1 /* 2 * linux/fs/nfs/direct.c 3 * 4 * Copyright (C) 2003 by Chuck Lever <cel@netapp.com> 5 * 6 * High-performance uncached I/O for the Linux NFS client 7 * 8 * There are important applications whose performance or correctness 9 * depends on uncached access to file data. Database clusters 10 * (multiple copies of the same instance running on separate hosts) 11 * implement their own cache coherency protocol that subsumes file 12 * system cache protocols. Applications that process datasets 13 * considerably larger than the client's memory do not always benefit 14 * from a local cache. A streaming video server, for instance, has no 15 * need to cache the contents of a file. 16 * 17 * When an application requests uncached I/O, all read and write requests 18 * are made directly to the server; data stored or fetched via these 19 * requests is not cached in the Linux page cache. The client does not 20 * correct unaligned requests from applications. All requested bytes are 21 * held on permanent storage before a direct write system call returns to 22 * an application. 23 * 24 * Solaris implements an uncached I/O facility called directio() that 25 * is used for backups and sequential I/O to very large files. Solaris 26 * also supports uncaching whole NFS partitions with "-o forcedirectio," 27 * an undocumented mount option. 28 * 29 * Designed by Jeff Kimmel, Chuck Lever, and Trond Myklebust, with 30 * help from Andrew Morton. 31 * 32 * 18 Dec 2001 Initial implementation for 2.4 --cel 33 * 08 Jul 2002 Version for 2.4.19, with bug fixes --trondmy 34 * 08 Jun 2003 Port to 2.5 APIs --cel 35 * 31 Mar 2004 Handle direct I/O without VFS support --cel 36 * 15 Sep 2004 Parallel async reads --cel 37 * 04 May 2005 support O_DIRECT with aio --cel 38 * 39 */ 40 41 #include <linux/config.h> 42 #include <linux/errno.h> 43 #include <linux/sched.h> 44 #include <linux/kernel.h> 45 #include <linux/smp_lock.h> 46 #include <linux/file.h> 47 #include <linux/pagemap.h> 48 #include <linux/kref.h> 49 50 #include <linux/nfs_fs.h> 51 #include <linux/nfs_page.h> 52 #include <linux/sunrpc/clnt.h> 53 54 #include <asm/system.h> 55 #include <asm/uaccess.h> 56 #include <asm/atomic.h> 57 58 #include "iostat.h" 59 60 #define NFSDBG_FACILITY NFSDBG_VFS 61 62 static kmem_cache_t *nfs_direct_cachep; 63 64 /* 65 * This represents a set of asynchronous requests that we're waiting on 66 */ 67 struct nfs_direct_req { 68 struct kref kref; /* release manager */ 69 70 /* I/O parameters */ 71 struct list_head list, /* nfs_read/write_data structs */ 72 rewrite_list; /* saved nfs_write_data structs */ 73 struct nfs_open_context *ctx; /* file open context info */ 74 struct kiocb * iocb; /* controlling i/o request */ 75 struct inode * inode; /* target file of i/o */ 76 unsigned long user_addr; /* location of user's buffer */ 77 size_t user_count; /* total bytes to move */ 78 loff_t pos; /* starting offset in file */ 79 struct page ** pages; /* pages in our buffer */ 80 unsigned int npages; /* count of pages */ 81 82 /* completion state */ 83 spinlock_t lock; /* protect completion state */ 84 int outstanding; /* i/os we're waiting for */ 85 ssize_t count, /* bytes actually processed */ 86 error; /* any reported error */ 87 struct completion completion; /* wait for i/o completion */ 88 89 /* commit state */ 90 struct nfs_write_data * commit_data; /* special write_data for commits */ 91 int flags; 92 #define NFS_ODIRECT_DO_COMMIT (1) /* an unstable reply was received */ 93 #define NFS_ODIRECT_RESCHED_WRITES (2) /* write verification failed */ 94 struct nfs_writeverf verf; /* unstable write verifier */ 95 }; 96 97 static void nfs_direct_write_schedule(struct nfs_direct_req *dreq, int sync); 98 static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode); 99 100 /** 101 * nfs_direct_IO - NFS address space operation for direct I/O 102 * @rw: direction (read or write) 103 * @iocb: target I/O control block 104 * @iov: array of vectors that define I/O buffer 105 * @pos: offset in file to begin the operation 106 * @nr_segs: size of iovec array 107 * 108 * The presence of this routine in the address space ops vector means 109 * the NFS client supports direct I/O. However, we shunt off direct 110 * read and write requests before the VFS gets them, so this method 111 * should never be called. 112 */ 113 ssize_t nfs_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov, loff_t pos, unsigned long nr_segs) 114 { 115 struct dentry *dentry = iocb->ki_filp->f_dentry; 116 117 dprintk("NFS: nfs_direct_IO (%s) off/no(%Ld/%lu) EINVAL\n", 118 dentry->d_name.name, (long long) pos, nr_segs); 119 120 return -EINVAL; 121 } 122 123 static void nfs_free_user_pages(struct page **pages, int npages, int do_dirty) 124 { 125 int i; 126 for (i = 0; i < npages; i++) { 127 struct page *page = pages[i]; 128 if (do_dirty && !PageCompound(page)) 129 set_page_dirty_lock(page); 130 page_cache_release(page); 131 } 132 kfree(pages); 133 } 134 135 static inline int nfs_get_user_pages(int rw, unsigned long user_addr, size_t size, struct page ***pages) 136 { 137 int result = -ENOMEM; 138 unsigned long page_count; 139 size_t array_size; 140 141 page_count = (user_addr + size + PAGE_SIZE - 1) >> PAGE_SHIFT; 142 page_count -= user_addr >> PAGE_SHIFT; 143 144 array_size = (page_count * sizeof(struct page *)); 145 *pages = kmalloc(array_size, GFP_KERNEL); 146 if (*pages) { 147 down_read(¤t->mm->mmap_sem); 148 result = get_user_pages(current, current->mm, user_addr, 149 page_count, (rw == READ), 0, 150 *pages, NULL); 151 up_read(¤t->mm->mmap_sem); 152 if (result != page_count) { 153 /* 154 * If we got fewer pages than expected from 155 * get_user_pages(), the user buffer runs off the 156 * end of a mapping; return EFAULT. 157 */ 158 if (result >= 0) { 159 nfs_free_user_pages(*pages, result, 0); 160 result = -EFAULT; 161 } else 162 kfree(*pages); 163 *pages = NULL; 164 } 165 } 166 return result; 167 } 168 169 static inline struct nfs_direct_req *nfs_direct_req_alloc(void) 170 { 171 struct nfs_direct_req *dreq; 172 173 dreq = kmem_cache_alloc(nfs_direct_cachep, SLAB_KERNEL); 174 if (!dreq) 175 return NULL; 176 177 kref_init(&dreq->kref); 178 init_completion(&dreq->completion); 179 INIT_LIST_HEAD(&dreq->list); 180 INIT_LIST_HEAD(&dreq->rewrite_list); 181 dreq->iocb = NULL; 182 dreq->ctx = NULL; 183 spin_lock_init(&dreq->lock); 184 dreq->outstanding = 0; 185 dreq->count = 0; 186 dreq->error = 0; 187 dreq->flags = 0; 188 189 return dreq; 190 } 191 192 static void nfs_direct_req_release(struct kref *kref) 193 { 194 struct nfs_direct_req *dreq = container_of(kref, struct nfs_direct_req, kref); 195 196 if (dreq->ctx != NULL) 197 put_nfs_open_context(dreq->ctx); 198 kmem_cache_free(nfs_direct_cachep, dreq); 199 } 200 201 /* 202 * Collects and returns the final error value/byte-count. 203 */ 204 static ssize_t nfs_direct_wait(struct nfs_direct_req *dreq) 205 { 206 ssize_t result = -EIOCBQUEUED; 207 208 /* Async requests don't wait here */ 209 if (dreq->iocb) 210 goto out; 211 212 result = wait_for_completion_interruptible(&dreq->completion); 213 214 if (!result) 215 result = dreq->error; 216 if (!result) 217 result = dreq->count; 218 219 out: 220 kref_put(&dreq->kref, nfs_direct_req_release); 221 return (ssize_t) result; 222 } 223 224 /* 225 * We must hold a reference to all the pages in this direct read request 226 * until the RPCs complete. This could be long *after* we are woken up in 227 * nfs_direct_wait (for instance, if someone hits ^C on a slow server). 228 * 229 * In addition, synchronous I/O uses a stack-allocated iocb. Thus we 230 * can't trust the iocb is still valid here if this is a synchronous 231 * request. If the waiter is woken prematurely, the iocb is long gone. 232 */ 233 static void nfs_direct_complete(struct nfs_direct_req *dreq) 234 { 235 nfs_free_user_pages(dreq->pages, dreq->npages, 1); 236 237 if (dreq->iocb) { 238 long res = (long) dreq->error; 239 if (!res) 240 res = (long) dreq->count; 241 aio_complete(dreq->iocb, res, 0); 242 } 243 complete_all(&dreq->completion); 244 245 kref_put(&dreq->kref, nfs_direct_req_release); 246 } 247 248 /* 249 * Note we also set the number of requests we have in the dreq when we are 250 * done. This prevents races with I/O completion so we will always wait 251 * until all requests have been dispatched and completed. 252 */ 253 static struct nfs_direct_req *nfs_direct_read_alloc(size_t nbytes, size_t rsize) 254 { 255 struct list_head *list; 256 struct nfs_direct_req *dreq; 257 unsigned int rpages = (rsize + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 258 259 dreq = nfs_direct_req_alloc(); 260 if (!dreq) 261 return NULL; 262 263 list = &dreq->list; 264 for(;;) { 265 struct nfs_read_data *data = nfs_readdata_alloc(rpages); 266 267 if (unlikely(!data)) { 268 while (!list_empty(list)) { 269 data = list_entry(list->next, 270 struct nfs_read_data, pages); 271 list_del(&data->pages); 272 nfs_readdata_free(data); 273 } 274 kref_put(&dreq->kref, nfs_direct_req_release); 275 return NULL; 276 } 277 278 INIT_LIST_HEAD(&data->pages); 279 list_add(&data->pages, list); 280 281 data->req = (struct nfs_page *) dreq; 282 dreq->outstanding++; 283 if (nbytes <= rsize) 284 break; 285 nbytes -= rsize; 286 } 287 kref_get(&dreq->kref); 288 return dreq; 289 } 290 291 static void nfs_direct_read_result(struct rpc_task *task, void *calldata) 292 { 293 struct nfs_read_data *data = calldata; 294 struct nfs_direct_req *dreq = (struct nfs_direct_req *) data->req; 295 296 if (nfs_readpage_result(task, data) != 0) 297 return; 298 299 spin_lock(&dreq->lock); 300 301 if (likely(task->tk_status >= 0)) 302 dreq->count += data->res.count; 303 else 304 dreq->error = task->tk_status; 305 306 if (--dreq->outstanding) { 307 spin_unlock(&dreq->lock); 308 return; 309 } 310 311 spin_unlock(&dreq->lock); 312 nfs_direct_complete(dreq); 313 } 314 315 static const struct rpc_call_ops nfs_read_direct_ops = { 316 .rpc_call_done = nfs_direct_read_result, 317 .rpc_release = nfs_readdata_release, 318 }; 319 320 /* 321 * For each nfs_read_data struct that was allocated on the list, dispatch 322 * an NFS READ operation 323 */ 324 static void nfs_direct_read_schedule(struct nfs_direct_req *dreq) 325 { 326 struct nfs_open_context *ctx = dreq->ctx; 327 struct inode *inode = ctx->dentry->d_inode; 328 struct list_head *list = &dreq->list; 329 struct page **pages = dreq->pages; 330 size_t count = dreq->user_count; 331 loff_t pos = dreq->pos; 332 size_t rsize = NFS_SERVER(inode)->rsize; 333 unsigned int curpage, pgbase; 334 335 curpage = 0; 336 pgbase = dreq->user_addr & ~PAGE_MASK; 337 do { 338 struct nfs_read_data *data; 339 size_t bytes; 340 341 bytes = rsize; 342 if (count < rsize) 343 bytes = count; 344 345 BUG_ON(list_empty(list)); 346 data = list_entry(list->next, struct nfs_read_data, pages); 347 list_del_init(&data->pages); 348 349 data->inode = inode; 350 data->cred = ctx->cred; 351 data->args.fh = NFS_FH(inode); 352 data->args.context = ctx; 353 data->args.offset = pos; 354 data->args.pgbase = pgbase; 355 data->args.pages = &pages[curpage]; 356 data->args.count = bytes; 357 data->res.fattr = &data->fattr; 358 data->res.eof = 0; 359 data->res.count = bytes; 360 361 rpc_init_task(&data->task, NFS_CLIENT(inode), RPC_TASK_ASYNC, 362 &nfs_read_direct_ops, data); 363 NFS_PROTO(inode)->read_setup(data); 364 365 data->task.tk_cookie = (unsigned long) inode; 366 367 lock_kernel(); 368 rpc_execute(&data->task); 369 unlock_kernel(); 370 371 dfprintk(VFS, "NFS: %5u initiated direct read call (req %s/%Ld, %zu bytes @ offset %Lu)\n", 372 data->task.tk_pid, 373 inode->i_sb->s_id, 374 (long long)NFS_FILEID(inode), 375 bytes, 376 (unsigned long long)data->args.offset); 377 378 pos += bytes; 379 pgbase += bytes; 380 curpage += pgbase >> PAGE_SHIFT; 381 pgbase &= ~PAGE_MASK; 382 383 count -= bytes; 384 } while (count != 0); 385 BUG_ON(!list_empty(list)); 386 } 387 388 static ssize_t nfs_direct_read(struct kiocb *iocb, unsigned long user_addr, size_t count, loff_t pos, struct page **pages, unsigned int nr_pages) 389 { 390 ssize_t result; 391 sigset_t oldset; 392 struct inode *inode = iocb->ki_filp->f_mapping->host; 393 struct rpc_clnt *clnt = NFS_CLIENT(inode); 394 struct nfs_direct_req *dreq; 395 396 dreq = nfs_direct_read_alloc(count, NFS_SERVER(inode)->rsize); 397 if (!dreq) 398 return -ENOMEM; 399 400 dreq->user_addr = user_addr; 401 dreq->user_count = count; 402 dreq->pos = pos; 403 dreq->pages = pages; 404 dreq->npages = nr_pages; 405 dreq->inode = inode; 406 dreq->ctx = get_nfs_open_context((struct nfs_open_context *)iocb->ki_filp->private_data); 407 if (!is_sync_kiocb(iocb)) 408 dreq->iocb = iocb; 409 410 nfs_add_stats(inode, NFSIOS_DIRECTREADBYTES, count); 411 rpc_clnt_sigmask(clnt, &oldset); 412 nfs_direct_read_schedule(dreq); 413 result = nfs_direct_wait(dreq); 414 rpc_clnt_sigunmask(clnt, &oldset); 415 416 return result; 417 } 418 419 static void nfs_direct_free_writedata(struct nfs_direct_req *dreq) 420 { 421 list_splice_init(&dreq->rewrite_list, &dreq->list); 422 while (!list_empty(&dreq->list)) { 423 struct nfs_write_data *data = list_entry(dreq->list.next, struct nfs_write_data, pages); 424 list_del(&data->pages); 425 nfs_writedata_release(data); 426 } 427 } 428 429 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4) 430 static void nfs_direct_write_reschedule(struct nfs_direct_req *dreq) 431 { 432 struct list_head *pos; 433 434 list_splice_init(&dreq->rewrite_list, &dreq->list); 435 list_for_each(pos, &dreq->list) 436 dreq->outstanding++; 437 dreq->count = 0; 438 439 nfs_direct_write_schedule(dreq, FLUSH_STABLE); 440 } 441 442 static void nfs_direct_commit_result(struct rpc_task *task, void *calldata) 443 { 444 struct nfs_write_data *data = calldata; 445 struct nfs_direct_req *dreq = (struct nfs_direct_req *) data->req; 446 447 /* Call the NFS version-specific code */ 448 if (NFS_PROTO(data->inode)->commit_done(task, data) != 0) 449 return; 450 if (unlikely(task->tk_status < 0)) { 451 dreq->error = task->tk_status; 452 dreq->flags = NFS_ODIRECT_RESCHED_WRITES; 453 } 454 if (memcmp(&dreq->verf, &data->verf, sizeof(data->verf))) { 455 dprintk("NFS: %5u commit verify failed\n", task->tk_pid); 456 dreq->flags = NFS_ODIRECT_RESCHED_WRITES; 457 } 458 459 dprintk("NFS: %5u commit returned %d\n", task->tk_pid, task->tk_status); 460 nfs_direct_write_complete(dreq, data->inode); 461 } 462 463 static const struct rpc_call_ops nfs_commit_direct_ops = { 464 .rpc_call_done = nfs_direct_commit_result, 465 .rpc_release = nfs_commit_release, 466 }; 467 468 static void nfs_direct_commit_schedule(struct nfs_direct_req *dreq) 469 { 470 struct nfs_write_data *data = dreq->commit_data; 471 struct rpc_task *task = &data->task; 472 473 data->inode = dreq->inode; 474 data->cred = dreq->ctx->cred; 475 476 data->args.fh = NFS_FH(data->inode); 477 data->args.offset = dreq->pos; 478 data->args.count = dreq->user_count; 479 data->res.count = 0; 480 data->res.fattr = &data->fattr; 481 data->res.verf = &data->verf; 482 483 rpc_init_task(&data->task, NFS_CLIENT(dreq->inode), RPC_TASK_ASYNC, 484 &nfs_commit_direct_ops, data); 485 NFS_PROTO(data->inode)->commit_setup(data, 0); 486 487 data->task.tk_priority = RPC_PRIORITY_NORMAL; 488 data->task.tk_cookie = (unsigned long)data->inode; 489 /* Note: task.tk_ops->rpc_release will free dreq->commit_data */ 490 dreq->commit_data = NULL; 491 492 dprintk("NFS: %5u initiated commit call\n", task->tk_pid); 493 494 lock_kernel(); 495 rpc_execute(&data->task); 496 unlock_kernel(); 497 } 498 499 static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode) 500 { 501 int flags = dreq->flags; 502 503 dreq->flags = 0; 504 switch (flags) { 505 case NFS_ODIRECT_DO_COMMIT: 506 nfs_direct_commit_schedule(dreq); 507 break; 508 case NFS_ODIRECT_RESCHED_WRITES: 509 nfs_direct_write_reschedule(dreq); 510 break; 511 default: 512 nfs_end_data_update(inode); 513 if (dreq->commit_data != NULL) 514 nfs_commit_free(dreq->commit_data); 515 nfs_direct_free_writedata(dreq); 516 nfs_direct_complete(dreq); 517 } 518 } 519 520 static void nfs_alloc_commit_data(struct nfs_direct_req *dreq) 521 { 522 dreq->commit_data = nfs_commit_alloc(0); 523 if (dreq->commit_data != NULL) 524 dreq->commit_data->req = (struct nfs_page *) dreq; 525 } 526 #else 527 static inline void nfs_alloc_commit_data(struct nfs_direct_req *dreq) 528 { 529 dreq->commit_data = NULL; 530 } 531 532 static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode) 533 { 534 nfs_end_data_update(inode); 535 nfs_direct_free_writedata(dreq); 536 nfs_direct_complete(dreq); 537 } 538 #endif 539 540 static struct nfs_direct_req *nfs_direct_write_alloc(size_t nbytes, size_t wsize) 541 { 542 struct list_head *list; 543 struct nfs_direct_req *dreq; 544 unsigned int wpages = (wsize + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 545 546 dreq = nfs_direct_req_alloc(); 547 if (!dreq) 548 return NULL; 549 550 list = &dreq->list; 551 for(;;) { 552 struct nfs_write_data *data = nfs_writedata_alloc(wpages); 553 554 if (unlikely(!data)) { 555 while (!list_empty(list)) { 556 data = list_entry(list->next, 557 struct nfs_write_data, pages); 558 list_del(&data->pages); 559 nfs_writedata_free(data); 560 } 561 kref_put(&dreq->kref, nfs_direct_req_release); 562 return NULL; 563 } 564 565 INIT_LIST_HEAD(&data->pages); 566 list_add(&data->pages, list); 567 568 data->req = (struct nfs_page *) dreq; 569 dreq->outstanding++; 570 if (nbytes <= wsize) 571 break; 572 nbytes -= wsize; 573 } 574 575 nfs_alloc_commit_data(dreq); 576 577 kref_get(&dreq->kref); 578 return dreq; 579 } 580 581 static void nfs_direct_write_result(struct rpc_task *task, void *calldata) 582 { 583 struct nfs_write_data *data = calldata; 584 struct nfs_direct_req *dreq = (struct nfs_direct_req *) data->req; 585 int status = task->tk_status; 586 587 if (nfs_writeback_done(task, data) != 0) 588 return; 589 590 spin_lock(&dreq->lock); 591 592 if (likely(status >= 0)) 593 dreq->count += data->res.count; 594 else 595 dreq->error = task->tk_status; 596 597 if (data->res.verf->committed != NFS_FILE_SYNC) { 598 switch (dreq->flags) { 599 case 0: 600 memcpy(&dreq->verf, &data->verf, sizeof(dreq->verf)); 601 dreq->flags = NFS_ODIRECT_DO_COMMIT; 602 break; 603 case NFS_ODIRECT_DO_COMMIT: 604 if (memcmp(&dreq->verf, &data->verf, sizeof(dreq->verf))) { 605 dprintk("NFS: %5u write verify failed\n", task->tk_pid); 606 dreq->flags = NFS_ODIRECT_RESCHED_WRITES; 607 } 608 } 609 } 610 /* In case we have to resend */ 611 data->args.stable = NFS_FILE_SYNC; 612 613 spin_unlock(&dreq->lock); 614 } 615 616 /* 617 * NB: Return the value of the first error return code. Subsequent 618 * errors after the first one are ignored. 619 */ 620 static void nfs_direct_write_release(void *calldata) 621 { 622 struct nfs_write_data *data = calldata; 623 struct nfs_direct_req *dreq = (struct nfs_direct_req *) data->req; 624 625 spin_lock(&dreq->lock); 626 if (--dreq->outstanding) { 627 spin_unlock(&dreq->lock); 628 return; 629 } 630 spin_unlock(&dreq->lock); 631 632 nfs_direct_write_complete(dreq, data->inode); 633 } 634 635 static const struct rpc_call_ops nfs_write_direct_ops = { 636 .rpc_call_done = nfs_direct_write_result, 637 .rpc_release = nfs_direct_write_release, 638 }; 639 640 /* 641 * For each nfs_write_data struct that was allocated on the list, dispatch 642 * an NFS WRITE operation 643 */ 644 static void nfs_direct_write_schedule(struct nfs_direct_req *dreq, int sync) 645 { 646 struct nfs_open_context *ctx = dreq->ctx; 647 struct inode *inode = ctx->dentry->d_inode; 648 struct list_head *list = &dreq->list; 649 struct page **pages = dreq->pages; 650 size_t count = dreq->user_count; 651 loff_t pos = dreq->pos; 652 size_t wsize = NFS_SERVER(inode)->wsize; 653 unsigned int curpage, pgbase; 654 655 curpage = 0; 656 pgbase = dreq->user_addr & ~PAGE_MASK; 657 do { 658 struct nfs_write_data *data; 659 size_t bytes; 660 661 bytes = wsize; 662 if (count < wsize) 663 bytes = count; 664 665 BUG_ON(list_empty(list)); 666 data = list_entry(list->next, struct nfs_write_data, pages); 667 list_move_tail(&data->pages, &dreq->rewrite_list); 668 669 data->inode = inode; 670 data->cred = ctx->cred; 671 data->args.fh = NFS_FH(inode); 672 data->args.context = ctx; 673 data->args.offset = pos; 674 data->args.pgbase = pgbase; 675 data->args.pages = &pages[curpage]; 676 data->args.count = bytes; 677 data->res.fattr = &data->fattr; 678 data->res.count = bytes; 679 data->res.verf = &data->verf; 680 681 rpc_init_task(&data->task, NFS_CLIENT(inode), RPC_TASK_ASYNC, 682 &nfs_write_direct_ops, data); 683 NFS_PROTO(inode)->write_setup(data, sync); 684 685 data->task.tk_priority = RPC_PRIORITY_NORMAL; 686 data->task.tk_cookie = (unsigned long) inode; 687 688 lock_kernel(); 689 rpc_execute(&data->task); 690 unlock_kernel(); 691 692 dfprintk(VFS, "NFS: %5u initiated direct write call (req %s/%Ld, %zu bytes @ offset %Lu)\n", 693 data->task.tk_pid, 694 inode->i_sb->s_id, 695 (long long)NFS_FILEID(inode), 696 bytes, 697 (unsigned long long)data->args.offset); 698 699 pos += bytes; 700 pgbase += bytes; 701 curpage += pgbase >> PAGE_SHIFT; 702 pgbase &= ~PAGE_MASK; 703 704 count -= bytes; 705 } while (count != 0); 706 BUG_ON(!list_empty(list)); 707 } 708 709 static ssize_t nfs_direct_write(struct kiocb *iocb, unsigned long user_addr, size_t count, loff_t pos, struct page **pages, int nr_pages) 710 { 711 ssize_t result; 712 sigset_t oldset; 713 struct inode *inode = iocb->ki_filp->f_mapping->host; 714 struct rpc_clnt *clnt = NFS_CLIENT(inode); 715 struct nfs_direct_req *dreq; 716 size_t wsize = NFS_SERVER(inode)->wsize; 717 int sync = 0; 718 719 dreq = nfs_direct_write_alloc(count, wsize); 720 if (!dreq) 721 return -ENOMEM; 722 if (dreq->commit_data == NULL || count < wsize) 723 sync = FLUSH_STABLE; 724 725 dreq->user_addr = user_addr; 726 dreq->user_count = count; 727 dreq->pos = pos; 728 dreq->pages = pages; 729 dreq->npages = nr_pages; 730 dreq->inode = inode; 731 dreq->ctx = get_nfs_open_context((struct nfs_open_context *)iocb->ki_filp->private_data); 732 if (!is_sync_kiocb(iocb)) 733 dreq->iocb = iocb; 734 735 nfs_add_stats(inode, NFSIOS_DIRECTWRITTENBYTES, count); 736 737 nfs_begin_data_update(inode); 738 739 rpc_clnt_sigmask(clnt, &oldset); 740 nfs_direct_write_schedule(dreq, sync); 741 result = nfs_direct_wait(dreq); 742 rpc_clnt_sigunmask(clnt, &oldset); 743 744 return result; 745 } 746 747 /** 748 * nfs_file_direct_read - file direct read operation for NFS files 749 * @iocb: target I/O control block 750 * @buf: user's buffer into which to read data 751 * @count: number of bytes to read 752 * @pos: byte offset in file where reading starts 753 * 754 * We use this function for direct reads instead of calling 755 * generic_file_aio_read() in order to avoid gfar's check to see if 756 * the request starts before the end of the file. For that check 757 * to work, we must generate a GETATTR before each direct read, and 758 * even then there is a window between the GETATTR and the subsequent 759 * READ where the file size could change. Our preference is simply 760 * to do all reads the application wants, and the server will take 761 * care of managing the end of file boundary. 762 * 763 * This function also eliminates unnecessarily updating the file's 764 * atime locally, as the NFS server sets the file's atime, and this 765 * client must read the updated atime from the server back into its 766 * cache. 767 */ 768 ssize_t nfs_file_direct_read(struct kiocb *iocb, char __user *buf, size_t count, loff_t pos) 769 { 770 ssize_t retval = -EINVAL; 771 int page_count; 772 struct page **pages; 773 struct file *file = iocb->ki_filp; 774 struct address_space *mapping = file->f_mapping; 775 776 dprintk("nfs: direct read(%s/%s, %lu@%Ld)\n", 777 file->f_dentry->d_parent->d_name.name, 778 file->f_dentry->d_name.name, 779 (unsigned long) count, (long long) pos); 780 781 if (count < 0) 782 goto out; 783 retval = -EFAULT; 784 if (!access_ok(VERIFY_WRITE, buf, count)) 785 goto out; 786 retval = 0; 787 if (!count) 788 goto out; 789 790 retval = nfs_sync_mapping(mapping); 791 if (retval) 792 goto out; 793 794 retval = nfs_get_user_pages(READ, (unsigned long) buf, 795 count, &pages); 796 if (retval < 0) 797 goto out; 798 page_count = retval; 799 800 retval = nfs_direct_read(iocb, (unsigned long) buf, count, pos, 801 pages, page_count); 802 if (retval > 0) 803 iocb->ki_pos = pos + retval; 804 805 out: 806 return retval; 807 } 808 809 /** 810 * nfs_file_direct_write - file direct write operation for NFS files 811 * @iocb: target I/O control block 812 * @buf: user's buffer from which to write data 813 * @count: number of bytes to write 814 * @pos: byte offset in file where writing starts 815 * 816 * We use this function for direct writes instead of calling 817 * generic_file_aio_write() in order to avoid taking the inode 818 * semaphore and updating the i_size. The NFS server will set 819 * the new i_size and this client must read the updated size 820 * back into its cache. We let the server do generic write 821 * parameter checking and report problems. 822 * 823 * We also avoid an unnecessary invocation of generic_osync_inode(), 824 * as it is fairly meaningless to sync the metadata of an NFS file. 825 * 826 * We eliminate local atime updates, see direct read above. 827 * 828 * We avoid unnecessary page cache invalidations for normal cached 829 * readers of this file. 830 * 831 * Note that O_APPEND is not supported for NFS direct writes, as there 832 * is no atomic O_APPEND write facility in the NFS protocol. 833 */ 834 ssize_t nfs_file_direct_write(struct kiocb *iocb, const char __user *buf, size_t count, loff_t pos) 835 { 836 ssize_t retval; 837 int page_count; 838 struct page **pages; 839 struct file *file = iocb->ki_filp; 840 struct address_space *mapping = file->f_mapping; 841 842 dfprintk(VFS, "nfs: direct write(%s/%s, %lu@%Ld)\n", 843 file->f_dentry->d_parent->d_name.name, 844 file->f_dentry->d_name.name, 845 (unsigned long) count, (long long) pos); 846 847 retval = generic_write_checks(file, &pos, &count, 0); 848 if (retval) 849 goto out; 850 851 retval = -EINVAL; 852 if ((ssize_t) count < 0) 853 goto out; 854 retval = 0; 855 if (!count) 856 goto out; 857 858 retval = -EFAULT; 859 if (!access_ok(VERIFY_READ, buf, count)) 860 goto out; 861 862 retval = nfs_sync_mapping(mapping); 863 if (retval) 864 goto out; 865 866 retval = nfs_get_user_pages(WRITE, (unsigned long) buf, 867 count, &pages); 868 if (retval < 0) 869 goto out; 870 page_count = retval; 871 872 retval = nfs_direct_write(iocb, (unsigned long) buf, count, 873 pos, pages, page_count); 874 875 /* 876 * XXX: nfs_end_data_update() already ensures this file's 877 * cached data is subsequently invalidated. Do we really 878 * need to call invalidate_inode_pages2() again here? 879 * 880 * For aio writes, this invalidation will almost certainly 881 * occur before the writes complete. Kind of racey. 882 */ 883 if (mapping->nrpages) 884 invalidate_inode_pages2(mapping); 885 886 if (retval > 0) 887 iocb->ki_pos = pos + retval; 888 889 out: 890 return retval; 891 } 892 893 /** 894 * nfs_init_directcache - create a slab cache for nfs_direct_req structures 895 * 896 */ 897 int nfs_init_directcache(void) 898 { 899 nfs_direct_cachep = kmem_cache_create("nfs_direct_cache", 900 sizeof(struct nfs_direct_req), 901 0, (SLAB_RECLAIM_ACCOUNT| 902 SLAB_MEM_SPREAD), 903 NULL, NULL); 904 if (nfs_direct_cachep == NULL) 905 return -ENOMEM; 906 907 return 0; 908 } 909 910 /** 911 * nfs_init_directcache - destroy the slab cache for nfs_direct_req structures 912 * 913 */ 914 void nfs_destroy_directcache(void) 915 { 916 if (kmem_cache_destroy(nfs_direct_cachep)) 917 printk(KERN_INFO "nfs_direct_cache: not all structures were freed\n"); 918 } 919