xref: /openbmc/linux/fs/nilfs2/super.c (revision e59399d0102c1813cec48db5cebe1750313f88a0)
1 /*
2  * super.c - NILFS module and super block management.
3  *
4  * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
19  *
20  * Written by Ryusuke Konishi <ryusuke@osrg.net>
21  */
22 /*
23  *  linux/fs/ext2/super.c
24  *
25  * Copyright (C) 1992, 1993, 1994, 1995
26  * Remy Card (card@masi.ibp.fr)
27  * Laboratoire MASI - Institut Blaise Pascal
28  * Universite Pierre et Marie Curie (Paris VI)
29  *
30  *  from
31  *
32  *  linux/fs/minix/inode.c
33  *
34  *  Copyright (C) 1991, 1992  Linus Torvalds
35  *
36  *  Big-endian to little-endian byte-swapping/bitmaps by
37  *        David S. Miller (davem@caip.rutgers.edu), 1995
38  */
39 
40 #include <linux/module.h>
41 #include <linux/string.h>
42 #include <linux/slab.h>
43 #include <linux/init.h>
44 #include <linux/blkdev.h>
45 #include <linux/parser.h>
46 #include <linux/random.h>
47 #include <linux/crc32.h>
48 #include <linux/smp_lock.h>
49 #include <linux/vfs.h>
50 #include <linux/writeback.h>
51 #include <linux/kobject.h>
52 #include <linux/exportfs.h>
53 #include "nilfs.h"
54 #include "mdt.h"
55 #include "alloc.h"
56 #include "page.h"
57 #include "cpfile.h"
58 #include "ifile.h"
59 #include "dat.h"
60 #include "segment.h"
61 #include "segbuf.h"
62 
63 MODULE_AUTHOR("NTT Corp.");
64 MODULE_DESCRIPTION("A New Implementation of the Log-structured Filesystem "
65 		   "(NILFS)");
66 MODULE_LICENSE("GPL");
67 
68 static void nilfs_write_super(struct super_block *sb);
69 static int nilfs_remount(struct super_block *sb, int *flags, char *data);
70 
71 /**
72  * nilfs_error() - report failure condition on a filesystem
73  *
74  * nilfs_error() sets an ERROR_FS flag on the superblock as well as
75  * reporting an error message.  It should be called when NILFS detects
76  * incoherences or defects of meta data on disk.  As for sustainable
77  * errors such as a single-shot I/O error, nilfs_warning() or the printk()
78  * function should be used instead.
79  *
80  * The segment constructor must not call this function because it can
81  * kill itself.
82  */
83 void nilfs_error(struct super_block *sb, const char *function,
84 		 const char *fmt, ...)
85 {
86 	struct nilfs_sb_info *sbi = NILFS_SB(sb);
87 	va_list args;
88 
89 	va_start(args, fmt);
90 	printk(KERN_CRIT "NILFS error (device %s): %s: ", sb->s_id, function);
91 	vprintk(fmt, args);
92 	printk("\n");
93 	va_end(args);
94 
95 	if (!(sb->s_flags & MS_RDONLY)) {
96 		struct the_nilfs *nilfs = sbi->s_nilfs;
97 
98 		if (!nilfs_test_opt(sbi, ERRORS_CONT))
99 			nilfs_detach_segment_constructor(sbi);
100 
101 		down_write(&nilfs->ns_sem);
102 		if (!(nilfs->ns_mount_state & NILFS_ERROR_FS)) {
103 			nilfs->ns_mount_state |= NILFS_ERROR_FS;
104 			nilfs->ns_sbp[0]->s_state |=
105 				cpu_to_le16(NILFS_ERROR_FS);
106 			nilfs_commit_super(sbi, 1);
107 		}
108 		up_write(&nilfs->ns_sem);
109 
110 		if (nilfs_test_opt(sbi, ERRORS_RO)) {
111 			printk(KERN_CRIT "Remounting filesystem read-only\n");
112 			sb->s_flags |= MS_RDONLY;
113 		}
114 	}
115 
116 	if (nilfs_test_opt(sbi, ERRORS_PANIC))
117 		panic("NILFS (device %s): panic forced after error\n",
118 		      sb->s_id);
119 }
120 
121 void nilfs_warning(struct super_block *sb, const char *function,
122 		   const char *fmt, ...)
123 {
124 	va_list args;
125 
126 	va_start(args, fmt);
127 	printk(KERN_WARNING "NILFS warning (device %s): %s: ",
128 	       sb->s_id, function);
129 	vprintk(fmt, args);
130 	printk("\n");
131 	va_end(args);
132 }
133 
134 static struct kmem_cache *nilfs_inode_cachep;
135 
136 struct inode *nilfs_alloc_inode(struct super_block *sb)
137 {
138 	struct nilfs_inode_info *ii;
139 
140 	ii = kmem_cache_alloc(nilfs_inode_cachep, GFP_NOFS);
141 	if (!ii)
142 		return NULL;
143 	ii->i_bh = NULL;
144 	ii->i_state = 0;
145 	ii->vfs_inode.i_version = 1;
146 	nilfs_btnode_cache_init(&ii->i_btnode_cache);
147 	return &ii->vfs_inode;
148 }
149 
150 void nilfs_destroy_inode(struct inode *inode)
151 {
152 	kmem_cache_free(nilfs_inode_cachep, NILFS_I(inode));
153 }
154 
155 static void init_once(void *obj)
156 {
157 	struct nilfs_inode_info *ii = obj;
158 
159 	INIT_LIST_HEAD(&ii->i_dirty);
160 #ifdef CONFIG_NILFS_XATTR
161 	init_rwsem(&ii->xattr_sem);
162 #endif
163 	nilfs_btnode_cache_init_once(&ii->i_btnode_cache);
164 	ii->i_bmap = (struct nilfs_bmap *)&ii->i_bmap_union;
165 	inode_init_once(&ii->vfs_inode);
166 }
167 
168 static int nilfs_init_inode_cache(void)
169 {
170 	nilfs_inode_cachep = kmem_cache_create("nilfs2_inode_cache",
171 					       sizeof(struct nilfs_inode_info),
172 					       0, SLAB_RECLAIM_ACCOUNT,
173 					       init_once);
174 
175 	return (nilfs_inode_cachep == NULL) ? -ENOMEM : 0;
176 }
177 
178 static inline void nilfs_destroy_inode_cache(void)
179 {
180 	kmem_cache_destroy(nilfs_inode_cachep);
181 }
182 
183 static void nilfs_clear_inode(struct inode *inode)
184 {
185 	struct nilfs_inode_info *ii = NILFS_I(inode);
186 
187 #ifdef CONFIG_NILFS_POSIX_ACL
188 	if (ii->i_acl && ii->i_acl != NILFS_ACL_NOT_CACHED) {
189 		posix_acl_release(ii->i_acl);
190 		ii->i_acl = NILFS_ACL_NOT_CACHED;
191 	}
192 	if (ii->i_default_acl && ii->i_default_acl != NILFS_ACL_NOT_CACHED) {
193 		posix_acl_release(ii->i_default_acl);
194 		ii->i_default_acl = NILFS_ACL_NOT_CACHED;
195 	}
196 #endif
197 	/*
198 	 * Free resources allocated in nilfs_read_inode(), here.
199 	 */
200 	BUG_ON(!list_empty(&ii->i_dirty));
201 	brelse(ii->i_bh);
202 	ii->i_bh = NULL;
203 
204 	if (test_bit(NILFS_I_BMAP, &ii->i_state))
205 		nilfs_bmap_clear(ii->i_bmap);
206 
207 	nilfs_btnode_cache_clear(&ii->i_btnode_cache);
208 }
209 
210 static int nilfs_sync_super(struct nilfs_sb_info *sbi, int dupsb)
211 {
212 	struct the_nilfs *nilfs = sbi->s_nilfs;
213 	int err;
214 	int barrier_done = 0;
215 
216 	if (nilfs_test_opt(sbi, BARRIER)) {
217 		set_buffer_ordered(nilfs->ns_sbh[0]);
218 		barrier_done = 1;
219 	}
220  retry:
221 	set_buffer_dirty(nilfs->ns_sbh[0]);
222 	err = sync_dirty_buffer(nilfs->ns_sbh[0]);
223 	if (err == -EOPNOTSUPP && barrier_done) {
224 		nilfs_warning(sbi->s_super, __func__,
225 			      "barrier-based sync failed. "
226 			      "disabling barriers\n");
227 		nilfs_clear_opt(sbi, BARRIER);
228 		barrier_done = 0;
229 		clear_buffer_ordered(nilfs->ns_sbh[0]);
230 		goto retry;
231 	}
232 	if (unlikely(err)) {
233 		printk(KERN_ERR
234 		       "NILFS: unable to write superblock (err=%d)\n", err);
235 		if (err == -EIO && nilfs->ns_sbh[1]) {
236 			nilfs_fall_back_super_block(nilfs);
237 			goto retry;
238 		}
239 	} else {
240 		struct nilfs_super_block *sbp = nilfs->ns_sbp[0];
241 
242 		/*
243 		 * The latest segment becomes trailable from the position
244 		 * written in superblock.
245 		 */
246 		clear_nilfs_discontinued(nilfs);
247 
248 		/* update GC protection for recent segments */
249 		if (nilfs->ns_sbh[1]) {
250 			sbp = NULL;
251 			if (dupsb) {
252 				set_buffer_dirty(nilfs->ns_sbh[1]);
253 				if (!sync_dirty_buffer(nilfs->ns_sbh[1]))
254 					sbp = nilfs->ns_sbp[1];
255 			}
256 		}
257 		if (sbp) {
258 			spin_lock(&nilfs->ns_last_segment_lock);
259 			nilfs->ns_prot_seq = le64_to_cpu(sbp->s_last_seq);
260 			spin_unlock(&nilfs->ns_last_segment_lock);
261 		}
262 	}
263 
264 	return err;
265 }
266 
267 int nilfs_commit_super(struct nilfs_sb_info *sbi, int dupsb)
268 {
269 	struct the_nilfs *nilfs = sbi->s_nilfs;
270 	struct nilfs_super_block **sbp = nilfs->ns_sbp;
271 	sector_t nfreeblocks;
272 	time_t t;
273 	int err;
274 
275 	/* nilfs->sem must be locked by the caller. */
276 	if (sbp[0]->s_magic != NILFS_SUPER_MAGIC) {
277 		if (sbp[1] && sbp[1]->s_magic == NILFS_SUPER_MAGIC)
278 			nilfs_swap_super_block(nilfs);
279 		else {
280 			printk(KERN_CRIT "NILFS: superblock broke on dev %s\n",
281 			       sbi->s_super->s_id);
282 			return -EIO;
283 		}
284 	}
285 	err = nilfs_count_free_blocks(nilfs, &nfreeblocks);
286 	if (unlikely(err)) {
287 		printk(KERN_ERR "NILFS: failed to count free blocks\n");
288 		return err;
289 	}
290 	spin_lock(&nilfs->ns_last_segment_lock);
291 	sbp[0]->s_last_seq = cpu_to_le64(nilfs->ns_last_seq);
292 	sbp[0]->s_last_pseg = cpu_to_le64(nilfs->ns_last_pseg);
293 	sbp[0]->s_last_cno = cpu_to_le64(nilfs->ns_last_cno);
294 	spin_unlock(&nilfs->ns_last_segment_lock);
295 
296 	t = get_seconds();
297 	nilfs->ns_sbwtime[0] = t;
298 	sbp[0]->s_free_blocks_count = cpu_to_le64(nfreeblocks);
299 	sbp[0]->s_wtime = cpu_to_le64(t);
300 	sbp[0]->s_sum = 0;
301 	sbp[0]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
302 					     (unsigned char *)sbp[0],
303 					     nilfs->ns_sbsize));
304 	if (dupsb && sbp[1]) {
305 		memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
306 		nilfs->ns_sbwtime[1] = t;
307 	}
308 	sbi->s_super->s_dirt = 0;
309 	return nilfs_sync_super(sbi, dupsb);
310 }
311 
312 static void nilfs_put_super(struct super_block *sb)
313 {
314 	struct nilfs_sb_info *sbi = NILFS_SB(sb);
315 	struct the_nilfs *nilfs = sbi->s_nilfs;
316 
317 	lock_kernel();
318 
319 	if (sb->s_dirt)
320 		nilfs_write_super(sb);
321 
322 	nilfs_detach_segment_constructor(sbi);
323 
324 	if (!(sb->s_flags & MS_RDONLY)) {
325 		down_write(&nilfs->ns_sem);
326 		nilfs->ns_sbp[0]->s_state = cpu_to_le16(nilfs->ns_mount_state);
327 		nilfs_commit_super(sbi, 1);
328 		up_write(&nilfs->ns_sem);
329 	}
330 	down_write(&nilfs->ns_super_sem);
331 	if (nilfs->ns_current == sbi)
332 		nilfs->ns_current = NULL;
333 	up_write(&nilfs->ns_super_sem);
334 
335 	nilfs_detach_checkpoint(sbi);
336 	put_nilfs(sbi->s_nilfs);
337 	sbi->s_super = NULL;
338 	sb->s_fs_info = NULL;
339 	nilfs_put_sbinfo(sbi);
340 
341 	unlock_kernel();
342 }
343 
344 /**
345  * nilfs_write_super - write super block(s) of NILFS
346  * @sb: super_block
347  *
348  * nilfs_write_super() gets a fs-dependent lock, writes super block(s), and
349  * clears s_dirt.  This function is called in the section protected by
350  * lock_super().
351  *
352  * The s_dirt flag is managed by each filesystem and we protect it by ns_sem
353  * of the struct the_nilfs.  Lock order must be as follows:
354  *
355  *   1. lock_super()
356  *   2.    down_write(&nilfs->ns_sem)
357  *
358  * Inside NILFS, locking ns_sem is enough to protect s_dirt and the buffer
359  * of the super block (nilfs->ns_sbp[]).
360  *
361  * In most cases, VFS functions call lock_super() before calling these
362  * methods.  So we must be careful not to bring on deadlocks when using
363  * lock_super();  see generic_shutdown_super(), write_super(), and so on.
364  *
365  * Note that order of lock_kernel() and lock_super() depends on contexts
366  * of VFS.  We should also note that lock_kernel() can be used in its
367  * protective section and only the outermost one has an effect.
368  */
369 static void nilfs_write_super(struct super_block *sb)
370 {
371 	struct nilfs_sb_info *sbi = NILFS_SB(sb);
372 	struct the_nilfs *nilfs = sbi->s_nilfs;
373 
374 	down_write(&nilfs->ns_sem);
375 	if (!(sb->s_flags & MS_RDONLY)) {
376 		struct nilfs_super_block **sbp = nilfs->ns_sbp;
377 		u64 t = get_seconds();
378 		int dupsb;
379 
380 		if (!nilfs_discontinued(nilfs) && t >= nilfs->ns_sbwtime[0] &&
381 		    t < nilfs->ns_sbwtime[0] + NILFS_SB_FREQ) {
382 			up_write(&nilfs->ns_sem);
383 			return;
384 		}
385 		dupsb = sbp[1] && t > nilfs->ns_sbwtime[1] + NILFS_ALTSB_FREQ;
386 		nilfs_commit_super(sbi, dupsb);
387 	}
388 	sb->s_dirt = 0;
389 	up_write(&nilfs->ns_sem);
390 }
391 
392 static int nilfs_sync_fs(struct super_block *sb, int wait)
393 {
394 	int err = 0;
395 
396 	nilfs_write_super(sb);
397 
398 	/* This function is called when super block should be written back */
399 	if (wait)
400 		err = nilfs_construct_segment(sb);
401 	return err;
402 }
403 
404 int nilfs_attach_checkpoint(struct nilfs_sb_info *sbi, __u64 cno)
405 {
406 	struct the_nilfs *nilfs = sbi->s_nilfs;
407 	struct nilfs_checkpoint *raw_cp;
408 	struct buffer_head *bh_cp;
409 	int err;
410 
411 	down_write(&nilfs->ns_super_sem);
412 	list_add(&sbi->s_list, &nilfs->ns_supers);
413 	up_write(&nilfs->ns_super_sem);
414 
415 	sbi->s_ifile = nilfs_mdt_new(
416 		nilfs, sbi->s_super, NILFS_IFILE_INO, NILFS_IFILE_GFP);
417 	if (!sbi->s_ifile)
418 		return -ENOMEM;
419 
420 	err = nilfs_palloc_init_blockgroup(sbi->s_ifile, nilfs->ns_inode_size);
421 	if (unlikely(err))
422 		goto failed;
423 
424 	err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, cno, 0, &raw_cp,
425 					  &bh_cp);
426 	if (unlikely(err)) {
427 		if (err == -ENOENT || err == -EINVAL) {
428 			printk(KERN_ERR
429 			       "NILFS: Invalid checkpoint "
430 			       "(checkpoint number=%llu)\n",
431 			       (unsigned long long)cno);
432 			err = -EINVAL;
433 		}
434 		goto failed;
435 	}
436 	err = nilfs_read_inode_common(sbi->s_ifile, &raw_cp->cp_ifile_inode);
437 	if (unlikely(err))
438 		goto failed_bh;
439 	atomic_set(&sbi->s_inodes_count, le64_to_cpu(raw_cp->cp_inodes_count));
440 	atomic_set(&sbi->s_blocks_count, le64_to_cpu(raw_cp->cp_blocks_count));
441 
442 	nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
443 	return 0;
444 
445  failed_bh:
446 	nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
447  failed:
448 	nilfs_mdt_destroy(sbi->s_ifile);
449 	sbi->s_ifile = NULL;
450 
451 	down_write(&nilfs->ns_super_sem);
452 	list_del_init(&sbi->s_list);
453 	up_write(&nilfs->ns_super_sem);
454 
455 	return err;
456 }
457 
458 void nilfs_detach_checkpoint(struct nilfs_sb_info *sbi)
459 {
460 	struct the_nilfs *nilfs = sbi->s_nilfs;
461 
462 	nilfs_mdt_clear(sbi->s_ifile);
463 	nilfs_mdt_destroy(sbi->s_ifile);
464 	sbi->s_ifile = NULL;
465 	down_write(&nilfs->ns_super_sem);
466 	list_del_init(&sbi->s_list);
467 	up_write(&nilfs->ns_super_sem);
468 }
469 
470 static int nilfs_mark_recovery_complete(struct nilfs_sb_info *sbi)
471 {
472 	struct the_nilfs *nilfs = sbi->s_nilfs;
473 	int err = 0;
474 
475 	down_write(&nilfs->ns_sem);
476 	if (!(nilfs->ns_mount_state & NILFS_VALID_FS)) {
477 		nilfs->ns_mount_state |= NILFS_VALID_FS;
478 		err = nilfs_commit_super(sbi, 1);
479 		if (likely(!err))
480 			printk(KERN_INFO "NILFS: recovery complete.\n");
481 	}
482 	up_write(&nilfs->ns_sem);
483 	return err;
484 }
485 
486 static int nilfs_statfs(struct dentry *dentry, struct kstatfs *buf)
487 {
488 	struct super_block *sb = dentry->d_sb;
489 	struct nilfs_sb_info *sbi = NILFS_SB(sb);
490 	struct the_nilfs *nilfs = sbi->s_nilfs;
491 	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
492 	unsigned long long blocks;
493 	unsigned long overhead;
494 	unsigned long nrsvblocks;
495 	sector_t nfreeblocks;
496 	int err;
497 
498 	/*
499 	 * Compute all of the segment blocks
500 	 *
501 	 * The blocks before first segment and after last segment
502 	 * are excluded.
503 	 */
504 	blocks = nilfs->ns_blocks_per_segment * nilfs->ns_nsegments
505 		- nilfs->ns_first_data_block;
506 	nrsvblocks = nilfs->ns_nrsvsegs * nilfs->ns_blocks_per_segment;
507 
508 	/*
509 	 * Compute the overhead
510 	 *
511 	 * When distributing meta data blocks outside semgent structure,
512 	 * We must count them as the overhead.
513 	 */
514 	overhead = 0;
515 
516 	err = nilfs_count_free_blocks(nilfs, &nfreeblocks);
517 	if (unlikely(err))
518 		return err;
519 
520 	buf->f_type = NILFS_SUPER_MAGIC;
521 	buf->f_bsize = sb->s_blocksize;
522 	buf->f_blocks = blocks - overhead;
523 	buf->f_bfree = nfreeblocks;
524 	buf->f_bavail = (buf->f_bfree >= nrsvblocks) ?
525 		(buf->f_bfree - nrsvblocks) : 0;
526 	buf->f_files = atomic_read(&sbi->s_inodes_count);
527 	buf->f_ffree = 0; /* nilfs_count_free_inodes(sb); */
528 	buf->f_namelen = NILFS_NAME_LEN;
529 	buf->f_fsid.val[0] = (u32)id;
530 	buf->f_fsid.val[1] = (u32)(id >> 32);
531 
532 	return 0;
533 }
534 
535 static struct super_operations nilfs_sops = {
536 	.alloc_inode    = nilfs_alloc_inode,
537 	.destroy_inode  = nilfs_destroy_inode,
538 	.dirty_inode    = nilfs_dirty_inode,
539 	/* .write_inode    = nilfs_write_inode, */
540 	/* .put_inode      = nilfs_put_inode, */
541 	/* .drop_inode	  = nilfs_drop_inode, */
542 	.delete_inode   = nilfs_delete_inode,
543 	.put_super      = nilfs_put_super,
544 	.write_super    = nilfs_write_super,
545 	.sync_fs        = nilfs_sync_fs,
546 	/* .write_super_lockfs */
547 	/* .unlockfs */
548 	.statfs         = nilfs_statfs,
549 	.remount_fs     = nilfs_remount,
550 	.clear_inode    = nilfs_clear_inode,
551 	/* .umount_begin */
552 	/* .show_options */
553 };
554 
555 static struct inode *
556 nilfs_nfs_get_inode(struct super_block *sb, u64 ino, u32 generation)
557 {
558 	struct inode *inode;
559 
560 	if (ino < NILFS_FIRST_INO(sb) && ino != NILFS_ROOT_INO &&
561 	    ino != NILFS_SKETCH_INO)
562 		return ERR_PTR(-ESTALE);
563 
564 	inode = nilfs_iget(sb, ino);
565 	if (IS_ERR(inode))
566 		return ERR_CAST(inode);
567 	if (generation && inode->i_generation != generation) {
568 		iput(inode);
569 		return ERR_PTR(-ESTALE);
570 	}
571 
572 	return inode;
573 }
574 
575 static struct dentry *
576 nilfs_fh_to_dentry(struct super_block *sb, struct fid *fid, int fh_len,
577 		   int fh_type)
578 {
579 	return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
580 				    nilfs_nfs_get_inode);
581 }
582 
583 static struct dentry *
584 nilfs_fh_to_parent(struct super_block *sb, struct fid *fid, int fh_len,
585 		   int fh_type)
586 {
587 	return generic_fh_to_parent(sb, fid, fh_len, fh_type,
588 				    nilfs_nfs_get_inode);
589 }
590 
591 static struct export_operations nilfs_export_ops = {
592 	.fh_to_dentry = nilfs_fh_to_dentry,
593 	.fh_to_parent = nilfs_fh_to_parent,
594 	.get_parent = nilfs_get_parent,
595 };
596 
597 enum {
598 	Opt_err_cont, Opt_err_panic, Opt_err_ro,
599 	Opt_barrier, Opt_snapshot, Opt_order,
600 	Opt_err,
601 };
602 
603 static match_table_t tokens = {
604 	{Opt_err_cont, "errors=continue"},
605 	{Opt_err_panic, "errors=panic"},
606 	{Opt_err_ro, "errors=remount-ro"},
607 	{Opt_barrier, "barrier=%s"},
608 	{Opt_snapshot, "cp=%u"},
609 	{Opt_order, "order=%s"},
610 	{Opt_err, NULL}
611 };
612 
613 static int match_bool(substring_t *s, int *result)
614 {
615 	int len = s->to - s->from;
616 
617 	if (strncmp(s->from, "on", len) == 0)
618 		*result = 1;
619 	else if (strncmp(s->from, "off", len) == 0)
620 		*result = 0;
621 	else
622 		return 1;
623 	return 0;
624 }
625 
626 static int parse_options(char *options, struct super_block *sb)
627 {
628 	struct nilfs_sb_info *sbi = NILFS_SB(sb);
629 	char *p;
630 	substring_t args[MAX_OPT_ARGS];
631 	int option;
632 
633 	if (!options)
634 		return 1;
635 
636 	while ((p = strsep(&options, ",")) != NULL) {
637 		int token;
638 		if (!*p)
639 			continue;
640 
641 		token = match_token(p, tokens, args);
642 		switch (token) {
643 		case Opt_barrier:
644 			if (match_bool(&args[0], &option))
645 				return 0;
646 			if (option)
647 				nilfs_set_opt(sbi, BARRIER);
648 			else
649 				nilfs_clear_opt(sbi, BARRIER);
650 			break;
651 		case Opt_order:
652 			if (strcmp(args[0].from, "relaxed") == 0)
653 				/* Ordered data semantics */
654 				nilfs_clear_opt(sbi, STRICT_ORDER);
655 			else if (strcmp(args[0].from, "strict") == 0)
656 				/* Strict in-order semantics */
657 				nilfs_set_opt(sbi, STRICT_ORDER);
658 			else
659 				return 0;
660 			break;
661 		case Opt_err_panic:
662 			nilfs_write_opt(sbi, ERROR_MODE, ERRORS_PANIC);
663 			break;
664 		case Opt_err_ro:
665 			nilfs_write_opt(sbi, ERROR_MODE, ERRORS_RO);
666 			break;
667 		case Opt_err_cont:
668 			nilfs_write_opt(sbi, ERROR_MODE, ERRORS_CONT);
669 			break;
670 		case Opt_snapshot:
671 			if (match_int(&args[0], &option) || option <= 0)
672 				return 0;
673 			if (!(sb->s_flags & MS_RDONLY))
674 				return 0;
675 			sbi->s_snapshot_cno = option;
676 			nilfs_set_opt(sbi, SNAPSHOT);
677 			break;
678 		default:
679 			printk(KERN_ERR
680 			       "NILFS: Unrecognized mount option \"%s\"\n", p);
681 			return 0;
682 		}
683 	}
684 	return 1;
685 }
686 
687 static inline void
688 nilfs_set_default_options(struct nilfs_sb_info *sbi,
689 			  struct nilfs_super_block *sbp)
690 {
691 	sbi->s_mount_opt =
692 		NILFS_MOUNT_ERRORS_CONT | NILFS_MOUNT_BARRIER;
693 }
694 
695 static int nilfs_setup_super(struct nilfs_sb_info *sbi)
696 {
697 	struct the_nilfs *nilfs = sbi->s_nilfs;
698 	struct nilfs_super_block *sbp = nilfs->ns_sbp[0];
699 	int max_mnt_count = le16_to_cpu(sbp->s_max_mnt_count);
700 	int mnt_count = le16_to_cpu(sbp->s_mnt_count);
701 
702 	/* nilfs->sem must be locked by the caller. */
703 	if (!(nilfs->ns_mount_state & NILFS_VALID_FS)) {
704 		printk(KERN_WARNING "NILFS warning: mounting unchecked fs\n");
705 	} else if (nilfs->ns_mount_state & NILFS_ERROR_FS) {
706 		printk(KERN_WARNING
707 		       "NILFS warning: mounting fs with errors\n");
708 #if 0
709 	} else if (max_mnt_count >= 0 && mnt_count >= max_mnt_count) {
710 		printk(KERN_WARNING
711 		       "NILFS warning: maximal mount count reached\n");
712 #endif
713 	}
714 	if (!max_mnt_count)
715 		sbp->s_max_mnt_count = cpu_to_le16(NILFS_DFL_MAX_MNT_COUNT);
716 
717 	sbp->s_mnt_count = cpu_to_le16(mnt_count + 1);
718 	sbp->s_state = cpu_to_le16(le16_to_cpu(sbp->s_state) & ~NILFS_VALID_FS);
719 	sbp->s_mtime = cpu_to_le64(get_seconds());
720 	return nilfs_commit_super(sbi, 1);
721 }
722 
723 struct nilfs_super_block *nilfs_read_super_block(struct super_block *sb,
724 						 u64 pos, int blocksize,
725 						 struct buffer_head **pbh)
726 {
727 	unsigned long long sb_index = pos;
728 	unsigned long offset;
729 
730 	offset = do_div(sb_index, blocksize);
731 	*pbh = sb_bread(sb, sb_index);
732 	if (!*pbh)
733 		return NULL;
734 	return (struct nilfs_super_block *)((char *)(*pbh)->b_data + offset);
735 }
736 
737 int nilfs_store_magic_and_option(struct super_block *sb,
738 				 struct nilfs_super_block *sbp,
739 				 char *data)
740 {
741 	struct nilfs_sb_info *sbi = NILFS_SB(sb);
742 
743 	sb->s_magic = le16_to_cpu(sbp->s_magic);
744 
745 	/* FS independent flags */
746 #ifdef NILFS_ATIME_DISABLE
747 	sb->s_flags |= MS_NOATIME;
748 #endif
749 
750 	nilfs_set_default_options(sbi, sbp);
751 
752 	sbi->s_resuid = le16_to_cpu(sbp->s_def_resuid);
753 	sbi->s_resgid = le16_to_cpu(sbp->s_def_resgid);
754 	sbi->s_interval = le32_to_cpu(sbp->s_c_interval);
755 	sbi->s_watermark = le32_to_cpu(sbp->s_c_block_max);
756 
757 	return !parse_options(data, sb) ? -EINVAL : 0 ;
758 }
759 
760 /**
761  * nilfs_fill_super() - initialize a super block instance
762  * @sb: super_block
763  * @data: mount options
764  * @silent: silent mode flag
765  * @nilfs: the_nilfs struct
766  *
767  * This function is called exclusively by bd_mount_mutex.
768  * So, the recovery process is protected from other simultaneous mounts.
769  */
770 static int
771 nilfs_fill_super(struct super_block *sb, void *data, int silent,
772 		 struct the_nilfs *nilfs)
773 {
774 	struct nilfs_sb_info *sbi;
775 	struct inode *root;
776 	__u64 cno;
777 	int err;
778 
779 	sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
780 	if (!sbi)
781 		return -ENOMEM;
782 
783 	sb->s_fs_info = sbi;
784 
785 	get_nilfs(nilfs);
786 	sbi->s_nilfs = nilfs;
787 	sbi->s_super = sb;
788 	atomic_set(&sbi->s_count, 1);
789 
790 	err = init_nilfs(nilfs, sbi, (char *)data);
791 	if (err)
792 		goto failed_sbi;
793 
794 	spin_lock_init(&sbi->s_inode_lock);
795 	INIT_LIST_HEAD(&sbi->s_dirty_files);
796 	INIT_LIST_HEAD(&sbi->s_list);
797 
798 	/*
799 	 * Following initialization is overlapped because
800 	 * nilfs_sb_info structure has been cleared at the beginning.
801 	 * But we reserve them to keep our interest and make ready
802 	 * for the future change.
803 	 */
804 	get_random_bytes(&sbi->s_next_generation,
805 			 sizeof(sbi->s_next_generation));
806 	spin_lock_init(&sbi->s_next_gen_lock);
807 
808 	sb->s_op = &nilfs_sops;
809 	sb->s_export_op = &nilfs_export_ops;
810 	sb->s_root = NULL;
811 	sb->s_time_gran = 1;
812 
813 	if (!nilfs_loaded(nilfs)) {
814 		err = load_nilfs(nilfs, sbi);
815 		if (err)
816 			goto failed_sbi;
817 	}
818 	cno = nilfs_last_cno(nilfs);
819 
820 	if (sb->s_flags & MS_RDONLY) {
821 		if (nilfs_test_opt(sbi, SNAPSHOT)) {
822 			err = nilfs_cpfile_is_snapshot(nilfs->ns_cpfile,
823 						       sbi->s_snapshot_cno);
824 			if (err < 0)
825 				goto failed_sbi;
826 			if (!err) {
827 				printk(KERN_ERR
828 				       "NILFS: The specified checkpoint is "
829 				       "not a snapshot "
830 				       "(checkpoint number=%llu).\n",
831 				       (unsigned long long)sbi->s_snapshot_cno);
832 				err = -EINVAL;
833 				goto failed_sbi;
834 			}
835 			cno = sbi->s_snapshot_cno;
836 		} else
837 			/* Read-only mount */
838 			sbi->s_snapshot_cno = cno;
839 	}
840 
841 	err = nilfs_attach_checkpoint(sbi, cno);
842 	if (err) {
843 		printk(KERN_ERR "NILFS: error loading a checkpoint"
844 		       " (checkpoint number=%llu).\n", (unsigned long long)cno);
845 		goto failed_sbi;
846 	}
847 
848 	if (!(sb->s_flags & MS_RDONLY)) {
849 		err = nilfs_attach_segment_constructor(sbi);
850 		if (err)
851 			goto failed_checkpoint;
852 	}
853 
854 	root = nilfs_iget(sb, NILFS_ROOT_INO);
855 	if (IS_ERR(root)) {
856 		printk(KERN_ERR "NILFS: get root inode failed\n");
857 		err = PTR_ERR(root);
858 		goto failed_segctor;
859 	}
860 	if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
861 		iput(root);
862 		printk(KERN_ERR "NILFS: corrupt root inode.\n");
863 		err = -EINVAL;
864 		goto failed_segctor;
865 	}
866 	sb->s_root = d_alloc_root(root);
867 	if (!sb->s_root) {
868 		iput(root);
869 		printk(KERN_ERR "NILFS: get root dentry failed\n");
870 		err = -ENOMEM;
871 		goto failed_segctor;
872 	}
873 
874 	if (!(sb->s_flags & MS_RDONLY)) {
875 		down_write(&nilfs->ns_sem);
876 		nilfs_setup_super(sbi);
877 		up_write(&nilfs->ns_sem);
878 	}
879 
880 	err = nilfs_mark_recovery_complete(sbi);
881 	if (unlikely(err)) {
882 		printk(KERN_ERR "NILFS: recovery failed.\n");
883 		goto failed_root;
884 	}
885 
886 	down_write(&nilfs->ns_super_sem);
887 	if (!nilfs_test_opt(sbi, SNAPSHOT))
888 		nilfs->ns_current = sbi;
889 	up_write(&nilfs->ns_super_sem);
890 
891 	return 0;
892 
893  failed_root:
894 	dput(sb->s_root);
895 	sb->s_root = NULL;
896 
897  failed_segctor:
898 	nilfs_detach_segment_constructor(sbi);
899 
900  failed_checkpoint:
901 	nilfs_detach_checkpoint(sbi);
902 
903  failed_sbi:
904 	put_nilfs(nilfs);
905 	sb->s_fs_info = NULL;
906 	nilfs_put_sbinfo(sbi);
907 	return err;
908 }
909 
910 static int nilfs_remount(struct super_block *sb, int *flags, char *data)
911 {
912 	struct nilfs_sb_info *sbi = NILFS_SB(sb);
913 	struct nilfs_super_block *sbp;
914 	struct the_nilfs *nilfs = sbi->s_nilfs;
915 	unsigned long old_sb_flags;
916 	struct nilfs_mount_options old_opts;
917 	int err;
918 
919 	lock_kernel();
920 
921 	down_write(&nilfs->ns_super_sem);
922 	old_sb_flags = sb->s_flags;
923 	old_opts.mount_opt = sbi->s_mount_opt;
924 	old_opts.snapshot_cno = sbi->s_snapshot_cno;
925 
926 	if (!parse_options(data, sb)) {
927 		err = -EINVAL;
928 		goto restore_opts;
929 	}
930 	sb->s_flags = (sb->s_flags & ~MS_POSIXACL);
931 
932 	if ((*flags & MS_RDONLY) &&
933 	    sbi->s_snapshot_cno != old_opts.snapshot_cno) {
934 		printk(KERN_WARNING "NILFS (device %s): couldn't "
935 		       "remount to a different snapshot. \n",
936 		       sb->s_id);
937 		err = -EINVAL;
938 		goto restore_opts;
939 	}
940 
941 	if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
942 		goto out;
943 	if (*flags & MS_RDONLY) {
944 		/* Shutting down the segment constructor */
945 		nilfs_detach_segment_constructor(sbi);
946 		sb->s_flags |= MS_RDONLY;
947 
948 		sbi->s_snapshot_cno = nilfs_last_cno(nilfs);
949 		/* nilfs_set_opt(sbi, SNAPSHOT); */
950 
951 		/*
952 		 * Remounting a valid RW partition RDONLY, so set
953 		 * the RDONLY flag and then mark the partition as valid again.
954 		 */
955 		down_write(&nilfs->ns_sem);
956 		sbp = nilfs->ns_sbp[0];
957 		if (!(sbp->s_state & le16_to_cpu(NILFS_VALID_FS)) &&
958 		    (nilfs->ns_mount_state & NILFS_VALID_FS))
959 			sbp->s_state = cpu_to_le16(nilfs->ns_mount_state);
960 		sbp->s_mtime = cpu_to_le64(get_seconds());
961 		nilfs_commit_super(sbi, 1);
962 		up_write(&nilfs->ns_sem);
963 	} else {
964 		/*
965 		 * Mounting a RDONLY partition read-write, so reread and
966 		 * store the current valid flag.  (It may have been changed
967 		 * by fsck since we originally mounted the partition.)
968 		 */
969 		if (nilfs->ns_current && nilfs->ns_current != sbi) {
970 			printk(KERN_WARNING "NILFS (device %s): couldn't "
971 			       "remount because an RW-mount exists.\n",
972 			       sb->s_id);
973 			err = -EBUSY;
974 			goto restore_opts;
975 		}
976 		if (sbi->s_snapshot_cno != nilfs_last_cno(nilfs)) {
977 			printk(KERN_WARNING "NILFS (device %s): couldn't "
978 			       "remount because the current RO-mount is not "
979 			       "the latest one.\n",
980 			       sb->s_id);
981 			err = -EINVAL;
982 			goto restore_opts;
983 		}
984 		sb->s_flags &= ~MS_RDONLY;
985 		nilfs_clear_opt(sbi, SNAPSHOT);
986 		sbi->s_snapshot_cno = 0;
987 
988 		err = nilfs_attach_segment_constructor(sbi);
989 		if (err)
990 			goto restore_opts;
991 
992 		down_write(&nilfs->ns_sem);
993 		nilfs_setup_super(sbi);
994 		up_write(&nilfs->ns_sem);
995 
996 		nilfs->ns_current = sbi;
997 	}
998  out:
999 	up_write(&nilfs->ns_super_sem);
1000 	unlock_kernel();
1001 	return 0;
1002 
1003  restore_opts:
1004 	sb->s_flags = old_sb_flags;
1005 	sbi->s_mount_opt = old_opts.mount_opt;
1006 	sbi->s_snapshot_cno = old_opts.snapshot_cno;
1007 	up_write(&nilfs->ns_super_sem);
1008 	unlock_kernel();
1009 	return err;
1010 }
1011 
1012 struct nilfs_super_data {
1013 	struct block_device *bdev;
1014 	struct nilfs_sb_info *sbi;
1015 	__u64 cno;
1016 	int flags;
1017 };
1018 
1019 /**
1020  * nilfs_identify - pre-read mount options needed to identify mount instance
1021  * @data: mount options
1022  * @sd: nilfs_super_data
1023  */
1024 static int nilfs_identify(char *data, struct nilfs_super_data *sd)
1025 {
1026 	char *p, *options = data;
1027 	substring_t args[MAX_OPT_ARGS];
1028 	int option, token;
1029 	int ret = 0;
1030 
1031 	do {
1032 		p = strsep(&options, ",");
1033 		if (p != NULL && *p) {
1034 			token = match_token(p, tokens, args);
1035 			if (token == Opt_snapshot) {
1036 				if (!(sd->flags & MS_RDONLY))
1037 					ret++;
1038 				else {
1039 					ret = match_int(&args[0], &option);
1040 					if (!ret) {
1041 						if (option > 0)
1042 							sd->cno = option;
1043 						else
1044 							ret++;
1045 					}
1046 				}
1047 			}
1048 			if (ret)
1049 				printk(KERN_ERR
1050 				       "NILFS: invalid mount option: %s\n", p);
1051 		}
1052 		if (!options)
1053 			break;
1054 		BUG_ON(options == data);
1055 		*(options - 1) = ',';
1056 	} while (!ret);
1057 	return ret;
1058 }
1059 
1060 static int nilfs_set_bdev_super(struct super_block *s, void *data)
1061 {
1062 	struct nilfs_super_data *sd = data;
1063 
1064 	s->s_bdev = sd->bdev;
1065 	s->s_dev = s->s_bdev->bd_dev;
1066 	return 0;
1067 }
1068 
1069 static int nilfs_test_bdev_super(struct super_block *s, void *data)
1070 {
1071 	struct nilfs_super_data *sd = data;
1072 
1073 	return sd->sbi && s->s_fs_info == (void *)sd->sbi;
1074 }
1075 
1076 static int
1077 nilfs_get_sb(struct file_system_type *fs_type, int flags,
1078 	     const char *dev_name, void *data, struct vfsmount *mnt)
1079 {
1080 	struct nilfs_super_data sd;
1081 	struct super_block *s;
1082 	struct the_nilfs *nilfs;
1083 	int err, need_to_close = 1;
1084 
1085 	sd.bdev = open_bdev_exclusive(dev_name, flags, fs_type);
1086 	if (IS_ERR(sd.bdev))
1087 		return PTR_ERR(sd.bdev);
1088 
1089 	/*
1090 	 * To get mount instance using sget() vfs-routine, NILFS needs
1091 	 * much more information than normal filesystems to identify mount
1092 	 * instance.  For snapshot mounts, not only a mount type (ro-mount
1093 	 * or rw-mount) but also a checkpoint number is required.
1094 	 */
1095 	sd.cno = 0;
1096 	sd.flags = flags;
1097 	if (nilfs_identify((char *)data, &sd)) {
1098 		err = -EINVAL;
1099 		goto failed;
1100 	}
1101 
1102 	nilfs = find_or_create_nilfs(sd.bdev);
1103 	if (!nilfs) {
1104 		err = -ENOMEM;
1105 		goto failed;
1106 	}
1107 
1108 	down(&sd.bdev->bd_mount_sem);
1109 
1110 	if (!sd.cno) {
1111 		/*
1112 		 * Check if an exclusive mount exists or not.
1113 		 * Snapshot mounts coexist with a current mount
1114 		 * (i.e. rw-mount or ro-mount), whereas rw-mount and
1115 		 * ro-mount are mutually exclusive.
1116 		 */
1117 		down_read(&nilfs->ns_super_sem);
1118 		if (nilfs->ns_current &&
1119 		    ((nilfs->ns_current->s_super->s_flags ^ flags)
1120 		     & MS_RDONLY)) {
1121 			up_read(&nilfs->ns_super_sem);
1122 			err = -EBUSY;
1123 			goto failed_unlock;
1124 		}
1125 		up_read(&nilfs->ns_super_sem);
1126 	}
1127 
1128 	/*
1129 	 * Find existing nilfs_sb_info struct
1130 	 */
1131 	sd.sbi = nilfs_find_sbinfo(nilfs, !(flags & MS_RDONLY), sd.cno);
1132 
1133 	if (!sd.cno)
1134 		/* trying to get the latest checkpoint.  */
1135 		sd.cno = nilfs_last_cno(nilfs);
1136 
1137 	/*
1138 	 * Get super block instance holding the nilfs_sb_info struct.
1139 	 * A new instance is allocated if no existing mount is present or
1140 	 * existing instance has been unmounted.
1141 	 */
1142 	s = sget(fs_type, nilfs_test_bdev_super, nilfs_set_bdev_super, &sd);
1143 	if (sd.sbi)
1144 		nilfs_put_sbinfo(sd.sbi);
1145 
1146 	if (IS_ERR(s)) {
1147 		err = PTR_ERR(s);
1148 		goto failed_unlock;
1149 	}
1150 
1151 	if (!s->s_root) {
1152 		char b[BDEVNAME_SIZE];
1153 
1154 		/* New superblock instance created */
1155 		s->s_flags = flags;
1156 		strlcpy(s->s_id, bdevname(sd.bdev, b), sizeof(s->s_id));
1157 		sb_set_blocksize(s, block_size(sd.bdev));
1158 
1159 		err = nilfs_fill_super(s, data, flags & MS_VERBOSE, nilfs);
1160 		if (err)
1161 			goto cancel_new;
1162 
1163 		s->s_flags |= MS_ACTIVE;
1164 		need_to_close = 0;
1165 	}
1166 
1167 	up(&sd.bdev->bd_mount_sem);
1168 	put_nilfs(nilfs);
1169 	if (need_to_close)
1170 		close_bdev_exclusive(sd.bdev, flags);
1171 	simple_set_mnt(mnt, s);
1172 	return 0;
1173 
1174  failed_unlock:
1175 	up(&sd.bdev->bd_mount_sem);
1176 	put_nilfs(nilfs);
1177  failed:
1178 	close_bdev_exclusive(sd.bdev, flags);
1179 
1180 	return err;
1181 
1182  cancel_new:
1183 	/* Abandoning the newly allocated superblock */
1184 	up(&sd.bdev->bd_mount_sem);
1185 	put_nilfs(nilfs);
1186 	up_write(&s->s_umount);
1187 	deactivate_super(s);
1188 	/*
1189 	 * deactivate_super() invokes close_bdev_exclusive().
1190 	 * We must finish all post-cleaning before this call;
1191 	 * put_nilfs() and unlocking bd_mount_sem need the block device.
1192 	 */
1193 	return err;
1194 }
1195 
1196 struct file_system_type nilfs_fs_type = {
1197 	.owner    = THIS_MODULE,
1198 	.name     = "nilfs2",
1199 	.get_sb   = nilfs_get_sb,
1200 	.kill_sb  = kill_block_super,
1201 	.fs_flags = FS_REQUIRES_DEV,
1202 };
1203 
1204 static int __init init_nilfs_fs(void)
1205 {
1206 	int err;
1207 
1208 	err = nilfs_init_inode_cache();
1209 	if (err)
1210 		goto failed;
1211 
1212 	err = nilfs_init_transaction_cache();
1213 	if (err)
1214 		goto failed_inode_cache;
1215 
1216 	err = nilfs_init_segbuf_cache();
1217 	if (err)
1218 		goto failed_transaction_cache;
1219 
1220 	err = nilfs_btree_path_cache_init();
1221 	if (err)
1222 		goto failed_segbuf_cache;
1223 
1224 	err = register_filesystem(&nilfs_fs_type);
1225 	if (err)
1226 		goto failed_btree_path_cache;
1227 
1228 	return 0;
1229 
1230  failed_btree_path_cache:
1231 	nilfs_btree_path_cache_destroy();
1232 
1233  failed_segbuf_cache:
1234 	nilfs_destroy_segbuf_cache();
1235 
1236  failed_transaction_cache:
1237 	nilfs_destroy_transaction_cache();
1238 
1239  failed_inode_cache:
1240 	nilfs_destroy_inode_cache();
1241 
1242  failed:
1243 	return err;
1244 }
1245 
1246 static void __exit exit_nilfs_fs(void)
1247 {
1248 	nilfs_destroy_segbuf_cache();
1249 	nilfs_destroy_transaction_cache();
1250 	nilfs_destroy_inode_cache();
1251 	nilfs_btree_path_cache_destroy();
1252 	unregister_filesystem(&nilfs_fs_type);
1253 }
1254 
1255 module_init(init_nilfs_fs)
1256 module_exit(exit_nilfs_fs)
1257