1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/fs/nfs/direct.c 4 * 5 * Copyright (C) 2003 by Chuck Lever <cel@netapp.com> 6 * 7 * High-performance uncached I/O for the Linux NFS client 8 * 9 * There are important applications whose performance or correctness 10 * depends on uncached access to file data. Database clusters 11 * (multiple copies of the same instance running on separate hosts) 12 * implement their own cache coherency protocol that subsumes file 13 * system cache protocols. Applications that process datasets 14 * considerably larger than the client's memory do not always benefit 15 * from a local cache. A streaming video server, for instance, has no 16 * need to cache the contents of a file. 17 * 18 * When an application requests uncached I/O, all read and write requests 19 * are made directly to the server; data stored or fetched via these 20 * requests is not cached in the Linux page cache. The client does not 21 * correct unaligned requests from applications. All requested bytes are 22 * held on permanent storage before a direct write system call returns to 23 * an application. 24 * 25 * Solaris implements an uncached I/O facility called directio() that 26 * is used for backups and sequential I/O to very large files. Solaris 27 * also supports uncaching whole NFS partitions with "-o forcedirectio," 28 * an undocumented mount option. 29 * 30 * Designed by Jeff Kimmel, Chuck Lever, and Trond Myklebust, with 31 * help from Andrew Morton. 32 * 33 * 18 Dec 2001 Initial implementation for 2.4 --cel 34 * 08 Jul 2002 Version for 2.4.19, with bug fixes --trondmy 35 * 08 Jun 2003 Port to 2.5 APIs --cel 36 * 31 Mar 2004 Handle direct I/O without VFS support --cel 37 * 15 Sep 2004 Parallel async reads --cel 38 * 04 May 2005 support O_DIRECT with aio --cel 39 * 40 */ 41 42 #include <linux/errno.h> 43 #include <linux/sched.h> 44 #include <linux/kernel.h> 45 #include <linux/file.h> 46 #include <linux/pagemap.h> 47 #include <linux/kref.h> 48 #include <linux/slab.h> 49 #include <linux/task_io_accounting_ops.h> 50 #include <linux/module.h> 51 52 #include <linux/nfs_fs.h> 53 #include <linux/nfs_page.h> 54 #include <linux/sunrpc/clnt.h> 55 56 #include <linux/uaccess.h> 57 #include <linux/atomic.h> 58 59 #include "internal.h" 60 #include "iostat.h" 61 #include "pnfs.h" 62 63 #define NFSDBG_FACILITY NFSDBG_VFS 64 65 static struct kmem_cache *nfs_direct_cachep; 66 67 struct nfs_direct_req { 68 struct kref kref; /* release manager */ 69 70 /* I/O parameters */ 71 struct nfs_open_context *ctx; /* file open context info */ 72 struct nfs_lock_context *l_ctx; /* Lock context info */ 73 struct kiocb * iocb; /* controlling i/o request */ 74 struct inode * inode; /* target file of i/o */ 75 76 /* completion state */ 77 atomic_t io_count; /* i/os we're waiting for */ 78 spinlock_t lock; /* protect completion state */ 79 80 loff_t io_start; /* Start offset for I/O */ 81 ssize_t count, /* bytes actually processed */ 82 max_count, /* max expected count */ 83 bytes_left, /* bytes left to be sent */ 84 error; /* any reported error */ 85 struct completion completion; /* wait for i/o completion */ 86 87 /* commit state */ 88 struct nfs_mds_commit_info mds_cinfo; /* Storage for cinfo */ 89 struct pnfs_ds_commit_info ds_cinfo; /* Storage for cinfo */ 90 struct work_struct work; 91 int flags; 92 /* for write */ 93 #define NFS_ODIRECT_DO_COMMIT (1) /* an unstable reply was received */ 94 #define NFS_ODIRECT_RESCHED_WRITES (2) /* write verification failed */ 95 /* for read */ 96 #define NFS_ODIRECT_SHOULD_DIRTY (3) /* dirty user-space page after read */ 97 struct nfs_writeverf verf; /* unstable write verifier */ 98 }; 99 100 static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops; 101 static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops; 102 static void nfs_direct_write_complete(struct nfs_direct_req *dreq); 103 static void nfs_direct_write_schedule_work(struct work_struct *work); 104 105 static inline void get_dreq(struct nfs_direct_req *dreq) 106 { 107 atomic_inc(&dreq->io_count); 108 } 109 110 static inline int put_dreq(struct nfs_direct_req *dreq) 111 { 112 return atomic_dec_and_test(&dreq->io_count); 113 } 114 115 static void 116 nfs_direct_handle_truncated(struct nfs_direct_req *dreq, 117 const struct nfs_pgio_header *hdr, 118 ssize_t dreq_len) 119 { 120 if (!(test_bit(NFS_IOHDR_ERROR, &hdr->flags) || 121 test_bit(NFS_IOHDR_EOF, &hdr->flags))) 122 return; 123 if (dreq->max_count >= dreq_len) { 124 dreq->max_count = dreq_len; 125 if (dreq->count > dreq_len) 126 dreq->count = dreq_len; 127 128 if (test_bit(NFS_IOHDR_ERROR, &hdr->flags)) 129 dreq->error = hdr->error; 130 else /* Clear outstanding error if this is EOF */ 131 dreq->error = 0; 132 } 133 } 134 135 static void 136 nfs_direct_count_bytes(struct nfs_direct_req *dreq, 137 const struct nfs_pgio_header *hdr) 138 { 139 loff_t hdr_end = hdr->io_start + hdr->good_bytes; 140 ssize_t dreq_len = 0; 141 142 if (hdr_end > dreq->io_start) 143 dreq_len = hdr_end - dreq->io_start; 144 145 nfs_direct_handle_truncated(dreq, hdr, dreq_len); 146 147 if (dreq_len > dreq->max_count) 148 dreq_len = dreq->max_count; 149 150 if (dreq->count < dreq_len) 151 dreq->count = dreq_len; 152 } 153 154 /* 155 * nfs_direct_select_verf - select the right verifier 156 * @dreq - direct request possibly spanning multiple servers 157 * @ds_clp - nfs_client of data server or NULL if MDS / non-pnfs 158 * @commit_idx - commit bucket index for the DS 159 * 160 * returns the correct verifier to use given the role of the server 161 */ 162 static struct nfs_writeverf * 163 nfs_direct_select_verf(struct nfs_direct_req *dreq, 164 struct nfs_client *ds_clp, 165 int commit_idx) 166 { 167 struct nfs_writeverf *verfp = &dreq->verf; 168 169 #ifdef CONFIG_NFS_V4_1 170 /* 171 * pNFS is in use, use the DS verf except commit_through_mds is set 172 * for layout segment where nbuckets is zero. 173 */ 174 if (ds_clp && dreq->ds_cinfo.nbuckets > 0) { 175 if (commit_idx >= 0 && commit_idx < dreq->ds_cinfo.nbuckets) 176 verfp = &dreq->ds_cinfo.buckets[commit_idx].direct_verf; 177 else 178 WARN_ON_ONCE(1); 179 } 180 #endif 181 return verfp; 182 } 183 184 185 /* 186 * nfs_direct_set_hdr_verf - set the write/commit verifier 187 * @dreq - direct request possibly spanning multiple servers 188 * @hdr - pageio header to validate against previously seen verfs 189 * 190 * Set the server's (MDS or DS) "seen" verifier 191 */ 192 static void nfs_direct_set_hdr_verf(struct nfs_direct_req *dreq, 193 struct nfs_pgio_header *hdr) 194 { 195 struct nfs_writeverf *verfp; 196 197 verfp = nfs_direct_select_verf(dreq, hdr->ds_clp, hdr->ds_commit_idx); 198 WARN_ON_ONCE(verfp->committed >= 0); 199 memcpy(verfp, &hdr->verf, sizeof(struct nfs_writeverf)); 200 WARN_ON_ONCE(verfp->committed < 0); 201 } 202 203 static int nfs_direct_cmp_verf(const struct nfs_writeverf *v1, 204 const struct nfs_writeverf *v2) 205 { 206 return nfs_write_verifier_cmp(&v1->verifier, &v2->verifier); 207 } 208 209 /* 210 * nfs_direct_cmp_hdr_verf - compare verifier for pgio header 211 * @dreq - direct request possibly spanning multiple servers 212 * @hdr - pageio header to validate against previously seen verf 213 * 214 * set the server's "seen" verf if not initialized. 215 * returns result of comparison between @hdr->verf and the "seen" 216 * verf of the server used by @hdr (DS or MDS) 217 */ 218 static int nfs_direct_set_or_cmp_hdr_verf(struct nfs_direct_req *dreq, 219 struct nfs_pgio_header *hdr) 220 { 221 struct nfs_writeverf *verfp; 222 223 verfp = nfs_direct_select_verf(dreq, hdr->ds_clp, hdr->ds_commit_idx); 224 if (verfp->committed < 0) { 225 nfs_direct_set_hdr_verf(dreq, hdr); 226 return 0; 227 } 228 return nfs_direct_cmp_verf(verfp, &hdr->verf); 229 } 230 231 /* 232 * nfs_direct_cmp_commit_data_verf - compare verifier for commit data 233 * @dreq - direct request possibly spanning multiple servers 234 * @data - commit data to validate against previously seen verf 235 * 236 * returns result of comparison between @data->verf and the verf of 237 * the server used by @data (DS or MDS) 238 */ 239 static int nfs_direct_cmp_commit_data_verf(struct nfs_direct_req *dreq, 240 struct nfs_commit_data *data) 241 { 242 struct nfs_writeverf *verfp; 243 244 verfp = nfs_direct_select_verf(dreq, data->ds_clp, 245 data->ds_commit_index); 246 247 /* verifier not set so always fail */ 248 if (verfp->committed < 0 || data->res.verf->committed <= NFS_UNSTABLE) 249 return 1; 250 251 return nfs_direct_cmp_verf(verfp, data->res.verf); 252 } 253 254 /** 255 * nfs_direct_IO - NFS address space operation for direct I/O 256 * @iocb: target I/O control block 257 * @iter: I/O buffer 258 * 259 * The presence of this routine in the address space ops vector means 260 * the NFS client supports direct I/O. However, for most direct IO, we 261 * shunt off direct read and write requests before the VFS gets them, 262 * so this method is only ever called for swap. 263 */ 264 ssize_t nfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 265 { 266 struct inode *inode = iocb->ki_filp->f_mapping->host; 267 268 /* we only support swap file calling nfs_direct_IO */ 269 if (!IS_SWAPFILE(inode)) 270 return 0; 271 272 VM_BUG_ON(iov_iter_count(iter) != PAGE_SIZE); 273 274 if (iov_iter_rw(iter) == READ) 275 return nfs_file_direct_read(iocb, iter); 276 return nfs_file_direct_write(iocb, iter); 277 } 278 279 static void nfs_direct_release_pages(struct page **pages, unsigned int npages) 280 { 281 unsigned int i; 282 for (i = 0; i < npages; i++) 283 put_page(pages[i]); 284 } 285 286 void nfs_init_cinfo_from_dreq(struct nfs_commit_info *cinfo, 287 struct nfs_direct_req *dreq) 288 { 289 cinfo->inode = dreq->inode; 290 cinfo->mds = &dreq->mds_cinfo; 291 cinfo->ds = &dreq->ds_cinfo; 292 cinfo->dreq = dreq; 293 cinfo->completion_ops = &nfs_direct_commit_completion_ops; 294 } 295 296 static inline struct nfs_direct_req *nfs_direct_req_alloc(void) 297 { 298 struct nfs_direct_req *dreq; 299 300 dreq = kmem_cache_zalloc(nfs_direct_cachep, GFP_KERNEL); 301 if (!dreq) 302 return NULL; 303 304 kref_init(&dreq->kref); 305 kref_get(&dreq->kref); 306 init_completion(&dreq->completion); 307 INIT_LIST_HEAD(&dreq->mds_cinfo.list); 308 pnfs_init_ds_commit_info(&dreq->ds_cinfo); 309 dreq->verf.committed = NFS_INVALID_STABLE_HOW; /* not set yet */ 310 INIT_WORK(&dreq->work, nfs_direct_write_schedule_work); 311 spin_lock_init(&dreq->lock); 312 313 return dreq; 314 } 315 316 static void nfs_direct_req_free(struct kref *kref) 317 { 318 struct nfs_direct_req *dreq = container_of(kref, struct nfs_direct_req, kref); 319 320 pnfs_release_ds_info(&dreq->ds_cinfo, dreq->inode); 321 nfs_free_pnfs_ds_cinfo(&dreq->ds_cinfo); 322 if (dreq->l_ctx != NULL) 323 nfs_put_lock_context(dreq->l_ctx); 324 if (dreq->ctx != NULL) 325 put_nfs_open_context(dreq->ctx); 326 kmem_cache_free(nfs_direct_cachep, dreq); 327 } 328 329 static void nfs_direct_req_release(struct nfs_direct_req *dreq) 330 { 331 kref_put(&dreq->kref, nfs_direct_req_free); 332 } 333 334 ssize_t nfs_dreq_bytes_left(struct nfs_direct_req *dreq) 335 { 336 return dreq->bytes_left; 337 } 338 EXPORT_SYMBOL_GPL(nfs_dreq_bytes_left); 339 340 /* 341 * Collects and returns the final error value/byte-count. 342 */ 343 static ssize_t nfs_direct_wait(struct nfs_direct_req *dreq) 344 { 345 ssize_t result = -EIOCBQUEUED; 346 347 /* Async requests don't wait here */ 348 if (dreq->iocb) 349 goto out; 350 351 result = wait_for_completion_killable(&dreq->completion); 352 353 if (!result) { 354 result = dreq->count; 355 WARN_ON_ONCE(dreq->count < 0); 356 } 357 if (!result) 358 result = dreq->error; 359 360 out: 361 return (ssize_t) result; 362 } 363 364 /* 365 * Synchronous I/O uses a stack-allocated iocb. Thus we can't trust 366 * the iocb is still valid here if this is a synchronous request. 367 */ 368 static void nfs_direct_complete(struct nfs_direct_req *dreq) 369 { 370 struct inode *inode = dreq->inode; 371 372 inode_dio_end(inode); 373 374 if (dreq->iocb) { 375 long res = (long) dreq->error; 376 if (dreq->count != 0) { 377 res = (long) dreq->count; 378 WARN_ON_ONCE(dreq->count < 0); 379 } 380 dreq->iocb->ki_complete(dreq->iocb, res, 0); 381 } 382 383 complete(&dreq->completion); 384 385 nfs_direct_req_release(dreq); 386 } 387 388 static void nfs_direct_read_completion(struct nfs_pgio_header *hdr) 389 { 390 unsigned long bytes = 0; 391 struct nfs_direct_req *dreq = hdr->dreq; 392 393 spin_lock(&dreq->lock); 394 if (test_bit(NFS_IOHDR_REDO, &hdr->flags)) { 395 spin_unlock(&dreq->lock); 396 goto out_put; 397 } 398 399 nfs_direct_count_bytes(dreq, hdr); 400 spin_unlock(&dreq->lock); 401 402 while (!list_empty(&hdr->pages)) { 403 struct nfs_page *req = nfs_list_entry(hdr->pages.next); 404 struct page *page = req->wb_page; 405 406 if (!PageCompound(page) && bytes < hdr->good_bytes && 407 (dreq->flags == NFS_ODIRECT_SHOULD_DIRTY)) 408 set_page_dirty(page); 409 bytes += req->wb_bytes; 410 nfs_list_remove_request(req); 411 nfs_release_request(req); 412 } 413 out_put: 414 if (put_dreq(dreq)) 415 nfs_direct_complete(dreq); 416 hdr->release(hdr); 417 } 418 419 static void nfs_read_sync_pgio_error(struct list_head *head, int error) 420 { 421 struct nfs_page *req; 422 423 while (!list_empty(head)) { 424 req = nfs_list_entry(head->next); 425 nfs_list_remove_request(req); 426 nfs_release_request(req); 427 } 428 } 429 430 static void nfs_direct_pgio_init(struct nfs_pgio_header *hdr) 431 { 432 get_dreq(hdr->dreq); 433 } 434 435 static const struct nfs_pgio_completion_ops nfs_direct_read_completion_ops = { 436 .error_cleanup = nfs_read_sync_pgio_error, 437 .init_hdr = nfs_direct_pgio_init, 438 .completion = nfs_direct_read_completion, 439 }; 440 441 /* 442 * For each rsize'd chunk of the user's buffer, dispatch an NFS READ 443 * operation. If nfs_readdata_alloc() or get_user_pages() fails, 444 * bail and stop sending more reads. Read length accounting is 445 * handled automatically by nfs_direct_read_result(). Otherwise, if 446 * no requests have been sent, just return an error. 447 */ 448 449 static ssize_t nfs_direct_read_schedule_iovec(struct nfs_direct_req *dreq, 450 struct iov_iter *iter, 451 loff_t pos) 452 { 453 struct nfs_pageio_descriptor desc; 454 struct inode *inode = dreq->inode; 455 ssize_t result = -EINVAL; 456 size_t requested_bytes = 0; 457 size_t rsize = max_t(size_t, NFS_SERVER(inode)->rsize, PAGE_SIZE); 458 459 nfs_pageio_init_read(&desc, dreq->inode, false, 460 &nfs_direct_read_completion_ops); 461 get_dreq(dreq); 462 desc.pg_dreq = dreq; 463 inode_dio_begin(inode); 464 465 while (iov_iter_count(iter)) { 466 struct page **pagevec; 467 size_t bytes; 468 size_t pgbase; 469 unsigned npages, i; 470 471 result = iov_iter_get_pages_alloc(iter, &pagevec, 472 rsize, &pgbase); 473 if (result < 0) 474 break; 475 476 bytes = result; 477 iov_iter_advance(iter, bytes); 478 npages = (result + pgbase + PAGE_SIZE - 1) / PAGE_SIZE; 479 for (i = 0; i < npages; i++) { 480 struct nfs_page *req; 481 unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase); 482 /* XXX do we need to do the eof zeroing found in async_filler? */ 483 req = nfs_create_request(dreq->ctx, pagevec[i], 484 pgbase, req_len); 485 if (IS_ERR(req)) { 486 result = PTR_ERR(req); 487 break; 488 } 489 req->wb_index = pos >> PAGE_SHIFT; 490 req->wb_offset = pos & ~PAGE_MASK; 491 if (!nfs_pageio_add_request(&desc, req)) { 492 result = desc.pg_error; 493 nfs_release_request(req); 494 break; 495 } 496 pgbase = 0; 497 bytes -= req_len; 498 requested_bytes += req_len; 499 pos += req_len; 500 dreq->bytes_left -= req_len; 501 } 502 nfs_direct_release_pages(pagevec, npages); 503 kvfree(pagevec); 504 if (result < 0) 505 break; 506 } 507 508 nfs_pageio_complete(&desc); 509 510 /* 511 * If no bytes were started, return the error, and let the 512 * generic layer handle the completion. 513 */ 514 if (requested_bytes == 0) { 515 inode_dio_end(inode); 516 nfs_direct_req_release(dreq); 517 return result < 0 ? result : -EIO; 518 } 519 520 if (put_dreq(dreq)) 521 nfs_direct_complete(dreq); 522 return requested_bytes; 523 } 524 525 /** 526 * nfs_file_direct_read - file direct read operation for NFS files 527 * @iocb: target I/O control block 528 * @iter: vector of user buffers into which to read data 529 * 530 * We use this function for direct reads instead of calling 531 * generic_file_aio_read() in order to avoid gfar's check to see if 532 * the request starts before the end of the file. For that check 533 * to work, we must generate a GETATTR before each direct read, and 534 * even then there is a window between the GETATTR and the subsequent 535 * READ where the file size could change. Our preference is simply 536 * to do all reads the application wants, and the server will take 537 * care of managing the end of file boundary. 538 * 539 * This function also eliminates unnecessarily updating the file's 540 * atime locally, as the NFS server sets the file's atime, and this 541 * client must read the updated atime from the server back into its 542 * cache. 543 */ 544 ssize_t nfs_file_direct_read(struct kiocb *iocb, struct iov_iter *iter) 545 { 546 struct file *file = iocb->ki_filp; 547 struct address_space *mapping = file->f_mapping; 548 struct inode *inode = mapping->host; 549 struct nfs_direct_req *dreq; 550 struct nfs_lock_context *l_ctx; 551 ssize_t result = -EINVAL, requested; 552 size_t count = iov_iter_count(iter); 553 nfs_add_stats(mapping->host, NFSIOS_DIRECTREADBYTES, count); 554 555 dfprintk(FILE, "NFS: direct read(%pD2, %zd@%Ld)\n", 556 file, count, (long long) iocb->ki_pos); 557 558 result = 0; 559 if (!count) 560 goto out; 561 562 task_io_account_read(count); 563 564 result = -ENOMEM; 565 dreq = nfs_direct_req_alloc(); 566 if (dreq == NULL) 567 goto out; 568 569 dreq->inode = inode; 570 dreq->bytes_left = dreq->max_count = count; 571 dreq->io_start = iocb->ki_pos; 572 dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp)); 573 l_ctx = nfs_get_lock_context(dreq->ctx); 574 if (IS_ERR(l_ctx)) { 575 result = PTR_ERR(l_ctx); 576 nfs_direct_req_release(dreq); 577 goto out_release; 578 } 579 dreq->l_ctx = l_ctx; 580 if (!is_sync_kiocb(iocb)) 581 dreq->iocb = iocb; 582 583 if (iter_is_iovec(iter)) 584 dreq->flags = NFS_ODIRECT_SHOULD_DIRTY; 585 586 nfs_start_io_direct(inode); 587 588 NFS_I(inode)->read_io += count; 589 requested = nfs_direct_read_schedule_iovec(dreq, iter, iocb->ki_pos); 590 591 nfs_end_io_direct(inode); 592 593 if (requested > 0) { 594 result = nfs_direct_wait(dreq); 595 if (result > 0) { 596 requested -= result; 597 iocb->ki_pos += result; 598 } 599 iov_iter_revert(iter, requested); 600 } else { 601 result = requested; 602 } 603 604 out_release: 605 nfs_direct_req_release(dreq); 606 out: 607 return result; 608 } 609 610 static void 611 nfs_direct_write_scan_commit_list(struct inode *inode, 612 struct list_head *list, 613 struct nfs_commit_info *cinfo) 614 { 615 mutex_lock(&NFS_I(cinfo->inode)->commit_mutex); 616 #ifdef CONFIG_NFS_V4_1 617 if (cinfo->ds != NULL && cinfo->ds->nwritten != 0) 618 NFS_SERVER(inode)->pnfs_curr_ld->recover_commit_reqs(list, cinfo); 619 #endif 620 nfs_scan_commit_list(&cinfo->mds->list, list, cinfo, 0); 621 mutex_unlock(&NFS_I(cinfo->inode)->commit_mutex); 622 } 623 624 static void nfs_direct_write_reschedule(struct nfs_direct_req *dreq) 625 { 626 struct nfs_pageio_descriptor desc; 627 struct nfs_page *req, *tmp; 628 LIST_HEAD(reqs); 629 struct nfs_commit_info cinfo; 630 LIST_HEAD(failed); 631 632 nfs_init_cinfo_from_dreq(&cinfo, dreq); 633 nfs_direct_write_scan_commit_list(dreq->inode, &reqs, &cinfo); 634 635 dreq->count = 0; 636 dreq->max_count = 0; 637 list_for_each_entry(req, &reqs, wb_list) 638 dreq->max_count += req->wb_bytes; 639 dreq->verf.committed = NFS_INVALID_STABLE_HOW; 640 nfs_clear_pnfs_ds_commit_verifiers(&dreq->ds_cinfo); 641 get_dreq(dreq); 642 643 nfs_pageio_init_write(&desc, dreq->inode, FLUSH_STABLE, false, 644 &nfs_direct_write_completion_ops); 645 desc.pg_dreq = dreq; 646 647 list_for_each_entry_safe(req, tmp, &reqs, wb_list) { 648 /* Bump the transmission count */ 649 req->wb_nio++; 650 if (!nfs_pageio_add_request(&desc, req)) { 651 nfs_list_move_request(req, &failed); 652 spin_lock(&cinfo.inode->i_lock); 653 dreq->flags = 0; 654 if (desc.pg_error < 0) 655 dreq->error = desc.pg_error; 656 else 657 dreq->error = -EIO; 658 spin_unlock(&cinfo.inode->i_lock); 659 } 660 nfs_release_request(req); 661 } 662 nfs_pageio_complete(&desc); 663 664 while (!list_empty(&failed)) { 665 req = nfs_list_entry(failed.next); 666 nfs_list_remove_request(req); 667 nfs_unlock_and_release_request(req); 668 } 669 670 if (put_dreq(dreq)) 671 nfs_direct_write_complete(dreq); 672 } 673 674 static void nfs_direct_commit_complete(struct nfs_commit_data *data) 675 { 676 struct nfs_direct_req *dreq = data->dreq; 677 struct nfs_commit_info cinfo; 678 struct nfs_page *req; 679 int status = data->task.tk_status; 680 681 nfs_init_cinfo_from_dreq(&cinfo, dreq); 682 if (status < 0 || nfs_direct_cmp_commit_data_verf(dreq, data)) 683 dreq->flags = NFS_ODIRECT_RESCHED_WRITES; 684 685 while (!list_empty(&data->pages)) { 686 req = nfs_list_entry(data->pages.next); 687 nfs_list_remove_request(req); 688 if (dreq->flags == NFS_ODIRECT_RESCHED_WRITES) { 689 /* 690 * Despite the reboot, the write was successful, 691 * so reset wb_nio. 692 */ 693 req->wb_nio = 0; 694 /* Note the rewrite will go through mds */ 695 nfs_mark_request_commit(req, NULL, &cinfo, 0); 696 } else 697 nfs_release_request(req); 698 nfs_unlock_and_release_request(req); 699 } 700 701 if (atomic_dec_and_test(&cinfo.mds->rpcs_out)) 702 nfs_direct_write_complete(dreq); 703 } 704 705 static void nfs_direct_resched_write(struct nfs_commit_info *cinfo, 706 struct nfs_page *req) 707 { 708 struct nfs_direct_req *dreq = cinfo->dreq; 709 710 spin_lock(&dreq->lock); 711 dreq->flags = NFS_ODIRECT_RESCHED_WRITES; 712 spin_unlock(&dreq->lock); 713 nfs_mark_request_commit(req, NULL, cinfo, 0); 714 } 715 716 static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops = { 717 .completion = nfs_direct_commit_complete, 718 .resched_write = nfs_direct_resched_write, 719 }; 720 721 static void nfs_direct_commit_schedule(struct nfs_direct_req *dreq) 722 { 723 int res; 724 struct nfs_commit_info cinfo; 725 LIST_HEAD(mds_list); 726 727 nfs_init_cinfo_from_dreq(&cinfo, dreq); 728 nfs_scan_commit(dreq->inode, &mds_list, &cinfo); 729 res = nfs_generic_commit_list(dreq->inode, &mds_list, 0, &cinfo); 730 if (res < 0) /* res == -ENOMEM */ 731 nfs_direct_write_reschedule(dreq); 732 } 733 734 static void nfs_direct_write_schedule_work(struct work_struct *work) 735 { 736 struct nfs_direct_req *dreq = container_of(work, struct nfs_direct_req, work); 737 int flags = dreq->flags; 738 739 dreq->flags = 0; 740 switch (flags) { 741 case NFS_ODIRECT_DO_COMMIT: 742 nfs_direct_commit_schedule(dreq); 743 break; 744 case NFS_ODIRECT_RESCHED_WRITES: 745 nfs_direct_write_reschedule(dreq); 746 break; 747 default: 748 nfs_zap_mapping(dreq->inode, dreq->inode->i_mapping); 749 nfs_direct_complete(dreq); 750 } 751 } 752 753 static void nfs_direct_write_complete(struct nfs_direct_req *dreq) 754 { 755 queue_work(nfsiod_workqueue, &dreq->work); /* Calls nfs_direct_write_schedule_work */ 756 } 757 758 static void nfs_direct_write_completion(struct nfs_pgio_header *hdr) 759 { 760 struct nfs_direct_req *dreq = hdr->dreq; 761 struct nfs_commit_info cinfo; 762 bool request_commit = false; 763 struct nfs_page *req = nfs_list_entry(hdr->pages.next); 764 765 nfs_init_cinfo_from_dreq(&cinfo, dreq); 766 767 spin_lock(&dreq->lock); 768 if (test_bit(NFS_IOHDR_REDO, &hdr->flags)) { 769 spin_unlock(&dreq->lock); 770 goto out_put; 771 } 772 773 nfs_direct_count_bytes(dreq, hdr); 774 if (hdr->good_bytes != 0) { 775 if (nfs_write_need_commit(hdr)) { 776 if (dreq->flags == NFS_ODIRECT_RESCHED_WRITES) 777 request_commit = true; 778 else if (dreq->flags == 0) { 779 nfs_direct_set_hdr_verf(dreq, hdr); 780 request_commit = true; 781 dreq->flags = NFS_ODIRECT_DO_COMMIT; 782 } else if (dreq->flags == NFS_ODIRECT_DO_COMMIT) { 783 request_commit = true; 784 if (nfs_direct_set_or_cmp_hdr_verf(dreq, hdr)) 785 dreq->flags = 786 NFS_ODIRECT_RESCHED_WRITES; 787 } 788 } 789 } 790 spin_unlock(&dreq->lock); 791 792 while (!list_empty(&hdr->pages)) { 793 794 req = nfs_list_entry(hdr->pages.next); 795 nfs_list_remove_request(req); 796 if (request_commit) { 797 kref_get(&req->wb_kref); 798 nfs_mark_request_commit(req, hdr->lseg, &cinfo, 799 hdr->ds_commit_idx); 800 } 801 nfs_unlock_and_release_request(req); 802 } 803 804 out_put: 805 if (put_dreq(dreq)) 806 nfs_direct_write_complete(dreq); 807 hdr->release(hdr); 808 } 809 810 static void nfs_write_sync_pgio_error(struct list_head *head, int error) 811 { 812 struct nfs_page *req; 813 814 while (!list_empty(head)) { 815 req = nfs_list_entry(head->next); 816 nfs_list_remove_request(req); 817 nfs_unlock_and_release_request(req); 818 } 819 } 820 821 static void nfs_direct_write_reschedule_io(struct nfs_pgio_header *hdr) 822 { 823 struct nfs_direct_req *dreq = hdr->dreq; 824 825 spin_lock(&dreq->lock); 826 if (dreq->error == 0) { 827 dreq->flags = NFS_ODIRECT_RESCHED_WRITES; 828 /* fake unstable write to let common nfs resend pages */ 829 hdr->verf.committed = NFS_UNSTABLE; 830 hdr->good_bytes = hdr->args.offset + hdr->args.count - 831 hdr->io_start; 832 } 833 spin_unlock(&dreq->lock); 834 } 835 836 static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops = { 837 .error_cleanup = nfs_write_sync_pgio_error, 838 .init_hdr = nfs_direct_pgio_init, 839 .completion = nfs_direct_write_completion, 840 .reschedule_io = nfs_direct_write_reschedule_io, 841 }; 842 843 844 /* 845 * NB: Return the value of the first error return code. Subsequent 846 * errors after the first one are ignored. 847 */ 848 /* 849 * For each wsize'd chunk of the user's buffer, dispatch an NFS WRITE 850 * operation. If nfs_writedata_alloc() or get_user_pages() fails, 851 * bail and stop sending more writes. Write length accounting is 852 * handled automatically by nfs_direct_write_result(). Otherwise, if 853 * no requests have been sent, just return an error. 854 */ 855 static ssize_t nfs_direct_write_schedule_iovec(struct nfs_direct_req *dreq, 856 struct iov_iter *iter, 857 loff_t pos) 858 { 859 struct nfs_pageio_descriptor desc; 860 struct inode *inode = dreq->inode; 861 ssize_t result = 0; 862 size_t requested_bytes = 0; 863 size_t wsize = max_t(size_t, NFS_SERVER(inode)->wsize, PAGE_SIZE); 864 865 nfs_pageio_init_write(&desc, inode, FLUSH_COND_STABLE, false, 866 &nfs_direct_write_completion_ops); 867 desc.pg_dreq = dreq; 868 get_dreq(dreq); 869 inode_dio_begin(inode); 870 871 NFS_I(inode)->write_io += iov_iter_count(iter); 872 while (iov_iter_count(iter)) { 873 struct page **pagevec; 874 size_t bytes; 875 size_t pgbase; 876 unsigned npages, i; 877 878 result = iov_iter_get_pages_alloc(iter, &pagevec, 879 wsize, &pgbase); 880 if (result < 0) 881 break; 882 883 bytes = result; 884 iov_iter_advance(iter, bytes); 885 npages = (result + pgbase + PAGE_SIZE - 1) / PAGE_SIZE; 886 for (i = 0; i < npages; i++) { 887 struct nfs_page *req; 888 unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase); 889 890 req = nfs_create_request(dreq->ctx, pagevec[i], 891 pgbase, req_len); 892 if (IS_ERR(req)) { 893 result = PTR_ERR(req); 894 break; 895 } 896 897 if (desc.pg_error < 0) { 898 nfs_free_request(req); 899 result = desc.pg_error; 900 break; 901 } 902 903 nfs_lock_request(req); 904 req->wb_index = pos >> PAGE_SHIFT; 905 req->wb_offset = pos & ~PAGE_MASK; 906 if (!nfs_pageio_add_request(&desc, req)) { 907 result = desc.pg_error; 908 nfs_unlock_and_release_request(req); 909 break; 910 } 911 pgbase = 0; 912 bytes -= req_len; 913 requested_bytes += req_len; 914 pos += req_len; 915 dreq->bytes_left -= req_len; 916 } 917 nfs_direct_release_pages(pagevec, npages); 918 kvfree(pagevec); 919 if (result < 0) 920 break; 921 } 922 nfs_pageio_complete(&desc); 923 924 /* 925 * If no bytes were started, return the error, and let the 926 * generic layer handle the completion. 927 */ 928 if (requested_bytes == 0) { 929 inode_dio_end(inode); 930 nfs_direct_req_release(dreq); 931 return result < 0 ? result : -EIO; 932 } 933 934 if (put_dreq(dreq)) 935 nfs_direct_write_complete(dreq); 936 return requested_bytes; 937 } 938 939 /** 940 * nfs_file_direct_write - file direct write operation for NFS files 941 * @iocb: target I/O control block 942 * @iter: vector of user buffers from which to write data 943 * 944 * We use this function for direct writes instead of calling 945 * generic_file_aio_write() in order to avoid taking the inode 946 * semaphore and updating the i_size. The NFS server will set 947 * the new i_size and this client must read the updated size 948 * back into its cache. We let the server do generic write 949 * parameter checking and report problems. 950 * 951 * We eliminate local atime updates, see direct read above. 952 * 953 * We avoid unnecessary page cache invalidations for normal cached 954 * readers of this file. 955 * 956 * Note that O_APPEND is not supported for NFS direct writes, as there 957 * is no atomic O_APPEND write facility in the NFS protocol. 958 */ 959 ssize_t nfs_file_direct_write(struct kiocb *iocb, struct iov_iter *iter) 960 { 961 ssize_t result = -EINVAL, requested; 962 size_t count; 963 struct file *file = iocb->ki_filp; 964 struct address_space *mapping = file->f_mapping; 965 struct inode *inode = mapping->host; 966 struct nfs_direct_req *dreq; 967 struct nfs_lock_context *l_ctx; 968 loff_t pos, end; 969 970 dfprintk(FILE, "NFS: direct write(%pD2, %zd@%Ld)\n", 971 file, iov_iter_count(iter), (long long) iocb->ki_pos); 972 973 result = generic_write_checks(iocb, iter); 974 if (result <= 0) 975 return result; 976 count = result; 977 nfs_add_stats(mapping->host, NFSIOS_DIRECTWRITTENBYTES, count); 978 979 pos = iocb->ki_pos; 980 end = (pos + iov_iter_count(iter) - 1) >> PAGE_SHIFT; 981 982 task_io_account_write(count); 983 984 result = -ENOMEM; 985 dreq = nfs_direct_req_alloc(); 986 if (!dreq) 987 goto out; 988 989 dreq->inode = inode; 990 dreq->bytes_left = dreq->max_count = count; 991 dreq->io_start = pos; 992 dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp)); 993 l_ctx = nfs_get_lock_context(dreq->ctx); 994 if (IS_ERR(l_ctx)) { 995 result = PTR_ERR(l_ctx); 996 nfs_direct_req_release(dreq); 997 goto out_release; 998 } 999 dreq->l_ctx = l_ctx; 1000 if (!is_sync_kiocb(iocb)) 1001 dreq->iocb = iocb; 1002 1003 nfs_start_io_direct(inode); 1004 1005 requested = nfs_direct_write_schedule_iovec(dreq, iter, pos); 1006 1007 if (mapping->nrpages) { 1008 invalidate_inode_pages2_range(mapping, 1009 pos >> PAGE_SHIFT, end); 1010 } 1011 1012 nfs_end_io_direct(inode); 1013 1014 if (requested > 0) { 1015 result = nfs_direct_wait(dreq); 1016 if (result > 0) { 1017 requested -= result; 1018 iocb->ki_pos = pos + result; 1019 /* XXX: should check the generic_write_sync retval */ 1020 generic_write_sync(iocb, result); 1021 } 1022 iov_iter_revert(iter, requested); 1023 } else { 1024 result = requested; 1025 } 1026 out_release: 1027 nfs_direct_req_release(dreq); 1028 out: 1029 return result; 1030 } 1031 1032 /** 1033 * nfs_init_directcache - create a slab cache for nfs_direct_req structures 1034 * 1035 */ 1036 int __init nfs_init_directcache(void) 1037 { 1038 nfs_direct_cachep = kmem_cache_create("nfs_direct_cache", 1039 sizeof(struct nfs_direct_req), 1040 0, (SLAB_RECLAIM_ACCOUNT| 1041 SLAB_MEM_SPREAD), 1042 NULL); 1043 if (nfs_direct_cachep == NULL) 1044 return -ENOMEM; 1045 1046 return 0; 1047 } 1048 1049 /** 1050 * nfs_destroy_directcache - destroy the slab cache for nfs_direct_req structures 1051 * 1052 */ 1053 void nfs_destroy_directcache(void) 1054 { 1055 kmem_cache_destroy(nfs_direct_cachep); 1056 } 1057