1 /* 2 * linux/fs/nfs/write.c 3 * 4 * Write file data over NFS. 5 * 6 * Copyright (C) 1996, 1997, Olaf Kirch <okir@monad.swb.de> 7 */ 8 9 #include <linux/types.h> 10 #include <linux/slab.h> 11 #include <linux/mm.h> 12 #include <linux/pagemap.h> 13 #include <linux/file.h> 14 #include <linux/writeback.h> 15 #include <linux/swap.h> 16 17 #include <linux/sunrpc/clnt.h> 18 #include <linux/nfs_fs.h> 19 #include <linux/nfs_mount.h> 20 #include <linux/nfs_page.h> 21 #include <linux/backing-dev.h> 22 23 #include <asm/uaccess.h> 24 25 #include "delegation.h" 26 #include "internal.h" 27 #include "iostat.h" 28 29 #define NFSDBG_FACILITY NFSDBG_PAGECACHE 30 31 #define MIN_POOL_WRITE (32) 32 #define MIN_POOL_COMMIT (4) 33 34 /* 35 * Local function declarations 36 */ 37 static struct nfs_page * nfs_update_request(struct nfs_open_context*, 38 struct page *, 39 unsigned int, unsigned int); 40 static void nfs_pageio_init_write(struct nfs_pageio_descriptor *desc, 41 struct inode *inode, int ioflags); 42 static const struct rpc_call_ops nfs_write_partial_ops; 43 static const struct rpc_call_ops nfs_write_full_ops; 44 static const struct rpc_call_ops nfs_commit_ops; 45 46 static struct kmem_cache *nfs_wdata_cachep; 47 static mempool_t *nfs_wdata_mempool; 48 static mempool_t *nfs_commit_mempool; 49 50 struct nfs_write_data *nfs_commit_alloc(void) 51 { 52 struct nfs_write_data *p = mempool_alloc(nfs_commit_mempool, GFP_NOFS); 53 54 if (p) { 55 memset(p, 0, sizeof(*p)); 56 INIT_LIST_HEAD(&p->pages); 57 } 58 return p; 59 } 60 61 static void nfs_commit_rcu_free(struct rcu_head *head) 62 { 63 struct nfs_write_data *p = container_of(head, struct nfs_write_data, task.u.tk_rcu); 64 if (p && (p->pagevec != &p->page_array[0])) 65 kfree(p->pagevec); 66 mempool_free(p, nfs_commit_mempool); 67 } 68 69 void nfs_commit_free(struct nfs_write_data *wdata) 70 { 71 call_rcu_bh(&wdata->task.u.tk_rcu, nfs_commit_rcu_free); 72 } 73 74 struct nfs_write_data *nfs_writedata_alloc(unsigned int pagecount) 75 { 76 struct nfs_write_data *p = mempool_alloc(nfs_wdata_mempool, GFP_NOFS); 77 78 if (p) { 79 memset(p, 0, sizeof(*p)); 80 INIT_LIST_HEAD(&p->pages); 81 p->npages = pagecount; 82 if (pagecount <= ARRAY_SIZE(p->page_array)) 83 p->pagevec = p->page_array; 84 else { 85 p->pagevec = kcalloc(pagecount, sizeof(struct page *), GFP_NOFS); 86 if (!p->pagevec) { 87 mempool_free(p, nfs_wdata_mempool); 88 p = NULL; 89 } 90 } 91 } 92 return p; 93 } 94 95 static void nfs_writedata_rcu_free(struct rcu_head *head) 96 { 97 struct nfs_write_data *p = container_of(head, struct nfs_write_data, task.u.tk_rcu); 98 if (p && (p->pagevec != &p->page_array[0])) 99 kfree(p->pagevec); 100 mempool_free(p, nfs_wdata_mempool); 101 } 102 103 static void nfs_writedata_free(struct nfs_write_data *wdata) 104 { 105 call_rcu_bh(&wdata->task.u.tk_rcu, nfs_writedata_rcu_free); 106 } 107 108 void nfs_writedata_release(void *wdata) 109 { 110 nfs_writedata_free(wdata); 111 } 112 113 static void nfs_context_set_write_error(struct nfs_open_context *ctx, int error) 114 { 115 ctx->error = error; 116 smp_wmb(); 117 set_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags); 118 } 119 120 static struct nfs_page *nfs_page_find_request_locked(struct page *page) 121 { 122 struct nfs_page *req = NULL; 123 124 if (PagePrivate(page)) { 125 req = (struct nfs_page *)page_private(page); 126 if (req != NULL) 127 kref_get(&req->wb_kref); 128 } 129 return req; 130 } 131 132 static struct nfs_page *nfs_page_find_request(struct page *page) 133 { 134 struct inode *inode = page->mapping->host; 135 struct nfs_page *req = NULL; 136 137 spin_lock(&inode->i_lock); 138 req = nfs_page_find_request_locked(page); 139 spin_unlock(&inode->i_lock); 140 return req; 141 } 142 143 /* Adjust the file length if we're writing beyond the end */ 144 static void nfs_grow_file(struct page *page, unsigned int offset, unsigned int count) 145 { 146 struct inode *inode = page->mapping->host; 147 loff_t end, i_size = i_size_read(inode); 148 pgoff_t end_index = (i_size - 1) >> PAGE_CACHE_SHIFT; 149 150 if (i_size > 0 && page->index < end_index) 151 return; 152 end = ((loff_t)page->index << PAGE_CACHE_SHIFT) + ((loff_t)offset+count); 153 if (i_size >= end) 154 return; 155 nfs_inc_stats(inode, NFSIOS_EXTENDWRITE); 156 i_size_write(inode, end); 157 } 158 159 /* A writeback failed: mark the page as bad, and invalidate the page cache */ 160 static void nfs_set_pageerror(struct page *page) 161 { 162 SetPageError(page); 163 nfs_zap_mapping(page->mapping->host, page->mapping); 164 } 165 166 /* We can set the PG_uptodate flag if we see that a write request 167 * covers the full page. 168 */ 169 static void nfs_mark_uptodate(struct page *page, unsigned int base, unsigned int count) 170 { 171 if (PageUptodate(page)) 172 return; 173 if (base != 0) 174 return; 175 if (count != nfs_page_length(page)) 176 return; 177 SetPageUptodate(page); 178 } 179 180 static int nfs_writepage_setup(struct nfs_open_context *ctx, struct page *page, 181 unsigned int offset, unsigned int count) 182 { 183 struct nfs_page *req; 184 int ret; 185 186 for (;;) { 187 req = nfs_update_request(ctx, page, offset, count); 188 if (!IS_ERR(req)) 189 break; 190 ret = PTR_ERR(req); 191 if (ret != -EBUSY) 192 return ret; 193 ret = nfs_wb_page(page->mapping->host, page); 194 if (ret != 0) 195 return ret; 196 } 197 /* Update file length */ 198 nfs_grow_file(page, offset, count); 199 nfs_clear_page_tag_locked(req); 200 return 0; 201 } 202 203 static int wb_priority(struct writeback_control *wbc) 204 { 205 if (wbc->for_reclaim) 206 return FLUSH_HIGHPRI | FLUSH_STABLE; 207 if (wbc->for_kupdate) 208 return FLUSH_LOWPRI; 209 return 0; 210 } 211 212 /* 213 * NFS congestion control 214 */ 215 216 int nfs_congestion_kb; 217 218 #define NFS_CONGESTION_ON_THRESH (nfs_congestion_kb >> (PAGE_SHIFT-10)) 219 #define NFS_CONGESTION_OFF_THRESH \ 220 (NFS_CONGESTION_ON_THRESH - (NFS_CONGESTION_ON_THRESH >> 2)) 221 222 static int nfs_set_page_writeback(struct page *page) 223 { 224 int ret = test_set_page_writeback(page); 225 226 if (!ret) { 227 struct inode *inode = page->mapping->host; 228 struct nfs_server *nfss = NFS_SERVER(inode); 229 230 if (atomic_long_inc_return(&nfss->writeback) > 231 NFS_CONGESTION_ON_THRESH) 232 set_bdi_congested(&nfss->backing_dev_info, WRITE); 233 } 234 return ret; 235 } 236 237 static void nfs_end_page_writeback(struct page *page) 238 { 239 struct inode *inode = page->mapping->host; 240 struct nfs_server *nfss = NFS_SERVER(inode); 241 242 end_page_writeback(page); 243 if (atomic_long_dec_return(&nfss->writeback) < NFS_CONGESTION_OFF_THRESH) 244 clear_bdi_congested(&nfss->backing_dev_info, WRITE); 245 } 246 247 /* 248 * Find an associated nfs write request, and prepare to flush it out 249 * May return an error if the user signalled nfs_wait_on_request(). 250 */ 251 static int nfs_page_async_flush(struct nfs_pageio_descriptor *pgio, 252 struct page *page) 253 { 254 struct inode *inode = page->mapping->host; 255 struct nfs_page *req; 256 int ret; 257 258 spin_lock(&inode->i_lock); 259 for(;;) { 260 req = nfs_page_find_request_locked(page); 261 if (req == NULL) { 262 spin_unlock(&inode->i_lock); 263 return 0; 264 } 265 if (nfs_set_page_tag_locked(req)) 266 break; 267 /* Note: If we hold the page lock, as is the case in nfs_writepage, 268 * then the call to nfs_set_page_tag_locked() will always 269 * succeed provided that someone hasn't already marked the 270 * request as dirty (in which case we don't care). 271 */ 272 spin_unlock(&inode->i_lock); 273 ret = nfs_wait_on_request(req); 274 nfs_release_request(req); 275 if (ret != 0) 276 return ret; 277 spin_lock(&inode->i_lock); 278 } 279 if (test_bit(PG_NEED_COMMIT, &req->wb_flags)) { 280 /* This request is marked for commit */ 281 spin_unlock(&inode->i_lock); 282 nfs_clear_page_tag_locked(req); 283 nfs_pageio_complete(pgio); 284 return 0; 285 } 286 if (nfs_set_page_writeback(page) != 0) { 287 spin_unlock(&inode->i_lock); 288 BUG(); 289 } 290 spin_unlock(&inode->i_lock); 291 nfs_pageio_add_request(pgio, req); 292 return 0; 293 } 294 295 static int nfs_do_writepage(struct page *page, struct writeback_control *wbc, struct nfs_pageio_descriptor *pgio) 296 { 297 struct inode *inode = page->mapping->host; 298 299 nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGE); 300 nfs_add_stats(inode, NFSIOS_WRITEPAGES, 1); 301 302 nfs_pageio_cond_complete(pgio, page->index); 303 return nfs_page_async_flush(pgio, page); 304 } 305 306 /* 307 * Write an mmapped page to the server. 308 */ 309 static int nfs_writepage_locked(struct page *page, struct writeback_control *wbc) 310 { 311 struct nfs_pageio_descriptor pgio; 312 int err; 313 314 nfs_pageio_init_write(&pgio, page->mapping->host, wb_priority(wbc)); 315 err = nfs_do_writepage(page, wbc, &pgio); 316 nfs_pageio_complete(&pgio); 317 if (err < 0) 318 return err; 319 if (pgio.pg_error < 0) 320 return pgio.pg_error; 321 return 0; 322 } 323 324 int nfs_writepage(struct page *page, struct writeback_control *wbc) 325 { 326 int ret; 327 328 ret = nfs_writepage_locked(page, wbc); 329 unlock_page(page); 330 return ret; 331 } 332 333 static int nfs_writepages_callback(struct page *page, struct writeback_control *wbc, void *data) 334 { 335 int ret; 336 337 ret = nfs_do_writepage(page, wbc, data); 338 unlock_page(page); 339 return ret; 340 } 341 342 int nfs_writepages(struct address_space *mapping, struct writeback_control *wbc) 343 { 344 struct inode *inode = mapping->host; 345 struct nfs_pageio_descriptor pgio; 346 int err; 347 348 nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGES); 349 350 nfs_pageio_init_write(&pgio, inode, wb_priority(wbc)); 351 err = write_cache_pages(mapping, wbc, nfs_writepages_callback, &pgio); 352 nfs_pageio_complete(&pgio); 353 if (err < 0) 354 return err; 355 if (pgio.pg_error < 0) 356 return pgio.pg_error; 357 return 0; 358 } 359 360 /* 361 * Insert a write request into an inode 362 */ 363 static int nfs_inode_add_request(struct inode *inode, struct nfs_page *req) 364 { 365 struct nfs_inode *nfsi = NFS_I(inode); 366 int error; 367 368 error = radix_tree_insert(&nfsi->nfs_page_tree, req->wb_index, req); 369 BUG_ON(error == -EEXIST); 370 if (error) 371 return error; 372 if (!nfsi->npages) { 373 igrab(inode); 374 if (nfs_have_delegation(inode, FMODE_WRITE)) 375 nfsi->change_attr++; 376 } 377 SetPagePrivate(req->wb_page); 378 set_page_private(req->wb_page, (unsigned long)req); 379 nfsi->npages++; 380 kref_get(&req->wb_kref); 381 radix_tree_tag_set(&nfsi->nfs_page_tree, req->wb_index, NFS_PAGE_TAG_LOCKED); 382 return 0; 383 } 384 385 /* 386 * Remove a write request from an inode 387 */ 388 static void nfs_inode_remove_request(struct nfs_page *req) 389 { 390 struct inode *inode = req->wb_context->path.dentry->d_inode; 391 struct nfs_inode *nfsi = NFS_I(inode); 392 393 BUG_ON (!NFS_WBACK_BUSY(req)); 394 395 spin_lock(&inode->i_lock); 396 set_page_private(req->wb_page, 0); 397 ClearPagePrivate(req->wb_page); 398 radix_tree_delete(&nfsi->nfs_page_tree, req->wb_index); 399 nfsi->npages--; 400 if (!nfsi->npages) { 401 spin_unlock(&inode->i_lock); 402 iput(inode); 403 } else 404 spin_unlock(&inode->i_lock); 405 nfs_clear_request(req); 406 nfs_release_request(req); 407 } 408 409 static void 410 nfs_redirty_request(struct nfs_page *req) 411 { 412 __set_page_dirty_nobuffers(req->wb_page); 413 } 414 415 /* 416 * Check if a request is dirty 417 */ 418 static inline int 419 nfs_dirty_request(struct nfs_page *req) 420 { 421 struct page *page = req->wb_page; 422 423 if (page == NULL || test_bit(PG_NEED_COMMIT, &req->wb_flags)) 424 return 0; 425 return !PageWriteback(req->wb_page); 426 } 427 428 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4) 429 /* 430 * Add a request to the inode's commit list. 431 */ 432 static void 433 nfs_mark_request_commit(struct nfs_page *req) 434 { 435 struct inode *inode = req->wb_context->path.dentry->d_inode; 436 struct nfs_inode *nfsi = NFS_I(inode); 437 438 spin_lock(&inode->i_lock); 439 nfsi->ncommit++; 440 set_bit(PG_NEED_COMMIT, &(req)->wb_flags); 441 radix_tree_tag_set(&nfsi->nfs_page_tree, 442 req->wb_index, 443 NFS_PAGE_TAG_COMMIT); 444 spin_unlock(&inode->i_lock); 445 inc_zone_page_state(req->wb_page, NR_UNSTABLE_NFS); 446 inc_bdi_stat(req->wb_page->mapping->backing_dev_info, BDI_RECLAIMABLE); 447 __mark_inode_dirty(inode, I_DIRTY_DATASYNC); 448 } 449 450 static inline 451 int nfs_write_need_commit(struct nfs_write_data *data) 452 { 453 return data->verf.committed != NFS_FILE_SYNC; 454 } 455 456 static inline 457 int nfs_reschedule_unstable_write(struct nfs_page *req) 458 { 459 if (test_bit(PG_NEED_COMMIT, &req->wb_flags)) { 460 nfs_mark_request_commit(req); 461 return 1; 462 } 463 if (test_and_clear_bit(PG_NEED_RESCHED, &req->wb_flags)) { 464 nfs_redirty_request(req); 465 return 1; 466 } 467 return 0; 468 } 469 #else 470 static inline void 471 nfs_mark_request_commit(struct nfs_page *req) 472 { 473 } 474 475 static inline 476 int nfs_write_need_commit(struct nfs_write_data *data) 477 { 478 return 0; 479 } 480 481 static inline 482 int nfs_reschedule_unstable_write(struct nfs_page *req) 483 { 484 return 0; 485 } 486 #endif 487 488 /* 489 * Wait for a request to complete. 490 * 491 * Interruptible by signals only if mounted with intr flag. 492 */ 493 static int nfs_wait_on_requests_locked(struct inode *inode, pgoff_t idx_start, unsigned int npages) 494 { 495 struct nfs_inode *nfsi = NFS_I(inode); 496 struct nfs_page *req; 497 pgoff_t idx_end, next; 498 unsigned int res = 0; 499 int error; 500 501 if (npages == 0) 502 idx_end = ~0; 503 else 504 idx_end = idx_start + npages - 1; 505 506 next = idx_start; 507 while (radix_tree_gang_lookup_tag(&nfsi->nfs_page_tree, (void **)&req, next, 1, NFS_PAGE_TAG_LOCKED)) { 508 if (req->wb_index > idx_end) 509 break; 510 511 next = req->wb_index + 1; 512 BUG_ON(!NFS_WBACK_BUSY(req)); 513 514 kref_get(&req->wb_kref); 515 spin_unlock(&inode->i_lock); 516 error = nfs_wait_on_request(req); 517 nfs_release_request(req); 518 spin_lock(&inode->i_lock); 519 if (error < 0) 520 return error; 521 res++; 522 } 523 return res; 524 } 525 526 static void nfs_cancel_commit_list(struct list_head *head) 527 { 528 struct nfs_page *req; 529 530 while(!list_empty(head)) { 531 req = nfs_list_entry(head->next); 532 dec_zone_page_state(req->wb_page, NR_UNSTABLE_NFS); 533 dec_bdi_stat(req->wb_page->mapping->backing_dev_info, 534 BDI_RECLAIMABLE); 535 nfs_list_remove_request(req); 536 clear_bit(PG_NEED_COMMIT, &(req)->wb_flags); 537 nfs_inode_remove_request(req); 538 nfs_unlock_request(req); 539 } 540 } 541 542 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4) 543 /* 544 * nfs_scan_commit - Scan an inode for commit requests 545 * @inode: NFS inode to scan 546 * @dst: destination list 547 * @idx_start: lower bound of page->index to scan. 548 * @npages: idx_start + npages sets the upper bound to scan. 549 * 550 * Moves requests from the inode's 'commit' request list. 551 * The requests are *not* checked to ensure that they form a contiguous set. 552 */ 553 static int 554 nfs_scan_commit(struct inode *inode, struct list_head *dst, pgoff_t idx_start, unsigned int npages) 555 { 556 struct nfs_inode *nfsi = NFS_I(inode); 557 int res = 0; 558 559 if (nfsi->ncommit != 0) { 560 res = nfs_scan_list(nfsi, dst, idx_start, npages, 561 NFS_PAGE_TAG_COMMIT); 562 nfsi->ncommit -= res; 563 } 564 return res; 565 } 566 #else 567 static inline int nfs_scan_commit(struct inode *inode, struct list_head *dst, pgoff_t idx_start, unsigned int npages) 568 { 569 return 0; 570 } 571 #endif 572 573 /* 574 * Try to update any existing write request, or create one if there is none. 575 * In order to match, the request's credentials must match those of 576 * the calling process. 577 * 578 * Note: Should always be called with the Page Lock held! 579 */ 580 static struct nfs_page * nfs_update_request(struct nfs_open_context* ctx, 581 struct page *page, unsigned int offset, unsigned int bytes) 582 { 583 struct address_space *mapping = page->mapping; 584 struct inode *inode = mapping->host; 585 struct nfs_page *req, *new = NULL; 586 pgoff_t rqend, end; 587 588 end = offset + bytes; 589 590 for (;;) { 591 /* Loop over all inode entries and see if we find 592 * A request for the page we wish to update 593 */ 594 spin_lock(&inode->i_lock); 595 req = nfs_page_find_request_locked(page); 596 if (req) { 597 if (!nfs_set_page_tag_locked(req)) { 598 int error; 599 600 spin_unlock(&inode->i_lock); 601 error = nfs_wait_on_request(req); 602 nfs_release_request(req); 603 if (error < 0) { 604 if (new) 605 nfs_release_request(new); 606 return ERR_PTR(error); 607 } 608 continue; 609 } 610 spin_unlock(&inode->i_lock); 611 if (new) 612 nfs_release_request(new); 613 break; 614 } 615 616 if (new) { 617 int error; 618 nfs_lock_request_dontget(new); 619 error = nfs_inode_add_request(inode, new); 620 if (error) { 621 spin_unlock(&inode->i_lock); 622 nfs_unlock_request(new); 623 return ERR_PTR(error); 624 } 625 spin_unlock(&inode->i_lock); 626 req = new; 627 goto zero_page; 628 } 629 spin_unlock(&inode->i_lock); 630 631 new = nfs_create_request(ctx, inode, page, offset, bytes); 632 if (IS_ERR(new)) 633 return new; 634 } 635 636 /* We have a request for our page. 637 * If the creds don't match, or the 638 * page addresses don't match, 639 * tell the caller to wait on the conflicting 640 * request. 641 */ 642 rqend = req->wb_offset + req->wb_bytes; 643 if (req->wb_context != ctx 644 || req->wb_page != page 645 || !nfs_dirty_request(req) 646 || offset > rqend || end < req->wb_offset) { 647 nfs_clear_page_tag_locked(req); 648 return ERR_PTR(-EBUSY); 649 } 650 651 /* Okay, the request matches. Update the region */ 652 if (offset < req->wb_offset) { 653 req->wb_offset = offset; 654 req->wb_pgbase = offset; 655 req->wb_bytes = max(end, rqend) - req->wb_offset; 656 goto zero_page; 657 } 658 659 if (end > rqend) 660 req->wb_bytes = end - req->wb_offset; 661 662 return req; 663 zero_page: 664 /* If this page might potentially be marked as up to date, 665 * then we need to zero any uninitalised data. */ 666 if (req->wb_pgbase == 0 && req->wb_bytes != PAGE_CACHE_SIZE 667 && !PageUptodate(req->wb_page)) 668 zero_user_page(req->wb_page, req->wb_bytes, 669 PAGE_CACHE_SIZE - req->wb_bytes, 670 KM_USER0); 671 return req; 672 } 673 674 int nfs_flush_incompatible(struct file *file, struct page *page) 675 { 676 struct nfs_open_context *ctx = nfs_file_open_context(file); 677 struct nfs_page *req; 678 int do_flush, status; 679 /* 680 * Look for a request corresponding to this page. If there 681 * is one, and it belongs to another file, we flush it out 682 * before we try to copy anything into the page. Do this 683 * due to the lack of an ACCESS-type call in NFSv2. 684 * Also do the same if we find a request from an existing 685 * dropped page. 686 */ 687 do { 688 req = nfs_page_find_request(page); 689 if (req == NULL) 690 return 0; 691 do_flush = req->wb_page != page || req->wb_context != ctx 692 || !nfs_dirty_request(req); 693 nfs_release_request(req); 694 if (!do_flush) 695 return 0; 696 status = nfs_wb_page(page->mapping->host, page); 697 } while (status == 0); 698 return status; 699 } 700 701 /* 702 * Update and possibly write a cached page of an NFS file. 703 * 704 * XXX: Keep an eye on generic_file_read to make sure it doesn't do bad 705 * things with a page scheduled for an RPC call (e.g. invalidate it). 706 */ 707 int nfs_updatepage(struct file *file, struct page *page, 708 unsigned int offset, unsigned int count) 709 { 710 struct nfs_open_context *ctx = nfs_file_open_context(file); 711 struct inode *inode = page->mapping->host; 712 int status = 0; 713 714 nfs_inc_stats(inode, NFSIOS_VFSUPDATEPAGE); 715 716 dprintk("NFS: nfs_updatepage(%s/%s %d@%Ld)\n", 717 file->f_path.dentry->d_parent->d_name.name, 718 file->f_path.dentry->d_name.name, count, 719 (long long)(page_offset(page) +offset)); 720 721 /* If we're not using byte range locks, and we know the page 722 * is entirely in cache, it may be more efficient to avoid 723 * fragmenting write requests. 724 */ 725 if (PageUptodate(page) && inode->i_flock == NULL && !(file->f_mode & O_SYNC)) { 726 count = max(count + offset, nfs_page_length(page)); 727 offset = 0; 728 } 729 730 status = nfs_writepage_setup(ctx, page, offset, count); 731 __set_page_dirty_nobuffers(page); 732 733 dprintk("NFS: nfs_updatepage returns %d (isize %Ld)\n", 734 status, (long long)i_size_read(inode)); 735 if (status < 0) 736 nfs_set_pageerror(page); 737 return status; 738 } 739 740 static void nfs_writepage_release(struct nfs_page *req) 741 { 742 743 if (PageError(req->wb_page)) { 744 nfs_end_page_writeback(req->wb_page); 745 nfs_inode_remove_request(req); 746 } else if (!nfs_reschedule_unstable_write(req)) { 747 /* Set the PG_uptodate flag */ 748 nfs_mark_uptodate(req->wb_page, req->wb_pgbase, req->wb_bytes); 749 nfs_end_page_writeback(req->wb_page); 750 nfs_inode_remove_request(req); 751 } else 752 nfs_end_page_writeback(req->wb_page); 753 nfs_clear_page_tag_locked(req); 754 } 755 756 static int flush_task_priority(int how) 757 { 758 switch (how & (FLUSH_HIGHPRI|FLUSH_LOWPRI)) { 759 case FLUSH_HIGHPRI: 760 return RPC_PRIORITY_HIGH; 761 case FLUSH_LOWPRI: 762 return RPC_PRIORITY_LOW; 763 } 764 return RPC_PRIORITY_NORMAL; 765 } 766 767 /* 768 * Set up the argument/result storage required for the RPC call. 769 */ 770 static void nfs_write_rpcsetup(struct nfs_page *req, 771 struct nfs_write_data *data, 772 const struct rpc_call_ops *call_ops, 773 unsigned int count, unsigned int offset, 774 int how) 775 { 776 struct inode *inode = req->wb_context->path.dentry->d_inode; 777 int flags = (how & FLUSH_SYNC) ? 0 : RPC_TASK_ASYNC; 778 int priority = flush_task_priority(how); 779 struct rpc_task *task; 780 struct rpc_message msg = { 781 .rpc_argp = &data->args, 782 .rpc_resp = &data->res, 783 .rpc_cred = req->wb_context->cred, 784 }; 785 struct rpc_task_setup task_setup_data = { 786 .rpc_client = NFS_CLIENT(inode), 787 .task = &data->task, 788 .rpc_message = &msg, 789 .callback_ops = call_ops, 790 .callback_data = data, 791 .flags = flags, 792 .priority = priority, 793 }; 794 795 /* Set up the RPC argument and reply structs 796 * NB: take care not to mess about with data->commit et al. */ 797 798 data->req = req; 799 data->inode = inode = req->wb_context->path.dentry->d_inode; 800 data->cred = msg.rpc_cred; 801 802 data->args.fh = NFS_FH(inode); 803 data->args.offset = req_offset(req) + offset; 804 data->args.pgbase = req->wb_pgbase + offset; 805 data->args.pages = data->pagevec; 806 data->args.count = count; 807 data->args.context = req->wb_context; 808 data->args.stable = NFS_UNSTABLE; 809 if (how & FLUSH_STABLE) { 810 data->args.stable = NFS_DATA_SYNC; 811 if (!NFS_I(inode)->ncommit) 812 data->args.stable = NFS_FILE_SYNC; 813 } 814 815 data->res.fattr = &data->fattr; 816 data->res.count = count; 817 data->res.verf = &data->verf; 818 nfs_fattr_init(&data->fattr); 819 820 /* Set up the initial task struct. */ 821 NFS_PROTO(inode)->write_setup(data, &msg); 822 823 dprintk("NFS: %5u initiated write call " 824 "(req %s/%Ld, %u bytes @ offset %Lu)\n", 825 data->task.tk_pid, 826 inode->i_sb->s_id, 827 (long long)NFS_FILEID(inode), 828 count, 829 (unsigned long long)data->args.offset); 830 831 task = rpc_run_task(&task_setup_data); 832 if (!IS_ERR(task)) 833 rpc_put_task(task); 834 } 835 836 /* 837 * Generate multiple small requests to write out a single 838 * contiguous dirty area on one page. 839 */ 840 static int nfs_flush_multi(struct inode *inode, struct list_head *head, unsigned int npages, size_t count, int how) 841 { 842 struct nfs_page *req = nfs_list_entry(head->next); 843 struct page *page = req->wb_page; 844 struct nfs_write_data *data; 845 size_t wsize = NFS_SERVER(inode)->wsize, nbytes; 846 unsigned int offset; 847 int requests = 0; 848 LIST_HEAD(list); 849 850 nfs_list_remove_request(req); 851 852 nbytes = count; 853 do { 854 size_t len = min(nbytes, wsize); 855 856 data = nfs_writedata_alloc(1); 857 if (!data) 858 goto out_bad; 859 list_add(&data->pages, &list); 860 requests++; 861 nbytes -= len; 862 } while (nbytes != 0); 863 atomic_set(&req->wb_complete, requests); 864 865 ClearPageError(page); 866 offset = 0; 867 nbytes = count; 868 do { 869 data = list_entry(list.next, struct nfs_write_data, pages); 870 list_del_init(&data->pages); 871 872 data->pagevec[0] = page; 873 874 if (nbytes < wsize) 875 wsize = nbytes; 876 nfs_write_rpcsetup(req, data, &nfs_write_partial_ops, 877 wsize, offset, how); 878 offset += wsize; 879 nbytes -= wsize; 880 } while (nbytes != 0); 881 882 return 0; 883 884 out_bad: 885 while (!list_empty(&list)) { 886 data = list_entry(list.next, struct nfs_write_data, pages); 887 list_del(&data->pages); 888 nfs_writedata_release(data); 889 } 890 nfs_redirty_request(req); 891 nfs_end_page_writeback(req->wb_page); 892 nfs_clear_page_tag_locked(req); 893 return -ENOMEM; 894 } 895 896 /* 897 * Create an RPC task for the given write request and kick it. 898 * The page must have been locked by the caller. 899 * 900 * It may happen that the page we're passed is not marked dirty. 901 * This is the case if nfs_updatepage detects a conflicting request 902 * that has been written but not committed. 903 */ 904 static int nfs_flush_one(struct inode *inode, struct list_head *head, unsigned int npages, size_t count, int how) 905 { 906 struct nfs_page *req; 907 struct page **pages; 908 struct nfs_write_data *data; 909 910 data = nfs_writedata_alloc(npages); 911 if (!data) 912 goto out_bad; 913 914 pages = data->pagevec; 915 while (!list_empty(head)) { 916 req = nfs_list_entry(head->next); 917 nfs_list_remove_request(req); 918 nfs_list_add_request(req, &data->pages); 919 ClearPageError(req->wb_page); 920 *pages++ = req->wb_page; 921 } 922 req = nfs_list_entry(data->pages.next); 923 924 /* Set up the argument struct */ 925 nfs_write_rpcsetup(req, data, &nfs_write_full_ops, count, 0, how); 926 927 return 0; 928 out_bad: 929 while (!list_empty(head)) { 930 req = nfs_list_entry(head->next); 931 nfs_list_remove_request(req); 932 nfs_redirty_request(req); 933 nfs_end_page_writeback(req->wb_page); 934 nfs_clear_page_tag_locked(req); 935 } 936 return -ENOMEM; 937 } 938 939 static void nfs_pageio_init_write(struct nfs_pageio_descriptor *pgio, 940 struct inode *inode, int ioflags) 941 { 942 int wsize = NFS_SERVER(inode)->wsize; 943 944 if (wsize < PAGE_CACHE_SIZE) 945 nfs_pageio_init(pgio, inode, nfs_flush_multi, wsize, ioflags); 946 else 947 nfs_pageio_init(pgio, inode, nfs_flush_one, wsize, ioflags); 948 } 949 950 /* 951 * Handle a write reply that flushed part of a page. 952 */ 953 static void nfs_writeback_done_partial(struct rpc_task *task, void *calldata) 954 { 955 struct nfs_write_data *data = calldata; 956 struct nfs_page *req = data->req; 957 struct page *page = req->wb_page; 958 959 dprintk("NFS: write (%s/%Ld %d@%Ld)", 960 req->wb_context->path.dentry->d_inode->i_sb->s_id, 961 (long long)NFS_FILEID(req->wb_context->path.dentry->d_inode), 962 req->wb_bytes, 963 (long long)req_offset(req)); 964 965 if (nfs_writeback_done(task, data) != 0) 966 return; 967 968 if (task->tk_status < 0) { 969 nfs_set_pageerror(page); 970 nfs_context_set_write_error(req->wb_context, task->tk_status); 971 dprintk(", error = %d\n", task->tk_status); 972 goto out; 973 } 974 975 if (nfs_write_need_commit(data)) { 976 struct inode *inode = page->mapping->host; 977 978 spin_lock(&inode->i_lock); 979 if (test_bit(PG_NEED_RESCHED, &req->wb_flags)) { 980 /* Do nothing we need to resend the writes */ 981 } else if (!test_and_set_bit(PG_NEED_COMMIT, &req->wb_flags)) { 982 memcpy(&req->wb_verf, &data->verf, sizeof(req->wb_verf)); 983 dprintk(" defer commit\n"); 984 } else if (memcmp(&req->wb_verf, &data->verf, sizeof(req->wb_verf))) { 985 set_bit(PG_NEED_RESCHED, &req->wb_flags); 986 clear_bit(PG_NEED_COMMIT, &req->wb_flags); 987 dprintk(" server reboot detected\n"); 988 } 989 spin_unlock(&inode->i_lock); 990 } else 991 dprintk(" OK\n"); 992 993 out: 994 if (atomic_dec_and_test(&req->wb_complete)) 995 nfs_writepage_release(req); 996 } 997 998 static const struct rpc_call_ops nfs_write_partial_ops = { 999 .rpc_call_done = nfs_writeback_done_partial, 1000 .rpc_release = nfs_writedata_release, 1001 }; 1002 1003 /* 1004 * Handle a write reply that flushes a whole page. 1005 * 1006 * FIXME: There is an inherent race with invalidate_inode_pages and 1007 * writebacks since the page->count is kept > 1 for as long 1008 * as the page has a write request pending. 1009 */ 1010 static void nfs_writeback_done_full(struct rpc_task *task, void *calldata) 1011 { 1012 struct nfs_write_data *data = calldata; 1013 struct nfs_page *req; 1014 struct page *page; 1015 1016 if (nfs_writeback_done(task, data) != 0) 1017 return; 1018 1019 /* Update attributes as result of writeback. */ 1020 while (!list_empty(&data->pages)) { 1021 req = nfs_list_entry(data->pages.next); 1022 nfs_list_remove_request(req); 1023 page = req->wb_page; 1024 1025 dprintk("NFS: write (%s/%Ld %d@%Ld)", 1026 req->wb_context->path.dentry->d_inode->i_sb->s_id, 1027 (long long)NFS_FILEID(req->wb_context->path.dentry->d_inode), 1028 req->wb_bytes, 1029 (long long)req_offset(req)); 1030 1031 if (task->tk_status < 0) { 1032 nfs_set_pageerror(page); 1033 nfs_context_set_write_error(req->wb_context, task->tk_status); 1034 dprintk(", error = %d\n", task->tk_status); 1035 goto remove_request; 1036 } 1037 1038 if (nfs_write_need_commit(data)) { 1039 memcpy(&req->wb_verf, &data->verf, sizeof(req->wb_verf)); 1040 nfs_mark_request_commit(req); 1041 nfs_end_page_writeback(page); 1042 dprintk(" marked for commit\n"); 1043 goto next; 1044 } 1045 /* Set the PG_uptodate flag? */ 1046 nfs_mark_uptodate(page, req->wb_pgbase, req->wb_bytes); 1047 dprintk(" OK\n"); 1048 remove_request: 1049 nfs_end_page_writeback(page); 1050 nfs_inode_remove_request(req); 1051 next: 1052 nfs_clear_page_tag_locked(req); 1053 } 1054 } 1055 1056 static const struct rpc_call_ops nfs_write_full_ops = { 1057 .rpc_call_done = nfs_writeback_done_full, 1058 .rpc_release = nfs_writedata_release, 1059 }; 1060 1061 1062 /* 1063 * This function is called when the WRITE call is complete. 1064 */ 1065 int nfs_writeback_done(struct rpc_task *task, struct nfs_write_data *data) 1066 { 1067 struct nfs_writeargs *argp = &data->args; 1068 struct nfs_writeres *resp = &data->res; 1069 int status; 1070 1071 dprintk("NFS: %5u nfs_writeback_done (status %d)\n", 1072 task->tk_pid, task->tk_status); 1073 1074 /* 1075 * ->write_done will attempt to use post-op attributes to detect 1076 * conflicting writes by other clients. A strict interpretation 1077 * of close-to-open would allow us to continue caching even if 1078 * another writer had changed the file, but some applications 1079 * depend on tighter cache coherency when writing. 1080 */ 1081 status = NFS_PROTO(data->inode)->write_done(task, data); 1082 if (status != 0) 1083 return status; 1084 nfs_add_stats(data->inode, NFSIOS_SERVERWRITTENBYTES, resp->count); 1085 1086 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4) 1087 if (resp->verf->committed < argp->stable && task->tk_status >= 0) { 1088 /* We tried a write call, but the server did not 1089 * commit data to stable storage even though we 1090 * requested it. 1091 * Note: There is a known bug in Tru64 < 5.0 in which 1092 * the server reports NFS_DATA_SYNC, but performs 1093 * NFS_FILE_SYNC. We therefore implement this checking 1094 * as a dprintk() in order to avoid filling syslog. 1095 */ 1096 static unsigned long complain; 1097 1098 if (time_before(complain, jiffies)) { 1099 dprintk("NFS: faulty NFS server %s:" 1100 " (committed = %d) != (stable = %d)\n", 1101 NFS_SERVER(data->inode)->nfs_client->cl_hostname, 1102 resp->verf->committed, argp->stable); 1103 complain = jiffies + 300 * HZ; 1104 } 1105 } 1106 #endif 1107 /* Is this a short write? */ 1108 if (task->tk_status >= 0 && resp->count < argp->count) { 1109 static unsigned long complain; 1110 1111 nfs_inc_stats(data->inode, NFSIOS_SHORTWRITE); 1112 1113 /* Has the server at least made some progress? */ 1114 if (resp->count != 0) { 1115 /* Was this an NFSv2 write or an NFSv3 stable write? */ 1116 if (resp->verf->committed != NFS_UNSTABLE) { 1117 /* Resend from where the server left off */ 1118 argp->offset += resp->count; 1119 argp->pgbase += resp->count; 1120 argp->count -= resp->count; 1121 } else { 1122 /* Resend as a stable write in order to avoid 1123 * headaches in the case of a server crash. 1124 */ 1125 argp->stable = NFS_FILE_SYNC; 1126 } 1127 rpc_restart_call(task); 1128 return -EAGAIN; 1129 } 1130 if (time_before(complain, jiffies)) { 1131 printk(KERN_WARNING 1132 "NFS: Server wrote zero bytes, expected %u.\n", 1133 argp->count); 1134 complain = jiffies + 300 * HZ; 1135 } 1136 /* Can't do anything about it except throw an error. */ 1137 task->tk_status = -EIO; 1138 } 1139 return 0; 1140 } 1141 1142 1143 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4) 1144 void nfs_commit_release(void *wdata) 1145 { 1146 nfs_commit_free(wdata); 1147 } 1148 1149 /* 1150 * Set up the argument/result storage required for the RPC call. 1151 */ 1152 static void nfs_commit_rpcsetup(struct list_head *head, 1153 struct nfs_write_data *data, 1154 int how) 1155 { 1156 struct nfs_page *first = nfs_list_entry(head->next); 1157 struct inode *inode = first->wb_context->path.dentry->d_inode; 1158 int flags = (how & FLUSH_SYNC) ? 0 : RPC_TASK_ASYNC; 1159 int priority = flush_task_priority(how); 1160 struct rpc_task *task; 1161 struct rpc_message msg = { 1162 .rpc_argp = &data->args, 1163 .rpc_resp = &data->res, 1164 .rpc_cred = first->wb_context->cred, 1165 }; 1166 struct rpc_task_setup task_setup_data = { 1167 .task = &data->task, 1168 .rpc_client = NFS_CLIENT(inode), 1169 .rpc_message = &msg, 1170 .callback_ops = &nfs_commit_ops, 1171 .callback_data = data, 1172 .flags = flags, 1173 .priority = priority, 1174 }; 1175 1176 /* Set up the RPC argument and reply structs 1177 * NB: take care not to mess about with data->commit et al. */ 1178 1179 list_splice_init(head, &data->pages); 1180 1181 data->inode = inode; 1182 data->cred = msg.rpc_cred; 1183 1184 data->args.fh = NFS_FH(data->inode); 1185 /* Note: we always request a commit of the entire inode */ 1186 data->args.offset = 0; 1187 data->args.count = 0; 1188 data->res.count = 0; 1189 data->res.fattr = &data->fattr; 1190 data->res.verf = &data->verf; 1191 nfs_fattr_init(&data->fattr); 1192 1193 /* Set up the initial task struct. */ 1194 NFS_PROTO(inode)->commit_setup(data, &msg); 1195 1196 dprintk("NFS: %5u initiated commit call\n", data->task.tk_pid); 1197 1198 task = rpc_run_task(&task_setup_data); 1199 if (!IS_ERR(task)) 1200 rpc_put_task(task); 1201 } 1202 1203 /* 1204 * Commit dirty pages 1205 */ 1206 static int 1207 nfs_commit_list(struct inode *inode, struct list_head *head, int how) 1208 { 1209 struct nfs_write_data *data; 1210 struct nfs_page *req; 1211 1212 data = nfs_commit_alloc(); 1213 1214 if (!data) 1215 goto out_bad; 1216 1217 /* Set up the argument struct */ 1218 nfs_commit_rpcsetup(head, data, how); 1219 1220 return 0; 1221 out_bad: 1222 while (!list_empty(head)) { 1223 req = nfs_list_entry(head->next); 1224 nfs_list_remove_request(req); 1225 nfs_mark_request_commit(req); 1226 dec_zone_page_state(req->wb_page, NR_UNSTABLE_NFS); 1227 dec_bdi_stat(req->wb_page->mapping->backing_dev_info, 1228 BDI_RECLAIMABLE); 1229 nfs_clear_page_tag_locked(req); 1230 } 1231 return -ENOMEM; 1232 } 1233 1234 /* 1235 * COMMIT call returned 1236 */ 1237 static void nfs_commit_done(struct rpc_task *task, void *calldata) 1238 { 1239 struct nfs_write_data *data = calldata; 1240 struct nfs_page *req; 1241 1242 dprintk("NFS: %5u nfs_commit_done (status %d)\n", 1243 task->tk_pid, task->tk_status); 1244 1245 /* Call the NFS version-specific code */ 1246 if (NFS_PROTO(data->inode)->commit_done(task, data) != 0) 1247 return; 1248 1249 while (!list_empty(&data->pages)) { 1250 req = nfs_list_entry(data->pages.next); 1251 nfs_list_remove_request(req); 1252 clear_bit(PG_NEED_COMMIT, &(req)->wb_flags); 1253 dec_zone_page_state(req->wb_page, NR_UNSTABLE_NFS); 1254 dec_bdi_stat(req->wb_page->mapping->backing_dev_info, 1255 BDI_RECLAIMABLE); 1256 1257 dprintk("NFS: commit (%s/%Ld %d@%Ld)", 1258 req->wb_context->path.dentry->d_inode->i_sb->s_id, 1259 (long long)NFS_FILEID(req->wb_context->path.dentry->d_inode), 1260 req->wb_bytes, 1261 (long long)req_offset(req)); 1262 if (task->tk_status < 0) { 1263 nfs_context_set_write_error(req->wb_context, task->tk_status); 1264 nfs_inode_remove_request(req); 1265 dprintk(", error = %d\n", task->tk_status); 1266 goto next; 1267 } 1268 1269 /* Okay, COMMIT succeeded, apparently. Check the verifier 1270 * returned by the server against all stored verfs. */ 1271 if (!memcmp(req->wb_verf.verifier, data->verf.verifier, sizeof(data->verf.verifier))) { 1272 /* We have a match */ 1273 /* Set the PG_uptodate flag */ 1274 nfs_mark_uptodate(req->wb_page, req->wb_pgbase, 1275 req->wb_bytes); 1276 nfs_inode_remove_request(req); 1277 dprintk(" OK\n"); 1278 goto next; 1279 } 1280 /* We have a mismatch. Write the page again */ 1281 dprintk(" mismatch\n"); 1282 nfs_redirty_request(req); 1283 next: 1284 nfs_clear_page_tag_locked(req); 1285 } 1286 } 1287 1288 static const struct rpc_call_ops nfs_commit_ops = { 1289 .rpc_call_done = nfs_commit_done, 1290 .rpc_release = nfs_commit_release, 1291 }; 1292 1293 int nfs_commit_inode(struct inode *inode, int how) 1294 { 1295 LIST_HEAD(head); 1296 int res; 1297 1298 spin_lock(&inode->i_lock); 1299 res = nfs_scan_commit(inode, &head, 0, 0); 1300 spin_unlock(&inode->i_lock); 1301 if (res) { 1302 int error = nfs_commit_list(inode, &head, how); 1303 if (error < 0) 1304 return error; 1305 } 1306 return res; 1307 } 1308 #else 1309 static inline int nfs_commit_list(struct inode *inode, struct list_head *head, int how) 1310 { 1311 return 0; 1312 } 1313 #endif 1314 1315 long nfs_sync_mapping_wait(struct address_space *mapping, struct writeback_control *wbc, int how) 1316 { 1317 struct inode *inode = mapping->host; 1318 pgoff_t idx_start, idx_end; 1319 unsigned int npages = 0; 1320 LIST_HEAD(head); 1321 int nocommit = how & FLUSH_NOCOMMIT; 1322 long pages, ret; 1323 1324 /* FIXME */ 1325 if (wbc->range_cyclic) 1326 idx_start = 0; 1327 else { 1328 idx_start = wbc->range_start >> PAGE_CACHE_SHIFT; 1329 idx_end = wbc->range_end >> PAGE_CACHE_SHIFT; 1330 if (idx_end > idx_start) { 1331 pgoff_t l_npages = 1 + idx_end - idx_start; 1332 npages = l_npages; 1333 if (sizeof(npages) != sizeof(l_npages) && 1334 (pgoff_t)npages != l_npages) 1335 npages = 0; 1336 } 1337 } 1338 how &= ~FLUSH_NOCOMMIT; 1339 spin_lock(&inode->i_lock); 1340 do { 1341 ret = nfs_wait_on_requests_locked(inode, idx_start, npages); 1342 if (ret != 0) 1343 continue; 1344 if (nocommit) 1345 break; 1346 pages = nfs_scan_commit(inode, &head, idx_start, npages); 1347 if (pages == 0) 1348 break; 1349 if (how & FLUSH_INVALIDATE) { 1350 spin_unlock(&inode->i_lock); 1351 nfs_cancel_commit_list(&head); 1352 ret = pages; 1353 spin_lock(&inode->i_lock); 1354 continue; 1355 } 1356 pages += nfs_scan_commit(inode, &head, 0, 0); 1357 spin_unlock(&inode->i_lock); 1358 ret = nfs_commit_list(inode, &head, how); 1359 spin_lock(&inode->i_lock); 1360 1361 } while (ret >= 0); 1362 spin_unlock(&inode->i_lock); 1363 return ret; 1364 } 1365 1366 static int __nfs_write_mapping(struct address_space *mapping, struct writeback_control *wbc, int how) 1367 { 1368 int ret; 1369 1370 ret = nfs_writepages(mapping, wbc); 1371 if (ret < 0) 1372 goto out; 1373 ret = nfs_sync_mapping_wait(mapping, wbc, how); 1374 if (ret < 0) 1375 goto out; 1376 return 0; 1377 out: 1378 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 1379 return ret; 1380 } 1381 1382 /* Two pass sync: first using WB_SYNC_NONE, then WB_SYNC_ALL */ 1383 static int nfs_write_mapping(struct address_space *mapping, int how) 1384 { 1385 struct writeback_control wbc = { 1386 .bdi = mapping->backing_dev_info, 1387 .sync_mode = WB_SYNC_NONE, 1388 .nr_to_write = LONG_MAX, 1389 .for_writepages = 1, 1390 .range_cyclic = 1, 1391 }; 1392 int ret; 1393 1394 ret = __nfs_write_mapping(mapping, &wbc, how); 1395 if (ret < 0) 1396 return ret; 1397 wbc.sync_mode = WB_SYNC_ALL; 1398 return __nfs_write_mapping(mapping, &wbc, how); 1399 } 1400 1401 /* 1402 * flush the inode to disk. 1403 */ 1404 int nfs_wb_all(struct inode *inode) 1405 { 1406 return nfs_write_mapping(inode->i_mapping, 0); 1407 } 1408 1409 int nfs_wb_nocommit(struct inode *inode) 1410 { 1411 return nfs_write_mapping(inode->i_mapping, FLUSH_NOCOMMIT); 1412 } 1413 1414 int nfs_wb_page_cancel(struct inode *inode, struct page *page) 1415 { 1416 struct nfs_page *req; 1417 loff_t range_start = page_offset(page); 1418 loff_t range_end = range_start + (loff_t)(PAGE_CACHE_SIZE - 1); 1419 struct writeback_control wbc = { 1420 .bdi = page->mapping->backing_dev_info, 1421 .sync_mode = WB_SYNC_ALL, 1422 .nr_to_write = LONG_MAX, 1423 .range_start = range_start, 1424 .range_end = range_end, 1425 }; 1426 int ret = 0; 1427 1428 BUG_ON(!PageLocked(page)); 1429 for (;;) { 1430 req = nfs_page_find_request(page); 1431 if (req == NULL) 1432 goto out; 1433 if (test_bit(PG_NEED_COMMIT, &req->wb_flags)) { 1434 nfs_release_request(req); 1435 break; 1436 } 1437 if (nfs_lock_request_dontget(req)) { 1438 nfs_inode_remove_request(req); 1439 /* 1440 * In case nfs_inode_remove_request has marked the 1441 * page as being dirty 1442 */ 1443 cancel_dirty_page(page, PAGE_CACHE_SIZE); 1444 nfs_unlock_request(req); 1445 break; 1446 } 1447 ret = nfs_wait_on_request(req); 1448 if (ret < 0) 1449 goto out; 1450 } 1451 if (!PagePrivate(page)) 1452 return 0; 1453 ret = nfs_sync_mapping_wait(page->mapping, &wbc, FLUSH_INVALIDATE); 1454 out: 1455 return ret; 1456 } 1457 1458 static int nfs_wb_page_priority(struct inode *inode, struct page *page, 1459 int how) 1460 { 1461 loff_t range_start = page_offset(page); 1462 loff_t range_end = range_start + (loff_t)(PAGE_CACHE_SIZE - 1); 1463 struct writeback_control wbc = { 1464 .bdi = page->mapping->backing_dev_info, 1465 .sync_mode = WB_SYNC_ALL, 1466 .nr_to_write = LONG_MAX, 1467 .range_start = range_start, 1468 .range_end = range_end, 1469 }; 1470 int ret; 1471 1472 BUG_ON(!PageLocked(page)); 1473 if (clear_page_dirty_for_io(page)) { 1474 ret = nfs_writepage_locked(page, &wbc); 1475 if (ret < 0) 1476 goto out; 1477 } 1478 if (!PagePrivate(page)) 1479 return 0; 1480 ret = nfs_sync_mapping_wait(page->mapping, &wbc, how); 1481 if (ret >= 0) 1482 return 0; 1483 out: 1484 __mark_inode_dirty(inode, I_DIRTY_PAGES); 1485 return ret; 1486 } 1487 1488 /* 1489 * Write back all requests on one page - we do this before reading it. 1490 */ 1491 int nfs_wb_page(struct inode *inode, struct page* page) 1492 { 1493 return nfs_wb_page_priority(inode, page, FLUSH_STABLE); 1494 } 1495 1496 int __init nfs_init_writepagecache(void) 1497 { 1498 nfs_wdata_cachep = kmem_cache_create("nfs_write_data", 1499 sizeof(struct nfs_write_data), 1500 0, SLAB_HWCACHE_ALIGN, 1501 NULL); 1502 if (nfs_wdata_cachep == NULL) 1503 return -ENOMEM; 1504 1505 nfs_wdata_mempool = mempool_create_slab_pool(MIN_POOL_WRITE, 1506 nfs_wdata_cachep); 1507 if (nfs_wdata_mempool == NULL) 1508 return -ENOMEM; 1509 1510 nfs_commit_mempool = mempool_create_slab_pool(MIN_POOL_COMMIT, 1511 nfs_wdata_cachep); 1512 if (nfs_commit_mempool == NULL) 1513 return -ENOMEM; 1514 1515 /* 1516 * NFS congestion size, scale with available memory. 1517 * 1518 * 64MB: 8192k 1519 * 128MB: 11585k 1520 * 256MB: 16384k 1521 * 512MB: 23170k 1522 * 1GB: 32768k 1523 * 2GB: 46340k 1524 * 4GB: 65536k 1525 * 8GB: 92681k 1526 * 16GB: 131072k 1527 * 1528 * This allows larger machines to have larger/more transfers. 1529 * Limit the default to 256M 1530 */ 1531 nfs_congestion_kb = (16*int_sqrt(totalram_pages)) << (PAGE_SHIFT-10); 1532 if (nfs_congestion_kb > 256*1024) 1533 nfs_congestion_kb = 256*1024; 1534 1535 return 0; 1536 } 1537 1538 void nfs_destroy_writepagecache(void) 1539 { 1540 mempool_destroy(nfs_commit_mempool); 1541 mempool_destroy(nfs_wdata_mempool); 1542 kmem_cache_destroy(nfs_wdata_cachep); 1543 } 1544 1545