xref: /openbmc/linux/fs/nilfs2/super.c (revision c6b4d57ddf12f3fd4d41d7b3b9181de46748418d)
1 /*
2  * super.c - NILFS module and super block management.
3  *
4  * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
19  *
20  * Written by Ryusuke Konishi <ryusuke@osrg.net>
21  */
22 /*
23  *  linux/fs/ext2/super.c
24  *
25  * Copyright (C) 1992, 1993, 1994, 1995
26  * Remy Card (card@masi.ibp.fr)
27  * Laboratoire MASI - Institut Blaise Pascal
28  * Universite Pierre et Marie Curie (Paris VI)
29  *
30  *  from
31  *
32  *  linux/fs/minix/inode.c
33  *
34  *  Copyright (C) 1991, 1992  Linus Torvalds
35  *
36  *  Big-endian to little-endian byte-swapping/bitmaps by
37  *        David S. Miller (davem@caip.rutgers.edu), 1995
38  */
39 
40 #include <linux/module.h>
41 #include <linux/string.h>
42 #include <linux/slab.h>
43 #include <linux/init.h>
44 #include <linux/blkdev.h>
45 #include <linux/parser.h>
46 #include <linux/random.h>
47 #include <linux/crc32.h>
48 #include <linux/smp_lock.h>
49 #include <linux/vfs.h>
50 #include <linux/writeback.h>
51 #include <linux/kobject.h>
52 #include <linux/exportfs.h>
53 #include <linux/seq_file.h>
54 #include <linux/mount.h>
55 #include "nilfs.h"
56 #include "mdt.h"
57 #include "alloc.h"
58 #include "page.h"
59 #include "cpfile.h"
60 #include "ifile.h"
61 #include "dat.h"
62 #include "segment.h"
63 #include "segbuf.h"
64 
65 MODULE_AUTHOR("NTT Corp.");
66 MODULE_DESCRIPTION("A New Implementation of the Log-structured Filesystem "
67 		   "(NILFS)");
68 MODULE_LICENSE("GPL");
69 
70 struct kmem_cache *nilfs_inode_cachep;
71 struct kmem_cache *nilfs_transaction_cachep;
72 struct kmem_cache *nilfs_segbuf_cachep;
73 struct kmem_cache *nilfs_btree_path_cache;
74 
75 static int nilfs_remount(struct super_block *sb, int *flags, char *data);
76 
77 static void nilfs_set_error(struct nilfs_sb_info *sbi)
78 {
79 	struct the_nilfs *nilfs = sbi->s_nilfs;
80 	struct nilfs_super_block **sbp;
81 
82 	down_write(&nilfs->ns_sem);
83 	if (!(nilfs->ns_mount_state & NILFS_ERROR_FS)) {
84 		nilfs->ns_mount_state |= NILFS_ERROR_FS;
85 		sbp = nilfs_prepare_super(sbi, 0);
86 		if (likely(sbp)) {
87 			sbp[0]->s_state |= cpu_to_le16(NILFS_ERROR_FS);
88 			if (sbp[1])
89 				sbp[1]->s_state |= cpu_to_le16(NILFS_ERROR_FS);
90 			nilfs_commit_super(sbi, NILFS_SB_COMMIT_ALL);
91 		}
92 	}
93 	up_write(&nilfs->ns_sem);
94 }
95 
96 /**
97  * nilfs_error() - report failure condition on a filesystem
98  *
99  * nilfs_error() sets an ERROR_FS flag on the superblock as well as
100  * reporting an error message.  It should be called when NILFS detects
101  * incoherences or defects of meta data on disk.  As for sustainable
102  * errors such as a single-shot I/O error, nilfs_warning() or the printk()
103  * function should be used instead.
104  *
105  * The segment constructor must not call this function because it can
106  * kill itself.
107  */
108 void nilfs_error(struct super_block *sb, const char *function,
109 		 const char *fmt, ...)
110 {
111 	struct nilfs_sb_info *sbi = NILFS_SB(sb);
112 	va_list args;
113 
114 	va_start(args, fmt);
115 	printk(KERN_CRIT "NILFS error (device %s): %s: ", sb->s_id, function);
116 	vprintk(fmt, args);
117 	printk("\n");
118 	va_end(args);
119 
120 	if (!(sb->s_flags & MS_RDONLY)) {
121 		nilfs_set_error(sbi);
122 
123 		if (nilfs_test_opt(sbi, ERRORS_RO)) {
124 			printk(KERN_CRIT "Remounting filesystem read-only\n");
125 			sb->s_flags |= MS_RDONLY;
126 		}
127 	}
128 
129 	if (nilfs_test_opt(sbi, ERRORS_PANIC))
130 		panic("NILFS (device %s): panic forced after error\n",
131 		      sb->s_id);
132 }
133 
134 void nilfs_warning(struct super_block *sb, const char *function,
135 		   const char *fmt, ...)
136 {
137 	va_list args;
138 
139 	va_start(args, fmt);
140 	printk(KERN_WARNING "NILFS warning (device %s): %s: ",
141 	       sb->s_id, function);
142 	vprintk(fmt, args);
143 	printk("\n");
144 	va_end(args);
145 }
146 
147 
148 struct inode *nilfs_alloc_inode_common(struct the_nilfs *nilfs)
149 {
150 	struct nilfs_inode_info *ii;
151 
152 	ii = kmem_cache_alloc(nilfs_inode_cachep, GFP_NOFS);
153 	if (!ii)
154 		return NULL;
155 	ii->i_bh = NULL;
156 	ii->i_state = 0;
157 	ii->vfs_inode.i_version = 1;
158 	nilfs_btnode_cache_init(&ii->i_btnode_cache, nilfs->ns_bdi);
159 	return &ii->vfs_inode;
160 }
161 
162 struct inode *nilfs_alloc_inode(struct super_block *sb)
163 {
164 	return nilfs_alloc_inode_common(NILFS_SB(sb)->s_nilfs);
165 }
166 
167 void nilfs_destroy_inode(struct inode *inode)
168 {
169 	kmem_cache_free(nilfs_inode_cachep, NILFS_I(inode));
170 }
171 
172 static void nilfs_clear_inode(struct inode *inode)
173 {
174 	struct nilfs_inode_info *ii = NILFS_I(inode);
175 
176 	/*
177 	 * Free resources allocated in nilfs_read_inode(), here.
178 	 */
179 	BUG_ON(!list_empty(&ii->i_dirty));
180 	brelse(ii->i_bh);
181 	ii->i_bh = NULL;
182 
183 	if (test_bit(NILFS_I_BMAP, &ii->i_state))
184 		nilfs_bmap_clear(ii->i_bmap);
185 
186 	nilfs_btnode_cache_clear(&ii->i_btnode_cache);
187 }
188 
189 static int nilfs_sync_super(struct nilfs_sb_info *sbi, int flag)
190 {
191 	struct the_nilfs *nilfs = sbi->s_nilfs;
192 	int err;
193 	int barrier_done = 0;
194 
195 	if (nilfs_test_opt(sbi, BARRIER)) {
196 		set_buffer_ordered(nilfs->ns_sbh[0]);
197 		barrier_done = 1;
198 	}
199  retry:
200 	set_buffer_dirty(nilfs->ns_sbh[0]);
201 	err = sync_dirty_buffer(nilfs->ns_sbh[0]);
202 	if (err == -EOPNOTSUPP && barrier_done) {
203 		nilfs_warning(sbi->s_super, __func__,
204 			      "barrier-based sync failed. "
205 			      "disabling barriers\n");
206 		nilfs_clear_opt(sbi, BARRIER);
207 		barrier_done = 0;
208 		clear_buffer_ordered(nilfs->ns_sbh[0]);
209 		goto retry;
210 	}
211 	if (unlikely(err)) {
212 		printk(KERN_ERR
213 		       "NILFS: unable to write superblock (err=%d)\n", err);
214 		if (err == -EIO && nilfs->ns_sbh[1]) {
215 			/*
216 			 * sbp[0] points to newer log than sbp[1],
217 			 * so copy sbp[0] to sbp[1] to take over sbp[0].
218 			 */
219 			memcpy(nilfs->ns_sbp[1], nilfs->ns_sbp[0],
220 			       nilfs->ns_sbsize);
221 			nilfs_fall_back_super_block(nilfs);
222 			goto retry;
223 		}
224 	} else {
225 		struct nilfs_super_block *sbp = nilfs->ns_sbp[0];
226 
227 		nilfs->ns_sbwcount++;
228 
229 		/*
230 		 * The latest segment becomes trailable from the position
231 		 * written in superblock.
232 		 */
233 		clear_nilfs_discontinued(nilfs);
234 
235 		/* update GC protection for recent segments */
236 		if (nilfs->ns_sbh[1]) {
237 			if (flag == NILFS_SB_COMMIT_ALL) {
238 				set_buffer_dirty(nilfs->ns_sbh[1]);
239 				if (sync_dirty_buffer(nilfs->ns_sbh[1]) < 0)
240 					goto out;
241 			}
242 			if (le64_to_cpu(nilfs->ns_sbp[1]->s_last_cno) <
243 			    le64_to_cpu(nilfs->ns_sbp[0]->s_last_cno))
244 				sbp = nilfs->ns_sbp[1];
245 		}
246 
247 		spin_lock(&nilfs->ns_last_segment_lock);
248 		nilfs->ns_prot_seq = le64_to_cpu(sbp->s_last_seq);
249 		spin_unlock(&nilfs->ns_last_segment_lock);
250 	}
251  out:
252 	return err;
253 }
254 
255 void nilfs_set_log_cursor(struct nilfs_super_block *sbp,
256 			  struct the_nilfs *nilfs)
257 {
258 	sector_t nfreeblocks;
259 
260 	/* nilfs->ns_sem must be locked by the caller. */
261 	nilfs_count_free_blocks(nilfs, &nfreeblocks);
262 	sbp->s_free_blocks_count = cpu_to_le64(nfreeblocks);
263 
264 	spin_lock(&nilfs->ns_last_segment_lock);
265 	sbp->s_last_seq = cpu_to_le64(nilfs->ns_last_seq);
266 	sbp->s_last_pseg = cpu_to_le64(nilfs->ns_last_pseg);
267 	sbp->s_last_cno = cpu_to_le64(nilfs->ns_last_cno);
268 	spin_unlock(&nilfs->ns_last_segment_lock);
269 }
270 
271 struct nilfs_super_block **nilfs_prepare_super(struct nilfs_sb_info *sbi,
272 					       int flip)
273 {
274 	struct the_nilfs *nilfs = sbi->s_nilfs;
275 	struct nilfs_super_block **sbp = nilfs->ns_sbp;
276 
277 	/* nilfs->ns_sem must be locked by the caller. */
278 	if (sbp[0]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) {
279 		if (sbp[1] &&
280 		    sbp[1]->s_magic == cpu_to_le16(NILFS_SUPER_MAGIC)) {
281 			memcpy(sbp[0], sbp[1], nilfs->ns_sbsize);
282 		} else {
283 			printk(KERN_CRIT "NILFS: superblock broke on dev %s\n",
284 			       sbi->s_super->s_id);
285 			return NULL;
286 		}
287 	} else if (sbp[1] &&
288 		   sbp[1]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) {
289 			memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
290 	}
291 
292 	if (flip && sbp[1])
293 		nilfs_swap_super_block(nilfs);
294 
295 	return sbp;
296 }
297 
298 int nilfs_commit_super(struct nilfs_sb_info *sbi, int flag)
299 {
300 	struct the_nilfs *nilfs = sbi->s_nilfs;
301 	struct nilfs_super_block **sbp = nilfs->ns_sbp;
302 	time_t t;
303 
304 	/* nilfs->ns_sem must be locked by the caller. */
305 	t = get_seconds();
306 	nilfs->ns_sbwtime = t;
307 	sbp[0]->s_wtime = cpu_to_le64(t);
308 	sbp[0]->s_sum = 0;
309 	sbp[0]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
310 					     (unsigned char *)sbp[0],
311 					     nilfs->ns_sbsize));
312 	if (flag == NILFS_SB_COMMIT_ALL && sbp[1]) {
313 		sbp[1]->s_wtime = sbp[0]->s_wtime;
314 		sbp[1]->s_sum = 0;
315 		sbp[1]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
316 					    (unsigned char *)sbp[1],
317 					    nilfs->ns_sbsize));
318 	}
319 	clear_nilfs_sb_dirty(nilfs);
320 	return nilfs_sync_super(sbi, flag);
321 }
322 
323 /**
324  * nilfs_cleanup_super() - write filesystem state for cleanup
325  * @sbi: nilfs_sb_info to be unmounted or degraded to read-only
326  *
327  * This function restores state flags in the on-disk super block.
328  * This will set "clean" flag (i.e. NILFS_VALID_FS) unless the
329  * filesystem was not clean previously.
330  */
331 int nilfs_cleanup_super(struct nilfs_sb_info *sbi)
332 {
333 	struct nilfs_super_block **sbp;
334 	int flag = NILFS_SB_COMMIT;
335 	int ret = -EIO;
336 
337 	sbp = nilfs_prepare_super(sbi, 0);
338 	if (sbp) {
339 		sbp[0]->s_state = cpu_to_le16(sbi->s_nilfs->ns_mount_state);
340 		nilfs_set_log_cursor(sbp[0], sbi->s_nilfs);
341 		if (sbp[1] && sbp[0]->s_last_cno == sbp[1]->s_last_cno) {
342 			/*
343 			 * make the "clean" flag also to the opposite
344 			 * super block if both super blocks point to
345 			 * the same checkpoint.
346 			 */
347 			sbp[1]->s_state = sbp[0]->s_state;
348 			flag = NILFS_SB_COMMIT_ALL;
349 		}
350 		ret = nilfs_commit_super(sbi, flag);
351 	}
352 	return ret;
353 }
354 
355 static void nilfs_put_super(struct super_block *sb)
356 {
357 	struct nilfs_sb_info *sbi = NILFS_SB(sb);
358 	struct the_nilfs *nilfs = sbi->s_nilfs;
359 
360 	lock_kernel();
361 
362 	nilfs_detach_segment_constructor(sbi);
363 
364 	if (!(sb->s_flags & MS_RDONLY)) {
365 		down_write(&nilfs->ns_sem);
366 		nilfs_cleanup_super(sbi);
367 		up_write(&nilfs->ns_sem);
368 	}
369 	down_write(&nilfs->ns_super_sem);
370 	if (nilfs->ns_current == sbi)
371 		nilfs->ns_current = NULL;
372 	up_write(&nilfs->ns_super_sem);
373 
374 	nilfs_detach_checkpoint(sbi);
375 	put_nilfs(sbi->s_nilfs);
376 	sbi->s_super = NULL;
377 	sb->s_fs_info = NULL;
378 	nilfs_put_sbinfo(sbi);
379 
380 	unlock_kernel();
381 }
382 
383 static int nilfs_sync_fs(struct super_block *sb, int wait)
384 {
385 	struct nilfs_sb_info *sbi = NILFS_SB(sb);
386 	struct the_nilfs *nilfs = sbi->s_nilfs;
387 	struct nilfs_super_block **sbp;
388 	int err = 0;
389 
390 	/* This function is called when super block should be written back */
391 	if (wait)
392 		err = nilfs_construct_segment(sb);
393 
394 	down_write(&nilfs->ns_sem);
395 	if (nilfs_sb_dirty(nilfs)) {
396 		sbp = nilfs_prepare_super(sbi, nilfs_sb_will_flip(nilfs));
397 		if (likely(sbp)) {
398 			nilfs_set_log_cursor(sbp[0], nilfs);
399 			nilfs_commit_super(sbi, NILFS_SB_COMMIT);
400 		}
401 	}
402 	up_write(&nilfs->ns_sem);
403 
404 	return err;
405 }
406 
407 int nilfs_attach_checkpoint(struct nilfs_sb_info *sbi, __u64 cno)
408 {
409 	struct the_nilfs *nilfs = sbi->s_nilfs;
410 	struct nilfs_checkpoint *raw_cp;
411 	struct buffer_head *bh_cp;
412 	int err;
413 
414 	down_write(&nilfs->ns_super_sem);
415 	list_add(&sbi->s_list, &nilfs->ns_supers);
416 	up_write(&nilfs->ns_super_sem);
417 
418 	sbi->s_ifile = nilfs_ifile_new(sbi, nilfs->ns_inode_size);
419 	if (!sbi->s_ifile)
420 		return -ENOMEM;
421 
422 	down_read(&nilfs->ns_segctor_sem);
423 	err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, cno, 0, &raw_cp,
424 					  &bh_cp);
425 	up_read(&nilfs->ns_segctor_sem);
426 	if (unlikely(err)) {
427 		if (err == -ENOENT || err == -EINVAL) {
428 			printk(KERN_ERR
429 			       "NILFS: Invalid checkpoint "
430 			       "(checkpoint number=%llu)\n",
431 			       (unsigned long long)cno);
432 			err = -EINVAL;
433 		}
434 		goto failed;
435 	}
436 	err = nilfs_read_inode_common(sbi->s_ifile, &raw_cp->cp_ifile_inode);
437 	if (unlikely(err))
438 		goto failed_bh;
439 	atomic_set(&sbi->s_inodes_count, le64_to_cpu(raw_cp->cp_inodes_count));
440 	atomic_set(&sbi->s_blocks_count, le64_to_cpu(raw_cp->cp_blocks_count));
441 
442 	nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
443 	return 0;
444 
445  failed_bh:
446 	nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
447  failed:
448 	nilfs_mdt_destroy(sbi->s_ifile);
449 	sbi->s_ifile = NULL;
450 
451 	down_write(&nilfs->ns_super_sem);
452 	list_del_init(&sbi->s_list);
453 	up_write(&nilfs->ns_super_sem);
454 
455 	return err;
456 }
457 
458 void nilfs_detach_checkpoint(struct nilfs_sb_info *sbi)
459 {
460 	struct the_nilfs *nilfs = sbi->s_nilfs;
461 
462 	nilfs_mdt_destroy(sbi->s_ifile);
463 	sbi->s_ifile = NULL;
464 	down_write(&nilfs->ns_super_sem);
465 	list_del_init(&sbi->s_list);
466 	up_write(&nilfs->ns_super_sem);
467 }
468 
469 static int nilfs_statfs(struct dentry *dentry, struct kstatfs *buf)
470 {
471 	struct super_block *sb = dentry->d_sb;
472 	struct nilfs_sb_info *sbi = NILFS_SB(sb);
473 	struct the_nilfs *nilfs = sbi->s_nilfs;
474 	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
475 	unsigned long long blocks;
476 	unsigned long overhead;
477 	unsigned long nrsvblocks;
478 	sector_t nfreeblocks;
479 	int err;
480 
481 	/*
482 	 * Compute all of the segment blocks
483 	 *
484 	 * The blocks before first segment and after last segment
485 	 * are excluded.
486 	 */
487 	blocks = nilfs->ns_blocks_per_segment * nilfs->ns_nsegments
488 		- nilfs->ns_first_data_block;
489 	nrsvblocks = nilfs->ns_nrsvsegs * nilfs->ns_blocks_per_segment;
490 
491 	/*
492 	 * Compute the overhead
493 	 *
494 	 * When distributing meta data blocks outside segment structure,
495 	 * We must count them as the overhead.
496 	 */
497 	overhead = 0;
498 
499 	err = nilfs_count_free_blocks(nilfs, &nfreeblocks);
500 	if (unlikely(err))
501 		return err;
502 
503 	buf->f_type = NILFS_SUPER_MAGIC;
504 	buf->f_bsize = sb->s_blocksize;
505 	buf->f_blocks = blocks - overhead;
506 	buf->f_bfree = nfreeblocks;
507 	buf->f_bavail = (buf->f_bfree >= nrsvblocks) ?
508 		(buf->f_bfree - nrsvblocks) : 0;
509 	buf->f_files = atomic_read(&sbi->s_inodes_count);
510 	buf->f_ffree = 0; /* nilfs_count_free_inodes(sb); */
511 	buf->f_namelen = NILFS_NAME_LEN;
512 	buf->f_fsid.val[0] = (u32)id;
513 	buf->f_fsid.val[1] = (u32)(id >> 32);
514 
515 	return 0;
516 }
517 
518 static int nilfs_show_options(struct seq_file *seq, struct vfsmount *vfs)
519 {
520 	struct super_block *sb = vfs->mnt_sb;
521 	struct nilfs_sb_info *sbi = NILFS_SB(sb);
522 
523 	if (!nilfs_test_opt(sbi, BARRIER))
524 		seq_puts(seq, ",nobarrier");
525 	if (nilfs_test_opt(sbi, SNAPSHOT))
526 		seq_printf(seq, ",cp=%llu",
527 			   (unsigned long long int)sbi->s_snapshot_cno);
528 	if (nilfs_test_opt(sbi, ERRORS_PANIC))
529 		seq_puts(seq, ",errors=panic");
530 	if (nilfs_test_opt(sbi, ERRORS_CONT))
531 		seq_puts(seq, ",errors=continue");
532 	if (nilfs_test_opt(sbi, STRICT_ORDER))
533 		seq_puts(seq, ",order=strict");
534 	if (nilfs_test_opt(sbi, NORECOVERY))
535 		seq_puts(seq, ",norecovery");
536 	if (nilfs_test_opt(sbi, DISCARD))
537 		seq_puts(seq, ",discard");
538 
539 	return 0;
540 }
541 
542 static const struct super_operations nilfs_sops = {
543 	.alloc_inode    = nilfs_alloc_inode,
544 	.destroy_inode  = nilfs_destroy_inode,
545 	.dirty_inode    = nilfs_dirty_inode,
546 	/* .write_inode    = nilfs_write_inode, */
547 	/* .put_inode      = nilfs_put_inode, */
548 	/* .drop_inode	  = nilfs_drop_inode, */
549 	.delete_inode   = nilfs_delete_inode,
550 	.put_super      = nilfs_put_super,
551 	/* .write_super    = nilfs_write_super, */
552 	.sync_fs        = nilfs_sync_fs,
553 	/* .write_super_lockfs */
554 	/* .unlockfs */
555 	.statfs         = nilfs_statfs,
556 	.remount_fs     = nilfs_remount,
557 	.clear_inode    = nilfs_clear_inode,
558 	/* .umount_begin */
559 	.show_options = nilfs_show_options
560 };
561 
562 static struct inode *
563 nilfs_nfs_get_inode(struct super_block *sb, u64 ino, u32 generation)
564 {
565 	struct inode *inode;
566 
567 	if (ino < NILFS_FIRST_INO(sb) && ino != NILFS_ROOT_INO &&
568 	    ino != NILFS_SKETCH_INO)
569 		return ERR_PTR(-ESTALE);
570 
571 	inode = nilfs_iget(sb, ino);
572 	if (IS_ERR(inode))
573 		return ERR_CAST(inode);
574 	if (generation && inode->i_generation != generation) {
575 		iput(inode);
576 		return ERR_PTR(-ESTALE);
577 	}
578 
579 	return inode;
580 }
581 
582 static struct dentry *
583 nilfs_fh_to_dentry(struct super_block *sb, struct fid *fid, int fh_len,
584 		   int fh_type)
585 {
586 	return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
587 				    nilfs_nfs_get_inode);
588 }
589 
590 static struct dentry *
591 nilfs_fh_to_parent(struct super_block *sb, struct fid *fid, int fh_len,
592 		   int fh_type)
593 {
594 	return generic_fh_to_parent(sb, fid, fh_len, fh_type,
595 				    nilfs_nfs_get_inode);
596 }
597 
598 static const struct export_operations nilfs_export_ops = {
599 	.fh_to_dentry = nilfs_fh_to_dentry,
600 	.fh_to_parent = nilfs_fh_to_parent,
601 	.get_parent = nilfs_get_parent,
602 };
603 
604 enum {
605 	Opt_err_cont, Opt_err_panic, Opt_err_ro,
606 	Opt_barrier, Opt_nobarrier, Opt_snapshot, Opt_order, Opt_norecovery,
607 	Opt_discard, Opt_nodiscard, Opt_err,
608 };
609 
610 static match_table_t tokens = {
611 	{Opt_err_cont, "errors=continue"},
612 	{Opt_err_panic, "errors=panic"},
613 	{Opt_err_ro, "errors=remount-ro"},
614 	{Opt_barrier, "barrier"},
615 	{Opt_nobarrier, "nobarrier"},
616 	{Opt_snapshot, "cp=%u"},
617 	{Opt_order, "order=%s"},
618 	{Opt_norecovery, "norecovery"},
619 	{Opt_discard, "discard"},
620 	{Opt_nodiscard, "nodiscard"},
621 	{Opt_err, NULL}
622 };
623 
624 static int parse_options(char *options, struct super_block *sb)
625 {
626 	struct nilfs_sb_info *sbi = NILFS_SB(sb);
627 	char *p;
628 	substring_t args[MAX_OPT_ARGS];
629 	int option;
630 
631 	if (!options)
632 		return 1;
633 
634 	while ((p = strsep(&options, ",")) != NULL) {
635 		int token;
636 		if (!*p)
637 			continue;
638 
639 		token = match_token(p, tokens, args);
640 		switch (token) {
641 		case Opt_barrier:
642 			nilfs_set_opt(sbi, BARRIER);
643 			break;
644 		case Opt_nobarrier:
645 			nilfs_clear_opt(sbi, BARRIER);
646 			break;
647 		case Opt_order:
648 			if (strcmp(args[0].from, "relaxed") == 0)
649 				/* Ordered data semantics */
650 				nilfs_clear_opt(sbi, STRICT_ORDER);
651 			else if (strcmp(args[0].from, "strict") == 0)
652 				/* Strict in-order semantics */
653 				nilfs_set_opt(sbi, STRICT_ORDER);
654 			else
655 				return 0;
656 			break;
657 		case Opt_err_panic:
658 			nilfs_write_opt(sbi, ERROR_MODE, ERRORS_PANIC);
659 			break;
660 		case Opt_err_ro:
661 			nilfs_write_opt(sbi, ERROR_MODE, ERRORS_RO);
662 			break;
663 		case Opt_err_cont:
664 			nilfs_write_opt(sbi, ERROR_MODE, ERRORS_CONT);
665 			break;
666 		case Opt_snapshot:
667 			if (match_int(&args[0], &option) || option <= 0)
668 				return 0;
669 			if (!(sb->s_flags & MS_RDONLY))
670 				return 0;
671 			sbi->s_snapshot_cno = option;
672 			nilfs_set_opt(sbi, SNAPSHOT);
673 			break;
674 		case Opt_norecovery:
675 			nilfs_set_opt(sbi, NORECOVERY);
676 			break;
677 		case Opt_discard:
678 			nilfs_set_opt(sbi, DISCARD);
679 			break;
680 		case Opt_nodiscard:
681 			nilfs_clear_opt(sbi, DISCARD);
682 			break;
683 		default:
684 			printk(KERN_ERR
685 			       "NILFS: Unrecognized mount option \"%s\"\n", p);
686 			return 0;
687 		}
688 	}
689 	return 1;
690 }
691 
692 static inline void
693 nilfs_set_default_options(struct nilfs_sb_info *sbi,
694 			  struct nilfs_super_block *sbp)
695 {
696 	sbi->s_mount_opt =
697 		NILFS_MOUNT_ERRORS_RO | NILFS_MOUNT_BARRIER;
698 }
699 
700 static int nilfs_setup_super(struct nilfs_sb_info *sbi)
701 {
702 	struct the_nilfs *nilfs = sbi->s_nilfs;
703 	struct nilfs_super_block **sbp;
704 	int max_mnt_count;
705 	int mnt_count;
706 
707 	/* nilfs->ns_sem must be locked by the caller. */
708 	sbp = nilfs_prepare_super(sbi, 0);
709 	if (!sbp)
710 		return -EIO;
711 
712 	max_mnt_count = le16_to_cpu(sbp[0]->s_max_mnt_count);
713 	mnt_count = le16_to_cpu(sbp[0]->s_mnt_count);
714 
715 	if (nilfs->ns_mount_state & NILFS_ERROR_FS) {
716 		printk(KERN_WARNING
717 		       "NILFS warning: mounting fs with errors\n");
718 #if 0
719 	} else if (max_mnt_count >= 0 && mnt_count >= max_mnt_count) {
720 		printk(KERN_WARNING
721 		       "NILFS warning: maximal mount count reached\n");
722 #endif
723 	}
724 	if (!max_mnt_count)
725 		sbp[0]->s_max_mnt_count = cpu_to_le16(NILFS_DFL_MAX_MNT_COUNT);
726 
727 	sbp[0]->s_mnt_count = cpu_to_le16(mnt_count + 1);
728 	sbp[0]->s_state =
729 		cpu_to_le16(le16_to_cpu(sbp[0]->s_state) & ~NILFS_VALID_FS);
730 	sbp[0]->s_mtime = cpu_to_le64(get_seconds());
731 	/* synchronize sbp[1] with sbp[0] */
732 	memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
733 	return nilfs_commit_super(sbi, NILFS_SB_COMMIT_ALL);
734 }
735 
736 struct nilfs_super_block *nilfs_read_super_block(struct super_block *sb,
737 						 u64 pos, int blocksize,
738 						 struct buffer_head **pbh)
739 {
740 	unsigned long long sb_index = pos;
741 	unsigned long offset;
742 
743 	offset = do_div(sb_index, blocksize);
744 	*pbh = sb_bread(sb, sb_index);
745 	if (!*pbh)
746 		return NULL;
747 	return (struct nilfs_super_block *)((char *)(*pbh)->b_data + offset);
748 }
749 
750 int nilfs_store_magic_and_option(struct super_block *sb,
751 				 struct nilfs_super_block *sbp,
752 				 char *data)
753 {
754 	struct nilfs_sb_info *sbi = NILFS_SB(sb);
755 
756 	sb->s_magic = le16_to_cpu(sbp->s_magic);
757 
758 	/* FS independent flags */
759 #ifdef NILFS_ATIME_DISABLE
760 	sb->s_flags |= MS_NOATIME;
761 #endif
762 
763 	nilfs_set_default_options(sbi, sbp);
764 
765 	sbi->s_resuid = le16_to_cpu(sbp->s_def_resuid);
766 	sbi->s_resgid = le16_to_cpu(sbp->s_def_resgid);
767 	sbi->s_interval = le32_to_cpu(sbp->s_c_interval);
768 	sbi->s_watermark = le32_to_cpu(sbp->s_c_block_max);
769 
770 	return !parse_options(data, sb) ? -EINVAL : 0 ;
771 }
772 
773 /**
774  * nilfs_fill_super() - initialize a super block instance
775  * @sb: super_block
776  * @data: mount options
777  * @silent: silent mode flag
778  * @nilfs: the_nilfs struct
779  *
780  * This function is called exclusively by nilfs->ns_mount_mutex.
781  * So, the recovery process is protected from other simultaneous mounts.
782  */
783 static int
784 nilfs_fill_super(struct super_block *sb, void *data, int silent,
785 		 struct the_nilfs *nilfs)
786 {
787 	struct nilfs_sb_info *sbi;
788 	struct inode *root;
789 	__u64 cno;
790 	int err;
791 
792 	sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
793 	if (!sbi)
794 		return -ENOMEM;
795 
796 	sb->s_fs_info = sbi;
797 
798 	get_nilfs(nilfs);
799 	sbi->s_nilfs = nilfs;
800 	sbi->s_super = sb;
801 	atomic_set(&sbi->s_count, 1);
802 
803 	err = init_nilfs(nilfs, sbi, (char *)data);
804 	if (err)
805 		goto failed_sbi;
806 
807 	spin_lock_init(&sbi->s_inode_lock);
808 	INIT_LIST_HEAD(&sbi->s_dirty_files);
809 	INIT_LIST_HEAD(&sbi->s_list);
810 
811 	/*
812 	 * Following initialization is overlapped because
813 	 * nilfs_sb_info structure has been cleared at the beginning.
814 	 * But we reserve them to keep our interest and make ready
815 	 * for the future change.
816 	 */
817 	get_random_bytes(&sbi->s_next_generation,
818 			 sizeof(sbi->s_next_generation));
819 	spin_lock_init(&sbi->s_next_gen_lock);
820 
821 	sb->s_op = &nilfs_sops;
822 	sb->s_export_op = &nilfs_export_ops;
823 	sb->s_root = NULL;
824 	sb->s_time_gran = 1;
825 	sb->s_bdi = nilfs->ns_bdi;
826 
827 	err = load_nilfs(nilfs, sbi);
828 	if (err)
829 		goto failed_sbi;
830 
831 	cno = nilfs_last_cno(nilfs);
832 
833 	if (sb->s_flags & MS_RDONLY) {
834 		if (nilfs_test_opt(sbi, SNAPSHOT)) {
835 			down_read(&nilfs->ns_segctor_sem);
836 			err = nilfs_cpfile_is_snapshot(nilfs->ns_cpfile,
837 						       sbi->s_snapshot_cno);
838 			up_read(&nilfs->ns_segctor_sem);
839 			if (err < 0) {
840 				if (err == -ENOENT)
841 					err = -EINVAL;
842 				goto failed_sbi;
843 			}
844 			if (!err) {
845 				printk(KERN_ERR
846 				       "NILFS: The specified checkpoint is "
847 				       "not a snapshot "
848 				       "(checkpoint number=%llu).\n",
849 				       (unsigned long long)sbi->s_snapshot_cno);
850 				err = -EINVAL;
851 				goto failed_sbi;
852 			}
853 			cno = sbi->s_snapshot_cno;
854 		}
855 	}
856 
857 	err = nilfs_attach_checkpoint(sbi, cno);
858 	if (err) {
859 		printk(KERN_ERR "NILFS: error loading a checkpoint"
860 		       " (checkpoint number=%llu).\n", (unsigned long long)cno);
861 		goto failed_sbi;
862 	}
863 
864 	if (!(sb->s_flags & MS_RDONLY)) {
865 		err = nilfs_attach_segment_constructor(sbi);
866 		if (err)
867 			goto failed_checkpoint;
868 	}
869 
870 	root = nilfs_iget(sb, NILFS_ROOT_INO);
871 	if (IS_ERR(root)) {
872 		printk(KERN_ERR "NILFS: get root inode failed\n");
873 		err = PTR_ERR(root);
874 		goto failed_segctor;
875 	}
876 	if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
877 		iput(root);
878 		printk(KERN_ERR "NILFS: corrupt root inode.\n");
879 		err = -EINVAL;
880 		goto failed_segctor;
881 	}
882 	sb->s_root = d_alloc_root(root);
883 	if (!sb->s_root) {
884 		iput(root);
885 		printk(KERN_ERR "NILFS: get root dentry failed\n");
886 		err = -ENOMEM;
887 		goto failed_segctor;
888 	}
889 
890 	if (!(sb->s_flags & MS_RDONLY)) {
891 		down_write(&nilfs->ns_sem);
892 		nilfs_setup_super(sbi);
893 		up_write(&nilfs->ns_sem);
894 	}
895 
896 	down_write(&nilfs->ns_super_sem);
897 	if (!nilfs_test_opt(sbi, SNAPSHOT))
898 		nilfs->ns_current = sbi;
899 	up_write(&nilfs->ns_super_sem);
900 
901 	return 0;
902 
903  failed_segctor:
904 	nilfs_detach_segment_constructor(sbi);
905 
906  failed_checkpoint:
907 	nilfs_detach_checkpoint(sbi);
908 
909  failed_sbi:
910 	put_nilfs(nilfs);
911 	sb->s_fs_info = NULL;
912 	nilfs_put_sbinfo(sbi);
913 	return err;
914 }
915 
916 static int nilfs_remount(struct super_block *sb, int *flags, char *data)
917 {
918 	struct nilfs_sb_info *sbi = NILFS_SB(sb);
919 	struct the_nilfs *nilfs = sbi->s_nilfs;
920 	unsigned long old_sb_flags;
921 	struct nilfs_mount_options old_opts;
922 	int was_snapshot, err;
923 
924 	lock_kernel();
925 
926 	down_write(&nilfs->ns_super_sem);
927 	old_sb_flags = sb->s_flags;
928 	old_opts.mount_opt = sbi->s_mount_opt;
929 	old_opts.snapshot_cno = sbi->s_snapshot_cno;
930 	was_snapshot = nilfs_test_opt(sbi, SNAPSHOT);
931 
932 	if (!parse_options(data, sb)) {
933 		err = -EINVAL;
934 		goto restore_opts;
935 	}
936 	sb->s_flags = (sb->s_flags & ~MS_POSIXACL);
937 
938 	err = -EINVAL;
939 	if (was_snapshot) {
940 		if (!(*flags & MS_RDONLY)) {
941 			printk(KERN_ERR "NILFS (device %s): cannot remount "
942 			       "snapshot read/write.\n",
943 			       sb->s_id);
944 			goto restore_opts;
945 		} else if (sbi->s_snapshot_cno != old_opts.snapshot_cno) {
946 			printk(KERN_ERR "NILFS (device %s): cannot "
947 			       "remount to a different snapshot.\n",
948 			       sb->s_id);
949 			goto restore_opts;
950 		}
951 	} else {
952 		if (nilfs_test_opt(sbi, SNAPSHOT)) {
953 			printk(KERN_ERR "NILFS (device %s): cannot change "
954 			       "a regular mount to a snapshot.\n",
955 			       sb->s_id);
956 			goto restore_opts;
957 		}
958 	}
959 
960 	if (!nilfs_valid_fs(nilfs)) {
961 		printk(KERN_WARNING "NILFS (device %s): couldn't "
962 		       "remount because the filesystem is in an "
963 		       "incomplete recovery state.\n", sb->s_id);
964 		goto restore_opts;
965 	}
966 
967 	if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
968 		goto out;
969 	if (*flags & MS_RDONLY) {
970 		/* Shutting down the segment constructor */
971 		nilfs_detach_segment_constructor(sbi);
972 		sb->s_flags |= MS_RDONLY;
973 
974 		/*
975 		 * Remounting a valid RW partition RDONLY, so set
976 		 * the RDONLY flag and then mark the partition as valid again.
977 		 */
978 		down_write(&nilfs->ns_sem);
979 		nilfs_cleanup_super(sbi);
980 		up_write(&nilfs->ns_sem);
981 	} else {
982 		/*
983 		 * Mounting a RDONLY partition read-write, so reread and
984 		 * store the current valid flag.  (It may have been changed
985 		 * by fsck since we originally mounted the partition.)
986 		 */
987 		sb->s_flags &= ~MS_RDONLY;
988 
989 		err = nilfs_attach_segment_constructor(sbi);
990 		if (err)
991 			goto restore_opts;
992 
993 		down_write(&nilfs->ns_sem);
994 		nilfs_setup_super(sbi);
995 		up_write(&nilfs->ns_sem);
996 	}
997  out:
998 	up_write(&nilfs->ns_super_sem);
999 	unlock_kernel();
1000 	return 0;
1001 
1002  restore_opts:
1003 	sb->s_flags = old_sb_flags;
1004 	sbi->s_mount_opt = old_opts.mount_opt;
1005 	sbi->s_snapshot_cno = old_opts.snapshot_cno;
1006 	up_write(&nilfs->ns_super_sem);
1007 	unlock_kernel();
1008 	return err;
1009 }
1010 
1011 struct nilfs_super_data {
1012 	struct block_device *bdev;
1013 	struct nilfs_sb_info *sbi;
1014 	__u64 cno;
1015 	int flags;
1016 };
1017 
1018 /**
1019  * nilfs_identify - pre-read mount options needed to identify mount instance
1020  * @data: mount options
1021  * @sd: nilfs_super_data
1022  */
1023 static int nilfs_identify(char *data, struct nilfs_super_data *sd)
1024 {
1025 	char *p, *options = data;
1026 	substring_t args[MAX_OPT_ARGS];
1027 	int option, token;
1028 	int ret = 0;
1029 
1030 	do {
1031 		p = strsep(&options, ",");
1032 		if (p != NULL && *p) {
1033 			token = match_token(p, tokens, args);
1034 			if (token == Opt_snapshot) {
1035 				if (!(sd->flags & MS_RDONLY))
1036 					ret++;
1037 				else {
1038 					ret = match_int(&args[0], &option);
1039 					if (!ret) {
1040 						if (option > 0)
1041 							sd->cno = option;
1042 						else
1043 							ret++;
1044 					}
1045 				}
1046 			}
1047 			if (ret)
1048 				printk(KERN_ERR
1049 				       "NILFS: invalid mount option: %s\n", p);
1050 		}
1051 		if (!options)
1052 			break;
1053 		BUG_ON(options == data);
1054 		*(options - 1) = ',';
1055 	} while (!ret);
1056 	return ret;
1057 }
1058 
1059 static int nilfs_set_bdev_super(struct super_block *s, void *data)
1060 {
1061 	struct nilfs_super_data *sd = data;
1062 
1063 	s->s_bdev = sd->bdev;
1064 	s->s_dev = s->s_bdev->bd_dev;
1065 	return 0;
1066 }
1067 
1068 static int nilfs_test_bdev_super(struct super_block *s, void *data)
1069 {
1070 	struct nilfs_super_data *sd = data;
1071 
1072 	return sd->sbi && s->s_fs_info == (void *)sd->sbi;
1073 }
1074 
1075 static int
1076 nilfs_get_sb(struct file_system_type *fs_type, int flags,
1077 	     const char *dev_name, void *data, struct vfsmount *mnt)
1078 {
1079 	struct nilfs_super_data sd;
1080 	struct super_block *s;
1081 	fmode_t mode = FMODE_READ;
1082 	struct the_nilfs *nilfs;
1083 	int err, need_to_close = 1;
1084 
1085 	if (!(flags & MS_RDONLY))
1086 		mode |= FMODE_WRITE;
1087 
1088 	sd.bdev = open_bdev_exclusive(dev_name, mode, fs_type);
1089 	if (IS_ERR(sd.bdev))
1090 		return PTR_ERR(sd.bdev);
1091 
1092 	/*
1093 	 * To get mount instance using sget() vfs-routine, NILFS needs
1094 	 * much more information than normal filesystems to identify mount
1095 	 * instance.  For snapshot mounts, not only a mount type (ro-mount
1096 	 * or rw-mount) but also a checkpoint number is required.
1097 	 */
1098 	sd.cno = 0;
1099 	sd.flags = flags;
1100 	if (nilfs_identify((char *)data, &sd)) {
1101 		err = -EINVAL;
1102 		goto failed;
1103 	}
1104 
1105 	nilfs = find_or_create_nilfs(sd.bdev);
1106 	if (!nilfs) {
1107 		err = -ENOMEM;
1108 		goto failed;
1109 	}
1110 
1111 	mutex_lock(&nilfs->ns_mount_mutex);
1112 
1113 	if (!sd.cno) {
1114 		/*
1115 		 * Check if an exclusive mount exists or not.
1116 		 * Snapshot mounts coexist with a current mount
1117 		 * (i.e. rw-mount or ro-mount), whereas rw-mount and
1118 		 * ro-mount are mutually exclusive.
1119 		 */
1120 		down_read(&nilfs->ns_super_sem);
1121 		if (nilfs->ns_current &&
1122 		    ((nilfs->ns_current->s_super->s_flags ^ flags)
1123 		     & MS_RDONLY)) {
1124 			up_read(&nilfs->ns_super_sem);
1125 			err = -EBUSY;
1126 			goto failed_unlock;
1127 		}
1128 		up_read(&nilfs->ns_super_sem);
1129 	}
1130 
1131 	/*
1132 	 * Find existing nilfs_sb_info struct
1133 	 */
1134 	sd.sbi = nilfs_find_sbinfo(nilfs, !(flags & MS_RDONLY), sd.cno);
1135 
1136 	/*
1137 	 * Get super block instance holding the nilfs_sb_info struct.
1138 	 * A new instance is allocated if no existing mount is present or
1139 	 * existing instance has been unmounted.
1140 	 */
1141 	s = sget(fs_type, nilfs_test_bdev_super, nilfs_set_bdev_super, &sd);
1142 	if (sd.sbi)
1143 		nilfs_put_sbinfo(sd.sbi);
1144 
1145 	if (IS_ERR(s)) {
1146 		err = PTR_ERR(s);
1147 		goto failed_unlock;
1148 	}
1149 
1150 	if (!s->s_root) {
1151 		char b[BDEVNAME_SIZE];
1152 
1153 		/* New superblock instance created */
1154 		s->s_flags = flags;
1155 		s->s_mode = mode;
1156 		strlcpy(s->s_id, bdevname(sd.bdev, b), sizeof(s->s_id));
1157 		sb_set_blocksize(s, block_size(sd.bdev));
1158 
1159 		err = nilfs_fill_super(s, data, flags & MS_SILENT ? 1 : 0,
1160 				       nilfs);
1161 		if (err)
1162 			goto cancel_new;
1163 
1164 		s->s_flags |= MS_ACTIVE;
1165 		need_to_close = 0;
1166 	}
1167 
1168 	mutex_unlock(&nilfs->ns_mount_mutex);
1169 	put_nilfs(nilfs);
1170 	if (need_to_close)
1171 		close_bdev_exclusive(sd.bdev, mode);
1172 	simple_set_mnt(mnt, s);
1173 	return 0;
1174 
1175  failed_unlock:
1176 	mutex_unlock(&nilfs->ns_mount_mutex);
1177 	put_nilfs(nilfs);
1178  failed:
1179 	close_bdev_exclusive(sd.bdev, mode);
1180 
1181 	return err;
1182 
1183  cancel_new:
1184 	/* Abandoning the newly allocated superblock */
1185 	mutex_unlock(&nilfs->ns_mount_mutex);
1186 	put_nilfs(nilfs);
1187 	deactivate_locked_super(s);
1188 	/*
1189 	 * deactivate_locked_super() invokes close_bdev_exclusive().
1190 	 * We must finish all post-cleaning before this call;
1191 	 * put_nilfs() needs the block device.
1192 	 */
1193 	return err;
1194 }
1195 
1196 struct file_system_type nilfs_fs_type = {
1197 	.owner    = THIS_MODULE,
1198 	.name     = "nilfs2",
1199 	.get_sb   = nilfs_get_sb,
1200 	.kill_sb  = kill_block_super,
1201 	.fs_flags = FS_REQUIRES_DEV,
1202 };
1203 
1204 static void nilfs_inode_init_once(void *obj)
1205 {
1206 	struct nilfs_inode_info *ii = obj;
1207 
1208 	INIT_LIST_HEAD(&ii->i_dirty);
1209 #ifdef CONFIG_NILFS_XATTR
1210 	init_rwsem(&ii->xattr_sem);
1211 #endif
1212 	nilfs_btnode_cache_init_once(&ii->i_btnode_cache);
1213 	ii->i_bmap = (struct nilfs_bmap *)&ii->i_bmap_union;
1214 	inode_init_once(&ii->vfs_inode);
1215 }
1216 
1217 static void nilfs_segbuf_init_once(void *obj)
1218 {
1219 	memset(obj, 0, sizeof(struct nilfs_segment_buffer));
1220 }
1221 
1222 static void nilfs_destroy_cachep(void)
1223 {
1224 	if (nilfs_inode_cachep)
1225 		kmem_cache_destroy(nilfs_inode_cachep);
1226 	if (nilfs_transaction_cachep)
1227 		kmem_cache_destroy(nilfs_transaction_cachep);
1228 	if (nilfs_segbuf_cachep)
1229 		kmem_cache_destroy(nilfs_segbuf_cachep);
1230 	if (nilfs_btree_path_cache)
1231 		kmem_cache_destroy(nilfs_btree_path_cache);
1232 }
1233 
1234 static int __init nilfs_init_cachep(void)
1235 {
1236 	nilfs_inode_cachep = kmem_cache_create("nilfs2_inode_cache",
1237 			sizeof(struct nilfs_inode_info), 0,
1238 			SLAB_RECLAIM_ACCOUNT, nilfs_inode_init_once);
1239 	if (!nilfs_inode_cachep)
1240 		goto fail;
1241 
1242 	nilfs_transaction_cachep = kmem_cache_create("nilfs2_transaction_cache",
1243 			sizeof(struct nilfs_transaction_info), 0,
1244 			SLAB_RECLAIM_ACCOUNT, NULL);
1245 	if (!nilfs_transaction_cachep)
1246 		goto fail;
1247 
1248 	nilfs_segbuf_cachep = kmem_cache_create("nilfs2_segbuf_cache",
1249 			sizeof(struct nilfs_segment_buffer), 0,
1250 			SLAB_RECLAIM_ACCOUNT, nilfs_segbuf_init_once);
1251 	if (!nilfs_segbuf_cachep)
1252 		goto fail;
1253 
1254 	nilfs_btree_path_cache = kmem_cache_create("nilfs2_btree_path_cache",
1255 			sizeof(struct nilfs_btree_path) * NILFS_BTREE_LEVEL_MAX,
1256 			0, 0, NULL);
1257 	if (!nilfs_btree_path_cache)
1258 		goto fail;
1259 
1260 	return 0;
1261 
1262 fail:
1263 	nilfs_destroy_cachep();
1264 	return -ENOMEM;
1265 }
1266 
1267 static int __init init_nilfs_fs(void)
1268 {
1269 	int err;
1270 
1271 	err = nilfs_init_cachep();
1272 	if (err)
1273 		goto fail;
1274 
1275 	err = register_filesystem(&nilfs_fs_type);
1276 	if (err)
1277 		goto free_cachep;
1278 
1279 	printk(KERN_INFO "NILFS version 2 loaded\n");
1280 	return 0;
1281 
1282 free_cachep:
1283 	nilfs_destroy_cachep();
1284 fail:
1285 	return err;
1286 }
1287 
1288 static void __exit exit_nilfs_fs(void)
1289 {
1290 	nilfs_destroy_cachep();
1291 	unregister_filesystem(&nilfs_fs_type);
1292 }
1293 
1294 module_init(init_nilfs_fs)
1295 module_exit(exit_nilfs_fs)
1296