	list_for_each_entry(sbi, &nilfs->ns_supers, s_list) {
746 		if (nilfs_test_opt(sbi, SNAPSHOT) &&
747 		    sbi->s_snapshot_cno == cno)
748 			goto found; /* snapshot mount */
749 	}
750  out:
751 	up_read(&nilfs->ns_super_sem);
752 	return NULL;
753 
754  found:
755 	atomic_inc(&sbi->s_count);
756 	up_read(&nilfs->ns_super_sem);
757 	return sbi;
758 }
759 
760 int nilfs_checkpoint_is_mounted(struct the_nilfs *nilfs, __u64 cno,
761 				int snapshot_mount)
762 {
763 	struct nilfs_sb_info *sbi;
764 	int ret = 0;
765 
766 	down_read(&nilfs->ns_super_sem);
767 	if (cno == 0 || cno > nilfs->ns_cno)
768 		goto out_unlock;
769 
770 	list_for_each_entry(sbi, &nilfs->ns_supers, s_list) {
771 		if (sbi->s_snapshot_cno == cno &&
772 		    (!snapshot_mount || nilfs_test_opt(sbi, SNAPSHOT))) {
773 					/* exclude read-only mounts */
774 			ret++;
775 			break;
776 		}
777 	}
778 	/* for protecting recent checkpoints */
779 	if (cno >= nilfs_last_cno(nilfs))
780 		ret++;
781 
782  out_unlock:
783 	up_read(&nilfs->ns_super_sem);
784 	return ret;
785 }
786