1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/fs/nfs/direct.c 4 * 5 * Copyright (C) 2003 by Chuck Lever <cel@netapp.com> 6 * 7 * High-performance uncached I/O for the Linux NFS client 8 * 9 * There are important applications whose performance or correctness 10 * depends on uncached access to file data. Database clusters 11 * (multiple copies of the same instance running on separate hosts) 12 * implement their own cache coherency protocol that subsumes file 13 * system cache protocols. Applications that process datasets 14 * considerably larger than the client's memory do not always benefit 15 * from a local cache. A streaming video server, for instance, has no 16 * need to cache the contents of a file. 17 * 18 * When an application requests uncached I/O, all read and write requests 19 * are made directly to the server; data stored or fetched via these 20 * requests is not cached in the Linux page cache. The client does not 21 * correct unaligned requests from applications. All requested bytes are 22 * held on permanent storage before a direct write system call returns to 23 * an application. 24 * 25 * Solaris implements an uncached I/O facility called directio() that 26 * is used for backups and sequential I/O to very large files. Solaris 27 * also supports uncaching whole NFS partitions with "-o forcedirectio," 28 * an undocumented mount option. 29 * 30 * Designed by Jeff Kimmel, Chuck Lever, and Trond Myklebust, with 31 * help from Andrew Morton. 32 * 33 * 18 Dec 2001 Initial implementation for 2.4 --cel 34 * 08 Jul 2002 Version for 2.4.19, with bug fixes --trondmy 35 * 08 Jun 2003 Port to 2.5 APIs --cel 36 * 31 Mar 2004 Handle direct I/O without VFS support --cel 37 * 15 Sep 2004 Parallel async reads --cel 38 * 04 May 2005 support O_DIRECT with aio --cel 39 * 40 */ 41 42 #include <linux/errno.h> 43 #include <linux/sched.h> 44 #include <linux/kernel.h> 45 #include <linux/file.h> 46 #include <linux/pagemap.h> 47 #include <linux/kref.h> 48 #include <linux/slab.h> 49 #include <linux/task_io_accounting_ops.h> 50 #include <linux/module.h> 51 52 #include <linux/nfs_fs.h> 53 #include <linux/nfs_page.h> 54 #include <linux/sunrpc/clnt.h> 55 56 #include <linux/uaccess.h> 57 #include <linux/atomic.h> 58 59 #include "internal.h" 60 #include "iostat.h" 61 #include "pnfs.h" 62 63 #define NFSDBG_FACILITY NFSDBG_VFS 64 65 static struct kmem_cache *nfs_direct_cachep; 66 67 struct nfs_direct_req { 68 struct kref kref; /* release manager */ 69 70 /* I/O parameters */ 71 struct nfs_open_context *ctx; /* file open context info */ 72 struct nfs_lock_context *l_ctx; /* Lock context info */ 73 struct kiocb * iocb; /* controlling i/o request */ 74 struct inode * inode; /* target file of i/o */ 75 76 /* completion state */ 77 atomic_t io_count; /* i/os we're waiting for */ 78 spinlock_t lock; /* protect completion state */ 79 80 loff_t io_start; /* Start offset for I/O */ 81 ssize_t count, /* bytes actually processed */ 82 max_count, /* max expected count */ 83 bytes_left, /* bytes left to be sent */ 84 error; /* any reported error */ 85 struct completion completion; /* wait for i/o completion */ 86 87 /* commit state */ 88 struct nfs_mds_commit_info mds_cinfo; /* Storage for cinfo */ 89 struct pnfs_ds_commit_info ds_cinfo; /* Storage for cinfo */ 90 struct work_struct work; 91 int flags; 92 /* for write */ 93 #define NFS_ODIRECT_DO_COMMIT (1) /* an unstable reply was received */ 94 #define NFS_ODIRECT_RESCHED_WRITES (2) /* write verification failed */ 95 /* for read */ 96 #define NFS_ODIRECT_SHOULD_DIRTY (3) /* dirty user-space page after read */ 97 #define NFS_ODIRECT_DONE INT_MAX /* write verification failed */ 98 struct nfs_writeverf verf; /* unstable write verifier */ 99 }; 100 101 static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops; 102 static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops; 103 static void nfs_direct_write_complete(struct nfs_direct_req *dreq); 104 static void nfs_direct_write_schedule_work(struct work_struct *work); 105 106 static inline void get_dreq(struct nfs_direct_req *dreq) 107 { 108 atomic_inc(&dreq->io_count); 109 } 110 111 static inline int put_dreq(struct nfs_direct_req *dreq) 112 { 113 return atomic_dec_and_test(&dreq->io_count); 114 } 115 116 static void 117 nfs_direct_handle_truncated(struct nfs_direct_req *dreq, 118 const struct nfs_pgio_header *hdr, 119 ssize_t dreq_len) 120 { 121 if (!(test_bit(NFS_IOHDR_ERROR, &hdr->flags) || 122 test_bit(NFS_IOHDR_EOF, &hdr->flags))) 123 return; 124 if (dreq->max_count >= dreq_len) { 125 dreq->max_count = dreq_len; 126 if (dreq->count > dreq_len) 127 dreq->count = dreq_len; 128 129 if (test_bit(NFS_IOHDR_ERROR, &hdr->flags)) 130 dreq->error = hdr->error; 131 else /* Clear outstanding error if this is EOF */ 132 dreq->error = 0; 133 } 134 } 135 136 static void 137 nfs_direct_count_bytes(struct nfs_direct_req *dreq, 138 const struct nfs_pgio_header *hdr) 139 { 140 loff_t hdr_end = hdr->io_start + hdr->good_bytes; 141 ssize_t dreq_len = 0; 142 143 if (hdr_end > dreq->io_start) 144 dreq_len = hdr_end - dreq->io_start; 145 146 nfs_direct_handle_truncated(dreq, hdr, dreq_len); 147 148 if (dreq_len > dreq->max_count) 149 dreq_len = dreq->max_count; 150 151 if (dreq->count < dreq_len) 152 dreq->count = dreq_len; 153 } 154 155 /* 156 * nfs_direct_select_verf - select the right verifier 157 * @dreq - direct request possibly spanning multiple servers 158 * @ds_clp - nfs_client of data server or NULL if MDS / non-pnfs 159 * @commit_idx - commit bucket index for the DS 160 * 161 * returns the correct verifier to use given the role of the server 162 */ 163 static struct nfs_writeverf * 164 nfs_direct_select_verf(struct nfs_direct_req *dreq, 165 struct nfs_client *ds_clp, 166 int commit_idx) 167 { 168 struct nfs_writeverf *verfp = &dreq->verf; 169 170 #ifdef CONFIG_NFS_V4_1 171 /* 172 * pNFS is in use, use the DS verf except commit_through_mds is set 173 * for layout segment where nbuckets is zero. 174 */ 175 if (ds_clp && dreq->ds_cinfo.nbuckets > 0) { 176 if (commit_idx >= 0 && commit_idx < dreq->ds_cinfo.nbuckets) 177 verfp = &dreq->ds_cinfo.buckets[commit_idx].direct_verf; 178 else 179 WARN_ON_ONCE(1); 180 } 181 #endif 182 return verfp; 183 } 184 185 186 /* 187 * nfs_direct_set_hdr_verf - set the write/commit verifier 188 * @dreq - direct request possibly spanning multiple servers 189 * @hdr - pageio header to validate against previously seen verfs 190 * 191 * Set the server's (MDS or DS) "seen" verifier 192 */ 193 static void nfs_direct_set_hdr_verf(struct nfs_direct_req *dreq, 194 struct nfs_pgio_header *hdr) 195 { 196 struct nfs_writeverf *verfp; 197 198 verfp = nfs_direct_select_verf(dreq, hdr->ds_clp, hdr->ds_commit_idx); 199 WARN_ON_ONCE(verfp->committed >= 0); 200 memcpy(verfp, &hdr->verf, sizeof(struct nfs_writeverf)); 201 WARN_ON_ONCE(verfp->committed < 0); 202 } 203 204 static int nfs_direct_cmp_verf(const struct nfs_writeverf *v1, 205 const struct nfs_writeverf *v2) 206 { 207 return nfs_write_verifier_cmp(&v1->verifier, &v2->verifier); 208 } 209 210 /* 211 * nfs_direct_cmp_hdr_verf - compare verifier for pgio header 212 * @dreq - direct request possibly spanning multiple servers 213 * @hdr - pageio header to validate against previously seen verf 214 * 215 * set the server's "seen" verf if not initialized. 216 * returns result of comparison between @hdr->verf and the "seen" 217 * verf of the server used by @hdr (DS or MDS) 218 */ 219 static int nfs_direct_set_or_cmp_hdr_verf(struct nfs_direct_req *dreq, 220 struct nfs_pgio_header *hdr) 221 { 222 struct nfs_writeverf *verfp; 223 224 verfp = nfs_direct_select_verf(dreq, hdr->ds_clp, hdr->ds_commit_idx); 225 if (verfp->committed < 0) { 226 nfs_direct_set_hdr_verf(dreq, hdr); 227 return 0; 228 } 229 return nfs_direct_cmp_verf(verfp, &hdr->verf); 230 } 231 232 /* 233 * nfs_direct_cmp_commit_data_verf - compare verifier for commit data 234 * @dreq - direct request possibly spanning multiple servers 235 * @data - commit data to validate against previously seen verf 236 * 237 * returns result of comparison between @data->verf and the verf of 238 * the server used by @data (DS or MDS) 239 */ 240 static int nfs_direct_cmp_commit_data_verf(struct nfs_direct_req *dreq, 241 struct nfs_commit_data *data) 242 { 243 struct nfs_writeverf *verfp; 244 245 verfp = nfs_direct_select_verf(dreq, data->ds_clp, 246 data->ds_commit_index); 247 248 /* verifier not set so always fail */ 249 if (verfp->committed < 0 || data->res.verf->committed <= NFS_UNSTABLE) 250 return 1; 251 252 return nfs_direct_cmp_verf(verfp, data->res.verf); 253 } 254 255 /** 256 * nfs_direct_IO - NFS address space operation for direct I/O 257 * @iocb: target I/O control block 258 * @iter: I/O buffer 259 * 260 * The presence of this routine in the address space ops vector means 261 * the NFS client supports direct I/O. However, for most direct IO, we 262 * shunt off direct read and write requests before the VFS gets them, 263 * so this method is only ever called for swap. 264 */ 265 ssize_t nfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 266 { 267 struct inode *inode = iocb->ki_filp->f_mapping->host; 268 269 /* we only support swap file calling nfs_direct_IO */ 270 if (!IS_SWAPFILE(inode)) 271 return 0; 272 273 VM_BUG_ON(iov_iter_count(iter) != PAGE_SIZE); 274 275 if (iov_iter_rw(iter) == READ) 276 return nfs_file_direct_read(iocb, iter); 277 return nfs_file_direct_write(iocb, iter); 278 } 279 280 static void nfs_direct_release_pages(struct page **pages, unsigned int npages) 281 { 282 unsigned int i; 283 for (i = 0; i < npages; i++) 284 put_page(pages[i]); 285 } 286 287 void nfs_init_cinfo_from_dreq(struct nfs_commit_info *cinfo, 288 struct nfs_direct_req *dreq) 289 { 290 cinfo->inode = dreq->inode; 291 cinfo->mds = &dreq->mds_cinfo; 292 cinfo->ds = &dreq->ds_cinfo; 293 cinfo->dreq = dreq; 294 cinfo->completion_ops = &nfs_direct_commit_completion_ops; 295 } 296 297 static inline struct nfs_direct_req *nfs_direct_req_alloc(void) 298 { 299 struct nfs_direct_req *dreq; 300 301 dreq = kmem_cache_zalloc(nfs_direct_cachep, GFP_KERNEL); 302 if (!dreq) 303 return NULL; 304 305 kref_init(&dreq->kref); 306 kref_get(&dreq->kref); 307 init_completion(&dreq->completion); 308 INIT_LIST_HEAD(&dreq->mds_cinfo.list); 309 pnfs_init_ds_commit_info(&dreq->ds_cinfo); 310 dreq->verf.committed = NFS_INVALID_STABLE_HOW; /* not set yet */ 311 INIT_WORK(&dreq->work, nfs_direct_write_schedule_work); 312 spin_lock_init(&dreq->lock); 313 314 return dreq; 315 } 316 317 static void nfs_direct_req_free(struct kref *kref) 318 { 319 struct nfs_direct_req *dreq = container_of(kref, struct nfs_direct_req, kref); 320 321 pnfs_release_ds_info(&dreq->ds_cinfo, dreq->inode); 322 nfs_free_pnfs_ds_cinfo(&dreq->ds_cinfo); 323 if (dreq->l_ctx != NULL) 324 nfs_put_lock_context(dreq->l_ctx); 325 if (dreq->ctx != NULL) 326 put_nfs_open_context(dreq->ctx); 327 kmem_cache_free(nfs_direct_cachep, dreq); 328 } 329 330 static void nfs_direct_req_release(struct nfs_direct_req *dreq) 331 { 332 kref_put(&dreq->kref, nfs_direct_req_free); 333 } 334 335 ssize_t nfs_dreq_bytes_left(struct nfs_direct_req *dreq) 336 { 337 return dreq->bytes_left; 338 } 339 EXPORT_SYMBOL_GPL(nfs_dreq_bytes_left); 340 341 /* 342 * Collects and returns the final error value/byte-count. 343 */ 344 static ssize_t nfs_direct_wait(struct nfs_direct_req *dreq) 345 { 346 ssize_t result = -EIOCBQUEUED; 347 348 /* Async requests don't wait here */ 349 if (dreq->iocb) 350 goto out; 351 352 result = wait_for_completion_killable(&dreq->completion); 353 354 if (!result) { 355 result = dreq->count; 356 WARN_ON_ONCE(dreq->count < 0); 357 } 358 if (!result) 359 result = dreq->error; 360 361 out: 362 return (ssize_t) result; 363 } 364 365 /* 366 * Synchronous I/O uses a stack-allocated iocb. Thus we can't trust 367 * the iocb is still valid here if this is a synchronous request. 368 */ 369 static void nfs_direct_complete(struct nfs_direct_req *dreq) 370 { 371 struct inode *inode = dreq->inode; 372 373 inode_dio_end(inode); 374 375 if (dreq->iocb) { 376 long res = (long) dreq->error; 377 if (dreq->count != 0) { 378 res = (long) dreq->count; 379 WARN_ON_ONCE(dreq->count < 0); 380 } 381 dreq->iocb->ki_complete(dreq->iocb, res, 0); 382 } 383 384 complete(&dreq->completion); 385 386 nfs_direct_req_release(dreq); 387 } 388 389 static void nfs_direct_read_completion(struct nfs_pgio_header *hdr) 390 { 391 unsigned long bytes = 0; 392 struct nfs_direct_req *dreq = hdr->dreq; 393 394 spin_lock(&dreq->lock); 395 if (test_bit(NFS_IOHDR_REDO, &hdr->flags)) { 396 spin_unlock(&dreq->lock); 397 goto out_put; 398 } 399 400 nfs_direct_count_bytes(dreq, hdr); 401 spin_unlock(&dreq->lock); 402 403 while (!list_empty(&hdr->pages)) { 404 struct nfs_page *req = nfs_list_entry(hdr->pages.next); 405 struct page *page = req->wb_page; 406 407 if (!PageCompound(page) && bytes < hdr->good_bytes && 408 (dreq->flags == NFS_ODIRECT_SHOULD_DIRTY)) 409 set_page_dirty(page); 410 bytes += req->wb_bytes; 411 nfs_list_remove_request(req); 412 nfs_release_request(req); 413 } 414 out_put: 415 if (put_dreq(dreq)) 416 nfs_direct_complete(dreq); 417 hdr->release(hdr); 418 } 419 420 static void nfs_read_sync_pgio_error(struct list_head *head, int error) 421 { 422 struct nfs_page *req; 423 424 while (!list_empty(head)) { 425 req = nfs_list_entry(head->next); 426 nfs_list_remove_request(req); 427 nfs_release_request(req); 428 } 429 } 430 431 static void nfs_direct_pgio_init(struct nfs_pgio_header *hdr) 432 { 433 get_dreq(hdr->dreq); 434 } 435 436 static const struct nfs_pgio_completion_ops nfs_direct_read_completion_ops = { 437 .error_cleanup = nfs_read_sync_pgio_error, 438 .init_hdr = nfs_direct_pgio_init, 439 .completion = nfs_direct_read_completion, 440 }; 441 442 /* 443 * For each rsize'd chunk of the user's buffer, dispatch an NFS READ 444 * operation. If nfs_readdata_alloc() or get_user_pages() fails, 445 * bail and stop sending more reads. Read length accounting is 446 * handled automatically by nfs_direct_read_result(). Otherwise, if 447 * no requests have been sent, just return an error. 448 */ 449 450 static ssize_t nfs_direct_read_schedule_iovec(struct nfs_direct_req *dreq, 451 struct iov_iter *iter, 452 loff_t pos) 453 { 454 struct nfs_pageio_descriptor desc; 455 struct inode *inode = dreq->inode; 456 ssize_t result = -EINVAL; 457 size_t requested_bytes = 0; 458 size_t rsize = max_t(size_t, NFS_SERVER(inode)->rsize, PAGE_SIZE); 459 460 nfs_pageio_init_read(&desc, dreq->inode, false, 461 &nfs_direct_read_completion_ops); 462 get_dreq(dreq); 463 desc.pg_dreq = dreq; 464 inode_dio_begin(inode); 465 466 while (iov_iter_count(iter)) { 467 struct page **pagevec; 468 size_t bytes; 469 size_t pgbase; 470 unsigned npages, i; 471 472 result = iov_iter_get_pages_alloc(iter, &pagevec, 473 rsize, &pgbase); 474 if (result < 0) 475 break; 476 477 bytes = result; 478 iov_iter_advance(iter, bytes); 479 npages = (result + pgbase + PAGE_SIZE - 1) / PAGE_SIZE; 480 for (i = 0; i < npages; i++) { 481 struct nfs_page *req; 482 unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase); 483 /* XXX do we need to do the eof zeroing found in async_filler? */ 484 req = nfs_create_request(dreq->ctx, pagevec[i], 485 pgbase, req_len); 486 if (IS_ERR(req)) { 487 result = PTR_ERR(req); 488 break; 489 } 490 req->wb_index = pos >> PAGE_SHIFT; 491 req->wb_offset = pos & ~PAGE_MASK; 492 if (!nfs_pageio_add_request(&desc, req)) { 493 result = desc.pg_error; 494 nfs_release_request(req); 495 break; 496 } 497 pgbase = 0; 498 bytes -= req_len; 499 requested_bytes += req_len; 500 pos += req_len; 501 dreq->bytes_left -= req_len; 502 } 503 nfs_direct_release_pages(pagevec, npages); 504 kvfree(pagevec); 505 if (result < 0) 506 break; 507 } 508 509 nfs_pageio_complete(&desc); 510 511 /* 512 * If no bytes were started, return the error, and let the 513 * generic layer handle the completion. 514 */ 515 if (requested_bytes == 0) { 516 inode_dio_end(inode); 517 nfs_direct_req_release(dreq); 518 return result < 0 ? result : -EIO; 519 } 520 521 if (put_dreq(dreq)) 522 nfs_direct_complete(dreq); 523 return requested_bytes; 524 } 525 526 /** 527 * nfs_file_direct_read - file direct read operation for NFS files 528 * @iocb: target I/O control block 529 * @iter: vector of user buffers into which to read data 530 * 531 * We use this function for direct reads instead of calling 532 * generic_file_aio_read() in order to avoid gfar's check to see if 533 * the request starts before the end of the file. For that check 534 * to work, we must generate a GETATTR before each direct read, and 535 * even then there is a window between the GETATTR and the subsequent 536 * READ where the file size could change. Our preference is simply 537 * to do all reads the application wants, and the server will take 538 * care of managing the end of file boundary. 539 * 540 * This function also eliminates unnecessarily updating the file's 541 * atime locally, as the NFS server sets the file's atime, and this 542 * client must read the updated atime from the server back into its 543 * cache. 544 */ 545 ssize_t nfs_file_direct_read(struct kiocb *iocb, struct iov_iter *iter) 546 { 547 struct file *file = iocb->ki_filp; 548 struct address_space *mapping = file->f_mapping; 549 struct inode *inode = mapping->host; 550 struct nfs_direct_req *dreq; 551 struct nfs_lock_context *l_ctx; 552 ssize_t result = -EINVAL, requested; 553 size_t count = iov_iter_count(iter); 554 nfs_add_stats(mapping->host, NFSIOS_DIRECTREADBYTES, count); 555 556 dfprintk(FILE, "NFS: direct read(%pD2, %zd@%Ld)\n", 557 file, count, (long long) iocb->ki_pos); 558 559 result = 0; 560 if (!count) 561 goto out; 562 563 task_io_account_read(count); 564 565 result = -ENOMEM; 566 dreq = nfs_direct_req_alloc(); 567 if (dreq == NULL) 568 goto out; 569 570 dreq->inode = inode; 571 dreq->bytes_left = dreq->max_count = count; 572 dreq->io_start = iocb->ki_pos; 573 dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp)); 574 l_ctx = nfs_get_lock_context(dreq->ctx); 575 if (IS_ERR(l_ctx)) { 576 result = PTR_ERR(l_ctx); 577 nfs_direct_req_release(dreq); 578 goto out_release; 579 } 580 dreq->l_ctx = l_ctx; 581 if (!is_sync_kiocb(iocb)) 582 dreq->iocb = iocb; 583 584 if (iter_is_iovec(iter)) 585 dreq->flags = NFS_ODIRECT_SHOULD_DIRTY; 586 587 nfs_start_io_direct(inode); 588 589 NFS_I(inode)->read_io += count; 590 requested = nfs_direct_read_schedule_iovec(dreq, iter, iocb->ki_pos); 591 592 nfs_end_io_direct(inode); 593 594 if (requested > 0) { 595 result = nfs_direct_wait(dreq); 596 if (result > 0) { 597 requested -= result; 598 iocb->ki_pos += result; 599 } 600 iov_iter_revert(iter, requested); 601 } else { 602 result = requested; 603 } 604 605 out_release: 606 nfs_direct_req_release(dreq); 607 out: 608 return result; 609 } 610 611 static void 612 nfs_direct_write_scan_commit_list(struct inode *inode, 613 struct list_head *list, 614 struct nfs_commit_info *cinfo) 615 { 616 mutex_lock(&NFS_I(cinfo->inode)->commit_mutex); 617 #ifdef CONFIG_NFS_V4_1 618 if (cinfo->ds != NULL && cinfo->ds->nwritten != 0) 619 NFS_SERVER(inode)->pnfs_curr_ld->recover_commit_reqs(list, cinfo); 620 #endif 621 nfs_scan_commit_list(&cinfo->mds->list, list, cinfo, 0); 622 mutex_unlock(&NFS_I(cinfo->inode)->commit_mutex); 623 } 624 625 static void nfs_direct_write_reschedule(struct nfs_direct_req *dreq) 626 { 627 struct nfs_pageio_descriptor desc; 628 struct nfs_page *req, *tmp; 629 LIST_HEAD(reqs); 630 struct nfs_commit_info cinfo; 631 LIST_HEAD(failed); 632 633 nfs_init_cinfo_from_dreq(&cinfo, dreq); 634 nfs_direct_write_scan_commit_list(dreq->inode, &reqs, &cinfo); 635 636 dreq->count = 0; 637 dreq->max_count = 0; 638 list_for_each_entry(req, &reqs, wb_list) 639 dreq->max_count += req->wb_bytes; 640 dreq->verf.committed = NFS_INVALID_STABLE_HOW; 641 nfs_clear_pnfs_ds_commit_verifiers(&dreq->ds_cinfo); 642 get_dreq(dreq); 643 644 nfs_pageio_init_write(&desc, dreq->inode, FLUSH_STABLE, false, 645 &nfs_direct_write_completion_ops); 646 desc.pg_dreq = dreq; 647 648 list_for_each_entry_safe(req, tmp, &reqs, wb_list) { 649 /* Bump the transmission count */ 650 req->wb_nio++; 651 if (!nfs_pageio_add_request(&desc, req)) { 652 nfs_list_move_request(req, &failed); 653 spin_lock(&cinfo.inode->i_lock); 654 dreq->flags = 0; 655 if (desc.pg_error < 0) 656 dreq->error = desc.pg_error; 657 else 658 dreq->error = -EIO; 659 spin_unlock(&cinfo.inode->i_lock); 660 } 661 nfs_release_request(req); 662 } 663 nfs_pageio_complete(&desc); 664 665 while (!list_empty(&failed)) { 666 req = nfs_list_entry(failed.next); 667 nfs_list_remove_request(req); 668 nfs_unlock_and_release_request(req); 669 } 670 671 if (put_dreq(dreq)) 672 nfs_direct_write_complete(dreq); 673 } 674 675 static void nfs_direct_commit_complete(struct nfs_commit_data *data) 676 { 677 struct nfs_direct_req *dreq = data->dreq; 678 struct nfs_commit_info cinfo; 679 struct nfs_page *req; 680 int status = data->task.tk_status; 681 682 if (status < 0) { 683 /* Errors in commit are fatal */ 684 dreq->error = status; 685 dreq->max_count = 0; 686 dreq->count = 0; 687 dreq->flags = NFS_ODIRECT_DONE; 688 } else if (dreq->flags == NFS_ODIRECT_DONE) 689 status = dreq->error; 690 691 nfs_init_cinfo_from_dreq(&cinfo, dreq); 692 if (nfs_direct_cmp_commit_data_verf(dreq, data)) 693 dreq->flags = NFS_ODIRECT_RESCHED_WRITES; 694 695 while (!list_empty(&data->pages)) { 696 req = nfs_list_entry(data->pages.next); 697 nfs_list_remove_request(req); 698 if (dreq->flags == NFS_ODIRECT_RESCHED_WRITES) { 699 /* 700 * Despite the reboot, the write was successful, 701 * so reset wb_nio. 702 */ 703 req->wb_nio = 0; 704 /* Note the rewrite will go through mds */ 705 nfs_mark_request_commit(req, NULL, &cinfo, 0); 706 } else 707 nfs_release_request(req); 708 nfs_unlock_and_release_request(req); 709 } 710 711 if (atomic_dec_and_test(&cinfo.mds->rpcs_out)) 712 nfs_direct_write_complete(dreq); 713 } 714 715 static void nfs_direct_resched_write(struct nfs_commit_info *cinfo, 716 struct nfs_page *req) 717 { 718 struct nfs_direct_req *dreq = cinfo->dreq; 719 720 spin_lock(&dreq->lock); 721 if (dreq->flags != NFS_ODIRECT_DONE) 722 dreq->flags = NFS_ODIRECT_RESCHED_WRITES; 723 spin_unlock(&dreq->lock); 724 nfs_mark_request_commit(req, NULL, cinfo, 0); 725 } 726 727 static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops = { 728 .completion = nfs_direct_commit_complete, 729 .resched_write = nfs_direct_resched_write, 730 }; 731 732 static void nfs_direct_commit_schedule(struct nfs_direct_req *dreq) 733 { 734 int res; 735 struct nfs_commit_info cinfo; 736 LIST_HEAD(mds_list); 737 738 nfs_init_cinfo_from_dreq(&cinfo, dreq); 739 nfs_scan_commit(dreq->inode, &mds_list, &cinfo); 740 res = nfs_generic_commit_list(dreq->inode, &mds_list, 0, &cinfo); 741 if (res < 0) /* res == -ENOMEM */ 742 nfs_direct_write_reschedule(dreq); 743 } 744 745 static void nfs_direct_write_clear_reqs(struct nfs_direct_req *dreq) 746 { 747 struct nfs_commit_info cinfo; 748 struct nfs_page *req; 749 LIST_HEAD(reqs); 750 751 nfs_init_cinfo_from_dreq(&cinfo, dreq); 752 nfs_direct_write_scan_commit_list(dreq->inode, &reqs, &cinfo); 753 754 while (!list_empty(&reqs)) { 755 req = nfs_list_entry(reqs.next); 756 nfs_list_remove_request(req); 757 nfs_unlock_and_release_request(req); 758 } 759 } 760 761 static void nfs_direct_write_schedule_work(struct work_struct *work) 762 { 763 struct nfs_direct_req *dreq = container_of(work, struct nfs_direct_req, work); 764 int flags = dreq->flags; 765 766 dreq->flags = 0; 767 switch (flags) { 768 case NFS_ODIRECT_DO_COMMIT: 769 nfs_direct_commit_schedule(dreq); 770 break; 771 case NFS_ODIRECT_RESCHED_WRITES: 772 nfs_direct_write_reschedule(dreq); 773 break; 774 default: 775 nfs_direct_write_clear_reqs(dreq); 776 nfs_zap_mapping(dreq->inode, dreq->inode->i_mapping); 777 nfs_direct_complete(dreq); 778 } 779 } 780 781 static void nfs_direct_write_complete(struct nfs_direct_req *dreq) 782 { 783 queue_work(nfsiod_workqueue, &dreq->work); /* Calls nfs_direct_write_schedule_work */ 784 } 785 786 static void nfs_direct_write_completion(struct nfs_pgio_header *hdr) 787 { 788 struct nfs_direct_req *dreq = hdr->dreq; 789 struct nfs_commit_info cinfo; 790 bool request_commit = false; 791 struct nfs_page *req = nfs_list_entry(hdr->pages.next); 792 793 nfs_init_cinfo_from_dreq(&cinfo, dreq); 794 795 spin_lock(&dreq->lock); 796 if (test_bit(NFS_IOHDR_REDO, &hdr->flags)) { 797 spin_unlock(&dreq->lock); 798 goto out_put; 799 } 800 801 nfs_direct_count_bytes(dreq, hdr); 802 if (hdr->good_bytes != 0) { 803 if (nfs_write_need_commit(hdr)) { 804 if (dreq->flags == NFS_ODIRECT_RESCHED_WRITES) 805 request_commit = true; 806 else if (dreq->flags == 0) { 807 nfs_direct_set_hdr_verf(dreq, hdr); 808 request_commit = true; 809 dreq->flags = NFS_ODIRECT_DO_COMMIT; 810 } else if (dreq->flags == NFS_ODIRECT_DO_COMMIT) { 811 request_commit = true; 812 if (nfs_direct_set_or_cmp_hdr_verf(dreq, hdr)) 813 dreq->flags = 814 NFS_ODIRECT_RESCHED_WRITES; 815 } 816 } 817 } 818 spin_unlock(&dreq->lock); 819 820 while (!list_empty(&hdr->pages)) { 821 822 req = nfs_list_entry(hdr->pages.next); 823 nfs_list_remove_request(req); 824 if (request_commit) { 825 kref_get(&req->wb_kref); 826 nfs_mark_request_commit(req, hdr->lseg, &cinfo, 827 hdr->ds_commit_idx); 828 } 829 nfs_unlock_and_release_request(req); 830 } 831 832 out_put: 833 if (put_dreq(dreq)) 834 nfs_direct_write_complete(dreq); 835 hdr->release(hdr); 836 } 837 838 static void nfs_write_sync_pgio_error(struct list_head *head, int error) 839 { 840 struct nfs_page *req; 841 842 while (!list_empty(head)) { 843 req = nfs_list_entry(head->next); 844 nfs_list_remove_request(req); 845 nfs_unlock_and_release_request(req); 846 } 847 } 848 849 static void nfs_direct_write_reschedule_io(struct nfs_pgio_header *hdr) 850 { 851 struct nfs_direct_req *dreq = hdr->dreq; 852 853 spin_lock(&dreq->lock); 854 if (dreq->error == 0) { 855 dreq->flags = NFS_ODIRECT_RESCHED_WRITES; 856 /* fake unstable write to let common nfs resend pages */ 857 hdr->verf.committed = NFS_UNSTABLE; 858 hdr->good_bytes = hdr->args.offset + hdr->args.count - 859 hdr->io_start; 860 } 861 spin_unlock(&dreq->lock); 862 } 863 864 static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops = { 865 .error_cleanup = nfs_write_sync_pgio_error, 866 .init_hdr = nfs_direct_pgio_init, 867 .completion = nfs_direct_write_completion, 868 .reschedule_io = nfs_direct_write_reschedule_io, 869 }; 870 871 872 /* 873 * NB: Return the value of the first error return code. Subsequent 874 * errors after the first one are ignored. 875 */ 876 /* 877 * For each wsize'd chunk of the user's buffer, dispatch an NFS WRITE 878 * operation. If nfs_writedata_alloc() or get_user_pages() fails, 879 * bail and stop sending more writes. Write length accounting is 880 * handled automatically by nfs_direct_write_result(). Otherwise, if 881 * no requests have been sent, just return an error. 882 */ 883 static ssize_t nfs_direct_write_schedule_iovec(struct nfs_direct_req *dreq, 884 struct iov_iter *iter, 885 loff_t pos) 886 { 887 struct nfs_pageio_descriptor desc; 888 struct inode *inode = dreq->inode; 889 ssize_t result = 0; 890 size_t requested_bytes = 0; 891 size_t wsize = max_t(size_t, NFS_SERVER(inode)->wsize, PAGE_SIZE); 892 893 nfs_pageio_init_write(&desc, inode, FLUSH_COND_STABLE, false, 894 &nfs_direct_write_completion_ops); 895 desc.pg_dreq = dreq; 896 get_dreq(dreq); 897 inode_dio_begin(inode); 898 899 NFS_I(inode)->write_io += iov_iter_count(iter); 900 while (iov_iter_count(iter)) { 901 struct page **pagevec; 902 size_t bytes; 903 size_t pgbase; 904 unsigned npages, i; 905 906 result = iov_iter_get_pages_alloc(iter, &pagevec, 907 wsize, &pgbase); 908 if (result < 0) 909 break; 910 911 bytes = result; 912 iov_iter_advance(iter, bytes); 913 npages = (result + pgbase + PAGE_SIZE - 1) / PAGE_SIZE; 914 for (i = 0; i < npages; i++) { 915 struct nfs_page *req; 916 unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase); 917 918 req = nfs_create_request(dreq->ctx, pagevec[i], 919 pgbase, req_len); 920 if (IS_ERR(req)) { 921 result = PTR_ERR(req); 922 break; 923 } 924 925 if (desc.pg_error < 0) { 926 nfs_free_request(req); 927 result = desc.pg_error; 928 break; 929 } 930 931 nfs_lock_request(req); 932 req->wb_index = pos >> PAGE_SHIFT; 933 req->wb_offset = pos & ~PAGE_MASK; 934 if (!nfs_pageio_add_request(&desc, req)) { 935 result = desc.pg_error; 936 nfs_unlock_and_release_request(req); 937 break; 938 } 939 pgbase = 0; 940 bytes -= req_len; 941 requested_bytes += req_len; 942 pos += req_len; 943 dreq->bytes_left -= req_len; 944 } 945 nfs_direct_release_pages(pagevec, npages); 946 kvfree(pagevec); 947 if (result < 0) 948 break; 949 } 950 nfs_pageio_complete(&desc); 951 952 /* 953 * If no bytes were started, return the error, and let the 954 * generic layer handle the completion. 955 */ 956 if (requested_bytes == 0) { 957 inode_dio_end(inode); 958 nfs_direct_req_release(dreq); 959 return result < 0 ? result : -EIO; 960 } 961 962 if (put_dreq(dreq)) 963 nfs_direct_write_complete(dreq); 964 return requested_bytes; 965 } 966 967 /** 968 * nfs_file_direct_write - file direct write operation for NFS files 969 * @iocb: target I/O control block 970 * @iter: vector of user buffers from which to write data 971 * 972 * We use this function for direct writes instead of calling 973 * generic_file_aio_write() in order to avoid taking the inode 974 * semaphore and updating the i_size. The NFS server will set 975 * the new i_size and this client must read the updated size 976 * back into its cache. We let the server do generic write 977 * parameter checking and report problems. 978 * 979 * We eliminate local atime updates, see direct read above. 980 * 981 * We avoid unnecessary page cache invalidations for normal cached 982 * readers of this file. 983 * 984 * Note that O_APPEND is not supported for NFS direct writes, as there 985 * is no atomic O_APPEND write facility in the NFS protocol. 986 */ 987 ssize_t nfs_file_direct_write(struct kiocb *iocb, struct iov_iter *iter) 988 { 989 ssize_t result = -EINVAL, requested; 990 size_t count; 991 struct file *file = iocb->ki_filp; 992 struct address_space *mapping = file->f_mapping; 993 struct inode *inode = mapping->host; 994 struct nfs_direct_req *dreq; 995 struct nfs_lock_context *l_ctx; 996 loff_t pos, end; 997 998 dfprintk(FILE, "NFS: direct write(%pD2, %zd@%Ld)\n", 999 file, iov_iter_count(iter), (long long) iocb->ki_pos); 1000 1001 result = generic_write_checks(iocb, iter); 1002 if (result <= 0) 1003 return result; 1004 count = result; 1005 nfs_add_stats(mapping->host, NFSIOS_DIRECTWRITTENBYTES, count); 1006 1007 pos = iocb->ki_pos; 1008 end = (pos + iov_iter_count(iter) - 1) >> PAGE_SHIFT; 1009 1010 task_io_account_write(count); 1011 1012 result = -ENOMEM; 1013 dreq = nfs_direct_req_alloc(); 1014 if (!dreq) 1015 goto out; 1016 1017 dreq->inode = inode; 1018 dreq->bytes_left = dreq->max_count = count; 1019 dreq->io_start = pos; 1020 dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp)); 1021 l_ctx = nfs_get_lock_context(dreq->ctx); 1022 if (IS_ERR(l_ctx)) { 1023 result = PTR_ERR(l_ctx); 1024 nfs_direct_req_release(dreq); 1025 goto out_release; 1026 } 1027 dreq->l_ctx = l_ctx; 1028 if (!is_sync_kiocb(iocb)) 1029 dreq->iocb = iocb; 1030 1031 nfs_start_io_direct(inode); 1032 1033 requested = nfs_direct_write_schedule_iovec(dreq, iter, pos); 1034 1035 if (mapping->nrpages) { 1036 invalidate_inode_pages2_range(mapping, 1037 pos >> PAGE_SHIFT, end); 1038 } 1039 1040 nfs_end_io_direct(inode); 1041 1042 if (requested > 0) { 1043 result = nfs_direct_wait(dreq); 1044 if (result > 0) { 1045 requested -= result; 1046 iocb->ki_pos = pos + result; 1047 /* XXX: should check the generic_write_sync retval */ 1048 generic_write_sync(iocb, result); 1049 } 1050 iov_iter_revert(iter, requested); 1051 } else { 1052 result = requested; 1053 } 1054 out_release: 1055 nfs_direct_req_release(dreq); 1056 out: 1057 return result; 1058 } 1059 1060 /** 1061 * nfs_init_directcache - create a slab cache for nfs_direct_req structures 1062 * 1063 */ 1064 int __init nfs_init_directcache(void) 1065 { 1066 nfs_direct_cachep = kmem_cache_create("nfs_direct_cache", 1067 sizeof(struct nfs_direct_req), 1068 0, (SLAB_RECLAIM_ACCOUNT| 1069 SLAB_MEM_SPREAD), 1070 NULL); 1071 if (nfs_direct_cachep == NULL) 1072 return -ENOMEM; 1073 1074 return 0; 1075 } 1076 1077 /** 1078 * nfs_destroy_directcache - destroy the slab cache for nfs_direct_req structures 1079 * 1080 */ 1081 void nfs_destroy_directcache(void) 1082 { 1083 kmem_cache_destroy(nfs_direct_cachep); 1084 } 1085