xref: /openbmc/linux/fs/nfs/direct.c (revision 95d465fd750897ab32462a6702fbfe1b122cbbc0)
1 /*
2  * linux/fs/nfs/direct.c
3  *
4  * Copyright (C) 2003 by Chuck Lever <cel@netapp.com>
5  *
6  * High-performance uncached I/O for the Linux NFS client
7  *
8  * There are important applications whose performance or correctness
9  * depends on uncached access to file data.  Database clusters
10  * (multiple copies of the same instance running on separate hosts)
11  * implement their own cache coherency protocol that subsumes file
12  * system cache protocols.  Applications that process datasets
13  * considerably larger than the client's memory do not always benefit
14  * from a local cache.  A streaming video server, for instance, has no
15  * need to cache the contents of a file.
16  *
17  * When an application requests uncached I/O, all read and write requests
18  * are made directly to the server; data stored or fetched via these
19  * requests is not cached in the Linux page cache.  The client does not
20  * correct unaligned requests from applications.  All requested bytes are
21  * held on permanent storage before a direct write system call returns to
22  * an application.
23  *
24  * Solaris implements an uncached I/O facility called directio() that
25  * is used for backups and sequential I/O to very large files.  Solaris
26  * also supports uncaching whole NFS partitions with "-o forcedirectio,"
27  * an undocumented mount option.
28  *
29  * Designed by Jeff Kimmel, Chuck Lever, and Trond Myklebust, with
30  * help from Andrew Morton.
31  *
32  * 18 Dec 2001	Initial implementation for 2.4  --cel
33  * 08 Jul 2002	Version for 2.4.19, with bug fixes --trondmy
34  * 08 Jun 2003	Port to 2.5 APIs  --cel
35  * 31 Mar 2004	Handle direct I/O without VFS support  --cel
36  * 15 Sep 2004	Parallel async reads  --cel
37  * 04 May 2005	support O_DIRECT with aio  --cel
38  *
39  */
40 
41 #include <linux/config.h>
42 #include <linux/errno.h>
43 #include <linux/sched.h>
44 #include <linux/kernel.h>
45 #include <linux/smp_lock.h>
46 #include <linux/file.h>
47 #include <linux/pagemap.h>
48 #include <linux/kref.h>
49 
50 #include <linux/nfs_fs.h>
51 #include <linux/nfs_page.h>
52 #include <linux/sunrpc/clnt.h>
53 
54 #include <asm/system.h>
55 #include <asm/uaccess.h>
56 #include <asm/atomic.h>
57 
58 #include "iostat.h"
59 
60 #define NFSDBG_FACILITY		NFSDBG_VFS
61 
62 static kmem_cache_t *nfs_direct_cachep;
63 
64 /*
65  * This represents a set of asynchronous requests that we're waiting on
66  */
67 struct nfs_direct_req {
68 	struct kref		kref;		/* release manager */
69 
70 	/* I/O parameters */
71 	struct list_head	list,		/* nfs_read/write_data structs */
72 				rewrite_list;	/* saved nfs_write_data structs */
73 	struct nfs_open_context	*ctx;		/* file open context info */
74 	struct kiocb *		iocb;		/* controlling i/o request */
75 	struct inode *		inode;		/* target file of i/o */
76 	unsigned long		user_addr;	/* location of user's buffer */
77 	size_t			user_count;	/* total bytes to move */
78 	loff_t			pos;		/* starting offset in file */
79 	struct page **		pages;		/* pages in our buffer */
80 	unsigned int		npages;		/* count of pages */
81 
82 	/* completion state */
83 	spinlock_t		lock;		/* protect completion state */
84 	int			outstanding;	/* i/os we're waiting for */
85 	ssize_t			count,		/* bytes actually processed */
86 				error;		/* any reported error */
87 	struct completion	completion;	/* wait for i/o completion */
88 
89 	/* commit state */
90 	struct nfs_write_data *	commit_data;	/* special write_data for commits */
91 	int			flags;
92 #define NFS_ODIRECT_DO_COMMIT		(1)	/* an unstable reply was received */
93 #define NFS_ODIRECT_RESCHED_WRITES	(2)	/* write verification failed */
94 	struct nfs_writeverf	verf;		/* unstable write verifier */
95 };
96 
97 static void nfs_direct_write_schedule(struct nfs_direct_req *dreq, int sync);
98 static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode);
99 
100 /**
101  * nfs_direct_IO - NFS address space operation for direct I/O
102  * @rw: direction (read or write)
103  * @iocb: target I/O control block
104  * @iov: array of vectors that define I/O buffer
105  * @pos: offset in file to begin the operation
106  * @nr_segs: size of iovec array
107  *
108  * The presence of this routine in the address space ops vector means
109  * the NFS client supports direct I/O.  However, we shunt off direct
110  * read and write requests before the VFS gets them, so this method
111  * should never be called.
112  */
113 ssize_t nfs_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov, loff_t pos, unsigned long nr_segs)
114 {
115 	struct dentry *dentry = iocb->ki_filp->f_dentry;
116 
117 	dprintk("NFS: nfs_direct_IO (%s) off/no(%Ld/%lu) EINVAL\n",
118 			dentry->d_name.name, (long long) pos, nr_segs);
119 
120 	return -EINVAL;
121 }
122 
123 static void nfs_free_user_pages(struct page **pages, int npages, int do_dirty)
124 {
125 	int i;
126 	for (i = 0; i < npages; i++) {
127 		struct page *page = pages[i];
128 		if (do_dirty && !PageCompound(page))
129 			set_page_dirty_lock(page);
130 		page_cache_release(page);
131 	}
132 	kfree(pages);
133 }
134 
135 static inline int nfs_get_user_pages(int rw, unsigned long user_addr, size_t size, struct page ***pages)
136 {
137 	int result = -ENOMEM;
138 	unsigned long page_count;
139 	size_t array_size;
140 
141 	page_count = (user_addr + size + PAGE_SIZE - 1) >> PAGE_SHIFT;
142 	page_count -= user_addr >> PAGE_SHIFT;
143 
144 	array_size = (page_count * sizeof(struct page *));
145 	*pages = kmalloc(array_size, GFP_KERNEL);
146 	if (*pages) {
147 		down_read(&current->mm->mmap_sem);
148 		result = get_user_pages(current, current->mm, user_addr,
149 					page_count, (rw == READ), 0,
150 					*pages, NULL);
151 		up_read(&current->mm->mmap_sem);
152 		if (result != page_count) {
153 			/*
154 			 * If we got fewer pages than expected from
155 			 * get_user_pages(), the user buffer runs off the
156 			 * end of a mapping; return EFAULT.
157 			 */
158 			if (result >= 0) {
159 				nfs_free_user_pages(*pages, result, 0);
160 				result = -EFAULT;
161 			} else
162 				kfree(*pages);
163 			*pages = NULL;
164 		}
165 	}
166 	return result;
167 }
168 
169 static inline struct nfs_direct_req *nfs_direct_req_alloc(void)
170 {
171 	struct nfs_direct_req *dreq;
172 
173 	dreq = kmem_cache_alloc(nfs_direct_cachep, SLAB_KERNEL);
174 	if (!dreq)
175 		return NULL;
176 
177 	kref_init(&dreq->kref);
178 	init_completion(&dreq->completion);
179 	INIT_LIST_HEAD(&dreq->list);
180 	INIT_LIST_HEAD(&dreq->rewrite_list);
181 	dreq->iocb = NULL;
182 	dreq->ctx = NULL;
183 	spin_lock_init(&dreq->lock);
184 	dreq->outstanding = 0;
185 	dreq->count = 0;
186 	dreq->error = 0;
187 	dreq->flags = 0;
188 
189 	return dreq;
190 }
191 
192 static void nfs_direct_req_release(struct kref *kref)
193 {
194 	struct nfs_direct_req *dreq = container_of(kref, struct nfs_direct_req, kref);
195 
196 	if (dreq->ctx != NULL)
197 		put_nfs_open_context(dreq->ctx);
198 	kmem_cache_free(nfs_direct_cachep, dreq);
199 }
200 
201 /*
202  * Collects and returns the final error value/byte-count.
203  */
204 static ssize_t nfs_direct_wait(struct nfs_direct_req *dreq)
205 {
206 	ssize_t result = -EIOCBQUEUED;
207 
208 	/* Async requests don't wait here */
209 	if (dreq->iocb)
210 		goto out;
211 
212 	result = wait_for_completion_interruptible(&dreq->completion);
213 
214 	if (!result)
215 		result = dreq->error;
216 	if (!result)
217 		result = dreq->count;
218 
219 out:
220 	kref_put(&dreq->kref, nfs_direct_req_release);
221 	return (ssize_t) result;
222 }
223 
224 /*
225  * We must hold a reference to all the pages in this direct read request
226  * until the RPCs complete.  This could be long *after* we are woken up in
227  * nfs_direct_wait (for instance, if someone hits ^C on a slow server).
228  *
229  * In addition, synchronous I/O uses a stack-allocated iocb.  Thus we
230  * can't trust the iocb is still valid here if this is a synchronous
231  * request.  If the waiter is woken prematurely, the iocb is long gone.
232  */
233 static void nfs_direct_complete(struct nfs_direct_req *dreq)
234 {
235 	nfs_free_user_pages(dreq->pages, dreq->npages, 1);
236 
237 	if (dreq->iocb) {
238 		long res = (long) dreq->error;
239 		if (!res)
240 			res = (long) dreq->count;
241 		aio_complete(dreq->iocb, res, 0);
242 	}
243 	complete_all(&dreq->completion);
244 
245 	kref_put(&dreq->kref, nfs_direct_req_release);
246 }
247 
248 /*
249  * Note we also set the number of requests we have in the dreq when we are
250  * done.  This prevents races with I/O completion so we will always wait
251  * until all requests have been dispatched and completed.
252  */
253 static struct nfs_direct_req *nfs_direct_read_alloc(size_t nbytes, size_t rsize)
254 {
255 	struct list_head *list;
256 	struct nfs_direct_req *dreq;
257 	unsigned int rpages = (rsize + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
258 
259 	dreq = nfs_direct_req_alloc();
260 	if (!dreq)
261 		return NULL;
262 
263 	list = &dreq->list;
264 	for(;;) {
265 		struct nfs_read_data *data = nfs_readdata_alloc(rpages);
266 
267 		if (unlikely(!data)) {
268 			while (!list_empty(list)) {
269 				data = list_entry(list->next,
270 						  struct nfs_read_data, pages);
271 				list_del(&data->pages);
272 				nfs_readdata_free(data);
273 			}
274 			kref_put(&dreq->kref, nfs_direct_req_release);
275 			return NULL;
276 		}
277 
278 		INIT_LIST_HEAD(&data->pages);
279 		list_add(&data->pages, list);
280 
281 		data->req = (struct nfs_page *) dreq;
282 		dreq->outstanding++;
283 		if (nbytes <= rsize)
284 			break;
285 		nbytes -= rsize;
286 	}
287 	kref_get(&dreq->kref);
288 	return dreq;
289 }
290 
291 static void nfs_direct_read_result(struct rpc_task *task, void *calldata)
292 {
293 	struct nfs_read_data *data = calldata;
294 	struct nfs_direct_req *dreq = (struct nfs_direct_req *) data->req;
295 
296 	if (nfs_readpage_result(task, data) != 0)
297 		return;
298 
299 	spin_lock(&dreq->lock);
300 
301 	if (likely(task->tk_status >= 0))
302 		dreq->count += data->res.count;
303 	else
304 		dreq->error = task->tk_status;
305 
306 	if (--dreq->outstanding) {
307 		spin_unlock(&dreq->lock);
308 		return;
309 	}
310 
311 	spin_unlock(&dreq->lock);
312 	nfs_direct_complete(dreq);
313 }
314 
315 static const struct rpc_call_ops nfs_read_direct_ops = {
316 	.rpc_call_done = nfs_direct_read_result,
317 	.rpc_release = nfs_readdata_release,
318 };
319 
320 /*
321  * For each nfs_read_data struct that was allocated on the list, dispatch
322  * an NFS READ operation
323  */
324 static void nfs_direct_read_schedule(struct nfs_direct_req *dreq)
325 {
326 	struct nfs_open_context *ctx = dreq->ctx;
327 	struct inode *inode = ctx->dentry->d_inode;
328 	struct list_head *list = &dreq->list;
329 	struct page **pages = dreq->pages;
330 	size_t count = dreq->user_count;
331 	loff_t pos = dreq->pos;
332 	size_t rsize = NFS_SERVER(inode)->rsize;
333 	unsigned int curpage, pgbase;
334 
335 	curpage = 0;
336 	pgbase = dreq->user_addr & ~PAGE_MASK;
337 	do {
338 		struct nfs_read_data *data;
339 		size_t bytes;
340 
341 		bytes = rsize;
342 		if (count < rsize)
343 			bytes = count;
344 
345 		BUG_ON(list_empty(list));
346 		data = list_entry(list->next, struct nfs_read_data, pages);
347 		list_del_init(&data->pages);
348 
349 		data->inode = inode;
350 		data->cred = ctx->cred;
351 		data->args.fh = NFS_FH(inode);
352 		data->args.context = ctx;
353 		data->args.offset = pos;
354 		data->args.pgbase = pgbase;
355 		data->args.pages = &pages[curpage];
356 		data->args.count = bytes;
357 		data->res.fattr = &data->fattr;
358 		data->res.eof = 0;
359 		data->res.count = bytes;
360 
361 		rpc_init_task(&data->task, NFS_CLIENT(inode), RPC_TASK_ASYNC,
362 				&nfs_read_direct_ops, data);
363 		NFS_PROTO(inode)->read_setup(data);
364 
365 		data->task.tk_cookie = (unsigned long) inode;
366 
367 		lock_kernel();
368 		rpc_execute(&data->task);
369 		unlock_kernel();
370 
371 		dfprintk(VFS, "NFS: %5u initiated direct read call (req %s/%Ld, %zu bytes @ offset %Lu)\n",
372 				data->task.tk_pid,
373 				inode->i_sb->s_id,
374 				(long long)NFS_FILEID(inode),
375 				bytes,
376 				(unsigned long long)data->args.offset);
377 
378 		pos += bytes;
379 		pgbase += bytes;
380 		curpage += pgbase >> PAGE_SHIFT;
381 		pgbase &= ~PAGE_MASK;
382 
383 		count -= bytes;
384 	} while (count != 0);
385 	BUG_ON(!list_empty(list));
386 }
387 
388 static ssize_t nfs_direct_read(struct kiocb *iocb, unsigned long user_addr, size_t count, loff_t pos, struct page **pages, unsigned int nr_pages)
389 {
390 	ssize_t result;
391 	sigset_t oldset;
392 	struct inode *inode = iocb->ki_filp->f_mapping->host;
393 	struct rpc_clnt *clnt = NFS_CLIENT(inode);
394 	struct nfs_direct_req *dreq;
395 
396 	dreq = nfs_direct_read_alloc(count, NFS_SERVER(inode)->rsize);
397 	if (!dreq)
398 		return -ENOMEM;
399 
400 	dreq->user_addr = user_addr;
401 	dreq->user_count = count;
402 	dreq->pos = pos;
403 	dreq->pages = pages;
404 	dreq->npages = nr_pages;
405 	dreq->inode = inode;
406 	dreq->ctx = get_nfs_open_context((struct nfs_open_context *)iocb->ki_filp->private_data);
407 	if (!is_sync_kiocb(iocb))
408 		dreq->iocb = iocb;
409 
410 	nfs_add_stats(inode, NFSIOS_DIRECTREADBYTES, count);
411 	rpc_clnt_sigmask(clnt, &oldset);
412 	nfs_direct_read_schedule(dreq);
413 	result = nfs_direct_wait(dreq);
414 	rpc_clnt_sigunmask(clnt, &oldset);
415 
416 	return result;
417 }
418 
419 static void nfs_direct_free_writedata(struct nfs_direct_req *dreq)
420 {
421 	list_splice_init(&dreq->rewrite_list, &dreq->list);
422 	while (!list_empty(&dreq->list)) {
423 		struct nfs_write_data *data = list_entry(dreq->list.next, struct nfs_write_data, pages);
424 		list_del(&data->pages);
425 		nfs_writedata_release(data);
426 	}
427 }
428 
429 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
430 static void nfs_direct_write_reschedule(struct nfs_direct_req *dreq)
431 {
432 	struct list_head *pos;
433 
434 	list_splice_init(&dreq->rewrite_list, &dreq->list);
435 	list_for_each(pos, &dreq->list)
436 		dreq->outstanding++;
437 	dreq->count = 0;
438 
439 	nfs_direct_write_schedule(dreq, FLUSH_STABLE);
440 }
441 
442 static void nfs_direct_commit_result(struct rpc_task *task, void *calldata)
443 {
444 	struct nfs_write_data *data = calldata;
445 	struct nfs_direct_req *dreq = (struct nfs_direct_req *) data->req;
446 
447 	/* Call the NFS version-specific code */
448 	if (NFS_PROTO(data->inode)->commit_done(task, data) != 0)
449 		return;
450 	if (unlikely(task->tk_status < 0)) {
451 		dreq->error = task->tk_status;
452 		dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
453 	}
454 	if (memcmp(&dreq->verf, &data->verf, sizeof(data->verf))) {
455 		dprintk("NFS: %5u commit verify failed\n", task->tk_pid);
456 		dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
457 	}
458 
459 	dprintk("NFS: %5u commit returned %d\n", task->tk_pid, task->tk_status);
460 	nfs_direct_write_complete(dreq, data->inode);
461 }
462 
463 static const struct rpc_call_ops nfs_commit_direct_ops = {
464 	.rpc_call_done = nfs_direct_commit_result,
465 	.rpc_release = nfs_commit_release,
466 };
467 
468 static void nfs_direct_commit_schedule(struct nfs_direct_req *dreq)
469 {
470 	struct nfs_write_data *data = dreq->commit_data;
471 	struct rpc_task *task = &data->task;
472 
473 	data->inode = dreq->inode;
474 	data->cred = dreq->ctx->cred;
475 
476 	data->args.fh = NFS_FH(data->inode);
477 	data->args.offset = dreq->pos;
478 	data->args.count = dreq->user_count;
479 	data->res.count = 0;
480 	data->res.fattr = &data->fattr;
481 	data->res.verf = &data->verf;
482 
483 	rpc_init_task(&data->task, NFS_CLIENT(dreq->inode), RPC_TASK_ASYNC,
484 				&nfs_commit_direct_ops, data);
485 	NFS_PROTO(data->inode)->commit_setup(data, 0);
486 
487 	data->task.tk_priority = RPC_PRIORITY_NORMAL;
488 	data->task.tk_cookie = (unsigned long)data->inode;
489 	/* Note: task.tk_ops->rpc_release will free dreq->commit_data */
490 	dreq->commit_data = NULL;
491 
492 	dprintk("NFS: %5u initiated commit call\n", task->tk_pid);
493 
494 	lock_kernel();
495 	rpc_execute(&data->task);
496 	unlock_kernel();
497 }
498 
499 static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode)
500 {
501 	int flags = dreq->flags;
502 
503 	dreq->flags = 0;
504 	switch (flags) {
505 		case NFS_ODIRECT_DO_COMMIT:
506 			nfs_direct_commit_schedule(dreq);
507 			break;
508 		case NFS_ODIRECT_RESCHED_WRITES:
509 			nfs_direct_write_reschedule(dreq);
510 			break;
511 		default:
512 			nfs_end_data_update(inode);
513 			if (dreq->commit_data != NULL)
514 				nfs_commit_free(dreq->commit_data);
515 			nfs_direct_free_writedata(dreq);
516 			nfs_direct_complete(dreq);
517 	}
518 }
519 
520 static void nfs_alloc_commit_data(struct nfs_direct_req *dreq)
521 {
522 	dreq->commit_data = nfs_commit_alloc(0);
523 	if (dreq->commit_data != NULL)
524 		dreq->commit_data->req = (struct nfs_page *) dreq;
525 }
526 #else
527 static inline void nfs_alloc_commit_data(struct nfs_direct_req *dreq)
528 {
529 	dreq->commit_data = NULL;
530 }
531 
532 static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode)
533 {
534 	nfs_end_data_update(inode);
535 	nfs_direct_free_writedata(dreq);
536 	nfs_direct_complete(dreq);
537 }
538 #endif
539 
540 static struct nfs_direct_req *nfs_direct_write_alloc(size_t nbytes, size_t wsize)
541 {
542 	struct list_head *list;
543 	struct nfs_direct_req *dreq;
544 	unsigned int wpages = (wsize + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
545 
546 	dreq = nfs_direct_req_alloc();
547 	if (!dreq)
548 		return NULL;
549 
550 	list = &dreq->list;
551 	for(;;) {
552 		struct nfs_write_data *data = nfs_writedata_alloc(wpages);
553 
554 		if (unlikely(!data)) {
555 			while (!list_empty(list)) {
556 				data = list_entry(list->next,
557 						  struct nfs_write_data, pages);
558 				list_del(&data->pages);
559 				nfs_writedata_free(data);
560 			}
561 			kref_put(&dreq->kref, nfs_direct_req_release);
562 			return NULL;
563 		}
564 
565 		INIT_LIST_HEAD(&data->pages);
566 		list_add(&data->pages, list);
567 
568 		data->req = (struct nfs_page *) dreq;
569 		dreq->outstanding++;
570 		if (nbytes <= wsize)
571 			break;
572 		nbytes -= wsize;
573 	}
574 
575 	nfs_alloc_commit_data(dreq);
576 
577 	kref_get(&dreq->kref);
578 	return dreq;
579 }
580 
581 static void nfs_direct_write_result(struct rpc_task *task, void *calldata)
582 {
583 	struct nfs_write_data *data = calldata;
584 	struct nfs_direct_req *dreq = (struct nfs_direct_req *) data->req;
585 	int status = task->tk_status;
586 
587 	if (nfs_writeback_done(task, data) != 0)
588 		return;
589 
590 	spin_lock(&dreq->lock);
591 
592 	if (likely(status >= 0))
593 		dreq->count += data->res.count;
594 	else
595 		dreq->error = task->tk_status;
596 
597 	if (data->res.verf->committed != NFS_FILE_SYNC) {
598 		switch (dreq->flags) {
599 			case 0:
600 				memcpy(&dreq->verf, &data->verf, sizeof(dreq->verf));
601 				dreq->flags = NFS_ODIRECT_DO_COMMIT;
602 				break;
603 			case NFS_ODIRECT_DO_COMMIT:
604 				if (memcmp(&dreq->verf, &data->verf, sizeof(dreq->verf))) {
605 					dprintk("NFS: %5u write verify failed\n", task->tk_pid);
606 					dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
607 				}
608 		}
609 	}
610 	/* In case we have to resend */
611 	data->args.stable = NFS_FILE_SYNC;
612 
613 	spin_unlock(&dreq->lock);
614 }
615 
616 /*
617  * NB: Return the value of the first error return code.  Subsequent
618  *     errors after the first one are ignored.
619  */
620 static void nfs_direct_write_release(void *calldata)
621 {
622 	struct nfs_write_data *data = calldata;
623 	struct nfs_direct_req *dreq = (struct nfs_direct_req *) data->req;
624 
625 	spin_lock(&dreq->lock);
626 	if (--dreq->outstanding) {
627 		spin_unlock(&dreq->lock);
628 		return;
629 	}
630 	spin_unlock(&dreq->lock);
631 
632 	nfs_direct_write_complete(dreq, data->inode);
633 }
634 
635 static const struct rpc_call_ops nfs_write_direct_ops = {
636 	.rpc_call_done = nfs_direct_write_result,
637 	.rpc_release = nfs_direct_write_release,
638 };
639 
640 /*
641  * For each nfs_write_data struct that was allocated on the list, dispatch
642  * an NFS WRITE operation
643  */
644 static void nfs_direct_write_schedule(struct nfs_direct_req *dreq, int sync)
645 {
646 	struct nfs_open_context *ctx = dreq->ctx;
647 	struct inode *inode = ctx->dentry->d_inode;
648 	struct list_head *list = &dreq->list;
649 	struct page **pages = dreq->pages;
650 	size_t count = dreq->user_count;
651 	loff_t pos = dreq->pos;
652 	size_t wsize = NFS_SERVER(inode)->wsize;
653 	unsigned int curpage, pgbase;
654 
655 	curpage = 0;
656 	pgbase = dreq->user_addr & ~PAGE_MASK;
657 	do {
658 		struct nfs_write_data *data;
659 		size_t bytes;
660 
661 		bytes = wsize;
662 		if (count < wsize)
663 			bytes = count;
664 
665 		BUG_ON(list_empty(list));
666 		data = list_entry(list->next, struct nfs_write_data, pages);
667 		list_move_tail(&data->pages, &dreq->rewrite_list);
668 
669 		data->inode = inode;
670 		data->cred = ctx->cred;
671 		data->args.fh = NFS_FH(inode);
672 		data->args.context = ctx;
673 		data->args.offset = pos;
674 		data->args.pgbase = pgbase;
675 		data->args.pages = &pages[curpage];
676 		data->args.count = bytes;
677 		data->res.fattr = &data->fattr;
678 		data->res.count = bytes;
679 		data->res.verf = &data->verf;
680 
681 		rpc_init_task(&data->task, NFS_CLIENT(inode), RPC_TASK_ASYNC,
682 				&nfs_write_direct_ops, data);
683 		NFS_PROTO(inode)->write_setup(data, sync);
684 
685 		data->task.tk_priority = RPC_PRIORITY_NORMAL;
686 		data->task.tk_cookie = (unsigned long) inode;
687 
688 		lock_kernel();
689 		rpc_execute(&data->task);
690 		unlock_kernel();
691 
692 		dfprintk(VFS, "NFS: %5u initiated direct write call (req %s/%Ld, %zu bytes @ offset %Lu)\n",
693 				data->task.tk_pid,
694 				inode->i_sb->s_id,
695 				(long long)NFS_FILEID(inode),
696 				bytes,
697 				(unsigned long long)data->args.offset);
698 
699 		pos += bytes;
700 		pgbase += bytes;
701 		curpage += pgbase >> PAGE_SHIFT;
702 		pgbase &= ~PAGE_MASK;
703 
704 		count -= bytes;
705 	} while (count != 0);
706 	BUG_ON(!list_empty(list));
707 }
708 
709 static ssize_t nfs_direct_write(struct kiocb *iocb, unsigned long user_addr, size_t count, loff_t pos, struct page **pages, int nr_pages)
710 {
711 	ssize_t result;
712 	sigset_t oldset;
713 	struct inode *inode = iocb->ki_filp->f_mapping->host;
714 	struct rpc_clnt *clnt = NFS_CLIENT(inode);
715 	struct nfs_direct_req *dreq;
716 	size_t wsize = NFS_SERVER(inode)->wsize;
717 	int sync = 0;
718 
719 	dreq = nfs_direct_write_alloc(count, wsize);
720 	if (!dreq)
721 		return -ENOMEM;
722 	if (dreq->commit_data == NULL || count < wsize)
723 		sync = FLUSH_STABLE;
724 
725 	dreq->user_addr = user_addr;
726 	dreq->user_count = count;
727 	dreq->pos = pos;
728 	dreq->pages = pages;
729 	dreq->npages = nr_pages;
730 	dreq->inode = inode;
731 	dreq->ctx = get_nfs_open_context((struct nfs_open_context *)iocb->ki_filp->private_data);
732 	if (!is_sync_kiocb(iocb))
733 		dreq->iocb = iocb;
734 
735 	nfs_add_stats(inode, NFSIOS_DIRECTWRITTENBYTES, count);
736 
737 	nfs_begin_data_update(inode);
738 
739 	rpc_clnt_sigmask(clnt, &oldset);
740 	nfs_direct_write_schedule(dreq, sync);
741 	result = nfs_direct_wait(dreq);
742 	rpc_clnt_sigunmask(clnt, &oldset);
743 
744 	return result;
745 }
746 
747 /**
748  * nfs_file_direct_read - file direct read operation for NFS files
749  * @iocb: target I/O control block
750  * @buf: user's buffer into which to read data
751  * @count: number of bytes to read
752  * @pos: byte offset in file where reading starts
753  *
754  * We use this function for direct reads instead of calling
755  * generic_file_aio_read() in order to avoid gfar's check to see if
756  * the request starts before the end of the file.  For that check
757  * to work, we must generate a GETATTR before each direct read, and
758  * even then there is a window between the GETATTR and the subsequent
759  * READ where the file size could change.  Our preference is simply
760  * to do all reads the application wants, and the server will take
761  * care of managing the end of file boundary.
762  *
763  * This function also eliminates unnecessarily updating the file's
764  * atime locally, as the NFS server sets the file's atime, and this
765  * client must read the updated atime from the server back into its
766  * cache.
767  */
768 ssize_t nfs_file_direct_read(struct kiocb *iocb, char __user *buf, size_t count, loff_t pos)
769 {
770 	ssize_t retval = -EINVAL;
771 	int page_count;
772 	struct page **pages;
773 	struct file *file = iocb->ki_filp;
774 	struct address_space *mapping = file->f_mapping;
775 
776 	dprintk("nfs: direct read(%s/%s, %lu@%Ld)\n",
777 		file->f_dentry->d_parent->d_name.name,
778 		file->f_dentry->d_name.name,
779 		(unsigned long) count, (long long) pos);
780 
781 	if (count < 0)
782 		goto out;
783 	retval = -EFAULT;
784 	if (!access_ok(VERIFY_WRITE, buf, count))
785 		goto out;
786 	retval = 0;
787 	if (!count)
788 		goto out;
789 
790 	retval = nfs_sync_mapping(mapping);
791 	if (retval)
792 		goto out;
793 
794 	retval = nfs_get_user_pages(READ, (unsigned long) buf,
795 						count, &pages);
796 	if (retval < 0)
797 		goto out;
798 	page_count = retval;
799 
800 	retval = nfs_direct_read(iocb, (unsigned long) buf, count, pos,
801 						pages, page_count);
802 	if (retval > 0)
803 		iocb->ki_pos = pos + retval;
804 
805 out:
806 	return retval;
807 }
808 
809 /**
810  * nfs_file_direct_write - file direct write operation for NFS files
811  * @iocb: target I/O control block
812  * @buf: user's buffer from which to write data
813  * @count: number of bytes to write
814  * @pos: byte offset in file where writing starts
815  *
816  * We use this function for direct writes instead of calling
817  * generic_file_aio_write() in order to avoid taking the inode
818  * semaphore and updating the i_size.  The NFS server will set
819  * the new i_size and this client must read the updated size
820  * back into its cache.  We let the server do generic write
821  * parameter checking and report problems.
822  *
823  * We also avoid an unnecessary invocation of generic_osync_inode(),
824  * as it is fairly meaningless to sync the metadata of an NFS file.
825  *
826  * We eliminate local atime updates, see direct read above.
827  *
828  * We avoid unnecessary page cache invalidations for normal cached
829  * readers of this file.
830  *
831  * Note that O_APPEND is not supported for NFS direct writes, as there
832  * is no atomic O_APPEND write facility in the NFS protocol.
833  */
834 ssize_t nfs_file_direct_write(struct kiocb *iocb, const char __user *buf, size_t count, loff_t pos)
835 {
836 	ssize_t retval;
837 	int page_count;
838 	struct page **pages;
839 	struct file *file = iocb->ki_filp;
840 	struct address_space *mapping = file->f_mapping;
841 
842 	dfprintk(VFS, "nfs: direct write(%s/%s, %lu@%Ld)\n",
843 		file->f_dentry->d_parent->d_name.name,
844 		file->f_dentry->d_name.name,
845 		(unsigned long) count, (long long) pos);
846 
847 	retval = generic_write_checks(file, &pos, &count, 0);
848 	if (retval)
849 		goto out;
850 
851 	retval = -EINVAL;
852 	if ((ssize_t) count < 0)
853 		goto out;
854 	retval = 0;
855 	if (!count)
856 		goto out;
857 
858 	retval = -EFAULT;
859 	if (!access_ok(VERIFY_READ, buf, count))
860 		goto out;
861 
862 	retval = nfs_sync_mapping(mapping);
863 	if (retval)
864 		goto out;
865 
866 	retval = nfs_get_user_pages(WRITE, (unsigned long) buf,
867 						count, &pages);
868 	if (retval < 0)
869 		goto out;
870 	page_count = retval;
871 
872 	retval = nfs_direct_write(iocb, (unsigned long) buf, count,
873 					pos, pages, page_count);
874 
875 	/*
876 	 * XXX: nfs_end_data_update() already ensures this file's
877 	 *      cached data is subsequently invalidated.  Do we really
878 	 *      need to call invalidate_inode_pages2() again here?
879 	 *
880 	 *      For aio writes, this invalidation will almost certainly
881 	 *      occur before the writes complete.  Kind of racey.
882 	 */
883 	if (mapping->nrpages)
884 		invalidate_inode_pages2(mapping);
885 
886 	if (retval > 0)
887 		iocb->ki_pos = pos + retval;
888 
889 out:
890 	return retval;
891 }
892 
893 /**
894  * nfs_init_directcache - create a slab cache for nfs_direct_req structures
895  *
896  */
897 int nfs_init_directcache(void)
898 {
899 	nfs_direct_cachep = kmem_cache_create("nfs_direct_cache",
900 						sizeof(struct nfs_direct_req),
901 						0, (SLAB_RECLAIM_ACCOUNT|
902 							SLAB_MEM_SPREAD),
903 						NULL, NULL);
904 	if (nfs_direct_cachep == NULL)
905 		return -ENOMEM;
906 
907 	return 0;
908 }
909 
910 /**
911  * nfs_init_directcache - destroy the slab cache for nfs_direct_req structures
912  *
913  */
914 void nfs_destroy_directcache(void)
915 {
916 	if (kmem_cache_destroy(nfs_direct_cachep))
917 		printk(KERN_INFO "nfs_direct_cache: not all structures were freed\n");
918 }
919