xref: /openbmc/linux/fs/nfs/write.c (revision 1ae88b2e446261c038f2c0c3150ffae142b227a2)
1 /*
2  * linux/fs/nfs/write.c
3  *
4  * Write file data over NFS.
5  *
6  * Copyright (C) 1996, 1997, Olaf Kirch <okir@monad.swb.de>
7  */
8 
9 #include <linux/types.h>
10 #include <linux/slab.h>
11 #include <linux/mm.h>
12 #include <linux/pagemap.h>
13 #include <linux/file.h>
14 #include <linux/writeback.h>
15 #include <linux/swap.h>
16 
17 #include <linux/sunrpc/clnt.h>
18 #include <linux/nfs_fs.h>
19 #include <linux/nfs_mount.h>
20 #include <linux/nfs_page.h>
21 #include <linux/backing-dev.h>
22 
23 #include <asm/uaccess.h>
24 
25 #include "delegation.h"
26 #include "internal.h"
27 #include "iostat.h"
28 #include "nfs4_fs.h"
29 
30 #define NFSDBG_FACILITY		NFSDBG_PAGECACHE
31 
32 #define MIN_POOL_WRITE		(32)
33 #define MIN_POOL_COMMIT		(4)
34 
35 /*
36  * Local function declarations
37  */
38 static void nfs_pageio_init_write(struct nfs_pageio_descriptor *desc,
39 				  struct inode *inode, int ioflags);
40 static void nfs_redirty_request(struct nfs_page *req);
41 static const struct rpc_call_ops nfs_write_partial_ops;
42 static const struct rpc_call_ops nfs_write_full_ops;
43 static const struct rpc_call_ops nfs_commit_ops;
44 
45 static struct kmem_cache *nfs_wdata_cachep;
46 static mempool_t *nfs_wdata_mempool;
47 static mempool_t *nfs_commit_mempool;
48 
49 struct nfs_write_data *nfs_commitdata_alloc(void)
50 {
51 	struct nfs_write_data *p = mempool_alloc(nfs_commit_mempool, GFP_NOFS);
52 
53 	if (p) {
54 		memset(p, 0, sizeof(*p));
55 		INIT_LIST_HEAD(&p->pages);
56 		p->res.seq_res.sr_slotid = NFS4_MAX_SLOT_TABLE;
57 	}
58 	return p;
59 }
60 
61 void nfs_commit_free(struct nfs_write_data *p)
62 {
63 	if (p && (p->pagevec != &p->page_array[0]))
64 		kfree(p->pagevec);
65 	mempool_free(p, nfs_commit_mempool);
66 }
67 
68 struct nfs_write_data *nfs_writedata_alloc(unsigned int pagecount)
69 {
70 	struct nfs_write_data *p = mempool_alloc(nfs_wdata_mempool, GFP_NOFS);
71 
72 	if (p) {
73 		memset(p, 0, sizeof(*p));
74 		INIT_LIST_HEAD(&p->pages);
75 		p->npages = pagecount;
76 		p->res.seq_res.sr_slotid = NFS4_MAX_SLOT_TABLE;
77 		if (pagecount <= ARRAY_SIZE(p->page_array))
78 			p->pagevec = p->page_array;
79 		else {
80 			p->pagevec = kcalloc(pagecount, sizeof(struct page *), GFP_NOFS);
81 			if (!p->pagevec) {
82 				mempool_free(p, nfs_wdata_mempool);
83 				p = NULL;
84 			}
85 		}
86 	}
87 	return p;
88 }
89 
90 void nfs_writedata_free(struct nfs_write_data *p)
91 {
92 	if (p && (p->pagevec != &p->page_array[0]))
93 		kfree(p->pagevec);
94 	mempool_free(p, nfs_wdata_mempool);
95 }
96 
97 static void nfs_writedata_release(struct nfs_write_data *wdata)
98 {
99 	put_nfs_open_context(wdata->args.context);
100 	nfs_writedata_free(wdata);
101 }
102 
103 static void nfs_context_set_write_error(struct nfs_open_context *ctx, int error)
104 {
105 	ctx->error = error;
106 	smp_wmb();
107 	set_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags);
108 }
109 
110 static struct nfs_page *nfs_page_find_request_locked(struct page *page)
111 {
112 	struct nfs_page *req = NULL;
113 
114 	if (PagePrivate(page)) {
115 		req = (struct nfs_page *)page_private(page);
116 		if (req != NULL)
117 			kref_get(&req->wb_kref);
118 	}
119 	return req;
120 }
121 
122 static struct nfs_page *nfs_page_find_request(struct page *page)
123 {
124 	struct inode *inode = page->mapping->host;
125 	struct nfs_page *req = NULL;
126 
127 	spin_lock(&inode->i_lock);
128 	req = nfs_page_find_request_locked(page);
129 	spin_unlock(&inode->i_lock);
130 	return req;
131 }
132 
133 /* Adjust the file length if we're writing beyond the end */
134 static void nfs_grow_file(struct page *page, unsigned int offset, unsigned int count)
135 {
136 	struct inode *inode = page->mapping->host;
137 	loff_t end, i_size;
138 	pgoff_t end_index;
139 
140 	spin_lock(&inode->i_lock);
141 	i_size = i_size_read(inode);
142 	end_index = (i_size - 1) >> PAGE_CACHE_SHIFT;
143 	if (i_size > 0 && page->index < end_index)
144 		goto out;
145 	end = ((loff_t)page->index << PAGE_CACHE_SHIFT) + ((loff_t)offset+count);
146 	if (i_size >= end)
147 		goto out;
148 	i_size_write(inode, end);
149 	nfs_inc_stats(inode, NFSIOS_EXTENDWRITE);
150 out:
151 	spin_unlock(&inode->i_lock);
152 }
153 
154 /* A writeback failed: mark the page as bad, and invalidate the page cache */
155 static void nfs_set_pageerror(struct page *page)
156 {
157 	SetPageError(page);
158 	nfs_zap_mapping(page->mapping->host, page->mapping);
159 }
160 
161 /* We can set the PG_uptodate flag if we see that a write request
162  * covers the full page.
163  */
164 static void nfs_mark_uptodate(struct page *page, unsigned int base, unsigned int count)
165 {
166 	if (PageUptodate(page))
167 		return;
168 	if (base != 0)
169 		return;
170 	if (count != nfs_page_length(page))
171 		return;
172 	SetPageUptodate(page);
173 }
174 
175 static int wb_priority(struct writeback_control *wbc)
176 {
177 	if (wbc->for_reclaim)
178 		return FLUSH_HIGHPRI | FLUSH_STABLE;
179 	if (wbc->for_kupdate)
180 		return FLUSH_LOWPRI;
181 	return 0;
182 }
183 
184 /*
185  * NFS congestion control
186  */
187 
188 int nfs_congestion_kb;
189 
190 #define NFS_CONGESTION_ON_THRESH 	(nfs_congestion_kb >> (PAGE_SHIFT-10))
191 #define NFS_CONGESTION_OFF_THRESH	\
192 	(NFS_CONGESTION_ON_THRESH - (NFS_CONGESTION_ON_THRESH >> 2))
193 
194 static int nfs_set_page_writeback(struct page *page)
195 {
196 	int ret = test_set_page_writeback(page);
197 
198 	if (!ret) {
199 		struct inode *inode = page->mapping->host;
200 		struct nfs_server *nfss = NFS_SERVER(inode);
201 
202 		if (atomic_long_inc_return(&nfss->writeback) >
203 				NFS_CONGESTION_ON_THRESH) {
204 			set_bdi_congested(&nfss->backing_dev_info,
205 						BLK_RW_ASYNC);
206 		}
207 	}
208 	return ret;
209 }
210 
211 static void nfs_end_page_writeback(struct page *page)
212 {
213 	struct inode *inode = page->mapping->host;
214 	struct nfs_server *nfss = NFS_SERVER(inode);
215 
216 	end_page_writeback(page);
217 	if (atomic_long_dec_return(&nfss->writeback) < NFS_CONGESTION_OFF_THRESH)
218 		clear_bdi_congested(&nfss->backing_dev_info, BLK_RW_ASYNC);
219 }
220 
221 /*
222  * Find an associated nfs write request, and prepare to flush it out
223  * May return an error if the user signalled nfs_wait_on_request().
224  */
225 static int nfs_page_async_flush(struct nfs_pageio_descriptor *pgio,
226 				struct page *page)
227 {
228 	struct inode *inode = page->mapping->host;
229 	struct nfs_page *req;
230 	int ret;
231 
232 	spin_lock(&inode->i_lock);
233 	for(;;) {
234 		req = nfs_page_find_request_locked(page);
235 		if (req == NULL) {
236 			spin_unlock(&inode->i_lock);
237 			return 0;
238 		}
239 		if (nfs_set_page_tag_locked(req))
240 			break;
241 		/* Note: If we hold the page lock, as is the case in nfs_writepage,
242 		 *	 then the call to nfs_set_page_tag_locked() will always
243 		 *	 succeed provided that someone hasn't already marked the
244 		 *	 request as dirty (in which case we don't care).
245 		 */
246 		spin_unlock(&inode->i_lock);
247 		ret = nfs_wait_on_request(req);
248 		nfs_release_request(req);
249 		if (ret != 0)
250 			return ret;
251 		spin_lock(&inode->i_lock);
252 	}
253 	if (test_bit(PG_CLEAN, &req->wb_flags)) {
254 		spin_unlock(&inode->i_lock);
255 		BUG();
256 	}
257 	if (nfs_set_page_writeback(page) != 0) {
258 		spin_unlock(&inode->i_lock);
259 		BUG();
260 	}
261 	spin_unlock(&inode->i_lock);
262 	if (!nfs_pageio_add_request(pgio, req)) {
263 		nfs_redirty_request(req);
264 		return pgio->pg_error;
265 	}
266 	return 0;
267 }
268 
269 static int nfs_do_writepage(struct page *page, struct writeback_control *wbc, struct nfs_pageio_descriptor *pgio)
270 {
271 	struct inode *inode = page->mapping->host;
272 
273 	nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGE);
274 	nfs_add_stats(inode, NFSIOS_WRITEPAGES, 1);
275 
276 	nfs_pageio_cond_complete(pgio, page->index);
277 	return nfs_page_async_flush(pgio, page);
278 }
279 
280 /*
281  * Write an mmapped page to the server.
282  */
283 static int nfs_writepage_locked(struct page *page, struct writeback_control *wbc)
284 {
285 	struct nfs_pageio_descriptor pgio;
286 	int err;
287 
288 	nfs_pageio_init_write(&pgio, page->mapping->host, wb_priority(wbc));
289 	err = nfs_do_writepage(page, wbc, &pgio);
290 	nfs_pageio_complete(&pgio);
291 	if (err < 0)
292 		return err;
293 	if (pgio.pg_error < 0)
294 		return pgio.pg_error;
295 	return 0;
296 }
297 
298 int nfs_writepage(struct page *page, struct writeback_control *wbc)
299 {
300 	int ret;
301 
302 	ret = nfs_writepage_locked(page, wbc);
303 	unlock_page(page);
304 	return ret;
305 }
306 
307 static int nfs_writepages_callback(struct page *page, struct writeback_control *wbc, void *data)
308 {
309 	int ret;
310 
311 	ret = nfs_do_writepage(page, wbc, data);
312 	unlock_page(page);
313 	return ret;
314 }
315 
316 int nfs_writepages(struct address_space *mapping, struct writeback_control *wbc)
317 {
318 	struct inode *inode = mapping->host;
319 	unsigned long *bitlock = &NFS_I(inode)->flags;
320 	struct nfs_pageio_descriptor pgio;
321 	int err;
322 
323 	/* Stop dirtying of new pages while we sync */
324 	err = wait_on_bit_lock(bitlock, NFS_INO_FLUSHING,
325 			nfs_wait_bit_killable, TASK_KILLABLE);
326 	if (err)
327 		goto out_err;
328 
329 	nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGES);
330 
331 	nfs_pageio_init_write(&pgio, inode, wb_priority(wbc));
332 	err = write_cache_pages(mapping, wbc, nfs_writepages_callback, &pgio);
333 	nfs_pageio_complete(&pgio);
334 
335 	clear_bit_unlock(NFS_INO_FLUSHING, bitlock);
336 	smp_mb__after_clear_bit();
337 	wake_up_bit(bitlock, NFS_INO_FLUSHING);
338 
339 	if (err < 0)
340 		goto out_err;
341 	err = pgio.pg_error;
342 	if (err < 0)
343 		goto out_err;
344 	return 0;
345 out_err:
346 	return err;
347 }
348 
349 /*
350  * Insert a write request into an inode
351  */
352 static int nfs_inode_add_request(struct inode *inode, struct nfs_page *req)
353 {
354 	struct nfs_inode *nfsi = NFS_I(inode);
355 	int error;
356 
357 	error = radix_tree_preload(GFP_NOFS);
358 	if (error != 0)
359 		goto out;
360 
361 	/* Lock the request! */
362 	nfs_lock_request_dontget(req);
363 
364 	spin_lock(&inode->i_lock);
365 	error = radix_tree_insert(&nfsi->nfs_page_tree, req->wb_index, req);
366 	BUG_ON(error);
367 	if (!nfsi->npages) {
368 		igrab(inode);
369 		if (nfs_have_delegation(inode, FMODE_WRITE))
370 			nfsi->change_attr++;
371 	}
372 	SetPagePrivate(req->wb_page);
373 	set_page_private(req->wb_page, (unsigned long)req);
374 	nfsi->npages++;
375 	kref_get(&req->wb_kref);
376 	radix_tree_tag_set(&nfsi->nfs_page_tree, req->wb_index,
377 				NFS_PAGE_TAG_LOCKED);
378 	spin_unlock(&inode->i_lock);
379 	radix_tree_preload_end();
380 out:
381 	return error;
382 }
383 
384 /*
385  * Remove a write request from an inode
386  */
387 static void nfs_inode_remove_request(struct nfs_page *req)
388 {
389 	struct inode *inode = req->wb_context->path.dentry->d_inode;
390 	struct nfs_inode *nfsi = NFS_I(inode);
391 
392 	BUG_ON (!NFS_WBACK_BUSY(req));
393 
394 	spin_lock(&inode->i_lock);
395 	set_page_private(req->wb_page, 0);
396 	ClearPagePrivate(req->wb_page);
397 	radix_tree_delete(&nfsi->nfs_page_tree, req->wb_index);
398 	nfsi->npages--;
399 	if (!nfsi->npages) {
400 		spin_unlock(&inode->i_lock);
401 		iput(inode);
402 	} else
403 		spin_unlock(&inode->i_lock);
404 	nfs_clear_request(req);
405 	nfs_release_request(req);
406 }
407 
408 static void
409 nfs_mark_request_dirty(struct nfs_page *req)
410 {
411 	__set_page_dirty_nobuffers(req->wb_page);
412 }
413 
414 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
415 /*
416  * Add a request to the inode's commit list.
417  */
418 static void
419 nfs_mark_request_commit(struct nfs_page *req)
420 {
421 	struct inode *inode = req->wb_context->path.dentry->d_inode;
422 	struct nfs_inode *nfsi = NFS_I(inode);
423 
424 	spin_lock(&inode->i_lock);
425 	set_bit(PG_CLEAN, &(req)->wb_flags);
426 	radix_tree_tag_set(&nfsi->nfs_page_tree,
427 			req->wb_index,
428 			NFS_PAGE_TAG_COMMIT);
429 	spin_unlock(&inode->i_lock);
430 	inc_zone_page_state(req->wb_page, NR_UNSTABLE_NFS);
431 	inc_bdi_stat(req->wb_page->mapping->backing_dev_info, BDI_RECLAIMABLE);
432 	__mark_inode_dirty(inode, I_DIRTY_DATASYNC);
433 }
434 
435 static int
436 nfs_clear_request_commit(struct nfs_page *req)
437 {
438 	struct page *page = req->wb_page;
439 
440 	if (test_and_clear_bit(PG_CLEAN, &(req)->wb_flags)) {
441 		dec_zone_page_state(page, NR_UNSTABLE_NFS);
442 		dec_bdi_stat(page->mapping->backing_dev_info, BDI_RECLAIMABLE);
443 		return 1;
444 	}
445 	return 0;
446 }
447 
448 static inline
449 int nfs_write_need_commit(struct nfs_write_data *data)
450 {
451 	return data->verf.committed != NFS_FILE_SYNC;
452 }
453 
454 static inline
455 int nfs_reschedule_unstable_write(struct nfs_page *req)
456 {
457 	if (test_and_clear_bit(PG_NEED_COMMIT, &req->wb_flags)) {
458 		nfs_mark_request_commit(req);
459 		return 1;
460 	}
461 	if (test_and_clear_bit(PG_NEED_RESCHED, &req->wb_flags)) {
462 		nfs_mark_request_dirty(req);
463 		return 1;
464 	}
465 	return 0;
466 }
467 #else
468 static inline void
469 nfs_mark_request_commit(struct nfs_page *req)
470 {
471 }
472 
473 static inline int
474 nfs_clear_request_commit(struct nfs_page *req)
475 {
476 	return 0;
477 }
478 
479 static inline
480 int nfs_write_need_commit(struct nfs_write_data *data)
481 {
482 	return 0;
483 }
484 
485 static inline
486 int nfs_reschedule_unstable_write(struct nfs_page *req)
487 {
488 	return 0;
489 }
490 #endif
491 
492 /*
493  * Wait for a request to complete.
494  *
495  * Interruptible by fatal signals only.
496  */
497 static int nfs_wait_on_requests_locked(struct inode *inode, pgoff_t idx_start, unsigned int npages)
498 {
499 	struct nfs_inode *nfsi = NFS_I(inode);
500 	struct nfs_page *req;
501 	pgoff_t idx_end, next;
502 	unsigned int		res = 0;
503 	int			error;
504 
505 	if (npages == 0)
506 		idx_end = ~0;
507 	else
508 		idx_end = idx_start + npages - 1;
509 
510 	next = idx_start;
511 	while (radix_tree_gang_lookup_tag(&nfsi->nfs_page_tree, (void **)&req, next, 1, NFS_PAGE_TAG_LOCKED)) {
512 		if (req->wb_index > idx_end)
513 			break;
514 
515 		next = req->wb_index + 1;
516 		BUG_ON(!NFS_WBACK_BUSY(req));
517 
518 		kref_get(&req->wb_kref);
519 		spin_unlock(&inode->i_lock);
520 		error = nfs_wait_on_request(req);
521 		nfs_release_request(req);
522 		spin_lock(&inode->i_lock);
523 		if (error < 0)
524 			return error;
525 		res++;
526 	}
527 	return res;
528 }
529 
530 static void nfs_cancel_commit_list(struct list_head *head)
531 {
532 	struct nfs_page *req;
533 
534 	while(!list_empty(head)) {
535 		req = nfs_list_entry(head->next);
536 		nfs_list_remove_request(req);
537 		nfs_clear_request_commit(req);
538 		nfs_inode_remove_request(req);
539 		nfs_unlock_request(req);
540 	}
541 }
542 
543 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
544 static int
545 nfs_need_commit(struct nfs_inode *nfsi)
546 {
547 	return radix_tree_tagged(&nfsi->nfs_page_tree, NFS_PAGE_TAG_COMMIT);
548 }
549 
550 /*
551  * nfs_scan_commit - Scan an inode for commit requests
552  * @inode: NFS inode to scan
553  * @dst: destination list
554  * @idx_start: lower bound of page->index to scan.
555  * @npages: idx_start + npages sets the upper bound to scan.
556  *
557  * Moves requests from the inode's 'commit' request list.
558  * The requests are *not* checked to ensure that they form a contiguous set.
559  */
560 static int
561 nfs_scan_commit(struct inode *inode, struct list_head *dst, pgoff_t idx_start, unsigned int npages)
562 {
563 	struct nfs_inode *nfsi = NFS_I(inode);
564 
565 	if (!nfs_need_commit(nfsi))
566 		return 0;
567 
568 	return nfs_scan_list(nfsi, dst, idx_start, npages, NFS_PAGE_TAG_COMMIT);
569 }
570 #else
571 static inline int nfs_need_commit(struct nfs_inode *nfsi)
572 {
573 	return 0;
574 }
575 
576 static inline int nfs_scan_commit(struct inode *inode, struct list_head *dst, pgoff_t idx_start, unsigned int npages)
577 {
578 	return 0;
579 }
580 #endif
581 
582 /*
583  * Search for an existing write request, and attempt to update
584  * it to reflect a new dirty region on a given page.
585  *
586  * If the attempt fails, then the existing request is flushed out
587  * to disk.
588  */
589 static struct nfs_page *nfs_try_to_update_request(struct inode *inode,
590 		struct page *page,
591 		unsigned int offset,
592 		unsigned int bytes)
593 {
594 	struct nfs_page *req;
595 	unsigned int rqend;
596 	unsigned int end;
597 	int error;
598 
599 	if (!PagePrivate(page))
600 		return NULL;
601 
602 	end = offset + bytes;
603 	spin_lock(&inode->i_lock);
604 
605 	for (;;) {
606 		req = nfs_page_find_request_locked(page);
607 		if (req == NULL)
608 			goto out_unlock;
609 
610 		rqend = req->wb_offset + req->wb_bytes;
611 		/*
612 		 * Tell the caller to flush out the request if
613 		 * the offsets are non-contiguous.
614 		 * Note: nfs_flush_incompatible() will already
615 		 * have flushed out requests having wrong owners.
616 		 */
617 		if (offset > rqend
618 		    || end < req->wb_offset)
619 			goto out_flushme;
620 
621 		if (nfs_set_page_tag_locked(req))
622 			break;
623 
624 		/* The request is locked, so wait and then retry */
625 		spin_unlock(&inode->i_lock);
626 		error = nfs_wait_on_request(req);
627 		nfs_release_request(req);
628 		if (error != 0)
629 			goto out_err;
630 		spin_lock(&inode->i_lock);
631 	}
632 
633 	if (nfs_clear_request_commit(req))
634 		radix_tree_tag_clear(&NFS_I(inode)->nfs_page_tree,
635 				req->wb_index, NFS_PAGE_TAG_COMMIT);
636 
637 	/* Okay, the request matches. Update the region */
638 	if (offset < req->wb_offset) {
639 		req->wb_offset = offset;
640 		req->wb_pgbase = offset;
641 	}
642 	if (end > rqend)
643 		req->wb_bytes = end - req->wb_offset;
644 	else
645 		req->wb_bytes = rqend - req->wb_offset;
646 out_unlock:
647 	spin_unlock(&inode->i_lock);
648 	return req;
649 out_flushme:
650 	spin_unlock(&inode->i_lock);
651 	nfs_release_request(req);
652 	error = nfs_wb_page(inode, page);
653 out_err:
654 	return ERR_PTR(error);
655 }
656 
657 /*
658  * Try to update an existing write request, or create one if there is none.
659  *
660  * Note: Should always be called with the Page Lock held to prevent races
661  * if we have to add a new request. Also assumes that the caller has
662  * already called nfs_flush_incompatible() if necessary.
663  */
664 static struct nfs_page * nfs_setup_write_request(struct nfs_open_context* ctx,
665 		struct page *page, unsigned int offset, unsigned int bytes)
666 {
667 	struct inode *inode = page->mapping->host;
668 	struct nfs_page	*req;
669 	int error;
670 
671 	req = nfs_try_to_update_request(inode, page, offset, bytes);
672 	if (req != NULL)
673 		goto out;
674 	req = nfs_create_request(ctx, inode, page, offset, bytes);
675 	if (IS_ERR(req))
676 		goto out;
677 	error = nfs_inode_add_request(inode, req);
678 	if (error != 0) {
679 		nfs_release_request(req);
680 		req = ERR_PTR(error);
681 	}
682 out:
683 	return req;
684 }
685 
686 static int nfs_writepage_setup(struct nfs_open_context *ctx, struct page *page,
687 		unsigned int offset, unsigned int count)
688 {
689 	struct nfs_page	*req;
690 
691 	req = nfs_setup_write_request(ctx, page, offset, count);
692 	if (IS_ERR(req))
693 		return PTR_ERR(req);
694 	/* Update file length */
695 	nfs_grow_file(page, offset, count);
696 	nfs_mark_uptodate(page, req->wb_pgbase, req->wb_bytes);
697 	nfs_clear_page_tag_locked(req);
698 	return 0;
699 }
700 
701 int nfs_flush_incompatible(struct file *file, struct page *page)
702 {
703 	struct nfs_open_context *ctx = nfs_file_open_context(file);
704 	struct nfs_page	*req;
705 	int do_flush, status;
706 	/*
707 	 * Look for a request corresponding to this page. If there
708 	 * is one, and it belongs to another file, we flush it out
709 	 * before we try to copy anything into the page. Do this
710 	 * due to the lack of an ACCESS-type call in NFSv2.
711 	 * Also do the same if we find a request from an existing
712 	 * dropped page.
713 	 */
714 	do {
715 		req = nfs_page_find_request(page);
716 		if (req == NULL)
717 			return 0;
718 		do_flush = req->wb_page != page || req->wb_context != ctx;
719 		nfs_release_request(req);
720 		if (!do_flush)
721 			return 0;
722 		status = nfs_wb_page(page->mapping->host, page);
723 	} while (status == 0);
724 	return status;
725 }
726 
727 /*
728  * If the page cache is marked as unsafe or invalid, then we can't rely on
729  * the PageUptodate() flag. In this case, we will need to turn off
730  * write optimisations that depend on the page contents being correct.
731  */
732 static int nfs_write_pageuptodate(struct page *page, struct inode *inode)
733 {
734 	return PageUptodate(page) &&
735 		!(NFS_I(inode)->cache_validity & (NFS_INO_REVAL_PAGECACHE|NFS_INO_INVALID_DATA));
736 }
737 
738 /*
739  * Update and possibly write a cached page of an NFS file.
740  *
741  * XXX: Keep an eye on generic_file_read to make sure it doesn't do bad
742  * things with a page scheduled for an RPC call (e.g. invalidate it).
743  */
744 int nfs_updatepage(struct file *file, struct page *page,
745 		unsigned int offset, unsigned int count)
746 {
747 	struct nfs_open_context *ctx = nfs_file_open_context(file);
748 	struct inode	*inode = page->mapping->host;
749 	int		status = 0;
750 
751 	nfs_inc_stats(inode, NFSIOS_VFSUPDATEPAGE);
752 
753 	dprintk("NFS:       nfs_updatepage(%s/%s %d@%lld)\n",
754 		file->f_path.dentry->d_parent->d_name.name,
755 		file->f_path.dentry->d_name.name, count,
756 		(long long)(page_offset(page) + offset));
757 
758 	/* If we're not using byte range locks, and we know the page
759 	 * is up to date, it may be more efficient to extend the write
760 	 * to cover the entire page in order to avoid fragmentation
761 	 * inefficiencies.
762 	 */
763 	if (nfs_write_pageuptodate(page, inode) &&
764 			inode->i_flock == NULL &&
765 			!(file->f_flags & O_SYNC)) {
766 		count = max(count + offset, nfs_page_length(page));
767 		offset = 0;
768 	}
769 
770 	status = nfs_writepage_setup(ctx, page, offset, count);
771 	if (status < 0)
772 		nfs_set_pageerror(page);
773 	else
774 		__set_page_dirty_nobuffers(page);
775 
776 	dprintk("NFS:       nfs_updatepage returns %d (isize %lld)\n",
777 			status, (long long)i_size_read(inode));
778 	return status;
779 }
780 
781 static void nfs_writepage_release(struct nfs_page *req)
782 {
783 
784 	if (PageError(req->wb_page) || !nfs_reschedule_unstable_write(req)) {
785 		nfs_end_page_writeback(req->wb_page);
786 		nfs_inode_remove_request(req);
787 	} else
788 		nfs_end_page_writeback(req->wb_page);
789 	nfs_clear_page_tag_locked(req);
790 }
791 
792 static int flush_task_priority(int how)
793 {
794 	switch (how & (FLUSH_HIGHPRI|FLUSH_LOWPRI)) {
795 		case FLUSH_HIGHPRI:
796 			return RPC_PRIORITY_HIGH;
797 		case FLUSH_LOWPRI:
798 			return RPC_PRIORITY_LOW;
799 	}
800 	return RPC_PRIORITY_NORMAL;
801 }
802 
803 /*
804  * Set up the argument/result storage required for the RPC call.
805  */
806 static int nfs_write_rpcsetup(struct nfs_page *req,
807 		struct nfs_write_data *data,
808 		const struct rpc_call_ops *call_ops,
809 		unsigned int count, unsigned int offset,
810 		int how)
811 {
812 	struct inode *inode = req->wb_context->path.dentry->d_inode;
813 	int flags = (how & FLUSH_SYNC) ? 0 : RPC_TASK_ASYNC;
814 	int priority = flush_task_priority(how);
815 	struct rpc_task *task;
816 	struct rpc_message msg = {
817 		.rpc_argp = &data->args,
818 		.rpc_resp = &data->res,
819 		.rpc_cred = req->wb_context->cred,
820 	};
821 	struct rpc_task_setup task_setup_data = {
822 		.rpc_client = NFS_CLIENT(inode),
823 		.task = &data->task,
824 		.rpc_message = &msg,
825 		.callback_ops = call_ops,
826 		.callback_data = data,
827 		.workqueue = nfsiod_workqueue,
828 		.flags = flags,
829 		.priority = priority,
830 	};
831 
832 	/* Set up the RPC argument and reply structs
833 	 * NB: take care not to mess about with data->commit et al. */
834 
835 	data->req = req;
836 	data->inode = inode = req->wb_context->path.dentry->d_inode;
837 	data->cred = msg.rpc_cred;
838 
839 	data->args.fh     = NFS_FH(inode);
840 	data->args.offset = req_offset(req) + offset;
841 	data->args.pgbase = req->wb_pgbase + offset;
842 	data->args.pages  = data->pagevec;
843 	data->args.count  = count;
844 	data->args.context = get_nfs_open_context(req->wb_context);
845 	data->args.stable  = NFS_UNSTABLE;
846 	if (how & FLUSH_STABLE) {
847 		data->args.stable = NFS_DATA_SYNC;
848 		if (!nfs_need_commit(NFS_I(inode)))
849 			data->args.stable = NFS_FILE_SYNC;
850 	}
851 
852 	data->res.fattr   = &data->fattr;
853 	data->res.count   = count;
854 	data->res.verf    = &data->verf;
855 	nfs_fattr_init(&data->fattr);
856 
857 	/* Set up the initial task struct.  */
858 	NFS_PROTO(inode)->write_setup(data, &msg);
859 
860 	dprintk("NFS: %5u initiated write call "
861 		"(req %s/%lld, %u bytes @ offset %llu)\n",
862 		data->task.tk_pid,
863 		inode->i_sb->s_id,
864 		(long long)NFS_FILEID(inode),
865 		count,
866 		(unsigned long long)data->args.offset);
867 
868 	task = rpc_run_task(&task_setup_data);
869 	if (IS_ERR(task))
870 		return PTR_ERR(task);
871 	rpc_put_task(task);
872 	return 0;
873 }
874 
875 /* If a nfs_flush_* function fails, it should remove reqs from @head and
876  * call this on each, which will prepare them to be retried on next
877  * writeback using standard nfs.
878  */
879 static void nfs_redirty_request(struct nfs_page *req)
880 {
881 	nfs_mark_request_dirty(req);
882 	nfs_end_page_writeback(req->wb_page);
883 	nfs_clear_page_tag_locked(req);
884 }
885 
886 /*
887  * Generate multiple small requests to write out a single
888  * contiguous dirty area on one page.
889  */
890 static int nfs_flush_multi(struct inode *inode, struct list_head *head, unsigned int npages, size_t count, int how)
891 {
892 	struct nfs_page *req = nfs_list_entry(head->next);
893 	struct page *page = req->wb_page;
894 	struct nfs_write_data *data;
895 	size_t wsize = NFS_SERVER(inode)->wsize, nbytes;
896 	unsigned int offset;
897 	int requests = 0;
898 	int ret = 0;
899 	LIST_HEAD(list);
900 
901 	nfs_list_remove_request(req);
902 
903 	nbytes = count;
904 	do {
905 		size_t len = min(nbytes, wsize);
906 
907 		data = nfs_writedata_alloc(1);
908 		if (!data)
909 			goto out_bad;
910 		list_add(&data->pages, &list);
911 		requests++;
912 		nbytes -= len;
913 	} while (nbytes != 0);
914 	atomic_set(&req->wb_complete, requests);
915 
916 	ClearPageError(page);
917 	offset = 0;
918 	nbytes = count;
919 	do {
920 		int ret2;
921 
922 		data = list_entry(list.next, struct nfs_write_data, pages);
923 		list_del_init(&data->pages);
924 
925 		data->pagevec[0] = page;
926 
927 		if (nbytes < wsize)
928 			wsize = nbytes;
929 		ret2 = nfs_write_rpcsetup(req, data, &nfs_write_partial_ops,
930 				   wsize, offset, how);
931 		if (ret == 0)
932 			ret = ret2;
933 		offset += wsize;
934 		nbytes -= wsize;
935 	} while (nbytes != 0);
936 
937 	return ret;
938 
939 out_bad:
940 	while (!list_empty(&list)) {
941 		data = list_entry(list.next, struct nfs_write_data, pages);
942 		list_del(&data->pages);
943 		nfs_writedata_release(data);
944 	}
945 	nfs_redirty_request(req);
946 	return -ENOMEM;
947 }
948 
949 /*
950  * Create an RPC task for the given write request and kick it.
951  * The page must have been locked by the caller.
952  *
953  * It may happen that the page we're passed is not marked dirty.
954  * This is the case if nfs_updatepage detects a conflicting request
955  * that has been written but not committed.
956  */
957 static int nfs_flush_one(struct inode *inode, struct list_head *head, unsigned int npages, size_t count, int how)
958 {
959 	struct nfs_page		*req;
960 	struct page		**pages;
961 	struct nfs_write_data	*data;
962 
963 	data = nfs_writedata_alloc(npages);
964 	if (!data)
965 		goto out_bad;
966 
967 	pages = data->pagevec;
968 	while (!list_empty(head)) {
969 		req = nfs_list_entry(head->next);
970 		nfs_list_remove_request(req);
971 		nfs_list_add_request(req, &data->pages);
972 		ClearPageError(req->wb_page);
973 		*pages++ = req->wb_page;
974 	}
975 	req = nfs_list_entry(data->pages.next);
976 
977 	/* Set up the argument struct */
978 	return nfs_write_rpcsetup(req, data, &nfs_write_full_ops, count, 0, how);
979  out_bad:
980 	while (!list_empty(head)) {
981 		req = nfs_list_entry(head->next);
982 		nfs_list_remove_request(req);
983 		nfs_redirty_request(req);
984 	}
985 	return -ENOMEM;
986 }
987 
988 static void nfs_pageio_init_write(struct nfs_pageio_descriptor *pgio,
989 				  struct inode *inode, int ioflags)
990 {
991 	size_t wsize = NFS_SERVER(inode)->wsize;
992 
993 	if (wsize < PAGE_CACHE_SIZE)
994 		nfs_pageio_init(pgio, inode, nfs_flush_multi, wsize, ioflags);
995 	else
996 		nfs_pageio_init(pgio, inode, nfs_flush_one, wsize, ioflags);
997 }
998 
999 /*
1000  * Handle a write reply that flushed part of a page.
1001  */
1002 static void nfs_writeback_done_partial(struct rpc_task *task, void *calldata)
1003 {
1004 	struct nfs_write_data	*data = calldata;
1005 
1006 	dprintk("NFS: %5u write(%s/%lld %d@%lld)",
1007 		task->tk_pid,
1008 		data->req->wb_context->path.dentry->d_inode->i_sb->s_id,
1009 		(long long)
1010 		  NFS_FILEID(data->req->wb_context->path.dentry->d_inode),
1011 		data->req->wb_bytes, (long long)req_offset(data->req));
1012 
1013 	nfs_writeback_done(task, data);
1014 }
1015 
1016 static void nfs_writeback_release_partial(void *calldata)
1017 {
1018 	struct nfs_write_data	*data = calldata;
1019 	struct nfs_page		*req = data->req;
1020 	struct page		*page = req->wb_page;
1021 	int status = data->task.tk_status;
1022 
1023 	if (status < 0) {
1024 		nfs_set_pageerror(page);
1025 		nfs_context_set_write_error(req->wb_context, status);
1026 		dprintk(", error = %d\n", status);
1027 		goto out;
1028 	}
1029 
1030 	if (nfs_write_need_commit(data)) {
1031 		struct inode *inode = page->mapping->host;
1032 
1033 		spin_lock(&inode->i_lock);
1034 		if (test_bit(PG_NEED_RESCHED, &req->wb_flags)) {
1035 			/* Do nothing we need to resend the writes */
1036 		} else if (!test_and_set_bit(PG_NEED_COMMIT, &req->wb_flags)) {
1037 			memcpy(&req->wb_verf, &data->verf, sizeof(req->wb_verf));
1038 			dprintk(" defer commit\n");
1039 		} else if (memcmp(&req->wb_verf, &data->verf, sizeof(req->wb_verf))) {
1040 			set_bit(PG_NEED_RESCHED, &req->wb_flags);
1041 			clear_bit(PG_NEED_COMMIT, &req->wb_flags);
1042 			dprintk(" server reboot detected\n");
1043 		}
1044 		spin_unlock(&inode->i_lock);
1045 	} else
1046 		dprintk(" OK\n");
1047 
1048 out:
1049 	if (atomic_dec_and_test(&req->wb_complete))
1050 		nfs_writepage_release(req);
1051 	nfs_writedata_release(calldata);
1052 }
1053 
1054 #if defined(CONFIG_NFS_V4_1)
1055 void nfs_write_prepare(struct rpc_task *task, void *calldata)
1056 {
1057 	struct nfs_write_data *data = calldata;
1058 	struct nfs_client *clp = (NFS_SERVER(data->inode))->nfs_client;
1059 
1060 	if (nfs4_setup_sequence(clp, &data->args.seq_args,
1061 				&data->res.seq_res, 1, task))
1062 		return;
1063 	rpc_call_start(task);
1064 }
1065 #endif /* CONFIG_NFS_V4_1 */
1066 
1067 static const struct rpc_call_ops nfs_write_partial_ops = {
1068 #if defined(CONFIG_NFS_V4_1)
1069 	.rpc_call_prepare = nfs_write_prepare,
1070 #endif /* CONFIG_NFS_V4_1 */
1071 	.rpc_call_done = nfs_writeback_done_partial,
1072 	.rpc_release = nfs_writeback_release_partial,
1073 };
1074 
1075 /*
1076  * Handle a write reply that flushes a whole page.
1077  *
1078  * FIXME: There is an inherent race with invalidate_inode_pages and
1079  *	  writebacks since the page->count is kept > 1 for as long
1080  *	  as the page has a write request pending.
1081  */
1082 static void nfs_writeback_done_full(struct rpc_task *task, void *calldata)
1083 {
1084 	struct nfs_write_data	*data = calldata;
1085 
1086 	nfs_writeback_done(task, data);
1087 }
1088 
1089 static void nfs_writeback_release_full(void *calldata)
1090 {
1091 	struct nfs_write_data	*data = calldata;
1092 	int status = data->task.tk_status;
1093 
1094 	/* Update attributes as result of writeback. */
1095 	while (!list_empty(&data->pages)) {
1096 		struct nfs_page *req = nfs_list_entry(data->pages.next);
1097 		struct page *page = req->wb_page;
1098 
1099 		nfs_list_remove_request(req);
1100 
1101 		dprintk("NFS: %5u write (%s/%lld %d@%lld)",
1102 			data->task.tk_pid,
1103 			req->wb_context->path.dentry->d_inode->i_sb->s_id,
1104 			(long long)NFS_FILEID(req->wb_context->path.dentry->d_inode),
1105 			req->wb_bytes,
1106 			(long long)req_offset(req));
1107 
1108 		if (status < 0) {
1109 			nfs_set_pageerror(page);
1110 			nfs_context_set_write_error(req->wb_context, status);
1111 			dprintk(", error = %d\n", status);
1112 			goto remove_request;
1113 		}
1114 
1115 		if (nfs_write_need_commit(data)) {
1116 			memcpy(&req->wb_verf, &data->verf, sizeof(req->wb_verf));
1117 			nfs_mark_request_commit(req);
1118 			nfs_end_page_writeback(page);
1119 			dprintk(" marked for commit\n");
1120 			goto next;
1121 		}
1122 		dprintk(" OK\n");
1123 remove_request:
1124 		nfs_end_page_writeback(page);
1125 		nfs_inode_remove_request(req);
1126 	next:
1127 		nfs_clear_page_tag_locked(req);
1128 	}
1129 	nfs_writedata_release(calldata);
1130 }
1131 
1132 static const struct rpc_call_ops nfs_write_full_ops = {
1133 #if defined(CONFIG_NFS_V4_1)
1134 	.rpc_call_prepare = nfs_write_prepare,
1135 #endif /* CONFIG_NFS_V4_1 */
1136 	.rpc_call_done = nfs_writeback_done_full,
1137 	.rpc_release = nfs_writeback_release_full,
1138 };
1139 
1140 
1141 /*
1142  * This function is called when the WRITE call is complete.
1143  */
1144 int nfs_writeback_done(struct rpc_task *task, struct nfs_write_data *data)
1145 {
1146 	struct nfs_writeargs	*argp = &data->args;
1147 	struct nfs_writeres	*resp = &data->res;
1148 	struct nfs_server	*server = NFS_SERVER(data->inode);
1149 	int status;
1150 
1151 	dprintk("NFS: %5u nfs_writeback_done (status %d)\n",
1152 		task->tk_pid, task->tk_status);
1153 
1154 	/*
1155 	 * ->write_done will attempt to use post-op attributes to detect
1156 	 * conflicting writes by other clients.  A strict interpretation
1157 	 * of close-to-open would allow us to continue caching even if
1158 	 * another writer had changed the file, but some applications
1159 	 * depend on tighter cache coherency when writing.
1160 	 */
1161 	status = NFS_PROTO(data->inode)->write_done(task, data);
1162 	if (status != 0)
1163 		return status;
1164 	nfs_add_stats(data->inode, NFSIOS_SERVERWRITTENBYTES, resp->count);
1165 
1166 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
1167 	if (resp->verf->committed < argp->stable && task->tk_status >= 0) {
1168 		/* We tried a write call, but the server did not
1169 		 * commit data to stable storage even though we
1170 		 * requested it.
1171 		 * Note: There is a known bug in Tru64 < 5.0 in which
1172 		 *	 the server reports NFS_DATA_SYNC, but performs
1173 		 *	 NFS_FILE_SYNC. We therefore implement this checking
1174 		 *	 as a dprintk() in order to avoid filling syslog.
1175 		 */
1176 		static unsigned long    complain;
1177 
1178 		if (time_before(complain, jiffies)) {
1179 			dprintk("NFS:       faulty NFS server %s:"
1180 				" (committed = %d) != (stable = %d)\n",
1181 				server->nfs_client->cl_hostname,
1182 				resp->verf->committed, argp->stable);
1183 			complain = jiffies + 300 * HZ;
1184 		}
1185 	}
1186 #endif
1187 	/* Is this a short write? */
1188 	if (task->tk_status >= 0 && resp->count < argp->count) {
1189 		static unsigned long    complain;
1190 
1191 		nfs_inc_stats(data->inode, NFSIOS_SHORTWRITE);
1192 
1193 		/* Has the server at least made some progress? */
1194 		if (resp->count != 0) {
1195 			/* Was this an NFSv2 write or an NFSv3 stable write? */
1196 			if (resp->verf->committed != NFS_UNSTABLE) {
1197 				/* Resend from where the server left off */
1198 				argp->offset += resp->count;
1199 				argp->pgbase += resp->count;
1200 				argp->count -= resp->count;
1201 			} else {
1202 				/* Resend as a stable write in order to avoid
1203 				 * headaches in the case of a server crash.
1204 				 */
1205 				argp->stable = NFS_FILE_SYNC;
1206 			}
1207 			nfs4_restart_rpc(task, server->nfs_client);
1208 			return -EAGAIN;
1209 		}
1210 		if (time_before(complain, jiffies)) {
1211 			printk(KERN_WARNING
1212 			       "NFS: Server wrote zero bytes, expected %u.\n",
1213 					argp->count);
1214 			complain = jiffies + 300 * HZ;
1215 		}
1216 		/* Can't do anything about it except throw an error. */
1217 		task->tk_status = -EIO;
1218 	}
1219 	nfs4_sequence_free_slot(server->nfs_client, &data->res.seq_res);
1220 	return 0;
1221 }
1222 
1223 
1224 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
1225 void nfs_commitdata_release(void *data)
1226 {
1227 	struct nfs_write_data *wdata = data;
1228 
1229 	put_nfs_open_context(wdata->args.context);
1230 	nfs_commit_free(wdata);
1231 }
1232 
1233 /*
1234  * Set up the argument/result storage required for the RPC call.
1235  */
1236 static int nfs_commit_rpcsetup(struct list_head *head,
1237 		struct nfs_write_data *data,
1238 		int how)
1239 {
1240 	struct nfs_page *first = nfs_list_entry(head->next);
1241 	struct inode *inode = first->wb_context->path.dentry->d_inode;
1242 	int flags = (how & FLUSH_SYNC) ? 0 : RPC_TASK_ASYNC;
1243 	int priority = flush_task_priority(how);
1244 	struct rpc_task *task;
1245 	struct rpc_message msg = {
1246 		.rpc_argp = &data->args,
1247 		.rpc_resp = &data->res,
1248 		.rpc_cred = first->wb_context->cred,
1249 	};
1250 	struct rpc_task_setup task_setup_data = {
1251 		.task = &data->task,
1252 		.rpc_client = NFS_CLIENT(inode),
1253 		.rpc_message = &msg,
1254 		.callback_ops = &nfs_commit_ops,
1255 		.callback_data = data,
1256 		.workqueue = nfsiod_workqueue,
1257 		.flags = flags,
1258 		.priority = priority,
1259 	};
1260 
1261 	/* Set up the RPC argument and reply structs
1262 	 * NB: take care not to mess about with data->commit et al. */
1263 
1264 	list_splice_init(head, &data->pages);
1265 
1266 	data->inode	  = inode;
1267 	data->cred	  = msg.rpc_cred;
1268 
1269 	data->args.fh     = NFS_FH(data->inode);
1270 	/* Note: we always request a commit of the entire inode */
1271 	data->args.offset = 0;
1272 	data->args.count  = 0;
1273 	data->args.context = get_nfs_open_context(first->wb_context);
1274 	data->res.count   = 0;
1275 	data->res.fattr   = &data->fattr;
1276 	data->res.verf    = &data->verf;
1277 	nfs_fattr_init(&data->fattr);
1278 
1279 	/* Set up the initial task struct.  */
1280 	NFS_PROTO(inode)->commit_setup(data, &msg);
1281 
1282 	dprintk("NFS: %5u initiated commit call\n", data->task.tk_pid);
1283 
1284 	task = rpc_run_task(&task_setup_data);
1285 	if (IS_ERR(task))
1286 		return PTR_ERR(task);
1287 	rpc_put_task(task);
1288 	return 0;
1289 }
1290 
1291 /*
1292  * Commit dirty pages
1293  */
1294 static int
1295 nfs_commit_list(struct inode *inode, struct list_head *head, int how)
1296 {
1297 	struct nfs_write_data	*data;
1298 	struct nfs_page         *req;
1299 
1300 	data = nfs_commitdata_alloc();
1301 
1302 	if (!data)
1303 		goto out_bad;
1304 
1305 	/* Set up the argument struct */
1306 	return nfs_commit_rpcsetup(head, data, how);
1307  out_bad:
1308 	while (!list_empty(head)) {
1309 		req = nfs_list_entry(head->next);
1310 		nfs_list_remove_request(req);
1311 		nfs_mark_request_commit(req);
1312 		dec_zone_page_state(req->wb_page, NR_UNSTABLE_NFS);
1313 		dec_bdi_stat(req->wb_page->mapping->backing_dev_info,
1314 				BDI_RECLAIMABLE);
1315 		nfs_clear_page_tag_locked(req);
1316 	}
1317 	return -ENOMEM;
1318 }
1319 
1320 /*
1321  * COMMIT call returned
1322  */
1323 static void nfs_commit_done(struct rpc_task *task, void *calldata)
1324 {
1325 	struct nfs_write_data	*data = calldata;
1326 
1327         dprintk("NFS: %5u nfs_commit_done (status %d)\n",
1328                                 task->tk_pid, task->tk_status);
1329 
1330 	/* Call the NFS version-specific code */
1331 	if (NFS_PROTO(data->inode)->commit_done(task, data) != 0)
1332 		return;
1333 }
1334 
1335 static void nfs_commit_release(void *calldata)
1336 {
1337 	struct nfs_write_data	*data = calldata;
1338 	struct nfs_page		*req;
1339 	int status = data->task.tk_status;
1340 
1341 	while (!list_empty(&data->pages)) {
1342 		req = nfs_list_entry(data->pages.next);
1343 		nfs_list_remove_request(req);
1344 		nfs_clear_request_commit(req);
1345 
1346 		dprintk("NFS:       commit (%s/%lld %d@%lld)",
1347 			req->wb_context->path.dentry->d_inode->i_sb->s_id,
1348 			(long long)NFS_FILEID(req->wb_context->path.dentry->d_inode),
1349 			req->wb_bytes,
1350 			(long long)req_offset(req));
1351 		if (status < 0) {
1352 			nfs_context_set_write_error(req->wb_context, status);
1353 			nfs_inode_remove_request(req);
1354 			dprintk(", error = %d\n", status);
1355 			goto next;
1356 		}
1357 
1358 		/* Okay, COMMIT succeeded, apparently. Check the verifier
1359 		 * returned by the server against all stored verfs. */
1360 		if (!memcmp(req->wb_verf.verifier, data->verf.verifier, sizeof(data->verf.verifier))) {
1361 			/* We have a match */
1362 			nfs_inode_remove_request(req);
1363 			dprintk(" OK\n");
1364 			goto next;
1365 		}
1366 		/* We have a mismatch. Write the page again */
1367 		dprintk(" mismatch\n");
1368 		nfs_mark_request_dirty(req);
1369 	next:
1370 		nfs_clear_page_tag_locked(req);
1371 	}
1372 	nfs_commitdata_release(calldata);
1373 }
1374 
1375 static const struct rpc_call_ops nfs_commit_ops = {
1376 #if defined(CONFIG_NFS_V4_1)
1377 	.rpc_call_prepare = nfs_write_prepare,
1378 #endif /* CONFIG_NFS_V4_1 */
1379 	.rpc_call_done = nfs_commit_done,
1380 	.rpc_release = nfs_commit_release,
1381 };
1382 
1383 int nfs_commit_inode(struct inode *inode, int how)
1384 {
1385 	LIST_HEAD(head);
1386 	int res;
1387 
1388 	spin_lock(&inode->i_lock);
1389 	res = nfs_scan_commit(inode, &head, 0, 0);
1390 	spin_unlock(&inode->i_lock);
1391 	if (res) {
1392 		int error = nfs_commit_list(inode, &head, how);
1393 		if (error < 0)
1394 			return error;
1395 	}
1396 	return res;
1397 }
1398 #else
1399 static inline int nfs_commit_list(struct inode *inode, struct list_head *head, int how)
1400 {
1401 	return 0;
1402 }
1403 #endif
1404 
1405 long nfs_sync_mapping_wait(struct address_space *mapping, struct writeback_control *wbc, int how)
1406 {
1407 	struct inode *inode = mapping->host;
1408 	pgoff_t idx_start, idx_end;
1409 	unsigned int npages = 0;
1410 	LIST_HEAD(head);
1411 	int nocommit = how & FLUSH_NOCOMMIT;
1412 	long pages, ret;
1413 
1414 	/* FIXME */
1415 	if (wbc->range_cyclic)
1416 		idx_start = 0;
1417 	else {
1418 		idx_start = wbc->range_start >> PAGE_CACHE_SHIFT;
1419 		idx_end = wbc->range_end >> PAGE_CACHE_SHIFT;
1420 		if (idx_end > idx_start) {
1421 			pgoff_t l_npages = 1 + idx_end - idx_start;
1422 			npages = l_npages;
1423 			if (sizeof(npages) != sizeof(l_npages) &&
1424 					(pgoff_t)npages != l_npages)
1425 				npages = 0;
1426 		}
1427 	}
1428 	how &= ~FLUSH_NOCOMMIT;
1429 	spin_lock(&inode->i_lock);
1430 	do {
1431 		ret = nfs_wait_on_requests_locked(inode, idx_start, npages);
1432 		if (ret != 0)
1433 			continue;
1434 		if (nocommit)
1435 			break;
1436 		pages = nfs_scan_commit(inode, &head, idx_start, npages);
1437 		if (pages == 0)
1438 			break;
1439 		if (how & FLUSH_INVALIDATE) {
1440 			spin_unlock(&inode->i_lock);
1441 			nfs_cancel_commit_list(&head);
1442 			ret = pages;
1443 			spin_lock(&inode->i_lock);
1444 			continue;
1445 		}
1446 		pages += nfs_scan_commit(inode, &head, 0, 0);
1447 		spin_unlock(&inode->i_lock);
1448 		ret = nfs_commit_list(inode, &head, how);
1449 		spin_lock(&inode->i_lock);
1450 
1451 	} while (ret >= 0);
1452 	spin_unlock(&inode->i_lock);
1453 	return ret;
1454 }
1455 
1456 static int __nfs_write_mapping(struct address_space *mapping, struct writeback_control *wbc, int how)
1457 {
1458 	int ret;
1459 
1460 	ret = nfs_writepages(mapping, wbc);
1461 	if (ret < 0)
1462 		goto out;
1463 	ret = nfs_sync_mapping_wait(mapping, wbc, how);
1464 	if (ret < 0)
1465 		goto out;
1466 	return 0;
1467 out:
1468 	__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1469 	return ret;
1470 }
1471 
1472 /* Two pass sync: first using WB_SYNC_NONE, then WB_SYNC_ALL */
1473 static int nfs_write_mapping(struct address_space *mapping, int how)
1474 {
1475 	struct writeback_control wbc = {
1476 		.bdi = mapping->backing_dev_info,
1477 		.sync_mode = WB_SYNC_ALL,
1478 		.nr_to_write = LONG_MAX,
1479 		.range_start = 0,
1480 		.range_end = LLONG_MAX,
1481 		.for_writepages = 1,
1482 	};
1483 
1484 	return __nfs_write_mapping(mapping, &wbc, how);
1485 }
1486 
1487 /*
1488  * flush the inode to disk.
1489  */
1490 int nfs_wb_all(struct inode *inode)
1491 {
1492 	return nfs_write_mapping(inode->i_mapping, 0);
1493 }
1494 
1495 int nfs_wb_nocommit(struct inode *inode)
1496 {
1497 	return nfs_write_mapping(inode->i_mapping, FLUSH_NOCOMMIT);
1498 }
1499 
1500 int nfs_wb_page_cancel(struct inode *inode, struct page *page)
1501 {
1502 	struct nfs_page *req;
1503 	loff_t range_start = page_offset(page);
1504 	loff_t range_end = range_start + (loff_t)(PAGE_CACHE_SIZE - 1);
1505 	struct writeback_control wbc = {
1506 		.bdi = page->mapping->backing_dev_info,
1507 		.sync_mode = WB_SYNC_ALL,
1508 		.nr_to_write = LONG_MAX,
1509 		.range_start = range_start,
1510 		.range_end = range_end,
1511 	};
1512 	int ret = 0;
1513 
1514 	BUG_ON(!PageLocked(page));
1515 	for (;;) {
1516 		req = nfs_page_find_request(page);
1517 		if (req == NULL)
1518 			goto out;
1519 		if (test_bit(PG_CLEAN, &req->wb_flags)) {
1520 			nfs_release_request(req);
1521 			break;
1522 		}
1523 		if (nfs_lock_request_dontget(req)) {
1524 			nfs_inode_remove_request(req);
1525 			/*
1526 			 * In case nfs_inode_remove_request has marked the
1527 			 * page as being dirty
1528 			 */
1529 			cancel_dirty_page(page, PAGE_CACHE_SIZE);
1530 			nfs_unlock_request(req);
1531 			break;
1532 		}
1533 		ret = nfs_wait_on_request(req);
1534 		if (ret < 0)
1535 			goto out;
1536 	}
1537 	if (!PagePrivate(page))
1538 		return 0;
1539 	ret = nfs_sync_mapping_wait(page->mapping, &wbc, FLUSH_INVALIDATE);
1540 out:
1541 	return ret;
1542 }
1543 
1544 static int nfs_wb_page_priority(struct inode *inode, struct page *page,
1545 				int how)
1546 {
1547 	loff_t range_start = page_offset(page);
1548 	loff_t range_end = range_start + (loff_t)(PAGE_CACHE_SIZE - 1);
1549 	struct writeback_control wbc = {
1550 		.bdi = page->mapping->backing_dev_info,
1551 		.sync_mode = WB_SYNC_ALL,
1552 		.nr_to_write = LONG_MAX,
1553 		.range_start = range_start,
1554 		.range_end = range_end,
1555 	};
1556 	int ret;
1557 
1558 	do {
1559 		if (clear_page_dirty_for_io(page)) {
1560 			ret = nfs_writepage_locked(page, &wbc);
1561 			if (ret < 0)
1562 				goto out_error;
1563 		} else if (!PagePrivate(page))
1564 			break;
1565 		ret = nfs_sync_mapping_wait(page->mapping, &wbc, how);
1566 		if (ret < 0)
1567 			goto out_error;
1568 	} while (PagePrivate(page));
1569 	return 0;
1570 out_error:
1571 	__mark_inode_dirty(inode, I_DIRTY_PAGES);
1572 	return ret;
1573 }
1574 
1575 /*
1576  * Write back all requests on one page - we do this before reading it.
1577  */
1578 int nfs_wb_page(struct inode *inode, struct page* page)
1579 {
1580 	return nfs_wb_page_priority(inode, page, FLUSH_STABLE);
1581 }
1582 
1583 int __init nfs_init_writepagecache(void)
1584 {
1585 	nfs_wdata_cachep = kmem_cache_create("nfs_write_data",
1586 					     sizeof(struct nfs_write_data),
1587 					     0, SLAB_HWCACHE_ALIGN,
1588 					     NULL);
1589 	if (nfs_wdata_cachep == NULL)
1590 		return -ENOMEM;
1591 
1592 	nfs_wdata_mempool = mempool_create_slab_pool(MIN_POOL_WRITE,
1593 						     nfs_wdata_cachep);
1594 	if (nfs_wdata_mempool == NULL)
1595 		return -ENOMEM;
1596 
1597 	nfs_commit_mempool = mempool_create_slab_pool(MIN_POOL_COMMIT,
1598 						      nfs_wdata_cachep);
1599 	if (nfs_commit_mempool == NULL)
1600 		return -ENOMEM;
1601 
1602 	/*
1603 	 * NFS congestion size, scale with available memory.
1604 	 *
1605 	 *  64MB:    8192k
1606 	 * 128MB:   11585k
1607 	 * 256MB:   16384k
1608 	 * 512MB:   23170k
1609 	 *   1GB:   32768k
1610 	 *   2GB:   46340k
1611 	 *   4GB:   65536k
1612 	 *   8GB:   92681k
1613 	 *  16GB:  131072k
1614 	 *
1615 	 * This allows larger machines to have larger/more transfers.
1616 	 * Limit the default to 256M
1617 	 */
1618 	nfs_congestion_kb = (16*int_sqrt(totalram_pages)) << (PAGE_SHIFT-10);
1619 	if (nfs_congestion_kb > 256*1024)
1620 		nfs_congestion_kb = 256*1024;
1621 
1622 	return 0;
1623 }
1624 
1625 void nfs_destroy_writepagecache(void)
1626 {
1627 	mempool_destroy(nfs_commit_mempool);
1628 	mempool_destroy(nfs_wdata_mempool);
1629 	kmem_cache_destroy(nfs_wdata_cachep);
1630 }
1631 
1632