1 /* 2 * linux/fs/nfs/direct.c 3 * 4 * Copyright (C) 2003 by Chuck Lever <cel@netapp.com> 5 * 6 * High-performance uncached I/O for the Linux NFS client 7 * 8 * There are important applications whose performance or correctness 9 * depends on uncached access to file data. Database clusters 10 * (multiple copies of the same instance running on separate hosts) 11 * implement their own cache coherency protocol that subsumes file 12 * system cache protocols. Applications that process datasets 13 * considerably larger than the client's memory do not always benefit 14 * from a local cache. A streaming video server, for instance, has no 15 * need to cache the contents of a file. 16 * 17 * When an application requests uncached I/O, all read and write requests 18 * are made directly to the server; data stored or fetched via these 19 * requests is not cached in the Linux page cache. The client does not 20 * correct unaligned requests from applications. All requested bytes are 21 * held on permanent storage before a direct write system call returns to 22 * an application. 23 * 24 * Solaris implements an uncached I/O facility called directio() that 25 * is used for backups and sequential I/O to very large files. Solaris 26 * also supports uncaching whole NFS partitions with "-o forcedirectio," 27 * an undocumented mount option. 28 * 29 * Designed by Jeff Kimmel, Chuck Lever, and Trond Myklebust, with 30 * help from Andrew Morton. 31 * 32 * 18 Dec 2001 Initial implementation for 2.4 --cel 33 * 08 Jul 2002 Version for 2.4.19, with bug fixes --trondmy 34 * 08 Jun 2003 Port to 2.5 APIs --cel 35 * 31 Mar 2004 Handle direct I/O without VFS support --cel 36 * 15 Sep 2004 Parallel async reads --cel 37 * 04 May 2005 support O_DIRECT with aio --cel 38 * 39 */ 40 41 #include <linux/errno.h> 42 #include <linux/sched.h> 43 #include <linux/kernel.h> 44 #include <linux/file.h> 45 #include <linux/pagemap.h> 46 #include <linux/kref.h> 47 #include <linux/slab.h> 48 #include <linux/task_io_accounting_ops.h> 49 50 #include <linux/nfs_fs.h> 51 #include <linux/nfs_page.h> 52 #include <linux/sunrpc/clnt.h> 53 54 #include <asm/uaccess.h> 55 #include <linux/atomic.h> 56 57 #include "internal.h" 58 #include "iostat.h" 59 #include "pnfs.h" 60 61 #define NFSDBG_FACILITY NFSDBG_VFS 62 63 static struct kmem_cache *nfs_direct_cachep; 64 65 /* 66 * This represents a set of asynchronous requests that we're waiting on 67 */ 68 struct nfs_direct_req { 69 struct kref kref; /* release manager */ 70 71 /* I/O parameters */ 72 struct nfs_open_context *ctx; /* file open context info */ 73 struct nfs_lock_context *l_ctx; /* Lock context info */ 74 struct kiocb * iocb; /* controlling i/o request */ 75 struct inode * inode; /* target file of i/o */ 76 77 /* completion state */ 78 atomic_t io_count; /* i/os we're waiting for */ 79 spinlock_t lock; /* protect completion state */ 80 ssize_t count, /* bytes actually processed */ 81 error; /* any reported error */ 82 struct completion completion; /* wait for i/o completion */ 83 84 /* commit state */ 85 struct nfs_mds_commit_info mds_cinfo; /* Storage for cinfo */ 86 struct pnfs_ds_commit_info ds_cinfo; /* Storage for cinfo */ 87 struct work_struct work; 88 int flags; 89 #define NFS_ODIRECT_DO_COMMIT (1) /* an unstable reply was received */ 90 #define NFS_ODIRECT_RESCHED_WRITES (2) /* write verification failed */ 91 struct nfs_writeverf verf; /* unstable write verifier */ 92 }; 93 94 static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops; 95 static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops; 96 static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode); 97 static void nfs_direct_write_schedule_work(struct work_struct *work); 98 99 static inline void get_dreq(struct nfs_direct_req *dreq) 100 { 101 atomic_inc(&dreq->io_count); 102 } 103 104 static inline int put_dreq(struct nfs_direct_req *dreq) 105 { 106 return atomic_dec_and_test(&dreq->io_count); 107 } 108 109 /** 110 * nfs_direct_IO - NFS address space operation for direct I/O 111 * @rw: direction (read or write) 112 * @iocb: target I/O control block 113 * @iov: array of vectors that define I/O buffer 114 * @pos: offset in file to begin the operation 115 * @nr_segs: size of iovec array 116 * 117 * The presence of this routine in the address space ops vector means 118 * the NFS client supports direct I/O. However, we shunt off direct 119 * read and write requests before the VFS gets them, so this method 120 * should never be called. 121 */ 122 ssize_t nfs_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov, loff_t pos, unsigned long nr_segs) 123 { 124 dprintk("NFS: nfs_direct_IO (%s) off/no(%Ld/%lu) EINVAL\n", 125 iocb->ki_filp->f_path.dentry->d_name.name, 126 (long long) pos, nr_segs); 127 128 return -EINVAL; 129 } 130 131 static void nfs_direct_release_pages(struct page **pages, unsigned int npages) 132 { 133 unsigned int i; 134 for (i = 0; i < npages; i++) 135 page_cache_release(pages[i]); 136 } 137 138 void nfs_init_cinfo_from_dreq(struct nfs_commit_info *cinfo, 139 struct nfs_direct_req *dreq) 140 { 141 cinfo->lock = &dreq->lock; 142 cinfo->mds = &dreq->mds_cinfo; 143 cinfo->ds = &dreq->ds_cinfo; 144 cinfo->dreq = dreq; 145 cinfo->completion_ops = &nfs_direct_commit_completion_ops; 146 } 147 148 static inline struct nfs_direct_req *nfs_direct_req_alloc(void) 149 { 150 struct nfs_direct_req *dreq; 151 152 dreq = kmem_cache_zalloc(nfs_direct_cachep, GFP_KERNEL); 153 if (!dreq) 154 return NULL; 155 156 kref_init(&dreq->kref); 157 kref_get(&dreq->kref); 158 init_completion(&dreq->completion); 159 INIT_LIST_HEAD(&dreq->mds_cinfo.list); 160 INIT_WORK(&dreq->work, nfs_direct_write_schedule_work); 161 spin_lock_init(&dreq->lock); 162 163 return dreq; 164 } 165 166 static void nfs_direct_req_free(struct kref *kref) 167 { 168 struct nfs_direct_req *dreq = container_of(kref, struct nfs_direct_req, kref); 169 170 if (dreq->l_ctx != NULL) 171 nfs_put_lock_context(dreq->l_ctx); 172 if (dreq->ctx != NULL) 173 put_nfs_open_context(dreq->ctx); 174 kmem_cache_free(nfs_direct_cachep, dreq); 175 } 176 177 static void nfs_direct_req_release(struct nfs_direct_req *dreq) 178 { 179 kref_put(&dreq->kref, nfs_direct_req_free); 180 } 181 182 /* 183 * Collects and returns the final error value/byte-count. 184 */ 185 static ssize_t nfs_direct_wait(struct nfs_direct_req *dreq) 186 { 187 ssize_t result = -EIOCBQUEUED; 188 189 /* Async requests don't wait here */ 190 if (dreq->iocb) 191 goto out; 192 193 result = wait_for_completion_killable(&dreq->completion); 194 195 if (!result) 196 result = dreq->error; 197 if (!result) 198 result = dreq->count; 199 200 out: 201 return (ssize_t) result; 202 } 203 204 /* 205 * Synchronous I/O uses a stack-allocated iocb. Thus we can't trust 206 * the iocb is still valid here if this is a synchronous request. 207 */ 208 static void nfs_direct_complete(struct nfs_direct_req *dreq) 209 { 210 if (dreq->iocb) { 211 long res = (long) dreq->error; 212 if (!res) 213 res = (long) dreq->count; 214 aio_complete(dreq->iocb, res, 0); 215 } 216 complete_all(&dreq->completion); 217 218 nfs_direct_req_release(dreq); 219 } 220 221 static void nfs_direct_readpage_release(struct nfs_page *req) 222 { 223 dprintk("NFS: direct read done (%s/%lld %d@%lld)\n", 224 req->wb_context->dentry->d_inode->i_sb->s_id, 225 (long long)NFS_FILEID(req->wb_context->dentry->d_inode), 226 req->wb_bytes, 227 (long long)req_offset(req)); 228 nfs_release_request(req); 229 } 230 231 static void nfs_direct_read_completion(struct nfs_pgio_header *hdr) 232 { 233 unsigned long bytes = 0; 234 struct nfs_direct_req *dreq = hdr->dreq; 235 236 if (test_bit(NFS_IOHDR_REDO, &hdr->flags)) 237 goto out_put; 238 239 spin_lock(&dreq->lock); 240 if (test_bit(NFS_IOHDR_ERROR, &hdr->flags) && (hdr->good_bytes == 0)) 241 dreq->error = hdr->error; 242 else 243 dreq->count += hdr->good_bytes; 244 spin_unlock(&dreq->lock); 245 246 while (!list_empty(&hdr->pages)) { 247 struct nfs_page *req = nfs_list_entry(hdr->pages.next); 248 struct page *page = req->wb_page; 249 250 if (test_bit(NFS_IOHDR_EOF, &hdr->flags)) { 251 if (bytes > hdr->good_bytes) 252 zero_user(page, 0, PAGE_SIZE); 253 else if (hdr->good_bytes - bytes < PAGE_SIZE) 254 zero_user_segment(page, 255 hdr->good_bytes & ~PAGE_MASK, 256 PAGE_SIZE); 257 } 258 if (!PageCompound(page)) { 259 if (test_bit(NFS_IOHDR_ERROR, &hdr->flags)) { 260 if (bytes < hdr->good_bytes) 261 set_page_dirty(page); 262 } else 263 set_page_dirty(page); 264 } 265 bytes += req->wb_bytes; 266 nfs_list_remove_request(req); 267 nfs_direct_readpage_release(req); 268 } 269 out_put: 270 if (put_dreq(dreq)) 271 nfs_direct_complete(dreq); 272 hdr->release(hdr); 273 } 274 275 static void nfs_read_sync_pgio_error(struct list_head *head) 276 { 277 struct nfs_page *req; 278 279 while (!list_empty(head)) { 280 req = nfs_list_entry(head->next); 281 nfs_list_remove_request(req); 282 nfs_release_request(req); 283 } 284 } 285 286 static void nfs_direct_pgio_init(struct nfs_pgio_header *hdr) 287 { 288 get_dreq(hdr->dreq); 289 } 290 291 static const struct nfs_pgio_completion_ops nfs_direct_read_completion_ops = { 292 .error_cleanup = nfs_read_sync_pgio_error, 293 .init_hdr = nfs_direct_pgio_init, 294 .completion = nfs_direct_read_completion, 295 }; 296 297 /* 298 * For each rsize'd chunk of the user's buffer, dispatch an NFS READ 299 * operation. If nfs_readdata_alloc() or get_user_pages() fails, 300 * bail and stop sending more reads. Read length accounting is 301 * handled automatically by nfs_direct_read_result(). Otherwise, if 302 * no requests have been sent, just return an error. 303 */ 304 static ssize_t nfs_direct_read_schedule_segment(struct nfs_pageio_descriptor *desc, 305 const struct iovec *iov, 306 loff_t pos) 307 { 308 struct nfs_direct_req *dreq = desc->pg_dreq; 309 struct nfs_open_context *ctx = dreq->ctx; 310 struct inode *inode = ctx->dentry->d_inode; 311 unsigned long user_addr = (unsigned long)iov->iov_base; 312 size_t count = iov->iov_len; 313 size_t rsize = NFS_SERVER(inode)->rsize; 314 unsigned int pgbase; 315 int result; 316 ssize_t started = 0; 317 struct page **pagevec = NULL; 318 unsigned int npages; 319 320 do { 321 size_t bytes; 322 int i; 323 324 pgbase = user_addr & ~PAGE_MASK; 325 bytes = min(max_t(size_t, rsize, PAGE_SIZE), count); 326 327 result = -ENOMEM; 328 npages = nfs_page_array_len(pgbase, bytes); 329 if (!pagevec) 330 pagevec = kmalloc(npages * sizeof(struct page *), 331 GFP_KERNEL); 332 if (!pagevec) 333 break; 334 down_read(¤t->mm->mmap_sem); 335 result = get_user_pages(current, current->mm, user_addr, 336 npages, 1, 0, pagevec, NULL); 337 up_read(¤t->mm->mmap_sem); 338 if (result < 0) 339 break; 340 if ((unsigned)result < npages) { 341 bytes = result * PAGE_SIZE; 342 if (bytes <= pgbase) { 343 nfs_direct_release_pages(pagevec, result); 344 break; 345 } 346 bytes -= pgbase; 347 npages = result; 348 } 349 350 for (i = 0; i < npages; i++) { 351 struct nfs_page *req; 352 unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase); 353 /* XXX do we need to do the eof zeroing found in async_filler? */ 354 req = nfs_create_request(dreq->ctx, dreq->inode, 355 pagevec[i], 356 pgbase, req_len); 357 if (IS_ERR(req)) { 358 result = PTR_ERR(req); 359 break; 360 } 361 req->wb_index = pos >> PAGE_SHIFT; 362 req->wb_offset = pos & ~PAGE_MASK; 363 if (!nfs_pageio_add_request(desc, req)) { 364 result = desc->pg_error; 365 nfs_release_request(req); 366 break; 367 } 368 pgbase = 0; 369 bytes -= req_len; 370 started += req_len; 371 user_addr += req_len; 372 pos += req_len; 373 count -= req_len; 374 } 375 /* The nfs_page now hold references to these pages */ 376 nfs_direct_release_pages(pagevec, npages); 377 } while (count != 0 && result >= 0); 378 379 kfree(pagevec); 380 381 if (started) 382 return started; 383 return result < 0 ? (ssize_t) result : -EFAULT; 384 } 385 386 static ssize_t nfs_direct_read_schedule_iovec(struct nfs_direct_req *dreq, 387 const struct iovec *iov, 388 unsigned long nr_segs, 389 loff_t pos) 390 { 391 struct nfs_pageio_descriptor desc; 392 ssize_t result = -EINVAL; 393 size_t requested_bytes = 0; 394 unsigned long seg; 395 396 nfs_pageio_init_read(&desc, dreq->inode, 397 &nfs_direct_read_completion_ops); 398 get_dreq(dreq); 399 desc.pg_dreq = dreq; 400 401 for (seg = 0; seg < nr_segs; seg++) { 402 const struct iovec *vec = &iov[seg]; 403 result = nfs_direct_read_schedule_segment(&desc, vec, pos); 404 if (result < 0) 405 break; 406 requested_bytes += result; 407 if ((size_t)result < vec->iov_len) 408 break; 409 pos += vec->iov_len; 410 } 411 412 nfs_pageio_complete(&desc); 413 414 /* 415 * If no bytes were started, return the error, and let the 416 * generic layer handle the completion. 417 */ 418 if (requested_bytes == 0) { 419 nfs_direct_req_release(dreq); 420 return result < 0 ? result : -EIO; 421 } 422 423 if (put_dreq(dreq)) 424 nfs_direct_complete(dreq); 425 return 0; 426 } 427 428 static ssize_t nfs_direct_read(struct kiocb *iocb, const struct iovec *iov, 429 unsigned long nr_segs, loff_t pos) 430 { 431 ssize_t result = -ENOMEM; 432 struct inode *inode = iocb->ki_filp->f_mapping->host; 433 struct nfs_direct_req *dreq; 434 435 dreq = nfs_direct_req_alloc(); 436 if (dreq == NULL) 437 goto out; 438 439 dreq->inode = inode; 440 dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp)); 441 dreq->l_ctx = nfs_get_lock_context(dreq->ctx); 442 if (dreq->l_ctx == NULL) 443 goto out_release; 444 if (!is_sync_kiocb(iocb)) 445 dreq->iocb = iocb; 446 447 result = nfs_direct_read_schedule_iovec(dreq, iov, nr_segs, pos); 448 if (!result) 449 result = nfs_direct_wait(dreq); 450 NFS_I(inode)->read_io += result; 451 out_release: 452 nfs_direct_req_release(dreq); 453 out: 454 return result; 455 } 456 457 static void nfs_inode_dio_write_done(struct inode *inode) 458 { 459 nfs_zap_mapping(inode, inode->i_mapping); 460 inode_dio_done(inode); 461 } 462 463 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4) 464 static void nfs_direct_write_reschedule(struct nfs_direct_req *dreq) 465 { 466 struct nfs_pageio_descriptor desc; 467 struct nfs_page *req, *tmp; 468 LIST_HEAD(reqs); 469 struct nfs_commit_info cinfo; 470 LIST_HEAD(failed); 471 472 nfs_init_cinfo_from_dreq(&cinfo, dreq); 473 pnfs_recover_commit_reqs(dreq->inode, &reqs, &cinfo); 474 spin_lock(cinfo.lock); 475 nfs_scan_commit_list(&cinfo.mds->list, &reqs, &cinfo, 0); 476 spin_unlock(cinfo.lock); 477 478 dreq->count = 0; 479 get_dreq(dreq); 480 481 nfs_pageio_init_write(&desc, dreq->inode, FLUSH_STABLE, 482 &nfs_direct_write_completion_ops); 483 desc.pg_dreq = dreq; 484 485 list_for_each_entry_safe(req, tmp, &reqs, wb_list) { 486 if (!nfs_pageio_add_request(&desc, req)) { 487 nfs_list_add_request(req, &failed); 488 spin_lock(cinfo.lock); 489 dreq->flags = 0; 490 dreq->error = -EIO; 491 spin_unlock(cinfo.lock); 492 } 493 } 494 nfs_pageio_complete(&desc); 495 496 while (!list_empty(&failed)) 497 nfs_unlock_and_release_request(req); 498 499 if (put_dreq(dreq)) 500 nfs_direct_write_complete(dreq, dreq->inode); 501 } 502 503 static void nfs_direct_commit_complete(struct nfs_commit_data *data) 504 { 505 struct nfs_direct_req *dreq = data->dreq; 506 struct nfs_commit_info cinfo; 507 struct nfs_page *req; 508 int status = data->task.tk_status; 509 510 nfs_init_cinfo_from_dreq(&cinfo, dreq); 511 if (status < 0) { 512 dprintk("NFS: %5u commit failed with error %d.\n", 513 data->task.tk_pid, status); 514 dreq->flags = NFS_ODIRECT_RESCHED_WRITES; 515 } else if (memcmp(&dreq->verf, &data->verf, sizeof(data->verf))) { 516 dprintk("NFS: %5u commit verify failed\n", data->task.tk_pid); 517 dreq->flags = NFS_ODIRECT_RESCHED_WRITES; 518 } 519 520 dprintk("NFS: %5u commit returned %d\n", data->task.tk_pid, status); 521 while (!list_empty(&data->pages)) { 522 req = nfs_list_entry(data->pages.next); 523 nfs_list_remove_request(req); 524 if (dreq->flags == NFS_ODIRECT_RESCHED_WRITES) { 525 /* Note the rewrite will go through mds */ 526 kref_get(&req->wb_kref); 527 nfs_mark_request_commit(req, NULL, &cinfo); 528 } 529 nfs_unlock_and_release_request(req); 530 } 531 532 if (atomic_dec_and_test(&cinfo.mds->rpcs_out)) 533 nfs_direct_write_complete(dreq, data->inode); 534 } 535 536 static void nfs_direct_error_cleanup(struct nfs_inode *nfsi) 537 { 538 /* There is no lock to clear */ 539 } 540 541 static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops = { 542 .completion = nfs_direct_commit_complete, 543 .error_cleanup = nfs_direct_error_cleanup, 544 }; 545 546 static void nfs_direct_commit_schedule(struct nfs_direct_req *dreq) 547 { 548 int res; 549 struct nfs_commit_info cinfo; 550 LIST_HEAD(mds_list); 551 552 nfs_init_cinfo_from_dreq(&cinfo, dreq); 553 nfs_scan_commit(dreq->inode, &mds_list, &cinfo); 554 res = nfs_generic_commit_list(dreq->inode, &mds_list, 0, &cinfo); 555 if (res < 0) /* res == -ENOMEM */ 556 nfs_direct_write_reschedule(dreq); 557 } 558 559 static void nfs_direct_write_schedule_work(struct work_struct *work) 560 { 561 struct nfs_direct_req *dreq = container_of(work, struct nfs_direct_req, work); 562 int flags = dreq->flags; 563 564 dreq->flags = 0; 565 switch (flags) { 566 case NFS_ODIRECT_DO_COMMIT: 567 nfs_direct_commit_schedule(dreq); 568 break; 569 case NFS_ODIRECT_RESCHED_WRITES: 570 nfs_direct_write_reschedule(dreq); 571 break; 572 default: 573 nfs_inode_dio_write_done(dreq->inode); 574 nfs_direct_complete(dreq); 575 } 576 } 577 578 static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode) 579 { 580 schedule_work(&dreq->work); /* Calls nfs_direct_write_schedule_work */ 581 } 582 583 #else 584 static void nfs_direct_write_schedule_work(struct work_struct *work) 585 { 586 } 587 588 static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode) 589 { 590 nfs_inode_dio_write_done(inode); 591 nfs_direct_complete(dreq); 592 } 593 #endif 594 595 /* 596 * NB: Return the value of the first error return code. Subsequent 597 * errors after the first one are ignored. 598 */ 599 /* 600 * For each wsize'd chunk of the user's buffer, dispatch an NFS WRITE 601 * operation. If nfs_writedata_alloc() or get_user_pages() fails, 602 * bail and stop sending more writes. Write length accounting is 603 * handled automatically by nfs_direct_write_result(). Otherwise, if 604 * no requests have been sent, just return an error. 605 */ 606 static ssize_t nfs_direct_write_schedule_segment(struct nfs_pageio_descriptor *desc, 607 const struct iovec *iov, 608 loff_t pos) 609 { 610 struct nfs_direct_req *dreq = desc->pg_dreq; 611 struct nfs_open_context *ctx = dreq->ctx; 612 struct inode *inode = ctx->dentry->d_inode; 613 unsigned long user_addr = (unsigned long)iov->iov_base; 614 size_t count = iov->iov_len; 615 size_t wsize = NFS_SERVER(inode)->wsize; 616 unsigned int pgbase; 617 int result; 618 ssize_t started = 0; 619 struct page **pagevec = NULL; 620 unsigned int npages; 621 622 do { 623 size_t bytes; 624 int i; 625 626 pgbase = user_addr & ~PAGE_MASK; 627 bytes = min(max_t(size_t, wsize, PAGE_SIZE), count); 628 629 result = -ENOMEM; 630 npages = nfs_page_array_len(pgbase, bytes); 631 if (!pagevec) 632 pagevec = kmalloc(npages * sizeof(struct page *), GFP_KERNEL); 633 if (!pagevec) 634 break; 635 636 down_read(¤t->mm->mmap_sem); 637 result = get_user_pages(current, current->mm, user_addr, 638 npages, 0, 0, pagevec, NULL); 639 up_read(¤t->mm->mmap_sem); 640 if (result < 0) 641 break; 642 643 if ((unsigned)result < npages) { 644 bytes = result * PAGE_SIZE; 645 if (bytes <= pgbase) { 646 nfs_direct_release_pages(pagevec, result); 647 break; 648 } 649 bytes -= pgbase; 650 npages = result; 651 } 652 653 for (i = 0; i < npages; i++) { 654 struct nfs_page *req; 655 unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase); 656 657 req = nfs_create_request(dreq->ctx, dreq->inode, 658 pagevec[i], 659 pgbase, req_len); 660 if (IS_ERR(req)) { 661 result = PTR_ERR(req); 662 break; 663 } 664 nfs_lock_request(req); 665 req->wb_index = pos >> PAGE_SHIFT; 666 req->wb_offset = pos & ~PAGE_MASK; 667 if (!nfs_pageio_add_request(desc, req)) { 668 result = desc->pg_error; 669 nfs_unlock_and_release_request(req); 670 break; 671 } 672 pgbase = 0; 673 bytes -= req_len; 674 started += req_len; 675 user_addr += req_len; 676 pos += req_len; 677 count -= req_len; 678 } 679 /* The nfs_page now hold references to these pages */ 680 nfs_direct_release_pages(pagevec, npages); 681 } while (count != 0 && result >= 0); 682 683 kfree(pagevec); 684 685 if (started) 686 return started; 687 return result < 0 ? (ssize_t) result : -EFAULT; 688 } 689 690 static void nfs_direct_write_completion(struct nfs_pgio_header *hdr) 691 { 692 struct nfs_direct_req *dreq = hdr->dreq; 693 struct nfs_commit_info cinfo; 694 int bit = -1; 695 struct nfs_page *req = nfs_list_entry(hdr->pages.next); 696 697 if (test_bit(NFS_IOHDR_REDO, &hdr->flags)) 698 goto out_put; 699 700 nfs_init_cinfo_from_dreq(&cinfo, dreq); 701 702 spin_lock(&dreq->lock); 703 704 if (test_bit(NFS_IOHDR_ERROR, &hdr->flags)) { 705 dreq->flags = 0; 706 dreq->error = hdr->error; 707 } 708 if (dreq->error != 0) 709 bit = NFS_IOHDR_ERROR; 710 else { 711 dreq->count += hdr->good_bytes; 712 if (test_bit(NFS_IOHDR_NEED_RESCHED, &hdr->flags)) { 713 dreq->flags = NFS_ODIRECT_RESCHED_WRITES; 714 bit = NFS_IOHDR_NEED_RESCHED; 715 } else if (test_bit(NFS_IOHDR_NEED_COMMIT, &hdr->flags)) { 716 if (dreq->flags == NFS_ODIRECT_RESCHED_WRITES) 717 bit = NFS_IOHDR_NEED_RESCHED; 718 else if (dreq->flags == 0) { 719 memcpy(&dreq->verf, &req->wb_verf, 720 sizeof(dreq->verf)); 721 bit = NFS_IOHDR_NEED_COMMIT; 722 dreq->flags = NFS_ODIRECT_DO_COMMIT; 723 } else if (dreq->flags == NFS_ODIRECT_DO_COMMIT) { 724 if (memcmp(&dreq->verf, &req->wb_verf, sizeof(dreq->verf))) { 725 dreq->flags = NFS_ODIRECT_RESCHED_WRITES; 726 bit = NFS_IOHDR_NEED_RESCHED; 727 } else 728 bit = NFS_IOHDR_NEED_COMMIT; 729 } 730 } 731 } 732 spin_unlock(&dreq->lock); 733 734 while (!list_empty(&hdr->pages)) { 735 req = nfs_list_entry(hdr->pages.next); 736 nfs_list_remove_request(req); 737 switch (bit) { 738 case NFS_IOHDR_NEED_RESCHED: 739 case NFS_IOHDR_NEED_COMMIT: 740 kref_get(&req->wb_kref); 741 nfs_mark_request_commit(req, hdr->lseg, &cinfo); 742 } 743 nfs_unlock_and_release_request(req); 744 } 745 746 out_put: 747 if (put_dreq(dreq)) 748 nfs_direct_write_complete(dreq, hdr->inode); 749 hdr->release(hdr); 750 } 751 752 static void nfs_write_sync_pgio_error(struct list_head *head) 753 { 754 struct nfs_page *req; 755 756 while (!list_empty(head)) { 757 req = nfs_list_entry(head->next); 758 nfs_list_remove_request(req); 759 nfs_unlock_and_release_request(req); 760 } 761 } 762 763 static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops = { 764 .error_cleanup = nfs_write_sync_pgio_error, 765 .init_hdr = nfs_direct_pgio_init, 766 .completion = nfs_direct_write_completion, 767 }; 768 769 static ssize_t nfs_direct_write_schedule_iovec(struct nfs_direct_req *dreq, 770 const struct iovec *iov, 771 unsigned long nr_segs, 772 loff_t pos) 773 { 774 struct nfs_pageio_descriptor desc; 775 struct inode *inode = dreq->inode; 776 ssize_t result = 0; 777 size_t requested_bytes = 0; 778 unsigned long seg; 779 780 nfs_pageio_init_write(&desc, inode, FLUSH_COND_STABLE, 781 &nfs_direct_write_completion_ops); 782 desc.pg_dreq = dreq; 783 get_dreq(dreq); 784 atomic_inc(&inode->i_dio_count); 785 786 for (seg = 0; seg < nr_segs; seg++) { 787 const struct iovec *vec = &iov[seg]; 788 result = nfs_direct_write_schedule_segment(&desc, vec, pos); 789 if (result < 0) 790 break; 791 requested_bytes += result; 792 if ((size_t)result < vec->iov_len) 793 break; 794 pos += vec->iov_len; 795 } 796 nfs_pageio_complete(&desc); 797 NFS_I(dreq->inode)->write_io += desc.pg_bytes_written; 798 799 /* 800 * If no bytes were started, return the error, and let the 801 * generic layer handle the completion. 802 */ 803 if (requested_bytes == 0) { 804 inode_dio_done(inode); 805 nfs_direct_req_release(dreq); 806 return result < 0 ? result : -EIO; 807 } 808 809 if (put_dreq(dreq)) 810 nfs_direct_write_complete(dreq, dreq->inode); 811 return 0; 812 } 813 814 static ssize_t nfs_direct_write(struct kiocb *iocb, const struct iovec *iov, 815 unsigned long nr_segs, loff_t pos, 816 size_t count) 817 { 818 ssize_t result = -ENOMEM; 819 struct inode *inode = iocb->ki_filp->f_mapping->host; 820 struct nfs_direct_req *dreq; 821 822 dreq = nfs_direct_req_alloc(); 823 if (!dreq) 824 goto out; 825 826 dreq->inode = inode; 827 dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp)); 828 dreq->l_ctx = nfs_get_lock_context(dreq->ctx); 829 if (dreq->l_ctx == NULL) 830 goto out_release; 831 if (!is_sync_kiocb(iocb)) 832 dreq->iocb = iocb; 833 834 result = nfs_direct_write_schedule_iovec(dreq, iov, nr_segs, pos); 835 if (!result) 836 result = nfs_direct_wait(dreq); 837 out_release: 838 nfs_direct_req_release(dreq); 839 out: 840 return result; 841 } 842 843 /** 844 * nfs_file_direct_read - file direct read operation for NFS files 845 * @iocb: target I/O control block 846 * @iov: vector of user buffers into which to read data 847 * @nr_segs: size of iov vector 848 * @pos: byte offset in file where reading starts 849 * 850 * We use this function for direct reads instead of calling 851 * generic_file_aio_read() in order to avoid gfar's check to see if 852 * the request starts before the end of the file. For that check 853 * to work, we must generate a GETATTR before each direct read, and 854 * even then there is a window between the GETATTR and the subsequent 855 * READ where the file size could change. Our preference is simply 856 * to do all reads the application wants, and the server will take 857 * care of managing the end of file boundary. 858 * 859 * This function also eliminates unnecessarily updating the file's 860 * atime locally, as the NFS server sets the file's atime, and this 861 * client must read the updated atime from the server back into its 862 * cache. 863 */ 864 ssize_t nfs_file_direct_read(struct kiocb *iocb, const struct iovec *iov, 865 unsigned long nr_segs, loff_t pos) 866 { 867 ssize_t retval = -EINVAL; 868 struct file *file = iocb->ki_filp; 869 struct address_space *mapping = file->f_mapping; 870 size_t count; 871 872 count = iov_length(iov, nr_segs); 873 nfs_add_stats(mapping->host, NFSIOS_DIRECTREADBYTES, count); 874 875 dfprintk(FILE, "NFS: direct read(%s/%s, %zd@%Ld)\n", 876 file->f_path.dentry->d_parent->d_name.name, 877 file->f_path.dentry->d_name.name, 878 count, (long long) pos); 879 880 retval = 0; 881 if (!count) 882 goto out; 883 884 retval = nfs_sync_mapping(mapping); 885 if (retval) 886 goto out; 887 888 task_io_account_read(count); 889 890 retval = nfs_direct_read(iocb, iov, nr_segs, pos); 891 if (retval > 0) 892 iocb->ki_pos = pos + retval; 893 894 out: 895 return retval; 896 } 897 898 /** 899 * nfs_file_direct_write - file direct write operation for NFS files 900 * @iocb: target I/O control block 901 * @iov: vector of user buffers from which to write data 902 * @nr_segs: size of iov vector 903 * @pos: byte offset in file where writing starts 904 * 905 * We use this function for direct writes instead of calling 906 * generic_file_aio_write() in order to avoid taking the inode 907 * semaphore and updating the i_size. The NFS server will set 908 * the new i_size and this client must read the updated size 909 * back into its cache. We let the server do generic write 910 * parameter checking and report problems. 911 * 912 * We eliminate local atime updates, see direct read above. 913 * 914 * We avoid unnecessary page cache invalidations for normal cached 915 * readers of this file. 916 * 917 * Note that O_APPEND is not supported for NFS direct writes, as there 918 * is no atomic O_APPEND write facility in the NFS protocol. 919 */ 920 ssize_t nfs_file_direct_write(struct kiocb *iocb, const struct iovec *iov, 921 unsigned long nr_segs, loff_t pos) 922 { 923 ssize_t retval = -EINVAL; 924 struct file *file = iocb->ki_filp; 925 struct address_space *mapping = file->f_mapping; 926 size_t count; 927 928 count = iov_length(iov, nr_segs); 929 nfs_add_stats(mapping->host, NFSIOS_DIRECTWRITTENBYTES, count); 930 931 dfprintk(FILE, "NFS: direct write(%s/%s, %zd@%Ld)\n", 932 file->f_path.dentry->d_parent->d_name.name, 933 file->f_path.dentry->d_name.name, 934 count, (long long) pos); 935 936 retval = generic_write_checks(file, &pos, &count, 0); 937 if (retval) 938 goto out; 939 940 retval = -EINVAL; 941 if ((ssize_t) count < 0) 942 goto out; 943 retval = 0; 944 if (!count) 945 goto out; 946 947 retval = nfs_sync_mapping(mapping); 948 if (retval) 949 goto out; 950 951 task_io_account_write(count); 952 953 retval = nfs_direct_write(iocb, iov, nr_segs, pos, count); 954 if (retval > 0) { 955 struct inode *inode = mapping->host; 956 957 iocb->ki_pos = pos + retval; 958 spin_lock(&inode->i_lock); 959 if (i_size_read(inode) < iocb->ki_pos) 960 i_size_write(inode, iocb->ki_pos); 961 spin_unlock(&inode->i_lock); 962 } 963 out: 964 return retval; 965 } 966 967 /** 968 * nfs_init_directcache - create a slab cache for nfs_direct_req structures 969 * 970 */ 971 int __init nfs_init_directcache(void) 972 { 973 nfs_direct_cachep = kmem_cache_create("nfs_direct_cache", 974 sizeof(struct nfs_direct_req), 975 0, (SLAB_RECLAIM_ACCOUNT| 976 SLAB_MEM_SPREAD), 977 NULL); 978 if (nfs_direct_cachep == NULL) 979 return -ENOMEM; 980 981 return 0; 982 } 983 984 /** 985 * nfs_destroy_directcache - destroy the slab cache for nfs_direct_req structures 986 * 987 */ 988 void nfs_destroy_directcache(void) 989 { 990 kmem_cache_destroy(nfs_direct_cachep); 991 } 992