xref: /openbmc/linux/fs/nfs/direct.c (revision bc0fb201b34b12e2d16e8cbd5bb078c1db936304)
1 /*
2  * linux/fs/nfs/direct.c
3  *
4  * Copyright (C) 2003 by Chuck Lever <cel@netapp.com>
5  *
6  * High-performance uncached I/O for the Linux NFS client
7  *
8  * There are important applications whose performance or correctness
9  * depends on uncached access to file data.  Database clusters
10  * (multiple copies of the same instance running on separate hosts)
11  * implement their own cache coherency protocol that subsumes file
12  * system cache protocols.  Applications that process datasets
13  * considerably larger than the client's memory do not always benefit
14  * from a local cache.  A streaming video server, for instance, has no
15  * need to cache the contents of a file.
16  *
17  * When an application requests uncached I/O, all read and write requests
18  * are made directly to the server; data stored or fetched via these
19  * requests is not cached in the Linux page cache.  The client does not
20  * correct unaligned requests from applications.  All requested bytes are
21  * held on permanent storage before a direct write system call returns to
22  * an application.
23  *
24  * Solaris implements an uncached I/O facility called directio() that
25  * is used for backups and sequential I/O to very large files.  Solaris
26  * also supports uncaching whole NFS partitions with "-o forcedirectio,"
27  * an undocumented mount option.
28  *
29  * Designed by Jeff Kimmel, Chuck Lever, and Trond Myklebust, with
30  * help from Andrew Morton.
31  *
32  * 18 Dec 2001	Initial implementation for 2.4  --cel
33  * 08 Jul 2002	Version for 2.4.19, with bug fixes --trondmy
34  * 08 Jun 2003	Port to 2.5 APIs  --cel
35  * 31 Mar 2004	Handle direct I/O without VFS support  --cel
36  * 15 Sep 2004	Parallel async reads  --cel
37  *
38  */
39 
40 #include <linux/config.h>
41 #include <linux/errno.h>
42 #include <linux/sched.h>
43 #include <linux/kernel.h>
44 #include <linux/smp_lock.h>
45 #include <linux/file.h>
46 #include <linux/pagemap.h>
47 #include <linux/kref.h>
48 
49 #include <linux/nfs_fs.h>
50 #include <linux/nfs_page.h>
51 #include <linux/sunrpc/clnt.h>
52 
53 #include <asm/system.h>
54 #include <asm/uaccess.h>
55 #include <asm/atomic.h>
56 
57 #include "iostat.h"
58 
59 #define NFSDBG_FACILITY		NFSDBG_VFS
60 #define MAX_DIRECTIO_SIZE	(4096UL << PAGE_SHIFT)
61 
62 static void nfs_free_user_pages(struct page **pages, int npages, int do_dirty);
63 static kmem_cache_t *nfs_direct_cachep;
64 
65 /*
66  * This represents a set of asynchronous requests that we're waiting on
67  */
68 struct nfs_direct_req {
69 	struct kref		kref;		/* release manager */
70 	struct list_head	list;		/* nfs_read_data structs */
71 	struct file *		filp;		/* file descriptor */
72 	struct kiocb *		iocb;		/* controlling i/o request */
73 	wait_queue_head_t	wait;		/* wait for i/o completion */
74 	struct inode *		inode;		/* target file of I/O */
75 	struct page **		pages;		/* pages in our buffer */
76 	unsigned int		npages;		/* count of pages */
77 	atomic_t		complete,	/* i/os we're waiting for */
78 				count,		/* bytes actually processed */
79 				error;		/* any reported error */
80 };
81 
82 
83 /**
84  * nfs_direct_IO - NFS address space operation for direct I/O
85  * @rw: direction (read or write)
86  * @iocb: target I/O control block
87  * @iov: array of vectors that define I/O buffer
88  * @pos: offset in file to begin the operation
89  * @nr_segs: size of iovec array
90  *
91  * The presence of this routine in the address space ops vector means
92  * the NFS client supports direct I/O.  However, we shunt off direct
93  * read and write requests before the VFS gets them, so this method
94  * should never be called.
95  */
96 ssize_t nfs_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov, loff_t pos, unsigned long nr_segs)
97 {
98 	struct dentry *dentry = iocb->ki_filp->f_dentry;
99 
100 	dprintk("NFS: nfs_direct_IO (%s) off/no(%Ld/%lu) EINVAL\n",
101 			dentry->d_name.name, (long long) pos, nr_segs);
102 
103 	return -EINVAL;
104 }
105 
106 static inline int nfs_get_user_pages(int rw, unsigned long user_addr, size_t size, struct page ***pages)
107 {
108 	int result = -ENOMEM;
109 	unsigned long page_count;
110 	size_t array_size;
111 
112 	/* set an arbitrary limit to prevent type overflow */
113 	/* XXX: this can probably be as large as INT_MAX */
114 	if (size > MAX_DIRECTIO_SIZE) {
115 		*pages = NULL;
116 		return -EFBIG;
117 	}
118 
119 	page_count = (user_addr + size + PAGE_SIZE - 1) >> PAGE_SHIFT;
120 	page_count -= user_addr >> PAGE_SHIFT;
121 
122 	array_size = (page_count * sizeof(struct page *));
123 	*pages = kmalloc(array_size, GFP_KERNEL);
124 	if (*pages) {
125 		down_read(&current->mm->mmap_sem);
126 		result = get_user_pages(current, current->mm, user_addr,
127 					page_count, (rw == READ), 0,
128 					*pages, NULL);
129 		up_read(&current->mm->mmap_sem);
130 		/*
131 		 * If we got fewer pages than expected from get_user_pages(),
132 		 * the user buffer runs off the end of a mapping; return EFAULT.
133 		 */
134 		if (result >= 0 && result < page_count) {
135 			nfs_free_user_pages(*pages, result, 0);
136 			*pages = NULL;
137 			result = -EFAULT;
138 		}
139 	}
140 	return result;
141 }
142 
143 static void nfs_free_user_pages(struct page **pages, int npages, int do_dirty)
144 {
145 	int i;
146 	for (i = 0; i < npages; i++) {
147 		struct page *page = pages[i];
148 		if (do_dirty && !PageCompound(page))
149 			set_page_dirty_lock(page);
150 		page_cache_release(page);
151 	}
152 	kfree(pages);
153 }
154 
155 static void nfs_direct_req_release(struct kref *kref)
156 {
157 	struct nfs_direct_req *dreq = container_of(kref, struct nfs_direct_req, kref);
158 	kmem_cache_free(nfs_direct_cachep, dreq);
159 }
160 
161 /*
162  * Collects and returns the final error value/byte-count.
163  */
164 static ssize_t nfs_direct_wait(struct nfs_direct_req *dreq)
165 {
166 	int result = -EIOCBQUEUED;
167 
168 	/* Async requests don't wait here */
169 	if (dreq->iocb)
170 		goto out;
171 
172 	result = wait_event_interruptible(dreq->wait,
173 					(atomic_read(&dreq->complete) == 0));
174 
175 	if (!result)
176 		result = atomic_read(&dreq->error);
177 	if (!result)
178 		result = atomic_read(&dreq->count);
179 
180 out:
181 	kref_put(&dreq->kref, nfs_direct_req_release);
182 	return (ssize_t) result;
183 }
184 
185 /*
186  * Note we also set the number of requests we have in the dreq when we are
187  * done.  This prevents races with I/O completion so we will always wait
188  * until all requests have been dispatched and completed.
189  */
190 static struct nfs_direct_req *nfs_direct_read_alloc(size_t nbytes, size_t rsize)
191 {
192 	struct list_head *list;
193 	struct nfs_direct_req *dreq;
194 	unsigned int reads = 0;
195 	unsigned int rpages = (rsize + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
196 
197 	dreq = kmem_cache_alloc(nfs_direct_cachep, SLAB_KERNEL);
198 	if (!dreq)
199 		return NULL;
200 
201 	kref_init(&dreq->kref);
202 	init_waitqueue_head(&dreq->wait);
203 	INIT_LIST_HEAD(&dreq->list);
204 	dreq->iocb = NULL;
205 	atomic_set(&dreq->count, 0);
206 	atomic_set(&dreq->error, 0);
207 
208 	list = &dreq->list;
209 	for(;;) {
210 		struct nfs_read_data *data = nfs_readdata_alloc(rpages);
211 
212 		if (unlikely(!data)) {
213 			while (!list_empty(list)) {
214 				data = list_entry(list->next,
215 						  struct nfs_read_data, pages);
216 				list_del(&data->pages);
217 				nfs_readdata_free(data);
218 			}
219 			kref_put(&dreq->kref, nfs_direct_req_release);
220 			return NULL;
221 		}
222 
223 		INIT_LIST_HEAD(&data->pages);
224 		list_add(&data->pages, list);
225 
226 		data->req = (struct nfs_page *) dreq;
227 		reads++;
228 		if (nbytes <= rsize)
229 			break;
230 		nbytes -= rsize;
231 	}
232 	kref_get(&dreq->kref);
233 	atomic_set(&dreq->complete, reads);
234 	return dreq;
235 }
236 
237 /*
238  * We must hold a reference to all the pages in this direct read request
239  * until the RPCs complete.  This could be long *after* we are woken up in
240  * nfs_direct_wait (for instance, if someone hits ^C on a slow server).
241  *
242  * In addition, synchronous I/O uses a stack-allocated iocb.  Thus we
243  * can't trust the iocb is still valid here if this is a synchronous
244  * request.  If the waiter is woken prematurely, the iocb is long gone.
245  */
246 static void nfs_direct_read_result(struct rpc_task *task, void *calldata)
247 {
248 	struct nfs_read_data *data = calldata;
249 	struct nfs_direct_req *dreq = (struct nfs_direct_req *) data->req;
250 
251 	if (nfs_readpage_result(task, data) != 0)
252 		return;
253 	if (likely(task->tk_status >= 0))
254 		atomic_add(data->res.count, &dreq->count);
255 	else
256 		atomic_set(&dreq->error, task->tk_status);
257 
258 	if (unlikely(atomic_dec_and_test(&dreq->complete))) {
259 		nfs_free_user_pages(dreq->pages, dreq->npages, 1);
260 		if (dreq->iocb) {
261 			long res = atomic_read(&dreq->error);
262 			if (!res)
263 				res = atomic_read(&dreq->count);
264 			aio_complete(dreq->iocb, res, 0);
265 		} else
266 			wake_up(&dreq->wait);
267 		kref_put(&dreq->kref, nfs_direct_req_release);
268 	}
269 }
270 
271 static const struct rpc_call_ops nfs_read_direct_ops = {
272 	.rpc_call_done = nfs_direct_read_result,
273 	.rpc_release = nfs_readdata_release,
274 };
275 
276 /*
277  * For each nfs_read_data struct that was allocated on the list, dispatch
278  * an NFS READ operation
279  */
280 static void nfs_direct_read_schedule(struct nfs_direct_req *dreq, unsigned long user_addr, size_t count, loff_t file_offset)
281 {
282 	struct file *file = dreq->filp;
283 	struct inode *inode = file->f_mapping->host;
284 	struct nfs_open_context *ctx = (struct nfs_open_context *)
285 							file->private_data;
286 	struct list_head *list = &dreq->list;
287 	struct page **pages = dreq->pages;
288 	size_t rsize = NFS_SERVER(inode)->rsize;
289 	unsigned int curpage, pgbase;
290 
291 	curpage = 0;
292 	pgbase = user_addr & ~PAGE_MASK;
293 	do {
294 		struct nfs_read_data *data;
295 		size_t bytes;
296 
297 		bytes = rsize;
298 		if (count < rsize)
299 			bytes = count;
300 
301 		data = list_entry(list->next, struct nfs_read_data, pages);
302 		list_del_init(&data->pages);
303 
304 		data->inode = inode;
305 		data->cred = ctx->cred;
306 		data->args.fh = NFS_FH(inode);
307 		data->args.context = ctx;
308 		data->args.offset = file_offset;
309 		data->args.pgbase = pgbase;
310 		data->args.pages = &pages[curpage];
311 		data->args.count = bytes;
312 		data->res.fattr = &data->fattr;
313 		data->res.eof = 0;
314 		data->res.count = bytes;
315 
316 		rpc_init_task(&data->task, NFS_CLIENT(inode), RPC_TASK_ASYNC,
317 				&nfs_read_direct_ops, data);
318 		NFS_PROTO(inode)->read_setup(data);
319 
320 		data->task.tk_cookie = (unsigned long) inode;
321 
322 		lock_kernel();
323 		rpc_execute(&data->task);
324 		unlock_kernel();
325 
326 		dfprintk(VFS, "NFS: %4d initiated direct read call (req %s/%Ld, %u bytes @ offset %Lu)\n",
327 				data->task.tk_pid,
328 				inode->i_sb->s_id,
329 				(long long)NFS_FILEID(inode),
330 				bytes,
331 				(unsigned long long)data->args.offset);
332 
333 		file_offset += bytes;
334 		pgbase += bytes;
335 		curpage += pgbase >> PAGE_SHIFT;
336 		pgbase &= ~PAGE_MASK;
337 
338 		count -= bytes;
339 	} while (count != 0);
340 }
341 
342 static ssize_t nfs_direct_read(struct kiocb *iocb, unsigned long user_addr, size_t count, loff_t file_offset, struct page **pages, unsigned int nr_pages)
343 {
344 	ssize_t result;
345 	sigset_t oldset;
346 	struct inode *inode = iocb->ki_filp->f_mapping->host;
347 	struct rpc_clnt *clnt = NFS_CLIENT(inode);
348 	struct nfs_direct_req *dreq;
349 
350 	dreq = nfs_direct_read_alloc(count, NFS_SERVER(inode)->rsize);
351 	if (!dreq)
352 		return -ENOMEM;
353 
354 	dreq->pages = pages;
355 	dreq->npages = nr_pages;
356 	dreq->inode = inode;
357 	dreq->filp = iocb->ki_filp;
358 	if (!is_sync_kiocb(iocb))
359 		dreq->iocb = iocb;
360 
361 	nfs_add_stats(inode, NFSIOS_DIRECTREADBYTES, count);
362 	rpc_clnt_sigmask(clnt, &oldset);
363 	nfs_direct_read_schedule(dreq, user_addr, count, file_offset);
364 	result = nfs_direct_wait(dreq);
365 	rpc_clnt_sigunmask(clnt, &oldset);
366 
367 	return result;
368 }
369 
370 static ssize_t nfs_direct_write_seg(struct inode *inode, struct nfs_open_context *ctx, unsigned long user_addr, size_t count, loff_t file_offset, struct page **pages, int nr_pages)
371 {
372 	const unsigned int wsize = NFS_SERVER(inode)->wsize;
373 	size_t request;
374 	int curpage, need_commit;
375 	ssize_t result, tot_bytes;
376 	struct nfs_writeverf first_verf;
377 	struct nfs_write_data *wdata;
378 
379 	wdata = nfs_writedata_alloc(NFS_SERVER(inode)->wpages);
380 	if (!wdata)
381 		return -ENOMEM;
382 
383 	wdata->inode = inode;
384 	wdata->cred = ctx->cred;
385 	wdata->args.fh = NFS_FH(inode);
386 	wdata->args.context = ctx;
387 	wdata->args.stable = NFS_UNSTABLE;
388 	if (IS_SYNC(inode) || NFS_PROTO(inode)->version == 2 || count <= wsize)
389 		wdata->args.stable = NFS_FILE_SYNC;
390 	wdata->res.fattr = &wdata->fattr;
391 	wdata->res.verf = &wdata->verf;
392 
393 	nfs_begin_data_update(inode);
394 retry:
395 	need_commit = 0;
396 	tot_bytes = 0;
397 	curpage = 0;
398 	request = count;
399 	wdata->args.pgbase = user_addr & ~PAGE_MASK;
400 	wdata->args.offset = file_offset;
401 	do {
402 		wdata->args.count = request;
403 		if (wdata->args.count > wsize)
404 			wdata->args.count = wsize;
405 		wdata->args.pages = &pages[curpage];
406 
407 		dprintk("NFS: direct write: c=%u o=%Ld ua=%lu, pb=%u, cp=%u\n",
408 			wdata->args.count, (long long) wdata->args.offset,
409 			user_addr + tot_bytes, wdata->args.pgbase, curpage);
410 
411 		lock_kernel();
412 		result = NFS_PROTO(inode)->write(wdata);
413 		unlock_kernel();
414 
415 		if (result <= 0) {
416 			if (tot_bytes > 0)
417 				break;
418 			goto out;
419 		}
420 
421 		if (tot_bytes == 0)
422 			memcpy(&first_verf.verifier, &wdata->verf.verifier,
423 						sizeof(first_verf.verifier));
424 		if (wdata->verf.committed != NFS_FILE_SYNC) {
425 			need_commit = 1;
426 			if (memcmp(&first_verf.verifier, &wdata->verf.verifier,
427 					sizeof(first_verf.verifier)))
428 				goto sync_retry;
429 		}
430 
431 		tot_bytes += result;
432 
433 		/* in case of a short write: stop now, let the app recover */
434 		if (result < wdata->args.count)
435 			break;
436 
437 		wdata->args.offset += result;
438 		wdata->args.pgbase += result;
439 		curpage += wdata->args.pgbase >> PAGE_SHIFT;
440 		wdata->args.pgbase &= ~PAGE_MASK;
441 		request -= result;
442 	} while (request != 0);
443 
444 	/*
445 	 * Commit data written so far, even in the event of an error
446 	 */
447 	if (need_commit) {
448 		wdata->args.count = tot_bytes;
449 		wdata->args.offset = file_offset;
450 
451 		lock_kernel();
452 		result = NFS_PROTO(inode)->commit(wdata);
453 		unlock_kernel();
454 
455 		if (result < 0 || memcmp(&first_verf.verifier,
456 					 &wdata->verf.verifier,
457 					 sizeof(first_verf.verifier)) != 0)
458 			goto sync_retry;
459 	}
460 	result = tot_bytes;
461 
462 out:
463 	nfs_end_data_update(inode);
464 	nfs_writedata_free(wdata);
465 	return result;
466 
467 sync_retry:
468 	wdata->args.stable = NFS_FILE_SYNC;
469 	goto retry;
470 }
471 
472 /*
473  * Upon return, generic_file_direct_IO invalidates any cached pages
474  * that non-direct readers might access, so they will pick up these
475  * writes immediately.
476  */
477 static ssize_t nfs_direct_write(struct inode *inode, struct nfs_open_context *ctx, const struct iovec *iov, loff_t file_offset, unsigned long nr_segs)
478 {
479 	ssize_t tot_bytes = 0;
480 	unsigned long seg = 0;
481 
482 	while ((seg < nr_segs) && (tot_bytes >= 0)) {
483 		ssize_t result;
484 		int page_count;
485 		struct page **pages;
486 		const struct iovec *vec = &iov[seg++];
487 		unsigned long user_addr = (unsigned long) vec->iov_base;
488 		size_t size = vec->iov_len;
489 
490                 page_count = nfs_get_user_pages(WRITE, user_addr, size, &pages);
491                 if (page_count < 0) {
492                         nfs_free_user_pages(pages, 0, 0);
493 			if (tot_bytes > 0)
494 				break;
495                         return page_count;
496                 }
497 
498 		nfs_add_stats(inode, NFSIOS_DIRECTWRITTENBYTES, size);
499 		result = nfs_direct_write_seg(inode, ctx, user_addr, size,
500 				file_offset, pages, page_count);
501 		nfs_free_user_pages(pages, page_count, 0);
502 
503 		if (result <= 0) {
504 			if (tot_bytes > 0)
505 				break;
506 			return result;
507 		}
508 		nfs_add_stats(inode, NFSIOS_SERVERWRITTENBYTES, result);
509 		tot_bytes += result;
510 		file_offset += result;
511 		if (result < size)
512 			break;
513 	}
514 	return tot_bytes;
515 }
516 
517 /**
518  * nfs_file_direct_read - file direct read operation for NFS files
519  * @iocb: target I/O control block
520  * @buf: user's buffer into which to read data
521  * count: number of bytes to read
522  * pos: byte offset in file where reading starts
523  *
524  * We use this function for direct reads instead of calling
525  * generic_file_aio_read() in order to avoid gfar's check to see if
526  * the request starts before the end of the file.  For that check
527  * to work, we must generate a GETATTR before each direct read, and
528  * even then there is a window between the GETATTR and the subsequent
529  * READ where the file size could change.  So our preference is simply
530  * to do all reads the application wants, and the server will take
531  * care of managing the end of file boundary.
532  *
533  * This function also eliminates unnecessarily updating the file's
534  * atime locally, as the NFS server sets the file's atime, and this
535  * client must read the updated atime from the server back into its
536  * cache.
537  */
538 ssize_t nfs_file_direct_read(struct kiocb *iocb, char __user *buf, size_t count, loff_t pos)
539 {
540 	ssize_t retval = -EINVAL;
541 	int page_count;
542 	struct page **pages;
543 	struct file *file = iocb->ki_filp;
544 	struct address_space *mapping = file->f_mapping;
545 
546 	dprintk("nfs: direct read(%s/%s, %lu@%Ld)\n",
547 		file->f_dentry->d_parent->d_name.name,
548 		file->f_dentry->d_name.name,
549 		(unsigned long) count, (long long) pos);
550 
551 	if (count < 0)
552 		goto out;
553 	retval = -EFAULT;
554 	if (!access_ok(VERIFY_WRITE, buf, count))
555 		goto out;
556 	retval = 0;
557 	if (!count)
558 		goto out;
559 
560 	retval = nfs_sync_mapping(mapping);
561 	if (retval)
562 		goto out;
563 
564 	page_count = nfs_get_user_pages(READ, (unsigned long) buf,
565 						count, &pages);
566 	if (page_count < 0) {
567 		nfs_free_user_pages(pages, 0, 0);
568 		retval = page_count;
569 		goto out;
570 	}
571 
572 	retval = nfs_direct_read(iocb, (unsigned long) buf, count, pos,
573 						pages, page_count);
574 	if (retval > 0)
575 		iocb->ki_pos = pos + retval;
576 
577 out:
578 	return retval;
579 }
580 
581 /**
582  * nfs_file_direct_write - file direct write operation for NFS files
583  * @iocb: target I/O control block
584  * @buf: user's buffer from which to write data
585  * count: number of bytes to write
586  * pos: byte offset in file where writing starts
587  *
588  * We use this function for direct writes instead of calling
589  * generic_file_aio_write() in order to avoid taking the inode
590  * semaphore and updating the i_size.  The NFS server will set
591  * the new i_size and this client must read the updated size
592  * back into its cache.  We let the server do generic write
593  * parameter checking and report problems.
594  *
595  * We also avoid an unnecessary invocation of generic_osync_inode(),
596  * as it is fairly meaningless to sync the metadata of an NFS file.
597  *
598  * We eliminate local atime updates, see direct read above.
599  *
600  * We avoid unnecessary page cache invalidations for normal cached
601  * readers of this file.
602  *
603  * Note that O_APPEND is not supported for NFS direct writes, as there
604  * is no atomic O_APPEND write facility in the NFS protocol.
605  */
606 ssize_t nfs_file_direct_write(struct kiocb *iocb, const char __user *buf, size_t count, loff_t pos)
607 {
608 	ssize_t retval;
609 	struct file *file = iocb->ki_filp;
610 	struct nfs_open_context *ctx =
611 			(struct nfs_open_context *) file->private_data;
612 	struct address_space *mapping = file->f_mapping;
613 	struct inode *inode = mapping->host;
614 	struct iovec iov = {
615 		.iov_base = (char __user *)buf,
616 	};
617 
618 	dfprintk(VFS, "nfs: direct write(%s/%s, %lu@%Ld)\n",
619 		file->f_dentry->d_parent->d_name.name,
620 		file->f_dentry->d_name.name,
621 		(unsigned long) count, (long long) pos);
622 
623 	retval = -EINVAL;
624 	if (!is_sync_kiocb(iocb))
625 		goto out;
626 
627 	retval = generic_write_checks(file, &pos, &count, 0);
628 	if (retval)
629 		goto out;
630 
631 	retval = -EINVAL;
632 	if ((ssize_t) count < 0)
633 		goto out;
634 	retval = 0;
635 	if (!count)
636 		goto out;
637 	iov.iov_len = count,
638 
639 	retval = -EFAULT;
640 	if (!access_ok(VERIFY_READ, iov.iov_base, iov.iov_len))
641 		goto out;
642 
643 	retval = nfs_sync_mapping(mapping);
644 	if (retval)
645 		goto out;
646 
647 	retval = nfs_direct_write(inode, ctx, &iov, pos, 1);
648 	if (mapping->nrpages)
649 		invalidate_inode_pages2(mapping);
650 	if (retval > 0)
651 		iocb->ki_pos = pos + retval;
652 
653 out:
654 	return retval;
655 }
656 
657 int nfs_init_directcache(void)
658 {
659 	nfs_direct_cachep = kmem_cache_create("nfs_direct_cache",
660 						sizeof(struct nfs_direct_req),
661 						0, SLAB_RECLAIM_ACCOUNT,
662 						NULL, NULL);
663 	if (nfs_direct_cachep == NULL)
664 		return -ENOMEM;
665 
666 	return 0;
667 }
668 
669 void nfs_destroy_directcache(void)
670 {
671 	if (kmem_cache_destroy(nfs_direct_cachep))
672 		printk(KERN_INFO "nfs_direct_cache: not all structures were freed\n");
673 }
674