1 /* 2 * super.c - NILFS module and super block management. 3 * 4 * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation. 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, write to the Free Software 18 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 19 * 20 * Written by Ryusuke Konishi <ryusuke@osrg.net> 21 */ 22 /* 23 * linux/fs/ext2/super.c 24 * 25 * Copyright (C) 1992, 1993, 1994, 1995 26 * Remy Card (card@masi.ibp.fr) 27 * Laboratoire MASI - Institut Blaise Pascal 28 * Universite Pierre et Marie Curie (Paris VI) 29 * 30 * from 31 * 32 * linux/fs/minix/inode.c 33 * 34 * Copyright (C) 1991, 1992 Linus Torvalds 35 * 36 * Big-endian to little-endian byte-swapping/bitmaps by 37 * David S. Miller (davem@caip.rutgers.edu), 1995 38 */ 39 40 #include <linux/module.h> 41 #include <linux/string.h> 42 #include <linux/slab.h> 43 #include <linux/init.h> 44 #include <linux/blkdev.h> 45 #include <linux/parser.h> 46 #include <linux/random.h> 47 #include <linux/crc32.h> 48 #include <linux/vfs.h> 49 #include <linux/writeback.h> 50 #include <linux/kobject.h> 51 #include <linux/seq_file.h> 52 #include <linux/mount.h> 53 #include "nilfs.h" 54 #include "export.h" 55 #include "mdt.h" 56 #include "alloc.h" 57 #include "btree.h" 58 #include "btnode.h" 59 #include "page.h" 60 #include "cpfile.h" 61 #include "ifile.h" 62 #include "dat.h" 63 #include "segment.h" 64 #include "segbuf.h" 65 66 MODULE_AUTHOR("NTT Corp."); 67 MODULE_DESCRIPTION("A New Implementation of the Log-structured Filesystem " 68 "(NILFS)"); 69 MODULE_LICENSE("GPL"); 70 71 static struct kmem_cache *nilfs_inode_cachep; 72 struct kmem_cache *nilfs_transaction_cachep; 73 struct kmem_cache *nilfs_segbuf_cachep; 74 struct kmem_cache *nilfs_btree_path_cache; 75 76 static int nilfs_setup_super(struct nilfs_sb_info *sbi, int is_mount); 77 static int nilfs_remount(struct super_block *sb, int *flags, char *data); 78 79 static void nilfs_set_error(struct nilfs_sb_info *sbi) 80 { 81 struct the_nilfs *nilfs = sbi->s_nilfs; 82 struct nilfs_super_block **sbp; 83 84 down_write(&nilfs->ns_sem); 85 if (!(nilfs->ns_mount_state & NILFS_ERROR_FS)) { 86 nilfs->ns_mount_state |= NILFS_ERROR_FS; 87 sbp = nilfs_prepare_super(sbi, 0); 88 if (likely(sbp)) { 89 sbp[0]->s_state |= cpu_to_le16(NILFS_ERROR_FS); 90 if (sbp[1]) 91 sbp[1]->s_state |= cpu_to_le16(NILFS_ERROR_FS); 92 nilfs_commit_super(sbi, NILFS_SB_COMMIT_ALL); 93 } 94 } 95 up_write(&nilfs->ns_sem); 96 } 97 98 /** 99 * nilfs_error() - report failure condition on a filesystem 100 * 101 * nilfs_error() sets an ERROR_FS flag on the superblock as well as 102 * reporting an error message. It should be called when NILFS detects 103 * incoherences or defects of meta data on disk. As for sustainable 104 * errors such as a single-shot I/O error, nilfs_warning() or the printk() 105 * function should be used instead. 106 * 107 * The segment constructor must not call this function because it can 108 * kill itself. 109 */ 110 void nilfs_error(struct super_block *sb, const char *function, 111 const char *fmt, ...) 112 { 113 struct nilfs_sb_info *sbi = NILFS_SB(sb); 114 struct va_format vaf; 115 va_list args; 116 117 va_start(args, fmt); 118 119 vaf.fmt = fmt; 120 vaf.va = &args; 121 122 printk(KERN_CRIT "NILFS error (device %s): %s: %pV\n", 123 sb->s_id, function, &vaf); 124 125 va_end(args); 126 127 if (!(sb->s_flags & MS_RDONLY)) { 128 nilfs_set_error(sbi); 129 130 if (nilfs_test_opt(sbi, ERRORS_RO)) { 131 printk(KERN_CRIT "Remounting filesystem read-only\n"); 132 sb->s_flags |= MS_RDONLY; 133 } 134 } 135 136 if (nilfs_test_opt(sbi, ERRORS_PANIC)) 137 panic("NILFS (device %s): panic forced after error\n", 138 sb->s_id); 139 } 140 141 void nilfs_warning(struct super_block *sb, const char *function, 142 const char *fmt, ...) 143 { 144 struct va_format vaf; 145 va_list args; 146 147 va_start(args, fmt); 148 149 vaf.fmt = fmt; 150 vaf.va = &args; 151 152 printk(KERN_WARNING "NILFS warning (device %s): %s: %pV\n", 153 sb->s_id, function, &vaf); 154 155 va_end(args); 156 } 157 158 159 struct inode *nilfs_alloc_inode(struct super_block *sb) 160 { 161 struct nilfs_inode_info *ii; 162 163 ii = kmem_cache_alloc(nilfs_inode_cachep, GFP_NOFS); 164 if (!ii) 165 return NULL; 166 ii->i_bh = NULL; 167 ii->i_state = 0; 168 ii->i_cno = 0; 169 ii->vfs_inode.i_version = 1; 170 nilfs_btnode_cache_init(&ii->i_btnode_cache, sb->s_bdi); 171 return &ii->vfs_inode; 172 } 173 174 static void nilfs_i_callback(struct rcu_head *head) 175 { 176 struct inode *inode = container_of(head, struct inode, i_rcu); 177 struct nilfs_mdt_info *mdi = NILFS_MDT(inode); 178 179 INIT_LIST_HEAD(&inode->i_dentry); 180 181 if (mdi) { 182 kfree(mdi->mi_bgl); /* kfree(NULL) is safe */ 183 kfree(mdi); 184 } 185 kmem_cache_free(nilfs_inode_cachep, NILFS_I(inode)); 186 } 187 188 void nilfs_destroy_inode(struct inode *inode) 189 { 190 call_rcu(&inode->i_rcu, nilfs_i_callback); 191 } 192 193 static int nilfs_sync_super(struct nilfs_sb_info *sbi, int flag) 194 { 195 struct the_nilfs *nilfs = sbi->s_nilfs; 196 int err; 197 198 retry: 199 set_buffer_dirty(nilfs->ns_sbh[0]); 200 if (nilfs_test_opt(sbi, BARRIER)) { 201 err = __sync_dirty_buffer(nilfs->ns_sbh[0], 202 WRITE_SYNC | WRITE_FLUSH_FUA); 203 } else { 204 err = sync_dirty_buffer(nilfs->ns_sbh[0]); 205 } 206 207 if (unlikely(err)) { 208 printk(KERN_ERR 209 "NILFS: unable to write superblock (err=%d)\n", err); 210 if (err == -EIO && nilfs->ns_sbh[1]) { 211 /* 212 * sbp[0] points to newer log than sbp[1], 213 * so copy sbp[0] to sbp[1] to take over sbp[0]. 214 */ 215 memcpy(nilfs->ns_sbp[1], nilfs->ns_sbp[0], 216 nilfs->ns_sbsize); 217 nilfs_fall_back_super_block(nilfs); 218 goto retry; 219 } 220 } else { 221 struct nilfs_super_block *sbp = nilfs->ns_sbp[0]; 222 223 nilfs->ns_sbwcount++; 224 225 /* 226 * The latest segment becomes trailable from the position 227 * written in superblock. 228 */ 229 clear_nilfs_discontinued(nilfs); 230 231 /* update GC protection for recent segments */ 232 if (nilfs->ns_sbh[1]) { 233 if (flag == NILFS_SB_COMMIT_ALL) { 234 set_buffer_dirty(nilfs->ns_sbh[1]); 235 if (sync_dirty_buffer(nilfs->ns_sbh[1]) < 0) 236 goto out; 237 } 238 if (le64_to_cpu(nilfs->ns_sbp[1]->s_last_cno) < 239 le64_to_cpu(nilfs->ns_sbp[0]->s_last_cno)) 240 sbp = nilfs->ns_sbp[1]; 241 } 242 243 spin_lock(&nilfs->ns_last_segment_lock); 244 nilfs->ns_prot_seq = le64_to_cpu(sbp->s_last_seq); 245 spin_unlock(&nilfs->ns_last_segment_lock); 246 } 247 out: 248 return err; 249 } 250 251 void nilfs_set_log_cursor(struct nilfs_super_block *sbp, 252 struct the_nilfs *nilfs) 253 { 254 sector_t nfreeblocks; 255 256 /* nilfs->ns_sem must be locked by the caller. */ 257 nilfs_count_free_blocks(nilfs, &nfreeblocks); 258 sbp->s_free_blocks_count = cpu_to_le64(nfreeblocks); 259 260 spin_lock(&nilfs->ns_last_segment_lock); 261 sbp->s_last_seq = cpu_to_le64(nilfs->ns_last_seq); 262 sbp->s_last_pseg = cpu_to_le64(nilfs->ns_last_pseg); 263 sbp->s_last_cno = cpu_to_le64(nilfs->ns_last_cno); 264 spin_unlock(&nilfs->ns_last_segment_lock); 265 } 266 267 struct nilfs_super_block **nilfs_prepare_super(struct nilfs_sb_info *sbi, 268 int flip) 269 { 270 struct the_nilfs *nilfs = sbi->s_nilfs; 271 struct nilfs_super_block **sbp = nilfs->ns_sbp; 272 273 /* nilfs->ns_sem must be locked by the caller. */ 274 if (sbp[0]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) { 275 if (sbp[1] && 276 sbp[1]->s_magic == cpu_to_le16(NILFS_SUPER_MAGIC)) { 277 memcpy(sbp[0], sbp[1], nilfs->ns_sbsize); 278 } else { 279 printk(KERN_CRIT "NILFS: superblock broke on dev %s\n", 280 sbi->s_super->s_id); 281 return NULL; 282 } 283 } else if (sbp[1] && 284 sbp[1]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) { 285 memcpy(sbp[1], sbp[0], nilfs->ns_sbsize); 286 } 287 288 if (flip && sbp[1]) 289 nilfs_swap_super_block(nilfs); 290 291 return sbp; 292 } 293 294 int nilfs_commit_super(struct nilfs_sb_info *sbi, int flag) 295 { 296 struct the_nilfs *nilfs = sbi->s_nilfs; 297 struct nilfs_super_block **sbp = nilfs->ns_sbp; 298 time_t t; 299 300 /* nilfs->ns_sem must be locked by the caller. */ 301 t = get_seconds(); 302 nilfs->ns_sbwtime = t; 303 sbp[0]->s_wtime = cpu_to_le64(t); 304 sbp[0]->s_sum = 0; 305 sbp[0]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed, 306 (unsigned char *)sbp[0], 307 nilfs->ns_sbsize)); 308 if (flag == NILFS_SB_COMMIT_ALL && sbp[1]) { 309 sbp[1]->s_wtime = sbp[0]->s_wtime; 310 sbp[1]->s_sum = 0; 311 sbp[1]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed, 312 (unsigned char *)sbp[1], 313 nilfs->ns_sbsize)); 314 } 315 clear_nilfs_sb_dirty(nilfs); 316 return nilfs_sync_super(sbi, flag); 317 } 318 319 /** 320 * nilfs_cleanup_super() - write filesystem state for cleanup 321 * @sbi: nilfs_sb_info to be unmounted or degraded to read-only 322 * 323 * This function restores state flags in the on-disk super block. 324 * This will set "clean" flag (i.e. NILFS_VALID_FS) unless the 325 * filesystem was not clean previously. 326 */ 327 int nilfs_cleanup_super(struct nilfs_sb_info *sbi) 328 { 329 struct nilfs_super_block **sbp; 330 int flag = NILFS_SB_COMMIT; 331 int ret = -EIO; 332 333 sbp = nilfs_prepare_super(sbi, 0); 334 if (sbp) { 335 sbp[0]->s_state = cpu_to_le16(sbi->s_nilfs->ns_mount_state); 336 nilfs_set_log_cursor(sbp[0], sbi->s_nilfs); 337 if (sbp[1] && sbp[0]->s_last_cno == sbp[1]->s_last_cno) { 338 /* 339 * make the "clean" flag also to the opposite 340 * super block if both super blocks point to 341 * the same checkpoint. 342 */ 343 sbp[1]->s_state = sbp[0]->s_state; 344 flag = NILFS_SB_COMMIT_ALL; 345 } 346 ret = nilfs_commit_super(sbi, flag); 347 } 348 return ret; 349 } 350 351 static void nilfs_put_super(struct super_block *sb) 352 { 353 struct nilfs_sb_info *sbi = NILFS_SB(sb); 354 struct the_nilfs *nilfs = sbi->s_nilfs; 355 356 nilfs_detach_segment_constructor(sbi); 357 358 if (!(sb->s_flags & MS_RDONLY)) { 359 down_write(&nilfs->ns_sem); 360 nilfs_cleanup_super(sbi); 361 up_write(&nilfs->ns_sem); 362 } 363 364 iput(nilfs->ns_sufile); 365 iput(nilfs->ns_cpfile); 366 iput(nilfs->ns_dat); 367 368 destroy_nilfs(nilfs); 369 sbi->s_super = NULL; 370 sb->s_fs_info = NULL; 371 kfree(sbi); 372 } 373 374 static int nilfs_sync_fs(struct super_block *sb, int wait) 375 { 376 struct nilfs_sb_info *sbi = NILFS_SB(sb); 377 struct the_nilfs *nilfs = sbi->s_nilfs; 378 struct nilfs_super_block **sbp; 379 int err = 0; 380 381 /* This function is called when super block should be written back */ 382 if (wait) 383 err = nilfs_construct_segment(sb); 384 385 down_write(&nilfs->ns_sem); 386 if (nilfs_sb_dirty(nilfs)) { 387 sbp = nilfs_prepare_super(sbi, nilfs_sb_will_flip(nilfs)); 388 if (likely(sbp)) { 389 nilfs_set_log_cursor(sbp[0], nilfs); 390 nilfs_commit_super(sbi, NILFS_SB_COMMIT); 391 } 392 } 393 up_write(&nilfs->ns_sem); 394 395 return err; 396 } 397 398 int nilfs_attach_checkpoint(struct nilfs_sb_info *sbi, __u64 cno, int curr_mnt, 399 struct nilfs_root **rootp) 400 { 401 struct the_nilfs *nilfs = sbi->s_nilfs; 402 struct nilfs_root *root; 403 struct nilfs_checkpoint *raw_cp; 404 struct buffer_head *bh_cp; 405 int err = -ENOMEM; 406 407 root = nilfs_find_or_create_root( 408 nilfs, curr_mnt ? NILFS_CPTREE_CURRENT_CNO : cno); 409 if (!root) 410 return err; 411 412 if (root->ifile) 413 goto reuse; /* already attached checkpoint */ 414 415 down_read(&nilfs->ns_segctor_sem); 416 err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, cno, 0, &raw_cp, 417 &bh_cp); 418 up_read(&nilfs->ns_segctor_sem); 419 if (unlikely(err)) { 420 if (err == -ENOENT || err == -EINVAL) { 421 printk(KERN_ERR 422 "NILFS: Invalid checkpoint " 423 "(checkpoint number=%llu)\n", 424 (unsigned long long)cno); 425 err = -EINVAL; 426 } 427 goto failed; 428 } 429 430 err = nilfs_ifile_read(sbi->s_super, root, nilfs->ns_inode_size, 431 &raw_cp->cp_ifile_inode, &root->ifile); 432 if (err) 433 goto failed_bh; 434 435 atomic_set(&root->inodes_count, le64_to_cpu(raw_cp->cp_inodes_count)); 436 atomic_set(&root->blocks_count, le64_to_cpu(raw_cp->cp_blocks_count)); 437 438 nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp); 439 440 reuse: 441 *rootp = root; 442 return 0; 443 444 failed_bh: 445 nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp); 446 failed: 447 nilfs_put_root(root); 448 449 return err; 450 } 451 452 static int nilfs_freeze(struct super_block *sb) 453 { 454 struct nilfs_sb_info *sbi = NILFS_SB(sb); 455 struct the_nilfs *nilfs = sbi->s_nilfs; 456 int err; 457 458 if (sb->s_flags & MS_RDONLY) 459 return 0; 460 461 /* Mark super block clean */ 462 down_write(&nilfs->ns_sem); 463 err = nilfs_cleanup_super(sbi); 464 up_write(&nilfs->ns_sem); 465 return err; 466 } 467 468 static int nilfs_unfreeze(struct super_block *sb) 469 { 470 struct nilfs_sb_info *sbi = NILFS_SB(sb); 471 struct the_nilfs *nilfs = sbi->s_nilfs; 472 473 if (sb->s_flags & MS_RDONLY) 474 return 0; 475 476 down_write(&nilfs->ns_sem); 477 nilfs_setup_super(sbi, false); 478 up_write(&nilfs->ns_sem); 479 return 0; 480 } 481 482 static int nilfs_statfs(struct dentry *dentry, struct kstatfs *buf) 483 { 484 struct super_block *sb = dentry->d_sb; 485 struct nilfs_root *root = NILFS_I(dentry->d_inode)->i_root; 486 struct the_nilfs *nilfs = root->nilfs; 487 u64 id = huge_encode_dev(sb->s_bdev->bd_dev); 488 unsigned long long blocks; 489 unsigned long overhead; 490 unsigned long nrsvblocks; 491 sector_t nfreeblocks; 492 int err; 493 494 /* 495 * Compute all of the segment blocks 496 * 497 * The blocks before first segment and after last segment 498 * are excluded. 499 */ 500 blocks = nilfs->ns_blocks_per_segment * nilfs->ns_nsegments 501 - nilfs->ns_first_data_block; 502 nrsvblocks = nilfs->ns_nrsvsegs * nilfs->ns_blocks_per_segment; 503 504 /* 505 * Compute the overhead 506 * 507 * When distributing meta data blocks outside segment structure, 508 * We must count them as the overhead. 509 */ 510 overhead = 0; 511 512 err = nilfs_count_free_blocks(nilfs, &nfreeblocks); 513 if (unlikely(err)) 514 return err; 515 516 buf->f_type = NILFS_SUPER_MAGIC; 517 buf->f_bsize = sb->s_blocksize; 518 buf->f_blocks = blocks - overhead; 519 buf->f_bfree = nfreeblocks; 520 buf->f_bavail = (buf->f_bfree >= nrsvblocks) ? 521 (buf->f_bfree - nrsvblocks) : 0; 522 buf->f_files = atomic_read(&root->inodes_count); 523 buf->f_ffree = 0; /* nilfs_count_free_inodes(sb); */ 524 buf->f_namelen = NILFS_NAME_LEN; 525 buf->f_fsid.val[0] = (u32)id; 526 buf->f_fsid.val[1] = (u32)(id >> 32); 527 528 return 0; 529 } 530 531 static int nilfs_show_options(struct seq_file *seq, struct vfsmount *vfs) 532 { 533 struct super_block *sb = vfs->mnt_sb; 534 struct nilfs_sb_info *sbi = NILFS_SB(sb); 535 struct nilfs_root *root = NILFS_I(vfs->mnt_root->d_inode)->i_root; 536 537 if (!nilfs_test_opt(sbi, BARRIER)) 538 seq_puts(seq, ",nobarrier"); 539 if (root->cno != NILFS_CPTREE_CURRENT_CNO) 540 seq_printf(seq, ",cp=%llu", (unsigned long long)root->cno); 541 if (nilfs_test_opt(sbi, ERRORS_PANIC)) 542 seq_puts(seq, ",errors=panic"); 543 if (nilfs_test_opt(sbi, ERRORS_CONT)) 544 seq_puts(seq, ",errors=continue"); 545 if (nilfs_test_opt(sbi, STRICT_ORDER)) 546 seq_puts(seq, ",order=strict"); 547 if (nilfs_test_opt(sbi, NORECOVERY)) 548 seq_puts(seq, ",norecovery"); 549 if (nilfs_test_opt(sbi, DISCARD)) 550 seq_puts(seq, ",discard"); 551 552 return 0; 553 } 554 555 static const struct super_operations nilfs_sops = { 556 .alloc_inode = nilfs_alloc_inode, 557 .destroy_inode = nilfs_destroy_inode, 558 .dirty_inode = nilfs_dirty_inode, 559 /* .write_inode = nilfs_write_inode, */ 560 /* .put_inode = nilfs_put_inode, */ 561 /* .drop_inode = nilfs_drop_inode, */ 562 .evict_inode = nilfs_evict_inode, 563 .put_super = nilfs_put_super, 564 /* .write_super = nilfs_write_super, */ 565 .sync_fs = nilfs_sync_fs, 566 .freeze_fs = nilfs_freeze, 567 .unfreeze_fs = nilfs_unfreeze, 568 /* .write_super_lockfs */ 569 /* .unlockfs */ 570 .statfs = nilfs_statfs, 571 .remount_fs = nilfs_remount, 572 /* .umount_begin */ 573 .show_options = nilfs_show_options 574 }; 575 576 enum { 577 Opt_err_cont, Opt_err_panic, Opt_err_ro, 578 Opt_barrier, Opt_nobarrier, Opt_snapshot, Opt_order, Opt_norecovery, 579 Opt_discard, Opt_nodiscard, Opt_err, 580 }; 581 582 static match_table_t tokens = { 583 {Opt_err_cont, "errors=continue"}, 584 {Opt_err_panic, "errors=panic"}, 585 {Opt_err_ro, "errors=remount-ro"}, 586 {Opt_barrier, "barrier"}, 587 {Opt_nobarrier, "nobarrier"}, 588 {Opt_snapshot, "cp=%u"}, 589 {Opt_order, "order=%s"}, 590 {Opt_norecovery, "norecovery"}, 591 {Opt_discard, "discard"}, 592 {Opt_nodiscard, "nodiscard"}, 593 {Opt_err, NULL} 594 }; 595 596 static int parse_options(char *options, struct super_block *sb, int is_remount) 597 { 598 struct nilfs_sb_info *sbi = NILFS_SB(sb); 599 char *p; 600 substring_t args[MAX_OPT_ARGS]; 601 602 if (!options) 603 return 1; 604 605 while ((p = strsep(&options, ",")) != NULL) { 606 int token; 607 if (!*p) 608 continue; 609 610 token = match_token(p, tokens, args); 611 switch (token) { 612 case Opt_barrier: 613 nilfs_set_opt(sbi, BARRIER); 614 break; 615 case Opt_nobarrier: 616 nilfs_clear_opt(sbi, BARRIER); 617 break; 618 case Opt_order: 619 if (strcmp(args[0].from, "relaxed") == 0) 620 /* Ordered data semantics */ 621 nilfs_clear_opt(sbi, STRICT_ORDER); 622 else if (strcmp(args[0].from, "strict") == 0) 623 /* Strict in-order semantics */ 624 nilfs_set_opt(sbi, STRICT_ORDER); 625 else 626 return 0; 627 break; 628 case Opt_err_panic: 629 nilfs_write_opt(sbi, ERROR_MODE, ERRORS_PANIC); 630 break; 631 case Opt_err_ro: 632 nilfs_write_opt(sbi, ERROR_MODE, ERRORS_RO); 633 break; 634 case Opt_err_cont: 635 nilfs_write_opt(sbi, ERROR_MODE, ERRORS_CONT); 636 break; 637 case Opt_snapshot: 638 if (is_remount) { 639 printk(KERN_ERR 640 "NILFS: \"%s\" option is invalid " 641 "for remount.\n", p); 642 return 0; 643 } 644 break; 645 case Opt_norecovery: 646 nilfs_set_opt(sbi, NORECOVERY); 647 break; 648 case Opt_discard: 649 nilfs_set_opt(sbi, DISCARD); 650 break; 651 case Opt_nodiscard: 652 nilfs_clear_opt(sbi, DISCARD); 653 break; 654 default: 655 printk(KERN_ERR 656 "NILFS: Unrecognized mount option \"%s\"\n", p); 657 return 0; 658 } 659 } 660 return 1; 661 } 662 663 static inline void 664 nilfs_set_default_options(struct nilfs_sb_info *sbi, 665 struct nilfs_super_block *sbp) 666 { 667 sbi->s_mount_opt = 668 NILFS_MOUNT_ERRORS_RO | NILFS_MOUNT_BARRIER; 669 } 670 671 static int nilfs_setup_super(struct nilfs_sb_info *sbi, int is_mount) 672 { 673 struct the_nilfs *nilfs = sbi->s_nilfs; 674 struct nilfs_super_block **sbp; 675 int max_mnt_count; 676 int mnt_count; 677 678 /* nilfs->ns_sem must be locked by the caller. */ 679 sbp = nilfs_prepare_super(sbi, 0); 680 if (!sbp) 681 return -EIO; 682 683 if (!is_mount) 684 goto skip_mount_setup; 685 686 max_mnt_count = le16_to_cpu(sbp[0]->s_max_mnt_count); 687 mnt_count = le16_to_cpu(sbp[0]->s_mnt_count); 688 689 if (nilfs->ns_mount_state & NILFS_ERROR_FS) { 690 printk(KERN_WARNING 691 "NILFS warning: mounting fs with errors\n"); 692 #if 0 693 } else if (max_mnt_count >= 0 && mnt_count >= max_mnt_count) { 694 printk(KERN_WARNING 695 "NILFS warning: maximal mount count reached\n"); 696 #endif 697 } 698 if (!max_mnt_count) 699 sbp[0]->s_max_mnt_count = cpu_to_le16(NILFS_DFL_MAX_MNT_COUNT); 700 701 sbp[0]->s_mnt_count = cpu_to_le16(mnt_count + 1); 702 sbp[0]->s_mtime = cpu_to_le64(get_seconds()); 703 704 skip_mount_setup: 705 sbp[0]->s_state = 706 cpu_to_le16(le16_to_cpu(sbp[0]->s_state) & ~NILFS_VALID_FS); 707 /* synchronize sbp[1] with sbp[0] */ 708 memcpy(sbp[1], sbp[0], nilfs->ns_sbsize); 709 return nilfs_commit_super(sbi, NILFS_SB_COMMIT_ALL); 710 } 711 712 struct nilfs_super_block *nilfs_read_super_block(struct super_block *sb, 713 u64 pos, int blocksize, 714 struct buffer_head **pbh) 715 { 716 unsigned long long sb_index = pos; 717 unsigned long offset; 718 719 offset = do_div(sb_index, blocksize); 720 *pbh = sb_bread(sb, sb_index); 721 if (!*pbh) 722 return NULL; 723 return (struct nilfs_super_block *)((char *)(*pbh)->b_data + offset); 724 } 725 726 int nilfs_store_magic_and_option(struct super_block *sb, 727 struct nilfs_super_block *sbp, 728 char *data) 729 { 730 struct nilfs_sb_info *sbi = NILFS_SB(sb); 731 732 sb->s_magic = le16_to_cpu(sbp->s_magic); 733 734 /* FS independent flags */ 735 #ifdef NILFS_ATIME_DISABLE 736 sb->s_flags |= MS_NOATIME; 737 #endif 738 739 nilfs_set_default_options(sbi, sbp); 740 741 sbi->s_resuid = le16_to_cpu(sbp->s_def_resuid); 742 sbi->s_resgid = le16_to_cpu(sbp->s_def_resgid); 743 sbi->s_interval = le32_to_cpu(sbp->s_c_interval); 744 sbi->s_watermark = le32_to_cpu(sbp->s_c_block_max); 745 746 return !parse_options(data, sb, 0) ? -EINVAL : 0 ; 747 } 748 749 int nilfs_check_feature_compatibility(struct super_block *sb, 750 struct nilfs_super_block *sbp) 751 { 752 __u64 features; 753 754 features = le64_to_cpu(sbp->s_feature_incompat) & 755 ~NILFS_FEATURE_INCOMPAT_SUPP; 756 if (features) { 757 printk(KERN_ERR "NILFS: couldn't mount because of unsupported " 758 "optional features (%llx)\n", 759 (unsigned long long)features); 760 return -EINVAL; 761 } 762 features = le64_to_cpu(sbp->s_feature_compat_ro) & 763 ~NILFS_FEATURE_COMPAT_RO_SUPP; 764 if (!(sb->s_flags & MS_RDONLY) && features) { 765 printk(KERN_ERR "NILFS: couldn't mount RDWR because of " 766 "unsupported optional features (%llx)\n", 767 (unsigned long long)features); 768 return -EINVAL; 769 } 770 return 0; 771 } 772 773 static int nilfs_get_root_dentry(struct super_block *sb, 774 struct nilfs_root *root, 775 struct dentry **root_dentry) 776 { 777 struct inode *inode; 778 struct dentry *dentry; 779 int ret = 0; 780 781 inode = nilfs_iget(sb, root, NILFS_ROOT_INO); 782 if (IS_ERR(inode)) { 783 printk(KERN_ERR "NILFS: get root inode failed\n"); 784 ret = PTR_ERR(inode); 785 goto out; 786 } 787 if (!S_ISDIR(inode->i_mode) || !inode->i_blocks || !inode->i_size) { 788 iput(inode); 789 printk(KERN_ERR "NILFS: corrupt root inode.\n"); 790 ret = -EINVAL; 791 goto out; 792 } 793 794 if (root->cno == NILFS_CPTREE_CURRENT_CNO) { 795 dentry = d_find_alias(inode); 796 if (!dentry) { 797 dentry = d_alloc_root(inode); 798 if (!dentry) { 799 iput(inode); 800 ret = -ENOMEM; 801 goto failed_dentry; 802 } 803 } else { 804 iput(inode); 805 } 806 } else { 807 dentry = d_obtain_alias(inode); 808 if (IS_ERR(dentry)) { 809 ret = PTR_ERR(dentry); 810 goto failed_dentry; 811 } 812 } 813 *root_dentry = dentry; 814 out: 815 return ret; 816 817 failed_dentry: 818 printk(KERN_ERR "NILFS: get root dentry failed\n"); 819 goto out; 820 } 821 822 static int nilfs_attach_snapshot(struct super_block *s, __u64 cno, 823 struct dentry **root_dentry) 824 { 825 struct the_nilfs *nilfs = NILFS_SB(s)->s_nilfs; 826 struct nilfs_root *root; 827 int ret; 828 829 down_read(&nilfs->ns_segctor_sem); 830 ret = nilfs_cpfile_is_snapshot(nilfs->ns_cpfile, cno); 831 up_read(&nilfs->ns_segctor_sem); 832 if (ret < 0) { 833 ret = (ret == -ENOENT) ? -EINVAL : ret; 834 goto out; 835 } else if (!ret) { 836 printk(KERN_ERR "NILFS: The specified checkpoint is " 837 "not a snapshot (checkpoint number=%llu).\n", 838 (unsigned long long)cno); 839 ret = -EINVAL; 840 goto out; 841 } 842 843 ret = nilfs_attach_checkpoint(NILFS_SB(s), cno, false, &root); 844 if (ret) { 845 printk(KERN_ERR "NILFS: error loading snapshot " 846 "(checkpoint number=%llu).\n", 847 (unsigned long long)cno); 848 goto out; 849 } 850 ret = nilfs_get_root_dentry(s, root, root_dentry); 851 nilfs_put_root(root); 852 out: 853 return ret; 854 } 855 856 static int nilfs_tree_was_touched(struct dentry *root_dentry) 857 { 858 return root_dentry->d_count > 1; 859 } 860 861 /** 862 * nilfs_try_to_shrink_tree() - try to shrink dentries of a checkpoint 863 * @root_dentry: root dentry of the tree to be shrunk 864 * 865 * This function returns true if the tree was in-use. 866 */ 867 static int nilfs_try_to_shrink_tree(struct dentry *root_dentry) 868 { 869 if (have_submounts(root_dentry)) 870 return true; 871 shrink_dcache_parent(root_dentry); 872 return nilfs_tree_was_touched(root_dentry); 873 } 874 875 int nilfs_checkpoint_is_mounted(struct super_block *sb, __u64 cno) 876 { 877 struct the_nilfs *nilfs = NILFS_SB(sb)->s_nilfs; 878 struct nilfs_root *root; 879 struct inode *inode; 880 struct dentry *dentry; 881 int ret; 882 883 if (cno < 0 || cno > nilfs->ns_cno) 884 return false; 885 886 if (cno >= nilfs_last_cno(nilfs)) 887 return true; /* protect recent checkpoints */ 888 889 ret = false; 890 root = nilfs_lookup_root(NILFS_SB(sb)->s_nilfs, cno); 891 if (root) { 892 inode = nilfs_ilookup(sb, root, NILFS_ROOT_INO); 893 if (inode) { 894 dentry = d_find_alias(inode); 895 if (dentry) { 896 if (nilfs_tree_was_touched(dentry)) 897 ret = nilfs_try_to_shrink_tree(dentry); 898 dput(dentry); 899 } 900 iput(inode); 901 } 902 nilfs_put_root(root); 903 } 904 return ret; 905 } 906 907 /** 908 * nilfs_fill_super() - initialize a super block instance 909 * @sb: super_block 910 * @data: mount options 911 * @silent: silent mode flag 912 * 913 * This function is called exclusively by nilfs->ns_mount_mutex. 914 * So, the recovery process is protected from other simultaneous mounts. 915 */ 916 static int 917 nilfs_fill_super(struct super_block *sb, void *data, int silent) 918 { 919 struct the_nilfs *nilfs; 920 struct nilfs_sb_info *sbi; 921 struct nilfs_root *fsroot; 922 struct backing_dev_info *bdi; 923 __u64 cno; 924 int err; 925 926 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL); 927 if (!sbi) 928 return -ENOMEM; 929 930 sb->s_fs_info = sbi; 931 sbi->s_super = sb; 932 933 nilfs = alloc_nilfs(sb->s_bdev); 934 if (!nilfs) { 935 err = -ENOMEM; 936 goto failed_sbi; 937 } 938 sbi->s_nilfs = nilfs; 939 940 err = init_nilfs(nilfs, sbi, (char *)data); 941 if (err) 942 goto failed_nilfs; 943 944 spin_lock_init(&sbi->s_inode_lock); 945 INIT_LIST_HEAD(&sbi->s_dirty_files); 946 947 /* 948 * Following initialization is overlapped because 949 * nilfs_sb_info structure has been cleared at the beginning. 950 * But we reserve them to keep our interest and make ready 951 * for the future change. 952 */ 953 get_random_bytes(&sbi->s_next_generation, 954 sizeof(sbi->s_next_generation)); 955 spin_lock_init(&sbi->s_next_gen_lock); 956 957 sb->s_op = &nilfs_sops; 958 sb->s_export_op = &nilfs_export_ops; 959 sb->s_root = NULL; 960 sb->s_time_gran = 1; 961 962 bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info; 963 sb->s_bdi = bdi ? : &default_backing_dev_info; 964 965 err = load_nilfs(nilfs, sbi); 966 if (err) 967 goto failed_nilfs; 968 969 cno = nilfs_last_cno(nilfs); 970 err = nilfs_attach_checkpoint(sbi, cno, true, &fsroot); 971 if (err) { 972 printk(KERN_ERR "NILFS: error loading last checkpoint " 973 "(checkpoint number=%llu).\n", (unsigned long long)cno); 974 goto failed_unload; 975 } 976 977 if (!(sb->s_flags & MS_RDONLY)) { 978 err = nilfs_attach_segment_constructor(sbi, fsroot); 979 if (err) 980 goto failed_checkpoint; 981 } 982 983 err = nilfs_get_root_dentry(sb, fsroot, &sb->s_root); 984 if (err) 985 goto failed_segctor; 986 987 nilfs_put_root(fsroot); 988 989 if (!(sb->s_flags & MS_RDONLY)) { 990 down_write(&nilfs->ns_sem); 991 nilfs_setup_super(sbi, true); 992 up_write(&nilfs->ns_sem); 993 } 994 995 return 0; 996 997 failed_segctor: 998 nilfs_detach_segment_constructor(sbi); 999 1000 failed_checkpoint: 1001 nilfs_put_root(fsroot); 1002 1003 failed_unload: 1004 iput(nilfs->ns_sufile); 1005 iput(nilfs->ns_cpfile); 1006 iput(nilfs->ns_dat); 1007 1008 failed_nilfs: 1009 destroy_nilfs(nilfs); 1010 1011 failed_sbi: 1012 sb->s_fs_info = NULL; 1013 kfree(sbi); 1014 return err; 1015 } 1016 1017 static int nilfs_remount(struct super_block *sb, int *flags, char *data) 1018 { 1019 struct nilfs_sb_info *sbi = NILFS_SB(sb); 1020 struct the_nilfs *nilfs = sbi->s_nilfs; 1021 unsigned long old_sb_flags; 1022 struct nilfs_mount_options old_opts; 1023 int err; 1024 1025 old_sb_flags = sb->s_flags; 1026 old_opts.mount_opt = sbi->s_mount_opt; 1027 1028 if (!parse_options(data, sb, 1)) { 1029 err = -EINVAL; 1030 goto restore_opts; 1031 } 1032 sb->s_flags = (sb->s_flags & ~MS_POSIXACL); 1033 1034 err = -EINVAL; 1035 1036 if (!nilfs_valid_fs(nilfs)) { 1037 printk(KERN_WARNING "NILFS (device %s): couldn't " 1038 "remount because the filesystem is in an " 1039 "incomplete recovery state.\n", sb->s_id); 1040 goto restore_opts; 1041 } 1042 1043 if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY)) 1044 goto out; 1045 if (*flags & MS_RDONLY) { 1046 /* Shutting down the segment constructor */ 1047 nilfs_detach_segment_constructor(sbi); 1048 sb->s_flags |= MS_RDONLY; 1049 1050 /* 1051 * Remounting a valid RW partition RDONLY, so set 1052 * the RDONLY flag and then mark the partition as valid again. 1053 */ 1054 down_write(&nilfs->ns_sem); 1055 nilfs_cleanup_super(sbi); 1056 up_write(&nilfs->ns_sem); 1057 } else { 1058 __u64 features; 1059 struct nilfs_root *root; 1060 1061 /* 1062 * Mounting a RDONLY partition read-write, so reread and 1063 * store the current valid flag. (It may have been changed 1064 * by fsck since we originally mounted the partition.) 1065 */ 1066 down_read(&nilfs->ns_sem); 1067 features = le64_to_cpu(nilfs->ns_sbp[0]->s_feature_compat_ro) & 1068 ~NILFS_FEATURE_COMPAT_RO_SUPP; 1069 up_read(&nilfs->ns_sem); 1070 if (features) { 1071 printk(KERN_WARNING "NILFS (device %s): couldn't " 1072 "remount RDWR because of unsupported optional " 1073 "features (%llx)\n", 1074 sb->s_id, (unsigned long long)features); 1075 err = -EROFS; 1076 goto restore_opts; 1077 } 1078 1079 sb->s_flags &= ~MS_RDONLY; 1080 1081 root = NILFS_I(sb->s_root->d_inode)->i_root; 1082 err = nilfs_attach_segment_constructor(sbi, root); 1083 if (err) 1084 goto restore_opts; 1085 1086 down_write(&nilfs->ns_sem); 1087 nilfs_setup_super(sbi, true); 1088 up_write(&nilfs->ns_sem); 1089 } 1090 out: 1091 return 0; 1092 1093 restore_opts: 1094 sb->s_flags = old_sb_flags; 1095 sbi->s_mount_opt = old_opts.mount_opt; 1096 return err; 1097 } 1098 1099 struct nilfs_super_data { 1100 struct block_device *bdev; 1101 struct nilfs_sb_info *sbi; 1102 __u64 cno; 1103 int flags; 1104 }; 1105 1106 /** 1107 * nilfs_identify - pre-read mount options needed to identify mount instance 1108 * @data: mount options 1109 * @sd: nilfs_super_data 1110 */ 1111 static int nilfs_identify(char *data, struct nilfs_super_data *sd) 1112 { 1113 char *p, *options = data; 1114 substring_t args[MAX_OPT_ARGS]; 1115 int token; 1116 int ret = 0; 1117 1118 do { 1119 p = strsep(&options, ","); 1120 if (p != NULL && *p) { 1121 token = match_token(p, tokens, args); 1122 if (token == Opt_snapshot) { 1123 if (!(sd->flags & MS_RDONLY)) { 1124 ret++; 1125 } else { 1126 sd->cno = simple_strtoull(args[0].from, 1127 NULL, 0); 1128 /* 1129 * No need to see the end pointer; 1130 * match_token() has done syntax 1131 * checking. 1132 */ 1133 if (sd->cno == 0) 1134 ret++; 1135 } 1136 } 1137 if (ret) 1138 printk(KERN_ERR 1139 "NILFS: invalid mount option: %s\n", p); 1140 } 1141 if (!options) 1142 break; 1143 BUG_ON(options == data); 1144 *(options - 1) = ','; 1145 } while (!ret); 1146 return ret; 1147 } 1148 1149 static int nilfs_set_bdev_super(struct super_block *s, void *data) 1150 { 1151 s->s_bdev = data; 1152 s->s_dev = s->s_bdev->bd_dev; 1153 return 0; 1154 } 1155 1156 static int nilfs_test_bdev_super(struct super_block *s, void *data) 1157 { 1158 return (void *)s->s_bdev == data; 1159 } 1160 1161 static struct dentry * 1162 nilfs_mount(struct file_system_type *fs_type, int flags, 1163 const char *dev_name, void *data) 1164 { 1165 struct nilfs_super_data sd; 1166 struct super_block *s; 1167 fmode_t mode = FMODE_READ; 1168 struct dentry *root_dentry; 1169 int err, s_new = false; 1170 1171 if (!(flags & MS_RDONLY)) 1172 mode |= FMODE_WRITE; 1173 1174 sd.bdev = open_bdev_exclusive(dev_name, mode, fs_type); 1175 if (IS_ERR(sd.bdev)) 1176 return ERR_CAST(sd.bdev); 1177 1178 sd.cno = 0; 1179 sd.flags = flags; 1180 if (nilfs_identify((char *)data, &sd)) { 1181 err = -EINVAL; 1182 goto failed; 1183 } 1184 1185 /* 1186 * once the super is inserted into the list by sget, s_umount 1187 * will protect the lockfs code from trying to start a snapshot 1188 * while we are mounting 1189 */ 1190 mutex_lock(&sd.bdev->bd_fsfreeze_mutex); 1191 if (sd.bdev->bd_fsfreeze_count > 0) { 1192 mutex_unlock(&sd.bdev->bd_fsfreeze_mutex); 1193 err = -EBUSY; 1194 goto failed; 1195 } 1196 s = sget(fs_type, nilfs_test_bdev_super, nilfs_set_bdev_super, sd.bdev); 1197 mutex_unlock(&sd.bdev->bd_fsfreeze_mutex); 1198 if (IS_ERR(s)) { 1199 err = PTR_ERR(s); 1200 goto failed; 1201 } 1202 1203 if (!s->s_root) { 1204 char b[BDEVNAME_SIZE]; 1205 1206 s_new = true; 1207 1208 /* New superblock instance created */ 1209 s->s_flags = flags; 1210 s->s_mode = mode; 1211 strlcpy(s->s_id, bdevname(sd.bdev, b), sizeof(s->s_id)); 1212 sb_set_blocksize(s, block_size(sd.bdev)); 1213 1214 err = nilfs_fill_super(s, data, flags & MS_SILENT ? 1 : 0); 1215 if (err) 1216 goto failed_super; 1217 1218 s->s_flags |= MS_ACTIVE; 1219 } else if (!sd.cno) { 1220 int busy = false; 1221 1222 if (nilfs_tree_was_touched(s->s_root)) { 1223 busy = nilfs_try_to_shrink_tree(s->s_root); 1224 if (busy && (flags ^ s->s_flags) & MS_RDONLY) { 1225 printk(KERN_ERR "NILFS: the device already " 1226 "has a %s mount.\n", 1227 (s->s_flags & MS_RDONLY) ? 1228 "read-only" : "read/write"); 1229 err = -EBUSY; 1230 goto failed_super; 1231 } 1232 } 1233 if (!busy) { 1234 /* 1235 * Try remount to setup mount states if the current 1236 * tree is not mounted and only snapshots use this sb. 1237 */ 1238 err = nilfs_remount(s, &flags, data); 1239 if (err) 1240 goto failed_super; 1241 } 1242 } 1243 1244 if (sd.cno) { 1245 err = nilfs_attach_snapshot(s, sd.cno, &root_dentry); 1246 if (err) 1247 goto failed_super; 1248 } else { 1249 root_dentry = dget(s->s_root); 1250 } 1251 1252 if (!s_new) 1253 close_bdev_exclusive(sd.bdev, mode); 1254 1255 return root_dentry; 1256 1257 failed_super: 1258 deactivate_locked_super(s); 1259 1260 failed: 1261 if (!s_new) 1262 close_bdev_exclusive(sd.bdev, mode); 1263 return ERR_PTR(err); 1264 } 1265 1266 struct file_system_type nilfs_fs_type = { 1267 .owner = THIS_MODULE, 1268 .name = "nilfs2", 1269 .mount = nilfs_mount, 1270 .kill_sb = kill_block_super, 1271 .fs_flags = FS_REQUIRES_DEV, 1272 }; 1273 1274 static void nilfs_inode_init_once(void *obj) 1275 { 1276 struct nilfs_inode_info *ii = obj; 1277 1278 INIT_LIST_HEAD(&ii->i_dirty); 1279 #ifdef CONFIG_NILFS_XATTR 1280 init_rwsem(&ii->xattr_sem); 1281 #endif 1282 nilfs_btnode_cache_init_once(&ii->i_btnode_cache); 1283 ii->i_bmap = &ii->i_bmap_data; 1284 inode_init_once(&ii->vfs_inode); 1285 } 1286 1287 static void nilfs_segbuf_init_once(void *obj) 1288 { 1289 memset(obj, 0, sizeof(struct nilfs_segment_buffer)); 1290 } 1291 1292 static void nilfs_destroy_cachep(void) 1293 { 1294 if (nilfs_inode_cachep) 1295 kmem_cache_destroy(nilfs_inode_cachep); 1296 if (nilfs_transaction_cachep) 1297 kmem_cache_destroy(nilfs_transaction_cachep); 1298 if (nilfs_segbuf_cachep) 1299 kmem_cache_destroy(nilfs_segbuf_cachep); 1300 if (nilfs_btree_path_cache) 1301 kmem_cache_destroy(nilfs_btree_path_cache); 1302 } 1303 1304 static int __init nilfs_init_cachep(void) 1305 { 1306 nilfs_inode_cachep = kmem_cache_create("nilfs2_inode_cache", 1307 sizeof(struct nilfs_inode_info), 0, 1308 SLAB_RECLAIM_ACCOUNT, nilfs_inode_init_once); 1309 if (!nilfs_inode_cachep) 1310 goto fail; 1311 1312 nilfs_transaction_cachep = kmem_cache_create("nilfs2_transaction_cache", 1313 sizeof(struct nilfs_transaction_info), 0, 1314 SLAB_RECLAIM_ACCOUNT, NULL); 1315 if (!nilfs_transaction_cachep) 1316 goto fail; 1317 1318 nilfs_segbuf_cachep = kmem_cache_create("nilfs2_segbuf_cache", 1319 sizeof(struct nilfs_segment_buffer), 0, 1320 SLAB_RECLAIM_ACCOUNT, nilfs_segbuf_init_once); 1321 if (!nilfs_segbuf_cachep) 1322 goto fail; 1323 1324 nilfs_btree_path_cache = kmem_cache_create("nilfs2_btree_path_cache", 1325 sizeof(struct nilfs_btree_path) * NILFS_BTREE_LEVEL_MAX, 1326 0, 0, NULL); 1327 if (!nilfs_btree_path_cache) 1328 goto fail; 1329 1330 return 0; 1331 1332 fail: 1333 nilfs_destroy_cachep(); 1334 return -ENOMEM; 1335 } 1336 1337 static int __init init_nilfs_fs(void) 1338 { 1339 int err; 1340 1341 err = nilfs_init_cachep(); 1342 if (err) 1343 goto fail; 1344 1345 err = register_filesystem(&nilfs_fs_type); 1346 if (err) 1347 goto free_cachep; 1348 1349 printk(KERN_INFO "NILFS version 2 loaded\n"); 1350 return 0; 1351 1352 free_cachep: 1353 nilfs_destroy_cachep(); 1354 fail: 1355 return err; 1356 } 1357 1358 static void __exit exit_nilfs_fs(void) 1359 { 1360 nilfs_destroy_cachep(); 1361 unregister_filesystem(&nilfs_fs_type); 1362 } 1363 1364 module_init(init_nilfs_fs) 1365 module_exit(exit_nilfs_fs) 1366