xref: /openbmc/linux/fs/nfs/write.c (revision 0773769191d943358a8392fa86abd756d004c4b6)
1 /*
2  * linux/fs/nfs/write.c
3  *
4  * Write file data over NFS.
5  *
6  * Copyright (C) 1996, 1997, Olaf Kirch <okir@monad.swb.de>
7  */
8 
9 #include <linux/types.h>
10 #include <linux/slab.h>
11 #include <linux/mm.h>
12 #include <linux/pagemap.h>
13 #include <linux/file.h>
14 #include <linux/writeback.h>
15 #include <linux/swap.h>
16 
17 #include <linux/sunrpc/clnt.h>
18 #include <linux/nfs_fs.h>
19 #include <linux/nfs_mount.h>
20 #include <linux/nfs_page.h>
21 #include <linux/backing-dev.h>
22 
23 #include <asm/uaccess.h>
24 
25 #include "delegation.h"
26 #include "internal.h"
27 #include "iostat.h"
28 
29 #define NFSDBG_FACILITY		NFSDBG_PAGECACHE
30 
31 #define MIN_POOL_WRITE		(32)
32 #define MIN_POOL_COMMIT		(4)
33 
34 /*
35  * Local function declarations
36  */
37 static struct nfs_page * nfs_update_request(struct nfs_open_context*,
38 					    struct page *,
39 					    unsigned int, unsigned int);
40 static void nfs_pageio_init_write(struct nfs_pageio_descriptor *desc,
41 				  struct inode *inode, int ioflags);
42 static const struct rpc_call_ops nfs_write_partial_ops;
43 static const struct rpc_call_ops nfs_write_full_ops;
44 static const struct rpc_call_ops nfs_commit_ops;
45 
46 static struct kmem_cache *nfs_wdata_cachep;
47 static mempool_t *nfs_wdata_mempool;
48 static mempool_t *nfs_commit_mempool;
49 
50 struct nfs_write_data *nfs_commit_alloc(void)
51 {
52 	struct nfs_write_data *p = mempool_alloc(nfs_commit_mempool, GFP_NOFS);
53 
54 	if (p) {
55 		memset(p, 0, sizeof(*p));
56 		INIT_LIST_HEAD(&p->pages);
57 	}
58 	return p;
59 }
60 
61 static void nfs_commit_rcu_free(struct rcu_head *head)
62 {
63 	struct nfs_write_data *p = container_of(head, struct nfs_write_data, task.u.tk_rcu);
64 	if (p && (p->pagevec != &p->page_array[0]))
65 		kfree(p->pagevec);
66 	mempool_free(p, nfs_commit_mempool);
67 }
68 
69 void nfs_commit_free(struct nfs_write_data *wdata)
70 {
71 	call_rcu_bh(&wdata->task.u.tk_rcu, nfs_commit_rcu_free);
72 }
73 
74 struct nfs_write_data *nfs_writedata_alloc(unsigned int pagecount)
75 {
76 	struct nfs_write_data *p = mempool_alloc(nfs_wdata_mempool, GFP_NOFS);
77 
78 	if (p) {
79 		memset(p, 0, sizeof(*p));
80 		INIT_LIST_HEAD(&p->pages);
81 		p->npages = pagecount;
82 		if (pagecount <= ARRAY_SIZE(p->page_array))
83 			p->pagevec = p->page_array;
84 		else {
85 			p->pagevec = kcalloc(pagecount, sizeof(struct page *), GFP_NOFS);
86 			if (!p->pagevec) {
87 				mempool_free(p, nfs_wdata_mempool);
88 				p = NULL;
89 			}
90 		}
91 	}
92 	return p;
93 }
94 
95 static void nfs_writedata_rcu_free(struct rcu_head *head)
96 {
97 	struct nfs_write_data *p = container_of(head, struct nfs_write_data, task.u.tk_rcu);
98 	if (p && (p->pagevec != &p->page_array[0]))
99 		kfree(p->pagevec);
100 	mempool_free(p, nfs_wdata_mempool);
101 }
102 
103 static void nfs_writedata_free(struct nfs_write_data *wdata)
104 {
105 	call_rcu_bh(&wdata->task.u.tk_rcu, nfs_writedata_rcu_free);
106 }
107 
108 void nfs_writedata_release(void *wdata)
109 {
110 	nfs_writedata_free(wdata);
111 }
112 
113 static void nfs_context_set_write_error(struct nfs_open_context *ctx, int error)
114 {
115 	ctx->error = error;
116 	smp_wmb();
117 	set_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags);
118 }
119 
120 static struct nfs_page *nfs_page_find_request_locked(struct page *page)
121 {
122 	struct nfs_page *req = NULL;
123 
124 	if (PagePrivate(page)) {
125 		req = (struct nfs_page *)page_private(page);
126 		if (req != NULL)
127 			kref_get(&req->wb_kref);
128 	}
129 	return req;
130 }
131 
132 static struct nfs_page *nfs_page_find_request(struct page *page)
133 {
134 	struct inode *inode = page->mapping->host;
135 	struct nfs_page *req = NULL;
136 
137 	spin_lock(&inode->i_lock);
138 	req = nfs_page_find_request_locked(page);
139 	spin_unlock(&inode->i_lock);
140 	return req;
141 }
142 
143 /* Adjust the file length if we're writing beyond the end */
144 static void nfs_grow_file(struct page *page, unsigned int offset, unsigned int count)
145 {
146 	struct inode *inode = page->mapping->host;
147 	loff_t end, i_size = i_size_read(inode);
148 	pgoff_t end_index = (i_size - 1) >> PAGE_CACHE_SHIFT;
149 
150 	if (i_size > 0 && page->index < end_index)
151 		return;
152 	end = ((loff_t)page->index << PAGE_CACHE_SHIFT) + ((loff_t)offset+count);
153 	if (i_size >= end)
154 		return;
155 	nfs_inc_stats(inode, NFSIOS_EXTENDWRITE);
156 	i_size_write(inode, end);
157 }
158 
159 /* A writeback failed: mark the page as bad, and invalidate the page cache */
160 static void nfs_set_pageerror(struct page *page)
161 {
162 	SetPageError(page);
163 	nfs_zap_mapping(page->mapping->host, page->mapping);
164 }
165 
166 /* We can set the PG_uptodate flag if we see that a write request
167  * covers the full page.
168  */
169 static void nfs_mark_uptodate(struct page *page, unsigned int base, unsigned int count)
170 {
171 	if (PageUptodate(page))
172 		return;
173 	if (base != 0)
174 		return;
175 	if (count != nfs_page_length(page))
176 		return;
177 	SetPageUptodate(page);
178 }
179 
180 static int nfs_writepage_setup(struct nfs_open_context *ctx, struct page *page,
181 		unsigned int offset, unsigned int count)
182 {
183 	struct nfs_page	*req;
184 	int ret;
185 
186 	for (;;) {
187 		req = nfs_update_request(ctx, page, offset, count);
188 		if (!IS_ERR(req))
189 			break;
190 		ret = PTR_ERR(req);
191 		if (ret != -EBUSY)
192 			return ret;
193 		ret = nfs_wb_page(page->mapping->host, page);
194 		if (ret != 0)
195 			return ret;
196 	}
197 	/* Update file length */
198 	nfs_grow_file(page, offset, count);
199 	nfs_clear_page_tag_locked(req);
200 	return 0;
201 }
202 
203 static int wb_priority(struct writeback_control *wbc)
204 {
205 	if (wbc->for_reclaim)
206 		return FLUSH_HIGHPRI | FLUSH_STABLE;
207 	if (wbc->for_kupdate)
208 		return FLUSH_LOWPRI;
209 	return 0;
210 }
211 
212 /*
213  * NFS congestion control
214  */
215 
216 int nfs_congestion_kb;
217 
218 #define NFS_CONGESTION_ON_THRESH 	(nfs_congestion_kb >> (PAGE_SHIFT-10))
219 #define NFS_CONGESTION_OFF_THRESH	\
220 	(NFS_CONGESTION_ON_THRESH - (NFS_CONGESTION_ON_THRESH >> 2))
221 
222 static int nfs_set_page_writeback(struct page *page)
223 {
224 	int ret = test_set_page_writeback(page);
225 
226 	if (!ret) {
227 		struct inode *inode = page->mapping->host;
228 		struct nfs_server *nfss = NFS_SERVER(inode);
229 
230 		if (atomic_long_inc_return(&nfss->writeback) >
231 				NFS_CONGESTION_ON_THRESH)
232 			set_bdi_congested(&nfss->backing_dev_info, WRITE);
233 	}
234 	return ret;
235 }
236 
237 static void nfs_end_page_writeback(struct page *page)
238 {
239 	struct inode *inode = page->mapping->host;
240 	struct nfs_server *nfss = NFS_SERVER(inode);
241 
242 	end_page_writeback(page);
243 	if (atomic_long_dec_return(&nfss->writeback) < NFS_CONGESTION_OFF_THRESH)
244 		clear_bdi_congested(&nfss->backing_dev_info, WRITE);
245 }
246 
247 /*
248  * Find an associated nfs write request, and prepare to flush it out
249  * May return an error if the user signalled nfs_wait_on_request().
250  */
251 static int nfs_page_async_flush(struct nfs_pageio_descriptor *pgio,
252 				struct page *page)
253 {
254 	struct inode *inode = page->mapping->host;
255 	struct nfs_page *req;
256 	int ret;
257 
258 	spin_lock(&inode->i_lock);
259 	for(;;) {
260 		req = nfs_page_find_request_locked(page);
261 		if (req == NULL) {
262 			spin_unlock(&inode->i_lock);
263 			return 0;
264 		}
265 		if (nfs_set_page_tag_locked(req))
266 			break;
267 		/* Note: If we hold the page lock, as is the case in nfs_writepage,
268 		 *	 then the call to nfs_set_page_tag_locked() will always
269 		 *	 succeed provided that someone hasn't already marked the
270 		 *	 request as dirty (in which case we don't care).
271 		 */
272 		spin_unlock(&inode->i_lock);
273 		ret = nfs_wait_on_request(req);
274 		nfs_release_request(req);
275 		if (ret != 0)
276 			return ret;
277 		spin_lock(&inode->i_lock);
278 	}
279 	if (test_bit(PG_NEED_COMMIT, &req->wb_flags)) {
280 		/* This request is marked for commit */
281 		spin_unlock(&inode->i_lock);
282 		nfs_clear_page_tag_locked(req);
283 		nfs_pageio_complete(pgio);
284 		return 0;
285 	}
286 	if (nfs_set_page_writeback(page) != 0) {
287 		spin_unlock(&inode->i_lock);
288 		BUG();
289 	}
290 	spin_unlock(&inode->i_lock);
291 	nfs_pageio_add_request(pgio, req);
292 	return 0;
293 }
294 
295 static int nfs_do_writepage(struct page *page, struct writeback_control *wbc, struct nfs_pageio_descriptor *pgio)
296 {
297 	struct inode *inode = page->mapping->host;
298 
299 	nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGE);
300 	nfs_add_stats(inode, NFSIOS_WRITEPAGES, 1);
301 
302 	nfs_pageio_cond_complete(pgio, page->index);
303 	return nfs_page_async_flush(pgio, page);
304 }
305 
306 /*
307  * Write an mmapped page to the server.
308  */
309 static int nfs_writepage_locked(struct page *page, struct writeback_control *wbc)
310 {
311 	struct nfs_pageio_descriptor pgio;
312 	int err;
313 
314 	nfs_pageio_init_write(&pgio, page->mapping->host, wb_priority(wbc));
315 	err = nfs_do_writepage(page, wbc, &pgio);
316 	nfs_pageio_complete(&pgio);
317 	if (err < 0)
318 		return err;
319 	if (pgio.pg_error < 0)
320 		return pgio.pg_error;
321 	return 0;
322 }
323 
324 int nfs_writepage(struct page *page, struct writeback_control *wbc)
325 {
326 	int ret;
327 
328 	ret = nfs_writepage_locked(page, wbc);
329 	unlock_page(page);
330 	return ret;
331 }
332 
333 static int nfs_writepages_callback(struct page *page, struct writeback_control *wbc, void *data)
334 {
335 	int ret;
336 
337 	ret = nfs_do_writepage(page, wbc, data);
338 	unlock_page(page);
339 	return ret;
340 }
341 
342 int nfs_writepages(struct address_space *mapping, struct writeback_control *wbc)
343 {
344 	struct inode *inode = mapping->host;
345 	struct nfs_pageio_descriptor pgio;
346 	int err;
347 
348 	nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGES);
349 
350 	nfs_pageio_init_write(&pgio, inode, wb_priority(wbc));
351 	err = write_cache_pages(mapping, wbc, nfs_writepages_callback, &pgio);
352 	nfs_pageio_complete(&pgio);
353 	if (err < 0)
354 		return err;
355 	if (pgio.pg_error < 0)
356 		return pgio.pg_error;
357 	return 0;
358 }
359 
360 /*
361  * Insert a write request into an inode
362  */
363 static int nfs_inode_add_request(struct inode *inode, struct nfs_page *req)
364 {
365 	struct nfs_inode *nfsi = NFS_I(inode);
366 	int error;
367 
368 	error = radix_tree_insert(&nfsi->nfs_page_tree, req->wb_index, req);
369 	BUG_ON(error == -EEXIST);
370 	if (error)
371 		return error;
372 	if (!nfsi->npages) {
373 		igrab(inode);
374 		if (nfs_have_delegation(inode, FMODE_WRITE))
375 			nfsi->change_attr++;
376 	}
377 	SetPagePrivate(req->wb_page);
378 	set_page_private(req->wb_page, (unsigned long)req);
379 	nfsi->npages++;
380 	kref_get(&req->wb_kref);
381 	radix_tree_tag_set(&nfsi->nfs_page_tree, req->wb_index, NFS_PAGE_TAG_LOCKED);
382 	return 0;
383 }
384 
385 /*
386  * Remove a write request from an inode
387  */
388 static void nfs_inode_remove_request(struct nfs_page *req)
389 {
390 	struct inode *inode = req->wb_context->path.dentry->d_inode;
391 	struct nfs_inode *nfsi = NFS_I(inode);
392 
393 	BUG_ON (!NFS_WBACK_BUSY(req));
394 
395 	spin_lock(&inode->i_lock);
396 	set_page_private(req->wb_page, 0);
397 	ClearPagePrivate(req->wb_page);
398 	radix_tree_delete(&nfsi->nfs_page_tree, req->wb_index);
399 	nfsi->npages--;
400 	if (!nfsi->npages) {
401 		spin_unlock(&inode->i_lock);
402 		iput(inode);
403 	} else
404 		spin_unlock(&inode->i_lock);
405 	nfs_clear_request(req);
406 	nfs_release_request(req);
407 }
408 
409 static void
410 nfs_redirty_request(struct nfs_page *req)
411 {
412 	__set_page_dirty_nobuffers(req->wb_page);
413 }
414 
415 /*
416  * Check if a request is dirty
417  */
418 static inline int
419 nfs_dirty_request(struct nfs_page *req)
420 {
421 	struct page *page = req->wb_page;
422 
423 	if (page == NULL || test_bit(PG_NEED_COMMIT, &req->wb_flags))
424 		return 0;
425 	return !PageWriteback(req->wb_page);
426 }
427 
428 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
429 /*
430  * Add a request to the inode's commit list.
431  */
432 static void
433 nfs_mark_request_commit(struct nfs_page *req)
434 {
435 	struct inode *inode = req->wb_context->path.dentry->d_inode;
436 	struct nfs_inode *nfsi = NFS_I(inode);
437 
438 	spin_lock(&inode->i_lock);
439 	nfsi->ncommit++;
440 	set_bit(PG_NEED_COMMIT, &(req)->wb_flags);
441 	radix_tree_tag_set(&nfsi->nfs_page_tree,
442 			req->wb_index,
443 			NFS_PAGE_TAG_COMMIT);
444 	spin_unlock(&inode->i_lock);
445 	inc_zone_page_state(req->wb_page, NR_UNSTABLE_NFS);
446 	inc_bdi_stat(req->wb_page->mapping->backing_dev_info, BDI_RECLAIMABLE);
447 	__mark_inode_dirty(inode, I_DIRTY_DATASYNC);
448 }
449 
450 static inline
451 int nfs_write_need_commit(struct nfs_write_data *data)
452 {
453 	return data->verf.committed != NFS_FILE_SYNC;
454 }
455 
456 static inline
457 int nfs_reschedule_unstable_write(struct nfs_page *req)
458 {
459 	if (test_bit(PG_NEED_COMMIT, &req->wb_flags)) {
460 		nfs_mark_request_commit(req);
461 		return 1;
462 	}
463 	if (test_and_clear_bit(PG_NEED_RESCHED, &req->wb_flags)) {
464 		nfs_redirty_request(req);
465 		return 1;
466 	}
467 	return 0;
468 }
469 #else
470 static inline void
471 nfs_mark_request_commit(struct nfs_page *req)
472 {
473 }
474 
475 static inline
476 int nfs_write_need_commit(struct nfs_write_data *data)
477 {
478 	return 0;
479 }
480 
481 static inline
482 int nfs_reschedule_unstable_write(struct nfs_page *req)
483 {
484 	return 0;
485 }
486 #endif
487 
488 /*
489  * Wait for a request to complete.
490  *
491  * Interruptible by signals only if mounted with intr flag.
492  */
493 static int nfs_wait_on_requests_locked(struct inode *inode, pgoff_t idx_start, unsigned int npages)
494 {
495 	struct nfs_inode *nfsi = NFS_I(inode);
496 	struct nfs_page *req;
497 	pgoff_t idx_end, next;
498 	unsigned int		res = 0;
499 	int			error;
500 
501 	if (npages == 0)
502 		idx_end = ~0;
503 	else
504 		idx_end = idx_start + npages - 1;
505 
506 	next = idx_start;
507 	while (radix_tree_gang_lookup_tag(&nfsi->nfs_page_tree, (void **)&req, next, 1, NFS_PAGE_TAG_LOCKED)) {
508 		if (req->wb_index > idx_end)
509 			break;
510 
511 		next = req->wb_index + 1;
512 		BUG_ON(!NFS_WBACK_BUSY(req));
513 
514 		kref_get(&req->wb_kref);
515 		spin_unlock(&inode->i_lock);
516 		error = nfs_wait_on_request(req);
517 		nfs_release_request(req);
518 		spin_lock(&inode->i_lock);
519 		if (error < 0)
520 			return error;
521 		res++;
522 	}
523 	return res;
524 }
525 
526 static void nfs_cancel_commit_list(struct list_head *head)
527 {
528 	struct nfs_page *req;
529 
530 	while(!list_empty(head)) {
531 		req = nfs_list_entry(head->next);
532 		dec_zone_page_state(req->wb_page, NR_UNSTABLE_NFS);
533 		dec_bdi_stat(req->wb_page->mapping->backing_dev_info,
534 				BDI_RECLAIMABLE);
535 		nfs_list_remove_request(req);
536 		clear_bit(PG_NEED_COMMIT, &(req)->wb_flags);
537 		nfs_inode_remove_request(req);
538 		nfs_unlock_request(req);
539 	}
540 }
541 
542 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
543 /*
544  * nfs_scan_commit - Scan an inode for commit requests
545  * @inode: NFS inode to scan
546  * @dst: destination list
547  * @idx_start: lower bound of page->index to scan.
548  * @npages: idx_start + npages sets the upper bound to scan.
549  *
550  * Moves requests from the inode's 'commit' request list.
551  * The requests are *not* checked to ensure that they form a contiguous set.
552  */
553 static int
554 nfs_scan_commit(struct inode *inode, struct list_head *dst, pgoff_t idx_start, unsigned int npages)
555 {
556 	struct nfs_inode *nfsi = NFS_I(inode);
557 	int res = 0;
558 
559 	if (nfsi->ncommit != 0) {
560 		res = nfs_scan_list(nfsi, dst, idx_start, npages,
561 				NFS_PAGE_TAG_COMMIT);
562 		nfsi->ncommit -= res;
563 	}
564 	return res;
565 }
566 #else
567 static inline int nfs_scan_commit(struct inode *inode, struct list_head *dst, pgoff_t idx_start, unsigned int npages)
568 {
569 	return 0;
570 }
571 #endif
572 
573 /*
574  * Try to update any existing write request, or create one if there is none.
575  * In order to match, the request's credentials must match those of
576  * the calling process.
577  *
578  * Note: Should always be called with the Page Lock held!
579  */
580 static struct nfs_page * nfs_update_request(struct nfs_open_context* ctx,
581 		struct page *page, unsigned int offset, unsigned int bytes)
582 {
583 	struct address_space *mapping = page->mapping;
584 	struct inode *inode = mapping->host;
585 	struct nfs_page		*req, *new = NULL;
586 	pgoff_t		rqend, end;
587 
588 	end = offset + bytes;
589 
590 	for (;;) {
591 		/* Loop over all inode entries and see if we find
592 		 * A request for the page we wish to update
593 		 */
594 		spin_lock(&inode->i_lock);
595 		req = nfs_page_find_request_locked(page);
596 		if (req) {
597 			if (!nfs_set_page_tag_locked(req)) {
598 				int error;
599 
600 				spin_unlock(&inode->i_lock);
601 				error = nfs_wait_on_request(req);
602 				nfs_release_request(req);
603 				if (error < 0) {
604 					if (new)
605 						nfs_release_request(new);
606 					return ERR_PTR(error);
607 				}
608 				continue;
609 			}
610 			spin_unlock(&inode->i_lock);
611 			if (new)
612 				nfs_release_request(new);
613 			break;
614 		}
615 
616 		if (new) {
617 			int error;
618 			nfs_lock_request_dontget(new);
619 			error = nfs_inode_add_request(inode, new);
620 			if (error) {
621 				spin_unlock(&inode->i_lock);
622 				nfs_unlock_request(new);
623 				return ERR_PTR(error);
624 			}
625 			spin_unlock(&inode->i_lock);
626 			req = new;
627 			goto zero_page;
628 		}
629 		spin_unlock(&inode->i_lock);
630 
631 		new = nfs_create_request(ctx, inode, page, offset, bytes);
632 		if (IS_ERR(new))
633 			return new;
634 	}
635 
636 	/* We have a request for our page.
637 	 * If the creds don't match, or the
638 	 * page addresses don't match,
639 	 * tell the caller to wait on the conflicting
640 	 * request.
641 	 */
642 	rqend = req->wb_offset + req->wb_bytes;
643 	if (req->wb_context != ctx
644 	    || req->wb_page != page
645 	    || !nfs_dirty_request(req)
646 	    || offset > rqend || end < req->wb_offset) {
647 		nfs_clear_page_tag_locked(req);
648 		return ERR_PTR(-EBUSY);
649 	}
650 
651 	/* Okay, the request matches. Update the region */
652 	if (offset < req->wb_offset) {
653 		req->wb_offset = offset;
654 		req->wb_pgbase = offset;
655 		req->wb_bytes = max(end, rqend) - req->wb_offset;
656 		goto zero_page;
657 	}
658 
659 	if (end > rqend)
660 		req->wb_bytes = end - req->wb_offset;
661 
662 	return req;
663 zero_page:
664 	/* If this page might potentially be marked as up to date,
665 	 * then we need to zero any uninitalised data. */
666 	if (req->wb_pgbase == 0 && req->wb_bytes != PAGE_CACHE_SIZE
667 			&& !PageUptodate(req->wb_page))
668 		zero_user_page(req->wb_page, req->wb_bytes,
669 				PAGE_CACHE_SIZE - req->wb_bytes,
670 				KM_USER0);
671 	return req;
672 }
673 
674 int nfs_flush_incompatible(struct file *file, struct page *page)
675 {
676 	struct nfs_open_context *ctx = nfs_file_open_context(file);
677 	struct nfs_page	*req;
678 	int do_flush, status;
679 	/*
680 	 * Look for a request corresponding to this page. If there
681 	 * is one, and it belongs to another file, we flush it out
682 	 * before we try to copy anything into the page. Do this
683 	 * due to the lack of an ACCESS-type call in NFSv2.
684 	 * Also do the same if we find a request from an existing
685 	 * dropped page.
686 	 */
687 	do {
688 		req = nfs_page_find_request(page);
689 		if (req == NULL)
690 			return 0;
691 		do_flush = req->wb_page != page || req->wb_context != ctx
692 			|| !nfs_dirty_request(req);
693 		nfs_release_request(req);
694 		if (!do_flush)
695 			return 0;
696 		status = nfs_wb_page(page->mapping->host, page);
697 	} while (status == 0);
698 	return status;
699 }
700 
701 /*
702  * Update and possibly write a cached page of an NFS file.
703  *
704  * XXX: Keep an eye on generic_file_read to make sure it doesn't do bad
705  * things with a page scheduled for an RPC call (e.g. invalidate it).
706  */
707 int nfs_updatepage(struct file *file, struct page *page,
708 		unsigned int offset, unsigned int count)
709 {
710 	struct nfs_open_context *ctx = nfs_file_open_context(file);
711 	struct inode	*inode = page->mapping->host;
712 	int		status = 0;
713 
714 	nfs_inc_stats(inode, NFSIOS_VFSUPDATEPAGE);
715 
716 	dprintk("NFS:      nfs_updatepage(%s/%s %d@%Ld)\n",
717 		file->f_path.dentry->d_parent->d_name.name,
718 		file->f_path.dentry->d_name.name, count,
719 		(long long)(page_offset(page) +offset));
720 
721 	/* If we're not using byte range locks, and we know the page
722 	 * is entirely in cache, it may be more efficient to avoid
723 	 * fragmenting write requests.
724 	 */
725 	if (PageUptodate(page) && inode->i_flock == NULL && !(file->f_mode & O_SYNC)) {
726 		count = max(count + offset, nfs_page_length(page));
727 		offset = 0;
728 	}
729 
730 	status = nfs_writepage_setup(ctx, page, offset, count);
731 	__set_page_dirty_nobuffers(page);
732 
733         dprintk("NFS:      nfs_updatepage returns %d (isize %Ld)\n",
734 			status, (long long)i_size_read(inode));
735 	if (status < 0)
736 		nfs_set_pageerror(page);
737 	return status;
738 }
739 
740 static void nfs_writepage_release(struct nfs_page *req)
741 {
742 
743 	if (PageError(req->wb_page)) {
744 		nfs_end_page_writeback(req->wb_page);
745 		nfs_inode_remove_request(req);
746 	} else if (!nfs_reschedule_unstable_write(req)) {
747 		/* Set the PG_uptodate flag */
748 		nfs_mark_uptodate(req->wb_page, req->wb_pgbase, req->wb_bytes);
749 		nfs_end_page_writeback(req->wb_page);
750 		nfs_inode_remove_request(req);
751 	} else
752 		nfs_end_page_writeback(req->wb_page);
753 	nfs_clear_page_tag_locked(req);
754 }
755 
756 static int flush_task_priority(int how)
757 {
758 	switch (how & (FLUSH_HIGHPRI|FLUSH_LOWPRI)) {
759 		case FLUSH_HIGHPRI:
760 			return RPC_PRIORITY_HIGH;
761 		case FLUSH_LOWPRI:
762 			return RPC_PRIORITY_LOW;
763 	}
764 	return RPC_PRIORITY_NORMAL;
765 }
766 
767 /*
768  * Set up the argument/result storage required for the RPC call.
769  */
770 static void nfs_write_rpcsetup(struct nfs_page *req,
771 		struct nfs_write_data *data,
772 		const struct rpc_call_ops *call_ops,
773 		unsigned int count, unsigned int offset,
774 		int how)
775 {
776 	struct inode *inode = req->wb_context->path.dentry->d_inode;
777 	int flags = (how & FLUSH_SYNC) ? 0 : RPC_TASK_ASYNC;
778 	int priority = flush_task_priority(how);
779 	struct rpc_task *task;
780 	struct rpc_message msg = {
781 		.rpc_argp = &data->args,
782 		.rpc_resp = &data->res,
783 		.rpc_cred = req->wb_context->cred,
784 	};
785 	struct rpc_task_setup task_setup_data = {
786 		.rpc_client = NFS_CLIENT(inode),
787 		.task = &data->task,
788 		.rpc_message = &msg,
789 		.callback_ops = call_ops,
790 		.callback_data = data,
791 		.flags = flags,
792 		.priority = priority,
793 	};
794 
795 	/* Set up the RPC argument and reply structs
796 	 * NB: take care not to mess about with data->commit et al. */
797 
798 	data->req = req;
799 	data->inode = inode = req->wb_context->path.dentry->d_inode;
800 	data->cred = msg.rpc_cred;
801 
802 	data->args.fh     = NFS_FH(inode);
803 	data->args.offset = req_offset(req) + offset;
804 	data->args.pgbase = req->wb_pgbase + offset;
805 	data->args.pages  = data->pagevec;
806 	data->args.count  = count;
807 	data->args.context = req->wb_context;
808 	data->args.stable  = NFS_UNSTABLE;
809 	if (how & FLUSH_STABLE) {
810 		data->args.stable = NFS_DATA_SYNC;
811 		if (!NFS_I(inode)->ncommit)
812 			data->args.stable = NFS_FILE_SYNC;
813 	}
814 
815 	data->res.fattr   = &data->fattr;
816 	data->res.count   = count;
817 	data->res.verf    = &data->verf;
818 	nfs_fattr_init(&data->fattr);
819 
820 	/* Set up the initial task struct.  */
821 	NFS_PROTO(inode)->write_setup(data, &msg);
822 
823 	dprintk("NFS: %5u initiated write call "
824 		"(req %s/%Ld, %u bytes @ offset %Lu)\n",
825 		data->task.tk_pid,
826 		inode->i_sb->s_id,
827 		(long long)NFS_FILEID(inode),
828 		count,
829 		(unsigned long long)data->args.offset);
830 
831 	task = rpc_run_task(&task_setup_data);
832 	if (!IS_ERR(task))
833 		rpc_put_task(task);
834 }
835 
836 /*
837  * Generate multiple small requests to write out a single
838  * contiguous dirty area on one page.
839  */
840 static int nfs_flush_multi(struct inode *inode, struct list_head *head, unsigned int npages, size_t count, int how)
841 {
842 	struct nfs_page *req = nfs_list_entry(head->next);
843 	struct page *page = req->wb_page;
844 	struct nfs_write_data *data;
845 	size_t wsize = NFS_SERVER(inode)->wsize, nbytes;
846 	unsigned int offset;
847 	int requests = 0;
848 	LIST_HEAD(list);
849 
850 	nfs_list_remove_request(req);
851 
852 	nbytes = count;
853 	do {
854 		size_t len = min(nbytes, wsize);
855 
856 		data = nfs_writedata_alloc(1);
857 		if (!data)
858 			goto out_bad;
859 		list_add(&data->pages, &list);
860 		requests++;
861 		nbytes -= len;
862 	} while (nbytes != 0);
863 	atomic_set(&req->wb_complete, requests);
864 
865 	ClearPageError(page);
866 	offset = 0;
867 	nbytes = count;
868 	do {
869 		data = list_entry(list.next, struct nfs_write_data, pages);
870 		list_del_init(&data->pages);
871 
872 		data->pagevec[0] = page;
873 
874 		if (nbytes < wsize)
875 			wsize = nbytes;
876 		nfs_write_rpcsetup(req, data, &nfs_write_partial_ops,
877 				   wsize, offset, how);
878 		offset += wsize;
879 		nbytes -= wsize;
880 	} while (nbytes != 0);
881 
882 	return 0;
883 
884 out_bad:
885 	while (!list_empty(&list)) {
886 		data = list_entry(list.next, struct nfs_write_data, pages);
887 		list_del(&data->pages);
888 		nfs_writedata_release(data);
889 	}
890 	nfs_redirty_request(req);
891 	nfs_end_page_writeback(req->wb_page);
892 	nfs_clear_page_tag_locked(req);
893 	return -ENOMEM;
894 }
895 
896 /*
897  * Create an RPC task for the given write request and kick it.
898  * The page must have been locked by the caller.
899  *
900  * It may happen that the page we're passed is not marked dirty.
901  * This is the case if nfs_updatepage detects a conflicting request
902  * that has been written but not committed.
903  */
904 static int nfs_flush_one(struct inode *inode, struct list_head *head, unsigned int npages, size_t count, int how)
905 {
906 	struct nfs_page		*req;
907 	struct page		**pages;
908 	struct nfs_write_data	*data;
909 
910 	data = nfs_writedata_alloc(npages);
911 	if (!data)
912 		goto out_bad;
913 
914 	pages = data->pagevec;
915 	while (!list_empty(head)) {
916 		req = nfs_list_entry(head->next);
917 		nfs_list_remove_request(req);
918 		nfs_list_add_request(req, &data->pages);
919 		ClearPageError(req->wb_page);
920 		*pages++ = req->wb_page;
921 	}
922 	req = nfs_list_entry(data->pages.next);
923 
924 	/* Set up the argument struct */
925 	nfs_write_rpcsetup(req, data, &nfs_write_full_ops, count, 0, how);
926 
927 	return 0;
928  out_bad:
929 	while (!list_empty(head)) {
930 		req = nfs_list_entry(head->next);
931 		nfs_list_remove_request(req);
932 		nfs_redirty_request(req);
933 		nfs_end_page_writeback(req->wb_page);
934 		nfs_clear_page_tag_locked(req);
935 	}
936 	return -ENOMEM;
937 }
938 
939 static void nfs_pageio_init_write(struct nfs_pageio_descriptor *pgio,
940 				  struct inode *inode, int ioflags)
941 {
942 	int wsize = NFS_SERVER(inode)->wsize;
943 
944 	if (wsize < PAGE_CACHE_SIZE)
945 		nfs_pageio_init(pgio, inode, nfs_flush_multi, wsize, ioflags);
946 	else
947 		nfs_pageio_init(pgio, inode, nfs_flush_one, wsize, ioflags);
948 }
949 
950 /*
951  * Handle a write reply that flushed part of a page.
952  */
953 static void nfs_writeback_done_partial(struct rpc_task *task, void *calldata)
954 {
955 	struct nfs_write_data	*data = calldata;
956 	struct nfs_page		*req = data->req;
957 	struct page		*page = req->wb_page;
958 
959 	dprintk("NFS: write (%s/%Ld %d@%Ld)",
960 		req->wb_context->path.dentry->d_inode->i_sb->s_id,
961 		(long long)NFS_FILEID(req->wb_context->path.dentry->d_inode),
962 		req->wb_bytes,
963 		(long long)req_offset(req));
964 
965 	if (nfs_writeback_done(task, data) != 0)
966 		return;
967 
968 	if (task->tk_status < 0) {
969 		nfs_set_pageerror(page);
970 		nfs_context_set_write_error(req->wb_context, task->tk_status);
971 		dprintk(", error = %d\n", task->tk_status);
972 		goto out;
973 	}
974 
975 	if (nfs_write_need_commit(data)) {
976 		struct inode *inode = page->mapping->host;
977 
978 		spin_lock(&inode->i_lock);
979 		if (test_bit(PG_NEED_RESCHED, &req->wb_flags)) {
980 			/* Do nothing we need to resend the writes */
981 		} else if (!test_and_set_bit(PG_NEED_COMMIT, &req->wb_flags)) {
982 			memcpy(&req->wb_verf, &data->verf, sizeof(req->wb_verf));
983 			dprintk(" defer commit\n");
984 		} else if (memcmp(&req->wb_verf, &data->verf, sizeof(req->wb_verf))) {
985 			set_bit(PG_NEED_RESCHED, &req->wb_flags);
986 			clear_bit(PG_NEED_COMMIT, &req->wb_flags);
987 			dprintk(" server reboot detected\n");
988 		}
989 		spin_unlock(&inode->i_lock);
990 	} else
991 		dprintk(" OK\n");
992 
993 out:
994 	if (atomic_dec_and_test(&req->wb_complete))
995 		nfs_writepage_release(req);
996 }
997 
998 static const struct rpc_call_ops nfs_write_partial_ops = {
999 	.rpc_call_done = nfs_writeback_done_partial,
1000 	.rpc_release = nfs_writedata_release,
1001 };
1002 
1003 /*
1004  * Handle a write reply that flushes a whole page.
1005  *
1006  * FIXME: There is an inherent race with invalidate_inode_pages and
1007  *	  writebacks since the page->count is kept > 1 for as long
1008  *	  as the page has a write request pending.
1009  */
1010 static void nfs_writeback_done_full(struct rpc_task *task, void *calldata)
1011 {
1012 	struct nfs_write_data	*data = calldata;
1013 	struct nfs_page		*req;
1014 	struct page		*page;
1015 
1016 	if (nfs_writeback_done(task, data) != 0)
1017 		return;
1018 
1019 	/* Update attributes as result of writeback. */
1020 	while (!list_empty(&data->pages)) {
1021 		req = nfs_list_entry(data->pages.next);
1022 		nfs_list_remove_request(req);
1023 		page = req->wb_page;
1024 
1025 		dprintk("NFS: write (%s/%Ld %d@%Ld)",
1026 			req->wb_context->path.dentry->d_inode->i_sb->s_id,
1027 			(long long)NFS_FILEID(req->wb_context->path.dentry->d_inode),
1028 			req->wb_bytes,
1029 			(long long)req_offset(req));
1030 
1031 		if (task->tk_status < 0) {
1032 			nfs_set_pageerror(page);
1033 			nfs_context_set_write_error(req->wb_context, task->tk_status);
1034 			dprintk(", error = %d\n", task->tk_status);
1035 			goto remove_request;
1036 		}
1037 
1038 		if (nfs_write_need_commit(data)) {
1039 			memcpy(&req->wb_verf, &data->verf, sizeof(req->wb_verf));
1040 			nfs_mark_request_commit(req);
1041 			nfs_end_page_writeback(page);
1042 			dprintk(" marked for commit\n");
1043 			goto next;
1044 		}
1045 		/* Set the PG_uptodate flag? */
1046 		nfs_mark_uptodate(page, req->wb_pgbase, req->wb_bytes);
1047 		dprintk(" OK\n");
1048 remove_request:
1049 		nfs_end_page_writeback(page);
1050 		nfs_inode_remove_request(req);
1051 	next:
1052 		nfs_clear_page_tag_locked(req);
1053 	}
1054 }
1055 
1056 static const struct rpc_call_ops nfs_write_full_ops = {
1057 	.rpc_call_done = nfs_writeback_done_full,
1058 	.rpc_release = nfs_writedata_release,
1059 };
1060 
1061 
1062 /*
1063  * This function is called when the WRITE call is complete.
1064  */
1065 int nfs_writeback_done(struct rpc_task *task, struct nfs_write_data *data)
1066 {
1067 	struct nfs_writeargs	*argp = &data->args;
1068 	struct nfs_writeres	*resp = &data->res;
1069 	int status;
1070 
1071 	dprintk("NFS: %5u nfs_writeback_done (status %d)\n",
1072 		task->tk_pid, task->tk_status);
1073 
1074 	/*
1075 	 * ->write_done will attempt to use post-op attributes to detect
1076 	 * conflicting writes by other clients.  A strict interpretation
1077 	 * of close-to-open would allow us to continue caching even if
1078 	 * another writer had changed the file, but some applications
1079 	 * depend on tighter cache coherency when writing.
1080 	 */
1081 	status = NFS_PROTO(data->inode)->write_done(task, data);
1082 	if (status != 0)
1083 		return status;
1084 	nfs_add_stats(data->inode, NFSIOS_SERVERWRITTENBYTES, resp->count);
1085 
1086 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
1087 	if (resp->verf->committed < argp->stable && task->tk_status >= 0) {
1088 		/* We tried a write call, but the server did not
1089 		 * commit data to stable storage even though we
1090 		 * requested it.
1091 		 * Note: There is a known bug in Tru64 < 5.0 in which
1092 		 *	 the server reports NFS_DATA_SYNC, but performs
1093 		 *	 NFS_FILE_SYNC. We therefore implement this checking
1094 		 *	 as a dprintk() in order to avoid filling syslog.
1095 		 */
1096 		static unsigned long    complain;
1097 
1098 		if (time_before(complain, jiffies)) {
1099 			dprintk("NFS: faulty NFS server %s:"
1100 				" (committed = %d) != (stable = %d)\n",
1101 				NFS_SERVER(data->inode)->nfs_client->cl_hostname,
1102 				resp->verf->committed, argp->stable);
1103 			complain = jiffies + 300 * HZ;
1104 		}
1105 	}
1106 #endif
1107 	/* Is this a short write? */
1108 	if (task->tk_status >= 0 && resp->count < argp->count) {
1109 		static unsigned long    complain;
1110 
1111 		nfs_inc_stats(data->inode, NFSIOS_SHORTWRITE);
1112 
1113 		/* Has the server at least made some progress? */
1114 		if (resp->count != 0) {
1115 			/* Was this an NFSv2 write or an NFSv3 stable write? */
1116 			if (resp->verf->committed != NFS_UNSTABLE) {
1117 				/* Resend from where the server left off */
1118 				argp->offset += resp->count;
1119 				argp->pgbase += resp->count;
1120 				argp->count -= resp->count;
1121 			} else {
1122 				/* Resend as a stable write in order to avoid
1123 				 * headaches in the case of a server crash.
1124 				 */
1125 				argp->stable = NFS_FILE_SYNC;
1126 			}
1127 			rpc_restart_call(task);
1128 			return -EAGAIN;
1129 		}
1130 		if (time_before(complain, jiffies)) {
1131 			printk(KERN_WARNING
1132 			       "NFS: Server wrote zero bytes, expected %u.\n",
1133 					argp->count);
1134 			complain = jiffies + 300 * HZ;
1135 		}
1136 		/* Can't do anything about it except throw an error. */
1137 		task->tk_status = -EIO;
1138 	}
1139 	return 0;
1140 }
1141 
1142 
1143 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
1144 void nfs_commit_release(void *wdata)
1145 {
1146 	nfs_commit_free(wdata);
1147 }
1148 
1149 /*
1150  * Set up the argument/result storage required for the RPC call.
1151  */
1152 static void nfs_commit_rpcsetup(struct list_head *head,
1153 		struct nfs_write_data *data,
1154 		int how)
1155 {
1156 	struct nfs_page *first = nfs_list_entry(head->next);
1157 	struct inode *inode = first->wb_context->path.dentry->d_inode;
1158 	int flags = (how & FLUSH_SYNC) ? 0 : RPC_TASK_ASYNC;
1159 	int priority = flush_task_priority(how);
1160 	struct rpc_task *task;
1161 	struct rpc_message msg = {
1162 		.rpc_argp = &data->args,
1163 		.rpc_resp = &data->res,
1164 		.rpc_cred = first->wb_context->cred,
1165 	};
1166 	struct rpc_task_setup task_setup_data = {
1167 		.task = &data->task,
1168 		.rpc_client = NFS_CLIENT(inode),
1169 		.rpc_message = &msg,
1170 		.callback_ops = &nfs_commit_ops,
1171 		.callback_data = data,
1172 		.flags = flags,
1173 		.priority = priority,
1174 	};
1175 
1176 	/* Set up the RPC argument and reply structs
1177 	 * NB: take care not to mess about with data->commit et al. */
1178 
1179 	list_splice_init(head, &data->pages);
1180 
1181 	data->inode	  = inode;
1182 	data->cred	  = msg.rpc_cred;
1183 
1184 	data->args.fh     = NFS_FH(data->inode);
1185 	/* Note: we always request a commit of the entire inode */
1186 	data->args.offset = 0;
1187 	data->args.count  = 0;
1188 	data->res.count   = 0;
1189 	data->res.fattr   = &data->fattr;
1190 	data->res.verf    = &data->verf;
1191 	nfs_fattr_init(&data->fattr);
1192 
1193 	/* Set up the initial task struct.  */
1194 	NFS_PROTO(inode)->commit_setup(data, &msg);
1195 
1196 	dprintk("NFS: %5u initiated commit call\n", data->task.tk_pid);
1197 
1198 	task = rpc_run_task(&task_setup_data);
1199 	if (!IS_ERR(task))
1200 		rpc_put_task(task);
1201 }
1202 
1203 /*
1204  * Commit dirty pages
1205  */
1206 static int
1207 nfs_commit_list(struct inode *inode, struct list_head *head, int how)
1208 {
1209 	struct nfs_write_data	*data;
1210 	struct nfs_page         *req;
1211 
1212 	data = nfs_commit_alloc();
1213 
1214 	if (!data)
1215 		goto out_bad;
1216 
1217 	/* Set up the argument struct */
1218 	nfs_commit_rpcsetup(head, data, how);
1219 
1220 	return 0;
1221  out_bad:
1222 	while (!list_empty(head)) {
1223 		req = nfs_list_entry(head->next);
1224 		nfs_list_remove_request(req);
1225 		nfs_mark_request_commit(req);
1226 		dec_zone_page_state(req->wb_page, NR_UNSTABLE_NFS);
1227 		dec_bdi_stat(req->wb_page->mapping->backing_dev_info,
1228 				BDI_RECLAIMABLE);
1229 		nfs_clear_page_tag_locked(req);
1230 	}
1231 	return -ENOMEM;
1232 }
1233 
1234 /*
1235  * COMMIT call returned
1236  */
1237 static void nfs_commit_done(struct rpc_task *task, void *calldata)
1238 {
1239 	struct nfs_write_data	*data = calldata;
1240 	struct nfs_page		*req;
1241 
1242         dprintk("NFS: %5u nfs_commit_done (status %d)\n",
1243                                 task->tk_pid, task->tk_status);
1244 
1245 	/* Call the NFS version-specific code */
1246 	if (NFS_PROTO(data->inode)->commit_done(task, data) != 0)
1247 		return;
1248 
1249 	while (!list_empty(&data->pages)) {
1250 		req = nfs_list_entry(data->pages.next);
1251 		nfs_list_remove_request(req);
1252 		clear_bit(PG_NEED_COMMIT, &(req)->wb_flags);
1253 		dec_zone_page_state(req->wb_page, NR_UNSTABLE_NFS);
1254 		dec_bdi_stat(req->wb_page->mapping->backing_dev_info,
1255 				BDI_RECLAIMABLE);
1256 
1257 		dprintk("NFS: commit (%s/%Ld %d@%Ld)",
1258 			req->wb_context->path.dentry->d_inode->i_sb->s_id,
1259 			(long long)NFS_FILEID(req->wb_context->path.dentry->d_inode),
1260 			req->wb_bytes,
1261 			(long long)req_offset(req));
1262 		if (task->tk_status < 0) {
1263 			nfs_context_set_write_error(req->wb_context, task->tk_status);
1264 			nfs_inode_remove_request(req);
1265 			dprintk(", error = %d\n", task->tk_status);
1266 			goto next;
1267 		}
1268 
1269 		/* Okay, COMMIT succeeded, apparently. Check the verifier
1270 		 * returned by the server against all stored verfs. */
1271 		if (!memcmp(req->wb_verf.verifier, data->verf.verifier, sizeof(data->verf.verifier))) {
1272 			/* We have a match */
1273 			/* Set the PG_uptodate flag */
1274 			nfs_mark_uptodate(req->wb_page, req->wb_pgbase,
1275 					req->wb_bytes);
1276 			nfs_inode_remove_request(req);
1277 			dprintk(" OK\n");
1278 			goto next;
1279 		}
1280 		/* We have a mismatch. Write the page again */
1281 		dprintk(" mismatch\n");
1282 		nfs_redirty_request(req);
1283 	next:
1284 		nfs_clear_page_tag_locked(req);
1285 	}
1286 }
1287 
1288 static const struct rpc_call_ops nfs_commit_ops = {
1289 	.rpc_call_done = nfs_commit_done,
1290 	.rpc_release = nfs_commit_release,
1291 };
1292 
1293 int nfs_commit_inode(struct inode *inode, int how)
1294 {
1295 	LIST_HEAD(head);
1296 	int res;
1297 
1298 	spin_lock(&inode->i_lock);
1299 	res = nfs_scan_commit(inode, &head, 0, 0);
1300 	spin_unlock(&inode->i_lock);
1301 	if (res) {
1302 		int error = nfs_commit_list(inode, &head, how);
1303 		if (error < 0)
1304 			return error;
1305 	}
1306 	return res;
1307 }
1308 #else
1309 static inline int nfs_commit_list(struct inode *inode, struct list_head *head, int how)
1310 {
1311 	return 0;
1312 }
1313 #endif
1314 
1315 long nfs_sync_mapping_wait(struct address_space *mapping, struct writeback_control *wbc, int how)
1316 {
1317 	struct inode *inode = mapping->host;
1318 	pgoff_t idx_start, idx_end;
1319 	unsigned int npages = 0;
1320 	LIST_HEAD(head);
1321 	int nocommit = how & FLUSH_NOCOMMIT;
1322 	long pages, ret;
1323 
1324 	/* FIXME */
1325 	if (wbc->range_cyclic)
1326 		idx_start = 0;
1327 	else {
1328 		idx_start = wbc->range_start >> PAGE_CACHE_SHIFT;
1329 		idx_end = wbc->range_end >> PAGE_CACHE_SHIFT;
1330 		if (idx_end > idx_start) {
1331 			pgoff_t l_npages = 1 + idx_end - idx_start;
1332 			npages = l_npages;
1333 			if (sizeof(npages) != sizeof(l_npages) &&
1334 					(pgoff_t)npages != l_npages)
1335 				npages = 0;
1336 		}
1337 	}
1338 	how &= ~FLUSH_NOCOMMIT;
1339 	spin_lock(&inode->i_lock);
1340 	do {
1341 		ret = nfs_wait_on_requests_locked(inode, idx_start, npages);
1342 		if (ret != 0)
1343 			continue;
1344 		if (nocommit)
1345 			break;
1346 		pages = nfs_scan_commit(inode, &head, idx_start, npages);
1347 		if (pages == 0)
1348 			break;
1349 		if (how & FLUSH_INVALIDATE) {
1350 			spin_unlock(&inode->i_lock);
1351 			nfs_cancel_commit_list(&head);
1352 			ret = pages;
1353 			spin_lock(&inode->i_lock);
1354 			continue;
1355 		}
1356 		pages += nfs_scan_commit(inode, &head, 0, 0);
1357 		spin_unlock(&inode->i_lock);
1358 		ret = nfs_commit_list(inode, &head, how);
1359 		spin_lock(&inode->i_lock);
1360 
1361 	} while (ret >= 0);
1362 	spin_unlock(&inode->i_lock);
1363 	return ret;
1364 }
1365 
1366 static int __nfs_write_mapping(struct address_space *mapping, struct writeback_control *wbc, int how)
1367 {
1368 	int ret;
1369 
1370 	ret = nfs_writepages(mapping, wbc);
1371 	if (ret < 0)
1372 		goto out;
1373 	ret = nfs_sync_mapping_wait(mapping, wbc, how);
1374 	if (ret < 0)
1375 		goto out;
1376 	return 0;
1377 out:
1378 	__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1379 	return ret;
1380 }
1381 
1382 /* Two pass sync: first using WB_SYNC_NONE, then WB_SYNC_ALL */
1383 static int nfs_write_mapping(struct address_space *mapping, int how)
1384 {
1385 	struct writeback_control wbc = {
1386 		.bdi = mapping->backing_dev_info,
1387 		.sync_mode = WB_SYNC_NONE,
1388 		.nr_to_write = LONG_MAX,
1389 		.for_writepages = 1,
1390 		.range_cyclic = 1,
1391 	};
1392 	int ret;
1393 
1394 	ret = __nfs_write_mapping(mapping, &wbc, how);
1395 	if (ret < 0)
1396 		return ret;
1397 	wbc.sync_mode = WB_SYNC_ALL;
1398 	return __nfs_write_mapping(mapping, &wbc, how);
1399 }
1400 
1401 /*
1402  * flush the inode to disk.
1403  */
1404 int nfs_wb_all(struct inode *inode)
1405 {
1406 	return nfs_write_mapping(inode->i_mapping, 0);
1407 }
1408 
1409 int nfs_wb_nocommit(struct inode *inode)
1410 {
1411 	return nfs_write_mapping(inode->i_mapping, FLUSH_NOCOMMIT);
1412 }
1413 
1414 int nfs_wb_page_cancel(struct inode *inode, struct page *page)
1415 {
1416 	struct nfs_page *req;
1417 	loff_t range_start = page_offset(page);
1418 	loff_t range_end = range_start + (loff_t)(PAGE_CACHE_SIZE - 1);
1419 	struct writeback_control wbc = {
1420 		.bdi = page->mapping->backing_dev_info,
1421 		.sync_mode = WB_SYNC_ALL,
1422 		.nr_to_write = LONG_MAX,
1423 		.range_start = range_start,
1424 		.range_end = range_end,
1425 	};
1426 	int ret = 0;
1427 
1428 	BUG_ON(!PageLocked(page));
1429 	for (;;) {
1430 		req = nfs_page_find_request(page);
1431 		if (req == NULL)
1432 			goto out;
1433 		if (test_bit(PG_NEED_COMMIT, &req->wb_flags)) {
1434 			nfs_release_request(req);
1435 			break;
1436 		}
1437 		if (nfs_lock_request_dontget(req)) {
1438 			nfs_inode_remove_request(req);
1439 			/*
1440 			 * In case nfs_inode_remove_request has marked the
1441 			 * page as being dirty
1442 			 */
1443 			cancel_dirty_page(page, PAGE_CACHE_SIZE);
1444 			nfs_unlock_request(req);
1445 			break;
1446 		}
1447 		ret = nfs_wait_on_request(req);
1448 		if (ret < 0)
1449 			goto out;
1450 	}
1451 	if (!PagePrivate(page))
1452 		return 0;
1453 	ret = nfs_sync_mapping_wait(page->mapping, &wbc, FLUSH_INVALIDATE);
1454 out:
1455 	return ret;
1456 }
1457 
1458 static int nfs_wb_page_priority(struct inode *inode, struct page *page,
1459 				int how)
1460 {
1461 	loff_t range_start = page_offset(page);
1462 	loff_t range_end = range_start + (loff_t)(PAGE_CACHE_SIZE - 1);
1463 	struct writeback_control wbc = {
1464 		.bdi = page->mapping->backing_dev_info,
1465 		.sync_mode = WB_SYNC_ALL,
1466 		.nr_to_write = LONG_MAX,
1467 		.range_start = range_start,
1468 		.range_end = range_end,
1469 	};
1470 	int ret;
1471 
1472 	BUG_ON(!PageLocked(page));
1473 	if (clear_page_dirty_for_io(page)) {
1474 		ret = nfs_writepage_locked(page, &wbc);
1475 		if (ret < 0)
1476 			goto out;
1477 	}
1478 	if (!PagePrivate(page))
1479 		return 0;
1480 	ret = nfs_sync_mapping_wait(page->mapping, &wbc, how);
1481 	if (ret >= 0)
1482 		return 0;
1483 out:
1484 	__mark_inode_dirty(inode, I_DIRTY_PAGES);
1485 	return ret;
1486 }
1487 
1488 /*
1489  * Write back all requests on one page - we do this before reading it.
1490  */
1491 int nfs_wb_page(struct inode *inode, struct page* page)
1492 {
1493 	return nfs_wb_page_priority(inode, page, FLUSH_STABLE);
1494 }
1495 
1496 int __init nfs_init_writepagecache(void)
1497 {
1498 	nfs_wdata_cachep = kmem_cache_create("nfs_write_data",
1499 					     sizeof(struct nfs_write_data),
1500 					     0, SLAB_HWCACHE_ALIGN,
1501 					     NULL);
1502 	if (nfs_wdata_cachep == NULL)
1503 		return -ENOMEM;
1504 
1505 	nfs_wdata_mempool = mempool_create_slab_pool(MIN_POOL_WRITE,
1506 						     nfs_wdata_cachep);
1507 	if (nfs_wdata_mempool == NULL)
1508 		return -ENOMEM;
1509 
1510 	nfs_commit_mempool = mempool_create_slab_pool(MIN_POOL_COMMIT,
1511 						      nfs_wdata_cachep);
1512 	if (nfs_commit_mempool == NULL)
1513 		return -ENOMEM;
1514 
1515 	/*
1516 	 * NFS congestion size, scale with available memory.
1517 	 *
1518 	 *  64MB:    8192k
1519 	 * 128MB:   11585k
1520 	 * 256MB:   16384k
1521 	 * 512MB:   23170k
1522 	 *   1GB:   32768k
1523 	 *   2GB:   46340k
1524 	 *   4GB:   65536k
1525 	 *   8GB:   92681k
1526 	 *  16GB:  131072k
1527 	 *
1528 	 * This allows larger machines to have larger/more transfers.
1529 	 * Limit the default to 256M
1530 	 */
1531 	nfs_congestion_kb = (16*int_sqrt(totalram_pages)) << (PAGE_SHIFT-10);
1532 	if (nfs_congestion_kb > 256*1024)
1533 		nfs_congestion_kb = 256*1024;
1534 
1535 	return 0;
1536 }
1537 
1538 void nfs_destroy_writepagecache(void)
1539 {
1540 	mempool_destroy(nfs_commit_mempool);
1541 	mempool_destroy(nfs_wdata_mempool);
1542 	kmem_cache_destroy(nfs_wdata_cachep);
1543 }
1544 
1545