1 /* 2 * super.c - NILFS module and super block management. 3 * 4 * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation. 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, write to the Free Software 18 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 19 * 20 * Written by Ryusuke Konishi <ryusuke@osrg.net> 21 */ 22 /* 23 * linux/fs/ext2/super.c 24 * 25 * Copyright (C) 1992, 1993, 1994, 1995 26 * Remy Card (card@masi.ibp.fr) 27 * Laboratoire MASI - Institut Blaise Pascal 28 * Universite Pierre et Marie Curie (Paris VI) 29 * 30 * from 31 * 32 * linux/fs/minix/inode.c 33 * 34 * Copyright (C) 1991, 1992 Linus Torvalds 35 * 36 * Big-endian to little-endian byte-swapping/bitmaps by 37 * David S. Miller (davem@caip.rutgers.edu), 1995 38 */ 39 40 #include <linux/module.h> 41 #include <linux/string.h> 42 #include <linux/slab.h> 43 #include <linux/init.h> 44 #include <linux/blkdev.h> 45 #include <linux/parser.h> 46 #include <linux/random.h> 47 #include <linux/crc32.h> 48 #include <linux/smp_lock.h> 49 #include <linux/vfs.h> 50 #include <linux/writeback.h> 51 #include <linux/kobject.h> 52 #include <linux/exportfs.h> 53 #include <linux/seq_file.h> 54 #include <linux/mount.h> 55 #include "nilfs.h" 56 #include "mdt.h" 57 #include "alloc.h" 58 #include "page.h" 59 #include "cpfile.h" 60 #include "ifile.h" 61 #include "dat.h" 62 #include "segment.h" 63 #include "segbuf.h" 64 65 MODULE_AUTHOR("NTT Corp."); 66 MODULE_DESCRIPTION("A New Implementation of the Log-structured Filesystem " 67 "(NILFS)"); 68 MODULE_LICENSE("GPL"); 69 70 struct kmem_cache *nilfs_inode_cachep; 71 struct kmem_cache *nilfs_transaction_cachep; 72 struct kmem_cache *nilfs_segbuf_cachep; 73 struct kmem_cache *nilfs_btree_path_cache; 74 75 static int nilfs_remount(struct super_block *sb, int *flags, char *data); 76 77 static void nilfs_set_error(struct nilfs_sb_info *sbi) 78 { 79 struct the_nilfs *nilfs = sbi->s_nilfs; 80 struct nilfs_super_block **sbp; 81 82 down_write(&nilfs->ns_sem); 83 if (!(nilfs->ns_mount_state & NILFS_ERROR_FS)) { 84 nilfs->ns_mount_state |= NILFS_ERROR_FS; 85 sbp = nilfs_prepare_super(sbi, 0); 86 if (likely(sbp)) { 87 sbp[0]->s_state |= cpu_to_le16(NILFS_ERROR_FS); 88 if (sbp[1]) 89 sbp[1]->s_state |= cpu_to_le16(NILFS_ERROR_FS); 90 nilfs_commit_super(sbi, NILFS_SB_COMMIT_ALL); 91 } 92 } 93 up_write(&nilfs->ns_sem); 94 } 95 96 /** 97 * nilfs_error() - report failure condition on a filesystem 98 * 99 * nilfs_error() sets an ERROR_FS flag on the superblock as well as 100 * reporting an error message. It should be called when NILFS detects 101 * incoherences or defects of meta data on disk. As for sustainable 102 * errors such as a single-shot I/O error, nilfs_warning() or the printk() 103 * function should be used instead. 104 * 105 * The segment constructor must not call this function because it can 106 * kill itself. 107 */ 108 void nilfs_error(struct super_block *sb, const char *function, 109 const char *fmt, ...) 110 { 111 struct nilfs_sb_info *sbi = NILFS_SB(sb); 112 va_list args; 113 114 va_start(args, fmt); 115 printk(KERN_CRIT "NILFS error (device %s): %s: ", sb->s_id, function); 116 vprintk(fmt, args); 117 printk("\n"); 118 va_end(args); 119 120 if (!(sb->s_flags & MS_RDONLY)) { 121 nilfs_set_error(sbi); 122 123 if (nilfs_test_opt(sbi, ERRORS_RO)) { 124 printk(KERN_CRIT "Remounting filesystem read-only\n"); 125 sb->s_flags |= MS_RDONLY; 126 } 127 } 128 129 if (nilfs_test_opt(sbi, ERRORS_PANIC)) 130 panic("NILFS (device %s): panic forced after error\n", 131 sb->s_id); 132 } 133 134 void nilfs_warning(struct super_block *sb, const char *function, 135 const char *fmt, ...) 136 { 137 va_list args; 138 139 va_start(args, fmt); 140 printk(KERN_WARNING "NILFS warning (device %s): %s: ", 141 sb->s_id, function); 142 vprintk(fmt, args); 143 printk("\n"); 144 va_end(args); 145 } 146 147 148 struct inode *nilfs_alloc_inode_common(struct the_nilfs *nilfs) 149 { 150 struct nilfs_inode_info *ii; 151 152 ii = kmem_cache_alloc(nilfs_inode_cachep, GFP_NOFS); 153 if (!ii) 154 return NULL; 155 ii->i_bh = NULL; 156 ii->i_state = 0; 157 ii->vfs_inode.i_version = 1; 158 nilfs_btnode_cache_init(&ii->i_btnode_cache, nilfs->ns_bdi); 159 return &ii->vfs_inode; 160 } 161 162 struct inode *nilfs_alloc_inode(struct super_block *sb) 163 { 164 return nilfs_alloc_inode_common(NILFS_SB(sb)->s_nilfs); 165 } 166 167 void nilfs_destroy_inode(struct inode *inode) 168 { 169 kmem_cache_free(nilfs_inode_cachep, NILFS_I(inode)); 170 } 171 172 static void nilfs_clear_inode(struct inode *inode) 173 { 174 struct nilfs_inode_info *ii = NILFS_I(inode); 175 176 /* 177 * Free resources allocated in nilfs_read_inode(), here. 178 */ 179 BUG_ON(!list_empty(&ii->i_dirty)); 180 brelse(ii->i_bh); 181 ii->i_bh = NULL; 182 183 if (test_bit(NILFS_I_BMAP, &ii->i_state)) 184 nilfs_bmap_clear(ii->i_bmap); 185 186 nilfs_btnode_cache_clear(&ii->i_btnode_cache); 187 } 188 189 static int nilfs_sync_super(struct nilfs_sb_info *sbi, int flag) 190 { 191 struct the_nilfs *nilfs = sbi->s_nilfs; 192 int err; 193 int barrier_done = 0; 194 195 if (nilfs_test_opt(sbi, BARRIER)) { 196 set_buffer_ordered(nilfs->ns_sbh[0]); 197 barrier_done = 1; 198 } 199 retry: 200 set_buffer_dirty(nilfs->ns_sbh[0]); 201 err = sync_dirty_buffer(nilfs->ns_sbh[0]); 202 if (err == -EOPNOTSUPP && barrier_done) { 203 nilfs_warning(sbi->s_super, __func__, 204 "barrier-based sync failed. " 205 "disabling barriers\n"); 206 nilfs_clear_opt(sbi, BARRIER); 207 barrier_done = 0; 208 clear_buffer_ordered(nilfs->ns_sbh[0]); 209 goto retry; 210 } 211 if (unlikely(err)) { 212 printk(KERN_ERR 213 "NILFS: unable to write superblock (err=%d)\n", err); 214 if (err == -EIO && nilfs->ns_sbh[1]) { 215 /* 216 * sbp[0] points to newer log than sbp[1], 217 * so copy sbp[0] to sbp[1] to take over sbp[0]. 218 */ 219 memcpy(nilfs->ns_sbp[1], nilfs->ns_sbp[0], 220 nilfs->ns_sbsize); 221 nilfs_fall_back_super_block(nilfs); 222 goto retry; 223 } 224 } else { 225 struct nilfs_super_block *sbp = nilfs->ns_sbp[0]; 226 227 nilfs->ns_sbwcount++; 228 229 /* 230 * The latest segment becomes trailable from the position 231 * written in superblock. 232 */ 233 clear_nilfs_discontinued(nilfs); 234 235 /* update GC protection for recent segments */ 236 if (nilfs->ns_sbh[1]) { 237 if (flag == NILFS_SB_COMMIT_ALL) { 238 set_buffer_dirty(nilfs->ns_sbh[1]); 239 if (sync_dirty_buffer(nilfs->ns_sbh[1]) < 0) 240 goto out; 241 } 242 if (le64_to_cpu(nilfs->ns_sbp[1]->s_last_cno) < 243 le64_to_cpu(nilfs->ns_sbp[0]->s_last_cno)) 244 sbp = nilfs->ns_sbp[1]; 245 } 246 247 spin_lock(&nilfs->ns_last_segment_lock); 248 nilfs->ns_prot_seq = le64_to_cpu(sbp->s_last_seq); 249 spin_unlock(&nilfs->ns_last_segment_lock); 250 } 251 out: 252 return err; 253 } 254 255 void nilfs_set_log_cursor(struct nilfs_super_block *sbp, 256 struct the_nilfs *nilfs) 257 { 258 sector_t nfreeblocks; 259 260 /* nilfs->ns_sem must be locked by the caller. */ 261 nilfs_count_free_blocks(nilfs, &nfreeblocks); 262 sbp->s_free_blocks_count = cpu_to_le64(nfreeblocks); 263 264 spin_lock(&nilfs->ns_last_segment_lock); 265 sbp->s_last_seq = cpu_to_le64(nilfs->ns_last_seq); 266 sbp->s_last_pseg = cpu_to_le64(nilfs->ns_last_pseg); 267 sbp->s_last_cno = cpu_to_le64(nilfs->ns_last_cno); 268 spin_unlock(&nilfs->ns_last_segment_lock); 269 } 270 271 struct nilfs_super_block **nilfs_prepare_super(struct nilfs_sb_info *sbi, 272 int flip) 273 { 274 struct the_nilfs *nilfs = sbi->s_nilfs; 275 struct nilfs_super_block **sbp = nilfs->ns_sbp; 276 277 /* nilfs->ns_sem must be locked by the caller. */ 278 if (sbp[0]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) { 279 if (sbp[1] && 280 sbp[1]->s_magic == cpu_to_le16(NILFS_SUPER_MAGIC)) { 281 memcpy(sbp[0], sbp[1], nilfs->ns_sbsize); 282 } else { 283 printk(KERN_CRIT "NILFS: superblock broke on dev %s\n", 284 sbi->s_super->s_id); 285 return NULL; 286 } 287 } else if (sbp[1] && 288 sbp[1]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) { 289 memcpy(sbp[1], sbp[0], nilfs->ns_sbsize); 290 } 291 292 if (flip && sbp[1]) 293 nilfs_swap_super_block(nilfs); 294 295 return sbp; 296 } 297 298 int nilfs_commit_super(struct nilfs_sb_info *sbi, int flag) 299 { 300 struct the_nilfs *nilfs = sbi->s_nilfs; 301 struct nilfs_super_block **sbp = nilfs->ns_sbp; 302 time_t t; 303 304 /* nilfs->ns_sem must be locked by the caller. */ 305 t = get_seconds(); 306 nilfs->ns_sbwtime = t; 307 sbp[0]->s_wtime = cpu_to_le64(t); 308 sbp[0]->s_sum = 0; 309 sbp[0]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed, 310 (unsigned char *)sbp[0], 311 nilfs->ns_sbsize)); 312 if (flag == NILFS_SB_COMMIT_ALL && sbp[1]) { 313 sbp[1]->s_wtime = sbp[0]->s_wtime; 314 sbp[1]->s_sum = 0; 315 sbp[1]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed, 316 (unsigned char *)sbp[1], 317 nilfs->ns_sbsize)); 318 } 319 clear_nilfs_sb_dirty(nilfs); 320 return nilfs_sync_super(sbi, flag); 321 } 322 323 /** 324 * nilfs_cleanup_super() - write filesystem state for cleanup 325 * @sbi: nilfs_sb_info to be unmounted or degraded to read-only 326 * 327 * This function restores state flags in the on-disk super block. 328 * This will set "clean" flag (i.e. NILFS_VALID_FS) unless the 329 * filesystem was not clean previously. 330 */ 331 int nilfs_cleanup_super(struct nilfs_sb_info *sbi) 332 { 333 struct nilfs_super_block **sbp; 334 int flag = NILFS_SB_COMMIT; 335 int ret = -EIO; 336 337 sbp = nilfs_prepare_super(sbi, 0); 338 if (sbp) { 339 sbp[0]->s_state = cpu_to_le16(sbi->s_nilfs->ns_mount_state); 340 nilfs_set_log_cursor(sbp[0], sbi->s_nilfs); 341 if (sbp[1] && sbp[0]->s_last_cno == sbp[1]->s_last_cno) { 342 /* 343 * make the "clean" flag also to the opposite 344 * super block if both super blocks point to 345 * the same checkpoint. 346 */ 347 sbp[1]->s_state = sbp[0]->s_state; 348 flag = NILFS_SB_COMMIT_ALL; 349 } 350 ret = nilfs_commit_super(sbi, flag); 351 } 352 return ret; 353 } 354 355 static void nilfs_put_super(struct super_block *sb) 356 { 357 struct nilfs_sb_info *sbi = NILFS_SB(sb); 358 struct the_nilfs *nilfs = sbi->s_nilfs; 359 360 lock_kernel(); 361 362 nilfs_detach_segment_constructor(sbi); 363 364 if (!(sb->s_flags & MS_RDONLY)) { 365 down_write(&nilfs->ns_sem); 366 nilfs_cleanup_super(sbi); 367 up_write(&nilfs->ns_sem); 368 } 369 down_write(&nilfs->ns_super_sem); 370 if (nilfs->ns_current == sbi) 371 nilfs->ns_current = NULL; 372 up_write(&nilfs->ns_super_sem); 373 374 nilfs_detach_checkpoint(sbi); 375 put_nilfs(sbi->s_nilfs); 376 sbi->s_super = NULL; 377 sb->s_fs_info = NULL; 378 nilfs_put_sbinfo(sbi); 379 380 unlock_kernel(); 381 } 382 383 static int nilfs_sync_fs(struct super_block *sb, int wait) 384 { 385 struct nilfs_sb_info *sbi = NILFS_SB(sb); 386 struct the_nilfs *nilfs = sbi->s_nilfs; 387 struct nilfs_super_block **sbp; 388 int err = 0; 389 390 /* This function is called when super block should be written back */ 391 if (wait) 392 err = nilfs_construct_segment(sb); 393 394 down_write(&nilfs->ns_sem); 395 if (nilfs_sb_dirty(nilfs)) { 396 sbp = nilfs_prepare_super(sbi, nilfs_sb_will_flip(nilfs)); 397 if (likely(sbp)) { 398 nilfs_set_log_cursor(sbp[0], nilfs); 399 nilfs_commit_super(sbi, NILFS_SB_COMMIT); 400 } 401 } 402 up_write(&nilfs->ns_sem); 403 404 return err; 405 } 406 407 int nilfs_attach_checkpoint(struct nilfs_sb_info *sbi, __u64 cno) 408 { 409 struct the_nilfs *nilfs = sbi->s_nilfs; 410 struct nilfs_checkpoint *raw_cp; 411 struct buffer_head *bh_cp; 412 int err; 413 414 down_write(&nilfs->ns_super_sem); 415 list_add(&sbi->s_list, &nilfs->ns_supers); 416 up_write(&nilfs->ns_super_sem); 417 418 sbi->s_ifile = nilfs_ifile_new(sbi, nilfs->ns_inode_size); 419 if (!sbi->s_ifile) 420 return -ENOMEM; 421 422 down_read(&nilfs->ns_segctor_sem); 423 err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, cno, 0, &raw_cp, 424 &bh_cp); 425 up_read(&nilfs->ns_segctor_sem); 426 if (unlikely(err)) { 427 if (err == -ENOENT || err == -EINVAL) { 428 printk(KERN_ERR 429 "NILFS: Invalid checkpoint " 430 "(checkpoint number=%llu)\n", 431 (unsigned long long)cno); 432 err = -EINVAL; 433 } 434 goto failed; 435 } 436 err = nilfs_read_inode_common(sbi->s_ifile, &raw_cp->cp_ifile_inode); 437 if (unlikely(err)) 438 goto failed_bh; 439 atomic_set(&sbi->s_inodes_count, le64_to_cpu(raw_cp->cp_inodes_count)); 440 atomic_set(&sbi->s_blocks_count, le64_to_cpu(raw_cp->cp_blocks_count)); 441 442 nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp); 443 return 0; 444 445 failed_bh: 446 nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp); 447 failed: 448 nilfs_mdt_destroy(sbi->s_ifile); 449 sbi->s_ifile = NULL; 450 451 down_write(&nilfs->ns_super_sem); 452 list_del_init(&sbi->s_list); 453 up_write(&nilfs->ns_super_sem); 454 455 return err; 456 } 457 458 void nilfs_detach_checkpoint(struct nilfs_sb_info *sbi) 459 { 460 struct the_nilfs *nilfs = sbi->s_nilfs; 461 462 nilfs_mdt_destroy(sbi->s_ifile); 463 sbi->s_ifile = NULL; 464 down_write(&nilfs->ns_super_sem); 465 list_del_init(&sbi->s_list); 466 up_write(&nilfs->ns_super_sem); 467 } 468 469 static int nilfs_statfs(struct dentry *dentry, struct kstatfs *buf) 470 { 471 struct super_block *sb = dentry->d_sb; 472 struct nilfs_sb_info *sbi = NILFS_SB(sb); 473 struct the_nilfs *nilfs = sbi->s_nilfs; 474 u64 id = huge_encode_dev(sb->s_bdev->bd_dev); 475 unsigned long long blocks; 476 unsigned long overhead; 477 unsigned long nrsvblocks; 478 sector_t nfreeblocks; 479 int err; 480 481 /* 482 * Compute all of the segment blocks 483 * 484 * The blocks before first segment and after last segment 485 * are excluded. 486 */ 487 blocks = nilfs->ns_blocks_per_segment * nilfs->ns_nsegments 488 - nilfs->ns_first_data_block; 489 nrsvblocks = nilfs->ns_nrsvsegs * nilfs->ns_blocks_per_segment; 490 491 /* 492 * Compute the overhead 493 * 494 * When distributing meta data blocks outside segment structure, 495 * We must count them as the overhead. 496 */ 497 overhead = 0; 498 499 err = nilfs_count_free_blocks(nilfs, &nfreeblocks); 500 if (unlikely(err)) 501 return err; 502 503 buf->f_type = NILFS_SUPER_MAGIC; 504 buf->f_bsize = sb->s_blocksize; 505 buf->f_blocks = blocks - overhead; 506 buf->f_bfree = nfreeblocks; 507 buf->f_bavail = (buf->f_bfree >= nrsvblocks) ? 508 (buf->f_bfree - nrsvblocks) : 0; 509 buf->f_files = atomic_read(&sbi->s_inodes_count); 510 buf->f_ffree = 0; /* nilfs_count_free_inodes(sb); */ 511 buf->f_namelen = NILFS_NAME_LEN; 512 buf->f_fsid.val[0] = (u32)id; 513 buf->f_fsid.val[1] = (u32)(id >> 32); 514 515 return 0; 516 } 517 518 static int nilfs_show_options(struct seq_file *seq, struct vfsmount *vfs) 519 { 520 struct super_block *sb = vfs->mnt_sb; 521 struct nilfs_sb_info *sbi = NILFS_SB(sb); 522 523 if (!nilfs_test_opt(sbi, BARRIER)) 524 seq_printf(seq, ",nobarrier"); 525 if (nilfs_test_opt(sbi, SNAPSHOT)) 526 seq_printf(seq, ",cp=%llu", 527 (unsigned long long int)sbi->s_snapshot_cno); 528 if (nilfs_test_opt(sbi, ERRORS_PANIC)) 529 seq_printf(seq, ",errors=panic"); 530 if (nilfs_test_opt(sbi, ERRORS_CONT)) 531 seq_printf(seq, ",errors=continue"); 532 if (nilfs_test_opt(sbi, STRICT_ORDER)) 533 seq_printf(seq, ",order=strict"); 534 if (nilfs_test_opt(sbi, NORECOVERY)) 535 seq_printf(seq, ",norecovery"); 536 if (nilfs_test_opt(sbi, DISCARD)) 537 seq_printf(seq, ",discard"); 538 539 return 0; 540 } 541 542 static const struct super_operations nilfs_sops = { 543 .alloc_inode = nilfs_alloc_inode, 544 .destroy_inode = nilfs_destroy_inode, 545 .dirty_inode = nilfs_dirty_inode, 546 /* .write_inode = nilfs_write_inode, */ 547 /* .put_inode = nilfs_put_inode, */ 548 /* .drop_inode = nilfs_drop_inode, */ 549 .delete_inode = nilfs_delete_inode, 550 .put_super = nilfs_put_super, 551 /* .write_super = nilfs_write_super, */ 552 .sync_fs = nilfs_sync_fs, 553 /* .write_super_lockfs */ 554 /* .unlockfs */ 555 .statfs = nilfs_statfs, 556 .remount_fs = nilfs_remount, 557 .clear_inode = nilfs_clear_inode, 558 /* .umount_begin */ 559 .show_options = nilfs_show_options 560 }; 561 562 static struct inode * 563 nilfs_nfs_get_inode(struct super_block *sb, u64 ino, u32 generation) 564 { 565 struct inode *inode; 566 567 if (ino < NILFS_FIRST_INO(sb) && ino != NILFS_ROOT_INO && 568 ino != NILFS_SKETCH_INO) 569 return ERR_PTR(-ESTALE); 570 571 inode = nilfs_iget(sb, ino); 572 if (IS_ERR(inode)) 573 return ERR_CAST(inode); 574 if (generation && inode->i_generation != generation) { 575 iput(inode); 576 return ERR_PTR(-ESTALE); 577 } 578 579 return inode; 580 } 581 582 static struct dentry * 583 nilfs_fh_to_dentry(struct super_block *sb, struct fid *fid, int fh_len, 584 int fh_type) 585 { 586 return generic_fh_to_dentry(sb, fid, fh_len, fh_type, 587 nilfs_nfs_get_inode); 588 } 589 590 static struct dentry * 591 nilfs_fh_to_parent(struct super_block *sb, struct fid *fid, int fh_len, 592 int fh_type) 593 { 594 return generic_fh_to_parent(sb, fid, fh_len, fh_type, 595 nilfs_nfs_get_inode); 596 } 597 598 static const struct export_operations nilfs_export_ops = { 599 .fh_to_dentry = nilfs_fh_to_dentry, 600 .fh_to_parent = nilfs_fh_to_parent, 601 .get_parent = nilfs_get_parent, 602 }; 603 604 enum { 605 Opt_err_cont, Opt_err_panic, Opt_err_ro, 606 Opt_barrier, Opt_nobarrier, Opt_snapshot, Opt_order, Opt_norecovery, 607 Opt_discard, Opt_err, 608 }; 609 610 static match_table_t tokens = { 611 {Opt_err_cont, "errors=continue"}, 612 {Opt_err_panic, "errors=panic"}, 613 {Opt_err_ro, "errors=remount-ro"}, 614 {Opt_barrier, "barrier"}, 615 {Opt_nobarrier, "nobarrier"}, 616 {Opt_snapshot, "cp=%u"}, 617 {Opt_order, "order=%s"}, 618 {Opt_norecovery, "norecovery"}, 619 {Opt_discard, "discard"}, 620 {Opt_err, NULL} 621 }; 622 623 static int parse_options(char *options, struct super_block *sb) 624 { 625 struct nilfs_sb_info *sbi = NILFS_SB(sb); 626 char *p; 627 substring_t args[MAX_OPT_ARGS]; 628 int option; 629 630 if (!options) 631 return 1; 632 633 while ((p = strsep(&options, ",")) != NULL) { 634 int token; 635 if (!*p) 636 continue; 637 638 token = match_token(p, tokens, args); 639 switch (token) { 640 case Opt_barrier: 641 nilfs_set_opt(sbi, BARRIER); 642 break; 643 case Opt_nobarrier: 644 nilfs_clear_opt(sbi, BARRIER); 645 break; 646 case Opt_order: 647 if (strcmp(args[0].from, "relaxed") == 0) 648 /* Ordered data semantics */ 649 nilfs_clear_opt(sbi, STRICT_ORDER); 650 else if (strcmp(args[0].from, "strict") == 0) 651 /* Strict in-order semantics */ 652 nilfs_set_opt(sbi, STRICT_ORDER); 653 else 654 return 0; 655 break; 656 case Opt_err_panic: 657 nilfs_write_opt(sbi, ERROR_MODE, ERRORS_PANIC); 658 break; 659 case Opt_err_ro: 660 nilfs_write_opt(sbi, ERROR_MODE, ERRORS_RO); 661 break; 662 case Opt_err_cont: 663 nilfs_write_opt(sbi, ERROR_MODE, ERRORS_CONT); 664 break; 665 case Opt_snapshot: 666 if (match_int(&args[0], &option) || option <= 0) 667 return 0; 668 if (!(sb->s_flags & MS_RDONLY)) 669 return 0; 670 sbi->s_snapshot_cno = option; 671 nilfs_set_opt(sbi, SNAPSHOT); 672 break; 673 case Opt_norecovery: 674 nilfs_set_opt(sbi, NORECOVERY); 675 break; 676 case Opt_discard: 677 nilfs_set_opt(sbi, DISCARD); 678 break; 679 default: 680 printk(KERN_ERR 681 "NILFS: Unrecognized mount option \"%s\"\n", p); 682 return 0; 683 } 684 } 685 return 1; 686 } 687 688 static inline void 689 nilfs_set_default_options(struct nilfs_sb_info *sbi, 690 struct nilfs_super_block *sbp) 691 { 692 sbi->s_mount_opt = 693 NILFS_MOUNT_ERRORS_RO | NILFS_MOUNT_BARRIER; 694 } 695 696 static int nilfs_setup_super(struct nilfs_sb_info *sbi) 697 { 698 struct the_nilfs *nilfs = sbi->s_nilfs; 699 struct nilfs_super_block **sbp; 700 int max_mnt_count; 701 int mnt_count; 702 703 /* nilfs->ns_sem must be locked by the caller. */ 704 sbp = nilfs_prepare_super(sbi, 0); 705 if (!sbp) 706 return -EIO; 707 708 max_mnt_count = le16_to_cpu(sbp[0]->s_max_mnt_count); 709 mnt_count = le16_to_cpu(sbp[0]->s_mnt_count); 710 711 if (nilfs->ns_mount_state & NILFS_ERROR_FS) { 712 printk(KERN_WARNING 713 "NILFS warning: mounting fs with errors\n"); 714 #if 0 715 } else if (max_mnt_count >= 0 && mnt_count >= max_mnt_count) { 716 printk(KERN_WARNING 717 "NILFS warning: maximal mount count reached\n"); 718 #endif 719 } 720 if (!max_mnt_count) 721 sbp[0]->s_max_mnt_count = cpu_to_le16(NILFS_DFL_MAX_MNT_COUNT); 722 723 sbp[0]->s_mnt_count = cpu_to_le16(mnt_count + 1); 724 sbp[0]->s_state = 725 cpu_to_le16(le16_to_cpu(sbp[0]->s_state) & ~NILFS_VALID_FS); 726 sbp[0]->s_mtime = cpu_to_le64(get_seconds()); 727 /* synchronize sbp[1] with sbp[0] */ 728 memcpy(sbp[1], sbp[0], nilfs->ns_sbsize); 729 return nilfs_commit_super(sbi, NILFS_SB_COMMIT_ALL); 730 } 731 732 struct nilfs_super_block *nilfs_read_super_block(struct super_block *sb, 733 u64 pos, int blocksize, 734 struct buffer_head **pbh) 735 { 736 unsigned long long sb_index = pos; 737 unsigned long offset; 738 739 offset = do_div(sb_index, blocksize); 740 *pbh = sb_bread(sb, sb_index); 741 if (!*pbh) 742 return NULL; 743 return (struct nilfs_super_block *)((char *)(*pbh)->b_data + offset); 744 } 745 746 int nilfs_store_magic_and_option(struct super_block *sb, 747 struct nilfs_super_block *sbp, 748 char *data) 749 { 750 struct nilfs_sb_info *sbi = NILFS_SB(sb); 751 752 sb->s_magic = le16_to_cpu(sbp->s_magic); 753 754 /* FS independent flags */ 755 #ifdef NILFS_ATIME_DISABLE 756 sb->s_flags |= MS_NOATIME; 757 #endif 758 759 nilfs_set_default_options(sbi, sbp); 760 761 sbi->s_resuid = le16_to_cpu(sbp->s_def_resuid); 762 sbi->s_resgid = le16_to_cpu(sbp->s_def_resgid); 763 sbi->s_interval = le32_to_cpu(sbp->s_c_interval); 764 sbi->s_watermark = le32_to_cpu(sbp->s_c_block_max); 765 766 return !parse_options(data, sb) ? -EINVAL : 0 ; 767 } 768 769 /** 770 * nilfs_fill_super() - initialize a super block instance 771 * @sb: super_block 772 * @data: mount options 773 * @silent: silent mode flag 774 * @nilfs: the_nilfs struct 775 * 776 * This function is called exclusively by nilfs->ns_mount_mutex. 777 * So, the recovery process is protected from other simultaneous mounts. 778 */ 779 static int 780 nilfs_fill_super(struct super_block *sb, void *data, int silent, 781 struct the_nilfs *nilfs) 782 { 783 struct nilfs_sb_info *sbi; 784 struct inode *root; 785 __u64 cno; 786 int err; 787 788 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL); 789 if (!sbi) 790 return -ENOMEM; 791 792 sb->s_fs_info = sbi; 793 794 get_nilfs(nilfs); 795 sbi->s_nilfs = nilfs; 796 sbi->s_super = sb; 797 atomic_set(&sbi->s_count, 1); 798 799 err = init_nilfs(nilfs, sbi, (char *)data); 800 if (err) 801 goto failed_sbi; 802 803 spin_lock_init(&sbi->s_inode_lock); 804 INIT_LIST_HEAD(&sbi->s_dirty_files); 805 INIT_LIST_HEAD(&sbi->s_list); 806 807 /* 808 * Following initialization is overlapped because 809 * nilfs_sb_info structure has been cleared at the beginning. 810 * But we reserve them to keep our interest and make ready 811 * for the future change. 812 */ 813 get_random_bytes(&sbi->s_next_generation, 814 sizeof(sbi->s_next_generation)); 815 spin_lock_init(&sbi->s_next_gen_lock); 816 817 sb->s_op = &nilfs_sops; 818 sb->s_export_op = &nilfs_export_ops; 819 sb->s_root = NULL; 820 sb->s_time_gran = 1; 821 sb->s_bdi = nilfs->ns_bdi; 822 823 err = load_nilfs(nilfs, sbi); 824 if (err) 825 goto failed_sbi; 826 827 cno = nilfs_last_cno(nilfs); 828 829 if (sb->s_flags & MS_RDONLY) { 830 if (nilfs_test_opt(sbi, SNAPSHOT)) { 831 down_read(&nilfs->ns_segctor_sem); 832 err = nilfs_cpfile_is_snapshot(nilfs->ns_cpfile, 833 sbi->s_snapshot_cno); 834 up_read(&nilfs->ns_segctor_sem); 835 if (err < 0) { 836 if (err == -ENOENT) 837 err = -EINVAL; 838 goto failed_sbi; 839 } 840 if (!err) { 841 printk(KERN_ERR 842 "NILFS: The specified checkpoint is " 843 "not a snapshot " 844 "(checkpoint number=%llu).\n", 845 (unsigned long long)sbi->s_snapshot_cno); 846 err = -EINVAL; 847 goto failed_sbi; 848 } 849 cno = sbi->s_snapshot_cno; 850 } 851 } 852 853 err = nilfs_attach_checkpoint(sbi, cno); 854 if (err) { 855 printk(KERN_ERR "NILFS: error loading a checkpoint" 856 " (checkpoint number=%llu).\n", (unsigned long long)cno); 857 goto failed_sbi; 858 } 859 860 if (!(sb->s_flags & MS_RDONLY)) { 861 err = nilfs_attach_segment_constructor(sbi); 862 if (err) 863 goto failed_checkpoint; 864 } 865 866 root = nilfs_iget(sb, NILFS_ROOT_INO); 867 if (IS_ERR(root)) { 868 printk(KERN_ERR "NILFS: get root inode failed\n"); 869 err = PTR_ERR(root); 870 goto failed_segctor; 871 } 872 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) { 873 iput(root); 874 printk(KERN_ERR "NILFS: corrupt root inode.\n"); 875 err = -EINVAL; 876 goto failed_segctor; 877 } 878 sb->s_root = d_alloc_root(root); 879 if (!sb->s_root) { 880 iput(root); 881 printk(KERN_ERR "NILFS: get root dentry failed\n"); 882 err = -ENOMEM; 883 goto failed_segctor; 884 } 885 886 if (!(sb->s_flags & MS_RDONLY)) { 887 down_write(&nilfs->ns_sem); 888 nilfs_setup_super(sbi); 889 up_write(&nilfs->ns_sem); 890 } 891 892 down_write(&nilfs->ns_super_sem); 893 if (!nilfs_test_opt(sbi, SNAPSHOT)) 894 nilfs->ns_current = sbi; 895 up_write(&nilfs->ns_super_sem); 896 897 return 0; 898 899 failed_segctor: 900 nilfs_detach_segment_constructor(sbi); 901 902 failed_checkpoint: 903 nilfs_detach_checkpoint(sbi); 904 905 failed_sbi: 906 put_nilfs(nilfs); 907 sb->s_fs_info = NULL; 908 nilfs_put_sbinfo(sbi); 909 return err; 910 } 911 912 static int nilfs_remount(struct super_block *sb, int *flags, char *data) 913 { 914 struct nilfs_sb_info *sbi = NILFS_SB(sb); 915 struct the_nilfs *nilfs = sbi->s_nilfs; 916 unsigned long old_sb_flags; 917 struct nilfs_mount_options old_opts; 918 int was_snapshot, err; 919 920 lock_kernel(); 921 922 down_write(&nilfs->ns_super_sem); 923 old_sb_flags = sb->s_flags; 924 old_opts.mount_opt = sbi->s_mount_opt; 925 old_opts.snapshot_cno = sbi->s_snapshot_cno; 926 was_snapshot = nilfs_test_opt(sbi, SNAPSHOT); 927 928 if (!parse_options(data, sb)) { 929 err = -EINVAL; 930 goto restore_opts; 931 } 932 sb->s_flags = (sb->s_flags & ~MS_POSIXACL); 933 934 err = -EINVAL; 935 if (was_snapshot) { 936 if (!(*flags & MS_RDONLY)) { 937 printk(KERN_ERR "NILFS (device %s): cannot remount " 938 "snapshot read/write.\n", 939 sb->s_id); 940 goto restore_opts; 941 } else if (sbi->s_snapshot_cno != old_opts.snapshot_cno) { 942 printk(KERN_ERR "NILFS (device %s): cannot " 943 "remount to a different snapshot.\n", 944 sb->s_id); 945 goto restore_opts; 946 } 947 } else { 948 if (nilfs_test_opt(sbi, SNAPSHOT)) { 949 printk(KERN_ERR "NILFS (device %s): cannot change " 950 "a regular mount to a snapshot.\n", 951 sb->s_id); 952 goto restore_opts; 953 } 954 } 955 956 if (!nilfs_valid_fs(nilfs)) { 957 printk(KERN_WARNING "NILFS (device %s): couldn't " 958 "remount because the filesystem is in an " 959 "incomplete recovery state.\n", sb->s_id); 960 goto restore_opts; 961 } 962 963 if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY)) 964 goto out; 965 if (*flags & MS_RDONLY) { 966 /* Shutting down the segment constructor */ 967 nilfs_detach_segment_constructor(sbi); 968 sb->s_flags |= MS_RDONLY; 969 970 /* 971 * Remounting a valid RW partition RDONLY, so set 972 * the RDONLY flag and then mark the partition as valid again. 973 */ 974 down_write(&nilfs->ns_sem); 975 nilfs_cleanup_super(sbi); 976 up_write(&nilfs->ns_sem); 977 } else { 978 /* 979 * Mounting a RDONLY partition read-write, so reread and 980 * store the current valid flag. (It may have been changed 981 * by fsck since we originally mounted the partition.) 982 */ 983 sb->s_flags &= ~MS_RDONLY; 984 985 err = nilfs_attach_segment_constructor(sbi); 986 if (err) 987 goto restore_opts; 988 989 down_write(&nilfs->ns_sem); 990 nilfs_setup_super(sbi); 991 up_write(&nilfs->ns_sem); 992 } 993 out: 994 up_write(&nilfs->ns_super_sem); 995 unlock_kernel(); 996 return 0; 997 998 restore_opts: 999 sb->s_flags = old_sb_flags; 1000 sbi->s_mount_opt = old_opts.mount_opt; 1001 sbi->s_snapshot_cno = old_opts.snapshot_cno; 1002 up_write(&nilfs->ns_super_sem); 1003 unlock_kernel(); 1004 return err; 1005 } 1006 1007 struct nilfs_super_data { 1008 struct block_device *bdev; 1009 struct nilfs_sb_info *sbi; 1010 __u64 cno; 1011 int flags; 1012 }; 1013 1014 /** 1015 * nilfs_identify - pre-read mount options needed to identify mount instance 1016 * @data: mount options 1017 * @sd: nilfs_super_data 1018 */ 1019 static int nilfs_identify(char *data, struct nilfs_super_data *sd) 1020 { 1021 char *p, *options = data; 1022 substring_t args[MAX_OPT_ARGS]; 1023 int option, token; 1024 int ret = 0; 1025 1026 do { 1027 p = strsep(&options, ","); 1028 if (p != NULL && *p) { 1029 token = match_token(p, tokens, args); 1030 if (token == Opt_snapshot) { 1031 if (!(sd->flags & MS_RDONLY)) 1032 ret++; 1033 else { 1034 ret = match_int(&args[0], &option); 1035 if (!ret) { 1036 if (option > 0) 1037 sd->cno = option; 1038 else 1039 ret++; 1040 } 1041 } 1042 } 1043 if (ret) 1044 printk(KERN_ERR 1045 "NILFS: invalid mount option: %s\n", p); 1046 } 1047 if (!options) 1048 break; 1049 BUG_ON(options == data); 1050 *(options - 1) = ','; 1051 } while (!ret); 1052 return ret; 1053 } 1054 1055 static int nilfs_set_bdev_super(struct super_block *s, void *data) 1056 { 1057 struct nilfs_super_data *sd = data; 1058 1059 s->s_bdev = sd->bdev; 1060 s->s_dev = s->s_bdev->bd_dev; 1061 return 0; 1062 } 1063 1064 static int nilfs_test_bdev_super(struct super_block *s, void *data) 1065 { 1066 struct nilfs_super_data *sd = data; 1067 1068 return sd->sbi && s->s_fs_info == (void *)sd->sbi; 1069 } 1070 1071 static int 1072 nilfs_get_sb(struct file_system_type *fs_type, int flags, 1073 const char *dev_name, void *data, struct vfsmount *mnt) 1074 { 1075 struct nilfs_super_data sd; 1076 struct super_block *s; 1077 fmode_t mode = FMODE_READ; 1078 struct the_nilfs *nilfs; 1079 int err, need_to_close = 1; 1080 1081 if (!(flags & MS_RDONLY)) 1082 mode |= FMODE_WRITE; 1083 1084 sd.bdev = open_bdev_exclusive(dev_name, mode, fs_type); 1085 if (IS_ERR(sd.bdev)) 1086 return PTR_ERR(sd.bdev); 1087 1088 /* 1089 * To get mount instance using sget() vfs-routine, NILFS needs 1090 * much more information than normal filesystems to identify mount 1091 * instance. For snapshot mounts, not only a mount type (ro-mount 1092 * or rw-mount) but also a checkpoint number is required. 1093 */ 1094 sd.cno = 0; 1095 sd.flags = flags; 1096 if (nilfs_identify((char *)data, &sd)) { 1097 err = -EINVAL; 1098 goto failed; 1099 } 1100 1101 nilfs = find_or_create_nilfs(sd.bdev); 1102 if (!nilfs) { 1103 err = -ENOMEM; 1104 goto failed; 1105 } 1106 1107 mutex_lock(&nilfs->ns_mount_mutex); 1108 1109 if (!sd.cno) { 1110 /* 1111 * Check if an exclusive mount exists or not. 1112 * Snapshot mounts coexist with a current mount 1113 * (i.e. rw-mount or ro-mount), whereas rw-mount and 1114 * ro-mount are mutually exclusive. 1115 */ 1116 down_read(&nilfs->ns_super_sem); 1117 if (nilfs->ns_current && 1118 ((nilfs->ns_current->s_super->s_flags ^ flags) 1119 & MS_RDONLY)) { 1120 up_read(&nilfs->ns_super_sem); 1121 err = -EBUSY; 1122 goto failed_unlock; 1123 } 1124 up_read(&nilfs->ns_super_sem); 1125 } 1126 1127 /* 1128 * Find existing nilfs_sb_info struct 1129 */ 1130 sd.sbi = nilfs_find_sbinfo(nilfs, !(flags & MS_RDONLY), sd.cno); 1131 1132 /* 1133 * Get super block instance holding the nilfs_sb_info struct. 1134 * A new instance is allocated if no existing mount is present or 1135 * existing instance has been unmounted. 1136 */ 1137 s = sget(fs_type, nilfs_test_bdev_super, nilfs_set_bdev_super, &sd); 1138 if (sd.sbi) 1139 nilfs_put_sbinfo(sd.sbi); 1140 1141 if (IS_ERR(s)) { 1142 err = PTR_ERR(s); 1143 goto failed_unlock; 1144 } 1145 1146 if (!s->s_root) { 1147 char b[BDEVNAME_SIZE]; 1148 1149 /* New superblock instance created */ 1150 s->s_flags = flags; 1151 s->s_mode = mode; 1152 strlcpy(s->s_id, bdevname(sd.bdev, b), sizeof(s->s_id)); 1153 sb_set_blocksize(s, block_size(sd.bdev)); 1154 1155 err = nilfs_fill_super(s, data, flags & MS_SILENT ? 1 : 0, 1156 nilfs); 1157 if (err) 1158 goto cancel_new; 1159 1160 s->s_flags |= MS_ACTIVE; 1161 need_to_close = 0; 1162 } 1163 1164 mutex_unlock(&nilfs->ns_mount_mutex); 1165 put_nilfs(nilfs); 1166 if (need_to_close) 1167 close_bdev_exclusive(sd.bdev, mode); 1168 simple_set_mnt(mnt, s); 1169 return 0; 1170 1171 failed_unlock: 1172 mutex_unlock(&nilfs->ns_mount_mutex); 1173 put_nilfs(nilfs); 1174 failed: 1175 close_bdev_exclusive(sd.bdev, mode); 1176 1177 return err; 1178 1179 cancel_new: 1180 /* Abandoning the newly allocated superblock */ 1181 mutex_unlock(&nilfs->ns_mount_mutex); 1182 put_nilfs(nilfs); 1183 deactivate_locked_super(s); 1184 /* 1185 * deactivate_locked_super() invokes close_bdev_exclusive(). 1186 * We must finish all post-cleaning before this call; 1187 * put_nilfs() needs the block device. 1188 */ 1189 return err; 1190 } 1191 1192 struct file_system_type nilfs_fs_type = { 1193 .owner = THIS_MODULE, 1194 .name = "nilfs2", 1195 .get_sb = nilfs_get_sb, 1196 .kill_sb = kill_block_super, 1197 .fs_flags = FS_REQUIRES_DEV, 1198 }; 1199 1200 static void nilfs_inode_init_once(void *obj) 1201 { 1202 struct nilfs_inode_info *ii = obj; 1203 1204 INIT_LIST_HEAD(&ii->i_dirty); 1205 #ifdef CONFIG_NILFS_XATTR 1206 init_rwsem(&ii->xattr_sem); 1207 #endif 1208 nilfs_btnode_cache_init_once(&ii->i_btnode_cache); 1209 ii->i_bmap = (struct nilfs_bmap *)&ii->i_bmap_union; 1210 inode_init_once(&ii->vfs_inode); 1211 } 1212 1213 static void nilfs_segbuf_init_once(void *obj) 1214 { 1215 memset(obj, 0, sizeof(struct nilfs_segment_buffer)); 1216 } 1217 1218 static void nilfs_destroy_cachep(void) 1219 { 1220 if (nilfs_inode_cachep) 1221 kmem_cache_destroy(nilfs_inode_cachep); 1222 if (nilfs_transaction_cachep) 1223 kmem_cache_destroy(nilfs_transaction_cachep); 1224 if (nilfs_segbuf_cachep) 1225 kmem_cache_destroy(nilfs_segbuf_cachep); 1226 if (nilfs_btree_path_cache) 1227 kmem_cache_destroy(nilfs_btree_path_cache); 1228 } 1229 1230 static int __init nilfs_init_cachep(void) 1231 { 1232 nilfs_inode_cachep = kmem_cache_create("nilfs2_inode_cache", 1233 sizeof(struct nilfs_inode_info), 0, 1234 SLAB_RECLAIM_ACCOUNT, nilfs_inode_init_once); 1235 if (!nilfs_inode_cachep) 1236 goto fail; 1237 1238 nilfs_transaction_cachep = kmem_cache_create("nilfs2_transaction_cache", 1239 sizeof(struct nilfs_transaction_info), 0, 1240 SLAB_RECLAIM_ACCOUNT, NULL); 1241 if (!nilfs_transaction_cachep) 1242 goto fail; 1243 1244 nilfs_segbuf_cachep = kmem_cache_create("nilfs2_segbuf_cache", 1245 sizeof(struct nilfs_segment_buffer), 0, 1246 SLAB_RECLAIM_ACCOUNT, nilfs_segbuf_init_once); 1247 if (!nilfs_segbuf_cachep) 1248 goto fail; 1249 1250 nilfs_btree_path_cache = kmem_cache_create("nilfs2_btree_path_cache", 1251 sizeof(struct nilfs_btree_path) * NILFS_BTREE_LEVEL_MAX, 1252 0, 0, NULL); 1253 if (!nilfs_btree_path_cache) 1254 goto fail; 1255 1256 return 0; 1257 1258 fail: 1259 nilfs_destroy_cachep(); 1260 return -ENOMEM; 1261 } 1262 1263 static int __init init_nilfs_fs(void) 1264 { 1265 int err; 1266 1267 err = nilfs_init_cachep(); 1268 if (err) 1269 goto fail; 1270 1271 err = register_filesystem(&nilfs_fs_type); 1272 if (err) 1273 goto free_cachep; 1274 1275 printk(KERN_INFO "NILFS version 2 loaded\n"); 1276 return 0; 1277 1278 free_cachep: 1279 nilfs_destroy_cachep(); 1280 fail: 1281 return err; 1282 } 1283 1284 static void __exit exit_nilfs_fs(void) 1285 { 1286 nilfs_destroy_cachep(); 1287 unregister_filesystem(&nilfs_fs_type); 1288 } 1289 1290 module_init(init_nilfs_fs) 1291 module_exit(exit_nilfs_fs) 1292