xref: /openbmc/linux/fs/nfs/read.c (revision 266bee88699ddbde42ab303bbc426a105cc49809)
1 /*
2  * linux/fs/nfs/read.c
3  *
4  * Block I/O for NFS
5  *
6  * Partial copy of Linus' read cache modifications to fs/nfs/file.c
7  * modified for async RPC by okir@monad.swb.de
8  *
9  * We do an ugly hack here in order to return proper error codes to the
10  * user program when a read request failed: since generic_file_read
11  * only checks the return value of inode->i_op->readpage() which is always 0
12  * for async RPC, we set the error bit of the page to 1 when an error occurs,
13  * and make nfs_readpage transmit requests synchronously when encountering this.
14  * This is only a small problem, though, since we now retry all operations
15  * within the RPC code when root squashing is suspected.
16  */
17 
18 #include <linux/config.h>
19 #include <linux/time.h>
20 #include <linux/kernel.h>
21 #include <linux/errno.h>
22 #include <linux/fcntl.h>
23 #include <linux/stat.h>
24 #include <linux/mm.h>
25 #include <linux/slab.h>
26 #include <linux/pagemap.h>
27 #include <linux/sunrpc/clnt.h>
28 #include <linux/nfs_fs.h>
29 #include <linux/nfs_page.h>
30 #include <linux/smp_lock.h>
31 
32 #include <asm/system.h>
33 
34 #include "iostat.h"
35 
36 #define NFSDBG_FACILITY		NFSDBG_PAGECACHE
37 
38 static int nfs_pagein_one(struct list_head *, struct inode *);
39 static const struct rpc_call_ops nfs_read_partial_ops;
40 static const struct rpc_call_ops nfs_read_full_ops;
41 
42 static kmem_cache_t *nfs_rdata_cachep;
43 static mempool_t *nfs_rdata_mempool;
44 
45 #define MIN_POOL_READ	(32)
46 
47 struct nfs_read_data *nfs_readdata_alloc(unsigned int pagecount)
48 {
49 	struct nfs_read_data *p = mempool_alloc(nfs_rdata_mempool, SLAB_NOFS);
50 
51 	if (p) {
52 		memset(p, 0, sizeof(*p));
53 		INIT_LIST_HEAD(&p->pages);
54 		if (pagecount <= ARRAY_SIZE(p->page_array))
55 			p->pagevec = p->page_array;
56 		else {
57 			p->pagevec = kcalloc(pagecount, sizeof(struct page *), GFP_NOFS);
58 			if (!p->pagevec) {
59 				mempool_free(p, nfs_rdata_mempool);
60 				p = NULL;
61 			}
62 		}
63 	}
64 	return p;
65 }
66 
67 void nfs_readdata_free(struct nfs_read_data *p)
68 {
69 	if (p && (p->pagevec != &p->page_array[0]))
70 		kfree(p->pagevec);
71 	mempool_free(p, nfs_rdata_mempool);
72 }
73 
74 void nfs_readdata_release(void *data)
75 {
76         nfs_readdata_free(data);
77 }
78 
79 static
80 unsigned int nfs_page_length(struct inode *inode, struct page *page)
81 {
82 	loff_t i_size = i_size_read(inode);
83 	unsigned long idx;
84 
85 	if (i_size <= 0)
86 		return 0;
87 	idx = (i_size - 1) >> PAGE_CACHE_SHIFT;
88 	if (page->index > idx)
89 		return 0;
90 	if (page->index != idx)
91 		return PAGE_CACHE_SIZE;
92 	return 1 + ((i_size - 1) & (PAGE_CACHE_SIZE - 1));
93 }
94 
95 static
96 int nfs_return_empty_page(struct page *page)
97 {
98 	memclear_highpage_flush(page, 0, PAGE_CACHE_SIZE);
99 	SetPageUptodate(page);
100 	unlock_page(page);
101 	return 0;
102 }
103 
104 static void nfs_readpage_truncate_uninitialised_page(struct nfs_read_data *data)
105 {
106 	unsigned int remainder = data->args.count - data->res.count;
107 	unsigned int base = data->args.pgbase + data->res.count;
108 	unsigned int pglen;
109 	struct page **pages;
110 
111 	if (data->res.eof == 0 || remainder == 0)
112 		return;
113 	/*
114 	 * Note: "remainder" can never be negative, since we check for
115 	 * 	this in the XDR code.
116 	 */
117 	pages = &data->args.pages[base >> PAGE_CACHE_SHIFT];
118 	base &= ~PAGE_CACHE_MASK;
119 	pglen = PAGE_CACHE_SIZE - base;
120 	if (pglen < remainder)
121 		memclear_highpage_flush(*pages, base, pglen);
122 	else
123 		memclear_highpage_flush(*pages, base, remainder);
124 }
125 
126 /*
127  * Read a page synchronously.
128  */
129 static int nfs_readpage_sync(struct nfs_open_context *ctx, struct inode *inode,
130 		struct page *page)
131 {
132 	unsigned int	rsize = NFS_SERVER(inode)->rsize;
133 	unsigned int	count = PAGE_CACHE_SIZE;
134 	int		result;
135 	struct nfs_read_data *rdata;
136 
137 	rdata = nfs_readdata_alloc(1);
138 	if (!rdata)
139 		return -ENOMEM;
140 
141 	memset(rdata, 0, sizeof(*rdata));
142 	rdata->flags = (IS_SWAPFILE(inode)? NFS_RPC_SWAPFLAGS : 0);
143 	rdata->cred = ctx->cred;
144 	rdata->inode = inode;
145 	INIT_LIST_HEAD(&rdata->pages);
146 	rdata->args.fh = NFS_FH(inode);
147 	rdata->args.context = ctx;
148 	rdata->args.pages = &page;
149 	rdata->args.pgbase = 0UL;
150 	rdata->args.count = rsize;
151 	rdata->res.fattr = &rdata->fattr;
152 
153 	dprintk("NFS: nfs_readpage_sync(%p)\n", page);
154 
155 	/*
156 	 * This works now because the socket layer never tries to DMA
157 	 * into this buffer directly.
158 	 */
159 	do {
160 		if (count < rsize)
161 			rdata->args.count = count;
162 		rdata->res.count = rdata->args.count;
163 		rdata->args.offset = page_offset(page) + rdata->args.pgbase;
164 
165 		dprintk("NFS: nfs_proc_read(%s, (%s/%Ld), %Lu, %u)\n",
166 			NFS_SERVER(inode)->hostname,
167 			inode->i_sb->s_id,
168 			(long long)NFS_FILEID(inode),
169 			(unsigned long long)rdata->args.pgbase,
170 			rdata->args.count);
171 
172 		lock_kernel();
173 		result = NFS_PROTO(inode)->read(rdata);
174 		unlock_kernel();
175 
176 		/*
177 		 * Even if we had a partial success we can't mark the page
178 		 * cache valid.
179 		 */
180 		if (result < 0) {
181 			if (result == -EISDIR)
182 				result = -EINVAL;
183 			goto io_error;
184 		}
185 		count -= result;
186 		rdata->args.pgbase += result;
187 		nfs_add_stats(inode, NFSIOS_SERVERREADBYTES, result);
188 
189 		/* Note: result == 0 should only happen if we're caching
190 		 * a write that extends the file and punches a hole.
191 		 */
192 		if (rdata->res.eof != 0 || result == 0)
193 			break;
194 	} while (count);
195 	spin_lock(&inode->i_lock);
196 	NFS_I(inode)->cache_validity |= NFS_INO_INVALID_ATIME;
197 	spin_unlock(&inode->i_lock);
198 
199 	nfs_readpage_truncate_uninitialised_page(rdata);
200 	if (rdata->res.eof || rdata->res.count == rdata->args.count)
201 		SetPageUptodate(page);
202 	result = 0;
203 
204 io_error:
205 	unlock_page(page);
206 	nfs_readdata_free(rdata);
207 	return result;
208 }
209 
210 static int nfs_readpage_async(struct nfs_open_context *ctx, struct inode *inode,
211 		struct page *page)
212 {
213 	LIST_HEAD(one_request);
214 	struct nfs_page	*new;
215 	unsigned int len;
216 
217 	len = nfs_page_length(inode, page);
218 	if (len == 0)
219 		return nfs_return_empty_page(page);
220 	new = nfs_create_request(ctx, inode, page, 0, len);
221 	if (IS_ERR(new)) {
222 		unlock_page(page);
223 		return PTR_ERR(new);
224 	}
225 	if (len < PAGE_CACHE_SIZE)
226 		memclear_highpage_flush(page, len, PAGE_CACHE_SIZE - len);
227 
228 	nfs_list_add_request(new, &one_request);
229 	nfs_pagein_one(&one_request, inode);
230 	return 0;
231 }
232 
233 static void nfs_readpage_release(struct nfs_page *req)
234 {
235 	unlock_page(req->wb_page);
236 
237 	dprintk("NFS: read done (%s/%Ld %d@%Ld)\n",
238 			req->wb_context->dentry->d_inode->i_sb->s_id,
239 			(long long)NFS_FILEID(req->wb_context->dentry->d_inode),
240 			req->wb_bytes,
241 			(long long)req_offset(req));
242 	nfs_clear_request(req);
243 	nfs_release_request(req);
244 }
245 
246 /*
247  * Set up the NFS read request struct
248  */
249 static void nfs_read_rpcsetup(struct nfs_page *req, struct nfs_read_data *data,
250 		const struct rpc_call_ops *call_ops,
251 		unsigned int count, unsigned int offset)
252 {
253 	struct inode		*inode;
254 	int flags;
255 
256 	data->req	  = req;
257 	data->inode	  = inode = req->wb_context->dentry->d_inode;
258 	data->cred	  = req->wb_context->cred;
259 
260 	data->args.fh     = NFS_FH(inode);
261 	data->args.offset = req_offset(req) + offset;
262 	data->args.pgbase = req->wb_pgbase + offset;
263 	data->args.pages  = data->pagevec;
264 	data->args.count  = count;
265 	data->args.context = req->wb_context;
266 
267 	data->res.fattr   = &data->fattr;
268 	data->res.count   = count;
269 	data->res.eof     = 0;
270 	nfs_fattr_init(&data->fattr);
271 
272 	/* Set up the initial task struct. */
273 	flags = RPC_TASK_ASYNC | (IS_SWAPFILE(inode)? NFS_RPC_SWAPFLAGS : 0);
274 	rpc_init_task(&data->task, NFS_CLIENT(inode), flags, call_ops, data);
275 	NFS_PROTO(inode)->read_setup(data);
276 
277 	data->task.tk_cookie = (unsigned long)inode;
278 
279 	dprintk("NFS: %4d initiated read call (req %s/%Ld, %u bytes @ offset %Lu)\n",
280 			data->task.tk_pid,
281 			inode->i_sb->s_id,
282 			(long long)NFS_FILEID(inode),
283 			count,
284 			(unsigned long long)data->args.offset);
285 }
286 
287 static void
288 nfs_async_read_error(struct list_head *head)
289 {
290 	struct nfs_page	*req;
291 
292 	while (!list_empty(head)) {
293 		req = nfs_list_entry(head->next);
294 		nfs_list_remove_request(req);
295 		SetPageError(req->wb_page);
296 		nfs_readpage_release(req);
297 	}
298 }
299 
300 /*
301  * Start an async read operation
302  */
303 static void nfs_execute_read(struct nfs_read_data *data)
304 {
305 	struct rpc_clnt *clnt = NFS_CLIENT(data->inode);
306 	sigset_t oldset;
307 
308 	rpc_clnt_sigmask(clnt, &oldset);
309 	lock_kernel();
310 	rpc_execute(&data->task);
311 	unlock_kernel();
312 	rpc_clnt_sigunmask(clnt, &oldset);
313 }
314 
315 /*
316  * Generate multiple requests to fill a single page.
317  *
318  * We optimize to reduce the number of read operations on the wire.  If we
319  * detect that we're reading a page, or an area of a page, that is past the
320  * end of file, we do not generate NFS read operations but just clear the
321  * parts of the page that would have come back zero from the server anyway.
322  *
323  * We rely on the cached value of i_size to make this determination; another
324  * client can fill pages on the server past our cached end-of-file, but we
325  * won't see the new data until our attribute cache is updated.  This is more
326  * or less conventional NFS client behavior.
327  */
328 static int nfs_pagein_multi(struct list_head *head, struct inode *inode)
329 {
330 	struct nfs_page *req = nfs_list_entry(head->next);
331 	struct page *page = req->wb_page;
332 	struct nfs_read_data *data;
333 	unsigned int rsize = NFS_SERVER(inode)->rsize;
334 	unsigned int nbytes, offset;
335 	int requests = 0;
336 	LIST_HEAD(list);
337 
338 	nfs_list_remove_request(req);
339 
340 	nbytes = req->wb_bytes;
341 	for(;;) {
342 		data = nfs_readdata_alloc(1);
343 		if (!data)
344 			goto out_bad;
345 		INIT_LIST_HEAD(&data->pages);
346 		list_add(&data->pages, &list);
347 		requests++;
348 		if (nbytes <= rsize)
349 			break;
350 		nbytes -= rsize;
351 	}
352 	atomic_set(&req->wb_complete, requests);
353 
354 	ClearPageError(page);
355 	offset = 0;
356 	nbytes = req->wb_bytes;
357 	do {
358 		data = list_entry(list.next, struct nfs_read_data, pages);
359 		list_del_init(&data->pages);
360 
361 		data->pagevec[0] = page;
362 
363 		if (nbytes > rsize) {
364 			nfs_read_rpcsetup(req, data, &nfs_read_partial_ops,
365 					rsize, offset);
366 			offset += rsize;
367 			nbytes -= rsize;
368 		} else {
369 			nfs_read_rpcsetup(req, data, &nfs_read_partial_ops,
370 					nbytes, offset);
371 			nbytes = 0;
372 		}
373 		nfs_execute_read(data);
374 	} while (nbytes != 0);
375 
376 	return 0;
377 
378 out_bad:
379 	while (!list_empty(&list)) {
380 		data = list_entry(list.next, struct nfs_read_data, pages);
381 		list_del(&data->pages);
382 		nfs_readdata_free(data);
383 	}
384 	SetPageError(page);
385 	nfs_readpage_release(req);
386 	return -ENOMEM;
387 }
388 
389 static int nfs_pagein_one(struct list_head *head, struct inode *inode)
390 {
391 	struct nfs_page		*req;
392 	struct page		**pages;
393 	struct nfs_read_data	*data;
394 	unsigned int		count;
395 
396 	if (NFS_SERVER(inode)->rsize < PAGE_CACHE_SIZE)
397 		return nfs_pagein_multi(head, inode);
398 
399 	data = nfs_readdata_alloc(NFS_SERVER(inode)->rpages);
400 	if (!data)
401 		goto out_bad;
402 
403 	INIT_LIST_HEAD(&data->pages);
404 	pages = data->pagevec;
405 	count = 0;
406 	while (!list_empty(head)) {
407 		req = nfs_list_entry(head->next);
408 		nfs_list_remove_request(req);
409 		nfs_list_add_request(req, &data->pages);
410 		ClearPageError(req->wb_page);
411 		*pages++ = req->wb_page;
412 		count += req->wb_bytes;
413 	}
414 	req = nfs_list_entry(data->pages.next);
415 
416 	nfs_read_rpcsetup(req, data, &nfs_read_full_ops, count, 0);
417 
418 	nfs_execute_read(data);
419 	return 0;
420 out_bad:
421 	nfs_async_read_error(head);
422 	return -ENOMEM;
423 }
424 
425 static int
426 nfs_pagein_list(struct list_head *head, int rpages)
427 {
428 	LIST_HEAD(one_request);
429 	struct nfs_page		*req;
430 	int			error = 0;
431 	unsigned int		pages = 0;
432 
433 	while (!list_empty(head)) {
434 		pages += nfs_coalesce_requests(head, &one_request, rpages);
435 		req = nfs_list_entry(one_request.next);
436 		error = nfs_pagein_one(&one_request, req->wb_context->dentry->d_inode);
437 		if (error < 0)
438 			break;
439 	}
440 	if (error >= 0)
441 		return pages;
442 
443 	nfs_async_read_error(head);
444 	return error;
445 }
446 
447 /*
448  * Handle a read reply that fills part of a page.
449  */
450 static void nfs_readpage_result_partial(struct rpc_task *task, void *calldata)
451 {
452 	struct nfs_read_data *data = calldata;
453 	struct nfs_page *req = data->req;
454 	struct page *page = req->wb_page;
455 
456 	if (likely(task->tk_status >= 0))
457 		nfs_readpage_truncate_uninitialised_page(data);
458 	else
459 		SetPageError(page);
460 	if (nfs_readpage_result(task, data) != 0)
461 		return;
462 	if (atomic_dec_and_test(&req->wb_complete)) {
463 		if (!PageError(page))
464 			SetPageUptodate(page);
465 		nfs_readpage_release(req);
466 	}
467 }
468 
469 static const struct rpc_call_ops nfs_read_partial_ops = {
470 	.rpc_call_done = nfs_readpage_result_partial,
471 	.rpc_release = nfs_readdata_release,
472 };
473 
474 static void nfs_readpage_set_pages_uptodate(struct nfs_read_data *data)
475 {
476 	unsigned int count = data->res.count;
477 	unsigned int base = data->args.pgbase;
478 	struct page **pages;
479 
480 	if (unlikely(count == 0))
481 		return;
482 	pages = &data->args.pages[base >> PAGE_CACHE_SHIFT];
483 	base &= ~PAGE_CACHE_MASK;
484 	count += base;
485 	for (;count >= PAGE_CACHE_SIZE; count -= PAGE_CACHE_SIZE, pages++)
486 		SetPageUptodate(*pages);
487 	/*
488 	 * Was this an eof or a short read? If the latter, don't mark the page
489 	 * as uptodate yet.
490 	 */
491 	if (count > 0 && (data->res.eof || data->args.count == data->res.count))
492 		SetPageUptodate(*pages);
493 }
494 
495 static void nfs_readpage_set_pages_error(struct nfs_read_data *data)
496 {
497 	unsigned int count = data->args.count;
498 	unsigned int base = data->args.pgbase;
499 	struct page **pages;
500 
501 	pages = &data->args.pages[base >> PAGE_CACHE_SHIFT];
502 	base &= ~PAGE_CACHE_MASK;
503 	count += base;
504 	for (;count >= PAGE_CACHE_SIZE; count -= PAGE_CACHE_SIZE, pages++)
505 		SetPageError(*pages);
506 }
507 
508 /*
509  * This is the callback from RPC telling us whether a reply was
510  * received or some error occurred (timeout or socket shutdown).
511  */
512 static void nfs_readpage_result_full(struct rpc_task *task, void *calldata)
513 {
514 	struct nfs_read_data *data = calldata;
515 
516 	/*
517 	 * Note: nfs_readpage_result may change the values of
518 	 * data->args. In the multi-page case, we therefore need
519 	 * to ensure that we call the next nfs_readpage_set_page_uptodate()
520 	 * first in the multi-page case.
521 	 */
522 	if (likely(task->tk_status >= 0)) {
523 		nfs_readpage_truncate_uninitialised_page(data);
524 		nfs_readpage_set_pages_uptodate(data);
525 	} else
526 		nfs_readpage_set_pages_error(data);
527 	if (nfs_readpage_result(task, data) != 0)
528 		return;
529 	while (!list_empty(&data->pages)) {
530 		struct nfs_page *req = nfs_list_entry(data->pages.next);
531 
532 		nfs_list_remove_request(req);
533 		nfs_readpage_release(req);
534 	}
535 }
536 
537 static const struct rpc_call_ops nfs_read_full_ops = {
538 	.rpc_call_done = nfs_readpage_result_full,
539 	.rpc_release = nfs_readdata_release,
540 };
541 
542 /*
543  * This is the callback from RPC telling us whether a reply was
544  * received or some error occurred (timeout or socket shutdown).
545  */
546 int nfs_readpage_result(struct rpc_task *task, struct nfs_read_data *data)
547 {
548 	struct nfs_readargs *argp = &data->args;
549 	struct nfs_readres *resp = &data->res;
550 	int status;
551 
552 	dprintk("NFS: %4d nfs_readpage_result, (status %d)\n",
553 		task->tk_pid, task->tk_status);
554 
555 	status = NFS_PROTO(data->inode)->read_done(task, data);
556 	if (status != 0)
557 		return status;
558 
559 	nfs_add_stats(data->inode, NFSIOS_SERVERREADBYTES, resp->count);
560 
561 	/* Is this a short read? */
562 	if (task->tk_status >= 0 && resp->count < argp->count && !resp->eof) {
563 		nfs_inc_stats(data->inode, NFSIOS_SHORTREAD);
564 		/* Has the server at least made some progress? */
565 		if (resp->count != 0) {
566 			/* Yes, so retry the read at the end of the data */
567 			argp->offset += resp->count;
568 			argp->pgbase += resp->count;
569 			argp->count -= resp->count;
570 			rpc_restart_call(task);
571 			return -EAGAIN;
572 		}
573 		task->tk_status = -EIO;
574 	}
575 	spin_lock(&data->inode->i_lock);
576 	NFS_I(data->inode)->cache_validity |= NFS_INO_INVALID_ATIME;
577 	spin_unlock(&data->inode->i_lock);
578 	return 0;
579 }
580 
581 /*
582  * Read a page over NFS.
583  * We read the page synchronously in the following case:
584  *  -	The error flag is set for this page. This happens only when a
585  *	previous async read operation failed.
586  */
587 int nfs_readpage(struct file *file, struct page *page)
588 {
589 	struct nfs_open_context *ctx;
590 	struct inode *inode = page->mapping->host;
591 	int		error;
592 
593 	dprintk("NFS: nfs_readpage (%p %ld@%lu)\n",
594 		page, PAGE_CACHE_SIZE, page->index);
595 	nfs_inc_stats(inode, NFSIOS_VFSREADPAGE);
596 	nfs_add_stats(inode, NFSIOS_READPAGES, 1);
597 
598 	/*
599 	 * Try to flush any pending writes to the file..
600 	 *
601 	 * NOTE! Because we own the page lock, there cannot
602 	 * be any new pending writes generated at this point
603 	 * for this page (other pages can be written to).
604 	 */
605 	error = nfs_wb_page(inode, page);
606 	if (error)
607 		goto out_error;
608 
609 	if (file == NULL) {
610 		ctx = nfs_find_open_context(inode, NULL, FMODE_READ);
611 		if (ctx == NULL)
612 			return -EBADF;
613 	} else
614 		ctx = get_nfs_open_context((struct nfs_open_context *)
615 				file->private_data);
616 	if (!IS_SYNC(inode)) {
617 		error = nfs_readpage_async(ctx, inode, page);
618 		goto out;
619 	}
620 
621 	error = nfs_readpage_sync(ctx, inode, page);
622 	if (error < 0 && IS_SWAPFILE(inode))
623 		printk("Aiee.. nfs swap-in of page failed!\n");
624 out:
625 	put_nfs_open_context(ctx);
626 	return error;
627 
628 out_error:
629 	unlock_page(page);
630 	return error;
631 }
632 
633 struct nfs_readdesc {
634 	struct list_head *head;
635 	struct nfs_open_context *ctx;
636 };
637 
638 static int
639 readpage_async_filler(void *data, struct page *page)
640 {
641 	struct nfs_readdesc *desc = (struct nfs_readdesc *)data;
642 	struct inode *inode = page->mapping->host;
643 	struct nfs_page *new;
644 	unsigned int len;
645 
646 	nfs_wb_page(inode, page);
647 	len = nfs_page_length(inode, page);
648 	if (len == 0)
649 		return nfs_return_empty_page(page);
650 	new = nfs_create_request(desc->ctx, inode, page, 0, len);
651 	if (IS_ERR(new)) {
652 			SetPageError(page);
653 			unlock_page(page);
654 			return PTR_ERR(new);
655 	}
656 	if (len < PAGE_CACHE_SIZE)
657 		memclear_highpage_flush(page, len, PAGE_CACHE_SIZE - len);
658 	nfs_list_add_request(new, desc->head);
659 	return 0;
660 }
661 
662 int nfs_readpages(struct file *filp, struct address_space *mapping,
663 		struct list_head *pages, unsigned nr_pages)
664 {
665 	LIST_HEAD(head);
666 	struct nfs_readdesc desc = {
667 		.head		= &head,
668 	};
669 	struct inode *inode = mapping->host;
670 	struct nfs_server *server = NFS_SERVER(inode);
671 	int ret;
672 
673 	dprintk("NFS: nfs_readpages (%s/%Ld %d)\n",
674 			inode->i_sb->s_id,
675 			(long long)NFS_FILEID(inode),
676 			nr_pages);
677 	nfs_inc_stats(inode, NFSIOS_VFSREADPAGES);
678 
679 	if (filp == NULL) {
680 		desc.ctx = nfs_find_open_context(inode, NULL, FMODE_READ);
681 		if (desc.ctx == NULL)
682 			return -EBADF;
683 	} else
684 		desc.ctx = get_nfs_open_context((struct nfs_open_context *)
685 				filp->private_data);
686 	ret = read_cache_pages(mapping, pages, readpage_async_filler, &desc);
687 	if (!list_empty(&head)) {
688 		int err = nfs_pagein_list(&head, server->rpages);
689 		if (!ret)
690 			nfs_add_stats(inode, NFSIOS_READPAGES, err);
691 			ret = err;
692 	}
693 	put_nfs_open_context(desc.ctx);
694 	return ret;
695 }
696 
697 int __init nfs_init_readpagecache(void)
698 {
699 	nfs_rdata_cachep = kmem_cache_create("nfs_read_data",
700 					     sizeof(struct nfs_read_data),
701 					     0, SLAB_HWCACHE_ALIGN,
702 					     NULL, NULL);
703 	if (nfs_rdata_cachep == NULL)
704 		return -ENOMEM;
705 
706 	nfs_rdata_mempool = mempool_create_slab_pool(MIN_POOL_READ,
707 						     nfs_rdata_cachep);
708 	if (nfs_rdata_mempool == NULL)
709 		return -ENOMEM;
710 
711 	return 0;
712 }
713 
714 void nfs_destroy_readpagecache(void)
715 {
716 	mempool_destroy(nfs_rdata_mempool);
717 	if (kmem_cache_destroy(nfs_rdata_cachep))
718 		printk(KERN_INFO "nfs_read_data: not all structures were freed\n");
719 }
720