xref: /openbmc/linux/fs/nfs/direct.c (revision 93619e5989173614bef0013b0bb8a3fe3dbd5a95)
1 /*
2  * linux/fs/nfs/direct.c
3  *
4  * Copyright (C) 2003 by Chuck Lever <cel@netapp.com>
5  *
6  * High-performance uncached I/O for the Linux NFS client
7  *
8  * There are important applications whose performance or correctness
9  * depends on uncached access to file data.  Database clusters
10  * (multiple copies of the same instance running on separate hosts)
11  * implement their own cache coherency protocol that subsumes file
12  * system cache protocols.  Applications that process datasets
13  * considerably larger than the client's memory do not always benefit
14  * from a local cache.  A streaming video server, for instance, has no
15  * need to cache the contents of a file.
16  *
17  * When an application requests uncached I/O, all read and write requests
18  * are made directly to the server; data stored or fetched via these
19  * requests is not cached in the Linux page cache.  The client does not
20  * correct unaligned requests from applications.  All requested bytes are
21  * held on permanent storage before a direct write system call returns to
22  * an application.
23  *
24  * Solaris implements an uncached I/O facility called directio() that
25  * is used for backups and sequential I/O to very large files.  Solaris
26  * also supports uncaching whole NFS partitions with "-o forcedirectio,"
27  * an undocumented mount option.
28  *
29  * Designed by Jeff Kimmel, Chuck Lever, and Trond Myklebust, with
30  * help from Andrew Morton.
31  *
32  * 18 Dec 2001	Initial implementation for 2.4  --cel
33  * 08 Jul 2002	Version for 2.4.19, with bug fixes --trondmy
34  * 08 Jun 2003	Port to 2.5 APIs  --cel
35  * 31 Mar 2004	Handle direct I/O without VFS support  --cel
36  * 15 Sep 2004	Parallel async reads  --cel
37  *
38  */
39 
40 #include <linux/config.h>
41 #include <linux/errno.h>
42 #include <linux/sched.h>
43 #include <linux/kernel.h>
44 #include <linux/smp_lock.h>
45 #include <linux/file.h>
46 #include <linux/pagemap.h>
47 #include <linux/kref.h>
48 
49 #include <linux/nfs_fs.h>
50 #include <linux/nfs_page.h>
51 #include <linux/sunrpc/clnt.h>
52 
53 #include <asm/system.h>
54 #include <asm/uaccess.h>
55 #include <asm/atomic.h>
56 
57 #include "iostat.h"
58 
59 #define NFSDBG_FACILITY		NFSDBG_VFS
60 #define MAX_DIRECTIO_SIZE	(4096UL << PAGE_SHIFT)
61 
62 static void nfs_free_user_pages(struct page **pages, int npages, int do_dirty);
63 static kmem_cache_t *nfs_direct_cachep;
64 
65 /*
66  * This represents a set of asynchronous requests that we're waiting on
67  */
68 struct nfs_direct_req {
69 	struct kref		kref;		/* release manager */
70 	struct list_head	list;		/* nfs_read_data structs */
71 	struct file *		filp;		/* file descriptor */
72 	struct kiocb *		iocb;		/* controlling i/o request */
73 	wait_queue_head_t	wait;		/* wait for i/o completion */
74 	struct inode *		inode;		/* target file of I/O */
75 	struct page **		pages;		/* pages in our buffer */
76 	unsigned int		npages;		/* count of pages */
77 	atomic_t		complete,	/* i/os we're waiting for */
78 				count,		/* bytes actually processed */
79 				error;		/* any reported error */
80 };
81 
82 
83 /**
84  * nfs_direct_IO - NFS address space operation for direct I/O
85  * @rw: direction (read or write)
86  * @iocb: target I/O control block
87  * @iov: array of vectors that define I/O buffer
88  * @pos: offset in file to begin the operation
89  * @nr_segs: size of iovec array
90  *
91  * The presence of this routine in the address space ops vector means
92  * the NFS client supports direct I/O.  However, we shunt off direct
93  * read and write requests before the VFS gets them, so this method
94  * should never be called.
95  */
96 ssize_t nfs_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov, loff_t pos, unsigned long nr_segs)
97 {
98 	struct dentry *dentry = iocb->ki_filp->f_dentry;
99 
100 	dprintk("NFS: nfs_direct_IO (%s) off/no(%Ld/%lu) EINVAL\n",
101 			dentry->d_name.name, (long long) pos, nr_segs);
102 
103 	return -EINVAL;
104 }
105 
106 static inline int nfs_get_user_pages(int rw, unsigned long user_addr, size_t size, struct page ***pages)
107 {
108 	int result = -ENOMEM;
109 	unsigned long page_count;
110 	size_t array_size;
111 
112 	/* set an arbitrary limit to prevent type overflow */
113 	/* XXX: this can probably be as large as INT_MAX */
114 	if (size > MAX_DIRECTIO_SIZE) {
115 		*pages = NULL;
116 		return -EFBIG;
117 	}
118 
119 	page_count = (user_addr + size + PAGE_SIZE - 1) >> PAGE_SHIFT;
120 	page_count -= user_addr >> PAGE_SHIFT;
121 
122 	array_size = (page_count * sizeof(struct page *));
123 	*pages = kmalloc(array_size, GFP_KERNEL);
124 	if (*pages) {
125 		down_read(&current->mm->mmap_sem);
126 		result = get_user_pages(current, current->mm, user_addr,
127 					page_count, (rw == READ), 0,
128 					*pages, NULL);
129 		up_read(&current->mm->mmap_sem);
130 		/*
131 		 * If we got fewer pages than expected from get_user_pages(),
132 		 * the user buffer runs off the end of a mapping; return EFAULT.
133 		 */
134 		if (result >= 0 && result < page_count) {
135 			nfs_free_user_pages(*pages, result, 0);
136 			*pages = NULL;
137 			result = -EFAULT;
138 		}
139 	}
140 	return result;
141 }
142 
143 static void nfs_free_user_pages(struct page **pages, int npages, int do_dirty)
144 {
145 	int i;
146 	for (i = 0; i < npages; i++) {
147 		struct page *page = pages[i];
148 		if (do_dirty && !PageCompound(page))
149 			set_page_dirty_lock(page);
150 		page_cache_release(page);
151 	}
152 	kfree(pages);
153 }
154 
155 static inline struct nfs_direct_req *nfs_direct_req_alloc(void)
156 {
157 	struct nfs_direct_req *dreq;
158 
159 	dreq = kmem_cache_alloc(nfs_direct_cachep, SLAB_KERNEL);
160 	if (!dreq)
161 		return NULL;
162 
163 	kref_init(&dreq->kref);
164 	init_waitqueue_head(&dreq->wait);
165 	INIT_LIST_HEAD(&dreq->list);
166 	dreq->iocb = NULL;
167 	atomic_set(&dreq->count, 0);
168 	atomic_set(&dreq->error, 0);
169 
170 	return dreq;
171 }
172 
173 static void nfs_direct_req_release(struct kref *kref)
174 {
175 	struct nfs_direct_req *dreq = container_of(kref, struct nfs_direct_req, kref);
176 	kmem_cache_free(nfs_direct_cachep, dreq);
177 }
178 
179 /*
180  * Collects and returns the final error value/byte-count.
181  */
182 static ssize_t nfs_direct_wait(struct nfs_direct_req *dreq)
183 {
184 	int result = -EIOCBQUEUED;
185 
186 	/* Async requests don't wait here */
187 	if (dreq->iocb)
188 		goto out;
189 
190 	result = wait_event_interruptible(dreq->wait,
191 					(atomic_read(&dreq->complete) == 0));
192 
193 	if (!result)
194 		result = atomic_read(&dreq->error);
195 	if (!result)
196 		result = atomic_read(&dreq->count);
197 
198 out:
199 	kref_put(&dreq->kref, nfs_direct_req_release);
200 	return (ssize_t) result;
201 }
202 
203 /*
204  * Note we also set the number of requests we have in the dreq when we are
205  * done.  This prevents races with I/O completion so we will always wait
206  * until all requests have been dispatched and completed.
207  */
208 static struct nfs_direct_req *nfs_direct_read_alloc(size_t nbytes, size_t rsize)
209 {
210 	struct list_head *list;
211 	struct nfs_direct_req *dreq;
212 	unsigned int reads = 0;
213 	unsigned int rpages = (rsize + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
214 
215 	dreq = nfs_direct_req_alloc();
216 	if (!dreq)
217 		return NULL;
218 
219 	list = &dreq->list;
220 	for(;;) {
221 		struct nfs_read_data *data = nfs_readdata_alloc(rpages);
222 
223 		if (unlikely(!data)) {
224 			while (!list_empty(list)) {
225 				data = list_entry(list->next,
226 						  struct nfs_read_data, pages);
227 				list_del(&data->pages);
228 				nfs_readdata_free(data);
229 			}
230 			kref_put(&dreq->kref, nfs_direct_req_release);
231 			return NULL;
232 		}
233 
234 		INIT_LIST_HEAD(&data->pages);
235 		list_add(&data->pages, list);
236 
237 		data->req = (struct nfs_page *) dreq;
238 		reads++;
239 		if (nbytes <= rsize)
240 			break;
241 		nbytes -= rsize;
242 	}
243 	kref_get(&dreq->kref);
244 	atomic_set(&dreq->complete, reads);
245 	return dreq;
246 }
247 
248 /*
249  * We must hold a reference to all the pages in this direct read request
250  * until the RPCs complete.  This could be long *after* we are woken up in
251  * nfs_direct_wait (for instance, if someone hits ^C on a slow server).
252  *
253  * In addition, synchronous I/O uses a stack-allocated iocb.  Thus we
254  * can't trust the iocb is still valid here if this is a synchronous
255  * request.  If the waiter is woken prematurely, the iocb is long gone.
256  */
257 static void nfs_direct_read_result(struct rpc_task *task, void *calldata)
258 {
259 	struct nfs_read_data *data = calldata;
260 	struct nfs_direct_req *dreq = (struct nfs_direct_req *) data->req;
261 
262 	if (nfs_readpage_result(task, data) != 0)
263 		return;
264 	if (likely(task->tk_status >= 0))
265 		atomic_add(data->res.count, &dreq->count);
266 	else
267 		atomic_set(&dreq->error, task->tk_status);
268 
269 	if (unlikely(atomic_dec_and_test(&dreq->complete))) {
270 		nfs_free_user_pages(dreq->pages, dreq->npages, 1);
271 		if (dreq->iocb) {
272 			long res = atomic_read(&dreq->error);
273 			if (!res)
274 				res = atomic_read(&dreq->count);
275 			aio_complete(dreq->iocb, res, 0);
276 		} else
277 			wake_up(&dreq->wait);
278 		kref_put(&dreq->kref, nfs_direct_req_release);
279 	}
280 }
281 
282 static const struct rpc_call_ops nfs_read_direct_ops = {
283 	.rpc_call_done = nfs_direct_read_result,
284 	.rpc_release = nfs_readdata_release,
285 };
286 
287 /*
288  * For each nfs_read_data struct that was allocated on the list, dispatch
289  * an NFS READ operation
290  */
291 static void nfs_direct_read_schedule(struct nfs_direct_req *dreq, unsigned long user_addr, size_t count, loff_t file_offset)
292 {
293 	struct file *file = dreq->filp;
294 	struct inode *inode = file->f_mapping->host;
295 	struct nfs_open_context *ctx = (struct nfs_open_context *)
296 							file->private_data;
297 	struct list_head *list = &dreq->list;
298 	struct page **pages = dreq->pages;
299 	size_t rsize = NFS_SERVER(inode)->rsize;
300 	unsigned int curpage, pgbase;
301 
302 	curpage = 0;
303 	pgbase = user_addr & ~PAGE_MASK;
304 	do {
305 		struct nfs_read_data *data;
306 		size_t bytes;
307 
308 		bytes = rsize;
309 		if (count < rsize)
310 			bytes = count;
311 
312 		data = list_entry(list->next, struct nfs_read_data, pages);
313 		list_del_init(&data->pages);
314 
315 		data->inode = inode;
316 		data->cred = ctx->cred;
317 		data->args.fh = NFS_FH(inode);
318 		data->args.context = ctx;
319 		data->args.offset = file_offset;
320 		data->args.pgbase = pgbase;
321 		data->args.pages = &pages[curpage];
322 		data->args.count = bytes;
323 		data->res.fattr = &data->fattr;
324 		data->res.eof = 0;
325 		data->res.count = bytes;
326 
327 		rpc_init_task(&data->task, NFS_CLIENT(inode), RPC_TASK_ASYNC,
328 				&nfs_read_direct_ops, data);
329 		NFS_PROTO(inode)->read_setup(data);
330 
331 		data->task.tk_cookie = (unsigned long) inode;
332 
333 		lock_kernel();
334 		rpc_execute(&data->task);
335 		unlock_kernel();
336 
337 		dfprintk(VFS, "NFS: %4d initiated direct read call (req %s/%Ld, %u bytes @ offset %Lu)\n",
338 				data->task.tk_pid,
339 				inode->i_sb->s_id,
340 				(long long)NFS_FILEID(inode),
341 				bytes,
342 				(unsigned long long)data->args.offset);
343 
344 		file_offset += bytes;
345 		pgbase += bytes;
346 		curpage += pgbase >> PAGE_SHIFT;
347 		pgbase &= ~PAGE_MASK;
348 
349 		count -= bytes;
350 	} while (count != 0);
351 }
352 
353 static ssize_t nfs_direct_read(struct kiocb *iocb, unsigned long user_addr, size_t count, loff_t file_offset, struct page **pages, unsigned int nr_pages)
354 {
355 	ssize_t result;
356 	sigset_t oldset;
357 	struct inode *inode = iocb->ki_filp->f_mapping->host;
358 	struct rpc_clnt *clnt = NFS_CLIENT(inode);
359 	struct nfs_direct_req *dreq;
360 
361 	dreq = nfs_direct_read_alloc(count, NFS_SERVER(inode)->rsize);
362 	if (!dreq)
363 		return -ENOMEM;
364 
365 	dreq->pages = pages;
366 	dreq->npages = nr_pages;
367 	dreq->inode = inode;
368 	dreq->filp = iocb->ki_filp;
369 	if (!is_sync_kiocb(iocb))
370 		dreq->iocb = iocb;
371 
372 	nfs_add_stats(inode, NFSIOS_DIRECTREADBYTES, count);
373 	rpc_clnt_sigmask(clnt, &oldset);
374 	nfs_direct_read_schedule(dreq, user_addr, count, file_offset);
375 	result = nfs_direct_wait(dreq);
376 	rpc_clnt_sigunmask(clnt, &oldset);
377 
378 	return result;
379 }
380 
381 static ssize_t nfs_direct_write_seg(struct inode *inode, struct nfs_open_context *ctx, unsigned long user_addr, size_t count, loff_t file_offset, struct page **pages, int nr_pages)
382 {
383 	const unsigned int wsize = NFS_SERVER(inode)->wsize;
384 	size_t request;
385 	int curpage, need_commit;
386 	ssize_t result, tot_bytes;
387 	struct nfs_writeverf first_verf;
388 	struct nfs_write_data *wdata;
389 
390 	wdata = nfs_writedata_alloc(NFS_SERVER(inode)->wpages);
391 	if (!wdata)
392 		return -ENOMEM;
393 
394 	wdata->inode = inode;
395 	wdata->cred = ctx->cred;
396 	wdata->args.fh = NFS_FH(inode);
397 	wdata->args.context = ctx;
398 	wdata->args.stable = NFS_UNSTABLE;
399 	if (IS_SYNC(inode) || NFS_PROTO(inode)->version == 2 || count <= wsize)
400 		wdata->args.stable = NFS_FILE_SYNC;
401 	wdata->res.fattr = &wdata->fattr;
402 	wdata->res.verf = &wdata->verf;
403 
404 	nfs_begin_data_update(inode);
405 retry:
406 	need_commit = 0;
407 	tot_bytes = 0;
408 	curpage = 0;
409 	request = count;
410 	wdata->args.pgbase = user_addr & ~PAGE_MASK;
411 	wdata->args.offset = file_offset;
412 	do {
413 		wdata->args.count = request;
414 		if (wdata->args.count > wsize)
415 			wdata->args.count = wsize;
416 		wdata->args.pages = &pages[curpage];
417 
418 		dprintk("NFS: direct write: c=%u o=%Ld ua=%lu, pb=%u, cp=%u\n",
419 			wdata->args.count, (long long) wdata->args.offset,
420 			user_addr + tot_bytes, wdata->args.pgbase, curpage);
421 
422 		lock_kernel();
423 		result = NFS_PROTO(inode)->write(wdata);
424 		unlock_kernel();
425 
426 		if (result <= 0) {
427 			if (tot_bytes > 0)
428 				break;
429 			goto out;
430 		}
431 
432 		if (tot_bytes == 0)
433 			memcpy(&first_verf.verifier, &wdata->verf.verifier,
434 						sizeof(first_verf.verifier));
435 		if (wdata->verf.committed != NFS_FILE_SYNC) {
436 			need_commit = 1;
437 			if (memcmp(&first_verf.verifier, &wdata->verf.verifier,
438 					sizeof(first_verf.verifier)))
439 				goto sync_retry;
440 		}
441 
442 		tot_bytes += result;
443 
444 		/* in case of a short write: stop now, let the app recover */
445 		if (result < wdata->args.count)
446 			break;
447 
448 		wdata->args.offset += result;
449 		wdata->args.pgbase += result;
450 		curpage += wdata->args.pgbase >> PAGE_SHIFT;
451 		wdata->args.pgbase &= ~PAGE_MASK;
452 		request -= result;
453 	} while (request != 0);
454 
455 	/*
456 	 * Commit data written so far, even in the event of an error
457 	 */
458 	if (need_commit) {
459 		wdata->args.count = tot_bytes;
460 		wdata->args.offset = file_offset;
461 
462 		lock_kernel();
463 		result = NFS_PROTO(inode)->commit(wdata);
464 		unlock_kernel();
465 
466 		if (result < 0 || memcmp(&first_verf.verifier,
467 					 &wdata->verf.verifier,
468 					 sizeof(first_verf.verifier)) != 0)
469 			goto sync_retry;
470 	}
471 	result = tot_bytes;
472 
473 out:
474 	nfs_end_data_update(inode);
475 	nfs_writedata_free(wdata);
476 	return result;
477 
478 sync_retry:
479 	wdata->args.stable = NFS_FILE_SYNC;
480 	goto retry;
481 }
482 
483 /*
484  * Upon return, generic_file_direct_IO invalidates any cached pages
485  * that non-direct readers might access, so they will pick up these
486  * writes immediately.
487  */
488 static ssize_t nfs_direct_write(struct inode *inode, struct nfs_open_context *ctx, const struct iovec *iov, loff_t file_offset, unsigned long nr_segs)
489 {
490 	ssize_t tot_bytes = 0;
491 	unsigned long seg = 0;
492 
493 	while ((seg < nr_segs) && (tot_bytes >= 0)) {
494 		ssize_t result;
495 		int page_count;
496 		struct page **pages;
497 		const struct iovec *vec = &iov[seg++];
498 		unsigned long user_addr = (unsigned long) vec->iov_base;
499 		size_t size = vec->iov_len;
500 
501                 page_count = nfs_get_user_pages(WRITE, user_addr, size, &pages);
502                 if (page_count < 0) {
503                         nfs_free_user_pages(pages, 0, 0);
504 			if (tot_bytes > 0)
505 				break;
506                         return page_count;
507                 }
508 
509 		nfs_add_stats(inode, NFSIOS_DIRECTWRITTENBYTES, size);
510 		result = nfs_direct_write_seg(inode, ctx, user_addr, size,
511 				file_offset, pages, page_count);
512 		nfs_free_user_pages(pages, page_count, 0);
513 
514 		if (result <= 0) {
515 			if (tot_bytes > 0)
516 				break;
517 			return result;
518 		}
519 		nfs_add_stats(inode, NFSIOS_SERVERWRITTENBYTES, result);
520 		tot_bytes += result;
521 		file_offset += result;
522 		if (result < size)
523 			break;
524 	}
525 	return tot_bytes;
526 }
527 
528 /**
529  * nfs_file_direct_read - file direct read operation for NFS files
530  * @iocb: target I/O control block
531  * @buf: user's buffer into which to read data
532  * count: number of bytes to read
533  * pos: byte offset in file where reading starts
534  *
535  * We use this function for direct reads instead of calling
536  * generic_file_aio_read() in order to avoid gfar's check to see if
537  * the request starts before the end of the file.  For that check
538  * to work, we must generate a GETATTR before each direct read, and
539  * even then there is a window between the GETATTR and the subsequent
540  * READ where the file size could change.  So our preference is simply
541  * to do all reads the application wants, and the server will take
542  * care of managing the end of file boundary.
543  *
544  * This function also eliminates unnecessarily updating the file's
545  * atime locally, as the NFS server sets the file's atime, and this
546  * client must read the updated atime from the server back into its
547  * cache.
548  */
549 ssize_t nfs_file_direct_read(struct kiocb *iocb, char __user *buf, size_t count, loff_t pos)
550 {
551 	ssize_t retval = -EINVAL;
552 	int page_count;
553 	struct page **pages;
554 	struct file *file = iocb->ki_filp;
555 	struct address_space *mapping = file->f_mapping;
556 
557 	dprintk("nfs: direct read(%s/%s, %lu@%Ld)\n",
558 		file->f_dentry->d_parent->d_name.name,
559 		file->f_dentry->d_name.name,
560 		(unsigned long) count, (long long) pos);
561 
562 	if (count < 0)
563 		goto out;
564 	retval = -EFAULT;
565 	if (!access_ok(VERIFY_WRITE, buf, count))
566 		goto out;
567 	retval = 0;
568 	if (!count)
569 		goto out;
570 
571 	retval = nfs_sync_mapping(mapping);
572 	if (retval)
573 		goto out;
574 
575 	page_count = nfs_get_user_pages(READ, (unsigned long) buf,
576 						count, &pages);
577 	if (page_count < 0) {
578 		nfs_free_user_pages(pages, 0, 0);
579 		retval = page_count;
580 		goto out;
581 	}
582 
583 	retval = nfs_direct_read(iocb, (unsigned long) buf, count, pos,
584 						pages, page_count);
585 	if (retval > 0)
586 		iocb->ki_pos = pos + retval;
587 
588 out:
589 	return retval;
590 }
591 
592 /**
593  * nfs_file_direct_write - file direct write operation for NFS files
594  * @iocb: target I/O control block
595  * @buf: user's buffer from which to write data
596  * count: number of bytes to write
597  * pos: byte offset in file where writing starts
598  *
599  * We use this function for direct writes instead of calling
600  * generic_file_aio_write() in order to avoid taking the inode
601  * semaphore and updating the i_size.  The NFS server will set
602  * the new i_size and this client must read the updated size
603  * back into its cache.  We let the server do generic write
604  * parameter checking and report problems.
605  *
606  * We also avoid an unnecessary invocation of generic_osync_inode(),
607  * as it is fairly meaningless to sync the metadata of an NFS file.
608  *
609  * We eliminate local atime updates, see direct read above.
610  *
611  * We avoid unnecessary page cache invalidations for normal cached
612  * readers of this file.
613  *
614  * Note that O_APPEND is not supported for NFS direct writes, as there
615  * is no atomic O_APPEND write facility in the NFS protocol.
616  */
617 ssize_t nfs_file_direct_write(struct kiocb *iocb, const char __user *buf, size_t count, loff_t pos)
618 {
619 	ssize_t retval;
620 	struct file *file = iocb->ki_filp;
621 	struct nfs_open_context *ctx =
622 			(struct nfs_open_context *) file->private_data;
623 	struct address_space *mapping = file->f_mapping;
624 	struct inode *inode = mapping->host;
625 	struct iovec iov = {
626 		.iov_base = (char __user *)buf,
627 	};
628 
629 	dfprintk(VFS, "nfs: direct write(%s/%s, %lu@%Ld)\n",
630 		file->f_dentry->d_parent->d_name.name,
631 		file->f_dentry->d_name.name,
632 		(unsigned long) count, (long long) pos);
633 
634 	retval = -EINVAL;
635 	if (!is_sync_kiocb(iocb))
636 		goto out;
637 
638 	retval = generic_write_checks(file, &pos, &count, 0);
639 	if (retval)
640 		goto out;
641 
642 	retval = -EINVAL;
643 	if ((ssize_t) count < 0)
644 		goto out;
645 	retval = 0;
646 	if (!count)
647 		goto out;
648 	iov.iov_len = count,
649 
650 	retval = -EFAULT;
651 	if (!access_ok(VERIFY_READ, iov.iov_base, iov.iov_len))
652 		goto out;
653 
654 	retval = nfs_sync_mapping(mapping);
655 	if (retval)
656 		goto out;
657 
658 	retval = nfs_direct_write(inode, ctx, &iov, pos, 1);
659 	if (mapping->nrpages)
660 		invalidate_inode_pages2(mapping);
661 	if (retval > 0)
662 		iocb->ki_pos = pos + retval;
663 
664 out:
665 	return retval;
666 }
667 
668 int nfs_init_directcache(void)
669 {
670 	nfs_direct_cachep = kmem_cache_create("nfs_direct_cache",
671 						sizeof(struct nfs_direct_req),
672 						0, SLAB_RECLAIM_ACCOUNT,
673 						NULL, NULL);
674 	if (nfs_direct_cachep == NULL)
675 		return -ENOMEM;
676 
677 	return 0;
678 }
679 
680 void nfs_destroy_directcache(void)
681 {
682 	if (kmem_cache_destroy(nfs_direct_cachep))
683 		printk(KERN_INFO "nfs_direct_cache: not all structures were freed\n");
684 }
685