1 /* 2 * linux/fs/nfs/write.c 3 * 4 * Write file data over NFS. 5 * 6 * Copyright (C) 1996, 1997, Olaf Kirch <okir@monad.swb.de> 7 */ 8 9 #include <linux/types.h> 10 #include <linux/slab.h> 11 #include <linux/mm.h> 12 #include <linux/pagemap.h> 13 #include <linux/file.h> 14 #include <linux/writeback.h> 15 #include <linux/swap.h> 16 17 #include <linux/sunrpc/clnt.h> 18 #include <linux/nfs_fs.h> 19 #include <linux/nfs_mount.h> 20 #include <linux/nfs_page.h> 21 #include <linux/backing-dev.h> 22 23 #include <asm/uaccess.h> 24 25 #include "delegation.h" 26 #include "internal.h" 27 #include "iostat.h" 28 29 #define NFSDBG_FACILITY NFSDBG_PAGECACHE 30 31 #define MIN_POOL_WRITE (32) 32 #define MIN_POOL_COMMIT (4) 33 34 /* 35 * Local function declarations 36 */ 37 static struct nfs_page * nfs_update_request(struct nfs_open_context*, 38 struct page *, 39 unsigned int, unsigned int); 40 static void nfs_pageio_init_write(struct nfs_pageio_descriptor *desc, 41 struct inode *inode, int ioflags); 42 static void nfs_redirty_request(struct nfs_page *req); 43 static const struct rpc_call_ops nfs_write_partial_ops; 44 static const struct rpc_call_ops nfs_write_full_ops; 45 static const struct rpc_call_ops nfs_commit_ops; 46 47 static struct kmem_cache *nfs_wdata_cachep; 48 static mempool_t *nfs_wdata_mempool; 49 static mempool_t *nfs_commit_mempool; 50 51 struct nfs_write_data *nfs_commitdata_alloc(void) 52 { 53 struct nfs_write_data *p = mempool_alloc(nfs_commit_mempool, GFP_NOFS); 54 55 if (p) { 56 memset(p, 0, sizeof(*p)); 57 INIT_LIST_HEAD(&p->pages); 58 } 59 return p; 60 } 61 62 void nfs_commit_free(struct nfs_write_data *p) 63 { 64 if (p && (p->pagevec != &p->page_array[0])) 65 kfree(p->pagevec); 66 mempool_free(p, nfs_commit_mempool); 67 } 68 69 struct nfs_write_data *nfs_writedata_alloc(unsigned int pagecount) 70 { 71 struct nfs_write_data *p = mempool_alloc(nfs_wdata_mempool, GFP_NOFS); 72 73 if (p) { 74 memset(p, 0, sizeof(*p)); 75 INIT_LIST_HEAD(&p->pages); 76 p->npages = pagecount; 77 if (pagecount <= ARRAY_SIZE(p->page_array)) 78 p->pagevec = p->page_array; 79 else { 80 p->pagevec = kcalloc(pagecount, sizeof(struct page *), GFP_NOFS); 81 if (!p->pagevec) { 82 mempool_free(p, nfs_wdata_mempool); 83 p = NULL; 84 } 85 } 86 } 87 return p; 88 } 89 90 static void nfs_writedata_free(struct nfs_write_data *p) 91 { 92 if (p && (p->pagevec != &p->page_array[0])) 93 kfree(p->pagevec); 94 mempool_free(p, nfs_wdata_mempool); 95 } 96 97 void nfs_writedata_release(void *data) 98 { 99 struct nfs_write_data *wdata = data; 100 101 put_nfs_open_context(wdata->args.context); 102 nfs_writedata_free(wdata); 103 } 104 105 static void nfs_context_set_write_error(struct nfs_open_context *ctx, int error) 106 { 107 ctx->error = error; 108 smp_wmb(); 109 set_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags); 110 } 111 112 static struct nfs_page *nfs_page_find_request_locked(struct page *page) 113 { 114 struct nfs_page *req = NULL; 115 116 if (PagePrivate(page)) { 117 req = (struct nfs_page *)page_private(page); 118 if (req != NULL) 119 kref_get(&req->wb_kref); 120 } 121 return req; 122 } 123 124 static struct nfs_page *nfs_page_find_request(struct page *page) 125 { 126 struct inode *inode = page->mapping->host; 127 struct nfs_page *req = NULL; 128 129 spin_lock(&inode->i_lock); 130 req = nfs_page_find_request_locked(page); 131 spin_unlock(&inode->i_lock); 132 return req; 133 } 134 135 /* Adjust the file length if we're writing beyond the end */ 136 static void nfs_grow_file(struct page *page, unsigned int offset, unsigned int count) 137 { 138 struct inode *inode = page->mapping->host; 139 loff_t end, i_size = i_size_read(inode); 140 pgoff_t end_index = (i_size - 1) >> PAGE_CACHE_SHIFT; 141 142 if (i_size > 0 && page->index < end_index) 143 return; 144 end = ((loff_t)page->index << PAGE_CACHE_SHIFT) + ((loff_t)offset+count); 145 if (i_size >= end) 146 return; 147 nfs_inc_stats(inode, NFSIOS_EXTENDWRITE); 148 i_size_write(inode, end); 149 } 150 151 /* A writeback failed: mark the page as bad, and invalidate the page cache */ 152 static void nfs_set_pageerror(struct page *page) 153 { 154 SetPageError(page); 155 nfs_zap_mapping(page->mapping->host, page->mapping); 156 } 157 158 /* We can set the PG_uptodate flag if we see that a write request 159 * covers the full page. 160 */ 161 static void nfs_mark_uptodate(struct page *page, unsigned int base, unsigned int count) 162 { 163 if (PageUptodate(page)) 164 return; 165 if (base != 0) 166 return; 167 if (count != nfs_page_length(page)) 168 return; 169 SetPageUptodate(page); 170 } 171 172 static int nfs_writepage_setup(struct nfs_open_context *ctx, struct page *page, 173 unsigned int offset, unsigned int count) 174 { 175 struct nfs_page *req; 176 int ret; 177 178 for (;;) { 179 req = nfs_update_request(ctx, page, offset, count); 180 if (!IS_ERR(req)) 181 break; 182 ret = PTR_ERR(req); 183 if (ret != -EBUSY) 184 return ret; 185 ret = nfs_wb_page(page->mapping->host, page); 186 if (ret != 0) 187 return ret; 188 } 189 /* Update file length */ 190 nfs_grow_file(page, offset, count); 191 nfs_clear_page_tag_locked(req); 192 return 0; 193 } 194 195 static int wb_priority(struct writeback_control *wbc) 196 { 197 if (wbc->for_reclaim) 198 return FLUSH_HIGHPRI | FLUSH_STABLE; 199 if (wbc->for_kupdate) 200 return FLUSH_LOWPRI; 201 return 0; 202 } 203 204 /* 205 * NFS congestion control 206 */ 207 208 int nfs_congestion_kb; 209 210 #define NFS_CONGESTION_ON_THRESH (nfs_congestion_kb >> (PAGE_SHIFT-10)) 211 #define NFS_CONGESTION_OFF_THRESH \ 212 (NFS_CONGESTION_ON_THRESH - (NFS_CONGESTION_ON_THRESH >> 2)) 213 214 static int nfs_set_page_writeback(struct page *page) 215 { 216 int ret = test_set_page_writeback(page); 217 218 if (!ret) { 219 struct inode *inode = page->mapping->host; 220 struct nfs_server *nfss = NFS_SERVER(inode); 221 222 if (atomic_long_inc_return(&nfss->writeback) > 223 NFS_CONGESTION_ON_THRESH) 224 set_bdi_congested(&nfss->backing_dev_info, WRITE); 225 } 226 return ret; 227 } 228 229 static void nfs_end_page_writeback(struct page *page) 230 { 231 struct inode *inode = page->mapping->host; 232 struct nfs_server *nfss = NFS_SERVER(inode); 233 234 end_page_writeback(page); 235 if (atomic_long_dec_return(&nfss->writeback) < NFS_CONGESTION_OFF_THRESH) 236 clear_bdi_congested(&nfss->backing_dev_info, WRITE); 237 } 238 239 /* 240 * Find an associated nfs write request, and prepare to flush it out 241 * May return an error if the user signalled nfs_wait_on_request(). 242 */ 243 static int nfs_page_async_flush(struct nfs_pageio_descriptor *pgio, 244 struct page *page) 245 { 246 struct inode *inode = page->mapping->host; 247 struct nfs_page *req; 248 int ret; 249 250 spin_lock(&inode->i_lock); 251 for(;;) { 252 req = nfs_page_find_request_locked(page); 253 if (req == NULL) { 254 spin_unlock(&inode->i_lock); 255 return 0; 256 } 257 if (nfs_set_page_tag_locked(req)) 258 break; 259 /* Note: If we hold the page lock, as is the case in nfs_writepage, 260 * then the call to nfs_set_page_tag_locked() will always 261 * succeed provided that someone hasn't already marked the 262 * request as dirty (in which case we don't care). 263 */ 264 spin_unlock(&inode->i_lock); 265 ret = nfs_wait_on_request(req); 266 nfs_release_request(req); 267 if (ret != 0) 268 return ret; 269 spin_lock(&inode->i_lock); 270 } 271 if (test_bit(PG_NEED_COMMIT, &req->wb_flags)) { 272 /* This request is marked for commit */ 273 spin_unlock(&inode->i_lock); 274 nfs_clear_page_tag_locked(req); 275 nfs_pageio_complete(pgio); 276 return 0; 277 } 278 if (nfs_set_page_writeback(page) != 0) { 279 spin_unlock(&inode->i_lock); 280 BUG(); 281 } 282 spin_unlock(&inode->i_lock); 283 if (!nfs_pageio_add_request(pgio, req)) { 284 nfs_redirty_request(req); 285 return pgio->pg_error; 286 } 287 return 0; 288 } 289 290 static int nfs_do_writepage(struct page *page, struct writeback_control *wbc, struct nfs_pageio_descriptor *pgio) 291 { 292 struct inode *inode = page->mapping->host; 293 294 nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGE); 295 nfs_add_stats(inode, NFSIOS_WRITEPAGES, 1); 296 297 nfs_pageio_cond_complete(pgio, page->index); 298 return nfs_page_async_flush(pgio, page); 299 } 300 301 /* 302 * Write an mmapped page to the server. 303 */ 304 static int nfs_writepage_locked(struct page *page, struct writeback_control *wbc) 305 { 306 struct nfs_pageio_descriptor pgio; 307 int err; 308 309 nfs_pageio_init_write(&pgio, page->mapping->host, wb_priority(wbc)); 310 err = nfs_do_writepage(page, wbc, &pgio); 311 nfs_pageio_complete(&pgio); 312 if (err < 0) 313 return err; 314 if (pgio.pg_error < 0) 315 return pgio.pg_error; 316 return 0; 317 } 318 319 int nfs_writepage(struct page *page, struct writeback_control *wbc) 320 { 321 int ret; 322 323 ret = nfs_writepage_locked(page, wbc); 324 unlock_page(page); 325 return ret; 326 } 327 328 static int nfs_writepages_callback(struct page *page, struct writeback_control *wbc, void *data) 329 { 330 int ret; 331 332 ret = nfs_do_writepage(page, wbc, data); 333 unlock_page(page); 334 return ret; 335 } 336 337 int nfs_writepages(struct address_space *mapping, struct writeback_control *wbc) 338 { 339 struct inode *inode = mapping->host; 340 struct nfs_pageio_descriptor pgio; 341 int err; 342 343 nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGES); 344 345 nfs_pageio_init_write(&pgio, inode, wb_priority(wbc)); 346 err = write_cache_pages(mapping, wbc, nfs_writepages_callback, &pgio); 347 nfs_pageio_complete(&pgio); 348 if (err < 0) 349 return err; 350 if (pgio.pg_error < 0) 351 return pgio.pg_error; 352 return 0; 353 } 354 355 /* 356 * Insert a write request into an inode 357 */ 358 static void nfs_inode_add_request(struct inode *inode, struct nfs_page *req) 359 { 360 struct nfs_inode *nfsi = NFS_I(inode); 361 int error; 362 363 error = radix_tree_insert(&nfsi->nfs_page_tree, req->wb_index, req); 364 BUG_ON(error); 365 if (!nfsi->npages) { 366 igrab(inode); 367 if (nfs_have_delegation(inode, FMODE_WRITE)) 368 nfsi->change_attr++; 369 } 370 SetPagePrivate(req->wb_page); 371 set_page_private(req->wb_page, (unsigned long)req); 372 nfsi->npages++; 373 kref_get(&req->wb_kref); 374 radix_tree_tag_set(&nfsi->nfs_page_tree, req->wb_index, 375 NFS_PAGE_TAG_LOCKED); 376 } 377 378 /* 379 * Remove a write request from an inode 380 */ 381 static void nfs_inode_remove_request(struct nfs_page *req) 382 { 383 struct inode *inode = req->wb_context->path.dentry->d_inode; 384 struct nfs_inode *nfsi = NFS_I(inode); 385 386 BUG_ON (!NFS_WBACK_BUSY(req)); 387 388 spin_lock(&inode->i_lock); 389 set_page_private(req->wb_page, 0); 390 ClearPagePrivate(req->wb_page); 391 radix_tree_delete(&nfsi->nfs_page_tree, req->wb_index); 392 nfsi->npages--; 393 if (!nfsi->npages) { 394 spin_unlock(&inode->i_lock); 395 iput(inode); 396 } else 397 spin_unlock(&inode->i_lock); 398 nfs_clear_request(req); 399 nfs_release_request(req); 400 } 401 402 static void 403 nfs_mark_request_dirty(struct nfs_page *req) 404 { 405 __set_page_dirty_nobuffers(req->wb_page); 406 } 407 408 /* 409 * Check if a request is dirty 410 */ 411 static inline int 412 nfs_dirty_request(struct nfs_page *req) 413 { 414 struct page *page = req->wb_page; 415 416 if (page == NULL || test_bit(PG_NEED_COMMIT, &req->wb_flags)) 417 return 0; 418 return !PageWriteback(req->wb_page); 419 } 420 421 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4) 422 /* 423 * Add a request to the inode's commit list. 424 */ 425 static void 426 nfs_mark_request_commit(struct nfs_page *req) 427 { 428 struct inode *inode = req->wb_context->path.dentry->d_inode; 429 struct nfs_inode *nfsi = NFS_I(inode); 430 431 spin_lock(&inode->i_lock); 432 nfsi->ncommit++; 433 set_bit(PG_NEED_COMMIT, &(req)->wb_flags); 434 radix_tree_tag_set(&nfsi->nfs_page_tree, 435 req->wb_index, 436 NFS_PAGE_TAG_COMMIT); 437 spin_unlock(&inode->i_lock); 438 inc_zone_page_state(req->wb_page, NR_UNSTABLE_NFS); 439 inc_bdi_stat(req->wb_page->mapping->backing_dev_info, BDI_RECLAIMABLE); 440 __mark_inode_dirty(inode, I_DIRTY_DATASYNC); 441 } 442 443 static inline 444 int nfs_write_need_commit(struct nfs_write_data *data) 445 { 446 return data->verf.committed != NFS_FILE_SYNC; 447 } 448 449 static inline 450 int nfs_reschedule_unstable_write(struct nfs_page *req) 451 { 452 if (test_bit(PG_NEED_COMMIT, &req->wb_flags)) { 453 nfs_mark_request_commit(req); 454 return 1; 455 } 456 if (test_and_clear_bit(PG_NEED_RESCHED, &req->wb_flags)) { 457 nfs_mark_request_dirty(req); 458 return 1; 459 } 460 return 0; 461 } 462 #else 463 static inline void 464 nfs_mark_request_commit(struct nfs_page *req) 465 { 466 } 467 468 static inline 469 int nfs_write_need_commit(struct nfs_write_data *data) 470 { 471 return 0; 472 } 473 474 static inline 475 int nfs_reschedule_unstable_write(struct nfs_page *req) 476 { 477 return 0; 478 } 479 #endif 480 481 /* 482 * Wait for a request to complete. 483 * 484 * Interruptible by fatal signals only. 485 */ 486 static int nfs_wait_on_requests_locked(struct inode *inode, pgoff_t idx_start, unsigned int npages) 487 { 488 struct nfs_inode *nfsi = NFS_I(inode); 489 struct nfs_page *req; 490 pgoff_t idx_end, next; 491 unsigned int res = 0; 492 int error; 493 494 if (npages == 0) 495 idx_end = ~0; 496 else 497 idx_end = idx_start + npages - 1; 498 499 next = idx_start; 500 while (radix_tree_gang_lookup_tag(&nfsi->nfs_page_tree, (void **)&req, next, 1, NFS_PAGE_TAG_LOCKED)) { 501 if (req->wb_index > idx_end) 502 break; 503 504 next = req->wb_index + 1; 505 BUG_ON(!NFS_WBACK_BUSY(req)); 506 507 kref_get(&req->wb_kref); 508 spin_unlock(&inode->i_lock); 509 error = nfs_wait_on_request(req); 510 nfs_release_request(req); 511 spin_lock(&inode->i_lock); 512 if (error < 0) 513 return error; 514 res++; 515 } 516 return res; 517 } 518 519 static void nfs_cancel_commit_list(struct list_head *head) 520 { 521 struct nfs_page *req; 522 523 while(!list_empty(head)) { 524 req = nfs_list_entry(head->next); 525 dec_zone_page_state(req->wb_page, NR_UNSTABLE_NFS); 526 dec_bdi_stat(req->wb_page->mapping->backing_dev_info, 527 BDI_RECLAIMABLE); 528 nfs_list_remove_request(req); 529 clear_bit(PG_NEED_COMMIT, &(req)->wb_flags); 530 nfs_inode_remove_request(req); 531 nfs_unlock_request(req); 532 } 533 } 534 535 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4) 536 /* 537 * nfs_scan_commit - Scan an inode for commit requests 538 * @inode: NFS inode to scan 539 * @dst: destination list 540 * @idx_start: lower bound of page->index to scan. 541 * @npages: idx_start + npages sets the upper bound to scan. 542 * 543 * Moves requests from the inode's 'commit' request list. 544 * The requests are *not* checked to ensure that they form a contiguous set. 545 */ 546 static int 547 nfs_scan_commit(struct inode *inode, struct list_head *dst, pgoff_t idx_start, unsigned int npages) 548 { 549 struct nfs_inode *nfsi = NFS_I(inode); 550 int res = 0; 551 552 if (nfsi->ncommit != 0) { 553 res = nfs_scan_list(nfsi, dst, idx_start, npages, 554 NFS_PAGE_TAG_COMMIT); 555 nfsi->ncommit -= res; 556 } 557 return res; 558 } 559 #else 560 static inline int nfs_scan_commit(struct inode *inode, struct list_head *dst, pgoff_t idx_start, unsigned int npages) 561 { 562 return 0; 563 } 564 #endif 565 566 /* 567 * Try to update any existing write request, or create one if there is none. 568 * In order to match, the request's credentials must match those of 569 * the calling process. 570 * 571 * Note: Should always be called with the Page Lock held! 572 */ 573 static struct nfs_page * nfs_update_request(struct nfs_open_context* ctx, 574 struct page *page, unsigned int offset, unsigned int bytes) 575 { 576 struct address_space *mapping = page->mapping; 577 struct inode *inode = mapping->host; 578 struct nfs_page *req, *new = NULL; 579 pgoff_t rqend, end; 580 581 end = offset + bytes; 582 583 for (;;) { 584 /* Loop over all inode entries and see if we find 585 * A request for the page we wish to update 586 */ 587 if (new) { 588 if (radix_tree_preload(GFP_NOFS)) { 589 nfs_release_request(new); 590 return ERR_PTR(-ENOMEM); 591 } 592 } 593 594 spin_lock(&inode->i_lock); 595 req = nfs_page_find_request_locked(page); 596 if (req) { 597 if (!nfs_set_page_tag_locked(req)) { 598 int error; 599 600 spin_unlock(&inode->i_lock); 601 error = nfs_wait_on_request(req); 602 nfs_release_request(req); 603 if (error < 0) { 604 if (new) { 605 radix_tree_preload_end(); 606 nfs_release_request(new); 607 } 608 return ERR_PTR(error); 609 } 610 continue; 611 } 612 spin_unlock(&inode->i_lock); 613 if (new) { 614 radix_tree_preload_end(); 615 nfs_release_request(new); 616 } 617 break; 618 } 619 620 if (new) { 621 nfs_lock_request_dontget(new); 622 nfs_inode_add_request(inode, new); 623 spin_unlock(&inode->i_lock); 624 radix_tree_preload_end(); 625 req = new; 626 goto zero_page; 627 } 628 spin_unlock(&inode->i_lock); 629 630 new = nfs_create_request(ctx, inode, page, offset, bytes); 631 if (IS_ERR(new)) 632 return new; 633 } 634 635 /* We have a request for our page. 636 * If the creds don't match, or the 637 * page addresses don't match, 638 * tell the caller to wait on the conflicting 639 * request. 640 */ 641 rqend = req->wb_offset + req->wb_bytes; 642 if (req->wb_context != ctx 643 || req->wb_page != page 644 || !nfs_dirty_request(req) 645 || offset > rqend || end < req->wb_offset) { 646 nfs_clear_page_tag_locked(req); 647 return ERR_PTR(-EBUSY); 648 } 649 650 /* Okay, the request matches. Update the region */ 651 if (offset < req->wb_offset) { 652 req->wb_offset = offset; 653 req->wb_pgbase = offset; 654 req->wb_bytes = max(end, rqend) - req->wb_offset; 655 goto zero_page; 656 } 657 658 if (end > rqend) 659 req->wb_bytes = end - req->wb_offset; 660 661 return req; 662 zero_page: 663 /* If this page might potentially be marked as up to date, 664 * then we need to zero any uninitalised data. */ 665 if (req->wb_pgbase == 0 && req->wb_bytes != PAGE_CACHE_SIZE 666 && !PageUptodate(req->wb_page)) 667 zero_user_segment(req->wb_page, req->wb_bytes, PAGE_CACHE_SIZE); 668 return req; 669 } 670 671 int nfs_flush_incompatible(struct file *file, struct page *page) 672 { 673 struct nfs_open_context *ctx = nfs_file_open_context(file); 674 struct nfs_page *req; 675 int do_flush, status; 676 /* 677 * Look for a request corresponding to this page. If there 678 * is one, and it belongs to another file, we flush it out 679 * before we try to copy anything into the page. Do this 680 * due to the lack of an ACCESS-type call in NFSv2. 681 * Also do the same if we find a request from an existing 682 * dropped page. 683 */ 684 do { 685 req = nfs_page_find_request(page); 686 if (req == NULL) 687 return 0; 688 do_flush = req->wb_page != page || req->wb_context != ctx 689 || !nfs_dirty_request(req); 690 nfs_release_request(req); 691 if (!do_flush) 692 return 0; 693 status = nfs_wb_page(page->mapping->host, page); 694 } while (status == 0); 695 return status; 696 } 697 698 /* 699 * If the page cache is marked as unsafe or invalid, then we can't rely on 700 * the PageUptodate() flag. In this case, we will need to turn off 701 * write optimisations that depend on the page contents being correct. 702 */ 703 static int nfs_write_pageuptodate(struct page *page, struct inode *inode) 704 { 705 return PageUptodate(page) && 706 !(NFS_I(inode)->cache_validity & (NFS_INO_REVAL_PAGECACHE|NFS_INO_INVALID_DATA)); 707 } 708 709 /* 710 * Update and possibly write a cached page of an NFS file. 711 * 712 * XXX: Keep an eye on generic_file_read to make sure it doesn't do bad 713 * things with a page scheduled for an RPC call (e.g. invalidate it). 714 */ 715 int nfs_updatepage(struct file *file, struct page *page, 716 unsigned int offset, unsigned int count) 717 { 718 struct nfs_open_context *ctx = nfs_file_open_context(file); 719 struct inode *inode = page->mapping->host; 720 int status = 0; 721 722 nfs_inc_stats(inode, NFSIOS_VFSUPDATEPAGE); 723 724 dprintk("NFS: nfs_updatepage(%s/%s %d@%Ld)\n", 725 file->f_path.dentry->d_parent->d_name.name, 726 file->f_path.dentry->d_name.name, count, 727 (long long)(page_offset(page) +offset)); 728 729 /* If we're not using byte range locks, and we know the page 730 * is up to date, it may be more efficient to extend the write 731 * to cover the entire page in order to avoid fragmentation 732 * inefficiencies. 733 */ 734 if (nfs_write_pageuptodate(page, inode) && 735 inode->i_flock == NULL && 736 !(file->f_flags & O_SYNC)) { 737 count = max(count + offset, nfs_page_length(page)); 738 offset = 0; 739 } 740 741 status = nfs_writepage_setup(ctx, page, offset, count); 742 __set_page_dirty_nobuffers(page); 743 744 dprintk("NFS: nfs_updatepage returns %d (isize %Ld)\n", 745 status, (long long)i_size_read(inode)); 746 if (status < 0) 747 nfs_set_pageerror(page); 748 return status; 749 } 750 751 static void nfs_writepage_release(struct nfs_page *req) 752 { 753 754 if (PageError(req->wb_page)) { 755 nfs_end_page_writeback(req->wb_page); 756 nfs_inode_remove_request(req); 757 } else if (!nfs_reschedule_unstable_write(req)) { 758 /* Set the PG_uptodate flag */ 759 nfs_mark_uptodate(req->wb_page, req->wb_pgbase, req->wb_bytes); 760 nfs_end_page_writeback(req->wb_page); 761 nfs_inode_remove_request(req); 762 } else 763 nfs_end_page_writeback(req->wb_page); 764 nfs_clear_page_tag_locked(req); 765 } 766 767 static int flush_task_priority(int how) 768 { 769 switch (how & (FLUSH_HIGHPRI|FLUSH_LOWPRI)) { 770 case FLUSH_HIGHPRI: 771 return RPC_PRIORITY_HIGH; 772 case FLUSH_LOWPRI: 773 return RPC_PRIORITY_LOW; 774 } 775 return RPC_PRIORITY_NORMAL; 776 } 777 778 /* 779 * Set up the argument/result storage required for the RPC call. 780 */ 781 static void nfs_write_rpcsetup(struct nfs_page *req, 782 struct nfs_write_data *data, 783 const struct rpc_call_ops *call_ops, 784 unsigned int count, unsigned int offset, 785 int how) 786 { 787 struct inode *inode = req->wb_context->path.dentry->d_inode; 788 int flags = (how & FLUSH_SYNC) ? 0 : RPC_TASK_ASYNC; 789 int priority = flush_task_priority(how); 790 struct rpc_task *task; 791 struct rpc_message msg = { 792 .rpc_argp = &data->args, 793 .rpc_resp = &data->res, 794 .rpc_cred = req->wb_context->cred, 795 }; 796 struct rpc_task_setup task_setup_data = { 797 .rpc_client = NFS_CLIENT(inode), 798 .task = &data->task, 799 .rpc_message = &msg, 800 .callback_ops = call_ops, 801 .callback_data = data, 802 .workqueue = nfsiod_workqueue, 803 .flags = flags, 804 .priority = priority, 805 }; 806 807 /* Set up the RPC argument and reply structs 808 * NB: take care not to mess about with data->commit et al. */ 809 810 data->req = req; 811 data->inode = inode = req->wb_context->path.dentry->d_inode; 812 data->cred = msg.rpc_cred; 813 814 data->args.fh = NFS_FH(inode); 815 data->args.offset = req_offset(req) + offset; 816 data->args.pgbase = req->wb_pgbase + offset; 817 data->args.pages = data->pagevec; 818 data->args.count = count; 819 data->args.context = get_nfs_open_context(req->wb_context); 820 data->args.stable = NFS_UNSTABLE; 821 if (how & FLUSH_STABLE) { 822 data->args.stable = NFS_DATA_SYNC; 823 if (!NFS_I(inode)->ncommit) 824 data->args.stable = NFS_FILE_SYNC; 825 } 826 827 data->res.fattr = &data->fattr; 828 data->res.count = count; 829 data->res.verf = &data->verf; 830 nfs_fattr_init(&data->fattr); 831 832 /* Set up the initial task struct. */ 833 NFS_PROTO(inode)->write_setup(data, &msg); 834 835 dprintk("NFS: %5u initiated write call " 836 "(req %s/%Ld, %u bytes @ offset %Lu)\n", 837 data->task.tk_pid, 838 inode->i_sb->s_id, 839 (long long)NFS_FILEID(inode), 840 count, 841 (unsigned long long)data->args.offset); 842 843 task = rpc_run_task(&task_setup_data); 844 if (!IS_ERR(task)) 845 rpc_put_task(task); 846 } 847 848 /* If a nfs_flush_* function fails, it should remove reqs from @head and 849 * call this on each, which will prepare them to be retried on next 850 * writeback using standard nfs. 851 */ 852 static void nfs_redirty_request(struct nfs_page *req) 853 { 854 nfs_mark_request_dirty(req); 855 nfs_end_page_writeback(req->wb_page); 856 nfs_clear_page_tag_locked(req); 857 } 858 859 /* 860 * Generate multiple small requests to write out a single 861 * contiguous dirty area on one page. 862 */ 863 static int nfs_flush_multi(struct inode *inode, struct list_head *head, unsigned int npages, size_t count, int how) 864 { 865 struct nfs_page *req = nfs_list_entry(head->next); 866 struct page *page = req->wb_page; 867 struct nfs_write_data *data; 868 size_t wsize = NFS_SERVER(inode)->wsize, nbytes; 869 unsigned int offset; 870 int requests = 0; 871 LIST_HEAD(list); 872 873 nfs_list_remove_request(req); 874 875 nbytes = count; 876 do { 877 size_t len = min(nbytes, wsize); 878 879 data = nfs_writedata_alloc(1); 880 if (!data) 881 goto out_bad; 882 list_add(&data->pages, &list); 883 requests++; 884 nbytes -= len; 885 } while (nbytes != 0); 886 atomic_set(&req->wb_complete, requests); 887 888 ClearPageError(page); 889 offset = 0; 890 nbytes = count; 891 do { 892 data = list_entry(list.next, struct nfs_write_data, pages); 893 list_del_init(&data->pages); 894 895 data->pagevec[0] = page; 896 897 if (nbytes < wsize) 898 wsize = nbytes; 899 nfs_write_rpcsetup(req, data, &nfs_write_partial_ops, 900 wsize, offset, how); 901 offset += wsize; 902 nbytes -= wsize; 903 } while (nbytes != 0); 904 905 return 0; 906 907 out_bad: 908 while (!list_empty(&list)) { 909 data = list_entry(list.next, struct nfs_write_data, pages); 910 list_del(&data->pages); 911 nfs_writedata_release(data); 912 } 913 nfs_redirty_request(req); 914 return -ENOMEM; 915 } 916 917 /* 918 * Create an RPC task for the given write request and kick it. 919 * The page must have been locked by the caller. 920 * 921 * It may happen that the page we're passed is not marked dirty. 922 * This is the case if nfs_updatepage detects a conflicting request 923 * that has been written but not committed. 924 */ 925 static int nfs_flush_one(struct inode *inode, struct list_head *head, unsigned int npages, size_t count, int how) 926 { 927 struct nfs_page *req; 928 struct page **pages; 929 struct nfs_write_data *data; 930 931 data = nfs_writedata_alloc(npages); 932 if (!data) 933 goto out_bad; 934 935 pages = data->pagevec; 936 while (!list_empty(head)) { 937 req = nfs_list_entry(head->next); 938 nfs_list_remove_request(req); 939 nfs_list_add_request(req, &data->pages); 940 ClearPageError(req->wb_page); 941 *pages++ = req->wb_page; 942 } 943 req = nfs_list_entry(data->pages.next); 944 945 /* Set up the argument struct */ 946 nfs_write_rpcsetup(req, data, &nfs_write_full_ops, count, 0, how); 947 948 return 0; 949 out_bad: 950 while (!list_empty(head)) { 951 req = nfs_list_entry(head->next); 952 nfs_list_remove_request(req); 953 nfs_redirty_request(req); 954 } 955 return -ENOMEM; 956 } 957 958 static void nfs_pageio_init_write(struct nfs_pageio_descriptor *pgio, 959 struct inode *inode, int ioflags) 960 { 961 size_t wsize = NFS_SERVER(inode)->wsize; 962 963 if (wsize < PAGE_CACHE_SIZE) 964 nfs_pageio_init(pgio, inode, nfs_flush_multi, wsize, ioflags); 965 else 966 nfs_pageio_init(pgio, inode, nfs_flush_one, wsize, ioflags); 967 } 968 969 /* 970 * Handle a write reply that flushed part of a page. 971 */ 972 static void nfs_writeback_done_partial(struct rpc_task *task, void *calldata) 973 { 974 struct nfs_write_data *data = calldata; 975 struct nfs_page *req = data->req; 976 977 dprintk("NFS: write (%s/%Ld %d@%Ld)", 978 req->wb_context->path.dentry->d_inode->i_sb->s_id, 979 (long long)NFS_FILEID(req->wb_context->path.dentry->d_inode), 980 req->wb_bytes, 981 (long long)req_offset(req)); 982 983 nfs_writeback_done(task, data); 984 } 985 986 static void nfs_writeback_release_partial(void *calldata) 987 { 988 struct nfs_write_data *data = calldata; 989 struct nfs_page *req = data->req; 990 struct page *page = req->wb_page; 991 int status = data->task.tk_status; 992 993 if (status < 0) { 994 nfs_set_pageerror(page); 995 nfs_context_set_write_error(req->wb_context, status); 996 dprintk(", error = %d\n", status); 997 goto out; 998 } 999 1000 if (nfs_write_need_commit(data)) { 1001 struct inode *inode = page->mapping->host; 1002 1003 spin_lock(&inode->i_lock); 1004 if (test_bit(PG_NEED_RESCHED, &req->wb_flags)) { 1005 /* Do nothing we need to resend the writes */ 1006 } else if (!test_and_set_bit(PG_NEED_COMMIT, &req->wb_flags)) { 1007 memcpy(&req->wb_verf, &data->verf, sizeof(req->wb_verf)); 1008 dprintk(" defer commit\n"); 1009 } else if (memcmp(&req->wb_verf, &data->verf, sizeof(req->wb_verf))) { 1010 set_bit(PG_NEED_RESCHED, &req->wb_flags); 1011 clear_bit(PG_NEED_COMMIT, &req->wb_flags); 1012 dprintk(" server reboot detected\n"); 1013 } 1014 spin_unlock(&inode->i_lock); 1015 } else 1016 dprintk(" OK\n"); 1017 1018 out: 1019 if (atomic_dec_and_test(&req->wb_complete)) 1020 nfs_writepage_release(req); 1021 nfs_writedata_release(calldata); 1022 } 1023 1024 static const struct rpc_call_ops nfs_write_partial_ops = { 1025 .rpc_call_done = nfs_writeback_done_partial, 1026 .rpc_release = nfs_writeback_release_partial, 1027 }; 1028 1029 /* 1030 * Handle a write reply that flushes a whole page. 1031 * 1032 * FIXME: There is an inherent race with invalidate_inode_pages and 1033 * writebacks since the page->count is kept > 1 for as long 1034 * as the page has a write request pending. 1035 */ 1036 static void nfs_writeback_done_full(struct rpc_task *task, void *calldata) 1037 { 1038 struct nfs_write_data *data = calldata; 1039 1040 nfs_writeback_done(task, data); 1041 } 1042 1043 static void nfs_writeback_release_full(void *calldata) 1044 { 1045 struct nfs_write_data *data = calldata; 1046 int status = data->task.tk_status; 1047 1048 /* Update attributes as result of writeback. */ 1049 while (!list_empty(&data->pages)) { 1050 struct nfs_page *req = nfs_list_entry(data->pages.next); 1051 struct page *page = req->wb_page; 1052 1053 nfs_list_remove_request(req); 1054 1055 dprintk("NFS: write (%s/%Ld %d@%Ld)", 1056 req->wb_context->path.dentry->d_inode->i_sb->s_id, 1057 (long long)NFS_FILEID(req->wb_context->path.dentry->d_inode), 1058 req->wb_bytes, 1059 (long long)req_offset(req)); 1060 1061 if (status < 0) { 1062 nfs_set_pageerror(page); 1063 nfs_context_set_write_error(req->wb_context, status); 1064 dprintk(", error = %d\n", status); 1065 goto remove_request; 1066 } 1067 1068 if (nfs_write_need_commit(data)) { 1069 memcpy(&req->wb_verf, &data->verf, sizeof(req->wb_verf)); 1070 nfs_mark_request_commit(req); 1071 nfs_end_page_writeback(page); 1072 dprintk(" marked for commit\n"); 1073 goto next; 1074 } 1075 /* Set the PG_uptodate flag? */ 1076 nfs_mark_uptodate(page, req->wb_pgbase, req->wb_bytes); 1077 dprintk(" OK\n"); 1078 remove_request: 1079 nfs_end_page_writeback(page); 1080 nfs_inode_remove_request(req); 1081 next: 1082 nfs_clear_page_tag_locked(req); 1083 } 1084 nfs_writedata_release(calldata); 1085 } 1086 1087 static const struct rpc_call_ops nfs_write_full_ops = { 1088 .rpc_call_done = nfs_writeback_done_full, 1089 .rpc_release = nfs_writeback_release_full, 1090 }; 1091 1092 1093 /* 1094 * This function is called when the WRITE call is complete. 1095 */ 1096 int nfs_writeback_done(struct rpc_task *task, struct nfs_write_data *data) 1097 { 1098 struct nfs_writeargs *argp = &data->args; 1099 struct nfs_writeres *resp = &data->res; 1100 int status; 1101 1102 dprintk("NFS: %5u nfs_writeback_done (status %d)\n", 1103 task->tk_pid, task->tk_status); 1104 1105 /* 1106 * ->write_done will attempt to use post-op attributes to detect 1107 * conflicting writes by other clients. A strict interpretation 1108 * of close-to-open would allow us to continue caching even if 1109 * another writer had changed the file, but some applications 1110 * depend on tighter cache coherency when writing. 1111 */ 1112 status = NFS_PROTO(data->inode)->write_done(task, data); 1113 if (status != 0) 1114 return status; 1115 nfs_add_stats(data->inode, NFSIOS_SERVERWRITTENBYTES, resp->count); 1116 1117 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4) 1118 if (resp->verf->committed < argp->stable && task->tk_status >= 0) { 1119 /* We tried a write call, but the server did not 1120 * commit data to stable storage even though we 1121 * requested it. 1122 * Note: There is a known bug in Tru64 < 5.0 in which 1123 * the server reports NFS_DATA_SYNC, but performs 1124 * NFS_FILE_SYNC. We therefore implement this checking 1125 * as a dprintk() in order to avoid filling syslog. 1126 */ 1127 static unsigned long complain; 1128 1129 if (time_before(complain, jiffies)) { 1130 dprintk("NFS: faulty NFS server %s:" 1131 " (committed = %d) != (stable = %d)\n", 1132 NFS_SERVER(data->inode)->nfs_client->cl_hostname, 1133 resp->verf->committed, argp->stable); 1134 complain = jiffies + 300 * HZ; 1135 } 1136 } 1137 #endif 1138 /* Is this a short write? */ 1139 if (task->tk_status >= 0 && resp->count < argp->count) { 1140 static unsigned long complain; 1141 1142 nfs_inc_stats(data->inode, NFSIOS_SHORTWRITE); 1143 1144 /* Has the server at least made some progress? */ 1145 if (resp->count != 0) { 1146 /* Was this an NFSv2 write or an NFSv3 stable write? */ 1147 if (resp->verf->committed != NFS_UNSTABLE) { 1148 /* Resend from where the server left off */ 1149 argp->offset += resp->count; 1150 argp->pgbase += resp->count; 1151 argp->count -= resp->count; 1152 } else { 1153 /* Resend as a stable write in order to avoid 1154 * headaches in the case of a server crash. 1155 */ 1156 argp->stable = NFS_FILE_SYNC; 1157 } 1158 rpc_restart_call(task); 1159 return -EAGAIN; 1160 } 1161 if (time_before(complain, jiffies)) { 1162 printk(KERN_WARNING 1163 "NFS: Server wrote zero bytes, expected %u.\n", 1164 argp->count); 1165 complain = jiffies + 300 * HZ; 1166 } 1167 /* Can't do anything about it except throw an error. */ 1168 task->tk_status = -EIO; 1169 } 1170 return 0; 1171 } 1172 1173 1174 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4) 1175 void nfs_commitdata_release(void *data) 1176 { 1177 struct nfs_write_data *wdata = data; 1178 1179 put_nfs_open_context(wdata->args.context); 1180 nfs_commit_free(wdata); 1181 } 1182 1183 /* 1184 * Set up the argument/result storage required for the RPC call. 1185 */ 1186 static void nfs_commit_rpcsetup(struct list_head *head, 1187 struct nfs_write_data *data, 1188 int how) 1189 { 1190 struct nfs_page *first = nfs_list_entry(head->next); 1191 struct inode *inode = first->wb_context->path.dentry->d_inode; 1192 int flags = (how & FLUSH_SYNC) ? 0 : RPC_TASK_ASYNC; 1193 int priority = flush_task_priority(how); 1194 struct rpc_task *task; 1195 struct rpc_message msg = { 1196 .rpc_argp = &data->args, 1197 .rpc_resp = &data->res, 1198 .rpc_cred = first->wb_context->cred, 1199 }; 1200 struct rpc_task_setup task_setup_data = { 1201 .task = &data->task, 1202 .rpc_client = NFS_CLIENT(inode), 1203 .rpc_message = &msg, 1204 .callback_ops = &nfs_commit_ops, 1205 .callback_data = data, 1206 .workqueue = nfsiod_workqueue, 1207 .flags = flags, 1208 .priority = priority, 1209 }; 1210 1211 /* Set up the RPC argument and reply structs 1212 * NB: take care not to mess about with data->commit et al. */ 1213 1214 list_splice_init(head, &data->pages); 1215 1216 data->inode = inode; 1217 data->cred = msg.rpc_cred; 1218 1219 data->args.fh = NFS_FH(data->inode); 1220 /* Note: we always request a commit of the entire inode */ 1221 data->args.offset = 0; 1222 data->args.count = 0; 1223 data->args.context = get_nfs_open_context(first->wb_context); 1224 data->res.count = 0; 1225 data->res.fattr = &data->fattr; 1226 data->res.verf = &data->verf; 1227 nfs_fattr_init(&data->fattr); 1228 1229 /* Set up the initial task struct. */ 1230 NFS_PROTO(inode)->commit_setup(data, &msg); 1231 1232 dprintk("NFS: %5u initiated commit call\n", data->task.tk_pid); 1233 1234 task = rpc_run_task(&task_setup_data); 1235 if (!IS_ERR(task)) 1236 rpc_put_task(task); 1237 } 1238 1239 /* 1240 * Commit dirty pages 1241 */ 1242 static int 1243 nfs_commit_list(struct inode *inode, struct list_head *head, int how) 1244 { 1245 struct nfs_write_data *data; 1246 struct nfs_page *req; 1247 1248 data = nfs_commitdata_alloc(); 1249 1250 if (!data) 1251 goto out_bad; 1252 1253 /* Set up the argument struct */ 1254 nfs_commit_rpcsetup(head, data, how); 1255 1256 return 0; 1257 out_bad: 1258 while (!list_empty(head)) { 1259 req = nfs_list_entry(head->next); 1260 nfs_list_remove_request(req); 1261 nfs_mark_request_commit(req); 1262 dec_zone_page_state(req->wb_page, NR_UNSTABLE_NFS); 1263 dec_bdi_stat(req->wb_page->mapping->backing_dev_info, 1264 BDI_RECLAIMABLE); 1265 nfs_clear_page_tag_locked(req); 1266 } 1267 return -ENOMEM; 1268 } 1269 1270 /* 1271 * COMMIT call returned 1272 */ 1273 static void nfs_commit_done(struct rpc_task *task, void *calldata) 1274 { 1275 struct nfs_write_data *data = calldata; 1276 1277 dprintk("NFS: %5u nfs_commit_done (status %d)\n", 1278 task->tk_pid, task->tk_status); 1279 1280 /* Call the NFS version-specific code */ 1281 if (NFS_PROTO(data->inode)->commit_done(task, data) != 0) 1282 return; 1283 } 1284 1285 static void nfs_commit_release(void *calldata) 1286 { 1287 struct nfs_write_data *data = calldata; 1288 struct nfs_page *req; 1289 int status = data->task.tk_status; 1290 1291 while (!list_empty(&data->pages)) { 1292 req = nfs_list_entry(data->pages.next); 1293 nfs_list_remove_request(req); 1294 clear_bit(PG_NEED_COMMIT, &(req)->wb_flags); 1295 dec_zone_page_state(req->wb_page, NR_UNSTABLE_NFS); 1296 dec_bdi_stat(req->wb_page->mapping->backing_dev_info, 1297 BDI_RECLAIMABLE); 1298 1299 dprintk("NFS: commit (%s/%Ld %d@%Ld)", 1300 req->wb_context->path.dentry->d_inode->i_sb->s_id, 1301 (long long)NFS_FILEID(req->wb_context->path.dentry->d_inode), 1302 req->wb_bytes, 1303 (long long)req_offset(req)); 1304 if (status < 0) { 1305 nfs_context_set_write_error(req->wb_context, status); 1306 nfs_inode_remove_request(req); 1307 dprintk(", error = %d\n", status); 1308 goto next; 1309 } 1310 1311 /* Okay, COMMIT succeeded, apparently. Check the verifier 1312 * returned by the server against all stored verfs. */ 1313 if (!memcmp(req->wb_verf.verifier, data->verf.verifier, sizeof(data->verf.verifier))) { 1314 /* We have a match */ 1315 /* Set the PG_uptodate flag */ 1316 nfs_mark_uptodate(req->wb_page, req->wb_pgbase, 1317 req->wb_bytes); 1318 nfs_inode_remove_request(req); 1319 dprintk(" OK\n"); 1320 goto next; 1321 } 1322 /* We have a mismatch. Write the page again */ 1323 dprintk(" mismatch\n"); 1324 nfs_mark_request_dirty(req); 1325 next: 1326 nfs_clear_page_tag_locked(req); 1327 } 1328 nfs_commitdata_release(calldata); 1329 } 1330 1331 static const struct rpc_call_ops nfs_commit_ops = { 1332 .rpc_call_done = nfs_commit_done, 1333 .rpc_release = nfs_commit_release, 1334 }; 1335 1336 int nfs_commit_inode(struct inode *inode, int how) 1337 { 1338 LIST_HEAD(head); 1339 int res; 1340 1341 spin_lock(&inode->i_lock); 1342 res = nfs_scan_commit(inode, &head, 0, 0); 1343 spin_unlock(&inode->i_lock); 1344 if (res) { 1345 int error = nfs_commit_list(inode, &head, how); 1346 if (error < 0) 1347 return error; 1348 } 1349 return res; 1350 } 1351 #else 1352 static inline int nfs_commit_list(struct inode *inode, struct list_head *head, int how) 1353 { 1354 return 0; 1355 } 1356 #endif 1357 1358 long nfs_sync_mapping_wait(struct address_space *mapping, struct writeback_control *wbc, int how) 1359 { 1360 struct inode *inode = mapping->host; 1361 pgoff_t idx_start, idx_end; 1362 unsigned int npages = 0; 1363 LIST_HEAD(head); 1364 int nocommit = how & FLUSH_NOCOMMIT; 1365 long pages, ret; 1366 1367 /* FIXME */ 1368 if (wbc->range_cyclic) 1369 idx_start = 0; 1370 else { 1371 idx_start = wbc->range_start >> PAGE_CACHE_SHIFT; 1372 idx_end = wbc->range_end >> PAGE_CACHE_SHIFT; 1373 if (idx_end > idx_start) { 1374 pgoff_t l_npages = 1 + idx_end - idx_start; 1375 npages = l_npages; 1376 if (sizeof(npages) != sizeof(l_npages) && 1377 (pgoff_t)npages != l_npages) 1378 npages = 0; 1379 } 1380 } 1381 how &= ~FLUSH_NOCOMMIT; 1382 spin_lock(&inode->i_lock); 1383 do { 1384 ret = nfs_wait_on_requests_locked(inode, idx_start, npages); 1385 if (ret != 0) 1386 continue; 1387 if (nocommit) 1388 break; 1389 pages = nfs_scan_commit(inode, &head, idx_start, npages); 1390 if (pages == 0) 1391 break; 1392 if (how & FLUSH_INVALIDATE) { 1393 spin_unlock(&inode->i_lock); 1394 nfs_cancel_commit_list(&head); 1395 ret = pages; 1396 spin_lock(&inode->i_lock); 1397 continue; 1398 } 1399 pages += nfs_scan_commit(inode, &head, 0, 0); 1400 spin_unlock(&inode->i_lock); 1401 ret = nfs_commit_list(inode, &head, how); 1402 spin_lock(&inode->i_lock); 1403 1404 } while (ret >= 0); 1405 spin_unlock(&inode->i_lock); 1406 return ret; 1407 } 1408 1409 static int __nfs_write_mapping(struct address_space *mapping, struct writeback_control *wbc, int how) 1410 { 1411 int ret; 1412 1413 ret = nfs_writepages(mapping, wbc); 1414 if (ret < 0) 1415 goto out; 1416 ret = nfs_sync_mapping_wait(mapping, wbc, how); 1417 if (ret < 0) 1418 goto out; 1419 return 0; 1420 out: 1421 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 1422 return ret; 1423 } 1424 1425 /* Two pass sync: first using WB_SYNC_NONE, then WB_SYNC_ALL */ 1426 static int nfs_write_mapping(struct address_space *mapping, int how) 1427 { 1428 struct writeback_control wbc = { 1429 .bdi = mapping->backing_dev_info, 1430 .sync_mode = WB_SYNC_NONE, 1431 .nr_to_write = LONG_MAX, 1432 .for_writepages = 1, 1433 .range_cyclic = 1, 1434 }; 1435 int ret; 1436 1437 ret = __nfs_write_mapping(mapping, &wbc, how); 1438 if (ret < 0) 1439 return ret; 1440 wbc.sync_mode = WB_SYNC_ALL; 1441 return __nfs_write_mapping(mapping, &wbc, how); 1442 } 1443 1444 /* 1445 * flush the inode to disk. 1446 */ 1447 int nfs_wb_all(struct inode *inode) 1448 { 1449 return nfs_write_mapping(inode->i_mapping, 0); 1450 } 1451 1452 int nfs_wb_nocommit(struct inode *inode) 1453 { 1454 return nfs_write_mapping(inode->i_mapping, FLUSH_NOCOMMIT); 1455 } 1456 1457 int nfs_wb_page_cancel(struct inode *inode, struct page *page) 1458 { 1459 struct nfs_page *req; 1460 loff_t range_start = page_offset(page); 1461 loff_t range_end = range_start + (loff_t)(PAGE_CACHE_SIZE - 1); 1462 struct writeback_control wbc = { 1463 .bdi = page->mapping->backing_dev_info, 1464 .sync_mode = WB_SYNC_ALL, 1465 .nr_to_write = LONG_MAX, 1466 .range_start = range_start, 1467 .range_end = range_end, 1468 }; 1469 int ret = 0; 1470 1471 BUG_ON(!PageLocked(page)); 1472 for (;;) { 1473 req = nfs_page_find_request(page); 1474 if (req == NULL) 1475 goto out; 1476 if (test_bit(PG_NEED_COMMIT, &req->wb_flags)) { 1477 nfs_release_request(req); 1478 break; 1479 } 1480 if (nfs_lock_request_dontget(req)) { 1481 nfs_inode_remove_request(req); 1482 /* 1483 * In case nfs_inode_remove_request has marked the 1484 * page as being dirty 1485 */ 1486 cancel_dirty_page(page, PAGE_CACHE_SIZE); 1487 nfs_unlock_request(req); 1488 break; 1489 } 1490 ret = nfs_wait_on_request(req); 1491 if (ret < 0) 1492 goto out; 1493 } 1494 if (!PagePrivate(page)) 1495 return 0; 1496 ret = nfs_sync_mapping_wait(page->mapping, &wbc, FLUSH_INVALIDATE); 1497 out: 1498 return ret; 1499 } 1500 1501 static int nfs_wb_page_priority(struct inode *inode, struct page *page, 1502 int how) 1503 { 1504 loff_t range_start = page_offset(page); 1505 loff_t range_end = range_start + (loff_t)(PAGE_CACHE_SIZE - 1); 1506 struct writeback_control wbc = { 1507 .bdi = page->mapping->backing_dev_info, 1508 .sync_mode = WB_SYNC_ALL, 1509 .nr_to_write = LONG_MAX, 1510 .range_start = range_start, 1511 .range_end = range_end, 1512 }; 1513 int ret; 1514 1515 do { 1516 if (clear_page_dirty_for_io(page)) { 1517 ret = nfs_writepage_locked(page, &wbc); 1518 if (ret < 0) 1519 goto out_error; 1520 } else if (!PagePrivate(page)) 1521 break; 1522 ret = nfs_sync_mapping_wait(page->mapping, &wbc, how); 1523 if (ret < 0) 1524 goto out_error; 1525 } while (PagePrivate(page)); 1526 return 0; 1527 out_error: 1528 __mark_inode_dirty(inode, I_DIRTY_PAGES); 1529 return ret; 1530 } 1531 1532 /* 1533 * Write back all requests on one page - we do this before reading it. 1534 */ 1535 int nfs_wb_page(struct inode *inode, struct page* page) 1536 { 1537 return nfs_wb_page_priority(inode, page, FLUSH_STABLE); 1538 } 1539 1540 int __init nfs_init_writepagecache(void) 1541 { 1542 nfs_wdata_cachep = kmem_cache_create("nfs_write_data", 1543 sizeof(struct nfs_write_data), 1544 0, SLAB_HWCACHE_ALIGN, 1545 NULL); 1546 if (nfs_wdata_cachep == NULL) 1547 return -ENOMEM; 1548 1549 nfs_wdata_mempool = mempool_create_slab_pool(MIN_POOL_WRITE, 1550 nfs_wdata_cachep); 1551 if (nfs_wdata_mempool == NULL) 1552 return -ENOMEM; 1553 1554 nfs_commit_mempool = mempool_create_slab_pool(MIN_POOL_COMMIT, 1555 nfs_wdata_cachep); 1556 if (nfs_commit_mempool == NULL) 1557 return -ENOMEM; 1558 1559 /* 1560 * NFS congestion size, scale with available memory. 1561 * 1562 * 64MB: 8192k 1563 * 128MB: 11585k 1564 * 256MB: 16384k 1565 * 512MB: 23170k 1566 * 1GB: 32768k 1567 * 2GB: 46340k 1568 * 4GB: 65536k 1569 * 8GB: 92681k 1570 * 16GB: 131072k 1571 * 1572 * This allows larger machines to have larger/more transfers. 1573 * Limit the default to 256M 1574 */ 1575 nfs_congestion_kb = (16*int_sqrt(totalram_pages)) << (PAGE_SHIFT-10); 1576 if (nfs_congestion_kb > 256*1024) 1577 nfs_congestion_kb = 256*1024; 1578 1579 return 0; 1580 } 1581 1582 void nfs_destroy_writepagecache(void) 1583 { 1584 mempool_destroy(nfs_commit_mempool); 1585 mempool_destroy(nfs_wdata_mempool); 1586 kmem_cache_destroy(nfs_wdata_cachep); 1587 } 1588 1589