1 /* 2 * linux/fs/nfs/write.c 3 * 4 * Write file data over NFS. 5 * 6 * Copyright (C) 1996, 1997, Olaf Kirch <okir@monad.swb.de> 7 */ 8 9 #include <linux/types.h> 10 #include <linux/slab.h> 11 #include <linux/mm.h> 12 #include <linux/pagemap.h> 13 #include <linux/file.h> 14 #include <linux/writeback.h> 15 #include <linux/swap.h> 16 17 #include <linux/sunrpc/clnt.h> 18 #include <linux/nfs_fs.h> 19 #include <linux/nfs_mount.h> 20 #include <linux/nfs_page.h> 21 #include <linux/backing-dev.h> 22 23 #include <asm/uaccess.h> 24 25 #include "delegation.h" 26 #include "internal.h" 27 #include "iostat.h" 28 #include "nfs4_fs.h" 29 30 #define NFSDBG_FACILITY NFSDBG_PAGECACHE 31 32 #define MIN_POOL_WRITE (32) 33 #define MIN_POOL_COMMIT (4) 34 35 /* 36 * Local function declarations 37 */ 38 static void nfs_pageio_init_write(struct nfs_pageio_descriptor *desc, 39 struct inode *inode, int ioflags); 40 static void nfs_redirty_request(struct nfs_page *req); 41 static const struct rpc_call_ops nfs_write_partial_ops; 42 static const struct rpc_call_ops nfs_write_full_ops; 43 static const struct rpc_call_ops nfs_commit_ops; 44 45 static struct kmem_cache *nfs_wdata_cachep; 46 static mempool_t *nfs_wdata_mempool; 47 static mempool_t *nfs_commit_mempool; 48 49 struct nfs_write_data *nfs_commitdata_alloc(void) 50 { 51 struct nfs_write_data *p = mempool_alloc(nfs_commit_mempool, GFP_NOFS); 52 53 if (p) { 54 memset(p, 0, sizeof(*p)); 55 INIT_LIST_HEAD(&p->pages); 56 p->res.seq_res.sr_slotid = NFS4_MAX_SLOT_TABLE; 57 } 58 return p; 59 } 60 61 void nfs_commit_free(struct nfs_write_data *p) 62 { 63 if (p && (p->pagevec != &p->page_array[0])) 64 kfree(p->pagevec); 65 mempool_free(p, nfs_commit_mempool); 66 } 67 68 struct nfs_write_data *nfs_writedata_alloc(unsigned int pagecount) 69 { 70 struct nfs_write_data *p = mempool_alloc(nfs_wdata_mempool, GFP_NOFS); 71 72 if (p) { 73 memset(p, 0, sizeof(*p)); 74 INIT_LIST_HEAD(&p->pages); 75 p->npages = pagecount; 76 p->res.seq_res.sr_slotid = NFS4_MAX_SLOT_TABLE; 77 if (pagecount <= ARRAY_SIZE(p->page_array)) 78 p->pagevec = p->page_array; 79 else { 80 p->pagevec = kcalloc(pagecount, sizeof(struct page *), GFP_NOFS); 81 if (!p->pagevec) { 82 mempool_free(p, nfs_wdata_mempool); 83 p = NULL; 84 } 85 } 86 } 87 return p; 88 } 89 90 void nfs_writedata_free(struct nfs_write_data *p) 91 { 92 if (p && (p->pagevec != &p->page_array[0])) 93 kfree(p->pagevec); 94 mempool_free(p, nfs_wdata_mempool); 95 } 96 97 static void nfs_writedata_release(struct nfs_write_data *wdata) 98 { 99 put_nfs_open_context(wdata->args.context); 100 nfs_writedata_free(wdata); 101 } 102 103 static void nfs_context_set_write_error(struct nfs_open_context *ctx, int error) 104 { 105 ctx->error = error; 106 smp_wmb(); 107 set_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags); 108 } 109 110 static struct nfs_page *nfs_page_find_request_locked(struct page *page) 111 { 112 struct nfs_page *req = NULL; 113 114 if (PagePrivate(page)) { 115 req = (struct nfs_page *)page_private(page); 116 if (req != NULL) 117 kref_get(&req->wb_kref); 118 } 119 return req; 120 } 121 122 static struct nfs_page *nfs_page_find_request(struct page *page) 123 { 124 struct inode *inode = page->mapping->host; 125 struct nfs_page *req = NULL; 126 127 spin_lock(&inode->i_lock); 128 req = nfs_page_find_request_locked(page); 129 spin_unlock(&inode->i_lock); 130 return req; 131 } 132 133 /* Adjust the file length if we're writing beyond the end */ 134 static void nfs_grow_file(struct page *page, unsigned int offset, unsigned int count) 135 { 136 struct inode *inode = page->mapping->host; 137 loff_t end, i_size; 138 pgoff_t end_index; 139 140 spin_lock(&inode->i_lock); 141 i_size = i_size_read(inode); 142 end_index = (i_size - 1) >> PAGE_CACHE_SHIFT; 143 if (i_size > 0 && page->index < end_index) 144 goto out; 145 end = ((loff_t)page->index << PAGE_CACHE_SHIFT) + ((loff_t)offset+count); 146 if (i_size >= end) 147 goto out; 148 i_size_write(inode, end); 149 nfs_inc_stats(inode, NFSIOS_EXTENDWRITE); 150 out: 151 spin_unlock(&inode->i_lock); 152 } 153 154 /* A writeback failed: mark the page as bad, and invalidate the page cache */ 155 static void nfs_set_pageerror(struct page *page) 156 { 157 SetPageError(page); 158 nfs_zap_mapping(page->mapping->host, page->mapping); 159 } 160 161 /* We can set the PG_uptodate flag if we see that a write request 162 * covers the full page. 163 */ 164 static void nfs_mark_uptodate(struct page *page, unsigned int base, unsigned int count) 165 { 166 if (PageUptodate(page)) 167 return; 168 if (base != 0) 169 return; 170 if (count != nfs_page_length(page)) 171 return; 172 SetPageUptodate(page); 173 } 174 175 static int wb_priority(struct writeback_control *wbc) 176 { 177 if (wbc->for_reclaim) 178 return FLUSH_HIGHPRI | FLUSH_STABLE; 179 if (wbc->for_kupdate) 180 return FLUSH_LOWPRI; 181 return 0; 182 } 183 184 /* 185 * NFS congestion control 186 */ 187 188 int nfs_congestion_kb; 189 190 #define NFS_CONGESTION_ON_THRESH (nfs_congestion_kb >> (PAGE_SHIFT-10)) 191 #define NFS_CONGESTION_OFF_THRESH \ 192 (NFS_CONGESTION_ON_THRESH - (NFS_CONGESTION_ON_THRESH >> 2)) 193 194 static int nfs_set_page_writeback(struct page *page) 195 { 196 int ret = test_set_page_writeback(page); 197 198 if (!ret) { 199 struct inode *inode = page->mapping->host; 200 struct nfs_server *nfss = NFS_SERVER(inode); 201 202 if (atomic_long_inc_return(&nfss->writeback) > 203 NFS_CONGESTION_ON_THRESH) { 204 set_bdi_congested(&nfss->backing_dev_info, 205 BLK_RW_ASYNC); 206 } 207 } 208 return ret; 209 } 210 211 static void nfs_end_page_writeback(struct page *page) 212 { 213 struct inode *inode = page->mapping->host; 214 struct nfs_server *nfss = NFS_SERVER(inode); 215 216 end_page_writeback(page); 217 if (atomic_long_dec_return(&nfss->writeback) < NFS_CONGESTION_OFF_THRESH) 218 clear_bdi_congested(&nfss->backing_dev_info, BLK_RW_ASYNC); 219 } 220 221 /* 222 * Find an associated nfs write request, and prepare to flush it out 223 * May return an error if the user signalled nfs_wait_on_request(). 224 */ 225 static int nfs_page_async_flush(struct nfs_pageio_descriptor *pgio, 226 struct page *page) 227 { 228 struct inode *inode = page->mapping->host; 229 struct nfs_page *req; 230 int ret; 231 232 spin_lock(&inode->i_lock); 233 for(;;) { 234 req = nfs_page_find_request_locked(page); 235 if (req == NULL) { 236 spin_unlock(&inode->i_lock); 237 return 0; 238 } 239 if (nfs_set_page_tag_locked(req)) 240 break; 241 /* Note: If we hold the page lock, as is the case in nfs_writepage, 242 * then the call to nfs_set_page_tag_locked() will always 243 * succeed provided that someone hasn't already marked the 244 * request as dirty (in which case we don't care). 245 */ 246 spin_unlock(&inode->i_lock); 247 ret = nfs_wait_on_request(req); 248 nfs_release_request(req); 249 if (ret != 0) 250 return ret; 251 spin_lock(&inode->i_lock); 252 } 253 if (test_bit(PG_CLEAN, &req->wb_flags)) { 254 spin_unlock(&inode->i_lock); 255 BUG(); 256 } 257 if (nfs_set_page_writeback(page) != 0) { 258 spin_unlock(&inode->i_lock); 259 BUG(); 260 } 261 spin_unlock(&inode->i_lock); 262 if (!nfs_pageio_add_request(pgio, req)) { 263 nfs_redirty_request(req); 264 return pgio->pg_error; 265 } 266 return 0; 267 } 268 269 static int nfs_do_writepage(struct page *page, struct writeback_control *wbc, struct nfs_pageio_descriptor *pgio) 270 { 271 struct inode *inode = page->mapping->host; 272 273 nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGE); 274 nfs_add_stats(inode, NFSIOS_WRITEPAGES, 1); 275 276 nfs_pageio_cond_complete(pgio, page->index); 277 return nfs_page_async_flush(pgio, page); 278 } 279 280 /* 281 * Write an mmapped page to the server. 282 */ 283 static int nfs_writepage_locked(struct page *page, struct writeback_control *wbc) 284 { 285 struct nfs_pageio_descriptor pgio; 286 int err; 287 288 nfs_pageio_init_write(&pgio, page->mapping->host, wb_priority(wbc)); 289 err = nfs_do_writepage(page, wbc, &pgio); 290 nfs_pageio_complete(&pgio); 291 if (err < 0) 292 return err; 293 if (pgio.pg_error < 0) 294 return pgio.pg_error; 295 return 0; 296 } 297 298 int nfs_writepage(struct page *page, struct writeback_control *wbc) 299 { 300 int ret; 301 302 ret = nfs_writepage_locked(page, wbc); 303 unlock_page(page); 304 return ret; 305 } 306 307 static int nfs_writepages_callback(struct page *page, struct writeback_control *wbc, void *data) 308 { 309 int ret; 310 311 ret = nfs_do_writepage(page, wbc, data); 312 unlock_page(page); 313 return ret; 314 } 315 316 int nfs_writepages(struct address_space *mapping, struct writeback_control *wbc) 317 { 318 struct inode *inode = mapping->host; 319 unsigned long *bitlock = &NFS_I(inode)->flags; 320 struct nfs_pageio_descriptor pgio; 321 int err; 322 323 /* Stop dirtying of new pages while we sync */ 324 err = wait_on_bit_lock(bitlock, NFS_INO_FLUSHING, 325 nfs_wait_bit_killable, TASK_KILLABLE); 326 if (err) 327 goto out_err; 328 329 nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGES); 330 331 nfs_pageio_init_write(&pgio, inode, wb_priority(wbc)); 332 err = write_cache_pages(mapping, wbc, nfs_writepages_callback, &pgio); 333 nfs_pageio_complete(&pgio); 334 335 clear_bit_unlock(NFS_INO_FLUSHING, bitlock); 336 smp_mb__after_clear_bit(); 337 wake_up_bit(bitlock, NFS_INO_FLUSHING); 338 339 if (err < 0) 340 goto out_err; 341 err = pgio.pg_error; 342 if (err < 0) 343 goto out_err; 344 return 0; 345 out_err: 346 return err; 347 } 348 349 /* 350 * Insert a write request into an inode 351 */ 352 static int nfs_inode_add_request(struct inode *inode, struct nfs_page *req) 353 { 354 struct nfs_inode *nfsi = NFS_I(inode); 355 int error; 356 357 error = radix_tree_preload(GFP_NOFS); 358 if (error != 0) 359 goto out; 360 361 /* Lock the request! */ 362 nfs_lock_request_dontget(req); 363 364 spin_lock(&inode->i_lock); 365 error = radix_tree_insert(&nfsi->nfs_page_tree, req->wb_index, req); 366 BUG_ON(error); 367 if (!nfsi->npages) { 368 igrab(inode); 369 if (nfs_have_delegation(inode, FMODE_WRITE)) 370 nfsi->change_attr++; 371 } 372 SetPagePrivate(req->wb_page); 373 set_page_private(req->wb_page, (unsigned long)req); 374 nfsi->npages++; 375 kref_get(&req->wb_kref); 376 radix_tree_tag_set(&nfsi->nfs_page_tree, req->wb_index, 377 NFS_PAGE_TAG_LOCKED); 378 spin_unlock(&inode->i_lock); 379 radix_tree_preload_end(); 380 out: 381 return error; 382 } 383 384 /* 385 * Remove a write request from an inode 386 */ 387 static void nfs_inode_remove_request(struct nfs_page *req) 388 { 389 struct inode *inode = req->wb_context->path.dentry->d_inode; 390 struct nfs_inode *nfsi = NFS_I(inode); 391 392 BUG_ON (!NFS_WBACK_BUSY(req)); 393 394 spin_lock(&inode->i_lock); 395 set_page_private(req->wb_page, 0); 396 ClearPagePrivate(req->wb_page); 397 radix_tree_delete(&nfsi->nfs_page_tree, req->wb_index); 398 nfsi->npages--; 399 if (!nfsi->npages) { 400 spin_unlock(&inode->i_lock); 401 iput(inode); 402 } else 403 spin_unlock(&inode->i_lock); 404 nfs_clear_request(req); 405 nfs_release_request(req); 406 } 407 408 static void 409 nfs_mark_request_dirty(struct nfs_page *req) 410 { 411 __set_page_dirty_nobuffers(req->wb_page); 412 } 413 414 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4) 415 /* 416 * Add a request to the inode's commit list. 417 */ 418 static void 419 nfs_mark_request_commit(struct nfs_page *req) 420 { 421 struct inode *inode = req->wb_context->path.dentry->d_inode; 422 struct nfs_inode *nfsi = NFS_I(inode); 423 424 spin_lock(&inode->i_lock); 425 set_bit(PG_CLEAN, &(req)->wb_flags); 426 radix_tree_tag_set(&nfsi->nfs_page_tree, 427 req->wb_index, 428 NFS_PAGE_TAG_COMMIT); 429 spin_unlock(&inode->i_lock); 430 inc_zone_page_state(req->wb_page, NR_UNSTABLE_NFS); 431 inc_bdi_stat(req->wb_page->mapping->backing_dev_info, BDI_RECLAIMABLE); 432 __mark_inode_dirty(inode, I_DIRTY_DATASYNC); 433 } 434 435 static int 436 nfs_clear_request_commit(struct nfs_page *req) 437 { 438 struct page *page = req->wb_page; 439 440 if (test_and_clear_bit(PG_CLEAN, &(req)->wb_flags)) { 441 dec_zone_page_state(page, NR_UNSTABLE_NFS); 442 dec_bdi_stat(page->mapping->backing_dev_info, BDI_RECLAIMABLE); 443 return 1; 444 } 445 return 0; 446 } 447 448 static inline 449 int nfs_write_need_commit(struct nfs_write_data *data) 450 { 451 return data->verf.committed != NFS_FILE_SYNC; 452 } 453 454 static inline 455 int nfs_reschedule_unstable_write(struct nfs_page *req) 456 { 457 if (test_and_clear_bit(PG_NEED_COMMIT, &req->wb_flags)) { 458 nfs_mark_request_commit(req); 459 return 1; 460 } 461 if (test_and_clear_bit(PG_NEED_RESCHED, &req->wb_flags)) { 462 nfs_mark_request_dirty(req); 463 return 1; 464 } 465 return 0; 466 } 467 #else 468 static inline void 469 nfs_mark_request_commit(struct nfs_page *req) 470 { 471 } 472 473 static inline int 474 nfs_clear_request_commit(struct nfs_page *req) 475 { 476 return 0; 477 } 478 479 static inline 480 int nfs_write_need_commit(struct nfs_write_data *data) 481 { 482 return 0; 483 } 484 485 static inline 486 int nfs_reschedule_unstable_write(struct nfs_page *req) 487 { 488 return 0; 489 } 490 #endif 491 492 /* 493 * Wait for a request to complete. 494 * 495 * Interruptible by fatal signals only. 496 */ 497 static int nfs_wait_on_requests_locked(struct inode *inode, pgoff_t idx_start, unsigned int npages) 498 { 499 struct nfs_inode *nfsi = NFS_I(inode); 500 struct nfs_page *req; 501 pgoff_t idx_end, next; 502 unsigned int res = 0; 503 int error; 504 505 if (npages == 0) 506 idx_end = ~0; 507 else 508 idx_end = idx_start + npages - 1; 509 510 next = idx_start; 511 while (radix_tree_gang_lookup_tag(&nfsi->nfs_page_tree, (void **)&req, next, 1, NFS_PAGE_TAG_LOCKED)) { 512 if (req->wb_index > idx_end) 513 break; 514 515 next = req->wb_index + 1; 516 BUG_ON(!NFS_WBACK_BUSY(req)); 517 518 kref_get(&req->wb_kref); 519 spin_unlock(&inode->i_lock); 520 error = nfs_wait_on_request(req); 521 nfs_release_request(req); 522 spin_lock(&inode->i_lock); 523 if (error < 0) 524 return error; 525 res++; 526 } 527 return res; 528 } 529 530 static void nfs_cancel_commit_list(struct list_head *head) 531 { 532 struct nfs_page *req; 533 534 while(!list_empty(head)) { 535 req = nfs_list_entry(head->next); 536 nfs_list_remove_request(req); 537 nfs_clear_request_commit(req); 538 nfs_inode_remove_request(req); 539 nfs_unlock_request(req); 540 } 541 } 542 543 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4) 544 static int 545 nfs_need_commit(struct nfs_inode *nfsi) 546 { 547 return radix_tree_tagged(&nfsi->nfs_page_tree, NFS_PAGE_TAG_COMMIT); 548 } 549 550 /* 551 * nfs_scan_commit - Scan an inode for commit requests 552 * @inode: NFS inode to scan 553 * @dst: destination list 554 * @idx_start: lower bound of page->index to scan. 555 * @npages: idx_start + npages sets the upper bound to scan. 556 * 557 * Moves requests from the inode's 'commit' request list. 558 * The requests are *not* checked to ensure that they form a contiguous set. 559 */ 560 static int 561 nfs_scan_commit(struct inode *inode, struct list_head *dst, pgoff_t idx_start, unsigned int npages) 562 { 563 struct nfs_inode *nfsi = NFS_I(inode); 564 565 if (!nfs_need_commit(nfsi)) 566 return 0; 567 568 return nfs_scan_list(nfsi, dst, idx_start, npages, NFS_PAGE_TAG_COMMIT); 569 } 570 #else 571 static inline int nfs_need_commit(struct nfs_inode *nfsi) 572 { 573 return 0; 574 } 575 576 static inline int nfs_scan_commit(struct inode *inode, struct list_head *dst, pgoff_t idx_start, unsigned int npages) 577 { 578 return 0; 579 } 580 #endif 581 582 /* 583 * Search for an existing write request, and attempt to update 584 * it to reflect a new dirty region on a given page. 585 * 586 * If the attempt fails, then the existing request is flushed out 587 * to disk. 588 */ 589 static struct nfs_page *nfs_try_to_update_request(struct inode *inode, 590 struct page *page, 591 unsigned int offset, 592 unsigned int bytes) 593 { 594 struct nfs_page *req; 595 unsigned int rqend; 596 unsigned int end; 597 int error; 598 599 if (!PagePrivate(page)) 600 return NULL; 601 602 end = offset + bytes; 603 spin_lock(&inode->i_lock); 604 605 for (;;) { 606 req = nfs_page_find_request_locked(page); 607 if (req == NULL) 608 goto out_unlock; 609 610 rqend = req->wb_offset + req->wb_bytes; 611 /* 612 * Tell the caller to flush out the request if 613 * the offsets are non-contiguous. 614 * Note: nfs_flush_incompatible() will already 615 * have flushed out requests having wrong owners. 616 */ 617 if (offset > rqend 618 || end < req->wb_offset) 619 goto out_flushme; 620 621 if (nfs_set_page_tag_locked(req)) 622 break; 623 624 /* The request is locked, so wait and then retry */ 625 spin_unlock(&inode->i_lock); 626 error = nfs_wait_on_request(req); 627 nfs_release_request(req); 628 if (error != 0) 629 goto out_err; 630 spin_lock(&inode->i_lock); 631 } 632 633 if (nfs_clear_request_commit(req)) 634 radix_tree_tag_clear(&NFS_I(inode)->nfs_page_tree, 635 req->wb_index, NFS_PAGE_TAG_COMMIT); 636 637 /* Okay, the request matches. Update the region */ 638 if (offset < req->wb_offset) { 639 req->wb_offset = offset; 640 req->wb_pgbase = offset; 641 } 642 if (end > rqend) 643 req->wb_bytes = end - req->wb_offset; 644 else 645 req->wb_bytes = rqend - req->wb_offset; 646 out_unlock: 647 spin_unlock(&inode->i_lock); 648 return req; 649 out_flushme: 650 spin_unlock(&inode->i_lock); 651 nfs_release_request(req); 652 error = nfs_wb_page(inode, page); 653 out_err: 654 return ERR_PTR(error); 655 } 656 657 /* 658 * Try to update an existing write request, or create one if there is none. 659 * 660 * Note: Should always be called with the Page Lock held to prevent races 661 * if we have to add a new request. Also assumes that the caller has 662 * already called nfs_flush_incompatible() if necessary. 663 */ 664 static struct nfs_page * nfs_setup_write_request(struct nfs_open_context* ctx, 665 struct page *page, unsigned int offset, unsigned int bytes) 666 { 667 struct inode *inode = page->mapping->host; 668 struct nfs_page *req; 669 int error; 670 671 req = nfs_try_to_update_request(inode, page, offset, bytes); 672 if (req != NULL) 673 goto out; 674 req = nfs_create_request(ctx, inode, page, offset, bytes); 675 if (IS_ERR(req)) 676 goto out; 677 error = nfs_inode_add_request(inode, req); 678 if (error != 0) { 679 nfs_release_request(req); 680 req = ERR_PTR(error); 681 } 682 out: 683 return req; 684 } 685 686 static int nfs_writepage_setup(struct nfs_open_context *ctx, struct page *page, 687 unsigned int offset, unsigned int count) 688 { 689 struct nfs_page *req; 690 691 req = nfs_setup_write_request(ctx, page, offset, count); 692 if (IS_ERR(req)) 693 return PTR_ERR(req); 694 /* Update file length */ 695 nfs_grow_file(page, offset, count); 696 nfs_mark_uptodate(page, req->wb_pgbase, req->wb_bytes); 697 nfs_clear_page_tag_locked(req); 698 return 0; 699 } 700 701 int nfs_flush_incompatible(struct file *file, struct page *page) 702 { 703 struct nfs_open_context *ctx = nfs_file_open_context(file); 704 struct nfs_page *req; 705 int do_flush, status; 706 /* 707 * Look for a request corresponding to this page. If there 708 * is one, and it belongs to another file, we flush it out 709 * before we try to copy anything into the page. Do this 710 * due to the lack of an ACCESS-type call in NFSv2. 711 * Also do the same if we find a request from an existing 712 * dropped page. 713 */ 714 do { 715 req = nfs_page_find_request(page); 716 if (req == NULL) 717 return 0; 718 do_flush = req->wb_page != page || req->wb_context != ctx; 719 nfs_release_request(req); 720 if (!do_flush) 721 return 0; 722 status = nfs_wb_page(page->mapping->host, page); 723 } while (status == 0); 724 return status; 725 } 726 727 /* 728 * If the page cache is marked as unsafe or invalid, then we can't rely on 729 * the PageUptodate() flag. In this case, we will need to turn off 730 * write optimisations that depend on the page contents being correct. 731 */ 732 static int nfs_write_pageuptodate(struct page *page, struct inode *inode) 733 { 734 return PageUptodate(page) && 735 !(NFS_I(inode)->cache_validity & (NFS_INO_REVAL_PAGECACHE|NFS_INO_INVALID_DATA)); 736 } 737 738 /* 739 * Update and possibly write a cached page of an NFS file. 740 * 741 * XXX: Keep an eye on generic_file_read to make sure it doesn't do bad 742 * things with a page scheduled for an RPC call (e.g. invalidate it). 743 */ 744 int nfs_updatepage(struct file *file, struct page *page, 745 unsigned int offset, unsigned int count) 746 { 747 struct nfs_open_context *ctx = nfs_file_open_context(file); 748 struct inode *inode = page->mapping->host; 749 int status = 0; 750 751 nfs_inc_stats(inode, NFSIOS_VFSUPDATEPAGE); 752 753 dprintk("NFS: nfs_updatepage(%s/%s %d@%lld)\n", 754 file->f_path.dentry->d_parent->d_name.name, 755 file->f_path.dentry->d_name.name, count, 756 (long long)(page_offset(page) + offset)); 757 758 /* If we're not using byte range locks, and we know the page 759 * is up to date, it may be more efficient to extend the write 760 * to cover the entire page in order to avoid fragmentation 761 * inefficiencies. 762 */ 763 if (nfs_write_pageuptodate(page, inode) && 764 inode->i_flock == NULL && 765 !(file->f_flags & O_SYNC)) { 766 count = max(count + offset, nfs_page_length(page)); 767 offset = 0; 768 } 769 770 status = nfs_writepage_setup(ctx, page, offset, count); 771 if (status < 0) 772 nfs_set_pageerror(page); 773 else 774 __set_page_dirty_nobuffers(page); 775 776 dprintk("NFS: nfs_updatepage returns %d (isize %lld)\n", 777 status, (long long)i_size_read(inode)); 778 return status; 779 } 780 781 static void nfs_writepage_release(struct nfs_page *req) 782 { 783 784 if (PageError(req->wb_page) || !nfs_reschedule_unstable_write(req)) { 785 nfs_end_page_writeback(req->wb_page); 786 nfs_inode_remove_request(req); 787 } else 788 nfs_end_page_writeback(req->wb_page); 789 nfs_clear_page_tag_locked(req); 790 } 791 792 static int flush_task_priority(int how) 793 { 794 switch (how & (FLUSH_HIGHPRI|FLUSH_LOWPRI)) { 795 case FLUSH_HIGHPRI: 796 return RPC_PRIORITY_HIGH; 797 case FLUSH_LOWPRI: 798 return RPC_PRIORITY_LOW; 799 } 800 return RPC_PRIORITY_NORMAL; 801 } 802 803 /* 804 * Set up the argument/result storage required for the RPC call. 805 */ 806 static int nfs_write_rpcsetup(struct nfs_page *req, 807 struct nfs_write_data *data, 808 const struct rpc_call_ops *call_ops, 809 unsigned int count, unsigned int offset, 810 int how) 811 { 812 struct inode *inode = req->wb_context->path.dentry->d_inode; 813 int flags = (how & FLUSH_SYNC) ? 0 : RPC_TASK_ASYNC; 814 int priority = flush_task_priority(how); 815 struct rpc_task *task; 816 struct rpc_message msg = { 817 .rpc_argp = &data->args, 818 .rpc_resp = &data->res, 819 .rpc_cred = req->wb_context->cred, 820 }; 821 struct rpc_task_setup task_setup_data = { 822 .rpc_client = NFS_CLIENT(inode), 823 .task = &data->task, 824 .rpc_message = &msg, 825 .callback_ops = call_ops, 826 .callback_data = data, 827 .workqueue = nfsiod_workqueue, 828 .flags = flags, 829 .priority = priority, 830 }; 831 832 /* Set up the RPC argument and reply structs 833 * NB: take care not to mess about with data->commit et al. */ 834 835 data->req = req; 836 data->inode = inode = req->wb_context->path.dentry->d_inode; 837 data->cred = msg.rpc_cred; 838 839 data->args.fh = NFS_FH(inode); 840 data->args.offset = req_offset(req) + offset; 841 data->args.pgbase = req->wb_pgbase + offset; 842 data->args.pages = data->pagevec; 843 data->args.count = count; 844 data->args.context = get_nfs_open_context(req->wb_context); 845 data->args.stable = NFS_UNSTABLE; 846 if (how & FLUSH_STABLE) { 847 data->args.stable = NFS_DATA_SYNC; 848 if (!nfs_need_commit(NFS_I(inode))) 849 data->args.stable = NFS_FILE_SYNC; 850 } 851 852 data->res.fattr = &data->fattr; 853 data->res.count = count; 854 data->res.verf = &data->verf; 855 nfs_fattr_init(&data->fattr); 856 857 /* Set up the initial task struct. */ 858 NFS_PROTO(inode)->write_setup(data, &msg); 859 860 dprintk("NFS: %5u initiated write call " 861 "(req %s/%lld, %u bytes @ offset %llu)\n", 862 data->task.tk_pid, 863 inode->i_sb->s_id, 864 (long long)NFS_FILEID(inode), 865 count, 866 (unsigned long long)data->args.offset); 867 868 task = rpc_run_task(&task_setup_data); 869 if (IS_ERR(task)) 870 return PTR_ERR(task); 871 rpc_put_task(task); 872 return 0; 873 } 874 875 /* If a nfs_flush_* function fails, it should remove reqs from @head and 876 * call this on each, which will prepare them to be retried on next 877 * writeback using standard nfs. 878 */ 879 static void nfs_redirty_request(struct nfs_page *req) 880 { 881 nfs_mark_request_dirty(req); 882 nfs_end_page_writeback(req->wb_page); 883 nfs_clear_page_tag_locked(req); 884 } 885 886 /* 887 * Generate multiple small requests to write out a single 888 * contiguous dirty area on one page. 889 */ 890 static int nfs_flush_multi(struct inode *inode, struct list_head *head, unsigned int npages, size_t count, int how) 891 { 892 struct nfs_page *req = nfs_list_entry(head->next); 893 struct page *page = req->wb_page; 894 struct nfs_write_data *data; 895 size_t wsize = NFS_SERVER(inode)->wsize, nbytes; 896 unsigned int offset; 897 int requests = 0; 898 int ret = 0; 899 LIST_HEAD(list); 900 901 nfs_list_remove_request(req); 902 903 nbytes = count; 904 do { 905 size_t len = min(nbytes, wsize); 906 907 data = nfs_writedata_alloc(1); 908 if (!data) 909 goto out_bad; 910 list_add(&data->pages, &list); 911 requests++; 912 nbytes -= len; 913 } while (nbytes != 0); 914 atomic_set(&req->wb_complete, requests); 915 916 ClearPageError(page); 917 offset = 0; 918 nbytes = count; 919 do { 920 int ret2; 921 922 data = list_entry(list.next, struct nfs_write_data, pages); 923 list_del_init(&data->pages); 924 925 data->pagevec[0] = page; 926 927 if (nbytes < wsize) 928 wsize = nbytes; 929 ret2 = nfs_write_rpcsetup(req, data, &nfs_write_partial_ops, 930 wsize, offset, how); 931 if (ret == 0) 932 ret = ret2; 933 offset += wsize; 934 nbytes -= wsize; 935 } while (nbytes != 0); 936 937 return ret; 938 939 out_bad: 940 while (!list_empty(&list)) { 941 data = list_entry(list.next, struct nfs_write_data, pages); 942 list_del(&data->pages); 943 nfs_writedata_release(data); 944 } 945 nfs_redirty_request(req); 946 return -ENOMEM; 947 } 948 949 /* 950 * Create an RPC task for the given write request and kick it. 951 * The page must have been locked by the caller. 952 * 953 * It may happen that the page we're passed is not marked dirty. 954 * This is the case if nfs_updatepage detects a conflicting request 955 * that has been written but not committed. 956 */ 957 static int nfs_flush_one(struct inode *inode, struct list_head *head, unsigned int npages, size_t count, int how) 958 { 959 struct nfs_page *req; 960 struct page **pages; 961 struct nfs_write_data *data; 962 963 data = nfs_writedata_alloc(npages); 964 if (!data) 965 goto out_bad; 966 967 pages = data->pagevec; 968 while (!list_empty(head)) { 969 req = nfs_list_entry(head->next); 970 nfs_list_remove_request(req); 971 nfs_list_add_request(req, &data->pages); 972 ClearPageError(req->wb_page); 973 *pages++ = req->wb_page; 974 } 975 req = nfs_list_entry(data->pages.next); 976 977 /* Set up the argument struct */ 978 return nfs_write_rpcsetup(req, data, &nfs_write_full_ops, count, 0, how); 979 out_bad: 980 while (!list_empty(head)) { 981 req = nfs_list_entry(head->next); 982 nfs_list_remove_request(req); 983 nfs_redirty_request(req); 984 } 985 return -ENOMEM; 986 } 987 988 static void nfs_pageio_init_write(struct nfs_pageio_descriptor *pgio, 989 struct inode *inode, int ioflags) 990 { 991 size_t wsize = NFS_SERVER(inode)->wsize; 992 993 if (wsize < PAGE_CACHE_SIZE) 994 nfs_pageio_init(pgio, inode, nfs_flush_multi, wsize, ioflags); 995 else 996 nfs_pageio_init(pgio, inode, nfs_flush_one, wsize, ioflags); 997 } 998 999 /* 1000 * Handle a write reply that flushed part of a page. 1001 */ 1002 static void nfs_writeback_done_partial(struct rpc_task *task, void *calldata) 1003 { 1004 struct nfs_write_data *data = calldata; 1005 1006 dprintk("NFS: %5u write(%s/%lld %d@%lld)", 1007 task->tk_pid, 1008 data->req->wb_context->path.dentry->d_inode->i_sb->s_id, 1009 (long long) 1010 NFS_FILEID(data->req->wb_context->path.dentry->d_inode), 1011 data->req->wb_bytes, (long long)req_offset(data->req)); 1012 1013 nfs_writeback_done(task, data); 1014 } 1015 1016 static void nfs_writeback_release_partial(void *calldata) 1017 { 1018 struct nfs_write_data *data = calldata; 1019 struct nfs_page *req = data->req; 1020 struct page *page = req->wb_page; 1021 int status = data->task.tk_status; 1022 1023 if (status < 0) { 1024 nfs_set_pageerror(page); 1025 nfs_context_set_write_error(req->wb_context, status); 1026 dprintk(", error = %d\n", status); 1027 goto out; 1028 } 1029 1030 if (nfs_write_need_commit(data)) { 1031 struct inode *inode = page->mapping->host; 1032 1033 spin_lock(&inode->i_lock); 1034 if (test_bit(PG_NEED_RESCHED, &req->wb_flags)) { 1035 /* Do nothing we need to resend the writes */ 1036 } else if (!test_and_set_bit(PG_NEED_COMMIT, &req->wb_flags)) { 1037 memcpy(&req->wb_verf, &data->verf, sizeof(req->wb_verf)); 1038 dprintk(" defer commit\n"); 1039 } else if (memcmp(&req->wb_verf, &data->verf, sizeof(req->wb_verf))) { 1040 set_bit(PG_NEED_RESCHED, &req->wb_flags); 1041 clear_bit(PG_NEED_COMMIT, &req->wb_flags); 1042 dprintk(" server reboot detected\n"); 1043 } 1044 spin_unlock(&inode->i_lock); 1045 } else 1046 dprintk(" OK\n"); 1047 1048 out: 1049 if (atomic_dec_and_test(&req->wb_complete)) 1050 nfs_writepage_release(req); 1051 nfs_writedata_release(calldata); 1052 } 1053 1054 #if defined(CONFIG_NFS_V4_1) 1055 void nfs_write_prepare(struct rpc_task *task, void *calldata) 1056 { 1057 struct nfs_write_data *data = calldata; 1058 struct nfs_client *clp = (NFS_SERVER(data->inode))->nfs_client; 1059 1060 if (nfs4_setup_sequence(clp, &data->args.seq_args, 1061 &data->res.seq_res, 1, task)) 1062 return; 1063 rpc_call_start(task); 1064 } 1065 #endif /* CONFIG_NFS_V4_1 */ 1066 1067 static const struct rpc_call_ops nfs_write_partial_ops = { 1068 #if defined(CONFIG_NFS_V4_1) 1069 .rpc_call_prepare = nfs_write_prepare, 1070 #endif /* CONFIG_NFS_V4_1 */ 1071 .rpc_call_done = nfs_writeback_done_partial, 1072 .rpc_release = nfs_writeback_release_partial, 1073 }; 1074 1075 /* 1076 * Handle a write reply that flushes a whole page. 1077 * 1078 * FIXME: There is an inherent race with invalidate_inode_pages and 1079 * writebacks since the page->count is kept > 1 for as long 1080 * as the page has a write request pending. 1081 */ 1082 static void nfs_writeback_done_full(struct rpc_task *task, void *calldata) 1083 { 1084 struct nfs_write_data *data = calldata; 1085 1086 nfs_writeback_done(task, data); 1087 } 1088 1089 static void nfs_writeback_release_full(void *calldata) 1090 { 1091 struct nfs_write_data *data = calldata; 1092 int status = data->task.tk_status; 1093 1094 /* Update attributes as result of writeback. */ 1095 while (!list_empty(&data->pages)) { 1096 struct nfs_page *req = nfs_list_entry(data->pages.next); 1097 struct page *page = req->wb_page; 1098 1099 nfs_list_remove_request(req); 1100 1101 dprintk("NFS: %5u write (%s/%lld %d@%lld)", 1102 data->task.tk_pid, 1103 req->wb_context->path.dentry->d_inode->i_sb->s_id, 1104 (long long)NFS_FILEID(req->wb_context->path.dentry->d_inode), 1105 req->wb_bytes, 1106 (long long)req_offset(req)); 1107 1108 if (status < 0) { 1109 nfs_set_pageerror(page); 1110 nfs_context_set_write_error(req->wb_context, status); 1111 dprintk(", error = %d\n", status); 1112 goto remove_request; 1113 } 1114 1115 if (nfs_write_need_commit(data)) { 1116 memcpy(&req->wb_verf, &data->verf, sizeof(req->wb_verf)); 1117 nfs_mark_request_commit(req); 1118 nfs_end_page_writeback(page); 1119 dprintk(" marked for commit\n"); 1120 goto next; 1121 } 1122 dprintk(" OK\n"); 1123 remove_request: 1124 nfs_end_page_writeback(page); 1125 nfs_inode_remove_request(req); 1126 next: 1127 nfs_clear_page_tag_locked(req); 1128 } 1129 nfs_writedata_release(calldata); 1130 } 1131 1132 static const struct rpc_call_ops nfs_write_full_ops = { 1133 #if defined(CONFIG_NFS_V4_1) 1134 .rpc_call_prepare = nfs_write_prepare, 1135 #endif /* CONFIG_NFS_V4_1 */ 1136 .rpc_call_done = nfs_writeback_done_full, 1137 .rpc_release = nfs_writeback_release_full, 1138 }; 1139 1140 1141 /* 1142 * This function is called when the WRITE call is complete. 1143 */ 1144 int nfs_writeback_done(struct rpc_task *task, struct nfs_write_data *data) 1145 { 1146 struct nfs_writeargs *argp = &data->args; 1147 struct nfs_writeres *resp = &data->res; 1148 struct nfs_server *server = NFS_SERVER(data->inode); 1149 int status; 1150 1151 dprintk("NFS: %5u nfs_writeback_done (status %d)\n", 1152 task->tk_pid, task->tk_status); 1153 1154 /* 1155 * ->write_done will attempt to use post-op attributes to detect 1156 * conflicting writes by other clients. A strict interpretation 1157 * of close-to-open would allow us to continue caching even if 1158 * another writer had changed the file, but some applications 1159 * depend on tighter cache coherency when writing. 1160 */ 1161 status = NFS_PROTO(data->inode)->write_done(task, data); 1162 if (status != 0) 1163 return status; 1164 nfs_add_stats(data->inode, NFSIOS_SERVERWRITTENBYTES, resp->count); 1165 1166 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4) 1167 if (resp->verf->committed < argp->stable && task->tk_status >= 0) { 1168 /* We tried a write call, but the server did not 1169 * commit data to stable storage even though we 1170 * requested it. 1171 * Note: There is a known bug in Tru64 < 5.0 in which 1172 * the server reports NFS_DATA_SYNC, but performs 1173 * NFS_FILE_SYNC. We therefore implement this checking 1174 * as a dprintk() in order to avoid filling syslog. 1175 */ 1176 static unsigned long complain; 1177 1178 if (time_before(complain, jiffies)) { 1179 dprintk("NFS: faulty NFS server %s:" 1180 " (committed = %d) != (stable = %d)\n", 1181 server->nfs_client->cl_hostname, 1182 resp->verf->committed, argp->stable); 1183 complain = jiffies + 300 * HZ; 1184 } 1185 } 1186 #endif 1187 /* Is this a short write? */ 1188 if (task->tk_status >= 0 && resp->count < argp->count) { 1189 static unsigned long complain; 1190 1191 nfs_inc_stats(data->inode, NFSIOS_SHORTWRITE); 1192 1193 /* Has the server at least made some progress? */ 1194 if (resp->count != 0) { 1195 /* Was this an NFSv2 write or an NFSv3 stable write? */ 1196 if (resp->verf->committed != NFS_UNSTABLE) { 1197 /* Resend from where the server left off */ 1198 argp->offset += resp->count; 1199 argp->pgbase += resp->count; 1200 argp->count -= resp->count; 1201 } else { 1202 /* Resend as a stable write in order to avoid 1203 * headaches in the case of a server crash. 1204 */ 1205 argp->stable = NFS_FILE_SYNC; 1206 } 1207 nfs4_restart_rpc(task, server->nfs_client); 1208 return -EAGAIN; 1209 } 1210 if (time_before(complain, jiffies)) { 1211 printk(KERN_WARNING 1212 "NFS: Server wrote zero bytes, expected %u.\n", 1213 argp->count); 1214 complain = jiffies + 300 * HZ; 1215 } 1216 /* Can't do anything about it except throw an error. */ 1217 task->tk_status = -EIO; 1218 } 1219 nfs4_sequence_free_slot(server->nfs_client, &data->res.seq_res); 1220 return 0; 1221 } 1222 1223 1224 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4) 1225 void nfs_commitdata_release(void *data) 1226 { 1227 struct nfs_write_data *wdata = data; 1228 1229 put_nfs_open_context(wdata->args.context); 1230 nfs_commit_free(wdata); 1231 } 1232 1233 /* 1234 * Set up the argument/result storage required for the RPC call. 1235 */ 1236 static int nfs_commit_rpcsetup(struct list_head *head, 1237 struct nfs_write_data *data, 1238 int how) 1239 { 1240 struct nfs_page *first = nfs_list_entry(head->next); 1241 struct inode *inode = first->wb_context->path.dentry->d_inode; 1242 int flags = (how & FLUSH_SYNC) ? 0 : RPC_TASK_ASYNC; 1243 int priority = flush_task_priority(how); 1244 struct rpc_task *task; 1245 struct rpc_message msg = { 1246 .rpc_argp = &data->args, 1247 .rpc_resp = &data->res, 1248 .rpc_cred = first->wb_context->cred, 1249 }; 1250 struct rpc_task_setup task_setup_data = { 1251 .task = &data->task, 1252 .rpc_client = NFS_CLIENT(inode), 1253 .rpc_message = &msg, 1254 .callback_ops = &nfs_commit_ops, 1255 .callback_data = data, 1256 .workqueue = nfsiod_workqueue, 1257 .flags = flags, 1258 .priority = priority, 1259 }; 1260 1261 /* Set up the RPC argument and reply structs 1262 * NB: take care not to mess about with data->commit et al. */ 1263 1264 list_splice_init(head, &data->pages); 1265 1266 data->inode = inode; 1267 data->cred = msg.rpc_cred; 1268 1269 data->args.fh = NFS_FH(data->inode); 1270 /* Note: we always request a commit of the entire inode */ 1271 data->args.offset = 0; 1272 data->args.count = 0; 1273 data->args.context = get_nfs_open_context(first->wb_context); 1274 data->res.count = 0; 1275 data->res.fattr = &data->fattr; 1276 data->res.verf = &data->verf; 1277 nfs_fattr_init(&data->fattr); 1278 1279 /* Set up the initial task struct. */ 1280 NFS_PROTO(inode)->commit_setup(data, &msg); 1281 1282 dprintk("NFS: %5u initiated commit call\n", data->task.tk_pid); 1283 1284 task = rpc_run_task(&task_setup_data); 1285 if (IS_ERR(task)) 1286 return PTR_ERR(task); 1287 rpc_put_task(task); 1288 return 0; 1289 } 1290 1291 /* 1292 * Commit dirty pages 1293 */ 1294 static int 1295 nfs_commit_list(struct inode *inode, struct list_head *head, int how) 1296 { 1297 struct nfs_write_data *data; 1298 struct nfs_page *req; 1299 1300 data = nfs_commitdata_alloc(); 1301 1302 if (!data) 1303 goto out_bad; 1304 1305 /* Set up the argument struct */ 1306 return nfs_commit_rpcsetup(head, data, how); 1307 out_bad: 1308 while (!list_empty(head)) { 1309 req = nfs_list_entry(head->next); 1310 nfs_list_remove_request(req); 1311 nfs_mark_request_commit(req); 1312 dec_zone_page_state(req->wb_page, NR_UNSTABLE_NFS); 1313 dec_bdi_stat(req->wb_page->mapping->backing_dev_info, 1314 BDI_RECLAIMABLE); 1315 nfs_clear_page_tag_locked(req); 1316 } 1317 return -ENOMEM; 1318 } 1319 1320 /* 1321 * COMMIT call returned 1322 */ 1323 static void nfs_commit_done(struct rpc_task *task, void *calldata) 1324 { 1325 struct nfs_write_data *data = calldata; 1326 1327 dprintk("NFS: %5u nfs_commit_done (status %d)\n", 1328 task->tk_pid, task->tk_status); 1329 1330 /* Call the NFS version-specific code */ 1331 if (NFS_PROTO(data->inode)->commit_done(task, data) != 0) 1332 return; 1333 } 1334 1335 static void nfs_commit_release(void *calldata) 1336 { 1337 struct nfs_write_data *data = calldata; 1338 struct nfs_page *req; 1339 int status = data->task.tk_status; 1340 1341 while (!list_empty(&data->pages)) { 1342 req = nfs_list_entry(data->pages.next); 1343 nfs_list_remove_request(req); 1344 nfs_clear_request_commit(req); 1345 1346 dprintk("NFS: commit (%s/%lld %d@%lld)", 1347 req->wb_context->path.dentry->d_inode->i_sb->s_id, 1348 (long long)NFS_FILEID(req->wb_context->path.dentry->d_inode), 1349 req->wb_bytes, 1350 (long long)req_offset(req)); 1351 if (status < 0) { 1352 nfs_context_set_write_error(req->wb_context, status); 1353 nfs_inode_remove_request(req); 1354 dprintk(", error = %d\n", status); 1355 goto next; 1356 } 1357 1358 /* Okay, COMMIT succeeded, apparently. Check the verifier 1359 * returned by the server against all stored verfs. */ 1360 if (!memcmp(req->wb_verf.verifier, data->verf.verifier, sizeof(data->verf.verifier))) { 1361 /* We have a match */ 1362 nfs_inode_remove_request(req); 1363 dprintk(" OK\n"); 1364 goto next; 1365 } 1366 /* We have a mismatch. Write the page again */ 1367 dprintk(" mismatch\n"); 1368 nfs_mark_request_dirty(req); 1369 next: 1370 nfs_clear_page_tag_locked(req); 1371 } 1372 nfs_commitdata_release(calldata); 1373 } 1374 1375 static const struct rpc_call_ops nfs_commit_ops = { 1376 #if defined(CONFIG_NFS_V4_1) 1377 .rpc_call_prepare = nfs_write_prepare, 1378 #endif /* CONFIG_NFS_V4_1 */ 1379 .rpc_call_done = nfs_commit_done, 1380 .rpc_release = nfs_commit_release, 1381 }; 1382 1383 int nfs_commit_inode(struct inode *inode, int how) 1384 { 1385 LIST_HEAD(head); 1386 int res; 1387 1388 spin_lock(&inode->i_lock); 1389 res = nfs_scan_commit(inode, &head, 0, 0); 1390 spin_unlock(&inode->i_lock); 1391 if (res) { 1392 int error = nfs_commit_list(inode, &head, how); 1393 if (error < 0) 1394 return error; 1395 } 1396 return res; 1397 } 1398 #else 1399 static inline int nfs_commit_list(struct inode *inode, struct list_head *head, int how) 1400 { 1401 return 0; 1402 } 1403 #endif 1404 1405 long nfs_sync_mapping_wait(struct address_space *mapping, struct writeback_control *wbc, int how) 1406 { 1407 struct inode *inode = mapping->host; 1408 pgoff_t idx_start, idx_end; 1409 unsigned int npages = 0; 1410 LIST_HEAD(head); 1411 int nocommit = how & FLUSH_NOCOMMIT; 1412 long pages, ret; 1413 1414 /* FIXME */ 1415 if (wbc->range_cyclic) 1416 idx_start = 0; 1417 else { 1418 idx_start = wbc->range_start >> PAGE_CACHE_SHIFT; 1419 idx_end = wbc->range_end >> PAGE_CACHE_SHIFT; 1420 if (idx_end > idx_start) { 1421 pgoff_t l_npages = 1 + idx_end - idx_start; 1422 npages = l_npages; 1423 if (sizeof(npages) != sizeof(l_npages) && 1424 (pgoff_t)npages != l_npages) 1425 npages = 0; 1426 } 1427 } 1428 how &= ~FLUSH_NOCOMMIT; 1429 spin_lock(&inode->i_lock); 1430 do { 1431 ret = nfs_wait_on_requests_locked(inode, idx_start, npages); 1432 if (ret != 0) 1433 continue; 1434 if (nocommit) 1435 break; 1436 pages = nfs_scan_commit(inode, &head, idx_start, npages); 1437 if (pages == 0) 1438 break; 1439 if (how & FLUSH_INVALIDATE) { 1440 spin_unlock(&inode->i_lock); 1441 nfs_cancel_commit_list(&head); 1442 ret = pages; 1443 spin_lock(&inode->i_lock); 1444 continue; 1445 } 1446 pages += nfs_scan_commit(inode, &head, 0, 0); 1447 spin_unlock(&inode->i_lock); 1448 ret = nfs_commit_list(inode, &head, how); 1449 spin_lock(&inode->i_lock); 1450 1451 } while (ret >= 0); 1452 spin_unlock(&inode->i_lock); 1453 return ret; 1454 } 1455 1456 static int __nfs_write_mapping(struct address_space *mapping, struct writeback_control *wbc, int how) 1457 { 1458 int ret; 1459 1460 ret = nfs_writepages(mapping, wbc); 1461 if (ret < 0) 1462 goto out; 1463 ret = nfs_sync_mapping_wait(mapping, wbc, how); 1464 if (ret < 0) 1465 goto out; 1466 return 0; 1467 out: 1468 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 1469 return ret; 1470 } 1471 1472 /* Two pass sync: first using WB_SYNC_NONE, then WB_SYNC_ALL */ 1473 static int nfs_write_mapping(struct address_space *mapping, int how) 1474 { 1475 struct writeback_control wbc = { 1476 .bdi = mapping->backing_dev_info, 1477 .sync_mode = WB_SYNC_ALL, 1478 .nr_to_write = LONG_MAX, 1479 .range_start = 0, 1480 .range_end = LLONG_MAX, 1481 .for_writepages = 1, 1482 }; 1483 1484 return __nfs_write_mapping(mapping, &wbc, how); 1485 } 1486 1487 /* 1488 * flush the inode to disk. 1489 */ 1490 int nfs_wb_all(struct inode *inode) 1491 { 1492 return nfs_write_mapping(inode->i_mapping, 0); 1493 } 1494 1495 int nfs_wb_nocommit(struct inode *inode) 1496 { 1497 return nfs_write_mapping(inode->i_mapping, FLUSH_NOCOMMIT); 1498 } 1499 1500 int nfs_wb_page_cancel(struct inode *inode, struct page *page) 1501 { 1502 struct nfs_page *req; 1503 loff_t range_start = page_offset(page); 1504 loff_t range_end = range_start + (loff_t)(PAGE_CACHE_SIZE - 1); 1505 struct writeback_control wbc = { 1506 .bdi = page->mapping->backing_dev_info, 1507 .sync_mode = WB_SYNC_ALL, 1508 .nr_to_write = LONG_MAX, 1509 .range_start = range_start, 1510 .range_end = range_end, 1511 }; 1512 int ret = 0; 1513 1514 BUG_ON(!PageLocked(page)); 1515 for (;;) { 1516 req = nfs_page_find_request(page); 1517 if (req == NULL) 1518 goto out; 1519 if (test_bit(PG_CLEAN, &req->wb_flags)) { 1520 nfs_release_request(req); 1521 break; 1522 } 1523 if (nfs_lock_request_dontget(req)) { 1524 nfs_inode_remove_request(req); 1525 /* 1526 * In case nfs_inode_remove_request has marked the 1527 * page as being dirty 1528 */ 1529 cancel_dirty_page(page, PAGE_CACHE_SIZE); 1530 nfs_unlock_request(req); 1531 break; 1532 } 1533 ret = nfs_wait_on_request(req); 1534 if (ret < 0) 1535 goto out; 1536 } 1537 if (!PagePrivate(page)) 1538 return 0; 1539 ret = nfs_sync_mapping_wait(page->mapping, &wbc, FLUSH_INVALIDATE); 1540 out: 1541 return ret; 1542 } 1543 1544 static int nfs_wb_page_priority(struct inode *inode, struct page *page, 1545 int how) 1546 { 1547 loff_t range_start = page_offset(page); 1548 loff_t range_end = range_start + (loff_t)(PAGE_CACHE_SIZE - 1); 1549 struct writeback_control wbc = { 1550 .bdi = page->mapping->backing_dev_info, 1551 .sync_mode = WB_SYNC_ALL, 1552 .nr_to_write = LONG_MAX, 1553 .range_start = range_start, 1554 .range_end = range_end, 1555 }; 1556 int ret; 1557 1558 do { 1559 if (clear_page_dirty_for_io(page)) { 1560 ret = nfs_writepage_locked(page, &wbc); 1561 if (ret < 0) 1562 goto out_error; 1563 } else if (!PagePrivate(page)) 1564 break; 1565 ret = nfs_sync_mapping_wait(page->mapping, &wbc, how); 1566 if (ret < 0) 1567 goto out_error; 1568 } while (PagePrivate(page)); 1569 return 0; 1570 out_error: 1571 __mark_inode_dirty(inode, I_DIRTY_PAGES); 1572 return ret; 1573 } 1574 1575 /* 1576 * Write back all requests on one page - we do this before reading it. 1577 */ 1578 int nfs_wb_page(struct inode *inode, struct page* page) 1579 { 1580 return nfs_wb_page_priority(inode, page, FLUSH_STABLE); 1581 } 1582 1583 int __init nfs_init_writepagecache(void) 1584 { 1585 nfs_wdata_cachep = kmem_cache_create("nfs_write_data", 1586 sizeof(struct nfs_write_data), 1587 0, SLAB_HWCACHE_ALIGN, 1588 NULL); 1589 if (nfs_wdata_cachep == NULL) 1590 return -ENOMEM; 1591 1592 nfs_wdata_mempool = mempool_create_slab_pool(MIN_POOL_WRITE, 1593 nfs_wdata_cachep); 1594 if (nfs_wdata_mempool == NULL) 1595 return -ENOMEM; 1596 1597 nfs_commit_mempool = mempool_create_slab_pool(MIN_POOL_COMMIT, 1598 nfs_wdata_cachep); 1599 if (nfs_commit_mempool == NULL) 1600 return -ENOMEM; 1601 1602 /* 1603 * NFS congestion size, scale with available memory. 1604 * 1605 * 64MB: 8192k 1606 * 128MB: 11585k 1607 * 256MB: 16384k 1608 * 512MB: 23170k 1609 * 1GB: 32768k 1610 * 2GB: 46340k 1611 * 4GB: 65536k 1612 * 8GB: 92681k 1613 * 16GB: 131072k 1614 * 1615 * This allows larger machines to have larger/more transfers. 1616 * Limit the default to 256M 1617 */ 1618 nfs_congestion_kb = (16*int_sqrt(totalram_pages)) << (PAGE_SHIFT-10); 1619 if (nfs_congestion_kb > 256*1024) 1620 nfs_congestion_kb = 256*1024; 1621 1622 return 0; 1623 } 1624 1625 void nfs_destroy_writepagecache(void) 1626 { 1627 mempool_destroy(nfs_commit_mempool); 1628 mempool_destroy(nfs_wdata_mempool); 1629 kmem_cache_destroy(nfs_wdata_cachep); 1630 } 1631 1632