xref: /openbmc/linux/fs/nfs/nfs4proc.c (revision e868d61272caa648214046a096e5a6bfc068dc8c)
1 /*
2  *  fs/nfs/nfs4proc.c
3  *
4  *  Client-side procedure declarations for NFSv4.
5  *
6  *  Copyright (c) 2002 The Regents of the University of Michigan.
7  *  All rights reserved.
8  *
9  *  Kendrick Smith <kmsmith@umich.edu>
10  *  Andy Adamson   <andros@umich.edu>
11  *
12  *  Redistribution and use in source and binary forms, with or without
13  *  modification, are permitted provided that the following conditions
14  *  are met:
15  *
16  *  1. Redistributions of source code must retain the above copyright
17  *     notice, this list of conditions and the following disclaimer.
18  *  2. Redistributions in binary form must reproduce the above copyright
19  *     notice, this list of conditions and the following disclaimer in the
20  *     documentation and/or other materials provided with the distribution.
21  *  3. Neither the name of the University nor the names of its
22  *     contributors may be used to endorse or promote products derived
23  *     from this software without specific prior written permission.
24  *
25  *  THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
26  *  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
27  *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
28  *  DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29  *  FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30  *  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31  *  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
32  *  BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
33  *  LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
34  *  NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
35  *  SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36  */
37 
38 #include <linux/mm.h>
39 #include <linux/utsname.h>
40 #include <linux/delay.h>
41 #include <linux/errno.h>
42 #include <linux/string.h>
43 #include <linux/sunrpc/clnt.h>
44 #include <linux/nfs.h>
45 #include <linux/nfs4.h>
46 #include <linux/nfs_fs.h>
47 #include <linux/nfs_page.h>
48 #include <linux/smp_lock.h>
49 #include <linux/namei.h>
50 #include <linux/mount.h>
51 
52 #include "nfs4_fs.h"
53 #include "delegation.h"
54 #include "iostat.h"
55 
56 #define NFSDBG_FACILITY		NFSDBG_PROC
57 
58 #define NFS4_POLL_RETRY_MIN	(HZ/10)
59 #define NFS4_POLL_RETRY_MAX	(15*HZ)
60 
61 struct nfs4_opendata;
62 static int _nfs4_proc_open(struct nfs4_opendata *data);
63 static int nfs4_do_fsinfo(struct nfs_server *, struct nfs_fh *, struct nfs_fsinfo *);
64 static int nfs4_async_handle_error(struct rpc_task *, const struct nfs_server *);
65 static int _nfs4_proc_access(struct inode *inode, struct nfs_access_entry *entry);
66 static int nfs4_handle_exception(const struct nfs_server *server, int errorcode, struct nfs4_exception *exception);
67 static int nfs4_wait_clnt_recover(struct rpc_clnt *clnt, struct nfs_client *clp);
68 
69 /* Prevent leaks of NFSv4 errors into userland */
70 int nfs4_map_errors(int err)
71 {
72 	if (err < -1000) {
73 		dprintk("%s could not handle NFSv4 error %d\n",
74 				__FUNCTION__, -err);
75 		return -EIO;
76 	}
77 	return err;
78 }
79 
80 /*
81  * This is our standard bitmap for GETATTR requests.
82  */
83 const u32 nfs4_fattr_bitmap[2] = {
84 	FATTR4_WORD0_TYPE
85 	| FATTR4_WORD0_CHANGE
86 	| FATTR4_WORD0_SIZE
87 	| FATTR4_WORD0_FSID
88 	| FATTR4_WORD0_FILEID,
89 	FATTR4_WORD1_MODE
90 	| FATTR4_WORD1_NUMLINKS
91 	| FATTR4_WORD1_OWNER
92 	| FATTR4_WORD1_OWNER_GROUP
93 	| FATTR4_WORD1_RAWDEV
94 	| FATTR4_WORD1_SPACE_USED
95 	| FATTR4_WORD1_TIME_ACCESS
96 	| FATTR4_WORD1_TIME_METADATA
97 	| FATTR4_WORD1_TIME_MODIFY
98 };
99 
100 const u32 nfs4_statfs_bitmap[2] = {
101 	FATTR4_WORD0_FILES_AVAIL
102 	| FATTR4_WORD0_FILES_FREE
103 	| FATTR4_WORD0_FILES_TOTAL,
104 	FATTR4_WORD1_SPACE_AVAIL
105 	| FATTR4_WORD1_SPACE_FREE
106 	| FATTR4_WORD1_SPACE_TOTAL
107 };
108 
109 const u32 nfs4_pathconf_bitmap[2] = {
110 	FATTR4_WORD0_MAXLINK
111 	| FATTR4_WORD0_MAXNAME,
112 	0
113 };
114 
115 const u32 nfs4_fsinfo_bitmap[2] = { FATTR4_WORD0_MAXFILESIZE
116 			| FATTR4_WORD0_MAXREAD
117 			| FATTR4_WORD0_MAXWRITE
118 			| FATTR4_WORD0_LEASE_TIME,
119 			0
120 };
121 
122 const u32 nfs4_fs_locations_bitmap[2] = {
123 	FATTR4_WORD0_TYPE
124 	| FATTR4_WORD0_CHANGE
125 	| FATTR4_WORD0_SIZE
126 	| FATTR4_WORD0_FSID
127 	| FATTR4_WORD0_FILEID
128 	| FATTR4_WORD0_FS_LOCATIONS,
129 	FATTR4_WORD1_MODE
130 	| FATTR4_WORD1_NUMLINKS
131 	| FATTR4_WORD1_OWNER
132 	| FATTR4_WORD1_OWNER_GROUP
133 	| FATTR4_WORD1_RAWDEV
134 	| FATTR4_WORD1_SPACE_USED
135 	| FATTR4_WORD1_TIME_ACCESS
136 	| FATTR4_WORD1_TIME_METADATA
137 	| FATTR4_WORD1_TIME_MODIFY
138 	| FATTR4_WORD1_MOUNTED_ON_FILEID
139 };
140 
141 static void nfs4_setup_readdir(u64 cookie, __be32 *verifier, struct dentry *dentry,
142 		struct nfs4_readdir_arg *readdir)
143 {
144 	__be32 *start, *p;
145 
146 	BUG_ON(readdir->count < 80);
147 	if (cookie > 2) {
148 		readdir->cookie = cookie;
149 		memcpy(&readdir->verifier, verifier, sizeof(readdir->verifier));
150 		return;
151 	}
152 
153 	readdir->cookie = 0;
154 	memset(&readdir->verifier, 0, sizeof(readdir->verifier));
155 	if (cookie == 2)
156 		return;
157 
158 	/*
159 	 * NFSv4 servers do not return entries for '.' and '..'
160 	 * Therefore, we fake these entries here.  We let '.'
161 	 * have cookie 0 and '..' have cookie 1.  Note that
162 	 * when talking to the server, we always send cookie 0
163 	 * instead of 1 or 2.
164 	 */
165 	start = p = kmap_atomic(*readdir->pages, KM_USER0);
166 
167 	if (cookie == 0) {
168 		*p++ = xdr_one;                                  /* next */
169 		*p++ = xdr_zero;                   /* cookie, first word */
170 		*p++ = xdr_one;                   /* cookie, second word */
171 		*p++ = xdr_one;                             /* entry len */
172 		memcpy(p, ".\0\0\0", 4);                        /* entry */
173 		p++;
174 		*p++ = xdr_one;                         /* bitmap length */
175 		*p++ = htonl(FATTR4_WORD0_FILEID);             /* bitmap */
176 		*p++ = htonl(8);              /* attribute buffer length */
177 		p = xdr_encode_hyper(p, dentry->d_inode->i_ino);
178 	}
179 
180 	*p++ = xdr_one;                                  /* next */
181 	*p++ = xdr_zero;                   /* cookie, first word */
182 	*p++ = xdr_two;                   /* cookie, second word */
183 	*p++ = xdr_two;                             /* entry len */
184 	memcpy(p, "..\0\0", 4);                         /* entry */
185 	p++;
186 	*p++ = xdr_one;                         /* bitmap length */
187 	*p++ = htonl(FATTR4_WORD0_FILEID);             /* bitmap */
188 	*p++ = htonl(8);              /* attribute buffer length */
189 	p = xdr_encode_hyper(p, dentry->d_parent->d_inode->i_ino);
190 
191 	readdir->pgbase = (char *)p - (char *)start;
192 	readdir->count -= readdir->pgbase;
193 	kunmap_atomic(start, KM_USER0);
194 }
195 
196 static void renew_lease(const struct nfs_server *server, unsigned long timestamp)
197 {
198 	struct nfs_client *clp = server->nfs_client;
199 	spin_lock(&clp->cl_lock);
200 	if (time_before(clp->cl_last_renewal,timestamp))
201 		clp->cl_last_renewal = timestamp;
202 	spin_unlock(&clp->cl_lock);
203 }
204 
205 static void update_changeattr(struct inode *dir, struct nfs4_change_info *cinfo)
206 {
207 	struct nfs_inode *nfsi = NFS_I(dir);
208 
209 	spin_lock(&dir->i_lock);
210 	nfsi->cache_validity |= NFS_INO_INVALID_ATTR|NFS_INO_REVAL_PAGECACHE|NFS_INO_INVALID_DATA;
211 	if (cinfo->before == nfsi->change_attr && cinfo->atomic)
212 		nfsi->change_attr = cinfo->after;
213 	spin_unlock(&dir->i_lock);
214 }
215 
216 struct nfs4_opendata {
217 	atomic_t count;
218 	struct nfs_openargs o_arg;
219 	struct nfs_openres o_res;
220 	struct nfs_open_confirmargs c_arg;
221 	struct nfs_open_confirmres c_res;
222 	struct nfs_fattr f_attr;
223 	struct nfs_fattr dir_attr;
224 	struct dentry *dentry;
225 	struct dentry *dir;
226 	struct nfs4_state_owner *owner;
227 	struct iattr attrs;
228 	unsigned long timestamp;
229 	int rpc_status;
230 	int cancelled;
231 };
232 
233 static struct nfs4_opendata *nfs4_opendata_alloc(struct dentry *dentry,
234 		struct nfs4_state_owner *sp, int flags,
235 		const struct iattr *attrs)
236 {
237 	struct dentry *parent = dget_parent(dentry);
238 	struct inode *dir = parent->d_inode;
239 	struct nfs_server *server = NFS_SERVER(dir);
240 	struct nfs4_opendata *p;
241 
242 	p = kzalloc(sizeof(*p), GFP_KERNEL);
243 	if (p == NULL)
244 		goto err;
245 	p->o_arg.seqid = nfs_alloc_seqid(&sp->so_seqid);
246 	if (p->o_arg.seqid == NULL)
247 		goto err_free;
248 	atomic_set(&p->count, 1);
249 	p->dentry = dget(dentry);
250 	p->dir = parent;
251 	p->owner = sp;
252 	atomic_inc(&sp->so_count);
253 	p->o_arg.fh = NFS_FH(dir);
254 	p->o_arg.open_flags = flags,
255 	p->o_arg.clientid = server->nfs_client->cl_clientid;
256 	p->o_arg.id = sp->so_id;
257 	p->o_arg.name = &dentry->d_name;
258 	p->o_arg.server = server;
259 	p->o_arg.bitmask = server->attr_bitmask;
260 	p->o_arg.claim = NFS4_OPEN_CLAIM_NULL;
261 	p->o_res.f_attr = &p->f_attr;
262 	p->o_res.dir_attr = &p->dir_attr;
263 	p->o_res.server = server;
264 	nfs_fattr_init(&p->f_attr);
265 	nfs_fattr_init(&p->dir_attr);
266 	if (flags & O_EXCL) {
267 		u32 *s = (u32 *) p->o_arg.u.verifier.data;
268 		s[0] = jiffies;
269 		s[1] = current->pid;
270 	} else if (flags & O_CREAT) {
271 		p->o_arg.u.attrs = &p->attrs;
272 		memcpy(&p->attrs, attrs, sizeof(p->attrs));
273 	}
274 	p->c_arg.fh = &p->o_res.fh;
275 	p->c_arg.stateid = &p->o_res.stateid;
276 	p->c_arg.seqid = p->o_arg.seqid;
277 	return p;
278 err_free:
279 	kfree(p);
280 err:
281 	dput(parent);
282 	return NULL;
283 }
284 
285 static void nfs4_opendata_free(struct nfs4_opendata *p)
286 {
287 	if (p != NULL && atomic_dec_and_test(&p->count)) {
288 		nfs_free_seqid(p->o_arg.seqid);
289 		nfs4_put_state_owner(p->owner);
290 		dput(p->dir);
291 		dput(p->dentry);
292 		kfree(p);
293 	}
294 }
295 
296 /* Helper for asynchronous RPC calls */
297 static int nfs4_call_async(struct rpc_clnt *clnt,
298 		const struct rpc_call_ops *tk_ops, void *calldata)
299 {
300 	struct rpc_task *task;
301 
302 	if (!(task = rpc_new_task(clnt, RPC_TASK_ASYNC, tk_ops, calldata)))
303 		return -ENOMEM;
304 	rpc_execute(task);
305 	return 0;
306 }
307 
308 static int nfs4_wait_for_completion_rpc_task(struct rpc_task *task)
309 {
310 	sigset_t oldset;
311 	int ret;
312 
313 	rpc_clnt_sigmask(task->tk_client, &oldset);
314 	ret = rpc_wait_for_completion_task(task);
315 	rpc_clnt_sigunmask(task->tk_client, &oldset);
316 	return ret;
317 }
318 
319 static inline void update_open_stateflags(struct nfs4_state *state, mode_t open_flags)
320 {
321 	switch (open_flags) {
322 		case FMODE_WRITE:
323 			state->n_wronly++;
324 			break;
325 		case FMODE_READ:
326 			state->n_rdonly++;
327 			break;
328 		case FMODE_READ|FMODE_WRITE:
329 			state->n_rdwr++;
330 	}
331 }
332 
333 static void update_open_stateid(struct nfs4_state *state, nfs4_stateid *stateid, int open_flags)
334 {
335 	struct inode *inode = state->inode;
336 
337 	open_flags &= (FMODE_READ|FMODE_WRITE);
338 	/* Protect against nfs4_find_state_byowner() */
339 	spin_lock(&state->owner->so_lock);
340 	spin_lock(&inode->i_lock);
341 	memcpy(&state->stateid, stateid, sizeof(state->stateid));
342 	update_open_stateflags(state, open_flags);
343 	nfs4_state_set_mode_locked(state, state->state | open_flags);
344 	spin_unlock(&inode->i_lock);
345 	spin_unlock(&state->owner->so_lock);
346 }
347 
348 static struct nfs4_state *nfs4_opendata_to_nfs4_state(struct nfs4_opendata *data)
349 {
350 	struct inode *inode;
351 	struct nfs4_state *state = NULL;
352 
353 	if (!(data->f_attr.valid & NFS_ATTR_FATTR))
354 		goto out;
355 	inode = nfs_fhget(data->dir->d_sb, &data->o_res.fh, &data->f_attr);
356 	if (IS_ERR(inode))
357 		goto out;
358 	state = nfs4_get_open_state(inode, data->owner);
359 	if (state == NULL)
360 		goto put_inode;
361 	update_open_stateid(state, &data->o_res.stateid, data->o_arg.open_flags);
362 put_inode:
363 	iput(inode);
364 out:
365 	return state;
366 }
367 
368 static struct nfs_open_context *nfs4_state_find_open_context(struct nfs4_state *state)
369 {
370 	struct nfs_inode *nfsi = NFS_I(state->inode);
371 	struct nfs_open_context *ctx;
372 
373 	spin_lock(&state->inode->i_lock);
374 	list_for_each_entry(ctx, &nfsi->open_files, list) {
375 		if (ctx->state != state)
376 			continue;
377 		get_nfs_open_context(ctx);
378 		spin_unlock(&state->inode->i_lock);
379 		return ctx;
380 	}
381 	spin_unlock(&state->inode->i_lock);
382 	return ERR_PTR(-ENOENT);
383 }
384 
385 static int nfs4_open_recover_helper(struct nfs4_opendata *opendata, mode_t openflags, nfs4_stateid *stateid)
386 {
387 	int ret;
388 
389 	opendata->o_arg.open_flags = openflags;
390 	ret = _nfs4_proc_open(opendata);
391 	if (ret != 0)
392 		return ret;
393 	memcpy(stateid->data, opendata->o_res.stateid.data,
394 			sizeof(stateid->data));
395 	return 0;
396 }
397 
398 static int nfs4_open_recover(struct nfs4_opendata *opendata, struct nfs4_state *state)
399 {
400 	nfs4_stateid stateid;
401 	struct nfs4_state *newstate;
402 	int mode = 0;
403 	int delegation = 0;
404 	int ret;
405 
406 	/* memory barrier prior to reading state->n_* */
407 	smp_rmb();
408 	if (state->n_rdwr != 0) {
409 		ret = nfs4_open_recover_helper(opendata, FMODE_READ|FMODE_WRITE, &stateid);
410 		if (ret != 0)
411 			return ret;
412 		mode |= FMODE_READ|FMODE_WRITE;
413 		if (opendata->o_res.delegation_type != 0)
414 			delegation = opendata->o_res.delegation_type;
415 		smp_rmb();
416 	}
417 	if (state->n_wronly != 0) {
418 		ret = nfs4_open_recover_helper(opendata, FMODE_WRITE, &stateid);
419 		if (ret != 0)
420 			return ret;
421 		mode |= FMODE_WRITE;
422 		if (opendata->o_res.delegation_type != 0)
423 			delegation = opendata->o_res.delegation_type;
424 		smp_rmb();
425 	}
426 	if (state->n_rdonly != 0) {
427 		ret = nfs4_open_recover_helper(opendata, FMODE_READ, &stateid);
428 		if (ret != 0)
429 			return ret;
430 		mode |= FMODE_READ;
431 	}
432 	clear_bit(NFS_DELEGATED_STATE, &state->flags);
433 	if (mode == 0)
434 		return 0;
435 	if (opendata->o_res.delegation_type == 0)
436 		opendata->o_res.delegation_type = delegation;
437 	opendata->o_arg.open_flags |= mode;
438 	newstate = nfs4_opendata_to_nfs4_state(opendata);
439 	if (newstate != NULL) {
440 		if (opendata->o_res.delegation_type != 0) {
441 			struct nfs_inode *nfsi = NFS_I(newstate->inode);
442 			int delegation_flags = 0;
443 			if (nfsi->delegation)
444 				delegation_flags = nfsi->delegation->flags;
445 			if (!(delegation_flags & NFS_DELEGATION_NEED_RECLAIM))
446 				nfs_inode_set_delegation(newstate->inode,
447 						opendata->owner->so_cred,
448 						&opendata->o_res);
449 			else
450 				nfs_inode_reclaim_delegation(newstate->inode,
451 						opendata->owner->so_cred,
452 						&opendata->o_res);
453 		}
454 		nfs4_close_state(newstate, opendata->o_arg.open_flags);
455 	}
456 	if (newstate != state)
457 		return -ESTALE;
458 	return 0;
459 }
460 
461 /*
462  * OPEN_RECLAIM:
463  * 	reclaim state on the server after a reboot.
464  */
465 static int _nfs4_do_open_reclaim(struct nfs4_state_owner *sp, struct nfs4_state *state, struct dentry *dentry)
466 {
467 	struct nfs_delegation *delegation = NFS_I(state->inode)->delegation;
468 	struct nfs4_opendata *opendata;
469 	int delegation_type = 0;
470 	int status;
471 
472 	if (delegation != NULL) {
473 		if (!(delegation->flags & NFS_DELEGATION_NEED_RECLAIM)) {
474 			memcpy(&state->stateid, &delegation->stateid,
475 					sizeof(state->stateid));
476 			set_bit(NFS_DELEGATED_STATE, &state->flags);
477 			return 0;
478 		}
479 		delegation_type = delegation->type;
480 	}
481 	opendata = nfs4_opendata_alloc(dentry, sp, 0, NULL);
482 	if (opendata == NULL)
483 		return -ENOMEM;
484 	opendata->o_arg.claim = NFS4_OPEN_CLAIM_PREVIOUS;
485 	opendata->o_arg.fh = NFS_FH(state->inode);
486 	nfs_copy_fh(&opendata->o_res.fh, opendata->o_arg.fh);
487 	opendata->o_arg.u.delegation_type = delegation_type;
488 	status = nfs4_open_recover(opendata, state);
489 	nfs4_opendata_free(opendata);
490 	return status;
491 }
492 
493 static int nfs4_do_open_reclaim(struct nfs4_state_owner *sp, struct nfs4_state *state, struct dentry *dentry)
494 {
495 	struct nfs_server *server = NFS_SERVER(state->inode);
496 	struct nfs4_exception exception = { };
497 	int err;
498 	do {
499 		err = _nfs4_do_open_reclaim(sp, state, dentry);
500 		if (err != -NFS4ERR_DELAY)
501 			break;
502 		nfs4_handle_exception(server, err, &exception);
503 	} while (exception.retry);
504 	return err;
505 }
506 
507 static int nfs4_open_reclaim(struct nfs4_state_owner *sp, struct nfs4_state *state)
508 {
509 	struct nfs_open_context *ctx;
510 	int ret;
511 
512 	ctx = nfs4_state_find_open_context(state);
513 	if (IS_ERR(ctx))
514 		return PTR_ERR(ctx);
515 	ret = nfs4_do_open_reclaim(sp, state, ctx->dentry);
516 	put_nfs_open_context(ctx);
517 	return ret;
518 }
519 
520 static int _nfs4_open_delegation_recall(struct dentry *dentry, struct nfs4_state *state)
521 {
522 	struct nfs4_state_owner  *sp  = state->owner;
523 	struct nfs4_opendata *opendata;
524 	int ret;
525 
526 	if (!test_bit(NFS_DELEGATED_STATE, &state->flags))
527 		return 0;
528 	opendata = nfs4_opendata_alloc(dentry, sp, 0, NULL);
529 	if (opendata == NULL)
530 		return -ENOMEM;
531 	opendata->o_arg.claim = NFS4_OPEN_CLAIM_DELEGATE_CUR;
532 	memcpy(opendata->o_arg.u.delegation.data, state->stateid.data,
533 			sizeof(opendata->o_arg.u.delegation.data));
534 	ret = nfs4_open_recover(opendata, state);
535 	nfs4_opendata_free(opendata);
536 	return ret;
537 }
538 
539 int nfs4_open_delegation_recall(struct dentry *dentry, struct nfs4_state *state)
540 {
541 	struct nfs4_exception exception = { };
542 	struct nfs_server *server = NFS_SERVER(dentry->d_inode);
543 	int err;
544 	do {
545 		err = _nfs4_open_delegation_recall(dentry, state);
546 		switch (err) {
547 			case 0:
548 				return err;
549 			case -NFS4ERR_STALE_CLIENTID:
550 			case -NFS4ERR_STALE_STATEID:
551 			case -NFS4ERR_EXPIRED:
552 				/* Don't recall a delegation if it was lost */
553 				nfs4_schedule_state_recovery(server->nfs_client);
554 				return err;
555 		}
556 		err = nfs4_handle_exception(server, err, &exception);
557 	} while (exception.retry);
558 	return err;
559 }
560 
561 static void nfs4_open_confirm_prepare(struct rpc_task *task, void *calldata)
562 {
563 	struct nfs4_opendata *data = calldata;
564 	struct  rpc_message msg = {
565 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_OPEN_CONFIRM],
566 		.rpc_argp = &data->c_arg,
567 		.rpc_resp = &data->c_res,
568 		.rpc_cred = data->owner->so_cred,
569 	};
570 	data->timestamp = jiffies;
571 	rpc_call_setup(task, &msg, 0);
572 }
573 
574 static void nfs4_open_confirm_done(struct rpc_task *task, void *calldata)
575 {
576 	struct nfs4_opendata *data = calldata;
577 
578 	data->rpc_status = task->tk_status;
579 	if (RPC_ASSASSINATED(task))
580 		return;
581 	if (data->rpc_status == 0) {
582 		memcpy(data->o_res.stateid.data, data->c_res.stateid.data,
583 				sizeof(data->o_res.stateid.data));
584 		renew_lease(data->o_res.server, data->timestamp);
585 	}
586 	nfs_increment_open_seqid(data->rpc_status, data->c_arg.seqid);
587 	nfs_confirm_seqid(&data->owner->so_seqid, data->rpc_status);
588 }
589 
590 static void nfs4_open_confirm_release(void *calldata)
591 {
592 	struct nfs4_opendata *data = calldata;
593 	struct nfs4_state *state = NULL;
594 
595 	/* If this request hasn't been cancelled, do nothing */
596 	if (data->cancelled == 0)
597 		goto out_free;
598 	/* In case of error, no cleanup! */
599 	if (data->rpc_status != 0)
600 		goto out_free;
601 	nfs_confirm_seqid(&data->owner->so_seqid, 0);
602 	state = nfs4_opendata_to_nfs4_state(data);
603 	if (state != NULL)
604 		nfs4_close_state(state, data->o_arg.open_flags);
605 out_free:
606 	nfs4_opendata_free(data);
607 }
608 
609 static const struct rpc_call_ops nfs4_open_confirm_ops = {
610 	.rpc_call_prepare = nfs4_open_confirm_prepare,
611 	.rpc_call_done = nfs4_open_confirm_done,
612 	.rpc_release = nfs4_open_confirm_release,
613 };
614 
615 /*
616  * Note: On error, nfs4_proc_open_confirm will free the struct nfs4_opendata
617  */
618 static int _nfs4_proc_open_confirm(struct nfs4_opendata *data)
619 {
620 	struct nfs_server *server = NFS_SERVER(data->dir->d_inode);
621 	struct rpc_task *task;
622 	int status;
623 
624 	atomic_inc(&data->count);
625 	/*
626 	 * If rpc_run_task() ends up calling ->rpc_release(), we
627 	 * want to ensure that it takes the 'error' code path.
628 	 */
629 	data->rpc_status = -ENOMEM;
630 	task = rpc_run_task(server->client, RPC_TASK_ASYNC, &nfs4_open_confirm_ops, data);
631 	if (IS_ERR(task))
632 		return PTR_ERR(task);
633 	status = nfs4_wait_for_completion_rpc_task(task);
634 	if (status != 0) {
635 		data->cancelled = 1;
636 		smp_wmb();
637 	} else
638 		status = data->rpc_status;
639 	rpc_put_task(task);
640 	return status;
641 }
642 
643 static void nfs4_open_prepare(struct rpc_task *task, void *calldata)
644 {
645 	struct nfs4_opendata *data = calldata;
646 	struct nfs4_state_owner *sp = data->owner;
647 	struct rpc_message msg = {
648 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_OPEN],
649 		.rpc_argp = &data->o_arg,
650 		.rpc_resp = &data->o_res,
651 		.rpc_cred = sp->so_cred,
652 	};
653 
654 	if (nfs_wait_on_sequence(data->o_arg.seqid, task) != 0)
655 		return;
656 	/* Update sequence id. */
657 	data->o_arg.id = sp->so_id;
658 	data->o_arg.clientid = sp->so_client->cl_clientid;
659 	if (data->o_arg.claim == NFS4_OPEN_CLAIM_PREVIOUS)
660 		msg.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_OPEN_NOATTR];
661 	data->timestamp = jiffies;
662 	rpc_call_setup(task, &msg, 0);
663 }
664 
665 static void nfs4_open_done(struct rpc_task *task, void *calldata)
666 {
667 	struct nfs4_opendata *data = calldata;
668 
669 	data->rpc_status = task->tk_status;
670 	if (RPC_ASSASSINATED(task))
671 		return;
672 	if (task->tk_status == 0) {
673 		switch (data->o_res.f_attr->mode & S_IFMT) {
674 			case S_IFREG:
675 				break;
676 			case S_IFLNK:
677 				data->rpc_status = -ELOOP;
678 				break;
679 			case S_IFDIR:
680 				data->rpc_status = -EISDIR;
681 				break;
682 			default:
683 				data->rpc_status = -ENOTDIR;
684 		}
685 		renew_lease(data->o_res.server, data->timestamp);
686 	}
687 	nfs_increment_open_seqid(data->rpc_status, data->o_arg.seqid);
688 }
689 
690 static void nfs4_open_release(void *calldata)
691 {
692 	struct nfs4_opendata *data = calldata;
693 	struct nfs4_state *state = NULL;
694 
695 	/* If this request hasn't been cancelled, do nothing */
696 	if (data->cancelled == 0)
697 		goto out_free;
698 	/* In case of error, no cleanup! */
699 	if (data->rpc_status != 0)
700 		goto out_free;
701 	/* In case we need an open_confirm, no cleanup! */
702 	if (data->o_res.rflags & NFS4_OPEN_RESULT_CONFIRM)
703 		goto out_free;
704 	nfs_confirm_seqid(&data->owner->so_seqid, 0);
705 	state = nfs4_opendata_to_nfs4_state(data);
706 	if (state != NULL)
707 		nfs4_close_state(state, data->o_arg.open_flags);
708 out_free:
709 	nfs4_opendata_free(data);
710 }
711 
712 static const struct rpc_call_ops nfs4_open_ops = {
713 	.rpc_call_prepare = nfs4_open_prepare,
714 	.rpc_call_done = nfs4_open_done,
715 	.rpc_release = nfs4_open_release,
716 };
717 
718 /*
719  * Note: On error, nfs4_proc_open will free the struct nfs4_opendata
720  */
721 static int _nfs4_proc_open(struct nfs4_opendata *data)
722 {
723 	struct inode *dir = data->dir->d_inode;
724 	struct nfs_server *server = NFS_SERVER(dir);
725 	struct nfs_openargs *o_arg = &data->o_arg;
726 	struct nfs_openres *o_res = &data->o_res;
727 	struct rpc_task *task;
728 	int status;
729 
730 	atomic_inc(&data->count);
731 	/*
732 	 * If rpc_run_task() ends up calling ->rpc_release(), we
733 	 * want to ensure that it takes the 'error' code path.
734 	 */
735 	data->rpc_status = -ENOMEM;
736 	task = rpc_run_task(server->client, RPC_TASK_ASYNC, &nfs4_open_ops, data);
737 	if (IS_ERR(task))
738 		return PTR_ERR(task);
739 	status = nfs4_wait_for_completion_rpc_task(task);
740 	if (status != 0) {
741 		data->cancelled = 1;
742 		smp_wmb();
743 	} else
744 		status = data->rpc_status;
745 	rpc_put_task(task);
746 	if (status != 0)
747 		return status;
748 
749 	if (o_arg->open_flags & O_CREAT) {
750 		update_changeattr(dir, &o_res->cinfo);
751 		nfs_post_op_update_inode(dir, o_res->dir_attr);
752 	} else
753 		nfs_refresh_inode(dir, o_res->dir_attr);
754 	if(o_res->rflags & NFS4_OPEN_RESULT_CONFIRM) {
755 		status = _nfs4_proc_open_confirm(data);
756 		if (status != 0)
757 			return status;
758 	}
759 	nfs_confirm_seqid(&data->owner->so_seqid, 0);
760 	if (!(o_res->f_attr->valid & NFS_ATTR_FATTR))
761 		return server->nfs_client->rpc_ops->getattr(server, &o_res->fh, o_res->f_attr);
762 	return 0;
763 }
764 
765 static int _nfs4_do_access(struct inode *inode, struct rpc_cred *cred, int openflags)
766 {
767 	struct nfs_access_entry cache;
768 	int mask = 0;
769 	int status;
770 
771 	if (openflags & FMODE_READ)
772 		mask |= MAY_READ;
773 	if (openflags & FMODE_WRITE)
774 		mask |= MAY_WRITE;
775 	status = nfs_access_get_cached(inode, cred, &cache);
776 	if (status == 0)
777 		goto out;
778 
779 	/* Be clever: ask server to check for all possible rights */
780 	cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ;
781 	cache.cred = cred;
782 	cache.jiffies = jiffies;
783 	status = _nfs4_proc_access(inode, &cache);
784 	if (status != 0)
785 		return status;
786 	nfs_access_add_cache(inode, &cache);
787 out:
788 	if ((cache.mask & mask) == mask)
789 		return 0;
790 	return -EACCES;
791 }
792 
793 int nfs4_recover_expired_lease(struct nfs_server *server)
794 {
795 	struct nfs_client *clp = server->nfs_client;
796 	int ret;
797 
798 	for (;;) {
799 		ret = nfs4_wait_clnt_recover(server->client, clp);
800 		if (ret != 0)
801 			return ret;
802 		if (!test_and_clear_bit(NFS4CLNT_LEASE_EXPIRED, &clp->cl_state))
803 			break;
804 		nfs4_schedule_state_recovery(clp);
805 	}
806 	return 0;
807 }
808 
809 /*
810  * OPEN_EXPIRED:
811  * 	reclaim state on the server after a network partition.
812  * 	Assumes caller holds the appropriate lock
813  */
814 static int _nfs4_open_expired(struct nfs4_state_owner *sp, struct nfs4_state *state, struct dentry *dentry)
815 {
816 	struct inode *inode = state->inode;
817 	struct nfs_delegation *delegation = NFS_I(inode)->delegation;
818 	struct nfs4_opendata *opendata;
819 	int openflags = state->state & (FMODE_READ|FMODE_WRITE);
820 	int ret;
821 
822 	if (delegation != NULL && !(delegation->flags & NFS_DELEGATION_NEED_RECLAIM)) {
823 		ret = _nfs4_do_access(inode, sp->so_cred, openflags);
824 		if (ret < 0)
825 			return ret;
826 		memcpy(&state->stateid, &delegation->stateid, sizeof(state->stateid));
827 		set_bit(NFS_DELEGATED_STATE, &state->flags);
828 		return 0;
829 	}
830 	opendata = nfs4_opendata_alloc(dentry, sp, openflags, NULL);
831 	if (opendata == NULL)
832 		return -ENOMEM;
833 	ret = nfs4_open_recover(opendata, state);
834 	if (ret == -ESTALE) {
835 		/* Invalidate the state owner so we don't ever use it again */
836 		nfs4_drop_state_owner(sp);
837 		d_drop(dentry);
838 	}
839 	nfs4_opendata_free(opendata);
840 	return ret;
841 }
842 
843 static inline int nfs4_do_open_expired(struct nfs4_state_owner *sp, struct nfs4_state *state, struct dentry *dentry)
844 {
845 	struct nfs_server *server = NFS_SERVER(dentry->d_inode);
846 	struct nfs4_exception exception = { };
847 	int err;
848 
849 	do {
850 		err = _nfs4_open_expired(sp, state, dentry);
851 		if (err == -NFS4ERR_DELAY)
852 			nfs4_handle_exception(server, err, &exception);
853 	} while (exception.retry);
854 	return err;
855 }
856 
857 static int nfs4_open_expired(struct nfs4_state_owner *sp, struct nfs4_state *state)
858 {
859 	struct nfs_open_context *ctx;
860 	int ret;
861 
862 	ctx = nfs4_state_find_open_context(state);
863 	if (IS_ERR(ctx))
864 		return PTR_ERR(ctx);
865 	ret = nfs4_do_open_expired(sp, state, ctx->dentry);
866 	put_nfs_open_context(ctx);
867 	return ret;
868 }
869 
870 /*
871  * Returns a referenced nfs4_state if there is an open delegation on the file
872  */
873 static int _nfs4_open_delegated(struct inode *inode, int flags, struct rpc_cred *cred, struct nfs4_state **res)
874 {
875 	struct nfs_delegation *delegation;
876 	struct nfs_server *server = NFS_SERVER(inode);
877 	struct nfs_client *clp = server->nfs_client;
878 	struct nfs_inode *nfsi = NFS_I(inode);
879 	struct nfs4_state_owner *sp = NULL;
880 	struct nfs4_state *state = NULL;
881 	int open_flags = flags & (FMODE_READ|FMODE_WRITE);
882 	int err;
883 
884 	err = -ENOMEM;
885 	if (!(sp = nfs4_get_state_owner(server, cred))) {
886 		dprintk("%s: nfs4_get_state_owner failed!\n", __FUNCTION__);
887 		return err;
888 	}
889 	err = nfs4_recover_expired_lease(server);
890 	if (err != 0)
891 		goto out_put_state_owner;
892 	/* Protect against reboot recovery - NOTE ORDER! */
893 	down_read(&clp->cl_sem);
894 	/* Protect against delegation recall */
895 	down_read(&nfsi->rwsem);
896 	delegation = NFS_I(inode)->delegation;
897 	err = -ENOENT;
898 	if (delegation == NULL || (delegation->type & open_flags) != open_flags)
899 		goto out_err;
900 	err = -ENOMEM;
901 	state = nfs4_get_open_state(inode, sp);
902 	if (state == NULL)
903 		goto out_err;
904 
905 	err = -ENOENT;
906 	if ((state->state & open_flags) == open_flags) {
907 		spin_lock(&inode->i_lock);
908 		update_open_stateflags(state, open_flags);
909 		spin_unlock(&inode->i_lock);
910 		goto out_ok;
911 	} else if (state->state != 0)
912 		goto out_put_open_state;
913 
914 	lock_kernel();
915 	err = _nfs4_do_access(inode, cred, open_flags);
916 	unlock_kernel();
917 	if (err != 0)
918 		goto out_put_open_state;
919 	set_bit(NFS_DELEGATED_STATE, &state->flags);
920 	update_open_stateid(state, &delegation->stateid, open_flags);
921 out_ok:
922 	nfs4_put_state_owner(sp);
923 	up_read(&nfsi->rwsem);
924 	up_read(&clp->cl_sem);
925 	*res = state;
926 	return 0;
927 out_put_open_state:
928 	nfs4_put_open_state(state);
929 out_err:
930 	up_read(&nfsi->rwsem);
931 	up_read(&clp->cl_sem);
932 	if (err != -EACCES)
933 		nfs_inode_return_delegation(inode);
934 out_put_state_owner:
935 	nfs4_put_state_owner(sp);
936 	return err;
937 }
938 
939 static struct nfs4_state *nfs4_open_delegated(struct inode *inode, int flags, struct rpc_cred *cred)
940 {
941 	struct nfs4_exception exception = { };
942 	struct nfs4_state *res = ERR_PTR(-EIO);
943 	int err;
944 
945 	do {
946 		err = _nfs4_open_delegated(inode, flags, cred, &res);
947 		if (err == 0)
948 			break;
949 		res = ERR_PTR(nfs4_handle_exception(NFS_SERVER(inode),
950 					err, &exception));
951 	} while (exception.retry);
952 	return res;
953 }
954 
955 /*
956  * Returns a referenced nfs4_state
957  */
958 static int _nfs4_do_open(struct inode *dir, struct dentry *dentry, int flags, struct iattr *sattr, struct rpc_cred *cred, struct nfs4_state **res)
959 {
960 	struct nfs4_state_owner  *sp;
961 	struct nfs4_state     *state = NULL;
962 	struct nfs_server       *server = NFS_SERVER(dir);
963 	struct nfs_client *clp = server->nfs_client;
964 	struct nfs4_opendata *opendata;
965 	int                     status;
966 
967 	/* Protect against reboot recovery conflicts */
968 	status = -ENOMEM;
969 	if (!(sp = nfs4_get_state_owner(server, cred))) {
970 		dprintk("nfs4_do_open: nfs4_get_state_owner failed!\n");
971 		goto out_err;
972 	}
973 	status = nfs4_recover_expired_lease(server);
974 	if (status != 0)
975 		goto err_put_state_owner;
976 	down_read(&clp->cl_sem);
977 	status = -ENOMEM;
978 	opendata = nfs4_opendata_alloc(dentry, sp, flags, sattr);
979 	if (opendata == NULL)
980 		goto err_release_rwsem;
981 
982 	status = _nfs4_proc_open(opendata);
983 	if (status != 0)
984 		goto err_opendata_free;
985 
986 	status = -ENOMEM;
987 	state = nfs4_opendata_to_nfs4_state(opendata);
988 	if (state == NULL)
989 		goto err_opendata_free;
990 	if (opendata->o_res.delegation_type != 0)
991 		nfs_inode_set_delegation(state->inode, cred, &opendata->o_res);
992 	nfs4_opendata_free(opendata);
993 	nfs4_put_state_owner(sp);
994 	up_read(&clp->cl_sem);
995 	*res = state;
996 	return 0;
997 err_opendata_free:
998 	nfs4_opendata_free(opendata);
999 err_release_rwsem:
1000 	up_read(&clp->cl_sem);
1001 err_put_state_owner:
1002 	nfs4_put_state_owner(sp);
1003 out_err:
1004 	*res = NULL;
1005 	return status;
1006 }
1007 
1008 
1009 static struct nfs4_state *nfs4_do_open(struct inode *dir, struct dentry *dentry, int flags, struct iattr *sattr, struct rpc_cred *cred)
1010 {
1011 	struct nfs4_exception exception = { };
1012 	struct nfs4_state *res;
1013 	int status;
1014 
1015 	do {
1016 		status = _nfs4_do_open(dir, dentry, flags, sattr, cred, &res);
1017 		if (status == 0)
1018 			break;
1019 		/* NOTE: BAD_SEQID means the server and client disagree about the
1020 		 * book-keeping w.r.t. state-changing operations
1021 		 * (OPEN/CLOSE/LOCK/LOCKU...)
1022 		 * It is actually a sign of a bug on the client or on the server.
1023 		 *
1024 		 * If we receive a BAD_SEQID error in the particular case of
1025 		 * doing an OPEN, we assume that nfs_increment_open_seqid() will
1026 		 * have unhashed the old state_owner for us, and that we can
1027 		 * therefore safely retry using a new one. We should still warn
1028 		 * the user though...
1029 		 */
1030 		if (status == -NFS4ERR_BAD_SEQID) {
1031 			printk(KERN_WARNING "NFS: v4 server returned a bad sequence-id error!\n");
1032 			exception.retry = 1;
1033 			continue;
1034 		}
1035 		/*
1036 		 * BAD_STATEID on OPEN means that the server cancelled our
1037 		 * state before it received the OPEN_CONFIRM.
1038 		 * Recover by retrying the request as per the discussion
1039 		 * on Page 181 of RFC3530.
1040 		 */
1041 		if (status == -NFS4ERR_BAD_STATEID) {
1042 			exception.retry = 1;
1043 			continue;
1044 		}
1045 		res = ERR_PTR(nfs4_handle_exception(NFS_SERVER(dir),
1046 					status, &exception));
1047 	} while (exception.retry);
1048 	return res;
1049 }
1050 
1051 static int _nfs4_do_setattr(struct inode *inode, struct nfs_fattr *fattr,
1052                 struct iattr *sattr, struct nfs4_state *state)
1053 {
1054 	struct nfs_server *server = NFS_SERVER(inode);
1055         struct nfs_setattrargs  arg = {
1056                 .fh             = NFS_FH(inode),
1057                 .iap            = sattr,
1058 		.server		= server,
1059 		.bitmask = server->attr_bitmask,
1060         };
1061         struct nfs_setattrres  res = {
1062 		.fattr		= fattr,
1063 		.server		= server,
1064         };
1065         struct rpc_message msg = {
1066                 .rpc_proc       = &nfs4_procedures[NFSPROC4_CLNT_SETATTR],
1067                 .rpc_argp       = &arg,
1068                 .rpc_resp       = &res,
1069         };
1070 	unsigned long timestamp = jiffies;
1071 	int status;
1072 
1073 	nfs_fattr_init(fattr);
1074 
1075 	if (nfs4_copy_delegation_stateid(&arg.stateid, inode)) {
1076 		/* Use that stateid */
1077 	} else if (state != NULL) {
1078 		msg.rpc_cred = state->owner->so_cred;
1079 		nfs4_copy_stateid(&arg.stateid, state, current->files);
1080 	} else
1081 		memcpy(&arg.stateid, &zero_stateid, sizeof(arg.stateid));
1082 
1083 	status = rpc_call_sync(server->client, &msg, 0);
1084 	if (status == 0 && state != NULL)
1085 		renew_lease(server, timestamp);
1086 	return status;
1087 }
1088 
1089 static int nfs4_do_setattr(struct inode *inode, struct nfs_fattr *fattr,
1090                 struct iattr *sattr, struct nfs4_state *state)
1091 {
1092 	struct nfs_server *server = NFS_SERVER(inode);
1093 	struct nfs4_exception exception = { };
1094 	int err;
1095 	do {
1096 		err = nfs4_handle_exception(server,
1097 				_nfs4_do_setattr(inode, fattr, sattr, state),
1098 				&exception);
1099 	} while (exception.retry);
1100 	return err;
1101 }
1102 
1103 struct nfs4_closedata {
1104 	struct inode *inode;
1105 	struct nfs4_state *state;
1106 	struct nfs_closeargs arg;
1107 	struct nfs_closeres res;
1108 	struct nfs_fattr fattr;
1109 	unsigned long timestamp;
1110 };
1111 
1112 static void nfs4_free_closedata(void *data)
1113 {
1114 	struct nfs4_closedata *calldata = data;
1115 	struct nfs4_state_owner *sp = calldata->state->owner;
1116 
1117 	nfs4_put_open_state(calldata->state);
1118 	nfs_free_seqid(calldata->arg.seqid);
1119 	nfs4_put_state_owner(sp);
1120 	kfree(calldata);
1121 }
1122 
1123 static void nfs4_close_done(struct rpc_task *task, void *data)
1124 {
1125 	struct nfs4_closedata *calldata = data;
1126 	struct nfs4_state *state = calldata->state;
1127 	struct nfs_server *server = NFS_SERVER(calldata->inode);
1128 
1129 	if (RPC_ASSASSINATED(task))
1130 		return;
1131         /* hmm. we are done with the inode, and in the process of freeing
1132 	 * the state_owner. we keep this around to process errors
1133 	 */
1134 	nfs_increment_open_seqid(task->tk_status, calldata->arg.seqid);
1135 	switch (task->tk_status) {
1136 		case 0:
1137 			memcpy(&state->stateid, &calldata->res.stateid,
1138 					sizeof(state->stateid));
1139 			renew_lease(server, calldata->timestamp);
1140 			break;
1141 		case -NFS4ERR_STALE_STATEID:
1142 		case -NFS4ERR_EXPIRED:
1143 			break;
1144 		default:
1145 			if (nfs4_async_handle_error(task, server) == -EAGAIN) {
1146 				rpc_restart_call(task);
1147 				return;
1148 			}
1149 	}
1150 	nfs_refresh_inode(calldata->inode, calldata->res.fattr);
1151 }
1152 
1153 static void nfs4_close_prepare(struct rpc_task *task, void *data)
1154 {
1155 	struct nfs4_closedata *calldata = data;
1156 	struct nfs4_state *state = calldata->state;
1157 	struct rpc_message msg = {
1158 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_CLOSE],
1159 		.rpc_argp = &calldata->arg,
1160 		.rpc_resp = &calldata->res,
1161 		.rpc_cred = state->owner->so_cred,
1162 	};
1163 	int mode = 0, old_mode;
1164 
1165 	if (nfs_wait_on_sequence(calldata->arg.seqid, task) != 0)
1166 		return;
1167 	/* Recalculate the new open mode in case someone reopened the file
1168 	 * while we were waiting in line to be scheduled.
1169 	 */
1170 	spin_lock(&state->owner->so_lock);
1171 	spin_lock(&calldata->inode->i_lock);
1172 	mode = old_mode = state->state;
1173 	if (state->n_rdwr == 0) {
1174 		if (state->n_rdonly == 0)
1175 			mode &= ~FMODE_READ;
1176 		if (state->n_wronly == 0)
1177 			mode &= ~FMODE_WRITE;
1178 	}
1179 	nfs4_state_set_mode_locked(state, mode);
1180 	spin_unlock(&calldata->inode->i_lock);
1181 	spin_unlock(&state->owner->so_lock);
1182 	if (mode == old_mode || test_bit(NFS_DELEGATED_STATE, &state->flags)) {
1183 		/* Note: exit _without_ calling nfs4_close_done */
1184 		task->tk_action = NULL;
1185 		return;
1186 	}
1187 	nfs_fattr_init(calldata->res.fattr);
1188 	if (mode != 0)
1189 		msg.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_OPEN_DOWNGRADE];
1190 	calldata->arg.open_flags = mode;
1191 	calldata->timestamp = jiffies;
1192 	rpc_call_setup(task, &msg, 0);
1193 }
1194 
1195 static const struct rpc_call_ops nfs4_close_ops = {
1196 	.rpc_call_prepare = nfs4_close_prepare,
1197 	.rpc_call_done = nfs4_close_done,
1198 	.rpc_release = nfs4_free_closedata,
1199 };
1200 
1201 /*
1202  * It is possible for data to be read/written from a mem-mapped file
1203  * after the sys_close call (which hits the vfs layer as a flush).
1204  * This means that we can't safely call nfsv4 close on a file until
1205  * the inode is cleared. This in turn means that we are not good
1206  * NFSv4 citizens - we do not indicate to the server to update the file's
1207  * share state even when we are done with one of the three share
1208  * stateid's in the inode.
1209  *
1210  * NOTE: Caller must be holding the sp->so_owner semaphore!
1211  */
1212 int nfs4_do_close(struct inode *inode, struct nfs4_state *state)
1213 {
1214 	struct nfs_server *server = NFS_SERVER(inode);
1215 	struct nfs4_closedata *calldata;
1216 	int status = -ENOMEM;
1217 
1218 	calldata = kmalloc(sizeof(*calldata), GFP_KERNEL);
1219 	if (calldata == NULL)
1220 		goto out;
1221 	calldata->inode = inode;
1222 	calldata->state = state;
1223 	calldata->arg.fh = NFS_FH(inode);
1224 	calldata->arg.stateid = &state->stateid;
1225 	/* Serialization for the sequence id */
1226 	calldata->arg.seqid = nfs_alloc_seqid(&state->owner->so_seqid);
1227 	if (calldata->arg.seqid == NULL)
1228 		goto out_free_calldata;
1229 	calldata->arg.bitmask = server->attr_bitmask;
1230 	calldata->res.fattr = &calldata->fattr;
1231 	calldata->res.server = server;
1232 
1233 	status = nfs4_call_async(server->client, &nfs4_close_ops, calldata);
1234 	if (status == 0)
1235 		goto out;
1236 
1237 	nfs_free_seqid(calldata->arg.seqid);
1238 out_free_calldata:
1239 	kfree(calldata);
1240 out:
1241 	return status;
1242 }
1243 
1244 static int nfs4_intent_set_file(struct nameidata *nd, struct dentry *dentry, struct nfs4_state *state)
1245 {
1246 	struct file *filp;
1247 
1248 	filp = lookup_instantiate_filp(nd, dentry, NULL);
1249 	if (!IS_ERR(filp)) {
1250 		struct nfs_open_context *ctx;
1251 		ctx = (struct nfs_open_context *)filp->private_data;
1252 		ctx->state = state;
1253 		return 0;
1254 	}
1255 	nfs4_close_state(state, nd->intent.open.flags);
1256 	return PTR_ERR(filp);
1257 }
1258 
1259 struct dentry *
1260 nfs4_atomic_open(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
1261 {
1262 	struct iattr attr;
1263 	struct rpc_cred *cred;
1264 	struct nfs4_state *state;
1265 	struct dentry *res;
1266 
1267 	if (nd->flags & LOOKUP_CREATE) {
1268 		attr.ia_mode = nd->intent.open.create_mode;
1269 		attr.ia_valid = ATTR_MODE;
1270 		if (!IS_POSIXACL(dir))
1271 			attr.ia_mode &= ~current->fs->umask;
1272 	} else {
1273 		attr.ia_valid = 0;
1274 		BUG_ON(nd->intent.open.flags & O_CREAT);
1275 	}
1276 
1277 	cred = rpcauth_lookupcred(NFS_CLIENT(dir)->cl_auth, 0);
1278 	if (IS_ERR(cred))
1279 		return (struct dentry *)cred;
1280 	state = nfs4_do_open(dir, dentry, nd->intent.open.flags, &attr, cred);
1281 	put_rpccred(cred);
1282 	if (IS_ERR(state)) {
1283 		if (PTR_ERR(state) == -ENOENT)
1284 			d_add(dentry, NULL);
1285 		return (struct dentry *)state;
1286 	}
1287 	res = d_add_unique(dentry, igrab(state->inode));
1288 	if (res != NULL)
1289 		dentry = res;
1290 	nfs4_intent_set_file(nd, dentry, state);
1291 	return res;
1292 }
1293 
1294 int
1295 nfs4_open_revalidate(struct inode *dir, struct dentry *dentry, int openflags, struct nameidata *nd)
1296 {
1297 	struct rpc_cred *cred;
1298 	struct nfs4_state *state;
1299 
1300 	cred = rpcauth_lookupcred(NFS_CLIENT(dir)->cl_auth, 0);
1301 	if (IS_ERR(cred))
1302 		return PTR_ERR(cred);
1303 	state = nfs4_open_delegated(dentry->d_inode, openflags, cred);
1304 	if (IS_ERR(state))
1305 		state = nfs4_do_open(dir, dentry, openflags, NULL, cred);
1306 	put_rpccred(cred);
1307 	if (IS_ERR(state)) {
1308 		switch (PTR_ERR(state)) {
1309 			case -EPERM:
1310 			case -EACCES:
1311 			case -EDQUOT:
1312 			case -ENOSPC:
1313 			case -EROFS:
1314 				lookup_instantiate_filp(nd, (struct dentry *)state, NULL);
1315 				return 1;
1316 			default:
1317 				goto out_drop;
1318 		}
1319 	}
1320 	if (state->inode == dentry->d_inode) {
1321 		nfs4_intent_set_file(nd, dentry, state);
1322 		return 1;
1323 	}
1324 	nfs4_close_state(state, openflags);
1325 out_drop:
1326 	d_drop(dentry);
1327 	return 0;
1328 }
1329 
1330 
1331 static int _nfs4_server_capabilities(struct nfs_server *server, struct nfs_fh *fhandle)
1332 {
1333 	struct nfs4_server_caps_res res = {};
1334 	struct rpc_message msg = {
1335 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SERVER_CAPS],
1336 		.rpc_argp = fhandle,
1337 		.rpc_resp = &res,
1338 	};
1339 	int status;
1340 
1341 	status = rpc_call_sync(server->client, &msg, 0);
1342 	if (status == 0) {
1343 		memcpy(server->attr_bitmask, res.attr_bitmask, sizeof(server->attr_bitmask));
1344 		if (res.attr_bitmask[0] & FATTR4_WORD0_ACL)
1345 			server->caps |= NFS_CAP_ACLS;
1346 		if (res.has_links != 0)
1347 			server->caps |= NFS_CAP_HARDLINKS;
1348 		if (res.has_symlinks != 0)
1349 			server->caps |= NFS_CAP_SYMLINKS;
1350 		server->acl_bitmask = res.acl_bitmask;
1351 	}
1352 	return status;
1353 }
1354 
1355 int nfs4_server_capabilities(struct nfs_server *server, struct nfs_fh *fhandle)
1356 {
1357 	struct nfs4_exception exception = { };
1358 	int err;
1359 	do {
1360 		err = nfs4_handle_exception(server,
1361 				_nfs4_server_capabilities(server, fhandle),
1362 				&exception);
1363 	} while (exception.retry);
1364 	return err;
1365 }
1366 
1367 static int _nfs4_lookup_root(struct nfs_server *server, struct nfs_fh *fhandle,
1368 		struct nfs_fsinfo *info)
1369 {
1370 	struct nfs4_lookup_root_arg args = {
1371 		.bitmask = nfs4_fattr_bitmap,
1372 	};
1373 	struct nfs4_lookup_res res = {
1374 		.server = server,
1375 		.fattr = info->fattr,
1376 		.fh = fhandle,
1377 	};
1378 	struct rpc_message msg = {
1379 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOOKUP_ROOT],
1380 		.rpc_argp = &args,
1381 		.rpc_resp = &res,
1382 	};
1383 	nfs_fattr_init(info->fattr);
1384 	return rpc_call_sync(server->client, &msg, 0);
1385 }
1386 
1387 static int nfs4_lookup_root(struct nfs_server *server, struct nfs_fh *fhandle,
1388 		struct nfs_fsinfo *info)
1389 {
1390 	struct nfs4_exception exception = { };
1391 	int err;
1392 	do {
1393 		err = nfs4_handle_exception(server,
1394 				_nfs4_lookup_root(server, fhandle, info),
1395 				&exception);
1396 	} while (exception.retry);
1397 	return err;
1398 }
1399 
1400 /*
1401  * get the file handle for the "/" directory on the server
1402  */
1403 static int nfs4_proc_get_root(struct nfs_server *server, struct nfs_fh *fhandle,
1404 			      struct nfs_fsinfo *info)
1405 {
1406 	int status;
1407 
1408 	status = nfs4_lookup_root(server, fhandle, info);
1409 	if (status == 0)
1410 		status = nfs4_server_capabilities(server, fhandle);
1411 	if (status == 0)
1412 		status = nfs4_do_fsinfo(server, fhandle, info);
1413 	return nfs4_map_errors(status);
1414 }
1415 
1416 /*
1417  * Get locations and (maybe) other attributes of a referral.
1418  * Note that we'll actually follow the referral later when
1419  * we detect fsid mismatch in inode revalidation
1420  */
1421 static int nfs4_get_referral(struct inode *dir, struct qstr *name, struct nfs_fattr *fattr, struct nfs_fh *fhandle)
1422 {
1423 	int status = -ENOMEM;
1424 	struct page *page = NULL;
1425 	struct nfs4_fs_locations *locations = NULL;
1426 
1427 	page = alloc_page(GFP_KERNEL);
1428 	if (page == NULL)
1429 		goto out;
1430 	locations = kmalloc(sizeof(struct nfs4_fs_locations), GFP_KERNEL);
1431 	if (locations == NULL)
1432 		goto out;
1433 
1434 	status = nfs4_proc_fs_locations(dir, name, locations, page);
1435 	if (status != 0)
1436 		goto out;
1437 	/* Make sure server returned a different fsid for the referral */
1438 	if (nfs_fsid_equal(&NFS_SERVER(dir)->fsid, &locations->fattr.fsid)) {
1439 		dprintk("%s: server did not return a different fsid for a referral at %s\n", __FUNCTION__, name->name);
1440 		status = -EIO;
1441 		goto out;
1442 	}
1443 
1444 	memcpy(fattr, &locations->fattr, sizeof(struct nfs_fattr));
1445 	fattr->valid |= NFS_ATTR_FATTR_V4_REFERRAL;
1446 	if (!fattr->mode)
1447 		fattr->mode = S_IFDIR;
1448 	memset(fhandle, 0, sizeof(struct nfs_fh));
1449 out:
1450 	if (page)
1451 		__free_page(page);
1452 	if (locations)
1453 		kfree(locations);
1454 	return status;
1455 }
1456 
1457 static int _nfs4_proc_getattr(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fattr *fattr)
1458 {
1459 	struct nfs4_getattr_arg args = {
1460 		.fh = fhandle,
1461 		.bitmask = server->attr_bitmask,
1462 	};
1463 	struct nfs4_getattr_res res = {
1464 		.fattr = fattr,
1465 		.server = server,
1466 	};
1467 	struct rpc_message msg = {
1468 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_GETATTR],
1469 		.rpc_argp = &args,
1470 		.rpc_resp = &res,
1471 	};
1472 
1473 	nfs_fattr_init(fattr);
1474 	return rpc_call_sync(server->client, &msg, 0);
1475 }
1476 
1477 static int nfs4_proc_getattr(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fattr *fattr)
1478 {
1479 	struct nfs4_exception exception = { };
1480 	int err;
1481 	do {
1482 		err = nfs4_handle_exception(server,
1483 				_nfs4_proc_getattr(server, fhandle, fattr),
1484 				&exception);
1485 	} while (exception.retry);
1486 	return err;
1487 }
1488 
1489 /*
1490  * The file is not closed if it is opened due to the a request to change
1491  * the size of the file. The open call will not be needed once the
1492  * VFS layer lookup-intents are implemented.
1493  *
1494  * Close is called when the inode is destroyed.
1495  * If we haven't opened the file for O_WRONLY, we
1496  * need to in the size_change case to obtain a stateid.
1497  *
1498  * Got race?
1499  * Because OPEN is always done by name in nfsv4, it is
1500  * possible that we opened a different file by the same
1501  * name.  We can recognize this race condition, but we
1502  * can't do anything about it besides returning an error.
1503  *
1504  * This will be fixed with VFS changes (lookup-intent).
1505  */
1506 static int
1507 nfs4_proc_setattr(struct dentry *dentry, struct nfs_fattr *fattr,
1508 		  struct iattr *sattr)
1509 {
1510 	struct rpc_cred *cred;
1511 	struct inode *inode = dentry->d_inode;
1512 	struct nfs_open_context *ctx;
1513 	struct nfs4_state *state = NULL;
1514 	int status;
1515 
1516 	nfs_fattr_init(fattr);
1517 
1518 	cred = rpcauth_lookupcred(NFS_CLIENT(inode)->cl_auth, 0);
1519 	if (IS_ERR(cred))
1520 		return PTR_ERR(cred);
1521 
1522 	/* Search for an existing open(O_WRITE) file */
1523 	ctx = nfs_find_open_context(inode, cred, FMODE_WRITE);
1524 	if (ctx != NULL)
1525 		state = ctx->state;
1526 
1527 	status = nfs4_do_setattr(inode, fattr, sattr, state);
1528 	if (status == 0)
1529 		nfs_setattr_update_inode(inode, sattr);
1530 	if (ctx != NULL)
1531 		put_nfs_open_context(ctx);
1532 	put_rpccred(cred);
1533 	return status;
1534 }
1535 
1536 static int _nfs4_proc_lookupfh(struct nfs_server *server, struct nfs_fh *dirfh,
1537 		struct qstr *name, struct nfs_fh *fhandle,
1538 		struct nfs_fattr *fattr)
1539 {
1540 	int		       status;
1541 	struct nfs4_lookup_arg args = {
1542 		.bitmask = server->attr_bitmask,
1543 		.dir_fh = dirfh,
1544 		.name = name,
1545 	};
1546 	struct nfs4_lookup_res res = {
1547 		.server = server,
1548 		.fattr = fattr,
1549 		.fh = fhandle,
1550 	};
1551 	struct rpc_message msg = {
1552 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOOKUP],
1553 		.rpc_argp = &args,
1554 		.rpc_resp = &res,
1555 	};
1556 
1557 	nfs_fattr_init(fattr);
1558 
1559 	dprintk("NFS call  lookupfh %s\n", name->name);
1560 	status = rpc_call_sync(server->client, &msg, 0);
1561 	dprintk("NFS reply lookupfh: %d\n", status);
1562 	if (status == -NFS4ERR_MOVED)
1563 		status = -EREMOTE;
1564 	return status;
1565 }
1566 
1567 static int nfs4_proc_lookupfh(struct nfs_server *server, struct nfs_fh *dirfh,
1568 			      struct qstr *name, struct nfs_fh *fhandle,
1569 			      struct nfs_fattr *fattr)
1570 {
1571 	struct nfs4_exception exception = { };
1572 	int err;
1573 	do {
1574 		err = nfs4_handle_exception(server,
1575 				_nfs4_proc_lookupfh(server, dirfh, name,
1576 						    fhandle, fattr),
1577 				&exception);
1578 	} while (exception.retry);
1579 	return err;
1580 }
1581 
1582 static int _nfs4_proc_lookup(struct inode *dir, struct qstr *name,
1583 		struct nfs_fh *fhandle, struct nfs_fattr *fattr)
1584 {
1585 	int		       status;
1586 	struct nfs_server *server = NFS_SERVER(dir);
1587 	struct nfs4_lookup_arg args = {
1588 		.bitmask = server->attr_bitmask,
1589 		.dir_fh = NFS_FH(dir),
1590 		.name = name,
1591 	};
1592 	struct nfs4_lookup_res res = {
1593 		.server = server,
1594 		.fattr = fattr,
1595 		.fh = fhandle,
1596 	};
1597 	struct rpc_message msg = {
1598 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOOKUP],
1599 		.rpc_argp = &args,
1600 		.rpc_resp = &res,
1601 	};
1602 
1603 	nfs_fattr_init(fattr);
1604 
1605 	dprintk("NFS call  lookup %s\n", name->name);
1606 	status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0);
1607 	if (status == -NFS4ERR_MOVED)
1608 		status = nfs4_get_referral(dir, name, fattr, fhandle);
1609 	dprintk("NFS reply lookup: %d\n", status);
1610 	return status;
1611 }
1612 
1613 static int nfs4_proc_lookup(struct inode *dir, struct qstr *name, struct nfs_fh *fhandle, struct nfs_fattr *fattr)
1614 {
1615 	struct nfs4_exception exception = { };
1616 	int err;
1617 	do {
1618 		err = nfs4_handle_exception(NFS_SERVER(dir),
1619 				_nfs4_proc_lookup(dir, name, fhandle, fattr),
1620 				&exception);
1621 	} while (exception.retry);
1622 	return err;
1623 }
1624 
1625 static int _nfs4_proc_access(struct inode *inode, struct nfs_access_entry *entry)
1626 {
1627 	struct nfs4_accessargs args = {
1628 		.fh = NFS_FH(inode),
1629 	};
1630 	struct nfs4_accessres res = { 0 };
1631 	struct rpc_message msg = {
1632 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_ACCESS],
1633 		.rpc_argp = &args,
1634 		.rpc_resp = &res,
1635 		.rpc_cred = entry->cred,
1636 	};
1637 	int mode = entry->mask;
1638 	int status;
1639 
1640 	/*
1641 	 * Determine which access bits we want to ask for...
1642 	 */
1643 	if (mode & MAY_READ)
1644 		args.access |= NFS4_ACCESS_READ;
1645 	if (S_ISDIR(inode->i_mode)) {
1646 		if (mode & MAY_WRITE)
1647 			args.access |= NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND | NFS4_ACCESS_DELETE;
1648 		if (mode & MAY_EXEC)
1649 			args.access |= NFS4_ACCESS_LOOKUP;
1650 	} else {
1651 		if (mode & MAY_WRITE)
1652 			args.access |= NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND;
1653 		if (mode & MAY_EXEC)
1654 			args.access |= NFS4_ACCESS_EXECUTE;
1655 	}
1656 	status = rpc_call_sync(NFS_CLIENT(inode), &msg, 0);
1657 	if (!status) {
1658 		entry->mask = 0;
1659 		if (res.access & NFS4_ACCESS_READ)
1660 			entry->mask |= MAY_READ;
1661 		if (res.access & (NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND | NFS4_ACCESS_DELETE))
1662 			entry->mask |= MAY_WRITE;
1663 		if (res.access & (NFS4_ACCESS_LOOKUP|NFS4_ACCESS_EXECUTE))
1664 			entry->mask |= MAY_EXEC;
1665 	}
1666 	return status;
1667 }
1668 
1669 static int nfs4_proc_access(struct inode *inode, struct nfs_access_entry *entry)
1670 {
1671 	struct nfs4_exception exception = { };
1672 	int err;
1673 	do {
1674 		err = nfs4_handle_exception(NFS_SERVER(inode),
1675 				_nfs4_proc_access(inode, entry),
1676 				&exception);
1677 	} while (exception.retry);
1678 	return err;
1679 }
1680 
1681 /*
1682  * TODO: For the time being, we don't try to get any attributes
1683  * along with any of the zero-copy operations READ, READDIR,
1684  * READLINK, WRITE.
1685  *
1686  * In the case of the first three, we want to put the GETATTR
1687  * after the read-type operation -- this is because it is hard
1688  * to predict the length of a GETATTR response in v4, and thus
1689  * align the READ data correctly.  This means that the GETATTR
1690  * may end up partially falling into the page cache, and we should
1691  * shift it into the 'tail' of the xdr_buf before processing.
1692  * To do this efficiently, we need to know the total length
1693  * of data received, which doesn't seem to be available outside
1694  * of the RPC layer.
1695  *
1696  * In the case of WRITE, we also want to put the GETATTR after
1697  * the operation -- in this case because we want to make sure
1698  * we get the post-operation mtime and size.  This means that
1699  * we can't use xdr_encode_pages() as written: we need a variant
1700  * of it which would leave room in the 'tail' iovec.
1701  *
1702  * Both of these changes to the XDR layer would in fact be quite
1703  * minor, but I decided to leave them for a subsequent patch.
1704  */
1705 static int _nfs4_proc_readlink(struct inode *inode, struct page *page,
1706 		unsigned int pgbase, unsigned int pglen)
1707 {
1708 	struct nfs4_readlink args = {
1709 		.fh       = NFS_FH(inode),
1710 		.pgbase	  = pgbase,
1711 		.pglen    = pglen,
1712 		.pages    = &page,
1713 	};
1714 	struct rpc_message msg = {
1715 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_READLINK],
1716 		.rpc_argp = &args,
1717 		.rpc_resp = NULL,
1718 	};
1719 
1720 	return rpc_call_sync(NFS_CLIENT(inode), &msg, 0);
1721 }
1722 
1723 static int nfs4_proc_readlink(struct inode *inode, struct page *page,
1724 		unsigned int pgbase, unsigned int pglen)
1725 {
1726 	struct nfs4_exception exception = { };
1727 	int err;
1728 	do {
1729 		err = nfs4_handle_exception(NFS_SERVER(inode),
1730 				_nfs4_proc_readlink(inode, page, pgbase, pglen),
1731 				&exception);
1732 	} while (exception.retry);
1733 	return err;
1734 }
1735 
1736 /*
1737  * Got race?
1738  * We will need to arrange for the VFS layer to provide an atomic open.
1739  * Until then, this create/open method is prone to inefficiency and race
1740  * conditions due to the lookup, create, and open VFS calls from sys_open()
1741  * placed on the wire.
1742  *
1743  * Given the above sorry state of affairs, I'm simply sending an OPEN.
1744  * The file will be opened again in the subsequent VFS open call
1745  * (nfs4_proc_file_open).
1746  *
1747  * The open for read will just hang around to be used by any process that
1748  * opens the file O_RDONLY. This will all be resolved with the VFS changes.
1749  */
1750 
1751 static int
1752 nfs4_proc_create(struct inode *dir, struct dentry *dentry, struct iattr *sattr,
1753                  int flags, struct nameidata *nd)
1754 {
1755 	struct nfs4_state *state;
1756 	struct rpc_cred *cred;
1757 	int status = 0;
1758 
1759 	cred = rpcauth_lookupcred(NFS_CLIENT(dir)->cl_auth, 0);
1760 	if (IS_ERR(cred)) {
1761 		status = PTR_ERR(cred);
1762 		goto out;
1763 	}
1764 	state = nfs4_do_open(dir, dentry, flags, sattr, cred);
1765 	put_rpccred(cred);
1766 	if (IS_ERR(state)) {
1767 		status = PTR_ERR(state);
1768 		goto out;
1769 	}
1770 	d_instantiate(dentry, igrab(state->inode));
1771 	if (flags & O_EXCL) {
1772 		struct nfs_fattr fattr;
1773 		status = nfs4_do_setattr(state->inode, &fattr, sattr, state);
1774 		if (status == 0)
1775 			nfs_setattr_update_inode(state->inode, sattr);
1776 	}
1777 	if (status == 0 && nd != NULL && (nd->flags & LOOKUP_OPEN))
1778 		status = nfs4_intent_set_file(nd, dentry, state);
1779 	else
1780 		nfs4_close_state(state, flags);
1781 out:
1782 	return status;
1783 }
1784 
1785 static int _nfs4_proc_remove(struct inode *dir, struct qstr *name)
1786 {
1787 	struct nfs_server *server = NFS_SERVER(dir);
1788 	struct nfs4_remove_arg args = {
1789 		.fh = NFS_FH(dir),
1790 		.name = name,
1791 		.bitmask = server->attr_bitmask,
1792 	};
1793 	struct nfs_fattr dir_attr;
1794 	struct nfs4_remove_res	res = {
1795 		.server = server,
1796 		.dir_attr = &dir_attr,
1797 	};
1798 	struct rpc_message msg = {
1799 		.rpc_proc	= &nfs4_procedures[NFSPROC4_CLNT_REMOVE],
1800 		.rpc_argp	= &args,
1801 		.rpc_resp	= &res,
1802 	};
1803 	int			status;
1804 
1805 	nfs_fattr_init(res.dir_attr);
1806 	status = rpc_call_sync(server->client, &msg, 0);
1807 	if (status == 0) {
1808 		update_changeattr(dir, &res.cinfo);
1809 		nfs_post_op_update_inode(dir, res.dir_attr);
1810 	}
1811 	return status;
1812 }
1813 
1814 static int nfs4_proc_remove(struct inode *dir, struct qstr *name)
1815 {
1816 	struct nfs4_exception exception = { };
1817 	int err;
1818 	do {
1819 		err = nfs4_handle_exception(NFS_SERVER(dir),
1820 				_nfs4_proc_remove(dir, name),
1821 				&exception);
1822 	} while (exception.retry);
1823 	return err;
1824 }
1825 
1826 struct unlink_desc {
1827 	struct nfs4_remove_arg	args;
1828 	struct nfs4_remove_res	res;
1829 	struct nfs_fattr dir_attr;
1830 };
1831 
1832 static int nfs4_proc_unlink_setup(struct rpc_message *msg, struct dentry *dir,
1833 		struct qstr *name)
1834 {
1835 	struct nfs_server *server = NFS_SERVER(dir->d_inode);
1836 	struct unlink_desc *up;
1837 
1838 	up = kmalloc(sizeof(*up), GFP_KERNEL);
1839 	if (!up)
1840 		return -ENOMEM;
1841 
1842 	up->args.fh = NFS_FH(dir->d_inode);
1843 	up->args.name = name;
1844 	up->args.bitmask = server->attr_bitmask;
1845 	up->res.server = server;
1846 	up->res.dir_attr = &up->dir_attr;
1847 
1848 	msg->rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_REMOVE];
1849 	msg->rpc_argp = &up->args;
1850 	msg->rpc_resp = &up->res;
1851 	return 0;
1852 }
1853 
1854 static int nfs4_proc_unlink_done(struct dentry *dir, struct rpc_task *task)
1855 {
1856 	struct rpc_message *msg = &task->tk_msg;
1857 	struct unlink_desc *up;
1858 
1859 	if (msg->rpc_resp != NULL) {
1860 		up = container_of(msg->rpc_resp, struct unlink_desc, res);
1861 		update_changeattr(dir->d_inode, &up->res.cinfo);
1862 		nfs_post_op_update_inode(dir->d_inode, up->res.dir_attr);
1863 		kfree(up);
1864 		msg->rpc_resp = NULL;
1865 		msg->rpc_argp = NULL;
1866 	}
1867 	return 0;
1868 }
1869 
1870 static int _nfs4_proc_rename(struct inode *old_dir, struct qstr *old_name,
1871 		struct inode *new_dir, struct qstr *new_name)
1872 {
1873 	struct nfs_server *server = NFS_SERVER(old_dir);
1874 	struct nfs4_rename_arg arg = {
1875 		.old_dir = NFS_FH(old_dir),
1876 		.new_dir = NFS_FH(new_dir),
1877 		.old_name = old_name,
1878 		.new_name = new_name,
1879 		.bitmask = server->attr_bitmask,
1880 	};
1881 	struct nfs_fattr old_fattr, new_fattr;
1882 	struct nfs4_rename_res res = {
1883 		.server = server,
1884 		.old_fattr = &old_fattr,
1885 		.new_fattr = &new_fattr,
1886 	};
1887 	struct rpc_message msg = {
1888 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_RENAME],
1889 		.rpc_argp = &arg,
1890 		.rpc_resp = &res,
1891 	};
1892 	int			status;
1893 
1894 	nfs_fattr_init(res.old_fattr);
1895 	nfs_fattr_init(res.new_fattr);
1896 	status = rpc_call_sync(server->client, &msg, 0);
1897 
1898 	if (!status) {
1899 		update_changeattr(old_dir, &res.old_cinfo);
1900 		nfs_post_op_update_inode(old_dir, res.old_fattr);
1901 		update_changeattr(new_dir, &res.new_cinfo);
1902 		nfs_post_op_update_inode(new_dir, res.new_fattr);
1903 	}
1904 	return status;
1905 }
1906 
1907 static int nfs4_proc_rename(struct inode *old_dir, struct qstr *old_name,
1908 		struct inode *new_dir, struct qstr *new_name)
1909 {
1910 	struct nfs4_exception exception = { };
1911 	int err;
1912 	do {
1913 		err = nfs4_handle_exception(NFS_SERVER(old_dir),
1914 				_nfs4_proc_rename(old_dir, old_name,
1915 					new_dir, new_name),
1916 				&exception);
1917 	} while (exception.retry);
1918 	return err;
1919 }
1920 
1921 static int _nfs4_proc_link(struct inode *inode, struct inode *dir, struct qstr *name)
1922 {
1923 	struct nfs_server *server = NFS_SERVER(inode);
1924 	struct nfs4_link_arg arg = {
1925 		.fh     = NFS_FH(inode),
1926 		.dir_fh = NFS_FH(dir),
1927 		.name   = name,
1928 		.bitmask = server->attr_bitmask,
1929 	};
1930 	struct nfs_fattr fattr, dir_attr;
1931 	struct nfs4_link_res res = {
1932 		.server = server,
1933 		.fattr = &fattr,
1934 		.dir_attr = &dir_attr,
1935 	};
1936 	struct rpc_message msg = {
1937 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LINK],
1938 		.rpc_argp = &arg,
1939 		.rpc_resp = &res,
1940 	};
1941 	int			status;
1942 
1943 	nfs_fattr_init(res.fattr);
1944 	nfs_fattr_init(res.dir_attr);
1945 	status = rpc_call_sync(server->client, &msg, 0);
1946 	if (!status) {
1947 		update_changeattr(dir, &res.cinfo);
1948 		nfs_post_op_update_inode(dir, res.dir_attr);
1949 		nfs_post_op_update_inode(inode, res.fattr);
1950 	}
1951 
1952 	return status;
1953 }
1954 
1955 static int nfs4_proc_link(struct inode *inode, struct inode *dir, struct qstr *name)
1956 {
1957 	struct nfs4_exception exception = { };
1958 	int err;
1959 	do {
1960 		err = nfs4_handle_exception(NFS_SERVER(inode),
1961 				_nfs4_proc_link(inode, dir, name),
1962 				&exception);
1963 	} while (exception.retry);
1964 	return err;
1965 }
1966 
1967 static int _nfs4_proc_symlink(struct inode *dir, struct dentry *dentry,
1968 		struct page *page, unsigned int len, struct iattr *sattr)
1969 {
1970 	struct nfs_server *server = NFS_SERVER(dir);
1971 	struct nfs_fh fhandle;
1972 	struct nfs_fattr fattr, dir_fattr;
1973 	struct nfs4_create_arg arg = {
1974 		.dir_fh = NFS_FH(dir),
1975 		.server = server,
1976 		.name = &dentry->d_name,
1977 		.attrs = sattr,
1978 		.ftype = NF4LNK,
1979 		.bitmask = server->attr_bitmask,
1980 	};
1981 	struct nfs4_create_res res = {
1982 		.server = server,
1983 		.fh = &fhandle,
1984 		.fattr = &fattr,
1985 		.dir_fattr = &dir_fattr,
1986 	};
1987 	struct rpc_message msg = {
1988 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SYMLINK],
1989 		.rpc_argp = &arg,
1990 		.rpc_resp = &res,
1991 	};
1992 	int			status;
1993 
1994 	if (len > NFS4_MAXPATHLEN)
1995 		return -ENAMETOOLONG;
1996 
1997 	arg.u.symlink.pages = &page;
1998 	arg.u.symlink.len = len;
1999 	nfs_fattr_init(&fattr);
2000 	nfs_fattr_init(&dir_fattr);
2001 
2002 	status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0);
2003 	if (!status) {
2004 		update_changeattr(dir, &res.dir_cinfo);
2005 		nfs_post_op_update_inode(dir, res.dir_fattr);
2006 		status = nfs_instantiate(dentry, &fhandle, &fattr);
2007 	}
2008 	return status;
2009 }
2010 
2011 static int nfs4_proc_symlink(struct inode *dir, struct dentry *dentry,
2012 		struct page *page, unsigned int len, struct iattr *sattr)
2013 {
2014 	struct nfs4_exception exception = { };
2015 	int err;
2016 	do {
2017 		err = nfs4_handle_exception(NFS_SERVER(dir),
2018 				_nfs4_proc_symlink(dir, dentry, page,
2019 							len, sattr),
2020 				&exception);
2021 	} while (exception.retry);
2022 	return err;
2023 }
2024 
2025 static int _nfs4_proc_mkdir(struct inode *dir, struct dentry *dentry,
2026 		struct iattr *sattr)
2027 {
2028 	struct nfs_server *server = NFS_SERVER(dir);
2029 	struct nfs_fh fhandle;
2030 	struct nfs_fattr fattr, dir_fattr;
2031 	struct nfs4_create_arg arg = {
2032 		.dir_fh = NFS_FH(dir),
2033 		.server = server,
2034 		.name = &dentry->d_name,
2035 		.attrs = sattr,
2036 		.ftype = NF4DIR,
2037 		.bitmask = server->attr_bitmask,
2038 	};
2039 	struct nfs4_create_res res = {
2040 		.server = server,
2041 		.fh = &fhandle,
2042 		.fattr = &fattr,
2043 		.dir_fattr = &dir_fattr,
2044 	};
2045 	struct rpc_message msg = {
2046 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_CREATE],
2047 		.rpc_argp = &arg,
2048 		.rpc_resp = &res,
2049 	};
2050 	int			status;
2051 
2052 	nfs_fattr_init(&fattr);
2053 	nfs_fattr_init(&dir_fattr);
2054 
2055 	status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0);
2056 	if (!status) {
2057 		update_changeattr(dir, &res.dir_cinfo);
2058 		nfs_post_op_update_inode(dir, res.dir_fattr);
2059 		status = nfs_instantiate(dentry, &fhandle, &fattr);
2060 	}
2061 	return status;
2062 }
2063 
2064 static int nfs4_proc_mkdir(struct inode *dir, struct dentry *dentry,
2065 		struct iattr *sattr)
2066 {
2067 	struct nfs4_exception exception = { };
2068 	int err;
2069 	do {
2070 		err = nfs4_handle_exception(NFS_SERVER(dir),
2071 				_nfs4_proc_mkdir(dir, dentry, sattr),
2072 				&exception);
2073 	} while (exception.retry);
2074 	return err;
2075 }
2076 
2077 static int _nfs4_proc_readdir(struct dentry *dentry, struct rpc_cred *cred,
2078                   u64 cookie, struct page *page, unsigned int count, int plus)
2079 {
2080 	struct inode		*dir = dentry->d_inode;
2081 	struct nfs4_readdir_arg args = {
2082 		.fh = NFS_FH(dir),
2083 		.pages = &page,
2084 		.pgbase = 0,
2085 		.count = count,
2086 		.bitmask = NFS_SERVER(dentry->d_inode)->attr_bitmask,
2087 	};
2088 	struct nfs4_readdir_res res;
2089 	struct rpc_message msg = {
2090 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_READDIR],
2091 		.rpc_argp = &args,
2092 		.rpc_resp = &res,
2093 		.rpc_cred = cred,
2094 	};
2095 	int			status;
2096 
2097 	dprintk("%s: dentry = %s/%s, cookie = %Lu\n", __FUNCTION__,
2098 			dentry->d_parent->d_name.name,
2099 			dentry->d_name.name,
2100 			(unsigned long long)cookie);
2101 	nfs4_setup_readdir(cookie, NFS_COOKIEVERF(dir), dentry, &args);
2102 	res.pgbase = args.pgbase;
2103 	status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0);
2104 	if (status == 0)
2105 		memcpy(NFS_COOKIEVERF(dir), res.verifier.data, NFS4_VERIFIER_SIZE);
2106 	dprintk("%s: returns %d\n", __FUNCTION__, status);
2107 	return status;
2108 }
2109 
2110 static int nfs4_proc_readdir(struct dentry *dentry, struct rpc_cred *cred,
2111                   u64 cookie, struct page *page, unsigned int count, int plus)
2112 {
2113 	struct nfs4_exception exception = { };
2114 	int err;
2115 	do {
2116 		err = nfs4_handle_exception(NFS_SERVER(dentry->d_inode),
2117 				_nfs4_proc_readdir(dentry, cred, cookie,
2118 					page, count, plus),
2119 				&exception);
2120 	} while (exception.retry);
2121 	return err;
2122 }
2123 
2124 static int _nfs4_proc_mknod(struct inode *dir, struct dentry *dentry,
2125 		struct iattr *sattr, dev_t rdev)
2126 {
2127 	struct nfs_server *server = NFS_SERVER(dir);
2128 	struct nfs_fh fh;
2129 	struct nfs_fattr fattr, dir_fattr;
2130 	struct nfs4_create_arg arg = {
2131 		.dir_fh = NFS_FH(dir),
2132 		.server = server,
2133 		.name = &dentry->d_name,
2134 		.attrs = sattr,
2135 		.bitmask = server->attr_bitmask,
2136 	};
2137 	struct nfs4_create_res res = {
2138 		.server = server,
2139 		.fh = &fh,
2140 		.fattr = &fattr,
2141 		.dir_fattr = &dir_fattr,
2142 	};
2143 	struct rpc_message msg = {
2144 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_CREATE],
2145 		.rpc_argp = &arg,
2146 		.rpc_resp = &res,
2147 	};
2148 	int			status;
2149 	int                     mode = sattr->ia_mode;
2150 
2151 	nfs_fattr_init(&fattr);
2152 	nfs_fattr_init(&dir_fattr);
2153 
2154 	BUG_ON(!(sattr->ia_valid & ATTR_MODE));
2155 	BUG_ON(!S_ISFIFO(mode) && !S_ISBLK(mode) && !S_ISCHR(mode) && !S_ISSOCK(mode));
2156 	if (S_ISFIFO(mode))
2157 		arg.ftype = NF4FIFO;
2158 	else if (S_ISBLK(mode)) {
2159 		arg.ftype = NF4BLK;
2160 		arg.u.device.specdata1 = MAJOR(rdev);
2161 		arg.u.device.specdata2 = MINOR(rdev);
2162 	}
2163 	else if (S_ISCHR(mode)) {
2164 		arg.ftype = NF4CHR;
2165 		arg.u.device.specdata1 = MAJOR(rdev);
2166 		arg.u.device.specdata2 = MINOR(rdev);
2167 	}
2168 	else
2169 		arg.ftype = NF4SOCK;
2170 
2171 	status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0);
2172 	if (status == 0) {
2173 		update_changeattr(dir, &res.dir_cinfo);
2174 		nfs_post_op_update_inode(dir, res.dir_fattr);
2175 		status = nfs_instantiate(dentry, &fh, &fattr);
2176 	}
2177 	return status;
2178 }
2179 
2180 static int nfs4_proc_mknod(struct inode *dir, struct dentry *dentry,
2181 		struct iattr *sattr, dev_t rdev)
2182 {
2183 	struct nfs4_exception exception = { };
2184 	int err;
2185 	do {
2186 		err = nfs4_handle_exception(NFS_SERVER(dir),
2187 				_nfs4_proc_mknod(dir, dentry, sattr, rdev),
2188 				&exception);
2189 	} while (exception.retry);
2190 	return err;
2191 }
2192 
2193 static int _nfs4_proc_statfs(struct nfs_server *server, struct nfs_fh *fhandle,
2194 		 struct nfs_fsstat *fsstat)
2195 {
2196 	struct nfs4_statfs_arg args = {
2197 		.fh = fhandle,
2198 		.bitmask = server->attr_bitmask,
2199 	};
2200 	struct rpc_message msg = {
2201 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_STATFS],
2202 		.rpc_argp = &args,
2203 		.rpc_resp = fsstat,
2204 	};
2205 
2206 	nfs_fattr_init(fsstat->fattr);
2207 	return rpc_call_sync(server->client, &msg, 0);
2208 }
2209 
2210 static int nfs4_proc_statfs(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fsstat *fsstat)
2211 {
2212 	struct nfs4_exception exception = { };
2213 	int err;
2214 	do {
2215 		err = nfs4_handle_exception(server,
2216 				_nfs4_proc_statfs(server, fhandle, fsstat),
2217 				&exception);
2218 	} while (exception.retry);
2219 	return err;
2220 }
2221 
2222 static int _nfs4_do_fsinfo(struct nfs_server *server, struct nfs_fh *fhandle,
2223 		struct nfs_fsinfo *fsinfo)
2224 {
2225 	struct nfs4_fsinfo_arg args = {
2226 		.fh = fhandle,
2227 		.bitmask = server->attr_bitmask,
2228 	};
2229 	struct rpc_message msg = {
2230 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_FSINFO],
2231 		.rpc_argp = &args,
2232 		.rpc_resp = fsinfo,
2233 	};
2234 
2235 	return rpc_call_sync(server->client, &msg, 0);
2236 }
2237 
2238 static int nfs4_do_fsinfo(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fsinfo *fsinfo)
2239 {
2240 	struct nfs4_exception exception = { };
2241 	int err;
2242 
2243 	do {
2244 		err = nfs4_handle_exception(server,
2245 				_nfs4_do_fsinfo(server, fhandle, fsinfo),
2246 				&exception);
2247 	} while (exception.retry);
2248 	return err;
2249 }
2250 
2251 static int nfs4_proc_fsinfo(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fsinfo *fsinfo)
2252 {
2253 	nfs_fattr_init(fsinfo->fattr);
2254 	return nfs4_do_fsinfo(server, fhandle, fsinfo);
2255 }
2256 
2257 static int _nfs4_proc_pathconf(struct nfs_server *server, struct nfs_fh *fhandle,
2258 		struct nfs_pathconf *pathconf)
2259 {
2260 	struct nfs4_pathconf_arg args = {
2261 		.fh = fhandle,
2262 		.bitmask = server->attr_bitmask,
2263 	};
2264 	struct rpc_message msg = {
2265 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_PATHCONF],
2266 		.rpc_argp = &args,
2267 		.rpc_resp = pathconf,
2268 	};
2269 
2270 	/* None of the pathconf attributes are mandatory to implement */
2271 	if ((args.bitmask[0] & nfs4_pathconf_bitmap[0]) == 0) {
2272 		memset(pathconf, 0, sizeof(*pathconf));
2273 		return 0;
2274 	}
2275 
2276 	nfs_fattr_init(pathconf->fattr);
2277 	return rpc_call_sync(server->client, &msg, 0);
2278 }
2279 
2280 static int nfs4_proc_pathconf(struct nfs_server *server, struct nfs_fh *fhandle,
2281 		struct nfs_pathconf *pathconf)
2282 {
2283 	struct nfs4_exception exception = { };
2284 	int err;
2285 
2286 	do {
2287 		err = nfs4_handle_exception(server,
2288 				_nfs4_proc_pathconf(server, fhandle, pathconf),
2289 				&exception);
2290 	} while (exception.retry);
2291 	return err;
2292 }
2293 
2294 static int nfs4_read_done(struct rpc_task *task, struct nfs_read_data *data)
2295 {
2296 	struct nfs_server *server = NFS_SERVER(data->inode);
2297 
2298 	if (nfs4_async_handle_error(task, server) == -EAGAIN) {
2299 		rpc_restart_call(task);
2300 		return -EAGAIN;
2301 	}
2302 	if (task->tk_status > 0)
2303 		renew_lease(server, data->timestamp);
2304 	return 0;
2305 }
2306 
2307 static void nfs4_proc_read_setup(struct nfs_read_data *data)
2308 {
2309 	struct rpc_message msg = {
2310 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_READ],
2311 		.rpc_argp = &data->args,
2312 		.rpc_resp = &data->res,
2313 		.rpc_cred = data->cred,
2314 	};
2315 
2316 	data->timestamp   = jiffies;
2317 
2318 	rpc_call_setup(&data->task, &msg, 0);
2319 }
2320 
2321 static int nfs4_write_done(struct rpc_task *task, struct nfs_write_data *data)
2322 {
2323 	struct inode *inode = data->inode;
2324 
2325 	if (nfs4_async_handle_error(task, NFS_SERVER(inode)) == -EAGAIN) {
2326 		rpc_restart_call(task);
2327 		return -EAGAIN;
2328 	}
2329 	if (task->tk_status >= 0) {
2330 		renew_lease(NFS_SERVER(inode), data->timestamp);
2331 		nfs_post_op_update_inode(inode, data->res.fattr);
2332 	}
2333 	return 0;
2334 }
2335 
2336 static void nfs4_proc_write_setup(struct nfs_write_data *data, int how)
2337 {
2338 	struct rpc_message msg = {
2339 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_WRITE],
2340 		.rpc_argp = &data->args,
2341 		.rpc_resp = &data->res,
2342 		.rpc_cred = data->cred,
2343 	};
2344 	struct inode *inode = data->inode;
2345 	struct nfs_server *server = NFS_SERVER(inode);
2346 	int stable;
2347 
2348 	if (how & FLUSH_STABLE) {
2349 		if (!NFS_I(inode)->ncommit)
2350 			stable = NFS_FILE_SYNC;
2351 		else
2352 			stable = NFS_DATA_SYNC;
2353 	} else
2354 		stable = NFS_UNSTABLE;
2355 	data->args.stable = stable;
2356 	data->args.bitmask = server->attr_bitmask;
2357 	data->res.server = server;
2358 
2359 	data->timestamp   = jiffies;
2360 
2361 	/* Finalize the task. */
2362 	rpc_call_setup(&data->task, &msg, 0);
2363 }
2364 
2365 static int nfs4_commit_done(struct rpc_task *task, struct nfs_write_data *data)
2366 {
2367 	struct inode *inode = data->inode;
2368 
2369 	if (nfs4_async_handle_error(task, NFS_SERVER(inode)) == -EAGAIN) {
2370 		rpc_restart_call(task);
2371 		return -EAGAIN;
2372 	}
2373 	if (task->tk_status >= 0)
2374 		nfs_post_op_update_inode(inode, data->res.fattr);
2375 	return 0;
2376 }
2377 
2378 static void nfs4_proc_commit_setup(struct nfs_write_data *data, int how)
2379 {
2380 	struct rpc_message msg = {
2381 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_COMMIT],
2382 		.rpc_argp = &data->args,
2383 		.rpc_resp = &data->res,
2384 		.rpc_cred = data->cred,
2385 	};
2386 	struct nfs_server *server = NFS_SERVER(data->inode);
2387 
2388 	data->args.bitmask = server->attr_bitmask;
2389 	data->res.server = server;
2390 
2391 	rpc_call_setup(&data->task, &msg, 0);
2392 }
2393 
2394 /*
2395  * nfs4_proc_async_renew(): This is not one of the nfs_rpc_ops; it is a special
2396  * standalone procedure for queueing an asynchronous RENEW.
2397  */
2398 static void nfs4_renew_done(struct rpc_task *task, void *data)
2399 {
2400 	struct nfs_client *clp = (struct nfs_client *)task->tk_msg.rpc_argp;
2401 	unsigned long timestamp = (unsigned long)data;
2402 
2403 	if (task->tk_status < 0) {
2404 		switch (task->tk_status) {
2405 			case -NFS4ERR_STALE_CLIENTID:
2406 			case -NFS4ERR_EXPIRED:
2407 			case -NFS4ERR_CB_PATH_DOWN:
2408 				nfs4_schedule_state_recovery(clp);
2409 		}
2410 		return;
2411 	}
2412 	spin_lock(&clp->cl_lock);
2413 	if (time_before(clp->cl_last_renewal,timestamp))
2414 		clp->cl_last_renewal = timestamp;
2415 	spin_unlock(&clp->cl_lock);
2416 }
2417 
2418 static const struct rpc_call_ops nfs4_renew_ops = {
2419 	.rpc_call_done = nfs4_renew_done,
2420 };
2421 
2422 int nfs4_proc_async_renew(struct nfs_client *clp, struct rpc_cred *cred)
2423 {
2424 	struct rpc_message msg = {
2425 		.rpc_proc	= &nfs4_procedures[NFSPROC4_CLNT_RENEW],
2426 		.rpc_argp	= clp,
2427 		.rpc_cred	= cred,
2428 	};
2429 
2430 	return rpc_call_async(clp->cl_rpcclient, &msg, RPC_TASK_SOFT,
2431 			&nfs4_renew_ops, (void *)jiffies);
2432 }
2433 
2434 int nfs4_proc_renew(struct nfs_client *clp, struct rpc_cred *cred)
2435 {
2436 	struct rpc_message msg = {
2437 		.rpc_proc	= &nfs4_procedures[NFSPROC4_CLNT_RENEW],
2438 		.rpc_argp	= clp,
2439 		.rpc_cred	= cred,
2440 	};
2441 	unsigned long now = jiffies;
2442 	int status;
2443 
2444 	status = rpc_call_sync(clp->cl_rpcclient, &msg, 0);
2445 	if (status < 0)
2446 		return status;
2447 	spin_lock(&clp->cl_lock);
2448 	if (time_before(clp->cl_last_renewal,now))
2449 		clp->cl_last_renewal = now;
2450 	spin_unlock(&clp->cl_lock);
2451 	return 0;
2452 }
2453 
2454 static inline int nfs4_server_supports_acls(struct nfs_server *server)
2455 {
2456 	return (server->caps & NFS_CAP_ACLS)
2457 		&& (server->acl_bitmask & ACL4_SUPPORT_ALLOW_ACL)
2458 		&& (server->acl_bitmask & ACL4_SUPPORT_DENY_ACL);
2459 }
2460 
2461 /* Assuming that XATTR_SIZE_MAX is a multiple of PAGE_CACHE_SIZE, and that
2462  * it's OK to put sizeof(void) * (XATTR_SIZE_MAX/PAGE_CACHE_SIZE) bytes on
2463  * the stack.
2464  */
2465 #define NFS4ACL_MAXPAGES (XATTR_SIZE_MAX >> PAGE_CACHE_SHIFT)
2466 
2467 static void buf_to_pages(const void *buf, size_t buflen,
2468 		struct page **pages, unsigned int *pgbase)
2469 {
2470 	const void *p = buf;
2471 
2472 	*pgbase = offset_in_page(buf);
2473 	p -= *pgbase;
2474 	while (p < buf + buflen) {
2475 		*(pages++) = virt_to_page(p);
2476 		p += PAGE_CACHE_SIZE;
2477 	}
2478 }
2479 
2480 struct nfs4_cached_acl {
2481 	int cached;
2482 	size_t len;
2483 	char data[0];
2484 };
2485 
2486 static void nfs4_set_cached_acl(struct inode *inode, struct nfs4_cached_acl *acl)
2487 {
2488 	struct nfs_inode *nfsi = NFS_I(inode);
2489 
2490 	spin_lock(&inode->i_lock);
2491 	kfree(nfsi->nfs4_acl);
2492 	nfsi->nfs4_acl = acl;
2493 	spin_unlock(&inode->i_lock);
2494 }
2495 
2496 static void nfs4_zap_acl_attr(struct inode *inode)
2497 {
2498 	nfs4_set_cached_acl(inode, NULL);
2499 }
2500 
2501 static inline ssize_t nfs4_read_cached_acl(struct inode *inode, char *buf, size_t buflen)
2502 {
2503 	struct nfs_inode *nfsi = NFS_I(inode);
2504 	struct nfs4_cached_acl *acl;
2505 	int ret = -ENOENT;
2506 
2507 	spin_lock(&inode->i_lock);
2508 	acl = nfsi->nfs4_acl;
2509 	if (acl == NULL)
2510 		goto out;
2511 	if (buf == NULL) /* user is just asking for length */
2512 		goto out_len;
2513 	if (acl->cached == 0)
2514 		goto out;
2515 	ret = -ERANGE; /* see getxattr(2) man page */
2516 	if (acl->len > buflen)
2517 		goto out;
2518 	memcpy(buf, acl->data, acl->len);
2519 out_len:
2520 	ret = acl->len;
2521 out:
2522 	spin_unlock(&inode->i_lock);
2523 	return ret;
2524 }
2525 
2526 static void nfs4_write_cached_acl(struct inode *inode, const char *buf, size_t acl_len)
2527 {
2528 	struct nfs4_cached_acl *acl;
2529 
2530 	if (buf && acl_len <= PAGE_SIZE) {
2531 		acl = kmalloc(sizeof(*acl) + acl_len, GFP_KERNEL);
2532 		if (acl == NULL)
2533 			goto out;
2534 		acl->cached = 1;
2535 		memcpy(acl->data, buf, acl_len);
2536 	} else {
2537 		acl = kmalloc(sizeof(*acl), GFP_KERNEL);
2538 		if (acl == NULL)
2539 			goto out;
2540 		acl->cached = 0;
2541 	}
2542 	acl->len = acl_len;
2543 out:
2544 	nfs4_set_cached_acl(inode, acl);
2545 }
2546 
2547 static ssize_t __nfs4_get_acl_uncached(struct inode *inode, void *buf, size_t buflen)
2548 {
2549 	struct page *pages[NFS4ACL_MAXPAGES];
2550 	struct nfs_getaclargs args = {
2551 		.fh = NFS_FH(inode),
2552 		.acl_pages = pages,
2553 		.acl_len = buflen,
2554 	};
2555 	size_t resp_len = buflen;
2556 	void *resp_buf;
2557 	struct rpc_message msg = {
2558 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_GETACL],
2559 		.rpc_argp = &args,
2560 		.rpc_resp = &resp_len,
2561 	};
2562 	struct page *localpage = NULL;
2563 	int ret;
2564 
2565 	if (buflen < PAGE_SIZE) {
2566 		/* As long as we're doing a round trip to the server anyway,
2567 		 * let's be prepared for a page of acl data. */
2568 		localpage = alloc_page(GFP_KERNEL);
2569 		resp_buf = page_address(localpage);
2570 		if (localpage == NULL)
2571 			return -ENOMEM;
2572 		args.acl_pages[0] = localpage;
2573 		args.acl_pgbase = 0;
2574 		resp_len = args.acl_len = PAGE_SIZE;
2575 	} else {
2576 		resp_buf = buf;
2577 		buf_to_pages(buf, buflen, args.acl_pages, &args.acl_pgbase);
2578 	}
2579 	ret = rpc_call_sync(NFS_CLIENT(inode), &msg, 0);
2580 	if (ret)
2581 		goto out_free;
2582 	if (resp_len > args.acl_len)
2583 		nfs4_write_cached_acl(inode, NULL, resp_len);
2584 	else
2585 		nfs4_write_cached_acl(inode, resp_buf, resp_len);
2586 	if (buf) {
2587 		ret = -ERANGE;
2588 		if (resp_len > buflen)
2589 			goto out_free;
2590 		if (localpage)
2591 			memcpy(buf, resp_buf, resp_len);
2592 	}
2593 	ret = resp_len;
2594 out_free:
2595 	if (localpage)
2596 		__free_page(localpage);
2597 	return ret;
2598 }
2599 
2600 static ssize_t nfs4_get_acl_uncached(struct inode *inode, void *buf, size_t buflen)
2601 {
2602 	struct nfs4_exception exception = { };
2603 	ssize_t ret;
2604 	do {
2605 		ret = __nfs4_get_acl_uncached(inode, buf, buflen);
2606 		if (ret >= 0)
2607 			break;
2608 		ret = nfs4_handle_exception(NFS_SERVER(inode), ret, &exception);
2609 	} while (exception.retry);
2610 	return ret;
2611 }
2612 
2613 static ssize_t nfs4_proc_get_acl(struct inode *inode, void *buf, size_t buflen)
2614 {
2615 	struct nfs_server *server = NFS_SERVER(inode);
2616 	int ret;
2617 
2618 	if (!nfs4_server_supports_acls(server))
2619 		return -EOPNOTSUPP;
2620 	ret = nfs_revalidate_inode(server, inode);
2621 	if (ret < 0)
2622 		return ret;
2623 	ret = nfs4_read_cached_acl(inode, buf, buflen);
2624 	if (ret != -ENOENT)
2625 		return ret;
2626 	return nfs4_get_acl_uncached(inode, buf, buflen);
2627 }
2628 
2629 static int __nfs4_proc_set_acl(struct inode *inode, const void *buf, size_t buflen)
2630 {
2631 	struct nfs_server *server = NFS_SERVER(inode);
2632 	struct page *pages[NFS4ACL_MAXPAGES];
2633 	struct nfs_setaclargs arg = {
2634 		.fh		= NFS_FH(inode),
2635 		.acl_pages	= pages,
2636 		.acl_len	= buflen,
2637 	};
2638 	struct rpc_message msg = {
2639 		.rpc_proc	= &nfs4_procedures[NFSPROC4_CLNT_SETACL],
2640 		.rpc_argp	= &arg,
2641 		.rpc_resp	= NULL,
2642 	};
2643 	int ret;
2644 
2645 	if (!nfs4_server_supports_acls(server))
2646 		return -EOPNOTSUPP;
2647 	nfs_inode_return_delegation(inode);
2648 	buf_to_pages(buf, buflen, arg.acl_pages, &arg.acl_pgbase);
2649 	ret = rpc_call_sync(NFS_CLIENT(inode), &msg, 0);
2650 	nfs_zap_caches(inode);
2651 	return ret;
2652 }
2653 
2654 static int nfs4_proc_set_acl(struct inode *inode, const void *buf, size_t buflen)
2655 {
2656 	struct nfs4_exception exception = { };
2657 	int err;
2658 	do {
2659 		err = nfs4_handle_exception(NFS_SERVER(inode),
2660 				__nfs4_proc_set_acl(inode, buf, buflen),
2661 				&exception);
2662 	} while (exception.retry);
2663 	return err;
2664 }
2665 
2666 static int
2667 nfs4_async_handle_error(struct rpc_task *task, const struct nfs_server *server)
2668 {
2669 	struct nfs_client *clp = server->nfs_client;
2670 
2671 	if (!clp || task->tk_status >= 0)
2672 		return 0;
2673 	switch(task->tk_status) {
2674 		case -NFS4ERR_STALE_CLIENTID:
2675 		case -NFS4ERR_STALE_STATEID:
2676 		case -NFS4ERR_EXPIRED:
2677 			rpc_sleep_on(&clp->cl_rpcwaitq, task, NULL, NULL);
2678 			nfs4_schedule_state_recovery(clp);
2679 			if (test_bit(NFS4CLNT_STATE_RECOVER, &clp->cl_state) == 0)
2680 				rpc_wake_up_task(task);
2681 			task->tk_status = 0;
2682 			return -EAGAIN;
2683 		case -NFS4ERR_DELAY:
2684 			nfs_inc_server_stats((struct nfs_server *) server,
2685 						NFSIOS_DELAY);
2686 		case -NFS4ERR_GRACE:
2687 			rpc_delay(task, NFS4_POLL_RETRY_MAX);
2688 			task->tk_status = 0;
2689 			return -EAGAIN;
2690 		case -NFS4ERR_OLD_STATEID:
2691 			task->tk_status = 0;
2692 			return -EAGAIN;
2693 	}
2694 	task->tk_status = nfs4_map_errors(task->tk_status);
2695 	return 0;
2696 }
2697 
2698 static int nfs4_wait_bit_interruptible(void *word)
2699 {
2700 	if (signal_pending(current))
2701 		return -ERESTARTSYS;
2702 	schedule();
2703 	return 0;
2704 }
2705 
2706 static int nfs4_wait_clnt_recover(struct rpc_clnt *clnt, struct nfs_client *clp)
2707 {
2708 	sigset_t oldset;
2709 	int res;
2710 
2711 	might_sleep();
2712 
2713 	rwsem_acquire(&clp->cl_sem.dep_map, 0, 0, _RET_IP_);
2714 
2715 	rpc_clnt_sigmask(clnt, &oldset);
2716 	res = wait_on_bit(&clp->cl_state, NFS4CLNT_STATE_RECOVER,
2717 			nfs4_wait_bit_interruptible,
2718 			TASK_INTERRUPTIBLE);
2719 	rpc_clnt_sigunmask(clnt, &oldset);
2720 
2721 	rwsem_release(&clp->cl_sem.dep_map, 1, _RET_IP_);
2722 	return res;
2723 }
2724 
2725 static int nfs4_delay(struct rpc_clnt *clnt, long *timeout)
2726 {
2727 	sigset_t oldset;
2728 	int res = 0;
2729 
2730 	might_sleep();
2731 
2732 	if (*timeout <= 0)
2733 		*timeout = NFS4_POLL_RETRY_MIN;
2734 	if (*timeout > NFS4_POLL_RETRY_MAX)
2735 		*timeout = NFS4_POLL_RETRY_MAX;
2736 	rpc_clnt_sigmask(clnt, &oldset);
2737 	if (clnt->cl_intr) {
2738 		schedule_timeout_interruptible(*timeout);
2739 		if (signalled())
2740 			res = -ERESTARTSYS;
2741 	} else
2742 		schedule_timeout_uninterruptible(*timeout);
2743 	rpc_clnt_sigunmask(clnt, &oldset);
2744 	*timeout <<= 1;
2745 	return res;
2746 }
2747 
2748 /* This is the error handling routine for processes that are allowed
2749  * to sleep.
2750  */
2751 int nfs4_handle_exception(const struct nfs_server *server, int errorcode, struct nfs4_exception *exception)
2752 {
2753 	struct nfs_client *clp = server->nfs_client;
2754 	int ret = errorcode;
2755 
2756 	exception->retry = 0;
2757 	switch(errorcode) {
2758 		case 0:
2759 			return 0;
2760 		case -NFS4ERR_STALE_CLIENTID:
2761 		case -NFS4ERR_STALE_STATEID:
2762 		case -NFS4ERR_EXPIRED:
2763 			nfs4_schedule_state_recovery(clp);
2764 			ret = nfs4_wait_clnt_recover(server->client, clp);
2765 			if (ret == 0)
2766 				exception->retry = 1;
2767 			break;
2768 		case -NFS4ERR_FILE_OPEN:
2769 		case -NFS4ERR_GRACE:
2770 		case -NFS4ERR_DELAY:
2771 			ret = nfs4_delay(server->client, &exception->timeout);
2772 			if (ret != 0)
2773 				break;
2774 		case -NFS4ERR_OLD_STATEID:
2775 			exception->retry = 1;
2776 	}
2777 	/* We failed to handle the error */
2778 	return nfs4_map_errors(ret);
2779 }
2780 
2781 int nfs4_proc_setclientid(struct nfs_client *clp, u32 program, unsigned short port, struct rpc_cred *cred)
2782 {
2783 	nfs4_verifier sc_verifier;
2784 	struct nfs4_setclientid setclientid = {
2785 		.sc_verifier = &sc_verifier,
2786 		.sc_prog = program,
2787 	};
2788 	struct rpc_message msg = {
2789 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SETCLIENTID],
2790 		.rpc_argp = &setclientid,
2791 		.rpc_resp = clp,
2792 		.rpc_cred = cred,
2793 	};
2794 	__be32 *p;
2795 	int loop = 0;
2796 	int status;
2797 
2798 	p = (__be32*)sc_verifier.data;
2799 	*p++ = htonl((u32)clp->cl_boot_time.tv_sec);
2800 	*p = htonl((u32)clp->cl_boot_time.tv_nsec);
2801 
2802 	for(;;) {
2803 		setclientid.sc_name_len = scnprintf(setclientid.sc_name,
2804 				sizeof(setclientid.sc_name), "%s/%u.%u.%u.%u %s %u",
2805 				clp->cl_ipaddr, NIPQUAD(clp->cl_addr.sin_addr),
2806 				cred->cr_ops->cr_name,
2807 				clp->cl_id_uniquifier);
2808 		setclientid.sc_netid_len = scnprintf(setclientid.sc_netid,
2809 				sizeof(setclientid.sc_netid), "tcp");
2810 		setclientid.sc_uaddr_len = scnprintf(setclientid.sc_uaddr,
2811 				sizeof(setclientid.sc_uaddr), "%s.%d.%d",
2812 				clp->cl_ipaddr, port >> 8, port & 255);
2813 
2814 		status = rpc_call_sync(clp->cl_rpcclient, &msg, 0);
2815 		if (status != -NFS4ERR_CLID_INUSE)
2816 			break;
2817 		if (signalled())
2818 			break;
2819 		if (loop++ & 1)
2820 			ssleep(clp->cl_lease_time + 1);
2821 		else
2822 			if (++clp->cl_id_uniquifier == 0)
2823 				break;
2824 	}
2825 	return status;
2826 }
2827 
2828 static int _nfs4_proc_setclientid_confirm(struct nfs_client *clp, struct rpc_cred *cred)
2829 {
2830 	struct nfs_fsinfo fsinfo;
2831 	struct rpc_message msg = {
2832 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SETCLIENTID_CONFIRM],
2833 		.rpc_argp = clp,
2834 		.rpc_resp = &fsinfo,
2835 		.rpc_cred = cred,
2836 	};
2837 	unsigned long now;
2838 	int status;
2839 
2840 	now = jiffies;
2841 	status = rpc_call_sync(clp->cl_rpcclient, &msg, 0);
2842 	if (status == 0) {
2843 		spin_lock(&clp->cl_lock);
2844 		clp->cl_lease_time = fsinfo.lease_time * HZ;
2845 		clp->cl_last_renewal = now;
2846 		clear_bit(NFS4CLNT_LEASE_EXPIRED, &clp->cl_state);
2847 		spin_unlock(&clp->cl_lock);
2848 	}
2849 	return status;
2850 }
2851 
2852 int nfs4_proc_setclientid_confirm(struct nfs_client *clp, struct rpc_cred *cred)
2853 {
2854 	long timeout;
2855 	int err;
2856 	do {
2857 		err = _nfs4_proc_setclientid_confirm(clp, cred);
2858 		switch (err) {
2859 			case 0:
2860 				return err;
2861 			case -NFS4ERR_RESOURCE:
2862 				/* The IBM lawyers misread another document! */
2863 			case -NFS4ERR_DELAY:
2864 				err = nfs4_delay(clp->cl_rpcclient, &timeout);
2865 		}
2866 	} while (err == 0);
2867 	return err;
2868 }
2869 
2870 struct nfs4_delegreturndata {
2871 	struct nfs4_delegreturnargs args;
2872 	struct nfs4_delegreturnres res;
2873 	struct nfs_fh fh;
2874 	nfs4_stateid stateid;
2875 	struct rpc_cred *cred;
2876 	unsigned long timestamp;
2877 	struct nfs_fattr fattr;
2878 	int rpc_status;
2879 };
2880 
2881 static void nfs4_delegreturn_prepare(struct rpc_task *task, void *calldata)
2882 {
2883 	struct nfs4_delegreturndata *data = calldata;
2884 	struct rpc_message msg = {
2885 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_DELEGRETURN],
2886 		.rpc_argp = &data->args,
2887 		.rpc_resp = &data->res,
2888 		.rpc_cred = data->cred,
2889 	};
2890 	nfs_fattr_init(data->res.fattr);
2891 	rpc_call_setup(task, &msg, 0);
2892 }
2893 
2894 static void nfs4_delegreturn_done(struct rpc_task *task, void *calldata)
2895 {
2896 	struct nfs4_delegreturndata *data = calldata;
2897 	data->rpc_status = task->tk_status;
2898 	if (data->rpc_status == 0)
2899 		renew_lease(data->res.server, data->timestamp);
2900 }
2901 
2902 static void nfs4_delegreturn_release(void *calldata)
2903 {
2904 	struct nfs4_delegreturndata *data = calldata;
2905 
2906 	put_rpccred(data->cred);
2907 	kfree(calldata);
2908 }
2909 
2910 static const struct rpc_call_ops nfs4_delegreturn_ops = {
2911 	.rpc_call_prepare = nfs4_delegreturn_prepare,
2912 	.rpc_call_done = nfs4_delegreturn_done,
2913 	.rpc_release = nfs4_delegreturn_release,
2914 };
2915 
2916 static int _nfs4_proc_delegreturn(struct inode *inode, struct rpc_cred *cred, const nfs4_stateid *stateid)
2917 {
2918 	struct nfs4_delegreturndata *data;
2919 	struct nfs_server *server = NFS_SERVER(inode);
2920 	struct rpc_task *task;
2921 	int status;
2922 
2923 	data = kmalloc(sizeof(*data), GFP_KERNEL);
2924 	if (data == NULL)
2925 		return -ENOMEM;
2926 	data->args.fhandle = &data->fh;
2927 	data->args.stateid = &data->stateid;
2928 	data->args.bitmask = server->attr_bitmask;
2929 	nfs_copy_fh(&data->fh, NFS_FH(inode));
2930 	memcpy(&data->stateid, stateid, sizeof(data->stateid));
2931 	data->res.fattr = &data->fattr;
2932 	data->res.server = server;
2933 	data->cred = get_rpccred(cred);
2934 	data->timestamp = jiffies;
2935 	data->rpc_status = 0;
2936 
2937 	task = rpc_run_task(NFS_CLIENT(inode), RPC_TASK_ASYNC, &nfs4_delegreturn_ops, data);
2938 	if (IS_ERR(task))
2939 		return PTR_ERR(task);
2940 	status = nfs4_wait_for_completion_rpc_task(task);
2941 	if (status == 0) {
2942 		status = data->rpc_status;
2943 		if (status == 0)
2944 			nfs_post_op_update_inode(inode, &data->fattr);
2945 	}
2946 	rpc_put_task(task);
2947 	return status;
2948 }
2949 
2950 int nfs4_proc_delegreturn(struct inode *inode, struct rpc_cred *cred, const nfs4_stateid *stateid)
2951 {
2952 	struct nfs_server *server = NFS_SERVER(inode);
2953 	struct nfs4_exception exception = { };
2954 	int err;
2955 	do {
2956 		err = _nfs4_proc_delegreturn(inode, cred, stateid);
2957 		switch (err) {
2958 			case -NFS4ERR_STALE_STATEID:
2959 			case -NFS4ERR_EXPIRED:
2960 			case 0:
2961 				return 0;
2962 		}
2963 		err = nfs4_handle_exception(server, err, &exception);
2964 	} while (exception.retry);
2965 	return err;
2966 }
2967 
2968 #define NFS4_LOCK_MINTIMEOUT (1 * HZ)
2969 #define NFS4_LOCK_MAXTIMEOUT (30 * HZ)
2970 
2971 /*
2972  * sleep, with exponential backoff, and retry the LOCK operation.
2973  */
2974 static unsigned long
2975 nfs4_set_lock_task_retry(unsigned long timeout)
2976 {
2977 	schedule_timeout_interruptible(timeout);
2978 	timeout <<= 1;
2979 	if (timeout > NFS4_LOCK_MAXTIMEOUT)
2980 		return NFS4_LOCK_MAXTIMEOUT;
2981 	return timeout;
2982 }
2983 
2984 static int _nfs4_proc_getlk(struct nfs4_state *state, int cmd, struct file_lock *request)
2985 {
2986 	struct inode *inode = state->inode;
2987 	struct nfs_server *server = NFS_SERVER(inode);
2988 	struct nfs_client *clp = server->nfs_client;
2989 	struct nfs_lockt_args arg = {
2990 		.fh = NFS_FH(inode),
2991 		.fl = request,
2992 	};
2993 	struct nfs_lockt_res res = {
2994 		.denied = request,
2995 	};
2996 	struct rpc_message msg = {
2997 		.rpc_proc	= &nfs4_procedures[NFSPROC4_CLNT_LOCKT],
2998 		.rpc_argp       = &arg,
2999 		.rpc_resp       = &res,
3000 		.rpc_cred	= state->owner->so_cred,
3001 	};
3002 	struct nfs4_lock_state *lsp;
3003 	int status;
3004 
3005 	down_read(&clp->cl_sem);
3006 	arg.lock_owner.clientid = clp->cl_clientid;
3007 	status = nfs4_set_lock_state(state, request);
3008 	if (status != 0)
3009 		goto out;
3010 	lsp = request->fl_u.nfs4_fl.owner;
3011 	arg.lock_owner.id = lsp->ls_id;
3012 	status = rpc_call_sync(server->client, &msg, 0);
3013 	switch (status) {
3014 		case 0:
3015 			request->fl_type = F_UNLCK;
3016 			break;
3017 		case -NFS4ERR_DENIED:
3018 			status = 0;
3019 	}
3020 	request->fl_ops->fl_release_private(request);
3021 out:
3022 	up_read(&clp->cl_sem);
3023 	return status;
3024 }
3025 
3026 static int nfs4_proc_getlk(struct nfs4_state *state, int cmd, struct file_lock *request)
3027 {
3028 	struct nfs4_exception exception = { };
3029 	int err;
3030 
3031 	do {
3032 		err = nfs4_handle_exception(NFS_SERVER(state->inode),
3033 				_nfs4_proc_getlk(state, cmd, request),
3034 				&exception);
3035 	} while (exception.retry);
3036 	return err;
3037 }
3038 
3039 static int do_vfs_lock(struct file *file, struct file_lock *fl)
3040 {
3041 	int res = 0;
3042 	switch (fl->fl_flags & (FL_POSIX|FL_FLOCK)) {
3043 		case FL_POSIX:
3044 			res = posix_lock_file_wait(file, fl);
3045 			break;
3046 		case FL_FLOCK:
3047 			res = flock_lock_file_wait(file, fl);
3048 			break;
3049 		default:
3050 			BUG();
3051 	}
3052 	return res;
3053 }
3054 
3055 struct nfs4_unlockdata {
3056 	struct nfs_locku_args arg;
3057 	struct nfs_locku_res res;
3058 	struct nfs4_lock_state *lsp;
3059 	struct nfs_open_context *ctx;
3060 	struct file_lock fl;
3061 	const struct nfs_server *server;
3062 	unsigned long timestamp;
3063 };
3064 
3065 static struct nfs4_unlockdata *nfs4_alloc_unlockdata(struct file_lock *fl,
3066 		struct nfs_open_context *ctx,
3067 		struct nfs4_lock_state *lsp,
3068 		struct nfs_seqid *seqid)
3069 {
3070 	struct nfs4_unlockdata *p;
3071 	struct inode *inode = lsp->ls_state->inode;
3072 
3073 	p = kmalloc(sizeof(*p), GFP_KERNEL);
3074 	if (p == NULL)
3075 		return NULL;
3076 	p->arg.fh = NFS_FH(inode);
3077 	p->arg.fl = &p->fl;
3078 	p->arg.seqid = seqid;
3079 	p->arg.stateid = &lsp->ls_stateid;
3080 	p->lsp = lsp;
3081 	atomic_inc(&lsp->ls_count);
3082 	/* Ensure we don't close file until we're done freeing locks! */
3083 	p->ctx = get_nfs_open_context(ctx);
3084 	memcpy(&p->fl, fl, sizeof(p->fl));
3085 	p->server = NFS_SERVER(inode);
3086 	return p;
3087 }
3088 
3089 static void nfs4_locku_release_calldata(void *data)
3090 {
3091 	struct nfs4_unlockdata *calldata = data;
3092 	nfs_free_seqid(calldata->arg.seqid);
3093 	nfs4_put_lock_state(calldata->lsp);
3094 	put_nfs_open_context(calldata->ctx);
3095 	kfree(calldata);
3096 }
3097 
3098 static void nfs4_locku_done(struct rpc_task *task, void *data)
3099 {
3100 	struct nfs4_unlockdata *calldata = data;
3101 
3102 	if (RPC_ASSASSINATED(task))
3103 		return;
3104 	nfs_increment_lock_seqid(task->tk_status, calldata->arg.seqid);
3105 	switch (task->tk_status) {
3106 		case 0:
3107 			memcpy(calldata->lsp->ls_stateid.data,
3108 					calldata->res.stateid.data,
3109 					sizeof(calldata->lsp->ls_stateid.data));
3110 			renew_lease(calldata->server, calldata->timestamp);
3111 			break;
3112 		case -NFS4ERR_STALE_STATEID:
3113 		case -NFS4ERR_EXPIRED:
3114 			break;
3115 		default:
3116 			if (nfs4_async_handle_error(task, calldata->server) == -EAGAIN)
3117 				rpc_restart_call(task);
3118 	}
3119 }
3120 
3121 static void nfs4_locku_prepare(struct rpc_task *task, void *data)
3122 {
3123 	struct nfs4_unlockdata *calldata = data;
3124 	struct rpc_message msg = {
3125 		.rpc_proc	= &nfs4_procedures[NFSPROC4_CLNT_LOCKU],
3126 		.rpc_argp       = &calldata->arg,
3127 		.rpc_resp       = &calldata->res,
3128 		.rpc_cred	= calldata->lsp->ls_state->owner->so_cred,
3129 	};
3130 
3131 	if (nfs_wait_on_sequence(calldata->arg.seqid, task) != 0)
3132 		return;
3133 	if ((calldata->lsp->ls_flags & NFS_LOCK_INITIALIZED) == 0) {
3134 		/* Note: exit _without_ running nfs4_locku_done */
3135 		task->tk_action = NULL;
3136 		return;
3137 	}
3138 	calldata->timestamp = jiffies;
3139 	rpc_call_setup(task, &msg, 0);
3140 }
3141 
3142 static const struct rpc_call_ops nfs4_locku_ops = {
3143 	.rpc_call_prepare = nfs4_locku_prepare,
3144 	.rpc_call_done = nfs4_locku_done,
3145 	.rpc_release = nfs4_locku_release_calldata,
3146 };
3147 
3148 static struct rpc_task *nfs4_do_unlck(struct file_lock *fl,
3149 		struct nfs_open_context *ctx,
3150 		struct nfs4_lock_state *lsp,
3151 		struct nfs_seqid *seqid)
3152 {
3153 	struct nfs4_unlockdata *data;
3154 
3155 	data = nfs4_alloc_unlockdata(fl, ctx, lsp, seqid);
3156 	if (data == NULL) {
3157 		nfs_free_seqid(seqid);
3158 		return ERR_PTR(-ENOMEM);
3159 	}
3160 
3161 	return rpc_run_task(NFS_CLIENT(lsp->ls_state->inode), RPC_TASK_ASYNC, &nfs4_locku_ops, data);
3162 }
3163 
3164 static int nfs4_proc_unlck(struct nfs4_state *state, int cmd, struct file_lock *request)
3165 {
3166 	struct nfs_seqid *seqid;
3167 	struct nfs4_lock_state *lsp;
3168 	struct rpc_task *task;
3169 	int status = 0;
3170 
3171 	status = nfs4_set_lock_state(state, request);
3172 	/* Unlock _before_ we do the RPC call */
3173 	request->fl_flags |= FL_EXISTS;
3174 	if (do_vfs_lock(request->fl_file, request) == -ENOENT)
3175 		goto out;
3176 	if (status != 0)
3177 		goto out;
3178 	/* Is this a delegated lock? */
3179 	if (test_bit(NFS_DELEGATED_STATE, &state->flags))
3180 		goto out;
3181 	lsp = request->fl_u.nfs4_fl.owner;
3182 	seqid = nfs_alloc_seqid(&lsp->ls_seqid);
3183 	status = -ENOMEM;
3184 	if (seqid == NULL)
3185 		goto out;
3186 	task = nfs4_do_unlck(request, request->fl_file->private_data, lsp, seqid);
3187 	status = PTR_ERR(task);
3188 	if (IS_ERR(task))
3189 		goto out;
3190 	status = nfs4_wait_for_completion_rpc_task(task);
3191 	rpc_put_task(task);
3192 out:
3193 	return status;
3194 }
3195 
3196 struct nfs4_lockdata {
3197 	struct nfs_lock_args arg;
3198 	struct nfs_lock_res res;
3199 	struct nfs4_lock_state *lsp;
3200 	struct nfs_open_context *ctx;
3201 	struct file_lock fl;
3202 	unsigned long timestamp;
3203 	int rpc_status;
3204 	int cancelled;
3205 };
3206 
3207 static struct nfs4_lockdata *nfs4_alloc_lockdata(struct file_lock *fl,
3208 		struct nfs_open_context *ctx, struct nfs4_lock_state *lsp)
3209 {
3210 	struct nfs4_lockdata *p;
3211 	struct inode *inode = lsp->ls_state->inode;
3212 	struct nfs_server *server = NFS_SERVER(inode);
3213 
3214 	p = kzalloc(sizeof(*p), GFP_KERNEL);
3215 	if (p == NULL)
3216 		return NULL;
3217 
3218 	p->arg.fh = NFS_FH(inode);
3219 	p->arg.fl = &p->fl;
3220 	p->arg.lock_seqid = nfs_alloc_seqid(&lsp->ls_seqid);
3221 	if (p->arg.lock_seqid == NULL)
3222 		goto out_free;
3223 	p->arg.lock_stateid = &lsp->ls_stateid;
3224 	p->arg.lock_owner.clientid = server->nfs_client->cl_clientid;
3225 	p->arg.lock_owner.id = lsp->ls_id;
3226 	p->lsp = lsp;
3227 	atomic_inc(&lsp->ls_count);
3228 	p->ctx = get_nfs_open_context(ctx);
3229 	memcpy(&p->fl, fl, sizeof(p->fl));
3230 	return p;
3231 out_free:
3232 	kfree(p);
3233 	return NULL;
3234 }
3235 
3236 static void nfs4_lock_prepare(struct rpc_task *task, void *calldata)
3237 {
3238 	struct nfs4_lockdata *data = calldata;
3239 	struct nfs4_state *state = data->lsp->ls_state;
3240 	struct nfs4_state_owner *sp = state->owner;
3241 	struct rpc_message msg = {
3242 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOCK],
3243 		.rpc_argp = &data->arg,
3244 		.rpc_resp = &data->res,
3245 		.rpc_cred = sp->so_cred,
3246 	};
3247 
3248 	if (nfs_wait_on_sequence(data->arg.lock_seqid, task) != 0)
3249 		return;
3250 	dprintk("%s: begin!\n", __FUNCTION__);
3251 	/* Do we need to do an open_to_lock_owner? */
3252 	if (!(data->arg.lock_seqid->sequence->flags & NFS_SEQID_CONFIRMED)) {
3253 		data->arg.open_seqid = nfs_alloc_seqid(&sp->so_seqid);
3254 		if (data->arg.open_seqid == NULL) {
3255 			data->rpc_status = -ENOMEM;
3256 			task->tk_action = NULL;
3257 			goto out;
3258 		}
3259 		data->arg.open_stateid = &state->stateid;
3260 		data->arg.new_lock_owner = 1;
3261 	}
3262 	data->timestamp = jiffies;
3263 	rpc_call_setup(task, &msg, 0);
3264 out:
3265 	dprintk("%s: done!, ret = %d\n", __FUNCTION__, data->rpc_status);
3266 }
3267 
3268 static void nfs4_lock_done(struct rpc_task *task, void *calldata)
3269 {
3270 	struct nfs4_lockdata *data = calldata;
3271 
3272 	dprintk("%s: begin!\n", __FUNCTION__);
3273 
3274 	data->rpc_status = task->tk_status;
3275 	if (RPC_ASSASSINATED(task))
3276 		goto out;
3277 	if (data->arg.new_lock_owner != 0) {
3278 		nfs_increment_open_seqid(data->rpc_status, data->arg.open_seqid);
3279 		if (data->rpc_status == 0)
3280 			nfs_confirm_seqid(&data->lsp->ls_seqid, 0);
3281 		else
3282 			goto out;
3283 	}
3284 	if (data->rpc_status == 0) {
3285 		memcpy(data->lsp->ls_stateid.data, data->res.stateid.data,
3286 					sizeof(data->lsp->ls_stateid.data));
3287 		data->lsp->ls_flags |= NFS_LOCK_INITIALIZED;
3288 		renew_lease(NFS_SERVER(data->ctx->dentry->d_inode), data->timestamp);
3289 	}
3290 	nfs_increment_lock_seqid(data->rpc_status, data->arg.lock_seqid);
3291 out:
3292 	dprintk("%s: done, ret = %d!\n", __FUNCTION__, data->rpc_status);
3293 }
3294 
3295 static void nfs4_lock_release(void *calldata)
3296 {
3297 	struct nfs4_lockdata *data = calldata;
3298 
3299 	dprintk("%s: begin!\n", __FUNCTION__);
3300 	if (data->arg.open_seqid != NULL)
3301 		nfs_free_seqid(data->arg.open_seqid);
3302 	if (data->cancelled != 0) {
3303 		struct rpc_task *task;
3304 		task = nfs4_do_unlck(&data->fl, data->ctx, data->lsp,
3305 				data->arg.lock_seqid);
3306 		if (!IS_ERR(task))
3307 			rpc_put_task(task);
3308 		dprintk("%s: cancelling lock!\n", __FUNCTION__);
3309 	} else
3310 		nfs_free_seqid(data->arg.lock_seqid);
3311 	nfs4_put_lock_state(data->lsp);
3312 	put_nfs_open_context(data->ctx);
3313 	kfree(data);
3314 	dprintk("%s: done!\n", __FUNCTION__);
3315 }
3316 
3317 static const struct rpc_call_ops nfs4_lock_ops = {
3318 	.rpc_call_prepare = nfs4_lock_prepare,
3319 	.rpc_call_done = nfs4_lock_done,
3320 	.rpc_release = nfs4_lock_release,
3321 };
3322 
3323 static int _nfs4_do_setlk(struct nfs4_state *state, int cmd, struct file_lock *fl, int reclaim)
3324 {
3325 	struct nfs4_lockdata *data;
3326 	struct rpc_task *task;
3327 	int ret;
3328 
3329 	dprintk("%s: begin!\n", __FUNCTION__);
3330 	data = nfs4_alloc_lockdata(fl, fl->fl_file->private_data,
3331 			fl->fl_u.nfs4_fl.owner);
3332 	if (data == NULL)
3333 		return -ENOMEM;
3334 	if (IS_SETLKW(cmd))
3335 		data->arg.block = 1;
3336 	if (reclaim != 0)
3337 		data->arg.reclaim = 1;
3338 	task = rpc_run_task(NFS_CLIENT(state->inode), RPC_TASK_ASYNC,
3339 			&nfs4_lock_ops, data);
3340 	if (IS_ERR(task))
3341 		return PTR_ERR(task);
3342 	ret = nfs4_wait_for_completion_rpc_task(task);
3343 	if (ret == 0) {
3344 		ret = data->rpc_status;
3345 		if (ret == -NFS4ERR_DENIED)
3346 			ret = -EAGAIN;
3347 	} else
3348 		data->cancelled = 1;
3349 	rpc_put_task(task);
3350 	dprintk("%s: done, ret = %d!\n", __FUNCTION__, ret);
3351 	return ret;
3352 }
3353 
3354 static int nfs4_lock_reclaim(struct nfs4_state *state, struct file_lock *request)
3355 {
3356 	struct nfs_server *server = NFS_SERVER(state->inode);
3357 	struct nfs4_exception exception = { };
3358 	int err;
3359 
3360 	do {
3361 		/* Cache the lock if possible... */
3362 		if (test_bit(NFS_DELEGATED_STATE, &state->flags) != 0)
3363 			return 0;
3364 		err = _nfs4_do_setlk(state, F_SETLK, request, 1);
3365 		if (err != -NFS4ERR_DELAY)
3366 			break;
3367 		nfs4_handle_exception(server, err, &exception);
3368 	} while (exception.retry);
3369 	return err;
3370 }
3371 
3372 static int nfs4_lock_expired(struct nfs4_state *state, struct file_lock *request)
3373 {
3374 	struct nfs_server *server = NFS_SERVER(state->inode);
3375 	struct nfs4_exception exception = { };
3376 	int err;
3377 
3378 	err = nfs4_set_lock_state(state, request);
3379 	if (err != 0)
3380 		return err;
3381 	do {
3382 		if (test_bit(NFS_DELEGATED_STATE, &state->flags) != 0)
3383 			return 0;
3384 		err = _nfs4_do_setlk(state, F_SETLK, request, 0);
3385 		if (err != -NFS4ERR_DELAY)
3386 			break;
3387 		nfs4_handle_exception(server, err, &exception);
3388 	} while (exception.retry);
3389 	return err;
3390 }
3391 
3392 static int _nfs4_proc_setlk(struct nfs4_state *state, int cmd, struct file_lock *request)
3393 {
3394 	struct nfs_client *clp = state->owner->so_client;
3395 	unsigned char fl_flags = request->fl_flags;
3396 	int status;
3397 
3398 	/* Is this a delegated open? */
3399 	status = nfs4_set_lock_state(state, request);
3400 	if (status != 0)
3401 		goto out;
3402 	request->fl_flags |= FL_ACCESS;
3403 	status = do_vfs_lock(request->fl_file, request);
3404 	if (status < 0)
3405 		goto out;
3406 	down_read(&clp->cl_sem);
3407 	if (test_bit(NFS_DELEGATED_STATE, &state->flags)) {
3408 		struct nfs_inode *nfsi = NFS_I(state->inode);
3409 		/* Yes: cache locks! */
3410 		down_read(&nfsi->rwsem);
3411 		/* ...but avoid races with delegation recall... */
3412 		if (test_bit(NFS_DELEGATED_STATE, &state->flags)) {
3413 			request->fl_flags = fl_flags & ~FL_SLEEP;
3414 			status = do_vfs_lock(request->fl_file, request);
3415 			up_read(&nfsi->rwsem);
3416 			goto out_unlock;
3417 		}
3418 		up_read(&nfsi->rwsem);
3419 	}
3420 	status = _nfs4_do_setlk(state, cmd, request, 0);
3421 	if (status != 0)
3422 		goto out_unlock;
3423 	/* Note: we always want to sleep here! */
3424 	request->fl_flags = fl_flags | FL_SLEEP;
3425 	if (do_vfs_lock(request->fl_file, request) < 0)
3426 		printk(KERN_WARNING "%s: VFS is out of sync with lock manager!\n", __FUNCTION__);
3427 out_unlock:
3428 	up_read(&clp->cl_sem);
3429 out:
3430 	request->fl_flags = fl_flags;
3431 	return status;
3432 }
3433 
3434 static int nfs4_proc_setlk(struct nfs4_state *state, int cmd, struct file_lock *request)
3435 {
3436 	struct nfs4_exception exception = { };
3437 	int err;
3438 
3439 	do {
3440 		err = nfs4_handle_exception(NFS_SERVER(state->inode),
3441 				_nfs4_proc_setlk(state, cmd, request),
3442 				&exception);
3443 	} while (exception.retry);
3444 	return err;
3445 }
3446 
3447 static int
3448 nfs4_proc_lock(struct file *filp, int cmd, struct file_lock *request)
3449 {
3450 	struct nfs_open_context *ctx;
3451 	struct nfs4_state *state;
3452 	unsigned long timeout = NFS4_LOCK_MINTIMEOUT;
3453 	int status;
3454 
3455 	/* verify open state */
3456 	ctx = (struct nfs_open_context *)filp->private_data;
3457 	state = ctx->state;
3458 
3459 	if (request->fl_start < 0 || request->fl_end < 0)
3460 		return -EINVAL;
3461 
3462 	if (IS_GETLK(cmd))
3463 		return nfs4_proc_getlk(state, F_GETLK, request);
3464 
3465 	if (!(IS_SETLK(cmd) || IS_SETLKW(cmd)))
3466 		return -EINVAL;
3467 
3468 	if (request->fl_type == F_UNLCK)
3469 		return nfs4_proc_unlck(state, cmd, request);
3470 
3471 	do {
3472 		status = nfs4_proc_setlk(state, cmd, request);
3473 		if ((status != -EAGAIN) || IS_SETLK(cmd))
3474 			break;
3475 		timeout = nfs4_set_lock_task_retry(timeout);
3476 		status = -ERESTARTSYS;
3477 		if (signalled())
3478 			break;
3479 	} while(status < 0);
3480 	return status;
3481 }
3482 
3483 int nfs4_lock_delegation_recall(struct nfs4_state *state, struct file_lock *fl)
3484 {
3485 	struct nfs_server *server = NFS_SERVER(state->inode);
3486 	struct nfs4_exception exception = { };
3487 	int err;
3488 
3489 	err = nfs4_set_lock_state(state, fl);
3490 	if (err != 0)
3491 		goto out;
3492 	do {
3493 		err = _nfs4_do_setlk(state, F_SETLK, fl, 0);
3494 		if (err != -NFS4ERR_DELAY)
3495 			break;
3496 		err = nfs4_handle_exception(server, err, &exception);
3497 	} while (exception.retry);
3498 out:
3499 	return err;
3500 }
3501 
3502 #define XATTR_NAME_NFSV4_ACL "system.nfs4_acl"
3503 
3504 int nfs4_setxattr(struct dentry *dentry, const char *key, const void *buf,
3505 		size_t buflen, int flags)
3506 {
3507 	struct inode *inode = dentry->d_inode;
3508 
3509 	if (strcmp(key, XATTR_NAME_NFSV4_ACL) != 0)
3510 		return -EOPNOTSUPP;
3511 
3512 	if (!S_ISREG(inode->i_mode) &&
3513 	    (!S_ISDIR(inode->i_mode) || inode->i_mode & S_ISVTX))
3514 		return -EPERM;
3515 
3516 	return nfs4_proc_set_acl(inode, buf, buflen);
3517 }
3518 
3519 /* The getxattr man page suggests returning -ENODATA for unknown attributes,
3520  * and that's what we'll do for e.g. user attributes that haven't been set.
3521  * But we'll follow ext2/ext3's lead by returning -EOPNOTSUPP for unsupported
3522  * attributes in kernel-managed attribute namespaces. */
3523 ssize_t nfs4_getxattr(struct dentry *dentry, const char *key, void *buf,
3524 		size_t buflen)
3525 {
3526 	struct inode *inode = dentry->d_inode;
3527 
3528 	if (strcmp(key, XATTR_NAME_NFSV4_ACL) != 0)
3529 		return -EOPNOTSUPP;
3530 
3531 	return nfs4_proc_get_acl(inode, buf, buflen);
3532 }
3533 
3534 ssize_t nfs4_listxattr(struct dentry *dentry, char *buf, size_t buflen)
3535 {
3536 	size_t len = strlen(XATTR_NAME_NFSV4_ACL) + 1;
3537 
3538 	if (!nfs4_server_supports_acls(NFS_SERVER(dentry->d_inode)))
3539 		return 0;
3540 	if (buf && buflen < len)
3541 		return -ERANGE;
3542 	if (buf)
3543 		memcpy(buf, XATTR_NAME_NFSV4_ACL, len);
3544 	return len;
3545 }
3546 
3547 int nfs4_proc_fs_locations(struct inode *dir, struct qstr *name,
3548 		struct nfs4_fs_locations *fs_locations, struct page *page)
3549 {
3550 	struct nfs_server *server = NFS_SERVER(dir);
3551 	u32 bitmask[2] = {
3552 		[0] = FATTR4_WORD0_FSID | FATTR4_WORD0_FS_LOCATIONS,
3553 		[1] = FATTR4_WORD1_MOUNTED_ON_FILEID,
3554 	};
3555 	struct nfs4_fs_locations_arg args = {
3556 		.dir_fh = NFS_FH(dir),
3557 		.name = name,
3558 		.page = page,
3559 		.bitmask = bitmask,
3560 	};
3561 	struct rpc_message msg = {
3562 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_FS_LOCATIONS],
3563 		.rpc_argp = &args,
3564 		.rpc_resp = fs_locations,
3565 	};
3566 	int status;
3567 
3568 	dprintk("%s: start\n", __FUNCTION__);
3569 	nfs_fattr_init(&fs_locations->fattr);
3570 	fs_locations->server = server;
3571 	fs_locations->nlocations = 0;
3572 	status = rpc_call_sync(server->client, &msg, 0);
3573 	dprintk("%s: returned status = %d\n", __FUNCTION__, status);
3574 	return status;
3575 }
3576 
3577 struct nfs4_state_recovery_ops nfs4_reboot_recovery_ops = {
3578 	.recover_open	= nfs4_open_reclaim,
3579 	.recover_lock	= nfs4_lock_reclaim,
3580 };
3581 
3582 struct nfs4_state_recovery_ops nfs4_network_partition_recovery_ops = {
3583 	.recover_open	= nfs4_open_expired,
3584 	.recover_lock	= nfs4_lock_expired,
3585 };
3586 
3587 static const struct inode_operations nfs4_file_inode_operations = {
3588 	.permission	= nfs_permission,
3589 	.getattr	= nfs_getattr,
3590 	.setattr	= nfs_setattr,
3591 	.getxattr	= nfs4_getxattr,
3592 	.setxattr	= nfs4_setxattr,
3593 	.listxattr	= nfs4_listxattr,
3594 };
3595 
3596 const struct nfs_rpc_ops nfs_v4_clientops = {
3597 	.version	= 4,			/* protocol version */
3598 	.dentry_ops	= &nfs4_dentry_operations,
3599 	.dir_inode_ops	= &nfs4_dir_inode_operations,
3600 	.file_inode_ops	= &nfs4_file_inode_operations,
3601 	.getroot	= nfs4_proc_get_root,
3602 	.getattr	= nfs4_proc_getattr,
3603 	.setattr	= nfs4_proc_setattr,
3604 	.lookupfh	= nfs4_proc_lookupfh,
3605 	.lookup		= nfs4_proc_lookup,
3606 	.access		= nfs4_proc_access,
3607 	.readlink	= nfs4_proc_readlink,
3608 	.create		= nfs4_proc_create,
3609 	.remove		= nfs4_proc_remove,
3610 	.unlink_setup	= nfs4_proc_unlink_setup,
3611 	.unlink_done	= nfs4_proc_unlink_done,
3612 	.rename		= nfs4_proc_rename,
3613 	.link		= nfs4_proc_link,
3614 	.symlink	= nfs4_proc_symlink,
3615 	.mkdir		= nfs4_proc_mkdir,
3616 	.rmdir		= nfs4_proc_remove,
3617 	.readdir	= nfs4_proc_readdir,
3618 	.mknod		= nfs4_proc_mknod,
3619 	.statfs		= nfs4_proc_statfs,
3620 	.fsinfo		= nfs4_proc_fsinfo,
3621 	.pathconf	= nfs4_proc_pathconf,
3622 	.set_capabilities = nfs4_server_capabilities,
3623 	.decode_dirent	= nfs4_decode_dirent,
3624 	.read_setup	= nfs4_proc_read_setup,
3625 	.read_done	= nfs4_read_done,
3626 	.write_setup	= nfs4_proc_write_setup,
3627 	.write_done	= nfs4_write_done,
3628 	.commit_setup	= nfs4_proc_commit_setup,
3629 	.commit_done	= nfs4_commit_done,
3630 	.file_open      = nfs_open,
3631 	.file_release   = nfs_release,
3632 	.lock		= nfs4_proc_lock,
3633 	.clear_acl_cache = nfs4_zap_acl_attr,
3634 };
3635 
3636 /*
3637  * Local variables:
3638  *  c-basic-offset: 8
3639  * End:
3640  */
3641