1 /* 2 * linux/fs/nfs/direct.c 3 * 4 * Copyright (C) 2003 by Chuck Lever <cel@netapp.com> 5 * 6 * High-performance uncached I/O for the Linux NFS client 7 * 8 * There are important applications whose performance or correctness 9 * depends on uncached access to file data. Database clusters 10 * (multiple copies of the same instance running on separate hosts) 11 * implement their own cache coherency protocol that subsumes file 12 * system cache protocols. Applications that process datasets 13 * considerably larger than the client's memory do not always benefit 14 * from a local cache. A streaming video server, for instance, has no 15 * need to cache the contents of a file. 16 * 17 * When an application requests uncached I/O, all read and write requests 18 * are made directly to the server; data stored or fetched via these 19 * requests is not cached in the Linux page cache. The client does not 20 * correct unaligned requests from applications. All requested bytes are 21 * held on permanent storage before a direct write system call returns to 22 * an application. 23 * 24 * Solaris implements an uncached I/O facility called directio() that 25 * is used for backups and sequential I/O to very large files. Solaris 26 * also supports uncaching whole NFS partitions with "-o forcedirectio," 27 * an undocumented mount option. 28 * 29 * Designed by Jeff Kimmel, Chuck Lever, and Trond Myklebust, with 30 * help from Andrew Morton. 31 * 32 * 18 Dec 2001 Initial implementation for 2.4 --cel 33 * 08 Jul 2002 Version for 2.4.19, with bug fixes --trondmy 34 * 08 Jun 2003 Port to 2.5 APIs --cel 35 * 31 Mar 2004 Handle direct I/O without VFS support --cel 36 * 15 Sep 2004 Parallel async reads --cel 37 * 04 May 2005 support O_DIRECT with aio --cel 38 * 39 */ 40 41 #include <linux/errno.h> 42 #include <linux/sched.h> 43 #include <linux/kernel.h> 44 #include <linux/file.h> 45 #include <linux/pagemap.h> 46 #include <linux/kref.h> 47 #include <linux/slab.h> 48 #include <linux/task_io_accounting_ops.h> 49 50 #include <linux/nfs_fs.h> 51 #include <linux/nfs_page.h> 52 #include <linux/sunrpc/clnt.h> 53 54 #include <asm/uaccess.h> 55 #include <linux/atomic.h> 56 57 #include "internal.h" 58 #include "iostat.h" 59 #include "pnfs.h" 60 61 #define NFSDBG_FACILITY NFSDBG_VFS 62 63 static struct kmem_cache *nfs_direct_cachep; 64 65 /* 66 * This represents a set of asynchronous requests that we're waiting on 67 */ 68 struct nfs_direct_req { 69 struct kref kref; /* release manager */ 70 71 /* I/O parameters */ 72 struct nfs_open_context *ctx; /* file open context info */ 73 struct nfs_lock_context *l_ctx; /* Lock context info */ 74 struct kiocb * iocb; /* controlling i/o request */ 75 struct inode * inode; /* target file of i/o */ 76 77 /* completion state */ 78 atomic_t io_count; /* i/os we're waiting for */ 79 spinlock_t lock; /* protect completion state */ 80 ssize_t count, /* bytes actually processed */ 81 bytes_left, /* bytes left to be sent */ 82 error; /* any reported error */ 83 struct completion completion; /* wait for i/o completion */ 84 85 /* commit state */ 86 struct nfs_mds_commit_info mds_cinfo; /* Storage for cinfo */ 87 struct pnfs_ds_commit_info ds_cinfo; /* Storage for cinfo */ 88 struct work_struct work; 89 int flags; 90 #define NFS_ODIRECT_DO_COMMIT (1) /* an unstable reply was received */ 91 #define NFS_ODIRECT_RESCHED_WRITES (2) /* write verification failed */ 92 struct nfs_writeverf verf; /* unstable write verifier */ 93 }; 94 95 static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops; 96 static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops; 97 static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode); 98 static void nfs_direct_write_schedule_work(struct work_struct *work); 99 100 static inline void get_dreq(struct nfs_direct_req *dreq) 101 { 102 atomic_inc(&dreq->io_count); 103 } 104 105 static inline int put_dreq(struct nfs_direct_req *dreq) 106 { 107 return atomic_dec_and_test(&dreq->io_count); 108 } 109 110 /** 111 * nfs_direct_IO - NFS address space operation for direct I/O 112 * @rw: direction (read or write) 113 * @iocb: target I/O control block 114 * @iov: array of vectors that define I/O buffer 115 * @pos: offset in file to begin the operation 116 * @nr_segs: size of iovec array 117 * 118 * The presence of this routine in the address space ops vector means 119 * the NFS client supports direct I/O. However, for most direct IO, we 120 * shunt off direct read and write requests before the VFS gets them, 121 * so this method is only ever called for swap. 122 */ 123 ssize_t nfs_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov, loff_t pos, unsigned long nr_segs) 124 { 125 #ifndef CONFIG_NFS_SWAP 126 dprintk("NFS: nfs_direct_IO (%s) off/no(%Ld/%lu) EINVAL\n", 127 iocb->ki_filp->f_path.dentry->d_name.name, 128 (long long) pos, nr_segs); 129 130 return -EINVAL; 131 #else 132 VM_BUG_ON(iocb->ki_left != PAGE_SIZE); 133 VM_BUG_ON(iocb->ki_nbytes != PAGE_SIZE); 134 135 if (rw == READ || rw == KERNEL_READ) 136 return nfs_file_direct_read(iocb, iov, nr_segs, pos, 137 rw == READ ? true : false); 138 return nfs_file_direct_write(iocb, iov, nr_segs, pos, 139 rw == WRITE ? true : false); 140 #endif /* CONFIG_NFS_SWAP */ 141 } 142 143 static void nfs_direct_release_pages(struct page **pages, unsigned int npages) 144 { 145 unsigned int i; 146 for (i = 0; i < npages; i++) 147 page_cache_release(pages[i]); 148 } 149 150 void nfs_init_cinfo_from_dreq(struct nfs_commit_info *cinfo, 151 struct nfs_direct_req *dreq) 152 { 153 cinfo->lock = &dreq->lock; 154 cinfo->mds = &dreq->mds_cinfo; 155 cinfo->ds = &dreq->ds_cinfo; 156 cinfo->dreq = dreq; 157 cinfo->completion_ops = &nfs_direct_commit_completion_ops; 158 } 159 160 static inline struct nfs_direct_req *nfs_direct_req_alloc(void) 161 { 162 struct nfs_direct_req *dreq; 163 164 dreq = kmem_cache_zalloc(nfs_direct_cachep, GFP_KERNEL); 165 if (!dreq) 166 return NULL; 167 168 kref_init(&dreq->kref); 169 kref_get(&dreq->kref); 170 init_completion(&dreq->completion); 171 INIT_LIST_HEAD(&dreq->mds_cinfo.list); 172 INIT_WORK(&dreq->work, nfs_direct_write_schedule_work); 173 spin_lock_init(&dreq->lock); 174 175 return dreq; 176 } 177 178 static void nfs_direct_req_free(struct kref *kref) 179 { 180 struct nfs_direct_req *dreq = container_of(kref, struct nfs_direct_req, kref); 181 182 if (dreq->l_ctx != NULL) 183 nfs_put_lock_context(dreq->l_ctx); 184 if (dreq->ctx != NULL) 185 put_nfs_open_context(dreq->ctx); 186 kmem_cache_free(nfs_direct_cachep, dreq); 187 } 188 189 static void nfs_direct_req_release(struct nfs_direct_req *dreq) 190 { 191 kref_put(&dreq->kref, nfs_direct_req_free); 192 } 193 194 /* 195 * Collects and returns the final error value/byte-count. 196 */ 197 static ssize_t nfs_direct_wait(struct nfs_direct_req *dreq) 198 { 199 ssize_t result = -EIOCBQUEUED; 200 201 /* Async requests don't wait here */ 202 if (dreq->iocb) 203 goto out; 204 205 result = wait_for_completion_killable(&dreq->completion); 206 207 if (!result) 208 result = dreq->error; 209 if (!result) 210 result = dreq->count; 211 212 out: 213 return (ssize_t) result; 214 } 215 216 /* 217 * Synchronous I/O uses a stack-allocated iocb. Thus we can't trust 218 * the iocb is still valid here if this is a synchronous request. 219 */ 220 static void nfs_direct_complete(struct nfs_direct_req *dreq) 221 { 222 if (dreq->iocb) { 223 long res = (long) dreq->error; 224 if (!res) 225 res = (long) dreq->count; 226 aio_complete(dreq->iocb, res, 0); 227 } 228 complete_all(&dreq->completion); 229 230 nfs_direct_req_release(dreq); 231 } 232 233 static void nfs_direct_readpage_release(struct nfs_page *req) 234 { 235 dprintk("NFS: direct read done (%s/%lld %d@%lld)\n", 236 req->wb_context->dentry->d_inode->i_sb->s_id, 237 (long long)NFS_FILEID(req->wb_context->dentry->d_inode), 238 req->wb_bytes, 239 (long long)req_offset(req)); 240 nfs_release_request(req); 241 } 242 243 static void nfs_direct_read_completion(struct nfs_pgio_header *hdr) 244 { 245 unsigned long bytes = 0; 246 struct nfs_direct_req *dreq = hdr->dreq; 247 248 if (test_bit(NFS_IOHDR_REDO, &hdr->flags)) 249 goto out_put; 250 251 spin_lock(&dreq->lock); 252 if (test_bit(NFS_IOHDR_ERROR, &hdr->flags) && (hdr->good_bytes == 0)) 253 dreq->error = hdr->error; 254 else 255 dreq->count += hdr->good_bytes; 256 spin_unlock(&dreq->lock); 257 258 while (!list_empty(&hdr->pages)) { 259 struct nfs_page *req = nfs_list_entry(hdr->pages.next); 260 struct page *page = req->wb_page; 261 262 if (test_bit(NFS_IOHDR_EOF, &hdr->flags)) { 263 if (bytes > hdr->good_bytes) 264 zero_user(page, 0, PAGE_SIZE); 265 else if (hdr->good_bytes - bytes < PAGE_SIZE) 266 zero_user_segment(page, 267 hdr->good_bytes & ~PAGE_MASK, 268 PAGE_SIZE); 269 } 270 if (!PageCompound(page)) { 271 if (test_bit(NFS_IOHDR_ERROR, &hdr->flags)) { 272 if (bytes < hdr->good_bytes) 273 set_page_dirty(page); 274 } else 275 set_page_dirty(page); 276 } 277 bytes += req->wb_bytes; 278 nfs_list_remove_request(req); 279 nfs_direct_readpage_release(req); 280 } 281 out_put: 282 if (put_dreq(dreq)) 283 nfs_direct_complete(dreq); 284 hdr->release(hdr); 285 } 286 287 static void nfs_read_sync_pgio_error(struct list_head *head) 288 { 289 struct nfs_page *req; 290 291 while (!list_empty(head)) { 292 req = nfs_list_entry(head->next); 293 nfs_list_remove_request(req); 294 nfs_release_request(req); 295 } 296 } 297 298 static void nfs_direct_pgio_init(struct nfs_pgio_header *hdr) 299 { 300 get_dreq(hdr->dreq); 301 } 302 303 static const struct nfs_pgio_completion_ops nfs_direct_read_completion_ops = { 304 .error_cleanup = nfs_read_sync_pgio_error, 305 .init_hdr = nfs_direct_pgio_init, 306 .completion = nfs_direct_read_completion, 307 }; 308 309 /* 310 * For each rsize'd chunk of the user's buffer, dispatch an NFS READ 311 * operation. If nfs_readdata_alloc() or get_user_pages() fails, 312 * bail and stop sending more reads. Read length accounting is 313 * handled automatically by nfs_direct_read_result(). Otherwise, if 314 * no requests have been sent, just return an error. 315 */ 316 static ssize_t nfs_direct_read_schedule_segment(struct nfs_pageio_descriptor *desc, 317 const struct iovec *iov, 318 loff_t pos, bool uio) 319 { 320 struct nfs_direct_req *dreq = desc->pg_dreq; 321 struct nfs_open_context *ctx = dreq->ctx; 322 struct inode *inode = ctx->dentry->d_inode; 323 unsigned long user_addr = (unsigned long)iov->iov_base; 324 size_t count = iov->iov_len; 325 size_t rsize = NFS_SERVER(inode)->rsize; 326 unsigned int pgbase; 327 int result; 328 ssize_t started = 0; 329 struct page **pagevec = NULL; 330 unsigned int npages; 331 332 do { 333 size_t bytes; 334 int i; 335 336 pgbase = user_addr & ~PAGE_MASK; 337 bytes = min(max_t(size_t, rsize, PAGE_SIZE), count); 338 339 result = -ENOMEM; 340 npages = nfs_page_array_len(pgbase, bytes); 341 if (!pagevec) 342 pagevec = kmalloc(npages * sizeof(struct page *), 343 GFP_KERNEL); 344 if (!pagevec) 345 break; 346 if (uio) { 347 down_read(¤t->mm->mmap_sem); 348 result = get_user_pages(current, current->mm, user_addr, 349 npages, 1, 0, pagevec, NULL); 350 up_read(¤t->mm->mmap_sem); 351 if (result < 0) 352 break; 353 } else { 354 WARN_ON(npages != 1); 355 result = get_kernel_page(user_addr, 1, pagevec); 356 if (WARN_ON(result != 1)) 357 break; 358 } 359 360 if ((unsigned)result < npages) { 361 bytes = result * PAGE_SIZE; 362 if (bytes <= pgbase) { 363 nfs_direct_release_pages(pagevec, result); 364 break; 365 } 366 bytes -= pgbase; 367 npages = result; 368 } 369 370 for (i = 0; i < npages; i++) { 371 struct nfs_page *req; 372 unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase); 373 /* XXX do we need to do the eof zeroing found in async_filler? */ 374 req = nfs_create_request(dreq->ctx, dreq->inode, 375 pagevec[i], 376 pgbase, req_len); 377 if (IS_ERR(req)) { 378 result = PTR_ERR(req); 379 break; 380 } 381 req->wb_index = pos >> PAGE_SHIFT; 382 req->wb_offset = pos & ~PAGE_MASK; 383 if (!nfs_pageio_add_request(desc, req)) { 384 result = desc->pg_error; 385 nfs_release_request(req); 386 break; 387 } 388 pgbase = 0; 389 bytes -= req_len; 390 started += req_len; 391 user_addr += req_len; 392 pos += req_len; 393 count -= req_len; 394 dreq->bytes_left -= req_len; 395 } 396 /* The nfs_page now hold references to these pages */ 397 nfs_direct_release_pages(pagevec, npages); 398 } while (count != 0 && result >= 0); 399 400 kfree(pagevec); 401 402 if (started) 403 return started; 404 return result < 0 ? (ssize_t) result : -EFAULT; 405 } 406 407 static ssize_t nfs_direct_read_schedule_iovec(struct nfs_direct_req *dreq, 408 const struct iovec *iov, 409 unsigned long nr_segs, 410 loff_t pos, bool uio) 411 { 412 struct nfs_pageio_descriptor desc; 413 ssize_t result = -EINVAL; 414 size_t requested_bytes = 0; 415 unsigned long seg; 416 417 NFS_PROTO(dreq->inode)->read_pageio_init(&desc, dreq->inode, 418 &nfs_direct_read_completion_ops); 419 get_dreq(dreq); 420 desc.pg_dreq = dreq; 421 422 for (seg = 0; seg < nr_segs; seg++) { 423 const struct iovec *vec = &iov[seg]; 424 result = nfs_direct_read_schedule_segment(&desc, vec, pos, uio); 425 if (result < 0) 426 break; 427 requested_bytes += result; 428 if ((size_t)result < vec->iov_len) 429 break; 430 pos += vec->iov_len; 431 } 432 433 nfs_pageio_complete(&desc); 434 435 /* 436 * If no bytes were started, return the error, and let the 437 * generic layer handle the completion. 438 */ 439 if (requested_bytes == 0) { 440 nfs_direct_req_release(dreq); 441 return result < 0 ? result : -EIO; 442 } 443 444 if (put_dreq(dreq)) 445 nfs_direct_complete(dreq); 446 return 0; 447 } 448 449 static ssize_t nfs_direct_read(struct kiocb *iocb, const struct iovec *iov, 450 unsigned long nr_segs, loff_t pos, bool uio) 451 { 452 ssize_t result = -ENOMEM; 453 struct inode *inode = iocb->ki_filp->f_mapping->host; 454 struct nfs_direct_req *dreq; 455 struct nfs_lock_context *l_ctx; 456 457 dreq = nfs_direct_req_alloc(); 458 if (dreq == NULL) 459 goto out; 460 461 dreq->inode = inode; 462 dreq->bytes_left = iov_length(iov, nr_segs); 463 dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp)); 464 l_ctx = nfs_get_lock_context(dreq->ctx); 465 if (IS_ERR(l_ctx)) { 466 result = PTR_ERR(l_ctx); 467 goto out_release; 468 } 469 dreq->l_ctx = l_ctx; 470 if (!is_sync_kiocb(iocb)) 471 dreq->iocb = iocb; 472 473 NFS_I(inode)->read_io += iov_length(iov, nr_segs); 474 result = nfs_direct_read_schedule_iovec(dreq, iov, nr_segs, pos, uio); 475 if (!result) 476 result = nfs_direct_wait(dreq); 477 out_release: 478 nfs_direct_req_release(dreq); 479 out: 480 return result; 481 } 482 483 static void nfs_inode_dio_write_done(struct inode *inode) 484 { 485 nfs_zap_mapping(inode, inode->i_mapping); 486 inode_dio_done(inode); 487 } 488 489 #if IS_ENABLED(CONFIG_NFS_V3) || IS_ENABLED(CONFIG_NFS_V4) 490 static void nfs_direct_write_reschedule(struct nfs_direct_req *dreq) 491 { 492 struct nfs_pageio_descriptor desc; 493 struct nfs_page *req, *tmp; 494 LIST_HEAD(reqs); 495 struct nfs_commit_info cinfo; 496 LIST_HEAD(failed); 497 498 nfs_init_cinfo_from_dreq(&cinfo, dreq); 499 pnfs_recover_commit_reqs(dreq->inode, &reqs, &cinfo); 500 spin_lock(cinfo.lock); 501 nfs_scan_commit_list(&cinfo.mds->list, &reqs, &cinfo, 0); 502 spin_unlock(cinfo.lock); 503 504 dreq->count = 0; 505 get_dreq(dreq); 506 507 NFS_PROTO(dreq->inode)->write_pageio_init(&desc, dreq->inode, FLUSH_STABLE, 508 &nfs_direct_write_completion_ops); 509 desc.pg_dreq = dreq; 510 511 list_for_each_entry_safe(req, tmp, &reqs, wb_list) { 512 if (!nfs_pageio_add_request(&desc, req)) { 513 nfs_list_remove_request(req); 514 nfs_list_add_request(req, &failed); 515 spin_lock(cinfo.lock); 516 dreq->flags = 0; 517 dreq->error = -EIO; 518 spin_unlock(cinfo.lock); 519 } 520 nfs_release_request(req); 521 } 522 nfs_pageio_complete(&desc); 523 524 while (!list_empty(&failed)) { 525 req = nfs_list_entry(failed.next); 526 nfs_list_remove_request(req); 527 nfs_unlock_and_release_request(req); 528 } 529 530 if (put_dreq(dreq)) 531 nfs_direct_write_complete(dreq, dreq->inode); 532 } 533 534 static void nfs_direct_commit_complete(struct nfs_commit_data *data) 535 { 536 struct nfs_direct_req *dreq = data->dreq; 537 struct nfs_commit_info cinfo; 538 struct nfs_page *req; 539 int status = data->task.tk_status; 540 541 nfs_init_cinfo_from_dreq(&cinfo, dreq); 542 if (status < 0) { 543 dprintk("NFS: %5u commit failed with error %d.\n", 544 data->task.tk_pid, status); 545 dreq->flags = NFS_ODIRECT_RESCHED_WRITES; 546 } else if (memcmp(&dreq->verf, &data->verf, sizeof(data->verf))) { 547 dprintk("NFS: %5u commit verify failed\n", data->task.tk_pid); 548 dreq->flags = NFS_ODIRECT_RESCHED_WRITES; 549 } 550 551 dprintk("NFS: %5u commit returned %d\n", data->task.tk_pid, status); 552 while (!list_empty(&data->pages)) { 553 req = nfs_list_entry(data->pages.next); 554 nfs_list_remove_request(req); 555 if (dreq->flags == NFS_ODIRECT_RESCHED_WRITES) { 556 /* Note the rewrite will go through mds */ 557 nfs_mark_request_commit(req, NULL, &cinfo); 558 } else 559 nfs_release_request(req); 560 nfs_unlock_and_release_request(req); 561 } 562 563 if (atomic_dec_and_test(&cinfo.mds->rpcs_out)) 564 nfs_direct_write_complete(dreq, data->inode); 565 } 566 567 static void nfs_direct_error_cleanup(struct nfs_inode *nfsi) 568 { 569 /* There is no lock to clear */ 570 } 571 572 static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops = { 573 .completion = nfs_direct_commit_complete, 574 .error_cleanup = nfs_direct_error_cleanup, 575 }; 576 577 static void nfs_direct_commit_schedule(struct nfs_direct_req *dreq) 578 { 579 int res; 580 struct nfs_commit_info cinfo; 581 LIST_HEAD(mds_list); 582 583 nfs_init_cinfo_from_dreq(&cinfo, dreq); 584 nfs_scan_commit(dreq->inode, &mds_list, &cinfo); 585 res = nfs_generic_commit_list(dreq->inode, &mds_list, 0, &cinfo); 586 if (res < 0) /* res == -ENOMEM */ 587 nfs_direct_write_reschedule(dreq); 588 } 589 590 static void nfs_direct_write_schedule_work(struct work_struct *work) 591 { 592 struct nfs_direct_req *dreq = container_of(work, struct nfs_direct_req, work); 593 int flags = dreq->flags; 594 595 dreq->flags = 0; 596 switch (flags) { 597 case NFS_ODIRECT_DO_COMMIT: 598 nfs_direct_commit_schedule(dreq); 599 break; 600 case NFS_ODIRECT_RESCHED_WRITES: 601 nfs_direct_write_reschedule(dreq); 602 break; 603 default: 604 nfs_inode_dio_write_done(dreq->inode); 605 nfs_direct_complete(dreq); 606 } 607 } 608 609 static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode) 610 { 611 schedule_work(&dreq->work); /* Calls nfs_direct_write_schedule_work */ 612 } 613 614 #else 615 static void nfs_direct_write_schedule_work(struct work_struct *work) 616 { 617 } 618 619 static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode) 620 { 621 nfs_inode_dio_write_done(inode); 622 nfs_direct_complete(dreq); 623 } 624 #endif 625 626 /* 627 * NB: Return the value of the first error return code. Subsequent 628 * errors after the first one are ignored. 629 */ 630 /* 631 * For each wsize'd chunk of the user's buffer, dispatch an NFS WRITE 632 * operation. If nfs_writedata_alloc() or get_user_pages() fails, 633 * bail and stop sending more writes. Write length accounting is 634 * handled automatically by nfs_direct_write_result(). Otherwise, if 635 * no requests have been sent, just return an error. 636 */ 637 static ssize_t nfs_direct_write_schedule_segment(struct nfs_pageio_descriptor *desc, 638 const struct iovec *iov, 639 loff_t pos, bool uio) 640 { 641 struct nfs_direct_req *dreq = desc->pg_dreq; 642 struct nfs_open_context *ctx = dreq->ctx; 643 struct inode *inode = ctx->dentry->d_inode; 644 unsigned long user_addr = (unsigned long)iov->iov_base; 645 size_t count = iov->iov_len; 646 size_t wsize = NFS_SERVER(inode)->wsize; 647 unsigned int pgbase; 648 int result; 649 ssize_t started = 0; 650 struct page **pagevec = NULL; 651 unsigned int npages; 652 653 do { 654 size_t bytes; 655 int i; 656 657 pgbase = user_addr & ~PAGE_MASK; 658 bytes = min(max_t(size_t, wsize, PAGE_SIZE), count); 659 660 result = -ENOMEM; 661 npages = nfs_page_array_len(pgbase, bytes); 662 if (!pagevec) 663 pagevec = kmalloc(npages * sizeof(struct page *), GFP_KERNEL); 664 if (!pagevec) 665 break; 666 667 if (uio) { 668 down_read(¤t->mm->mmap_sem); 669 result = get_user_pages(current, current->mm, user_addr, 670 npages, 0, 0, pagevec, NULL); 671 up_read(¤t->mm->mmap_sem); 672 if (result < 0) 673 break; 674 } else { 675 WARN_ON(npages != 1); 676 result = get_kernel_page(user_addr, 0, pagevec); 677 if (WARN_ON(result != 1)) 678 break; 679 } 680 681 if ((unsigned)result < npages) { 682 bytes = result * PAGE_SIZE; 683 if (bytes <= pgbase) { 684 nfs_direct_release_pages(pagevec, result); 685 break; 686 } 687 bytes -= pgbase; 688 npages = result; 689 } 690 691 for (i = 0; i < npages; i++) { 692 struct nfs_page *req; 693 unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase); 694 695 req = nfs_create_request(dreq->ctx, dreq->inode, 696 pagevec[i], 697 pgbase, req_len); 698 if (IS_ERR(req)) { 699 result = PTR_ERR(req); 700 break; 701 } 702 nfs_lock_request(req); 703 req->wb_index = pos >> PAGE_SHIFT; 704 req->wb_offset = pos & ~PAGE_MASK; 705 if (!nfs_pageio_add_request(desc, req)) { 706 result = desc->pg_error; 707 nfs_unlock_and_release_request(req); 708 break; 709 } 710 pgbase = 0; 711 bytes -= req_len; 712 started += req_len; 713 user_addr += req_len; 714 pos += req_len; 715 count -= req_len; 716 dreq->bytes_left -= req_len; 717 } 718 /* The nfs_page now hold references to these pages */ 719 nfs_direct_release_pages(pagevec, npages); 720 } while (count != 0 && result >= 0); 721 722 kfree(pagevec); 723 724 if (started) 725 return started; 726 return result < 0 ? (ssize_t) result : -EFAULT; 727 } 728 729 static void nfs_direct_write_completion(struct nfs_pgio_header *hdr) 730 { 731 struct nfs_direct_req *dreq = hdr->dreq; 732 struct nfs_commit_info cinfo; 733 int bit = -1; 734 struct nfs_page *req = nfs_list_entry(hdr->pages.next); 735 736 if (test_bit(NFS_IOHDR_REDO, &hdr->flags)) 737 goto out_put; 738 739 nfs_init_cinfo_from_dreq(&cinfo, dreq); 740 741 spin_lock(&dreq->lock); 742 743 if (test_bit(NFS_IOHDR_ERROR, &hdr->flags)) { 744 dreq->flags = 0; 745 dreq->error = hdr->error; 746 } 747 if (dreq->error != 0) 748 bit = NFS_IOHDR_ERROR; 749 else { 750 dreq->count += hdr->good_bytes; 751 if (test_bit(NFS_IOHDR_NEED_RESCHED, &hdr->flags)) { 752 dreq->flags = NFS_ODIRECT_RESCHED_WRITES; 753 bit = NFS_IOHDR_NEED_RESCHED; 754 } else if (test_bit(NFS_IOHDR_NEED_COMMIT, &hdr->flags)) { 755 if (dreq->flags == NFS_ODIRECT_RESCHED_WRITES) 756 bit = NFS_IOHDR_NEED_RESCHED; 757 else if (dreq->flags == 0) { 758 memcpy(&dreq->verf, hdr->verf, 759 sizeof(dreq->verf)); 760 bit = NFS_IOHDR_NEED_COMMIT; 761 dreq->flags = NFS_ODIRECT_DO_COMMIT; 762 } else if (dreq->flags == NFS_ODIRECT_DO_COMMIT) { 763 if (memcmp(&dreq->verf, hdr->verf, sizeof(dreq->verf))) { 764 dreq->flags = NFS_ODIRECT_RESCHED_WRITES; 765 bit = NFS_IOHDR_NEED_RESCHED; 766 } else 767 bit = NFS_IOHDR_NEED_COMMIT; 768 } 769 } 770 } 771 spin_unlock(&dreq->lock); 772 773 while (!list_empty(&hdr->pages)) { 774 req = nfs_list_entry(hdr->pages.next); 775 nfs_list_remove_request(req); 776 switch (bit) { 777 case NFS_IOHDR_NEED_RESCHED: 778 case NFS_IOHDR_NEED_COMMIT: 779 kref_get(&req->wb_kref); 780 nfs_mark_request_commit(req, hdr->lseg, &cinfo); 781 } 782 nfs_unlock_and_release_request(req); 783 } 784 785 out_put: 786 if (put_dreq(dreq)) 787 nfs_direct_write_complete(dreq, hdr->inode); 788 hdr->release(hdr); 789 } 790 791 static void nfs_write_sync_pgio_error(struct list_head *head) 792 { 793 struct nfs_page *req; 794 795 while (!list_empty(head)) { 796 req = nfs_list_entry(head->next); 797 nfs_list_remove_request(req); 798 nfs_unlock_and_release_request(req); 799 } 800 } 801 802 static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops = { 803 .error_cleanup = nfs_write_sync_pgio_error, 804 .init_hdr = nfs_direct_pgio_init, 805 .completion = nfs_direct_write_completion, 806 }; 807 808 static ssize_t nfs_direct_write_schedule_iovec(struct nfs_direct_req *dreq, 809 const struct iovec *iov, 810 unsigned long nr_segs, 811 loff_t pos, bool uio) 812 { 813 struct nfs_pageio_descriptor desc; 814 struct inode *inode = dreq->inode; 815 ssize_t result = 0; 816 size_t requested_bytes = 0; 817 unsigned long seg; 818 819 NFS_PROTO(inode)->write_pageio_init(&desc, inode, FLUSH_COND_STABLE, 820 &nfs_direct_write_completion_ops); 821 desc.pg_dreq = dreq; 822 get_dreq(dreq); 823 atomic_inc(&inode->i_dio_count); 824 825 NFS_I(dreq->inode)->write_io += iov_length(iov, nr_segs); 826 for (seg = 0; seg < nr_segs; seg++) { 827 const struct iovec *vec = &iov[seg]; 828 result = nfs_direct_write_schedule_segment(&desc, vec, pos, uio); 829 if (result < 0) 830 break; 831 requested_bytes += result; 832 if ((size_t)result < vec->iov_len) 833 break; 834 pos += vec->iov_len; 835 } 836 nfs_pageio_complete(&desc); 837 838 /* 839 * If no bytes were started, return the error, and let the 840 * generic layer handle the completion. 841 */ 842 if (requested_bytes == 0) { 843 inode_dio_done(inode); 844 nfs_direct_req_release(dreq); 845 return result < 0 ? result : -EIO; 846 } 847 848 if (put_dreq(dreq)) 849 nfs_direct_write_complete(dreq, dreq->inode); 850 return 0; 851 } 852 853 static ssize_t nfs_direct_write(struct kiocb *iocb, const struct iovec *iov, 854 unsigned long nr_segs, loff_t pos, 855 size_t count, bool uio) 856 { 857 ssize_t result = -ENOMEM; 858 struct inode *inode = iocb->ki_filp->f_mapping->host; 859 struct nfs_direct_req *dreq; 860 struct nfs_lock_context *l_ctx; 861 862 dreq = nfs_direct_req_alloc(); 863 if (!dreq) 864 goto out; 865 866 dreq->inode = inode; 867 dreq->bytes_left = count; 868 dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp)); 869 l_ctx = nfs_get_lock_context(dreq->ctx); 870 if (IS_ERR(l_ctx)) { 871 result = PTR_ERR(l_ctx); 872 goto out_release; 873 } 874 dreq->l_ctx = l_ctx; 875 if (!is_sync_kiocb(iocb)) 876 dreq->iocb = iocb; 877 878 result = nfs_direct_write_schedule_iovec(dreq, iov, nr_segs, pos, uio); 879 if (!result) 880 result = nfs_direct_wait(dreq); 881 out_release: 882 nfs_direct_req_release(dreq); 883 out: 884 return result; 885 } 886 887 /** 888 * nfs_file_direct_read - file direct read operation for NFS files 889 * @iocb: target I/O control block 890 * @iov: vector of user buffers into which to read data 891 * @nr_segs: size of iov vector 892 * @pos: byte offset in file where reading starts 893 * 894 * We use this function for direct reads instead of calling 895 * generic_file_aio_read() in order to avoid gfar's check to see if 896 * the request starts before the end of the file. For that check 897 * to work, we must generate a GETATTR before each direct read, and 898 * even then there is a window between the GETATTR and the subsequent 899 * READ where the file size could change. Our preference is simply 900 * to do all reads the application wants, and the server will take 901 * care of managing the end of file boundary. 902 * 903 * This function also eliminates unnecessarily updating the file's 904 * atime locally, as the NFS server sets the file's atime, and this 905 * client must read the updated atime from the server back into its 906 * cache. 907 */ 908 ssize_t nfs_file_direct_read(struct kiocb *iocb, const struct iovec *iov, 909 unsigned long nr_segs, loff_t pos, bool uio) 910 { 911 ssize_t retval = -EINVAL; 912 struct file *file = iocb->ki_filp; 913 struct address_space *mapping = file->f_mapping; 914 size_t count; 915 916 count = iov_length(iov, nr_segs); 917 nfs_add_stats(mapping->host, NFSIOS_DIRECTREADBYTES, count); 918 919 dfprintk(FILE, "NFS: direct read(%s/%s, %zd@%Ld)\n", 920 file->f_path.dentry->d_parent->d_name.name, 921 file->f_path.dentry->d_name.name, 922 count, (long long) pos); 923 924 retval = 0; 925 if (!count) 926 goto out; 927 928 retval = nfs_sync_mapping(mapping); 929 if (retval) 930 goto out; 931 932 task_io_account_read(count); 933 934 retval = nfs_direct_read(iocb, iov, nr_segs, pos, uio); 935 if (retval > 0) 936 iocb->ki_pos = pos + retval; 937 938 out: 939 return retval; 940 } 941 942 /** 943 * nfs_file_direct_write - file direct write operation for NFS files 944 * @iocb: target I/O control block 945 * @iov: vector of user buffers from which to write data 946 * @nr_segs: size of iov vector 947 * @pos: byte offset in file where writing starts 948 * 949 * We use this function for direct writes instead of calling 950 * generic_file_aio_write() in order to avoid taking the inode 951 * semaphore and updating the i_size. The NFS server will set 952 * the new i_size and this client must read the updated size 953 * back into its cache. We let the server do generic write 954 * parameter checking and report problems. 955 * 956 * We eliminate local atime updates, see direct read above. 957 * 958 * We avoid unnecessary page cache invalidations for normal cached 959 * readers of this file. 960 * 961 * Note that O_APPEND is not supported for NFS direct writes, as there 962 * is no atomic O_APPEND write facility in the NFS protocol. 963 */ 964 ssize_t nfs_file_direct_write(struct kiocb *iocb, const struct iovec *iov, 965 unsigned long nr_segs, loff_t pos, bool uio) 966 { 967 ssize_t retval = -EINVAL; 968 struct file *file = iocb->ki_filp; 969 struct address_space *mapping = file->f_mapping; 970 size_t count; 971 972 count = iov_length(iov, nr_segs); 973 nfs_add_stats(mapping->host, NFSIOS_DIRECTWRITTENBYTES, count); 974 975 dfprintk(FILE, "NFS: direct write(%s/%s, %zd@%Ld)\n", 976 file->f_path.dentry->d_parent->d_name.name, 977 file->f_path.dentry->d_name.name, 978 count, (long long) pos); 979 980 retval = generic_write_checks(file, &pos, &count, 0); 981 if (retval) 982 goto out; 983 984 retval = -EINVAL; 985 if ((ssize_t) count < 0) 986 goto out; 987 retval = 0; 988 if (!count) 989 goto out; 990 991 retval = nfs_sync_mapping(mapping); 992 if (retval) 993 goto out; 994 995 task_io_account_write(count); 996 997 retval = nfs_direct_write(iocb, iov, nr_segs, pos, count, uio); 998 if (retval > 0) { 999 struct inode *inode = mapping->host; 1000 1001 iocb->ki_pos = pos + retval; 1002 spin_lock(&inode->i_lock); 1003 if (i_size_read(inode) < iocb->ki_pos) 1004 i_size_write(inode, iocb->ki_pos); 1005 spin_unlock(&inode->i_lock); 1006 } 1007 out: 1008 return retval; 1009 } 1010 1011 /** 1012 * nfs_init_directcache - create a slab cache for nfs_direct_req structures 1013 * 1014 */ 1015 int __init nfs_init_directcache(void) 1016 { 1017 nfs_direct_cachep = kmem_cache_create("nfs_direct_cache", 1018 sizeof(struct nfs_direct_req), 1019 0, (SLAB_RECLAIM_ACCOUNT| 1020 SLAB_MEM_SPREAD), 1021 NULL); 1022 if (nfs_direct_cachep == NULL) 1023 return -ENOMEM; 1024 1025 return 0; 1026 } 1027 1028 /** 1029 * nfs_destroy_directcache - destroy the slab cache for nfs_direct_req structures 1030 * 1031 */ 1032 void nfs_destroy_directcache(void) 1033 { 1034 kmem_cache_destroy(nfs_direct_cachep); 1035 } 1036