xref: /openbmc/linux/fs/nfs/direct.c (revision 9811cd57f4c6b5b60ec104de68a88303717e3106)
1 /*
2  * linux/fs/nfs/direct.c
3  *
4  * Copyright (C) 2003 by Chuck Lever <cel@netapp.com>
5  *
6  * High-performance uncached I/O for the Linux NFS client
7  *
8  * There are important applications whose performance or correctness
9  * depends on uncached access to file data.  Database clusters
10  * (multiple copies of the same instance running on separate hosts)
11  * implement their own cache coherency protocol that subsumes file
12  * system cache protocols.  Applications that process datasets
13  * considerably larger than the client's memory do not always benefit
14  * from a local cache.  A streaming video server, for instance, has no
15  * need to cache the contents of a file.
16  *
17  * When an application requests uncached I/O, all read and write requests
18  * are made directly to the server; data stored or fetched via these
19  * requests is not cached in the Linux page cache.  The client does not
20  * correct unaligned requests from applications.  All requested bytes are
21  * held on permanent storage before a direct write system call returns to
22  * an application.
23  *
24  * Solaris implements an uncached I/O facility called directio() that
25  * is used for backups and sequential I/O to very large files.  Solaris
26  * also supports uncaching whole NFS partitions with "-o forcedirectio,"
27  * an undocumented mount option.
28  *
29  * Designed by Jeff Kimmel, Chuck Lever, and Trond Myklebust, with
30  * help from Andrew Morton.
31  *
32  * 18 Dec 2001	Initial implementation for 2.4  --cel
33  * 08 Jul 2002	Version for 2.4.19, with bug fixes --trondmy
34  * 08 Jun 2003	Port to 2.5 APIs  --cel
35  * 31 Mar 2004	Handle direct I/O without VFS support  --cel
36  * 15 Sep 2004	Parallel async reads  --cel
37  * 04 May 2005	support O_DIRECT with aio  --cel
38  *
39  */
40 
41 #include <linux/errno.h>
42 #include <linux/sched.h>
43 #include <linux/kernel.h>
44 #include <linux/file.h>
45 #include <linux/pagemap.h>
46 #include <linux/kref.h>
47 #include <linux/slab.h>
48 #include <linux/task_io_accounting_ops.h>
49 #include <linux/module.h>
50 
51 #include <linux/nfs_fs.h>
52 #include <linux/nfs_page.h>
53 #include <linux/sunrpc/clnt.h>
54 
55 #include <asm/uaccess.h>
56 #include <linux/atomic.h>
57 
58 #include "internal.h"
59 #include "iostat.h"
60 #include "pnfs.h"
61 
62 #define NFSDBG_FACILITY		NFSDBG_VFS
63 
64 static struct kmem_cache *nfs_direct_cachep;
65 
66 /*
67  * This represents a set of asynchronous requests that we're waiting on
68  */
69 struct nfs_direct_req {
70 	struct kref		kref;		/* release manager */
71 
72 	/* I/O parameters */
73 	struct nfs_open_context	*ctx;		/* file open context info */
74 	struct nfs_lock_context *l_ctx;		/* Lock context info */
75 	struct kiocb *		iocb;		/* controlling i/o request */
76 	struct inode *		inode;		/* target file of i/o */
77 
78 	/* completion state */
79 	atomic_t		io_count;	/* i/os we're waiting for */
80 	spinlock_t		lock;		/* protect completion state */
81 	ssize_t			count,		/* bytes actually processed */
82 				bytes_left,	/* bytes left to be sent */
83 				error;		/* any reported error */
84 	struct completion	completion;	/* wait for i/o completion */
85 
86 	/* commit state */
87 	struct nfs_mds_commit_info mds_cinfo;	/* Storage for cinfo */
88 	struct pnfs_ds_commit_info ds_cinfo;	/* Storage for cinfo */
89 	struct work_struct	work;
90 	int			flags;
91 #define NFS_ODIRECT_DO_COMMIT		(1)	/* an unstable reply was received */
92 #define NFS_ODIRECT_RESCHED_WRITES	(2)	/* write verification failed */
93 	struct nfs_writeverf	verf;		/* unstable write verifier */
94 };
95 
96 static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops;
97 static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops;
98 static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode);
99 static void nfs_direct_write_schedule_work(struct work_struct *work);
100 
101 static inline void get_dreq(struct nfs_direct_req *dreq)
102 {
103 	atomic_inc(&dreq->io_count);
104 }
105 
106 static inline int put_dreq(struct nfs_direct_req *dreq)
107 {
108 	return atomic_dec_and_test(&dreq->io_count);
109 }
110 
111 /**
112  * nfs_direct_IO - NFS address space operation for direct I/O
113  * @rw: direction (read or write)
114  * @iocb: target I/O control block
115  * @iov: array of vectors that define I/O buffer
116  * @pos: offset in file to begin the operation
117  * @nr_segs: size of iovec array
118  *
119  * The presence of this routine in the address space ops vector means
120  * the NFS client supports direct I/O. However, for most direct IO, we
121  * shunt off direct read and write requests before the VFS gets them,
122  * so this method is only ever called for swap.
123  */
124 ssize_t nfs_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov, loff_t pos, unsigned long nr_segs)
125 {
126 #ifndef CONFIG_NFS_SWAP
127 	dprintk("NFS: nfs_direct_IO (%pD) off/no(%Ld/%lu) EINVAL\n",
128 			iocb->ki_filp, (long long) pos, nr_segs);
129 
130 	return -EINVAL;
131 #else
132 	VM_BUG_ON(iocb->ki_nbytes != PAGE_SIZE);
133 
134 	if (rw == READ || rw == KERNEL_READ)
135 		return nfs_file_direct_read(iocb, iov, nr_segs, pos,
136 				rw == READ ? true : false);
137 	return nfs_file_direct_write(iocb, iov, nr_segs, pos,
138 				rw == WRITE ? true : false);
139 #endif /* CONFIG_NFS_SWAP */
140 }
141 
142 static void nfs_direct_release_pages(struct page **pages, unsigned int npages)
143 {
144 	unsigned int i;
145 	for (i = 0; i < npages; i++)
146 		page_cache_release(pages[i]);
147 }
148 
149 void nfs_init_cinfo_from_dreq(struct nfs_commit_info *cinfo,
150 			      struct nfs_direct_req *dreq)
151 {
152 	cinfo->lock = &dreq->lock;
153 	cinfo->mds = &dreq->mds_cinfo;
154 	cinfo->ds = &dreq->ds_cinfo;
155 	cinfo->dreq = dreq;
156 	cinfo->completion_ops = &nfs_direct_commit_completion_ops;
157 }
158 
159 static inline struct nfs_direct_req *nfs_direct_req_alloc(void)
160 {
161 	struct nfs_direct_req *dreq;
162 
163 	dreq = kmem_cache_zalloc(nfs_direct_cachep, GFP_KERNEL);
164 	if (!dreq)
165 		return NULL;
166 
167 	kref_init(&dreq->kref);
168 	kref_get(&dreq->kref);
169 	init_completion(&dreq->completion);
170 	INIT_LIST_HEAD(&dreq->mds_cinfo.list);
171 	INIT_WORK(&dreq->work, nfs_direct_write_schedule_work);
172 	spin_lock_init(&dreq->lock);
173 
174 	return dreq;
175 }
176 
177 static void nfs_direct_req_free(struct kref *kref)
178 {
179 	struct nfs_direct_req *dreq = container_of(kref, struct nfs_direct_req, kref);
180 
181 	if (dreq->l_ctx != NULL)
182 		nfs_put_lock_context(dreq->l_ctx);
183 	if (dreq->ctx != NULL)
184 		put_nfs_open_context(dreq->ctx);
185 	kmem_cache_free(nfs_direct_cachep, dreq);
186 }
187 
188 static void nfs_direct_req_release(struct nfs_direct_req *dreq)
189 {
190 	kref_put(&dreq->kref, nfs_direct_req_free);
191 }
192 
193 ssize_t nfs_dreq_bytes_left(struct nfs_direct_req *dreq)
194 {
195 	return dreq->bytes_left;
196 }
197 EXPORT_SYMBOL_GPL(nfs_dreq_bytes_left);
198 
199 /*
200  * Collects and returns the final error value/byte-count.
201  */
202 static ssize_t nfs_direct_wait(struct nfs_direct_req *dreq)
203 {
204 	ssize_t result = -EIOCBQUEUED;
205 
206 	/* Async requests don't wait here */
207 	if (dreq->iocb)
208 		goto out;
209 
210 	result = wait_for_completion_killable(&dreq->completion);
211 
212 	if (!result)
213 		result = dreq->error;
214 	if (!result)
215 		result = dreq->count;
216 
217 out:
218 	return (ssize_t) result;
219 }
220 
221 /*
222  * Synchronous I/O uses a stack-allocated iocb.  Thus we can't trust
223  * the iocb is still valid here if this is a synchronous request.
224  */
225 static void nfs_direct_complete(struct nfs_direct_req *dreq, bool write)
226 {
227 	struct inode *inode = dreq->inode;
228 
229 	if (dreq->iocb) {
230 		loff_t pos = dreq->iocb->ki_pos + dreq->count;
231 		long res = (long) dreq->error;
232 		if (!res)
233 			res = (long) dreq->count;
234 
235 		if (write) {
236 			spin_lock(&inode->i_lock);
237 			if (i_size_read(inode) < pos)
238 				i_size_write(inode, pos);
239 			spin_unlock(&inode->i_lock);
240 		}
241 
242 		aio_complete(dreq->iocb, res, 0);
243 	}
244 	complete_all(&dreq->completion);
245 
246 	nfs_direct_req_release(dreq);
247 }
248 
249 static void nfs_direct_readpage_release(struct nfs_page *req)
250 {
251 	dprintk("NFS: direct read done (%s/%llu %d@%lld)\n",
252 		req->wb_context->dentry->d_inode->i_sb->s_id,
253 		(unsigned long long)NFS_FILEID(req->wb_context->dentry->d_inode),
254 		req->wb_bytes,
255 		(long long)req_offset(req));
256 	nfs_release_request(req);
257 }
258 
259 static void nfs_direct_read_completion(struct nfs_pgio_header *hdr)
260 {
261 	unsigned long bytes = 0;
262 	struct nfs_direct_req *dreq = hdr->dreq;
263 
264 	if (test_bit(NFS_IOHDR_REDO, &hdr->flags))
265 		goto out_put;
266 
267 	spin_lock(&dreq->lock);
268 	if (test_bit(NFS_IOHDR_ERROR, &hdr->flags) && (hdr->good_bytes == 0))
269 		dreq->error = hdr->error;
270 	else
271 		dreq->count += hdr->good_bytes;
272 	spin_unlock(&dreq->lock);
273 
274 	while (!list_empty(&hdr->pages)) {
275 		struct nfs_page *req = nfs_list_entry(hdr->pages.next);
276 		struct page *page = req->wb_page;
277 
278 		if (!PageCompound(page) && bytes < hdr->good_bytes)
279 			set_page_dirty(page);
280 		bytes += req->wb_bytes;
281 		nfs_list_remove_request(req);
282 		nfs_direct_readpage_release(req);
283 	}
284 out_put:
285 	if (put_dreq(dreq))
286 		nfs_direct_complete(dreq, false);
287 	hdr->release(hdr);
288 }
289 
290 static void nfs_read_sync_pgio_error(struct list_head *head)
291 {
292 	struct nfs_page *req;
293 
294 	while (!list_empty(head)) {
295 		req = nfs_list_entry(head->next);
296 		nfs_list_remove_request(req);
297 		nfs_release_request(req);
298 	}
299 }
300 
301 static void nfs_direct_pgio_init(struct nfs_pgio_header *hdr)
302 {
303 	get_dreq(hdr->dreq);
304 }
305 
306 static const struct nfs_pgio_completion_ops nfs_direct_read_completion_ops = {
307 	.error_cleanup = nfs_read_sync_pgio_error,
308 	.init_hdr = nfs_direct_pgio_init,
309 	.completion = nfs_direct_read_completion,
310 };
311 
312 /*
313  * For each rsize'd chunk of the user's buffer, dispatch an NFS READ
314  * operation.  If nfs_readdata_alloc() or get_user_pages() fails,
315  * bail and stop sending more reads.  Read length accounting is
316  * handled automatically by nfs_direct_read_result().  Otherwise, if
317  * no requests have been sent, just return an error.
318  */
319 static ssize_t nfs_direct_read_schedule_segment(struct nfs_pageio_descriptor *desc,
320 						const struct iovec *iov,
321 						loff_t pos, bool uio)
322 {
323 	struct nfs_direct_req *dreq = desc->pg_dreq;
324 	struct nfs_open_context *ctx = dreq->ctx;
325 	struct inode *inode = ctx->dentry->d_inode;
326 	unsigned long user_addr = (unsigned long)iov->iov_base;
327 	size_t count = iov->iov_len;
328 	size_t rsize = NFS_SERVER(inode)->rsize;
329 	unsigned int pgbase;
330 	int result;
331 	ssize_t started = 0;
332 	struct page **pagevec = NULL;
333 	unsigned int npages;
334 
335 	do {
336 		size_t bytes;
337 		int i;
338 
339 		pgbase = user_addr & ~PAGE_MASK;
340 		bytes = min(max_t(size_t, rsize, PAGE_SIZE), count);
341 
342 		result = -ENOMEM;
343 		npages = nfs_page_array_len(pgbase, bytes);
344 		if (!pagevec)
345 			pagevec = kmalloc(npages * sizeof(struct page *),
346 					  GFP_KERNEL);
347 		if (!pagevec)
348 			break;
349 		if (uio) {
350 			down_read(&current->mm->mmap_sem);
351 			result = get_user_pages(current, current->mm, user_addr,
352 					npages, 1, 0, pagevec, NULL);
353 			up_read(&current->mm->mmap_sem);
354 			if (result < 0)
355 				break;
356 		} else {
357 			WARN_ON(npages != 1);
358 			result = get_kernel_page(user_addr, 1, pagevec);
359 			if (WARN_ON(result != 1))
360 				break;
361 		}
362 
363 		if ((unsigned)result < npages) {
364 			bytes = result * PAGE_SIZE;
365 			if (bytes <= pgbase) {
366 				nfs_direct_release_pages(pagevec, result);
367 				break;
368 			}
369 			bytes -= pgbase;
370 			npages = result;
371 		}
372 
373 		for (i = 0; i < npages; i++) {
374 			struct nfs_page *req;
375 			unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase);
376 			/* XXX do we need to do the eof zeroing found in async_filler? */
377 			req = nfs_create_request(dreq->ctx, dreq->inode,
378 						 pagevec[i],
379 						 pgbase, req_len);
380 			if (IS_ERR(req)) {
381 				result = PTR_ERR(req);
382 				break;
383 			}
384 			req->wb_index = pos >> PAGE_SHIFT;
385 			req->wb_offset = pos & ~PAGE_MASK;
386 			if (!nfs_pageio_add_request(desc, req)) {
387 				result = desc->pg_error;
388 				nfs_release_request(req);
389 				break;
390 			}
391 			pgbase = 0;
392 			bytes -= req_len;
393 			started += req_len;
394 			user_addr += req_len;
395 			pos += req_len;
396 			count -= req_len;
397 			dreq->bytes_left -= req_len;
398 		}
399 		/* The nfs_page now hold references to these pages */
400 		nfs_direct_release_pages(pagevec, npages);
401 	} while (count != 0 && result >= 0);
402 
403 	kfree(pagevec);
404 
405 	if (started)
406 		return started;
407 	return result < 0 ? (ssize_t) result : -EFAULT;
408 }
409 
410 static ssize_t nfs_direct_read_schedule_iovec(struct nfs_direct_req *dreq,
411 					      const struct iovec *iov,
412 					      unsigned long nr_segs,
413 					      loff_t pos, bool uio)
414 {
415 	struct nfs_pageio_descriptor desc;
416 	ssize_t result = -EINVAL;
417 	size_t requested_bytes = 0;
418 	unsigned long seg;
419 
420 	NFS_PROTO(dreq->inode)->read_pageio_init(&desc, dreq->inode,
421 			     &nfs_direct_read_completion_ops);
422 	get_dreq(dreq);
423 	desc.pg_dreq = dreq;
424 
425 	for (seg = 0; seg < nr_segs; seg++) {
426 		const struct iovec *vec = &iov[seg];
427 		result = nfs_direct_read_schedule_segment(&desc, vec, pos, uio);
428 		if (result < 0)
429 			break;
430 		requested_bytes += result;
431 		if ((size_t)result < vec->iov_len)
432 			break;
433 		pos += vec->iov_len;
434 	}
435 
436 	nfs_pageio_complete(&desc);
437 
438 	/*
439 	 * If no bytes were started, return the error, and let the
440 	 * generic layer handle the completion.
441 	 */
442 	if (requested_bytes == 0) {
443 		nfs_direct_req_release(dreq);
444 		return result < 0 ? result : -EIO;
445 	}
446 
447 	if (put_dreq(dreq))
448 		nfs_direct_complete(dreq, false);
449 	return 0;
450 }
451 
452 static ssize_t nfs_direct_read(struct kiocb *iocb, const struct iovec *iov,
453 			       unsigned long nr_segs, loff_t pos, bool uio)
454 {
455 	ssize_t result = -ENOMEM;
456 	struct inode *inode = iocb->ki_filp->f_mapping->host;
457 	struct nfs_direct_req *dreq;
458 	struct nfs_lock_context *l_ctx;
459 
460 	dreq = nfs_direct_req_alloc();
461 	if (dreq == NULL)
462 		goto out;
463 
464 	dreq->inode = inode;
465 	dreq->bytes_left = iov_length(iov, nr_segs);
466 	dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
467 	l_ctx = nfs_get_lock_context(dreq->ctx);
468 	if (IS_ERR(l_ctx)) {
469 		result = PTR_ERR(l_ctx);
470 		goto out_release;
471 	}
472 	dreq->l_ctx = l_ctx;
473 	if (!is_sync_kiocb(iocb))
474 		dreq->iocb = iocb;
475 
476 	NFS_I(inode)->read_io += iov_length(iov, nr_segs);
477 	result = nfs_direct_read_schedule_iovec(dreq, iov, nr_segs, pos, uio);
478 	if (!result)
479 		result = nfs_direct_wait(dreq);
480 out_release:
481 	nfs_direct_req_release(dreq);
482 out:
483 	return result;
484 }
485 
486 static void nfs_inode_dio_write_done(struct inode *inode)
487 {
488 	nfs_zap_mapping(inode, inode->i_mapping);
489 	inode_dio_done(inode);
490 }
491 
492 #if IS_ENABLED(CONFIG_NFS_V3) || IS_ENABLED(CONFIG_NFS_V4)
493 static void nfs_direct_write_reschedule(struct nfs_direct_req *dreq)
494 {
495 	struct nfs_pageio_descriptor desc;
496 	struct nfs_page *req, *tmp;
497 	LIST_HEAD(reqs);
498 	struct nfs_commit_info cinfo;
499 	LIST_HEAD(failed);
500 
501 	nfs_init_cinfo_from_dreq(&cinfo, dreq);
502 	pnfs_recover_commit_reqs(dreq->inode, &reqs, &cinfo);
503 	spin_lock(cinfo.lock);
504 	nfs_scan_commit_list(&cinfo.mds->list, &reqs, &cinfo, 0);
505 	spin_unlock(cinfo.lock);
506 
507 	dreq->count = 0;
508 	get_dreq(dreq);
509 
510 	NFS_PROTO(dreq->inode)->write_pageio_init(&desc, dreq->inode, FLUSH_STABLE,
511 			      &nfs_direct_write_completion_ops);
512 	desc.pg_dreq = dreq;
513 
514 	list_for_each_entry_safe(req, tmp, &reqs, wb_list) {
515 		if (!nfs_pageio_add_request(&desc, req)) {
516 			nfs_list_remove_request(req);
517 			nfs_list_add_request(req, &failed);
518 			spin_lock(cinfo.lock);
519 			dreq->flags = 0;
520 			dreq->error = -EIO;
521 			spin_unlock(cinfo.lock);
522 		}
523 		nfs_release_request(req);
524 	}
525 	nfs_pageio_complete(&desc);
526 
527 	while (!list_empty(&failed)) {
528 		req = nfs_list_entry(failed.next);
529 		nfs_list_remove_request(req);
530 		nfs_unlock_and_release_request(req);
531 	}
532 
533 	if (put_dreq(dreq))
534 		nfs_direct_write_complete(dreq, dreq->inode);
535 }
536 
537 static void nfs_direct_commit_complete(struct nfs_commit_data *data)
538 {
539 	struct nfs_direct_req *dreq = data->dreq;
540 	struct nfs_commit_info cinfo;
541 	struct nfs_page *req;
542 	int status = data->task.tk_status;
543 
544 	nfs_init_cinfo_from_dreq(&cinfo, dreq);
545 	if (status < 0) {
546 		dprintk("NFS: %5u commit failed with error %d.\n",
547 			data->task.tk_pid, status);
548 		dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
549 	} else if (memcmp(&dreq->verf, &data->verf, sizeof(data->verf))) {
550 		dprintk("NFS: %5u commit verify failed\n", data->task.tk_pid);
551 		dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
552 	}
553 
554 	dprintk("NFS: %5u commit returned %d\n", data->task.tk_pid, status);
555 	while (!list_empty(&data->pages)) {
556 		req = nfs_list_entry(data->pages.next);
557 		nfs_list_remove_request(req);
558 		if (dreq->flags == NFS_ODIRECT_RESCHED_WRITES) {
559 			/* Note the rewrite will go through mds */
560 			nfs_mark_request_commit(req, NULL, &cinfo);
561 		} else
562 			nfs_release_request(req);
563 		nfs_unlock_and_release_request(req);
564 	}
565 
566 	if (atomic_dec_and_test(&cinfo.mds->rpcs_out))
567 		nfs_direct_write_complete(dreq, data->inode);
568 }
569 
570 static void nfs_direct_error_cleanup(struct nfs_inode *nfsi)
571 {
572 	/* There is no lock to clear */
573 }
574 
575 static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops = {
576 	.completion = nfs_direct_commit_complete,
577 	.error_cleanup = nfs_direct_error_cleanup,
578 };
579 
580 static void nfs_direct_commit_schedule(struct nfs_direct_req *dreq)
581 {
582 	int res;
583 	struct nfs_commit_info cinfo;
584 	LIST_HEAD(mds_list);
585 
586 	nfs_init_cinfo_from_dreq(&cinfo, dreq);
587 	nfs_scan_commit(dreq->inode, &mds_list, &cinfo);
588 	res = nfs_generic_commit_list(dreq->inode, &mds_list, 0, &cinfo);
589 	if (res < 0) /* res == -ENOMEM */
590 		nfs_direct_write_reschedule(dreq);
591 }
592 
593 static void nfs_direct_write_schedule_work(struct work_struct *work)
594 {
595 	struct nfs_direct_req *dreq = container_of(work, struct nfs_direct_req, work);
596 	int flags = dreq->flags;
597 
598 	dreq->flags = 0;
599 	switch (flags) {
600 		case NFS_ODIRECT_DO_COMMIT:
601 			nfs_direct_commit_schedule(dreq);
602 			break;
603 		case NFS_ODIRECT_RESCHED_WRITES:
604 			nfs_direct_write_reschedule(dreq);
605 			break;
606 		default:
607 			nfs_inode_dio_write_done(dreq->inode);
608 			nfs_direct_complete(dreq, true);
609 	}
610 }
611 
612 static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode)
613 {
614 	schedule_work(&dreq->work); /* Calls nfs_direct_write_schedule_work */
615 }
616 
617 #else
618 static void nfs_direct_write_schedule_work(struct work_struct *work)
619 {
620 }
621 
622 static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode)
623 {
624 	nfs_inode_dio_write_done(inode);
625 	nfs_direct_complete(dreq, true);
626 }
627 #endif
628 
629 /*
630  * NB: Return the value of the first error return code.  Subsequent
631  *     errors after the first one are ignored.
632  */
633 /*
634  * For each wsize'd chunk of the user's buffer, dispatch an NFS WRITE
635  * operation.  If nfs_writedata_alloc() or get_user_pages() fails,
636  * bail and stop sending more writes.  Write length accounting is
637  * handled automatically by nfs_direct_write_result().  Otherwise, if
638  * no requests have been sent, just return an error.
639  */
640 static ssize_t nfs_direct_write_schedule_segment(struct nfs_pageio_descriptor *desc,
641 						 const struct iovec *iov,
642 						 loff_t pos, bool uio)
643 {
644 	struct nfs_direct_req *dreq = desc->pg_dreq;
645 	struct nfs_open_context *ctx = dreq->ctx;
646 	struct inode *inode = ctx->dentry->d_inode;
647 	unsigned long user_addr = (unsigned long)iov->iov_base;
648 	size_t count = iov->iov_len;
649 	size_t wsize = NFS_SERVER(inode)->wsize;
650 	unsigned int pgbase;
651 	int result;
652 	ssize_t started = 0;
653 	struct page **pagevec = NULL;
654 	unsigned int npages;
655 
656 	do {
657 		size_t bytes;
658 		int i;
659 
660 		pgbase = user_addr & ~PAGE_MASK;
661 		bytes = min(max_t(size_t, wsize, PAGE_SIZE), count);
662 
663 		result = -ENOMEM;
664 		npages = nfs_page_array_len(pgbase, bytes);
665 		if (!pagevec)
666 			pagevec = kmalloc(npages * sizeof(struct page *), GFP_KERNEL);
667 		if (!pagevec)
668 			break;
669 
670 		if (uio) {
671 			down_read(&current->mm->mmap_sem);
672 			result = get_user_pages(current, current->mm, user_addr,
673 						npages, 0, 0, pagevec, NULL);
674 			up_read(&current->mm->mmap_sem);
675 			if (result < 0)
676 				break;
677 		} else {
678 			WARN_ON(npages != 1);
679 			result = get_kernel_page(user_addr, 0, pagevec);
680 			if (WARN_ON(result != 1))
681 				break;
682 		}
683 
684 		if ((unsigned)result < npages) {
685 			bytes = result * PAGE_SIZE;
686 			if (bytes <= pgbase) {
687 				nfs_direct_release_pages(pagevec, result);
688 				break;
689 			}
690 			bytes -= pgbase;
691 			npages = result;
692 		}
693 
694 		for (i = 0; i < npages; i++) {
695 			struct nfs_page *req;
696 			unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase);
697 
698 			req = nfs_create_request(dreq->ctx, dreq->inode,
699 						 pagevec[i],
700 						 pgbase, req_len);
701 			if (IS_ERR(req)) {
702 				result = PTR_ERR(req);
703 				break;
704 			}
705 			nfs_lock_request(req);
706 			req->wb_index = pos >> PAGE_SHIFT;
707 			req->wb_offset = pos & ~PAGE_MASK;
708 			if (!nfs_pageio_add_request(desc, req)) {
709 				result = desc->pg_error;
710 				nfs_unlock_and_release_request(req);
711 				break;
712 			}
713 			pgbase = 0;
714 			bytes -= req_len;
715 			started += req_len;
716 			user_addr += req_len;
717 			pos += req_len;
718 			count -= req_len;
719 			dreq->bytes_left -= req_len;
720 		}
721 		/* The nfs_page now hold references to these pages */
722 		nfs_direct_release_pages(pagevec, npages);
723 	} while (count != 0 && result >= 0);
724 
725 	kfree(pagevec);
726 
727 	if (started)
728 		return started;
729 	return result < 0 ? (ssize_t) result : -EFAULT;
730 }
731 
732 static void nfs_direct_write_completion(struct nfs_pgio_header *hdr)
733 {
734 	struct nfs_direct_req *dreq = hdr->dreq;
735 	struct nfs_commit_info cinfo;
736 	int bit = -1;
737 	struct nfs_page *req = nfs_list_entry(hdr->pages.next);
738 
739 	if (test_bit(NFS_IOHDR_REDO, &hdr->flags))
740 		goto out_put;
741 
742 	nfs_init_cinfo_from_dreq(&cinfo, dreq);
743 
744 	spin_lock(&dreq->lock);
745 
746 	if (test_bit(NFS_IOHDR_ERROR, &hdr->flags)) {
747 		dreq->flags = 0;
748 		dreq->error = hdr->error;
749 	}
750 	if (dreq->error != 0)
751 		bit = NFS_IOHDR_ERROR;
752 	else {
753 		dreq->count += hdr->good_bytes;
754 		if (test_bit(NFS_IOHDR_NEED_RESCHED, &hdr->flags)) {
755 			dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
756 			bit = NFS_IOHDR_NEED_RESCHED;
757 		} else if (test_bit(NFS_IOHDR_NEED_COMMIT, &hdr->flags)) {
758 			if (dreq->flags == NFS_ODIRECT_RESCHED_WRITES)
759 				bit = NFS_IOHDR_NEED_RESCHED;
760 			else if (dreq->flags == 0) {
761 				memcpy(&dreq->verf, hdr->verf,
762 				       sizeof(dreq->verf));
763 				bit = NFS_IOHDR_NEED_COMMIT;
764 				dreq->flags = NFS_ODIRECT_DO_COMMIT;
765 			} else if (dreq->flags == NFS_ODIRECT_DO_COMMIT) {
766 				if (memcmp(&dreq->verf, hdr->verf, sizeof(dreq->verf))) {
767 					dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
768 					bit = NFS_IOHDR_NEED_RESCHED;
769 				} else
770 					bit = NFS_IOHDR_NEED_COMMIT;
771 			}
772 		}
773 	}
774 	spin_unlock(&dreq->lock);
775 
776 	while (!list_empty(&hdr->pages)) {
777 		req = nfs_list_entry(hdr->pages.next);
778 		nfs_list_remove_request(req);
779 		switch (bit) {
780 		case NFS_IOHDR_NEED_RESCHED:
781 		case NFS_IOHDR_NEED_COMMIT:
782 			kref_get(&req->wb_kref);
783 			nfs_mark_request_commit(req, hdr->lseg, &cinfo);
784 		}
785 		nfs_unlock_and_release_request(req);
786 	}
787 
788 out_put:
789 	if (put_dreq(dreq))
790 		nfs_direct_write_complete(dreq, hdr->inode);
791 	hdr->release(hdr);
792 }
793 
794 static void nfs_write_sync_pgio_error(struct list_head *head)
795 {
796 	struct nfs_page *req;
797 
798 	while (!list_empty(head)) {
799 		req = nfs_list_entry(head->next);
800 		nfs_list_remove_request(req);
801 		nfs_unlock_and_release_request(req);
802 	}
803 }
804 
805 static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops = {
806 	.error_cleanup = nfs_write_sync_pgio_error,
807 	.init_hdr = nfs_direct_pgio_init,
808 	.completion = nfs_direct_write_completion,
809 };
810 
811 static ssize_t nfs_direct_write_schedule_iovec(struct nfs_direct_req *dreq,
812 					       const struct iovec *iov,
813 					       unsigned long nr_segs,
814 					       loff_t pos, bool uio)
815 {
816 	struct nfs_pageio_descriptor desc;
817 	struct inode *inode = dreq->inode;
818 	ssize_t result = 0;
819 	size_t requested_bytes = 0;
820 	unsigned long seg;
821 
822 	NFS_PROTO(inode)->write_pageio_init(&desc, inode, FLUSH_COND_STABLE,
823 			      &nfs_direct_write_completion_ops);
824 	desc.pg_dreq = dreq;
825 	get_dreq(dreq);
826 	atomic_inc(&inode->i_dio_count);
827 
828 	NFS_I(dreq->inode)->write_io += iov_length(iov, nr_segs);
829 	for (seg = 0; seg < nr_segs; seg++) {
830 		const struct iovec *vec = &iov[seg];
831 		result = nfs_direct_write_schedule_segment(&desc, vec, pos, uio);
832 		if (result < 0)
833 			break;
834 		requested_bytes += result;
835 		if ((size_t)result < vec->iov_len)
836 			break;
837 		pos += vec->iov_len;
838 	}
839 	nfs_pageio_complete(&desc);
840 
841 	/*
842 	 * If no bytes were started, return the error, and let the
843 	 * generic layer handle the completion.
844 	 */
845 	if (requested_bytes == 0) {
846 		inode_dio_done(inode);
847 		nfs_direct_req_release(dreq);
848 		return result < 0 ? result : -EIO;
849 	}
850 
851 	if (put_dreq(dreq))
852 		nfs_direct_write_complete(dreq, dreq->inode);
853 	return 0;
854 }
855 
856 static ssize_t nfs_direct_write(struct kiocb *iocb, const struct iovec *iov,
857 				unsigned long nr_segs, loff_t pos,
858 				size_t count, bool uio)
859 {
860 	ssize_t result = -ENOMEM;
861 	struct inode *inode = iocb->ki_filp->f_mapping->host;
862 	struct nfs_direct_req *dreq;
863 	struct nfs_lock_context *l_ctx;
864 
865 	dreq = nfs_direct_req_alloc();
866 	if (!dreq)
867 		goto out;
868 
869 	dreq->inode = inode;
870 	dreq->bytes_left = count;
871 	dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
872 	l_ctx = nfs_get_lock_context(dreq->ctx);
873 	if (IS_ERR(l_ctx)) {
874 		result = PTR_ERR(l_ctx);
875 		goto out_release;
876 	}
877 	dreq->l_ctx = l_ctx;
878 	if (!is_sync_kiocb(iocb))
879 		dreq->iocb = iocb;
880 
881 	result = nfs_direct_write_schedule_iovec(dreq, iov, nr_segs, pos, uio);
882 	if (!result)
883 		result = nfs_direct_wait(dreq);
884 out_release:
885 	nfs_direct_req_release(dreq);
886 out:
887 	return result;
888 }
889 
890 /**
891  * nfs_file_direct_read - file direct read operation for NFS files
892  * @iocb: target I/O control block
893  * @iov: vector of user buffers into which to read data
894  * @nr_segs: size of iov vector
895  * @pos: byte offset in file where reading starts
896  *
897  * We use this function for direct reads instead of calling
898  * generic_file_aio_read() in order to avoid gfar's check to see if
899  * the request starts before the end of the file.  For that check
900  * to work, we must generate a GETATTR before each direct read, and
901  * even then there is a window between the GETATTR and the subsequent
902  * READ where the file size could change.  Our preference is simply
903  * to do all reads the application wants, and the server will take
904  * care of managing the end of file boundary.
905  *
906  * This function also eliminates unnecessarily updating the file's
907  * atime locally, as the NFS server sets the file's atime, and this
908  * client must read the updated atime from the server back into its
909  * cache.
910  */
911 ssize_t nfs_file_direct_read(struct kiocb *iocb, const struct iovec *iov,
912 				unsigned long nr_segs, loff_t pos, bool uio)
913 {
914 	ssize_t retval = -EINVAL;
915 	struct file *file = iocb->ki_filp;
916 	struct address_space *mapping = file->f_mapping;
917 	size_t count;
918 
919 	count = iov_length(iov, nr_segs);
920 	nfs_add_stats(mapping->host, NFSIOS_DIRECTREADBYTES, count);
921 
922 	dfprintk(FILE, "NFS: direct read(%pD2, %zd@%Ld)\n",
923 		file, count, (long long) pos);
924 
925 	retval = 0;
926 	if (!count)
927 		goto out;
928 
929 	retval = nfs_sync_mapping(mapping);
930 	if (retval)
931 		goto out;
932 
933 	task_io_account_read(count);
934 
935 	retval = nfs_direct_read(iocb, iov, nr_segs, pos, uio);
936 	if (retval > 0)
937 		iocb->ki_pos = pos + retval;
938 
939 out:
940 	return retval;
941 }
942 
943 /**
944  * nfs_file_direct_write - file direct write operation for NFS files
945  * @iocb: target I/O control block
946  * @iov: vector of user buffers from which to write data
947  * @nr_segs: size of iov vector
948  * @pos: byte offset in file where writing starts
949  *
950  * We use this function for direct writes instead of calling
951  * generic_file_aio_write() in order to avoid taking the inode
952  * semaphore and updating the i_size.  The NFS server will set
953  * the new i_size and this client must read the updated size
954  * back into its cache.  We let the server do generic write
955  * parameter checking and report problems.
956  *
957  * We eliminate local atime updates, see direct read above.
958  *
959  * We avoid unnecessary page cache invalidations for normal cached
960  * readers of this file.
961  *
962  * Note that O_APPEND is not supported for NFS direct writes, as there
963  * is no atomic O_APPEND write facility in the NFS protocol.
964  */
965 ssize_t nfs_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
966 				unsigned long nr_segs, loff_t pos, bool uio)
967 {
968 	ssize_t retval = -EINVAL;
969 	struct file *file = iocb->ki_filp;
970 	struct address_space *mapping = file->f_mapping;
971 	size_t count;
972 
973 	count = iov_length(iov, nr_segs);
974 	nfs_add_stats(mapping->host, NFSIOS_DIRECTWRITTENBYTES, count);
975 
976 	dfprintk(FILE, "NFS: direct write(%pD2, %zd@%Ld)\n",
977 		file, count, (long long) pos);
978 
979 	retval = generic_write_checks(file, &pos, &count, 0);
980 	if (retval)
981 		goto out;
982 
983 	retval = -EINVAL;
984 	if ((ssize_t) count < 0)
985 		goto out;
986 	retval = 0;
987 	if (!count)
988 		goto out;
989 
990 	retval = nfs_sync_mapping(mapping);
991 	if (retval)
992 		goto out;
993 
994 	task_io_account_write(count);
995 
996 	retval = nfs_direct_write(iocb, iov, nr_segs, pos, count, uio);
997 	if (retval > 0) {
998 		struct inode *inode = mapping->host;
999 
1000 		iocb->ki_pos = pos + retval;
1001 		spin_lock(&inode->i_lock);
1002 		if (i_size_read(inode) < iocb->ki_pos)
1003 			i_size_write(inode, iocb->ki_pos);
1004 		spin_unlock(&inode->i_lock);
1005 	}
1006 out:
1007 	return retval;
1008 }
1009 
1010 /**
1011  * nfs_init_directcache - create a slab cache for nfs_direct_req structures
1012  *
1013  */
1014 int __init nfs_init_directcache(void)
1015 {
1016 	nfs_direct_cachep = kmem_cache_create("nfs_direct_cache",
1017 						sizeof(struct nfs_direct_req),
1018 						0, (SLAB_RECLAIM_ACCOUNT|
1019 							SLAB_MEM_SPREAD),
1020 						NULL);
1021 	if (nfs_direct_cachep == NULL)
1022 		return -ENOMEM;
1023 
1024 	return 0;
1025 }
1026 
1027 /**
1028  * nfs_destroy_directcache - destroy the slab cache for nfs_direct_req structures
1029  *
1030  */
1031 void nfs_destroy_directcache(void)
1032 {
1033 	kmem_cache_destroy(nfs_direct_cachep);
1034 }
1035