xref: /openbmc/linux/fs/nfs/direct.c (revision 96de0e252cedffad61b3cb5e05662c591898e69a)
1 /*
2  * linux/fs/nfs/direct.c
3  *
4  * Copyright (C) 2003 by Chuck Lever <cel@netapp.com>
5  *
6  * High-performance uncached I/O for the Linux NFS client
7  *
8  * There are important applications whose performance or correctness
9  * depends on uncached access to file data.  Database clusters
10  * (multiple copies of the same instance running on separate hosts)
11  * implement their own cache coherency protocol that subsumes file
12  * system cache protocols.  Applications that process datasets
13  * considerably larger than the client's memory do not always benefit
14  * from a local cache.  A streaming video server, for instance, has no
15  * need to cache the contents of a file.
16  *
17  * When an application requests uncached I/O, all read and write requests
18  * are made directly to the server; data stored or fetched via these
19  * requests is not cached in the Linux page cache.  The client does not
20  * correct unaligned requests from applications.  All requested bytes are
21  * held on permanent storage before a direct write system call returns to
22  * an application.
23  *
24  * Solaris implements an uncached I/O facility called directio() that
25  * is used for backups and sequential I/O to very large files.  Solaris
26  * also supports uncaching whole NFS partitions with "-o forcedirectio,"
27  * an undocumented mount option.
28  *
29  * Designed by Jeff Kimmel, Chuck Lever, and Trond Myklebust, with
30  * help from Andrew Morton.
31  *
32  * 18 Dec 2001	Initial implementation for 2.4  --cel
33  * 08 Jul 2002	Version for 2.4.19, with bug fixes --trondmy
34  * 08 Jun 2003	Port to 2.5 APIs  --cel
35  * 31 Mar 2004	Handle direct I/O without VFS support  --cel
36  * 15 Sep 2004	Parallel async reads  --cel
37  * 04 May 2005	support O_DIRECT with aio  --cel
38  *
39  */
40 
41 #include <linux/errno.h>
42 #include <linux/sched.h>
43 #include <linux/kernel.h>
44 #include <linux/file.h>
45 #include <linux/pagemap.h>
46 #include <linux/kref.h>
47 
48 #include <linux/nfs_fs.h>
49 #include <linux/nfs_page.h>
50 #include <linux/sunrpc/clnt.h>
51 
52 #include <asm/system.h>
53 #include <asm/uaccess.h>
54 #include <asm/atomic.h>
55 
56 #include "internal.h"
57 #include "iostat.h"
58 
59 #define NFSDBG_FACILITY		NFSDBG_VFS
60 
61 static struct kmem_cache *nfs_direct_cachep;
62 
63 /*
64  * This represents a set of asynchronous requests that we're waiting on
65  */
66 struct nfs_direct_req {
67 	struct kref		kref;		/* release manager */
68 
69 	/* I/O parameters */
70 	struct nfs_open_context	*ctx;		/* file open context info */
71 	struct kiocb *		iocb;		/* controlling i/o request */
72 	struct inode *		inode;		/* target file of i/o */
73 
74 	/* completion state */
75 	atomic_t		io_count;	/* i/os we're waiting for */
76 	spinlock_t		lock;		/* protect completion state */
77 	ssize_t			count,		/* bytes actually processed */
78 				error;		/* any reported error */
79 	struct completion	completion;	/* wait for i/o completion */
80 
81 	/* commit state */
82 	struct list_head	rewrite_list;	/* saved nfs_write_data structs */
83 	struct nfs_write_data *	commit_data;	/* special write_data for commits */
84 	int			flags;
85 #define NFS_ODIRECT_DO_COMMIT		(1)	/* an unstable reply was received */
86 #define NFS_ODIRECT_RESCHED_WRITES	(2)	/* write verification failed */
87 	struct nfs_writeverf	verf;		/* unstable write verifier */
88 };
89 
90 static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode);
91 static const struct rpc_call_ops nfs_write_direct_ops;
92 
93 static inline void get_dreq(struct nfs_direct_req *dreq)
94 {
95 	atomic_inc(&dreq->io_count);
96 }
97 
98 static inline int put_dreq(struct nfs_direct_req *dreq)
99 {
100 	return atomic_dec_and_test(&dreq->io_count);
101 }
102 
103 /**
104  * nfs_direct_IO - NFS address space operation for direct I/O
105  * @rw: direction (read or write)
106  * @iocb: target I/O control block
107  * @iov: array of vectors that define I/O buffer
108  * @pos: offset in file to begin the operation
109  * @nr_segs: size of iovec array
110  *
111  * The presence of this routine in the address space ops vector means
112  * the NFS client supports direct I/O.  However, we shunt off direct
113  * read and write requests before the VFS gets them, so this method
114  * should never be called.
115  */
116 ssize_t nfs_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov, loff_t pos, unsigned long nr_segs)
117 {
118 	dprintk("NFS: nfs_direct_IO (%s) off/no(%Ld/%lu) EINVAL\n",
119 			iocb->ki_filp->f_path.dentry->d_name.name,
120 			(long long) pos, nr_segs);
121 
122 	return -EINVAL;
123 }
124 
125 static void nfs_direct_dirty_pages(struct page **pages, unsigned int pgbase, size_t count)
126 {
127 	unsigned int npages;
128 	unsigned int i;
129 
130 	if (count == 0)
131 		return;
132 	pages += (pgbase >> PAGE_SHIFT);
133 	npages = (count + (pgbase & ~PAGE_MASK) + PAGE_SIZE - 1) >> PAGE_SHIFT;
134 	for (i = 0; i < npages; i++) {
135 		struct page *page = pages[i];
136 		if (!PageCompound(page))
137 			set_page_dirty(page);
138 	}
139 }
140 
141 static void nfs_direct_release_pages(struct page **pages, unsigned int npages)
142 {
143 	unsigned int i;
144 	for (i = 0; i < npages; i++)
145 		page_cache_release(pages[i]);
146 }
147 
148 static inline struct nfs_direct_req *nfs_direct_req_alloc(void)
149 {
150 	struct nfs_direct_req *dreq;
151 
152 	dreq = kmem_cache_alloc(nfs_direct_cachep, GFP_KERNEL);
153 	if (!dreq)
154 		return NULL;
155 
156 	kref_init(&dreq->kref);
157 	kref_get(&dreq->kref);
158 	init_completion(&dreq->completion);
159 	INIT_LIST_HEAD(&dreq->rewrite_list);
160 	dreq->iocb = NULL;
161 	dreq->ctx = NULL;
162 	spin_lock_init(&dreq->lock);
163 	atomic_set(&dreq->io_count, 0);
164 	dreq->count = 0;
165 	dreq->error = 0;
166 	dreq->flags = 0;
167 
168 	return dreq;
169 }
170 
171 static void nfs_direct_req_free(struct kref *kref)
172 {
173 	struct nfs_direct_req *dreq = container_of(kref, struct nfs_direct_req, kref);
174 
175 	if (dreq->ctx != NULL)
176 		put_nfs_open_context(dreq->ctx);
177 	kmem_cache_free(nfs_direct_cachep, dreq);
178 }
179 
180 static void nfs_direct_req_release(struct nfs_direct_req *dreq)
181 {
182 	kref_put(&dreq->kref, nfs_direct_req_free);
183 }
184 
185 /*
186  * Collects and returns the final error value/byte-count.
187  */
188 static ssize_t nfs_direct_wait(struct nfs_direct_req *dreq)
189 {
190 	ssize_t result = -EIOCBQUEUED;
191 
192 	/* Async requests don't wait here */
193 	if (dreq->iocb)
194 		goto out;
195 
196 	result = wait_for_completion_interruptible(&dreq->completion);
197 
198 	if (!result)
199 		result = dreq->error;
200 	if (!result)
201 		result = dreq->count;
202 
203 out:
204 	return (ssize_t) result;
205 }
206 
207 /*
208  * Synchronous I/O uses a stack-allocated iocb.  Thus we can't trust
209  * the iocb is still valid here if this is a synchronous request.
210  */
211 static void nfs_direct_complete(struct nfs_direct_req *dreq)
212 {
213 	if (dreq->iocb) {
214 		long res = (long) dreq->error;
215 		if (!res)
216 			res = (long) dreq->count;
217 		aio_complete(dreq->iocb, res, 0);
218 	}
219 	complete_all(&dreq->completion);
220 
221 	nfs_direct_req_release(dreq);
222 }
223 
224 /*
225  * We must hold a reference to all the pages in this direct read request
226  * until the RPCs complete.  This could be long *after* we are woken up in
227  * nfs_direct_wait (for instance, if someone hits ^C on a slow server).
228  */
229 static void nfs_direct_read_result(struct rpc_task *task, void *calldata)
230 {
231 	struct nfs_read_data *data = calldata;
232 	struct nfs_direct_req *dreq = (struct nfs_direct_req *) data->req;
233 
234 	if (nfs_readpage_result(task, data) != 0)
235 		return;
236 
237 	spin_lock(&dreq->lock);
238 	if (unlikely(task->tk_status < 0)) {
239 		dreq->error = task->tk_status;
240 		spin_unlock(&dreq->lock);
241 	} else {
242 		dreq->count += data->res.count;
243 		spin_unlock(&dreq->lock);
244 		nfs_direct_dirty_pages(data->pagevec,
245 				data->args.pgbase,
246 				data->res.count);
247 	}
248 	nfs_direct_release_pages(data->pagevec, data->npages);
249 
250 	if (put_dreq(dreq))
251 		nfs_direct_complete(dreq);
252 }
253 
254 static const struct rpc_call_ops nfs_read_direct_ops = {
255 	.rpc_call_done = nfs_direct_read_result,
256 	.rpc_release = nfs_readdata_release,
257 };
258 
259 /*
260  * For each rsize'd chunk of the user's buffer, dispatch an NFS READ
261  * operation.  If nfs_readdata_alloc() or get_user_pages() fails,
262  * bail and stop sending more reads.  Read length accounting is
263  * handled automatically by nfs_direct_read_result().  Otherwise, if
264  * no requests have been sent, just return an error.
265  */
266 static ssize_t nfs_direct_read_schedule(struct nfs_direct_req *dreq, unsigned long user_addr, size_t count, loff_t pos)
267 {
268 	struct nfs_open_context *ctx = dreq->ctx;
269 	struct inode *inode = ctx->path.dentry->d_inode;
270 	size_t rsize = NFS_SERVER(inode)->rsize;
271 	unsigned int pgbase;
272 	int result;
273 	ssize_t started = 0;
274 
275 	get_dreq(dreq);
276 
277 	do {
278 		struct nfs_read_data *data;
279 		size_t bytes;
280 
281 		pgbase = user_addr & ~PAGE_MASK;
282 		bytes = min(rsize,count);
283 
284 		result = -ENOMEM;
285 		data = nfs_readdata_alloc(nfs_page_array_len(pgbase, bytes));
286 		if (unlikely(!data))
287 			break;
288 
289 		down_read(&current->mm->mmap_sem);
290 		result = get_user_pages(current, current->mm, user_addr,
291 					data->npages, 1, 0, data->pagevec, NULL);
292 		up_read(&current->mm->mmap_sem);
293 		if (result < 0) {
294 			nfs_readdata_release(data);
295 			break;
296 		}
297 		if ((unsigned)result < data->npages) {
298 			bytes = result * PAGE_SIZE;
299 			if (bytes <= pgbase) {
300 				nfs_direct_release_pages(data->pagevec, result);
301 				nfs_readdata_release(data);
302 				break;
303 			}
304 			bytes -= pgbase;
305 			data->npages = result;
306 		}
307 
308 		get_dreq(dreq);
309 
310 		data->req = (struct nfs_page *) dreq;
311 		data->inode = inode;
312 		data->cred = ctx->cred;
313 		data->args.fh = NFS_FH(inode);
314 		data->args.context = ctx;
315 		data->args.offset = pos;
316 		data->args.pgbase = pgbase;
317 		data->args.pages = data->pagevec;
318 		data->args.count = bytes;
319 		data->res.fattr = &data->fattr;
320 		data->res.eof = 0;
321 		data->res.count = bytes;
322 
323 		rpc_init_task(&data->task, NFS_CLIENT(inode), RPC_TASK_ASYNC,
324 				&nfs_read_direct_ops, data);
325 		NFS_PROTO(inode)->read_setup(data);
326 
327 		data->task.tk_cookie = (unsigned long) inode;
328 
329 		rpc_execute(&data->task);
330 
331 		dprintk("NFS: %5u initiated direct read call "
332 			"(req %s/%Ld, %zu bytes @ offset %Lu)\n",
333 				data->task.tk_pid,
334 				inode->i_sb->s_id,
335 				(long long)NFS_FILEID(inode),
336 				bytes,
337 				(unsigned long long)data->args.offset);
338 
339 		started += bytes;
340 		user_addr += bytes;
341 		pos += bytes;
342 		/* FIXME: Remove this unnecessary math from final patch */
343 		pgbase += bytes;
344 		pgbase &= ~PAGE_MASK;
345 		BUG_ON(pgbase != (user_addr & ~PAGE_MASK));
346 
347 		count -= bytes;
348 	} while (count != 0);
349 
350 	if (put_dreq(dreq))
351 		nfs_direct_complete(dreq);
352 
353 	if (started)
354 		return 0;
355 	return result < 0 ? (ssize_t) result : -EFAULT;
356 }
357 
358 static ssize_t nfs_direct_read(struct kiocb *iocb, unsigned long user_addr, size_t count, loff_t pos)
359 {
360 	ssize_t result = 0;
361 	sigset_t oldset;
362 	struct inode *inode = iocb->ki_filp->f_mapping->host;
363 	struct rpc_clnt *clnt = NFS_CLIENT(inode);
364 	struct nfs_direct_req *dreq;
365 
366 	dreq = nfs_direct_req_alloc();
367 	if (!dreq)
368 		return -ENOMEM;
369 
370 	dreq->inode = inode;
371 	dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
372 	if (!is_sync_kiocb(iocb))
373 		dreq->iocb = iocb;
374 
375 	nfs_add_stats(inode, NFSIOS_DIRECTREADBYTES, count);
376 	rpc_clnt_sigmask(clnt, &oldset);
377 	result = nfs_direct_read_schedule(dreq, user_addr, count, pos);
378 	if (!result)
379 		result = nfs_direct_wait(dreq);
380 	rpc_clnt_sigunmask(clnt, &oldset);
381 	nfs_direct_req_release(dreq);
382 
383 	return result;
384 }
385 
386 static void nfs_direct_free_writedata(struct nfs_direct_req *dreq)
387 {
388 	while (!list_empty(&dreq->rewrite_list)) {
389 		struct nfs_write_data *data = list_entry(dreq->rewrite_list.next, struct nfs_write_data, pages);
390 		list_del(&data->pages);
391 		nfs_direct_release_pages(data->pagevec, data->npages);
392 		nfs_writedata_release(data);
393 	}
394 }
395 
396 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
397 static void nfs_direct_write_reschedule(struct nfs_direct_req *dreq)
398 {
399 	struct inode *inode = dreq->inode;
400 	struct list_head *p;
401 	struct nfs_write_data *data;
402 
403 	dreq->count = 0;
404 	get_dreq(dreq);
405 
406 	list_for_each(p, &dreq->rewrite_list) {
407 		data = list_entry(p, struct nfs_write_data, pages);
408 
409 		get_dreq(dreq);
410 
411 		/*
412 		 * Reset data->res.
413 		 */
414 		nfs_fattr_init(&data->fattr);
415 		data->res.count = data->args.count;
416 		memset(&data->verf, 0, sizeof(data->verf));
417 
418 		/*
419 		 * Reuse data->task; data->args should not have changed
420 		 * since the original request was sent.
421 		 */
422 		rpc_init_task(&data->task, NFS_CLIENT(inode), RPC_TASK_ASYNC,
423 				&nfs_write_direct_ops, data);
424 		NFS_PROTO(inode)->write_setup(data, FLUSH_STABLE);
425 
426 		data->task.tk_priority = RPC_PRIORITY_NORMAL;
427 		data->task.tk_cookie = (unsigned long) inode;
428 
429 		/*
430 		 * We're called via an RPC callback, so BKL is already held.
431 		 */
432 		rpc_execute(&data->task);
433 
434 		dprintk("NFS: %5u rescheduled direct write call (req %s/%Ld, %u bytes @ offset %Lu)\n",
435 				data->task.tk_pid,
436 				inode->i_sb->s_id,
437 				(long long)NFS_FILEID(inode),
438 				data->args.count,
439 				(unsigned long long)data->args.offset);
440 	}
441 
442 	if (put_dreq(dreq))
443 		nfs_direct_write_complete(dreq, inode);
444 }
445 
446 static void nfs_direct_commit_result(struct rpc_task *task, void *calldata)
447 {
448 	struct nfs_write_data *data = calldata;
449 	struct nfs_direct_req *dreq = (struct nfs_direct_req *) data->req;
450 
451 	/* Call the NFS version-specific code */
452 	if (NFS_PROTO(data->inode)->commit_done(task, data) != 0)
453 		return;
454 	if (unlikely(task->tk_status < 0)) {
455 		dprintk("NFS: %5u commit failed with error %d.\n",
456 				task->tk_pid, task->tk_status);
457 		dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
458 	} else if (memcmp(&dreq->verf, &data->verf, sizeof(data->verf))) {
459 		dprintk("NFS: %5u commit verify failed\n", task->tk_pid);
460 		dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
461 	}
462 
463 	dprintk("NFS: %5u commit returned %d\n", task->tk_pid, task->tk_status);
464 	nfs_direct_write_complete(dreq, data->inode);
465 }
466 
467 static const struct rpc_call_ops nfs_commit_direct_ops = {
468 	.rpc_call_done = nfs_direct_commit_result,
469 	.rpc_release = nfs_commit_release,
470 };
471 
472 static void nfs_direct_commit_schedule(struct nfs_direct_req *dreq)
473 {
474 	struct nfs_write_data *data = dreq->commit_data;
475 
476 	data->inode = dreq->inode;
477 	data->cred = dreq->ctx->cred;
478 
479 	data->args.fh = NFS_FH(data->inode);
480 	data->args.offset = 0;
481 	data->args.count = 0;
482 	data->res.count = 0;
483 	data->res.fattr = &data->fattr;
484 	data->res.verf = &data->verf;
485 
486 	rpc_init_task(&data->task, NFS_CLIENT(dreq->inode), RPC_TASK_ASYNC,
487 				&nfs_commit_direct_ops, data);
488 	NFS_PROTO(data->inode)->commit_setup(data, 0);
489 
490 	data->task.tk_priority = RPC_PRIORITY_NORMAL;
491 	data->task.tk_cookie = (unsigned long)data->inode;
492 	/* Note: task.tk_ops->rpc_release will free dreq->commit_data */
493 	dreq->commit_data = NULL;
494 
495 	dprintk("NFS: %5u initiated commit call\n", data->task.tk_pid);
496 
497 	rpc_execute(&data->task);
498 }
499 
500 static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode)
501 {
502 	int flags = dreq->flags;
503 
504 	dreq->flags = 0;
505 	switch (flags) {
506 		case NFS_ODIRECT_DO_COMMIT:
507 			nfs_direct_commit_schedule(dreq);
508 			break;
509 		case NFS_ODIRECT_RESCHED_WRITES:
510 			nfs_direct_write_reschedule(dreq);
511 			break;
512 		default:
513 			if (dreq->commit_data != NULL)
514 				nfs_commit_free(dreq->commit_data);
515 			nfs_direct_free_writedata(dreq);
516 			nfs_zap_mapping(inode, inode->i_mapping);
517 			nfs_direct_complete(dreq);
518 	}
519 }
520 
521 static void nfs_alloc_commit_data(struct nfs_direct_req *dreq)
522 {
523 	dreq->commit_data = nfs_commit_alloc();
524 	if (dreq->commit_data != NULL)
525 		dreq->commit_data->req = (struct nfs_page *) dreq;
526 }
527 #else
528 static inline void nfs_alloc_commit_data(struct nfs_direct_req *dreq)
529 {
530 	dreq->commit_data = NULL;
531 }
532 
533 static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode)
534 {
535 	nfs_direct_free_writedata(dreq);
536 	nfs_zap_mapping(inode, inode->i_mapping);
537 	nfs_direct_complete(dreq);
538 }
539 #endif
540 
541 static void nfs_direct_write_result(struct rpc_task *task, void *calldata)
542 {
543 	struct nfs_write_data *data = calldata;
544 	struct nfs_direct_req *dreq = (struct nfs_direct_req *) data->req;
545 	int status = task->tk_status;
546 
547 	if (nfs_writeback_done(task, data) != 0)
548 		return;
549 
550 	spin_lock(&dreq->lock);
551 
552 	if (unlikely(dreq->error != 0))
553 		goto out_unlock;
554 	if (unlikely(status < 0)) {
555 		/* An error has occured, so we should not commit */
556 		dreq->flags = 0;
557 		dreq->error = status;
558 	}
559 
560 	dreq->count += data->res.count;
561 
562 	if (data->res.verf->committed != NFS_FILE_SYNC) {
563 		switch (dreq->flags) {
564 			case 0:
565 				memcpy(&dreq->verf, &data->verf, sizeof(dreq->verf));
566 				dreq->flags = NFS_ODIRECT_DO_COMMIT;
567 				break;
568 			case NFS_ODIRECT_DO_COMMIT:
569 				if (memcmp(&dreq->verf, &data->verf, sizeof(dreq->verf))) {
570 					dprintk("NFS: %5u write verify failed\n", task->tk_pid);
571 					dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
572 				}
573 		}
574 	}
575 out_unlock:
576 	spin_unlock(&dreq->lock);
577 }
578 
579 /*
580  * NB: Return the value of the first error return code.  Subsequent
581  *     errors after the first one are ignored.
582  */
583 static void nfs_direct_write_release(void *calldata)
584 {
585 	struct nfs_write_data *data = calldata;
586 	struct nfs_direct_req *dreq = (struct nfs_direct_req *) data->req;
587 
588 	if (put_dreq(dreq))
589 		nfs_direct_write_complete(dreq, data->inode);
590 }
591 
592 static const struct rpc_call_ops nfs_write_direct_ops = {
593 	.rpc_call_done = nfs_direct_write_result,
594 	.rpc_release = nfs_direct_write_release,
595 };
596 
597 /*
598  * For each wsize'd chunk of the user's buffer, dispatch an NFS WRITE
599  * operation.  If nfs_writedata_alloc() or get_user_pages() fails,
600  * bail and stop sending more writes.  Write length accounting is
601  * handled automatically by nfs_direct_write_result().  Otherwise, if
602  * no requests have been sent, just return an error.
603  */
604 static ssize_t nfs_direct_write_schedule(struct nfs_direct_req *dreq, unsigned long user_addr, size_t count, loff_t pos, int sync)
605 {
606 	struct nfs_open_context *ctx = dreq->ctx;
607 	struct inode *inode = ctx->path.dentry->d_inode;
608 	size_t wsize = NFS_SERVER(inode)->wsize;
609 	unsigned int pgbase;
610 	int result;
611 	ssize_t started = 0;
612 
613 	get_dreq(dreq);
614 
615 	do {
616 		struct nfs_write_data *data;
617 		size_t bytes;
618 
619 		pgbase = user_addr & ~PAGE_MASK;
620 		bytes = min(wsize,count);
621 
622 		result = -ENOMEM;
623 		data = nfs_writedata_alloc(nfs_page_array_len(pgbase, bytes));
624 		if (unlikely(!data))
625 			break;
626 
627 		down_read(&current->mm->mmap_sem);
628 		result = get_user_pages(current, current->mm, user_addr,
629 					data->npages, 0, 0, data->pagevec, NULL);
630 		up_read(&current->mm->mmap_sem);
631 		if (result < 0) {
632 			nfs_writedata_release(data);
633 			break;
634 		}
635 		if ((unsigned)result < data->npages) {
636 			bytes = result * PAGE_SIZE;
637 			if (bytes <= pgbase) {
638 				nfs_direct_release_pages(data->pagevec, result);
639 				nfs_writedata_release(data);
640 				break;
641 			}
642 			bytes -= pgbase;
643 			data->npages = result;
644 		}
645 
646 		get_dreq(dreq);
647 
648 		list_move_tail(&data->pages, &dreq->rewrite_list);
649 
650 		data->req = (struct nfs_page *) dreq;
651 		data->inode = inode;
652 		data->cred = ctx->cred;
653 		data->args.fh = NFS_FH(inode);
654 		data->args.context = ctx;
655 		data->args.offset = pos;
656 		data->args.pgbase = pgbase;
657 		data->args.pages = data->pagevec;
658 		data->args.count = bytes;
659 		data->res.fattr = &data->fattr;
660 		data->res.count = bytes;
661 		data->res.verf = &data->verf;
662 
663 		rpc_init_task(&data->task, NFS_CLIENT(inode), RPC_TASK_ASYNC,
664 				&nfs_write_direct_ops, data);
665 		NFS_PROTO(inode)->write_setup(data, sync);
666 
667 		data->task.tk_priority = RPC_PRIORITY_NORMAL;
668 		data->task.tk_cookie = (unsigned long) inode;
669 
670 		rpc_execute(&data->task);
671 
672 		dprintk("NFS: %5u initiated direct write call "
673 			"(req %s/%Ld, %zu bytes @ offset %Lu)\n",
674 				data->task.tk_pid,
675 				inode->i_sb->s_id,
676 				(long long)NFS_FILEID(inode),
677 				bytes,
678 				(unsigned long long)data->args.offset);
679 
680 		started += bytes;
681 		user_addr += bytes;
682 		pos += bytes;
683 
684 		/* FIXME: Remove this useless math from the final patch */
685 		pgbase += bytes;
686 		pgbase &= ~PAGE_MASK;
687 		BUG_ON(pgbase != (user_addr & ~PAGE_MASK));
688 
689 		count -= bytes;
690 	} while (count != 0);
691 
692 	if (put_dreq(dreq))
693 		nfs_direct_write_complete(dreq, inode);
694 
695 	if (started)
696 		return 0;
697 	return result < 0 ? (ssize_t) result : -EFAULT;
698 }
699 
700 static ssize_t nfs_direct_write(struct kiocb *iocb, unsigned long user_addr, size_t count, loff_t pos)
701 {
702 	ssize_t result = 0;
703 	sigset_t oldset;
704 	struct inode *inode = iocb->ki_filp->f_mapping->host;
705 	struct rpc_clnt *clnt = NFS_CLIENT(inode);
706 	struct nfs_direct_req *dreq;
707 	size_t wsize = NFS_SERVER(inode)->wsize;
708 	int sync = 0;
709 
710 	dreq = nfs_direct_req_alloc();
711 	if (!dreq)
712 		return -ENOMEM;
713 	nfs_alloc_commit_data(dreq);
714 
715 	if (dreq->commit_data == NULL || count < wsize)
716 		sync = FLUSH_STABLE;
717 
718 	dreq->inode = inode;
719 	dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
720 	if (!is_sync_kiocb(iocb))
721 		dreq->iocb = iocb;
722 
723 	nfs_add_stats(inode, NFSIOS_DIRECTWRITTENBYTES, count);
724 
725 	rpc_clnt_sigmask(clnt, &oldset);
726 	result = nfs_direct_write_schedule(dreq, user_addr, count, pos, sync);
727 	if (!result)
728 		result = nfs_direct_wait(dreq);
729 	rpc_clnt_sigunmask(clnt, &oldset);
730 	nfs_direct_req_release(dreq);
731 
732 	return result;
733 }
734 
735 /**
736  * nfs_file_direct_read - file direct read operation for NFS files
737  * @iocb: target I/O control block
738  * @iov: vector of user buffers into which to read data
739  * @nr_segs: size of iov vector
740  * @pos: byte offset in file where reading starts
741  *
742  * We use this function for direct reads instead of calling
743  * generic_file_aio_read() in order to avoid gfar's check to see if
744  * the request starts before the end of the file.  For that check
745  * to work, we must generate a GETATTR before each direct read, and
746  * even then there is a window between the GETATTR and the subsequent
747  * READ where the file size could change.  Our preference is simply
748  * to do all reads the application wants, and the server will take
749  * care of managing the end of file boundary.
750  *
751  * This function also eliminates unnecessarily updating the file's
752  * atime locally, as the NFS server sets the file's atime, and this
753  * client must read the updated atime from the server back into its
754  * cache.
755  */
756 ssize_t nfs_file_direct_read(struct kiocb *iocb, const struct iovec *iov,
757 				unsigned long nr_segs, loff_t pos)
758 {
759 	ssize_t retval = -EINVAL;
760 	struct file *file = iocb->ki_filp;
761 	struct address_space *mapping = file->f_mapping;
762 	/* XXX: temporary */
763 	const char __user *buf = iov[0].iov_base;
764 	size_t count = iov[0].iov_len;
765 
766 	dprintk("nfs: direct read(%s/%s, %lu@%Ld)\n",
767 		file->f_path.dentry->d_parent->d_name.name,
768 		file->f_path.dentry->d_name.name,
769 		(unsigned long) count, (long long) pos);
770 
771 	if (nr_segs != 1)
772 		goto out;
773 
774 	retval = -EFAULT;
775 	if (!access_ok(VERIFY_WRITE, buf, count))
776 		goto out;
777 	retval = 0;
778 	if (!count)
779 		goto out;
780 
781 	retval = nfs_sync_mapping(mapping);
782 	if (retval)
783 		goto out;
784 
785 	retval = nfs_direct_read(iocb, (unsigned long) buf, count, pos);
786 	if (retval > 0)
787 		iocb->ki_pos = pos + retval;
788 
789 out:
790 	return retval;
791 }
792 
793 /**
794  * nfs_file_direct_write - file direct write operation for NFS files
795  * @iocb: target I/O control block
796  * @iov: vector of user buffers from which to write data
797  * @nr_segs: size of iov vector
798  * @pos: byte offset in file where writing starts
799  *
800  * We use this function for direct writes instead of calling
801  * generic_file_aio_write() in order to avoid taking the inode
802  * semaphore and updating the i_size.  The NFS server will set
803  * the new i_size and this client must read the updated size
804  * back into its cache.  We let the server do generic write
805  * parameter checking and report problems.
806  *
807  * We also avoid an unnecessary invocation of generic_osync_inode(),
808  * as it is fairly meaningless to sync the metadata of an NFS file.
809  *
810  * We eliminate local atime updates, see direct read above.
811  *
812  * We avoid unnecessary page cache invalidations for normal cached
813  * readers of this file.
814  *
815  * Note that O_APPEND is not supported for NFS direct writes, as there
816  * is no atomic O_APPEND write facility in the NFS protocol.
817  */
818 ssize_t nfs_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
819 				unsigned long nr_segs, loff_t pos)
820 {
821 	ssize_t retval = -EINVAL;
822 	struct file *file = iocb->ki_filp;
823 	struct address_space *mapping = file->f_mapping;
824 	/* XXX: temporary */
825 	const char __user *buf = iov[0].iov_base;
826 	size_t count = iov[0].iov_len;
827 
828 	dprintk("nfs: direct write(%s/%s, %lu@%Ld)\n",
829 		file->f_path.dentry->d_parent->d_name.name,
830 		file->f_path.dentry->d_name.name,
831 		(unsigned long) count, (long long) pos);
832 
833 	if (nr_segs != 1)
834 		goto out;
835 
836 	retval = generic_write_checks(file, &pos, &count, 0);
837 	if (retval)
838 		goto out;
839 
840 	retval = -EINVAL;
841 	if ((ssize_t) count < 0)
842 		goto out;
843 	retval = 0;
844 	if (!count)
845 		goto out;
846 
847 	retval = -EFAULT;
848 	if (!access_ok(VERIFY_READ, buf, count))
849 		goto out;
850 
851 	retval = nfs_sync_mapping(mapping);
852 	if (retval)
853 		goto out;
854 
855 	retval = nfs_direct_write(iocb, (unsigned long) buf, count, pos);
856 
857 	if (retval > 0)
858 		iocb->ki_pos = pos + retval;
859 
860 out:
861 	return retval;
862 }
863 
864 /**
865  * nfs_init_directcache - create a slab cache for nfs_direct_req structures
866  *
867  */
868 int __init nfs_init_directcache(void)
869 {
870 	nfs_direct_cachep = kmem_cache_create("nfs_direct_cache",
871 						sizeof(struct nfs_direct_req),
872 						0, (SLAB_RECLAIM_ACCOUNT|
873 							SLAB_MEM_SPREAD),
874 						NULL);
875 	if (nfs_direct_cachep == NULL)
876 		return -ENOMEM;
877 
878 	return 0;
879 }
880 
881 /**
882  * nfs_destroy_directcache - destroy the slab cache for nfs_direct_req structures
883  *
884  */
885 void nfs_destroy_directcache(void)
886 {
887 	kmem_cache_destroy(nfs_direct_cachep);
888 }
889