xref: /openbmc/linux/fs/nfs/dir.c (revision e1fb4d05d5a3265f1f6769bee034175f91ecc2dd)
1 /*
2  *  linux/fs/nfs/dir.c
3  *
4  *  Copyright (C) 1992  Rick Sladkey
5  *
6  *  nfs directory handling functions
7  *
8  * 10 Apr 1996	Added silly rename for unlink	--okir
9  * 28 Sep 1996	Improved directory cache --okir
10  * 23 Aug 1997  Claus Heine claus@momo.math.rwth-aachen.de
11  *              Re-implemented silly rename for unlink, newly implemented
12  *              silly rename for nfs_rename() following the suggestions
13  *              of Olaf Kirch (okir) found in this file.
14  *              Following Linus comments on my original hack, this version
15  *              depends only on the dcache stuff and doesn't touch the inode
16  *              layer (iput() and friends).
17  *  6 Jun 1999	Cache readdir lookups in the page cache. -DaveM
18  */
19 
20 #include <linux/time.h>
21 #include <linux/errno.h>
22 #include <linux/stat.h>
23 #include <linux/fcntl.h>
24 #include <linux/string.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
27 #include <linux/mm.h>
28 #include <linux/sunrpc/clnt.h>
29 #include <linux/nfs_fs.h>
30 #include <linux/nfs_mount.h>
31 #include <linux/pagemap.h>
32 #include <linux/pagevec.h>
33 #include <linux/namei.h>
34 #include <linux/mount.h>
35 #include <linux/sched.h>
36 
37 #include "nfs4_fs.h"
38 #include "delegation.h"
39 #include "iostat.h"
40 #include "internal.h"
41 
42 /* #define NFS_DEBUG_VERBOSE 1 */
43 
44 static int nfs_opendir(struct inode *, struct file *);
45 static int nfs_readdir(struct file *, void *, filldir_t);
46 static struct dentry *nfs_lookup(struct inode *, struct dentry *, struct nameidata *);
47 static int nfs_create(struct inode *, struct dentry *, int, struct nameidata *);
48 static int nfs_mkdir(struct inode *, struct dentry *, int);
49 static int nfs_rmdir(struct inode *, struct dentry *);
50 static int nfs_unlink(struct inode *, struct dentry *);
51 static int nfs_symlink(struct inode *, struct dentry *, const char *);
52 static int nfs_link(struct dentry *, struct inode *, struct dentry *);
53 static int nfs_mknod(struct inode *, struct dentry *, int, dev_t);
54 static int nfs_rename(struct inode *, struct dentry *,
55 		      struct inode *, struct dentry *);
56 static int nfs_fsync_dir(struct file *, struct dentry *, int);
57 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
58 
59 const struct file_operations nfs_dir_operations = {
60 	.llseek		= nfs_llseek_dir,
61 	.read		= generic_read_dir,
62 	.readdir	= nfs_readdir,
63 	.open		= nfs_opendir,
64 	.release	= nfs_release,
65 	.fsync		= nfs_fsync_dir,
66 };
67 
68 const struct inode_operations nfs_dir_inode_operations = {
69 	.create		= nfs_create,
70 	.lookup		= nfs_lookup,
71 	.link		= nfs_link,
72 	.unlink		= nfs_unlink,
73 	.symlink	= nfs_symlink,
74 	.mkdir		= nfs_mkdir,
75 	.rmdir		= nfs_rmdir,
76 	.mknod		= nfs_mknod,
77 	.rename		= nfs_rename,
78 	.permission	= nfs_permission,
79 	.getattr	= nfs_getattr,
80 	.setattr	= nfs_setattr,
81 };
82 
83 #ifdef CONFIG_NFS_V3
84 const struct inode_operations nfs3_dir_inode_operations = {
85 	.create		= nfs_create,
86 	.lookup		= nfs_lookup,
87 	.link		= nfs_link,
88 	.unlink		= nfs_unlink,
89 	.symlink	= nfs_symlink,
90 	.mkdir		= nfs_mkdir,
91 	.rmdir		= nfs_rmdir,
92 	.mknod		= nfs_mknod,
93 	.rename		= nfs_rename,
94 	.permission	= nfs_permission,
95 	.getattr	= nfs_getattr,
96 	.setattr	= nfs_setattr,
97 	.listxattr	= nfs3_listxattr,
98 	.getxattr	= nfs3_getxattr,
99 	.setxattr	= nfs3_setxattr,
100 	.removexattr	= nfs3_removexattr,
101 };
102 #endif  /* CONFIG_NFS_V3 */
103 
104 #ifdef CONFIG_NFS_V4
105 
106 static struct dentry *nfs_atomic_lookup(struct inode *, struct dentry *, struct nameidata *);
107 const struct inode_operations nfs4_dir_inode_operations = {
108 	.create		= nfs_create,
109 	.lookup		= nfs_atomic_lookup,
110 	.link		= nfs_link,
111 	.unlink		= nfs_unlink,
112 	.symlink	= nfs_symlink,
113 	.mkdir		= nfs_mkdir,
114 	.rmdir		= nfs_rmdir,
115 	.mknod		= nfs_mknod,
116 	.rename		= nfs_rename,
117 	.permission	= nfs_permission,
118 	.getattr	= nfs_getattr,
119 	.setattr	= nfs_setattr,
120 	.getxattr       = nfs4_getxattr,
121 	.setxattr       = nfs4_setxattr,
122 	.listxattr      = nfs4_listxattr,
123 };
124 
125 #endif /* CONFIG_NFS_V4 */
126 
127 /*
128  * Open file
129  */
130 static int
131 nfs_opendir(struct inode *inode, struct file *filp)
132 {
133 	int res;
134 
135 	dfprintk(FILE, "NFS: open dir(%s/%s)\n",
136 			filp->f_path.dentry->d_parent->d_name.name,
137 			filp->f_path.dentry->d_name.name);
138 
139 	nfs_inc_stats(inode, NFSIOS_VFSOPEN);
140 
141 	/* Call generic open code in order to cache credentials */
142 	res = nfs_open(inode, filp);
143 	return res;
144 }
145 
146 typedef __be32 * (*decode_dirent_t)(__be32 *, struct nfs_entry *, int);
147 typedef struct {
148 	struct file	*file;
149 	struct page	*page;
150 	unsigned long	page_index;
151 	__be32		*ptr;
152 	u64		*dir_cookie;
153 	loff_t		current_index;
154 	struct nfs_entry *entry;
155 	decode_dirent_t	decode;
156 	int		plus;
157 	unsigned long	timestamp;
158 	unsigned long	gencount;
159 	int		timestamp_valid;
160 } nfs_readdir_descriptor_t;
161 
162 /* Now we cache directories properly, by stuffing the dirent
163  * data directly in the page cache.
164  *
165  * Inode invalidation due to refresh etc. takes care of
166  * _everything_, no sloppy entry flushing logic, no extraneous
167  * copying, network direct to page cache, the way it was meant
168  * to be.
169  *
170  * NOTE: Dirent information verification is done always by the
171  *	 page-in of the RPC reply, nowhere else, this simplies
172  *	 things substantially.
173  */
174 static
175 int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page *page)
176 {
177 	struct file	*file = desc->file;
178 	struct inode	*inode = file->f_path.dentry->d_inode;
179 	struct rpc_cred	*cred = nfs_file_cred(file);
180 	unsigned long	timestamp, gencount;
181 	int		error;
182 
183 	dfprintk(DIRCACHE, "NFS: %s: reading cookie %Lu into page %lu\n",
184 			__func__, (long long)desc->entry->cookie,
185 			page->index);
186 
187  again:
188 	timestamp = jiffies;
189 	gencount = nfs_inc_attr_generation_counter();
190 	error = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred, desc->entry->cookie, page,
191 					  NFS_SERVER(inode)->dtsize, desc->plus);
192 	if (error < 0) {
193 		/* We requested READDIRPLUS, but the server doesn't grok it */
194 		if (error == -ENOTSUPP && desc->plus) {
195 			NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
196 			clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
197 			desc->plus = 0;
198 			goto again;
199 		}
200 		goto error;
201 	}
202 	desc->timestamp = timestamp;
203 	desc->gencount = gencount;
204 	desc->timestamp_valid = 1;
205 	SetPageUptodate(page);
206 	/* Ensure consistent page alignment of the data.
207 	 * Note: assumes we have exclusive access to this mapping either
208 	 *	 through inode->i_mutex or some other mechanism.
209 	 */
210 	if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) {
211 		/* Should never happen */
212 		nfs_zap_mapping(inode, inode->i_mapping);
213 	}
214 	unlock_page(page);
215 	return 0;
216  error:
217 	unlock_page(page);
218 	return -EIO;
219 }
220 
221 static inline
222 int dir_decode(nfs_readdir_descriptor_t *desc)
223 {
224 	__be32	*p = desc->ptr;
225 	p = desc->decode(p, desc->entry, desc->plus);
226 	if (IS_ERR(p))
227 		return PTR_ERR(p);
228 	desc->ptr = p;
229 	if (desc->timestamp_valid) {
230 		desc->entry->fattr->time_start = desc->timestamp;
231 		desc->entry->fattr->gencount = desc->gencount;
232 	} else
233 		desc->entry->fattr->valid &= ~NFS_ATTR_FATTR;
234 	return 0;
235 }
236 
237 static inline
238 void dir_page_release(nfs_readdir_descriptor_t *desc)
239 {
240 	kunmap(desc->page);
241 	page_cache_release(desc->page);
242 	desc->page = NULL;
243 	desc->ptr = NULL;
244 }
245 
246 /*
247  * Given a pointer to a buffer that has already been filled by a call
248  * to readdir, find the next entry with cookie '*desc->dir_cookie'.
249  *
250  * If the end of the buffer has been reached, return -EAGAIN, if not,
251  * return the offset within the buffer of the next entry to be
252  * read.
253  */
254 static inline
255 int find_dirent(nfs_readdir_descriptor_t *desc)
256 {
257 	struct nfs_entry *entry = desc->entry;
258 	int		loop_count = 0,
259 			status;
260 
261 	while((status = dir_decode(desc)) == 0) {
262 		dfprintk(DIRCACHE, "NFS: %s: examining cookie %Lu\n",
263 				__func__, (unsigned long long)entry->cookie);
264 		if (entry->prev_cookie == *desc->dir_cookie)
265 			break;
266 		if (loop_count++ > 200) {
267 			loop_count = 0;
268 			schedule();
269 		}
270 	}
271 	return status;
272 }
273 
274 /*
275  * Given a pointer to a buffer that has already been filled by a call
276  * to readdir, find the entry at offset 'desc->file->f_pos'.
277  *
278  * If the end of the buffer has been reached, return -EAGAIN, if not,
279  * return the offset within the buffer of the next entry to be
280  * read.
281  */
282 static inline
283 int find_dirent_index(nfs_readdir_descriptor_t *desc)
284 {
285 	struct nfs_entry *entry = desc->entry;
286 	int		loop_count = 0,
287 			status;
288 
289 	for(;;) {
290 		status = dir_decode(desc);
291 		if (status)
292 			break;
293 
294 		dfprintk(DIRCACHE, "NFS: found cookie %Lu at index %Ld\n",
295 				(unsigned long long)entry->cookie, desc->current_index);
296 
297 		if (desc->file->f_pos == desc->current_index) {
298 			*desc->dir_cookie = entry->cookie;
299 			break;
300 		}
301 		desc->current_index++;
302 		if (loop_count++ > 200) {
303 			loop_count = 0;
304 			schedule();
305 		}
306 	}
307 	return status;
308 }
309 
310 /*
311  * Find the given page, and call find_dirent() or find_dirent_index in
312  * order to try to return the next entry.
313  */
314 static inline
315 int find_dirent_page(nfs_readdir_descriptor_t *desc)
316 {
317 	struct inode	*inode = desc->file->f_path.dentry->d_inode;
318 	struct page	*page;
319 	int		status;
320 
321 	dfprintk(DIRCACHE, "NFS: %s: searching page %ld for target %Lu\n",
322 			__func__, desc->page_index,
323 			(long long) *desc->dir_cookie);
324 
325 	/* If we find the page in the page_cache, we cannot be sure
326 	 * how fresh the data is, so we will ignore readdir_plus attributes.
327 	 */
328 	desc->timestamp_valid = 0;
329 	page = read_cache_page(inode->i_mapping, desc->page_index,
330 			       (filler_t *)nfs_readdir_filler, desc);
331 	if (IS_ERR(page)) {
332 		status = PTR_ERR(page);
333 		goto out;
334 	}
335 
336 	/* NOTE: Someone else may have changed the READDIRPLUS flag */
337 	desc->page = page;
338 	desc->ptr = kmap(page);		/* matching kunmap in nfs_do_filldir */
339 	if (*desc->dir_cookie != 0)
340 		status = find_dirent(desc);
341 	else
342 		status = find_dirent_index(desc);
343 	if (status < 0)
344 		dir_page_release(desc);
345  out:
346 	dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __func__, status);
347 	return status;
348 }
349 
350 /*
351  * Recurse through the page cache pages, and return a
352  * filled nfs_entry structure of the next directory entry if possible.
353  *
354  * The target for the search is '*desc->dir_cookie' if non-0,
355  * 'desc->file->f_pos' otherwise
356  */
357 static inline
358 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc)
359 {
360 	int		loop_count = 0;
361 	int		res;
362 
363 	/* Always search-by-index from the beginning of the cache */
364 	if (*desc->dir_cookie == 0) {
365 		dfprintk(DIRCACHE, "NFS: readdir_search_pagecache() searching for offset %Ld\n",
366 				(long long)desc->file->f_pos);
367 		desc->page_index = 0;
368 		desc->entry->cookie = desc->entry->prev_cookie = 0;
369 		desc->entry->eof = 0;
370 		desc->current_index = 0;
371 	} else
372 		dfprintk(DIRCACHE, "NFS: readdir_search_pagecache() searching for cookie %Lu\n",
373 				(unsigned long long)*desc->dir_cookie);
374 
375 	for (;;) {
376 		res = find_dirent_page(desc);
377 		if (res != -EAGAIN)
378 			break;
379 		/* Align to beginning of next page */
380 		desc->page_index ++;
381 		if (loop_count++ > 200) {
382 			loop_count = 0;
383 			schedule();
384 		}
385 	}
386 
387 	dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __func__, res);
388 	return res;
389 }
390 
391 static inline unsigned int dt_type(struct inode *inode)
392 {
393 	return (inode->i_mode >> 12) & 15;
394 }
395 
396 static struct dentry *nfs_readdir_lookup(nfs_readdir_descriptor_t *desc);
397 
398 /*
399  * Once we've found the start of the dirent within a page: fill 'er up...
400  */
401 static
402 int nfs_do_filldir(nfs_readdir_descriptor_t *desc, void *dirent,
403 		   filldir_t filldir)
404 {
405 	struct file	*file = desc->file;
406 	struct nfs_entry *entry = desc->entry;
407 	struct dentry	*dentry = NULL;
408 	u64		fileid;
409 	int		loop_count = 0,
410 			res;
411 
412 	dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling starting @ cookie %Lu\n",
413 			(unsigned long long)entry->cookie);
414 
415 	for(;;) {
416 		unsigned d_type = DT_UNKNOWN;
417 		/* Note: entry->prev_cookie contains the cookie for
418 		 *	 retrieving the current dirent on the server */
419 		fileid = entry->ino;
420 
421 		/* Get a dentry if we have one */
422 		if (dentry != NULL)
423 			dput(dentry);
424 		dentry = nfs_readdir_lookup(desc);
425 
426 		/* Use readdirplus info */
427 		if (dentry != NULL && dentry->d_inode != NULL) {
428 			d_type = dt_type(dentry->d_inode);
429 			fileid = NFS_FILEID(dentry->d_inode);
430 		}
431 
432 		res = filldir(dirent, entry->name, entry->len,
433 			      file->f_pos, nfs_compat_user_ino64(fileid),
434 			      d_type);
435 		if (res < 0)
436 			break;
437 		file->f_pos++;
438 		*desc->dir_cookie = entry->cookie;
439 		if (dir_decode(desc) != 0) {
440 			desc->page_index ++;
441 			break;
442 		}
443 		if (loop_count++ > 200) {
444 			loop_count = 0;
445 			schedule();
446 		}
447 	}
448 	dir_page_release(desc);
449 	if (dentry != NULL)
450 		dput(dentry);
451 	dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
452 			(unsigned long long)*desc->dir_cookie, res);
453 	return res;
454 }
455 
456 /*
457  * If we cannot find a cookie in our cache, we suspect that this is
458  * because it points to a deleted file, so we ask the server to return
459  * whatever it thinks is the next entry. We then feed this to filldir.
460  * If all goes well, we should then be able to find our way round the
461  * cache on the next call to readdir_search_pagecache();
462  *
463  * NOTE: we cannot add the anonymous page to the pagecache because
464  *	 the data it contains might not be page aligned. Besides,
465  *	 we should already have a complete representation of the
466  *	 directory in the page cache by the time we get here.
467  */
468 static inline
469 int uncached_readdir(nfs_readdir_descriptor_t *desc, void *dirent,
470 		     filldir_t filldir)
471 {
472 	struct file	*file = desc->file;
473 	struct inode	*inode = file->f_path.dentry->d_inode;
474 	struct rpc_cred	*cred = nfs_file_cred(file);
475 	struct page	*page = NULL;
476 	int		status;
477 	unsigned long	timestamp, gencount;
478 
479 	dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n",
480 			(unsigned long long)*desc->dir_cookie);
481 
482 	page = alloc_page(GFP_HIGHUSER);
483 	if (!page) {
484 		status = -ENOMEM;
485 		goto out;
486 	}
487 	timestamp = jiffies;
488 	gencount = nfs_inc_attr_generation_counter();
489 	status = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred,
490 						*desc->dir_cookie, page,
491 						NFS_SERVER(inode)->dtsize,
492 						desc->plus);
493 	desc->page = page;
494 	desc->ptr = kmap(page);		/* matching kunmap in nfs_do_filldir */
495 	if (status >= 0) {
496 		desc->timestamp = timestamp;
497 		desc->gencount = gencount;
498 		desc->timestamp_valid = 1;
499 		if ((status = dir_decode(desc)) == 0)
500 			desc->entry->prev_cookie = *desc->dir_cookie;
501 	} else
502 		status = -EIO;
503 	if (status < 0)
504 		goto out_release;
505 
506 	status = nfs_do_filldir(desc, dirent, filldir);
507 
508 	/* Reset read descriptor so it searches the page cache from
509 	 * the start upon the next call to readdir_search_pagecache() */
510 	desc->page_index = 0;
511 	desc->entry->cookie = desc->entry->prev_cookie = 0;
512 	desc->entry->eof = 0;
513  out:
514 	dfprintk(DIRCACHE, "NFS: %s: returns %d\n",
515 			__func__, status);
516 	return status;
517  out_release:
518 	dir_page_release(desc);
519 	goto out;
520 }
521 
522 /* The file offset position represents the dirent entry number.  A
523    last cookie cache takes care of the common case of reading the
524    whole directory.
525  */
526 static int nfs_readdir(struct file *filp, void *dirent, filldir_t filldir)
527 {
528 	struct dentry	*dentry = filp->f_path.dentry;
529 	struct inode	*inode = dentry->d_inode;
530 	nfs_readdir_descriptor_t my_desc,
531 			*desc = &my_desc;
532 	struct nfs_entry my_entry;
533 	struct nfs_fh	 fh;
534 	struct nfs_fattr fattr;
535 	long		res;
536 
537 	dfprintk(FILE, "NFS: readdir(%s/%s) starting at cookie %llu\n",
538 			dentry->d_parent->d_name.name, dentry->d_name.name,
539 			(long long)filp->f_pos);
540 	nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
541 
542 	/*
543 	 * filp->f_pos points to the dirent entry number.
544 	 * *desc->dir_cookie has the cookie for the next entry. We have
545 	 * to either find the entry with the appropriate number or
546 	 * revalidate the cookie.
547 	 */
548 	memset(desc, 0, sizeof(*desc));
549 
550 	desc->file = filp;
551 	desc->dir_cookie = &nfs_file_open_context(filp)->dir_cookie;
552 	desc->decode = NFS_PROTO(inode)->decode_dirent;
553 	desc->plus = NFS_USE_READDIRPLUS(inode);
554 
555 	my_entry.cookie = my_entry.prev_cookie = 0;
556 	my_entry.eof = 0;
557 	my_entry.fh = &fh;
558 	my_entry.fattr = &fattr;
559 	nfs_fattr_init(&fattr);
560 	desc->entry = &my_entry;
561 
562 	nfs_block_sillyrename(dentry);
563 	res = nfs_revalidate_mapping(inode, filp->f_mapping);
564 	if (res < 0)
565 		goto out;
566 
567 	while(!desc->entry->eof) {
568 		res = readdir_search_pagecache(desc);
569 
570 		if (res == -EBADCOOKIE) {
571 			/* This means either end of directory */
572 			if (*desc->dir_cookie && desc->entry->cookie != *desc->dir_cookie) {
573 				/* Or that the server has 'lost' a cookie */
574 				res = uncached_readdir(desc, dirent, filldir);
575 				if (res >= 0)
576 					continue;
577 			}
578 			res = 0;
579 			break;
580 		}
581 		if (res == -ETOOSMALL && desc->plus) {
582 			clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
583 			nfs_zap_caches(inode);
584 			desc->plus = 0;
585 			desc->entry->eof = 0;
586 			continue;
587 		}
588 		if (res < 0)
589 			break;
590 
591 		res = nfs_do_filldir(desc, dirent, filldir);
592 		if (res < 0) {
593 			res = 0;
594 			break;
595 		}
596 	}
597 out:
598 	nfs_unblock_sillyrename(dentry);
599 	if (res > 0)
600 		res = 0;
601 	dfprintk(FILE, "NFS: readdir(%s/%s) returns %ld\n",
602 			dentry->d_parent->d_name.name, dentry->d_name.name,
603 			res);
604 	return res;
605 }
606 
607 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int origin)
608 {
609 	struct dentry *dentry = filp->f_path.dentry;
610 	struct inode *inode = dentry->d_inode;
611 
612 	dfprintk(FILE, "NFS: llseek dir(%s/%s, %lld, %d)\n",
613 			dentry->d_parent->d_name.name,
614 			dentry->d_name.name,
615 			offset, origin);
616 
617 	mutex_lock(&inode->i_mutex);
618 	switch (origin) {
619 		case 1:
620 			offset += filp->f_pos;
621 		case 0:
622 			if (offset >= 0)
623 				break;
624 		default:
625 			offset = -EINVAL;
626 			goto out;
627 	}
628 	if (offset != filp->f_pos) {
629 		filp->f_pos = offset;
630 		nfs_file_open_context(filp)->dir_cookie = 0;
631 	}
632 out:
633 	mutex_unlock(&inode->i_mutex);
634 	return offset;
635 }
636 
637 /*
638  * All directory operations under NFS are synchronous, so fsync()
639  * is a dummy operation.
640  */
641 static int nfs_fsync_dir(struct file *filp, struct dentry *dentry, int datasync)
642 {
643 	dfprintk(FILE, "NFS: fsync dir(%s/%s) datasync %d\n",
644 			dentry->d_parent->d_name.name, dentry->d_name.name,
645 			datasync);
646 
647 	nfs_inc_stats(dentry->d_inode, NFSIOS_VFSFSYNC);
648 	return 0;
649 }
650 
651 /**
652  * nfs_force_lookup_revalidate - Mark the directory as having changed
653  * @dir - pointer to directory inode
654  *
655  * This forces the revalidation code in nfs_lookup_revalidate() to do a
656  * full lookup on all child dentries of 'dir' whenever a change occurs
657  * on the server that might have invalidated our dcache.
658  *
659  * The caller should be holding dir->i_lock
660  */
661 void nfs_force_lookup_revalidate(struct inode *dir)
662 {
663 	NFS_I(dir)->cache_change_attribute++;
664 }
665 
666 /*
667  * A check for whether or not the parent directory has changed.
668  * In the case it has, we assume that the dentries are untrustworthy
669  * and may need to be looked up again.
670  */
671 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry)
672 {
673 	if (IS_ROOT(dentry))
674 		return 1;
675 	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
676 		return 0;
677 	if (!nfs_verify_change_attribute(dir, dentry->d_time))
678 		return 0;
679 	/* Revalidate nfsi->cache_change_attribute before we declare a match */
680 	if (nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
681 		return 0;
682 	if (!nfs_verify_change_attribute(dir, dentry->d_time))
683 		return 0;
684 	return 1;
685 }
686 
687 /*
688  * Return the intent data that applies to this particular path component
689  *
690  * Note that the current set of intents only apply to the very last
691  * component of the path.
692  * We check for this using LOOKUP_CONTINUE and LOOKUP_PARENT.
693  */
694 static inline unsigned int nfs_lookup_check_intent(struct nameidata *nd, unsigned int mask)
695 {
696 	if (nd->flags & (LOOKUP_CONTINUE|LOOKUP_PARENT))
697 		return 0;
698 	return nd->flags & mask;
699 }
700 
701 /*
702  * Use intent information to check whether or not we're going to do
703  * an O_EXCL create using this path component.
704  */
705 static int nfs_is_exclusive_create(struct inode *dir, struct nameidata *nd)
706 {
707 	if (NFS_PROTO(dir)->version == 2)
708 		return 0;
709 	return nd && nfs_lookup_check_intent(nd, LOOKUP_EXCL);
710 }
711 
712 /*
713  * Inode and filehandle revalidation for lookups.
714  *
715  * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
716  * or if the intent information indicates that we're about to open this
717  * particular file and the "nocto" mount flag is not set.
718  *
719  */
720 static inline
721 int nfs_lookup_verify_inode(struct inode *inode, struct nameidata *nd)
722 {
723 	struct nfs_server *server = NFS_SERVER(inode);
724 
725 	if (test_bit(NFS_INO_MOUNTPOINT, &NFS_I(inode)->flags))
726 		return 0;
727 	if (nd != NULL) {
728 		/* VFS wants an on-the-wire revalidation */
729 		if (nd->flags & LOOKUP_REVAL)
730 			goto out_force;
731 		/* This is an open(2) */
732 		if (nfs_lookup_check_intent(nd, LOOKUP_OPEN) != 0 &&
733 				!(server->flags & NFS_MOUNT_NOCTO) &&
734 				(S_ISREG(inode->i_mode) ||
735 				 S_ISDIR(inode->i_mode)))
736 			goto out_force;
737 		return 0;
738 	}
739 	return nfs_revalidate_inode(server, inode);
740 out_force:
741 	return __nfs_revalidate_inode(server, inode);
742 }
743 
744 /*
745  * We judge how long we want to trust negative
746  * dentries by looking at the parent inode mtime.
747  *
748  * If parent mtime has changed, we revalidate, else we wait for a
749  * period corresponding to the parent's attribute cache timeout value.
750  */
751 static inline
752 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
753 		       struct nameidata *nd)
754 {
755 	/* Don't revalidate a negative dentry if we're creating a new file */
756 	if (nd != NULL && nfs_lookup_check_intent(nd, LOOKUP_CREATE) != 0)
757 		return 0;
758 	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
759 		return 1;
760 	return !nfs_check_verifier(dir, dentry);
761 }
762 
763 /*
764  * This is called every time the dcache has a lookup hit,
765  * and we should check whether we can really trust that
766  * lookup.
767  *
768  * NOTE! The hit can be a negative hit too, don't assume
769  * we have an inode!
770  *
771  * If the parent directory is seen to have changed, we throw out the
772  * cached dentry and do a new lookup.
773  */
774 static int nfs_lookup_revalidate(struct dentry * dentry, struct nameidata *nd)
775 {
776 	struct inode *dir;
777 	struct inode *inode;
778 	struct dentry *parent;
779 	struct nfs_fh *fhandle = NULL;
780 	struct nfs_fattr *fattr = NULL;
781 	int error;
782 
783 	parent = dget_parent(dentry);
784 	dir = parent->d_inode;
785 	nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
786 	inode = dentry->d_inode;
787 
788 	if (!inode) {
789 		if (nfs_neg_need_reval(dir, dentry, nd))
790 			goto out_bad;
791 		goto out_valid;
792 	}
793 
794 	if (is_bad_inode(inode)) {
795 		dfprintk(LOOKUPCACHE, "%s: %s/%s has dud inode\n",
796 				__func__, dentry->d_parent->d_name.name,
797 				dentry->d_name.name);
798 		goto out_bad;
799 	}
800 
801 	if (nfs_have_delegation(inode, FMODE_READ))
802 		goto out_set_verifier;
803 
804 	/* Force a full look up iff the parent directory has changed */
805 	if (!nfs_is_exclusive_create(dir, nd) && nfs_check_verifier(dir, dentry)) {
806 		if (nfs_lookup_verify_inode(inode, nd))
807 			goto out_zap_parent;
808 		goto out_valid;
809 	}
810 
811 	if (NFS_STALE(inode))
812 		goto out_bad;
813 
814 	error = -ENOMEM;
815 	fhandle = nfs_alloc_fhandle();
816 	fattr = nfs_alloc_fattr();
817 	if (fhandle == NULL || fattr == NULL)
818 		goto out_error;
819 
820 	error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr);
821 	if (error)
822 		goto out_bad;
823 	if (nfs_compare_fh(NFS_FH(inode), fhandle))
824 		goto out_bad;
825 	if ((error = nfs_refresh_inode(inode, fattr)) != 0)
826 		goto out_bad;
827 
828 	nfs_free_fattr(fattr);
829 	nfs_free_fhandle(fhandle);
830 out_set_verifier:
831 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
832  out_valid:
833 	dput(parent);
834 	dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is valid\n",
835 			__func__, dentry->d_parent->d_name.name,
836 			dentry->d_name.name);
837 	return 1;
838 out_zap_parent:
839 	nfs_zap_caches(dir);
840  out_bad:
841 	nfs_mark_for_revalidate(dir);
842 	if (inode && S_ISDIR(inode->i_mode)) {
843 		/* Purge readdir caches. */
844 		nfs_zap_caches(inode);
845 		/* If we have submounts, don't unhash ! */
846 		if (have_submounts(dentry))
847 			goto out_valid;
848 		if (dentry->d_flags & DCACHE_DISCONNECTED)
849 			goto out_valid;
850 		shrink_dcache_parent(dentry);
851 	}
852 	d_drop(dentry);
853 	nfs_free_fattr(fattr);
854 	nfs_free_fhandle(fhandle);
855 	dput(parent);
856 	dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is invalid\n",
857 			__func__, dentry->d_parent->d_name.name,
858 			dentry->d_name.name);
859 	return 0;
860 out_error:
861 	nfs_free_fattr(fattr);
862 	nfs_free_fhandle(fhandle);
863 	dput(parent);
864 	dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) lookup returned error %d\n",
865 			__func__, dentry->d_parent->d_name.name,
866 			dentry->d_name.name, error);
867 	return error;
868 }
869 
870 /*
871  * This is called from dput() when d_count is going to 0.
872  */
873 static int nfs_dentry_delete(struct dentry *dentry)
874 {
875 	dfprintk(VFS, "NFS: dentry_delete(%s/%s, %x)\n",
876 		dentry->d_parent->d_name.name, dentry->d_name.name,
877 		dentry->d_flags);
878 
879 	/* Unhash any dentry with a stale inode */
880 	if (dentry->d_inode != NULL && NFS_STALE(dentry->d_inode))
881 		return 1;
882 
883 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
884 		/* Unhash it, so that ->d_iput() would be called */
885 		return 1;
886 	}
887 	if (!(dentry->d_sb->s_flags & MS_ACTIVE)) {
888 		/* Unhash it, so that ancestors of killed async unlink
889 		 * files will be cleaned up during umount */
890 		return 1;
891 	}
892 	return 0;
893 
894 }
895 
896 static void nfs_drop_nlink(struct inode *inode)
897 {
898 	spin_lock(&inode->i_lock);
899 	if (inode->i_nlink > 0)
900 		drop_nlink(inode);
901 	spin_unlock(&inode->i_lock);
902 }
903 
904 /*
905  * Called when the dentry loses inode.
906  * We use it to clean up silly-renamed files.
907  */
908 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
909 {
910 	if (S_ISDIR(inode->i_mode))
911 		/* drop any readdir cache as it could easily be old */
912 		NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA;
913 
914 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
915 		drop_nlink(inode);
916 		nfs_complete_unlink(dentry, inode);
917 	}
918 	iput(inode);
919 }
920 
921 const struct dentry_operations nfs_dentry_operations = {
922 	.d_revalidate	= nfs_lookup_revalidate,
923 	.d_delete	= nfs_dentry_delete,
924 	.d_iput		= nfs_dentry_iput,
925 };
926 
927 static struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
928 {
929 	struct dentry *res;
930 	struct dentry *parent;
931 	struct inode *inode = NULL;
932 	struct nfs_fh *fhandle = NULL;
933 	struct nfs_fattr *fattr = NULL;
934 	int error;
935 
936 	dfprintk(VFS, "NFS: lookup(%s/%s)\n",
937 		dentry->d_parent->d_name.name, dentry->d_name.name);
938 	nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
939 
940 	res = ERR_PTR(-ENAMETOOLONG);
941 	if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
942 		goto out;
943 
944 	dentry->d_op = NFS_PROTO(dir)->dentry_ops;
945 
946 	/*
947 	 * If we're doing an exclusive create, optimize away the lookup
948 	 * but don't hash the dentry.
949 	 */
950 	if (nfs_is_exclusive_create(dir, nd)) {
951 		d_instantiate(dentry, NULL);
952 		res = NULL;
953 		goto out;
954 	}
955 
956 	res = ERR_PTR(-ENOMEM);
957 	fhandle = nfs_alloc_fhandle();
958 	fattr = nfs_alloc_fattr();
959 	if (fhandle == NULL || fattr == NULL)
960 		goto out;
961 
962 	parent = dentry->d_parent;
963 	/* Protect against concurrent sillydeletes */
964 	nfs_block_sillyrename(parent);
965 	error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr);
966 	if (error == -ENOENT)
967 		goto no_entry;
968 	if (error < 0) {
969 		res = ERR_PTR(error);
970 		goto out_unblock_sillyrename;
971 	}
972 	inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
973 	res = (struct dentry *)inode;
974 	if (IS_ERR(res))
975 		goto out_unblock_sillyrename;
976 
977 no_entry:
978 	res = d_materialise_unique(dentry, inode);
979 	if (res != NULL) {
980 		if (IS_ERR(res))
981 			goto out_unblock_sillyrename;
982 		dentry = res;
983 	}
984 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
985 out_unblock_sillyrename:
986 	nfs_unblock_sillyrename(parent);
987 out:
988 	nfs_free_fattr(fattr);
989 	nfs_free_fhandle(fhandle);
990 	return res;
991 }
992 
993 #ifdef CONFIG_NFS_V4
994 static int nfs_open_revalidate(struct dentry *, struct nameidata *);
995 
996 const struct dentry_operations nfs4_dentry_operations = {
997 	.d_revalidate	= nfs_open_revalidate,
998 	.d_delete	= nfs_dentry_delete,
999 	.d_iput		= nfs_dentry_iput,
1000 };
1001 
1002 /*
1003  * Use intent information to determine whether we need to substitute
1004  * the NFSv4-style stateful OPEN for the LOOKUP call
1005  */
1006 static int is_atomic_open(struct nameidata *nd)
1007 {
1008 	if (nd == NULL || nfs_lookup_check_intent(nd, LOOKUP_OPEN) == 0)
1009 		return 0;
1010 	/* NFS does not (yet) have a stateful open for directories */
1011 	if (nd->flags & LOOKUP_DIRECTORY)
1012 		return 0;
1013 	/* Are we trying to write to a read only partition? */
1014 	if (__mnt_is_readonly(nd->path.mnt) &&
1015 	    (nd->intent.open.flags & (O_CREAT|O_TRUNC|FMODE_WRITE)))
1016 		return 0;
1017 	return 1;
1018 }
1019 
1020 static struct dentry *nfs_atomic_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
1021 {
1022 	struct dentry *res = NULL;
1023 	int error;
1024 
1025 	dfprintk(VFS, "NFS: atomic_lookup(%s/%ld), %s\n",
1026 			dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1027 
1028 	/* Check that we are indeed trying to open this file */
1029 	if (!is_atomic_open(nd))
1030 		goto no_open;
1031 
1032 	if (dentry->d_name.len > NFS_SERVER(dir)->namelen) {
1033 		res = ERR_PTR(-ENAMETOOLONG);
1034 		goto out;
1035 	}
1036 	dentry->d_op = NFS_PROTO(dir)->dentry_ops;
1037 
1038 	/* Let vfs_create() deal with O_EXCL. Instantiate, but don't hash
1039 	 * the dentry. */
1040 	if (nd->flags & LOOKUP_EXCL) {
1041 		d_instantiate(dentry, NULL);
1042 		goto out;
1043 	}
1044 
1045 	/* Open the file on the server */
1046 	res = nfs4_atomic_open(dir, dentry, nd);
1047 	if (IS_ERR(res)) {
1048 		error = PTR_ERR(res);
1049 		switch (error) {
1050 			/* Make a negative dentry */
1051 			case -ENOENT:
1052 				res = NULL;
1053 				goto out;
1054 			/* This turned out not to be a regular file */
1055 			case -EISDIR:
1056 			case -ENOTDIR:
1057 				goto no_open;
1058 			case -ELOOP:
1059 				if (!(nd->intent.open.flags & O_NOFOLLOW))
1060 					goto no_open;
1061 			/* case -EINVAL: */
1062 			default:
1063 				goto out;
1064 		}
1065 	} else if (res != NULL)
1066 		dentry = res;
1067 out:
1068 	return res;
1069 no_open:
1070 	return nfs_lookup(dir, dentry, nd);
1071 }
1072 
1073 static int nfs_open_revalidate(struct dentry *dentry, struct nameidata *nd)
1074 {
1075 	struct dentry *parent = NULL;
1076 	struct inode *inode = dentry->d_inode;
1077 	struct inode *dir;
1078 	int openflags, ret = 0;
1079 
1080 	if (!is_atomic_open(nd) || d_mountpoint(dentry))
1081 		goto no_open;
1082 	parent = dget_parent(dentry);
1083 	dir = parent->d_inode;
1084 	/* We can't create new files in nfs_open_revalidate(), so we
1085 	 * optimize away revalidation of negative dentries.
1086 	 */
1087 	if (inode == NULL) {
1088 		if (!nfs_neg_need_reval(dir, dentry, nd))
1089 			ret = 1;
1090 		goto out;
1091 	}
1092 
1093 	/* NFS only supports OPEN on regular files */
1094 	if (!S_ISREG(inode->i_mode))
1095 		goto no_open_dput;
1096 	openflags = nd->intent.open.flags;
1097 	/* We cannot do exclusive creation on a positive dentry */
1098 	if ((openflags & (O_CREAT|O_EXCL)) == (O_CREAT|O_EXCL))
1099 		goto no_open_dput;
1100 	/* We can't create new files, or truncate existing ones here */
1101 	openflags &= ~(O_CREAT|O_TRUNC);
1102 
1103 	/*
1104 	 * Note: we're not holding inode->i_mutex and so may be racing with
1105 	 * operations that change the directory. We therefore save the
1106 	 * change attribute *before* we do the RPC call.
1107 	 */
1108 	ret = nfs4_open_revalidate(dir, dentry, openflags, nd);
1109 out:
1110 	dput(parent);
1111 	if (!ret)
1112 		d_drop(dentry);
1113 	return ret;
1114 no_open_dput:
1115 	dput(parent);
1116 no_open:
1117 	return nfs_lookup_revalidate(dentry, nd);
1118 }
1119 #endif /* CONFIG_NFSV4 */
1120 
1121 static struct dentry *nfs_readdir_lookup(nfs_readdir_descriptor_t *desc)
1122 {
1123 	struct dentry *parent = desc->file->f_path.dentry;
1124 	struct inode *dir = parent->d_inode;
1125 	struct nfs_entry *entry = desc->entry;
1126 	struct dentry *dentry, *alias;
1127 	struct qstr name = {
1128 		.name = entry->name,
1129 		.len = entry->len,
1130 	};
1131 	struct inode *inode;
1132 	unsigned long verf = nfs_save_change_attribute(dir);
1133 
1134 	switch (name.len) {
1135 		case 2:
1136 			if (name.name[0] == '.' && name.name[1] == '.')
1137 				return dget_parent(parent);
1138 			break;
1139 		case 1:
1140 			if (name.name[0] == '.')
1141 				return dget(parent);
1142 	}
1143 
1144 	spin_lock(&dir->i_lock);
1145 	if (NFS_I(dir)->cache_validity & NFS_INO_INVALID_DATA) {
1146 		spin_unlock(&dir->i_lock);
1147 		return NULL;
1148 	}
1149 	spin_unlock(&dir->i_lock);
1150 
1151 	name.hash = full_name_hash(name.name, name.len);
1152 	dentry = d_lookup(parent, &name);
1153 	if (dentry != NULL) {
1154 		/* Is this a positive dentry that matches the readdir info? */
1155 		if (dentry->d_inode != NULL &&
1156 				(NFS_FILEID(dentry->d_inode) == entry->ino ||
1157 				d_mountpoint(dentry))) {
1158 			if (!desc->plus || entry->fh->size == 0)
1159 				return dentry;
1160 			if (nfs_compare_fh(NFS_FH(dentry->d_inode),
1161 						entry->fh) == 0)
1162 				goto out_renew;
1163 		}
1164 		/* No, so d_drop to allow one to be created */
1165 		d_drop(dentry);
1166 		dput(dentry);
1167 	}
1168 	if (!desc->plus || !(entry->fattr->valid & NFS_ATTR_FATTR))
1169 		return NULL;
1170 	if (name.len > NFS_SERVER(dir)->namelen)
1171 		return NULL;
1172 	/* Note: caller is already holding the dir->i_mutex! */
1173 	dentry = d_alloc(parent, &name);
1174 	if (dentry == NULL)
1175 		return NULL;
1176 	dentry->d_op = NFS_PROTO(dir)->dentry_ops;
1177 	inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr);
1178 	if (IS_ERR(inode)) {
1179 		dput(dentry);
1180 		return NULL;
1181 	}
1182 
1183 	alias = d_materialise_unique(dentry, inode);
1184 	if (alias != NULL) {
1185 		dput(dentry);
1186 		if (IS_ERR(alias))
1187 			return NULL;
1188 		dentry = alias;
1189 	}
1190 
1191 out_renew:
1192 	nfs_set_verifier(dentry, verf);
1193 	return dentry;
1194 }
1195 
1196 /*
1197  * Code common to create, mkdir, and mknod.
1198  */
1199 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
1200 				struct nfs_fattr *fattr)
1201 {
1202 	struct dentry *parent = dget_parent(dentry);
1203 	struct inode *dir = parent->d_inode;
1204 	struct inode *inode;
1205 	int error = -EACCES;
1206 
1207 	d_drop(dentry);
1208 
1209 	/* We may have been initialized further down */
1210 	if (dentry->d_inode)
1211 		goto out;
1212 	if (fhandle->size == 0) {
1213 		error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr);
1214 		if (error)
1215 			goto out_error;
1216 	}
1217 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1218 	if (!(fattr->valid & NFS_ATTR_FATTR)) {
1219 		struct nfs_server *server = NFS_SB(dentry->d_sb);
1220 		error = server->nfs_client->rpc_ops->getattr(server, fhandle, fattr);
1221 		if (error < 0)
1222 			goto out_error;
1223 	}
1224 	inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
1225 	error = PTR_ERR(inode);
1226 	if (IS_ERR(inode))
1227 		goto out_error;
1228 	d_add(dentry, inode);
1229 out:
1230 	dput(parent);
1231 	return 0;
1232 out_error:
1233 	nfs_mark_for_revalidate(dir);
1234 	dput(parent);
1235 	return error;
1236 }
1237 
1238 /*
1239  * Following a failed create operation, we drop the dentry rather
1240  * than retain a negative dentry. This avoids a problem in the event
1241  * that the operation succeeded on the server, but an error in the
1242  * reply path made it appear to have failed.
1243  */
1244 static int nfs_create(struct inode *dir, struct dentry *dentry, int mode,
1245 		struct nameidata *nd)
1246 {
1247 	struct iattr attr;
1248 	int error;
1249 	int open_flags = 0;
1250 
1251 	dfprintk(VFS, "NFS: create(%s/%ld), %s\n",
1252 			dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1253 
1254 	attr.ia_mode = mode;
1255 	attr.ia_valid = ATTR_MODE;
1256 
1257 	if ((nd->flags & LOOKUP_CREATE) != 0)
1258 		open_flags = nd->intent.open.flags;
1259 
1260 	error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags, nd);
1261 	if (error != 0)
1262 		goto out_err;
1263 	return 0;
1264 out_err:
1265 	d_drop(dentry);
1266 	return error;
1267 }
1268 
1269 /*
1270  * See comments for nfs_proc_create regarding failed operations.
1271  */
1272 static int
1273 nfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t rdev)
1274 {
1275 	struct iattr attr;
1276 	int status;
1277 
1278 	dfprintk(VFS, "NFS: mknod(%s/%ld), %s\n",
1279 			dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1280 
1281 	if (!new_valid_dev(rdev))
1282 		return -EINVAL;
1283 
1284 	attr.ia_mode = mode;
1285 	attr.ia_valid = ATTR_MODE;
1286 
1287 	status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
1288 	if (status != 0)
1289 		goto out_err;
1290 	return 0;
1291 out_err:
1292 	d_drop(dentry);
1293 	return status;
1294 }
1295 
1296 /*
1297  * See comments for nfs_proc_create regarding failed operations.
1298  */
1299 static int nfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1300 {
1301 	struct iattr attr;
1302 	int error;
1303 
1304 	dfprintk(VFS, "NFS: mkdir(%s/%ld), %s\n",
1305 			dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1306 
1307 	attr.ia_valid = ATTR_MODE;
1308 	attr.ia_mode = mode | S_IFDIR;
1309 
1310 	error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
1311 	if (error != 0)
1312 		goto out_err;
1313 	return 0;
1314 out_err:
1315 	d_drop(dentry);
1316 	return error;
1317 }
1318 
1319 static void nfs_dentry_handle_enoent(struct dentry *dentry)
1320 {
1321 	if (dentry->d_inode != NULL && !d_unhashed(dentry))
1322 		d_delete(dentry);
1323 }
1324 
1325 static int nfs_rmdir(struct inode *dir, struct dentry *dentry)
1326 {
1327 	int error;
1328 
1329 	dfprintk(VFS, "NFS: rmdir(%s/%ld), %s\n",
1330 			dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1331 
1332 	error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1333 	/* Ensure the VFS deletes this inode */
1334 	if (error == 0 && dentry->d_inode != NULL)
1335 		clear_nlink(dentry->d_inode);
1336 	else if (error == -ENOENT)
1337 		nfs_dentry_handle_enoent(dentry);
1338 
1339 	return error;
1340 }
1341 
1342 static int nfs_sillyrename(struct inode *dir, struct dentry *dentry)
1343 {
1344 	static unsigned int sillycounter;
1345 	const int      fileidsize  = sizeof(NFS_FILEID(dentry->d_inode))*2;
1346 	const int      countersize = sizeof(sillycounter)*2;
1347 	const int      slen        = sizeof(".nfs")+fileidsize+countersize-1;
1348 	char           silly[slen+1];
1349 	struct qstr    qsilly;
1350 	struct dentry *sdentry;
1351 	int            error = -EIO;
1352 
1353 	dfprintk(VFS, "NFS: silly-rename(%s/%s, ct=%d)\n",
1354 		dentry->d_parent->d_name.name, dentry->d_name.name,
1355 		atomic_read(&dentry->d_count));
1356 	nfs_inc_stats(dir, NFSIOS_SILLYRENAME);
1357 
1358 	/*
1359 	 * We don't allow a dentry to be silly-renamed twice.
1360 	 */
1361 	error = -EBUSY;
1362 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1363 		goto out;
1364 
1365 	sprintf(silly, ".nfs%*.*Lx",
1366 		fileidsize, fileidsize,
1367 		(unsigned long long)NFS_FILEID(dentry->d_inode));
1368 
1369 	/* Return delegation in anticipation of the rename */
1370 	nfs_inode_return_delegation(dentry->d_inode);
1371 
1372 	sdentry = NULL;
1373 	do {
1374 		char *suffix = silly + slen - countersize;
1375 
1376 		dput(sdentry);
1377 		sillycounter++;
1378 		sprintf(suffix, "%*.*x", countersize, countersize, sillycounter);
1379 
1380 		dfprintk(VFS, "NFS: trying to rename %s to %s\n",
1381 				dentry->d_name.name, silly);
1382 
1383 		sdentry = lookup_one_len(silly, dentry->d_parent, slen);
1384 		/*
1385 		 * N.B. Better to return EBUSY here ... it could be
1386 		 * dangerous to delete the file while it's in use.
1387 		 */
1388 		if (IS_ERR(sdentry))
1389 			goto out;
1390 	} while(sdentry->d_inode != NULL); /* need negative lookup */
1391 
1392 	qsilly.name = silly;
1393 	qsilly.len  = strlen(silly);
1394 	if (dentry->d_inode) {
1395 		error = NFS_PROTO(dir)->rename(dir, &dentry->d_name,
1396 				dir, &qsilly);
1397 		nfs_mark_for_revalidate(dentry->d_inode);
1398 	} else
1399 		error = NFS_PROTO(dir)->rename(dir, &dentry->d_name,
1400 				dir, &qsilly);
1401 	if (!error) {
1402 		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1403 		d_move(dentry, sdentry);
1404 		error = nfs_async_unlink(dir, dentry);
1405  		/* If we return 0 we don't unlink */
1406 	}
1407 	dput(sdentry);
1408 out:
1409 	return error;
1410 }
1411 
1412 /*
1413  * Remove a file after making sure there are no pending writes,
1414  * and after checking that the file has only one user.
1415  *
1416  * We invalidate the attribute cache and free the inode prior to the operation
1417  * to avoid possible races if the server reuses the inode.
1418  */
1419 static int nfs_safe_remove(struct dentry *dentry)
1420 {
1421 	struct inode *dir = dentry->d_parent->d_inode;
1422 	struct inode *inode = dentry->d_inode;
1423 	int error = -EBUSY;
1424 
1425 	dfprintk(VFS, "NFS: safe_remove(%s/%s)\n",
1426 		dentry->d_parent->d_name.name, dentry->d_name.name);
1427 
1428 	/* If the dentry was sillyrenamed, we simply call d_delete() */
1429 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1430 		error = 0;
1431 		goto out;
1432 	}
1433 
1434 	if (inode != NULL) {
1435 		nfs_inode_return_delegation(inode);
1436 		error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1437 		/* The VFS may want to delete this inode */
1438 		if (error == 0)
1439 			nfs_drop_nlink(inode);
1440 		nfs_mark_for_revalidate(inode);
1441 	} else
1442 		error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1443 	if (error == -ENOENT)
1444 		nfs_dentry_handle_enoent(dentry);
1445 out:
1446 	return error;
1447 }
1448 
1449 /*  We do silly rename. In case sillyrename() returns -EBUSY, the inode
1450  *  belongs to an active ".nfs..." file and we return -EBUSY.
1451  *
1452  *  If sillyrename() returns 0, we do nothing, otherwise we unlink.
1453  */
1454 static int nfs_unlink(struct inode *dir, struct dentry *dentry)
1455 {
1456 	int error;
1457 	int need_rehash = 0;
1458 
1459 	dfprintk(VFS, "NFS: unlink(%s/%ld, %s)\n", dir->i_sb->s_id,
1460 		dir->i_ino, dentry->d_name.name);
1461 
1462 	spin_lock(&dcache_lock);
1463 	spin_lock(&dentry->d_lock);
1464 	if (atomic_read(&dentry->d_count) > 1) {
1465 		spin_unlock(&dentry->d_lock);
1466 		spin_unlock(&dcache_lock);
1467 		/* Start asynchronous writeout of the inode */
1468 		write_inode_now(dentry->d_inode, 0);
1469 		error = nfs_sillyrename(dir, dentry);
1470 		return error;
1471 	}
1472 	if (!d_unhashed(dentry)) {
1473 		__d_drop(dentry);
1474 		need_rehash = 1;
1475 	}
1476 	spin_unlock(&dentry->d_lock);
1477 	spin_unlock(&dcache_lock);
1478 	error = nfs_safe_remove(dentry);
1479 	if (!error || error == -ENOENT) {
1480 		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1481 	} else if (need_rehash)
1482 		d_rehash(dentry);
1483 	return error;
1484 }
1485 
1486 /*
1487  * To create a symbolic link, most file systems instantiate a new inode,
1488  * add a page to it containing the path, then write it out to the disk
1489  * using prepare_write/commit_write.
1490  *
1491  * Unfortunately the NFS client can't create the in-core inode first
1492  * because it needs a file handle to create an in-core inode (see
1493  * fs/nfs/inode.c:nfs_fhget).  We only have a file handle *after* the
1494  * symlink request has completed on the server.
1495  *
1496  * So instead we allocate a raw page, copy the symname into it, then do
1497  * the SYMLINK request with the page as the buffer.  If it succeeds, we
1498  * now have a new file handle and can instantiate an in-core NFS inode
1499  * and move the raw page into its mapping.
1500  */
1501 static int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1502 {
1503 	struct pagevec lru_pvec;
1504 	struct page *page;
1505 	char *kaddr;
1506 	struct iattr attr;
1507 	unsigned int pathlen = strlen(symname);
1508 	int error;
1509 
1510 	dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s)\n", dir->i_sb->s_id,
1511 		dir->i_ino, dentry->d_name.name, symname);
1512 
1513 	if (pathlen > PAGE_SIZE)
1514 		return -ENAMETOOLONG;
1515 
1516 	attr.ia_mode = S_IFLNK | S_IRWXUGO;
1517 	attr.ia_valid = ATTR_MODE;
1518 
1519 	page = alloc_page(GFP_HIGHUSER);
1520 	if (!page)
1521 		return -ENOMEM;
1522 
1523 	kaddr = kmap_atomic(page, KM_USER0);
1524 	memcpy(kaddr, symname, pathlen);
1525 	if (pathlen < PAGE_SIZE)
1526 		memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
1527 	kunmap_atomic(kaddr, KM_USER0);
1528 
1529 	error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
1530 	if (error != 0) {
1531 		dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s) error %d\n",
1532 			dir->i_sb->s_id, dir->i_ino,
1533 			dentry->d_name.name, symname, error);
1534 		d_drop(dentry);
1535 		__free_page(page);
1536 		return error;
1537 	}
1538 
1539 	/*
1540 	 * No big deal if we can't add this page to the page cache here.
1541 	 * READLINK will get the missing page from the server if needed.
1542 	 */
1543 	pagevec_init(&lru_pvec, 0);
1544 	if (!add_to_page_cache(page, dentry->d_inode->i_mapping, 0,
1545 							GFP_KERNEL)) {
1546 		pagevec_add(&lru_pvec, page);
1547 		pagevec_lru_add_file(&lru_pvec);
1548 		SetPageUptodate(page);
1549 		unlock_page(page);
1550 	} else
1551 		__free_page(page);
1552 
1553 	return 0;
1554 }
1555 
1556 static int
1557 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1558 {
1559 	struct inode *inode = old_dentry->d_inode;
1560 	int error;
1561 
1562 	dfprintk(VFS, "NFS: link(%s/%s -> %s/%s)\n",
1563 		old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1564 		dentry->d_parent->d_name.name, dentry->d_name.name);
1565 
1566 	nfs_inode_return_delegation(inode);
1567 
1568 	d_drop(dentry);
1569 	error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
1570 	if (error == 0) {
1571 		atomic_inc(&inode->i_count);
1572 		d_add(dentry, inode);
1573 	}
1574 	return error;
1575 }
1576 
1577 /*
1578  * RENAME
1579  * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
1580  * different file handle for the same inode after a rename (e.g. when
1581  * moving to a different directory). A fail-safe method to do so would
1582  * be to look up old_dir/old_name, create a link to new_dir/new_name and
1583  * rename the old file using the sillyrename stuff. This way, the original
1584  * file in old_dir will go away when the last process iput()s the inode.
1585  *
1586  * FIXED.
1587  *
1588  * It actually works quite well. One needs to have the possibility for
1589  * at least one ".nfs..." file in each directory the file ever gets
1590  * moved or linked to which happens automagically with the new
1591  * implementation that only depends on the dcache stuff instead of
1592  * using the inode layer
1593  *
1594  * Unfortunately, things are a little more complicated than indicated
1595  * above. For a cross-directory move, we want to make sure we can get
1596  * rid of the old inode after the operation.  This means there must be
1597  * no pending writes (if it's a file), and the use count must be 1.
1598  * If these conditions are met, we can drop the dentries before doing
1599  * the rename.
1600  */
1601 static int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
1602 		      struct inode *new_dir, struct dentry *new_dentry)
1603 {
1604 	struct inode *old_inode = old_dentry->d_inode;
1605 	struct inode *new_inode = new_dentry->d_inode;
1606 	struct dentry *dentry = NULL, *rehash = NULL;
1607 	int error = -EBUSY;
1608 
1609 	dfprintk(VFS, "NFS: rename(%s/%s -> %s/%s, ct=%d)\n",
1610 		 old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1611 		 new_dentry->d_parent->d_name.name, new_dentry->d_name.name,
1612 		 atomic_read(&new_dentry->d_count));
1613 
1614 	/*
1615 	 * For non-directories, check whether the target is busy and if so,
1616 	 * make a copy of the dentry and then do a silly-rename. If the
1617 	 * silly-rename succeeds, the copied dentry is hashed and becomes
1618 	 * the new target.
1619 	 */
1620 	if (new_inode && !S_ISDIR(new_inode->i_mode)) {
1621 		/*
1622 		 * To prevent any new references to the target during the
1623 		 * rename, we unhash the dentry in advance.
1624 		 */
1625 		if (!d_unhashed(new_dentry)) {
1626 			d_drop(new_dentry);
1627 			rehash = new_dentry;
1628 		}
1629 
1630 		if (atomic_read(&new_dentry->d_count) > 2) {
1631 			int err;
1632 
1633 			/* copy the target dentry's name */
1634 			dentry = d_alloc(new_dentry->d_parent,
1635 					 &new_dentry->d_name);
1636 			if (!dentry)
1637 				goto out;
1638 
1639 			/* silly-rename the existing target ... */
1640 			err = nfs_sillyrename(new_dir, new_dentry);
1641 			if (err)
1642 				goto out;
1643 
1644 			new_dentry = dentry;
1645 			rehash = NULL;
1646 			new_inode = NULL;
1647 		}
1648 	}
1649 
1650 	/*
1651 	 * ... prune child dentries and writebacks if needed.
1652 	 */
1653 	if (atomic_read(&old_dentry->d_count) > 1) {
1654 		if (S_ISREG(old_inode->i_mode))
1655 			nfs_wb_all(old_inode);
1656 		shrink_dcache_parent(old_dentry);
1657 	}
1658 	nfs_inode_return_delegation(old_inode);
1659 
1660 	if (new_inode != NULL)
1661 		nfs_inode_return_delegation(new_inode);
1662 
1663 	error = NFS_PROTO(old_dir)->rename(old_dir, &old_dentry->d_name,
1664 					   new_dir, &new_dentry->d_name);
1665 	nfs_mark_for_revalidate(old_inode);
1666 out:
1667 	if (rehash)
1668 		d_rehash(rehash);
1669 	if (!error) {
1670 		if (new_inode != NULL)
1671 			nfs_drop_nlink(new_inode);
1672 		d_move(old_dentry, new_dentry);
1673 		nfs_set_verifier(new_dentry,
1674 					nfs_save_change_attribute(new_dir));
1675 	} else if (error == -ENOENT)
1676 		nfs_dentry_handle_enoent(old_dentry);
1677 
1678 	/* new dentry created? */
1679 	if (dentry)
1680 		dput(dentry);
1681 	return error;
1682 }
1683 
1684 static DEFINE_SPINLOCK(nfs_access_lru_lock);
1685 static LIST_HEAD(nfs_access_lru_list);
1686 static atomic_long_t nfs_access_nr_entries;
1687 
1688 static void nfs_access_free_entry(struct nfs_access_entry *entry)
1689 {
1690 	put_rpccred(entry->cred);
1691 	kfree(entry);
1692 	smp_mb__before_atomic_dec();
1693 	atomic_long_dec(&nfs_access_nr_entries);
1694 	smp_mb__after_atomic_dec();
1695 }
1696 
1697 int nfs_access_cache_shrinker(int nr_to_scan, gfp_t gfp_mask)
1698 {
1699 	LIST_HEAD(head);
1700 	struct nfs_inode *nfsi;
1701 	struct nfs_access_entry *cache;
1702 
1703 restart:
1704 	spin_lock(&nfs_access_lru_lock);
1705 	list_for_each_entry(nfsi, &nfs_access_lru_list, access_cache_inode_lru) {
1706 		struct rw_semaphore *s_umount;
1707 		struct inode *inode;
1708 
1709 		if (nr_to_scan-- == 0)
1710 			break;
1711 		s_umount = &nfsi->vfs_inode.i_sb->s_umount;
1712 		if (!down_read_trylock(s_umount))
1713 			continue;
1714 		inode = igrab(&nfsi->vfs_inode);
1715 		if (inode == NULL) {
1716 			up_read(s_umount);
1717 			continue;
1718 		}
1719 		spin_lock(&inode->i_lock);
1720 		if (list_empty(&nfsi->access_cache_entry_lru))
1721 			goto remove_lru_entry;
1722 		cache = list_entry(nfsi->access_cache_entry_lru.next,
1723 				struct nfs_access_entry, lru);
1724 		list_move(&cache->lru, &head);
1725 		rb_erase(&cache->rb_node, &nfsi->access_cache);
1726 		if (!list_empty(&nfsi->access_cache_entry_lru))
1727 			list_move_tail(&nfsi->access_cache_inode_lru,
1728 					&nfs_access_lru_list);
1729 		else {
1730 remove_lru_entry:
1731 			list_del_init(&nfsi->access_cache_inode_lru);
1732 			clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
1733 		}
1734 		spin_unlock(&inode->i_lock);
1735 		spin_unlock(&nfs_access_lru_lock);
1736 		iput(inode);
1737 		up_read(s_umount);
1738 		goto restart;
1739 	}
1740 	spin_unlock(&nfs_access_lru_lock);
1741 	while (!list_empty(&head)) {
1742 		cache = list_entry(head.next, struct nfs_access_entry, lru);
1743 		list_del(&cache->lru);
1744 		nfs_access_free_entry(cache);
1745 	}
1746 	return (atomic_long_read(&nfs_access_nr_entries) / 100) * sysctl_vfs_cache_pressure;
1747 }
1748 
1749 static void __nfs_access_zap_cache(struct inode *inode)
1750 {
1751 	struct nfs_inode *nfsi = NFS_I(inode);
1752 	struct rb_root *root_node = &nfsi->access_cache;
1753 	struct rb_node *n, *dispose = NULL;
1754 	struct nfs_access_entry *entry;
1755 
1756 	/* Unhook entries from the cache */
1757 	while ((n = rb_first(root_node)) != NULL) {
1758 		entry = rb_entry(n, struct nfs_access_entry, rb_node);
1759 		rb_erase(n, root_node);
1760 		list_del(&entry->lru);
1761 		n->rb_left = dispose;
1762 		dispose = n;
1763 	}
1764 	nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
1765 	spin_unlock(&inode->i_lock);
1766 
1767 	/* Now kill them all! */
1768 	while (dispose != NULL) {
1769 		n = dispose;
1770 		dispose = n->rb_left;
1771 		nfs_access_free_entry(rb_entry(n, struct nfs_access_entry, rb_node));
1772 	}
1773 }
1774 
1775 void nfs_access_zap_cache(struct inode *inode)
1776 {
1777 	/* Remove from global LRU init */
1778 	if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
1779 		spin_lock(&nfs_access_lru_lock);
1780 		list_del_init(&NFS_I(inode)->access_cache_inode_lru);
1781 		spin_unlock(&nfs_access_lru_lock);
1782 	}
1783 
1784 	spin_lock(&inode->i_lock);
1785 	/* This will release the spinlock */
1786 	__nfs_access_zap_cache(inode);
1787 }
1788 
1789 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred)
1790 {
1791 	struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
1792 	struct nfs_access_entry *entry;
1793 
1794 	while (n != NULL) {
1795 		entry = rb_entry(n, struct nfs_access_entry, rb_node);
1796 
1797 		if (cred < entry->cred)
1798 			n = n->rb_left;
1799 		else if (cred > entry->cred)
1800 			n = n->rb_right;
1801 		else
1802 			return entry;
1803 	}
1804 	return NULL;
1805 }
1806 
1807 static int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res)
1808 {
1809 	struct nfs_inode *nfsi = NFS_I(inode);
1810 	struct nfs_access_entry *cache;
1811 	int err = -ENOENT;
1812 
1813 	spin_lock(&inode->i_lock);
1814 	if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
1815 		goto out_zap;
1816 	cache = nfs_access_search_rbtree(inode, cred);
1817 	if (cache == NULL)
1818 		goto out;
1819 	if (!nfs_have_delegated_attributes(inode) &&
1820 	    !time_in_range_open(jiffies, cache->jiffies, cache->jiffies + nfsi->attrtimeo))
1821 		goto out_stale;
1822 	res->jiffies = cache->jiffies;
1823 	res->cred = cache->cred;
1824 	res->mask = cache->mask;
1825 	list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
1826 	err = 0;
1827 out:
1828 	spin_unlock(&inode->i_lock);
1829 	return err;
1830 out_stale:
1831 	rb_erase(&cache->rb_node, &nfsi->access_cache);
1832 	list_del(&cache->lru);
1833 	spin_unlock(&inode->i_lock);
1834 	nfs_access_free_entry(cache);
1835 	return -ENOENT;
1836 out_zap:
1837 	/* This will release the spinlock */
1838 	__nfs_access_zap_cache(inode);
1839 	return -ENOENT;
1840 }
1841 
1842 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
1843 {
1844 	struct nfs_inode *nfsi = NFS_I(inode);
1845 	struct rb_root *root_node = &nfsi->access_cache;
1846 	struct rb_node **p = &root_node->rb_node;
1847 	struct rb_node *parent = NULL;
1848 	struct nfs_access_entry *entry;
1849 
1850 	spin_lock(&inode->i_lock);
1851 	while (*p != NULL) {
1852 		parent = *p;
1853 		entry = rb_entry(parent, struct nfs_access_entry, rb_node);
1854 
1855 		if (set->cred < entry->cred)
1856 			p = &parent->rb_left;
1857 		else if (set->cred > entry->cred)
1858 			p = &parent->rb_right;
1859 		else
1860 			goto found;
1861 	}
1862 	rb_link_node(&set->rb_node, parent, p);
1863 	rb_insert_color(&set->rb_node, root_node);
1864 	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
1865 	spin_unlock(&inode->i_lock);
1866 	return;
1867 found:
1868 	rb_replace_node(parent, &set->rb_node, root_node);
1869 	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
1870 	list_del(&entry->lru);
1871 	spin_unlock(&inode->i_lock);
1872 	nfs_access_free_entry(entry);
1873 }
1874 
1875 static void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
1876 {
1877 	struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
1878 	if (cache == NULL)
1879 		return;
1880 	RB_CLEAR_NODE(&cache->rb_node);
1881 	cache->jiffies = set->jiffies;
1882 	cache->cred = get_rpccred(set->cred);
1883 	cache->mask = set->mask;
1884 
1885 	nfs_access_add_rbtree(inode, cache);
1886 
1887 	/* Update accounting */
1888 	smp_mb__before_atomic_inc();
1889 	atomic_long_inc(&nfs_access_nr_entries);
1890 	smp_mb__after_atomic_inc();
1891 
1892 	/* Add inode to global LRU list */
1893 	if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
1894 		spin_lock(&nfs_access_lru_lock);
1895 		list_add_tail(&NFS_I(inode)->access_cache_inode_lru, &nfs_access_lru_list);
1896 		spin_unlock(&nfs_access_lru_lock);
1897 	}
1898 }
1899 
1900 static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask)
1901 {
1902 	struct nfs_access_entry cache;
1903 	int status;
1904 
1905 	status = nfs_access_get_cached(inode, cred, &cache);
1906 	if (status == 0)
1907 		goto out;
1908 
1909 	/* Be clever: ask server to check for all possible rights */
1910 	cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ;
1911 	cache.cred = cred;
1912 	cache.jiffies = jiffies;
1913 	status = NFS_PROTO(inode)->access(inode, &cache);
1914 	if (status != 0) {
1915 		if (status == -ESTALE) {
1916 			nfs_zap_caches(inode);
1917 			if (!S_ISDIR(inode->i_mode))
1918 				set_bit(NFS_INO_STALE, &NFS_I(inode)->flags);
1919 		}
1920 		return status;
1921 	}
1922 	nfs_access_add_cache(inode, &cache);
1923 out:
1924 	if ((mask & ~cache.mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
1925 		return 0;
1926 	return -EACCES;
1927 }
1928 
1929 static int nfs_open_permission_mask(int openflags)
1930 {
1931 	int mask = 0;
1932 
1933 	if (openflags & FMODE_READ)
1934 		mask |= MAY_READ;
1935 	if (openflags & FMODE_WRITE)
1936 		mask |= MAY_WRITE;
1937 	if (openflags & FMODE_EXEC)
1938 		mask |= MAY_EXEC;
1939 	return mask;
1940 }
1941 
1942 int nfs_may_open(struct inode *inode, struct rpc_cred *cred, int openflags)
1943 {
1944 	return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
1945 }
1946 
1947 int nfs_permission(struct inode *inode, int mask)
1948 {
1949 	struct rpc_cred *cred;
1950 	int res = 0;
1951 
1952 	nfs_inc_stats(inode, NFSIOS_VFSACCESS);
1953 
1954 	if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
1955 		goto out;
1956 	/* Is this sys_access() ? */
1957 	if (mask & MAY_ACCESS)
1958 		goto force_lookup;
1959 
1960 	switch (inode->i_mode & S_IFMT) {
1961 		case S_IFLNK:
1962 			goto out;
1963 		case S_IFREG:
1964 			/* NFSv4 has atomic_open... */
1965 			if (nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN)
1966 					&& (mask & MAY_OPEN)
1967 					&& !(mask & MAY_EXEC))
1968 				goto out;
1969 			break;
1970 		case S_IFDIR:
1971 			/*
1972 			 * Optimize away all write operations, since the server
1973 			 * will check permissions when we perform the op.
1974 			 */
1975 			if ((mask & MAY_WRITE) && !(mask & MAY_READ))
1976 				goto out;
1977 	}
1978 
1979 force_lookup:
1980 	if (!NFS_PROTO(inode)->access)
1981 		goto out_notsup;
1982 
1983 	cred = rpc_lookup_cred();
1984 	if (!IS_ERR(cred)) {
1985 		res = nfs_do_access(inode, cred, mask);
1986 		put_rpccred(cred);
1987 	} else
1988 		res = PTR_ERR(cred);
1989 out:
1990 	if (!res && (mask & MAY_EXEC) && !execute_ok(inode))
1991 		res = -EACCES;
1992 
1993 	dfprintk(VFS, "NFS: permission(%s/%ld), mask=0x%x, res=%d\n",
1994 		inode->i_sb->s_id, inode->i_ino, mask, res);
1995 	return res;
1996 out_notsup:
1997 	res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
1998 	if (res == 0)
1999 		res = generic_permission(inode, mask, NULL);
2000 	goto out;
2001 }
2002 
2003 /*
2004  * Local variables:
2005  *  version-control: t
2006  *  kept-new-versions: 5
2007  * End:
2008  */
2009