1 /* 2 * linux/fs/nfs/dir.c 3 * 4 * Copyright (C) 1992 Rick Sladkey 5 * 6 * nfs directory handling functions 7 * 8 * 10 Apr 1996 Added silly rename for unlink --okir 9 * 28 Sep 1996 Improved directory cache --okir 10 * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de 11 * Re-implemented silly rename for unlink, newly implemented 12 * silly rename for nfs_rename() following the suggestions 13 * of Olaf Kirch (okir) found in this file. 14 * Following Linus comments on my original hack, this version 15 * depends only on the dcache stuff and doesn't touch the inode 16 * layer (iput() and friends). 17 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM 18 */ 19 20 #include <linux/time.h> 21 #include <linux/errno.h> 22 #include <linux/stat.h> 23 #include <linux/fcntl.h> 24 #include <linux/string.h> 25 #include <linux/kernel.h> 26 #include <linux/slab.h> 27 #include <linux/mm.h> 28 #include <linux/sunrpc/clnt.h> 29 #include <linux/nfs_fs.h> 30 #include <linux/nfs_mount.h> 31 #include <linux/pagemap.h> 32 #include <linux/pagevec.h> 33 #include <linux/namei.h> 34 #include <linux/mount.h> 35 #include <linux/sched.h> 36 37 #include "nfs4_fs.h" 38 #include "delegation.h" 39 #include "iostat.h" 40 #include "internal.h" 41 42 /* #define NFS_DEBUG_VERBOSE 1 */ 43 44 static int nfs_opendir(struct inode *, struct file *); 45 static int nfs_readdir(struct file *, void *, filldir_t); 46 static struct dentry *nfs_lookup(struct inode *, struct dentry *, struct nameidata *); 47 static int nfs_create(struct inode *, struct dentry *, int, struct nameidata *); 48 static int nfs_mkdir(struct inode *, struct dentry *, int); 49 static int nfs_rmdir(struct inode *, struct dentry *); 50 static int nfs_unlink(struct inode *, struct dentry *); 51 static int nfs_symlink(struct inode *, struct dentry *, const char *); 52 static int nfs_link(struct dentry *, struct inode *, struct dentry *); 53 static int nfs_mknod(struct inode *, struct dentry *, int, dev_t); 54 static int nfs_rename(struct inode *, struct dentry *, 55 struct inode *, struct dentry *); 56 static int nfs_fsync_dir(struct file *, struct dentry *, int); 57 static loff_t nfs_llseek_dir(struct file *, loff_t, int); 58 59 const struct file_operations nfs_dir_operations = { 60 .llseek = nfs_llseek_dir, 61 .read = generic_read_dir, 62 .readdir = nfs_readdir, 63 .open = nfs_opendir, 64 .release = nfs_release, 65 .fsync = nfs_fsync_dir, 66 }; 67 68 const struct inode_operations nfs_dir_inode_operations = { 69 .create = nfs_create, 70 .lookup = nfs_lookup, 71 .link = nfs_link, 72 .unlink = nfs_unlink, 73 .symlink = nfs_symlink, 74 .mkdir = nfs_mkdir, 75 .rmdir = nfs_rmdir, 76 .mknod = nfs_mknod, 77 .rename = nfs_rename, 78 .permission = nfs_permission, 79 .getattr = nfs_getattr, 80 .setattr = nfs_setattr, 81 }; 82 83 #ifdef CONFIG_NFS_V3 84 const struct inode_operations nfs3_dir_inode_operations = { 85 .create = nfs_create, 86 .lookup = nfs_lookup, 87 .link = nfs_link, 88 .unlink = nfs_unlink, 89 .symlink = nfs_symlink, 90 .mkdir = nfs_mkdir, 91 .rmdir = nfs_rmdir, 92 .mknod = nfs_mknod, 93 .rename = nfs_rename, 94 .permission = nfs_permission, 95 .getattr = nfs_getattr, 96 .setattr = nfs_setattr, 97 .listxattr = nfs3_listxattr, 98 .getxattr = nfs3_getxattr, 99 .setxattr = nfs3_setxattr, 100 .removexattr = nfs3_removexattr, 101 }; 102 #endif /* CONFIG_NFS_V3 */ 103 104 #ifdef CONFIG_NFS_V4 105 106 static struct dentry *nfs_atomic_lookup(struct inode *, struct dentry *, struct nameidata *); 107 const struct inode_operations nfs4_dir_inode_operations = { 108 .create = nfs_create, 109 .lookup = nfs_atomic_lookup, 110 .link = nfs_link, 111 .unlink = nfs_unlink, 112 .symlink = nfs_symlink, 113 .mkdir = nfs_mkdir, 114 .rmdir = nfs_rmdir, 115 .mknod = nfs_mknod, 116 .rename = nfs_rename, 117 .permission = nfs_permission, 118 .getattr = nfs_getattr, 119 .setattr = nfs_setattr, 120 .getxattr = nfs4_getxattr, 121 .setxattr = nfs4_setxattr, 122 .listxattr = nfs4_listxattr, 123 }; 124 125 #endif /* CONFIG_NFS_V4 */ 126 127 /* 128 * Open file 129 */ 130 static int 131 nfs_opendir(struct inode *inode, struct file *filp) 132 { 133 int res; 134 135 dfprintk(FILE, "NFS: open dir(%s/%s)\n", 136 filp->f_path.dentry->d_parent->d_name.name, 137 filp->f_path.dentry->d_name.name); 138 139 nfs_inc_stats(inode, NFSIOS_VFSOPEN); 140 141 /* Call generic open code in order to cache credentials */ 142 res = nfs_open(inode, filp); 143 return res; 144 } 145 146 typedef __be32 * (*decode_dirent_t)(__be32 *, struct nfs_entry *, int); 147 typedef struct { 148 struct file *file; 149 struct page *page; 150 unsigned long page_index; 151 __be32 *ptr; 152 u64 *dir_cookie; 153 loff_t current_index; 154 struct nfs_entry *entry; 155 decode_dirent_t decode; 156 int plus; 157 unsigned long timestamp; 158 unsigned long gencount; 159 int timestamp_valid; 160 } nfs_readdir_descriptor_t; 161 162 /* Now we cache directories properly, by stuffing the dirent 163 * data directly in the page cache. 164 * 165 * Inode invalidation due to refresh etc. takes care of 166 * _everything_, no sloppy entry flushing logic, no extraneous 167 * copying, network direct to page cache, the way it was meant 168 * to be. 169 * 170 * NOTE: Dirent information verification is done always by the 171 * page-in of the RPC reply, nowhere else, this simplies 172 * things substantially. 173 */ 174 static 175 int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page *page) 176 { 177 struct file *file = desc->file; 178 struct inode *inode = file->f_path.dentry->d_inode; 179 struct rpc_cred *cred = nfs_file_cred(file); 180 unsigned long timestamp, gencount; 181 int error; 182 183 dfprintk(DIRCACHE, "NFS: %s: reading cookie %Lu into page %lu\n", 184 __func__, (long long)desc->entry->cookie, 185 page->index); 186 187 again: 188 timestamp = jiffies; 189 gencount = nfs_inc_attr_generation_counter(); 190 error = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred, desc->entry->cookie, page, 191 NFS_SERVER(inode)->dtsize, desc->plus); 192 if (error < 0) { 193 /* We requested READDIRPLUS, but the server doesn't grok it */ 194 if (error == -ENOTSUPP && desc->plus) { 195 NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS; 196 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags); 197 desc->plus = 0; 198 goto again; 199 } 200 goto error; 201 } 202 desc->timestamp = timestamp; 203 desc->gencount = gencount; 204 desc->timestamp_valid = 1; 205 SetPageUptodate(page); 206 /* Ensure consistent page alignment of the data. 207 * Note: assumes we have exclusive access to this mapping either 208 * through inode->i_mutex or some other mechanism. 209 */ 210 if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) { 211 /* Should never happen */ 212 nfs_zap_mapping(inode, inode->i_mapping); 213 } 214 unlock_page(page); 215 return 0; 216 error: 217 unlock_page(page); 218 return -EIO; 219 } 220 221 static inline 222 int dir_decode(nfs_readdir_descriptor_t *desc) 223 { 224 __be32 *p = desc->ptr; 225 p = desc->decode(p, desc->entry, desc->plus); 226 if (IS_ERR(p)) 227 return PTR_ERR(p); 228 desc->ptr = p; 229 if (desc->timestamp_valid) { 230 desc->entry->fattr->time_start = desc->timestamp; 231 desc->entry->fattr->gencount = desc->gencount; 232 } else 233 desc->entry->fattr->valid &= ~NFS_ATTR_FATTR; 234 return 0; 235 } 236 237 static inline 238 void dir_page_release(nfs_readdir_descriptor_t *desc) 239 { 240 kunmap(desc->page); 241 page_cache_release(desc->page); 242 desc->page = NULL; 243 desc->ptr = NULL; 244 } 245 246 /* 247 * Given a pointer to a buffer that has already been filled by a call 248 * to readdir, find the next entry with cookie '*desc->dir_cookie'. 249 * 250 * If the end of the buffer has been reached, return -EAGAIN, if not, 251 * return the offset within the buffer of the next entry to be 252 * read. 253 */ 254 static inline 255 int find_dirent(nfs_readdir_descriptor_t *desc) 256 { 257 struct nfs_entry *entry = desc->entry; 258 int loop_count = 0, 259 status; 260 261 while((status = dir_decode(desc)) == 0) { 262 dfprintk(DIRCACHE, "NFS: %s: examining cookie %Lu\n", 263 __func__, (unsigned long long)entry->cookie); 264 if (entry->prev_cookie == *desc->dir_cookie) 265 break; 266 if (loop_count++ > 200) { 267 loop_count = 0; 268 schedule(); 269 } 270 } 271 return status; 272 } 273 274 /* 275 * Given a pointer to a buffer that has already been filled by a call 276 * to readdir, find the entry at offset 'desc->file->f_pos'. 277 * 278 * If the end of the buffer has been reached, return -EAGAIN, if not, 279 * return the offset within the buffer of the next entry to be 280 * read. 281 */ 282 static inline 283 int find_dirent_index(nfs_readdir_descriptor_t *desc) 284 { 285 struct nfs_entry *entry = desc->entry; 286 int loop_count = 0, 287 status; 288 289 for(;;) { 290 status = dir_decode(desc); 291 if (status) 292 break; 293 294 dfprintk(DIRCACHE, "NFS: found cookie %Lu at index %Ld\n", 295 (unsigned long long)entry->cookie, desc->current_index); 296 297 if (desc->file->f_pos == desc->current_index) { 298 *desc->dir_cookie = entry->cookie; 299 break; 300 } 301 desc->current_index++; 302 if (loop_count++ > 200) { 303 loop_count = 0; 304 schedule(); 305 } 306 } 307 return status; 308 } 309 310 /* 311 * Find the given page, and call find_dirent() or find_dirent_index in 312 * order to try to return the next entry. 313 */ 314 static inline 315 int find_dirent_page(nfs_readdir_descriptor_t *desc) 316 { 317 struct inode *inode = desc->file->f_path.dentry->d_inode; 318 struct page *page; 319 int status; 320 321 dfprintk(DIRCACHE, "NFS: %s: searching page %ld for target %Lu\n", 322 __func__, desc->page_index, 323 (long long) *desc->dir_cookie); 324 325 /* If we find the page in the page_cache, we cannot be sure 326 * how fresh the data is, so we will ignore readdir_plus attributes. 327 */ 328 desc->timestamp_valid = 0; 329 page = read_cache_page(inode->i_mapping, desc->page_index, 330 (filler_t *)nfs_readdir_filler, desc); 331 if (IS_ERR(page)) { 332 status = PTR_ERR(page); 333 goto out; 334 } 335 336 /* NOTE: Someone else may have changed the READDIRPLUS flag */ 337 desc->page = page; 338 desc->ptr = kmap(page); /* matching kunmap in nfs_do_filldir */ 339 if (*desc->dir_cookie != 0) 340 status = find_dirent(desc); 341 else 342 status = find_dirent_index(desc); 343 if (status < 0) 344 dir_page_release(desc); 345 out: 346 dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __func__, status); 347 return status; 348 } 349 350 /* 351 * Recurse through the page cache pages, and return a 352 * filled nfs_entry structure of the next directory entry if possible. 353 * 354 * The target for the search is '*desc->dir_cookie' if non-0, 355 * 'desc->file->f_pos' otherwise 356 */ 357 static inline 358 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc) 359 { 360 int loop_count = 0; 361 int res; 362 363 /* Always search-by-index from the beginning of the cache */ 364 if (*desc->dir_cookie == 0) { 365 dfprintk(DIRCACHE, "NFS: readdir_search_pagecache() searching for offset %Ld\n", 366 (long long)desc->file->f_pos); 367 desc->page_index = 0; 368 desc->entry->cookie = desc->entry->prev_cookie = 0; 369 desc->entry->eof = 0; 370 desc->current_index = 0; 371 } else 372 dfprintk(DIRCACHE, "NFS: readdir_search_pagecache() searching for cookie %Lu\n", 373 (unsigned long long)*desc->dir_cookie); 374 375 for (;;) { 376 res = find_dirent_page(desc); 377 if (res != -EAGAIN) 378 break; 379 /* Align to beginning of next page */ 380 desc->page_index ++; 381 if (loop_count++ > 200) { 382 loop_count = 0; 383 schedule(); 384 } 385 } 386 387 dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __func__, res); 388 return res; 389 } 390 391 static inline unsigned int dt_type(struct inode *inode) 392 { 393 return (inode->i_mode >> 12) & 15; 394 } 395 396 static struct dentry *nfs_readdir_lookup(nfs_readdir_descriptor_t *desc); 397 398 /* 399 * Once we've found the start of the dirent within a page: fill 'er up... 400 */ 401 static 402 int nfs_do_filldir(nfs_readdir_descriptor_t *desc, void *dirent, 403 filldir_t filldir) 404 { 405 struct file *file = desc->file; 406 struct nfs_entry *entry = desc->entry; 407 struct dentry *dentry = NULL; 408 u64 fileid; 409 int loop_count = 0, 410 res; 411 412 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling starting @ cookie %Lu\n", 413 (unsigned long long)entry->cookie); 414 415 for(;;) { 416 unsigned d_type = DT_UNKNOWN; 417 /* Note: entry->prev_cookie contains the cookie for 418 * retrieving the current dirent on the server */ 419 fileid = entry->ino; 420 421 /* Get a dentry if we have one */ 422 if (dentry != NULL) 423 dput(dentry); 424 dentry = nfs_readdir_lookup(desc); 425 426 /* Use readdirplus info */ 427 if (dentry != NULL && dentry->d_inode != NULL) { 428 d_type = dt_type(dentry->d_inode); 429 fileid = NFS_FILEID(dentry->d_inode); 430 } 431 432 res = filldir(dirent, entry->name, entry->len, 433 file->f_pos, nfs_compat_user_ino64(fileid), 434 d_type); 435 if (res < 0) 436 break; 437 file->f_pos++; 438 *desc->dir_cookie = entry->cookie; 439 if (dir_decode(desc) != 0) { 440 desc->page_index ++; 441 break; 442 } 443 if (loop_count++ > 200) { 444 loop_count = 0; 445 schedule(); 446 } 447 } 448 dir_page_release(desc); 449 if (dentry != NULL) 450 dput(dentry); 451 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n", 452 (unsigned long long)*desc->dir_cookie, res); 453 return res; 454 } 455 456 /* 457 * If we cannot find a cookie in our cache, we suspect that this is 458 * because it points to a deleted file, so we ask the server to return 459 * whatever it thinks is the next entry. We then feed this to filldir. 460 * If all goes well, we should then be able to find our way round the 461 * cache on the next call to readdir_search_pagecache(); 462 * 463 * NOTE: we cannot add the anonymous page to the pagecache because 464 * the data it contains might not be page aligned. Besides, 465 * we should already have a complete representation of the 466 * directory in the page cache by the time we get here. 467 */ 468 static inline 469 int uncached_readdir(nfs_readdir_descriptor_t *desc, void *dirent, 470 filldir_t filldir) 471 { 472 struct file *file = desc->file; 473 struct inode *inode = file->f_path.dentry->d_inode; 474 struct rpc_cred *cred = nfs_file_cred(file); 475 struct page *page = NULL; 476 int status; 477 unsigned long timestamp, gencount; 478 479 dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n", 480 (unsigned long long)*desc->dir_cookie); 481 482 page = alloc_page(GFP_HIGHUSER); 483 if (!page) { 484 status = -ENOMEM; 485 goto out; 486 } 487 timestamp = jiffies; 488 gencount = nfs_inc_attr_generation_counter(); 489 status = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred, 490 *desc->dir_cookie, page, 491 NFS_SERVER(inode)->dtsize, 492 desc->plus); 493 desc->page = page; 494 desc->ptr = kmap(page); /* matching kunmap in nfs_do_filldir */ 495 if (status >= 0) { 496 desc->timestamp = timestamp; 497 desc->gencount = gencount; 498 desc->timestamp_valid = 1; 499 if ((status = dir_decode(desc)) == 0) 500 desc->entry->prev_cookie = *desc->dir_cookie; 501 } else 502 status = -EIO; 503 if (status < 0) 504 goto out_release; 505 506 status = nfs_do_filldir(desc, dirent, filldir); 507 508 /* Reset read descriptor so it searches the page cache from 509 * the start upon the next call to readdir_search_pagecache() */ 510 desc->page_index = 0; 511 desc->entry->cookie = desc->entry->prev_cookie = 0; 512 desc->entry->eof = 0; 513 out: 514 dfprintk(DIRCACHE, "NFS: %s: returns %d\n", 515 __func__, status); 516 return status; 517 out_release: 518 dir_page_release(desc); 519 goto out; 520 } 521 522 /* The file offset position represents the dirent entry number. A 523 last cookie cache takes care of the common case of reading the 524 whole directory. 525 */ 526 static int nfs_readdir(struct file *filp, void *dirent, filldir_t filldir) 527 { 528 struct dentry *dentry = filp->f_path.dentry; 529 struct inode *inode = dentry->d_inode; 530 nfs_readdir_descriptor_t my_desc, 531 *desc = &my_desc; 532 struct nfs_entry my_entry; 533 struct nfs_fh fh; 534 struct nfs_fattr fattr; 535 long res; 536 537 dfprintk(FILE, "NFS: readdir(%s/%s) starting at cookie %llu\n", 538 dentry->d_parent->d_name.name, dentry->d_name.name, 539 (long long)filp->f_pos); 540 nfs_inc_stats(inode, NFSIOS_VFSGETDENTS); 541 542 /* 543 * filp->f_pos points to the dirent entry number. 544 * *desc->dir_cookie has the cookie for the next entry. We have 545 * to either find the entry with the appropriate number or 546 * revalidate the cookie. 547 */ 548 memset(desc, 0, sizeof(*desc)); 549 550 desc->file = filp; 551 desc->dir_cookie = &nfs_file_open_context(filp)->dir_cookie; 552 desc->decode = NFS_PROTO(inode)->decode_dirent; 553 desc->plus = NFS_USE_READDIRPLUS(inode); 554 555 my_entry.cookie = my_entry.prev_cookie = 0; 556 my_entry.eof = 0; 557 my_entry.fh = &fh; 558 my_entry.fattr = &fattr; 559 nfs_fattr_init(&fattr); 560 desc->entry = &my_entry; 561 562 nfs_block_sillyrename(dentry); 563 res = nfs_revalidate_mapping(inode, filp->f_mapping); 564 if (res < 0) 565 goto out; 566 567 while(!desc->entry->eof) { 568 res = readdir_search_pagecache(desc); 569 570 if (res == -EBADCOOKIE) { 571 /* This means either end of directory */ 572 if (*desc->dir_cookie && desc->entry->cookie != *desc->dir_cookie) { 573 /* Or that the server has 'lost' a cookie */ 574 res = uncached_readdir(desc, dirent, filldir); 575 if (res >= 0) 576 continue; 577 } 578 res = 0; 579 break; 580 } 581 if (res == -ETOOSMALL && desc->plus) { 582 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags); 583 nfs_zap_caches(inode); 584 desc->plus = 0; 585 desc->entry->eof = 0; 586 continue; 587 } 588 if (res < 0) 589 break; 590 591 res = nfs_do_filldir(desc, dirent, filldir); 592 if (res < 0) { 593 res = 0; 594 break; 595 } 596 } 597 out: 598 nfs_unblock_sillyrename(dentry); 599 if (res > 0) 600 res = 0; 601 dfprintk(FILE, "NFS: readdir(%s/%s) returns %ld\n", 602 dentry->d_parent->d_name.name, dentry->d_name.name, 603 res); 604 return res; 605 } 606 607 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int origin) 608 { 609 struct dentry *dentry = filp->f_path.dentry; 610 struct inode *inode = dentry->d_inode; 611 612 dfprintk(FILE, "NFS: llseek dir(%s/%s, %lld, %d)\n", 613 dentry->d_parent->d_name.name, 614 dentry->d_name.name, 615 offset, origin); 616 617 mutex_lock(&inode->i_mutex); 618 switch (origin) { 619 case 1: 620 offset += filp->f_pos; 621 case 0: 622 if (offset >= 0) 623 break; 624 default: 625 offset = -EINVAL; 626 goto out; 627 } 628 if (offset != filp->f_pos) { 629 filp->f_pos = offset; 630 nfs_file_open_context(filp)->dir_cookie = 0; 631 } 632 out: 633 mutex_unlock(&inode->i_mutex); 634 return offset; 635 } 636 637 /* 638 * All directory operations under NFS are synchronous, so fsync() 639 * is a dummy operation. 640 */ 641 static int nfs_fsync_dir(struct file *filp, struct dentry *dentry, int datasync) 642 { 643 dfprintk(FILE, "NFS: fsync dir(%s/%s) datasync %d\n", 644 dentry->d_parent->d_name.name, dentry->d_name.name, 645 datasync); 646 647 nfs_inc_stats(dentry->d_inode, NFSIOS_VFSFSYNC); 648 return 0; 649 } 650 651 /** 652 * nfs_force_lookup_revalidate - Mark the directory as having changed 653 * @dir - pointer to directory inode 654 * 655 * This forces the revalidation code in nfs_lookup_revalidate() to do a 656 * full lookup on all child dentries of 'dir' whenever a change occurs 657 * on the server that might have invalidated our dcache. 658 * 659 * The caller should be holding dir->i_lock 660 */ 661 void nfs_force_lookup_revalidate(struct inode *dir) 662 { 663 NFS_I(dir)->cache_change_attribute++; 664 } 665 666 /* 667 * A check for whether or not the parent directory has changed. 668 * In the case it has, we assume that the dentries are untrustworthy 669 * and may need to be looked up again. 670 */ 671 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry) 672 { 673 if (IS_ROOT(dentry)) 674 return 1; 675 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE) 676 return 0; 677 if (!nfs_verify_change_attribute(dir, dentry->d_time)) 678 return 0; 679 /* Revalidate nfsi->cache_change_attribute before we declare a match */ 680 if (nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0) 681 return 0; 682 if (!nfs_verify_change_attribute(dir, dentry->d_time)) 683 return 0; 684 return 1; 685 } 686 687 /* 688 * Return the intent data that applies to this particular path component 689 * 690 * Note that the current set of intents only apply to the very last 691 * component of the path. 692 * We check for this using LOOKUP_CONTINUE and LOOKUP_PARENT. 693 */ 694 static inline unsigned int nfs_lookup_check_intent(struct nameidata *nd, unsigned int mask) 695 { 696 if (nd->flags & (LOOKUP_CONTINUE|LOOKUP_PARENT)) 697 return 0; 698 return nd->flags & mask; 699 } 700 701 /* 702 * Use intent information to check whether or not we're going to do 703 * an O_EXCL create using this path component. 704 */ 705 static int nfs_is_exclusive_create(struct inode *dir, struct nameidata *nd) 706 { 707 if (NFS_PROTO(dir)->version == 2) 708 return 0; 709 return nd && nfs_lookup_check_intent(nd, LOOKUP_EXCL); 710 } 711 712 /* 713 * Inode and filehandle revalidation for lookups. 714 * 715 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL, 716 * or if the intent information indicates that we're about to open this 717 * particular file and the "nocto" mount flag is not set. 718 * 719 */ 720 static inline 721 int nfs_lookup_verify_inode(struct inode *inode, struct nameidata *nd) 722 { 723 struct nfs_server *server = NFS_SERVER(inode); 724 725 if (test_bit(NFS_INO_MOUNTPOINT, &NFS_I(inode)->flags)) 726 return 0; 727 if (nd != NULL) { 728 /* VFS wants an on-the-wire revalidation */ 729 if (nd->flags & LOOKUP_REVAL) 730 goto out_force; 731 /* This is an open(2) */ 732 if (nfs_lookup_check_intent(nd, LOOKUP_OPEN) != 0 && 733 !(server->flags & NFS_MOUNT_NOCTO) && 734 (S_ISREG(inode->i_mode) || 735 S_ISDIR(inode->i_mode))) 736 goto out_force; 737 return 0; 738 } 739 return nfs_revalidate_inode(server, inode); 740 out_force: 741 return __nfs_revalidate_inode(server, inode); 742 } 743 744 /* 745 * We judge how long we want to trust negative 746 * dentries by looking at the parent inode mtime. 747 * 748 * If parent mtime has changed, we revalidate, else we wait for a 749 * period corresponding to the parent's attribute cache timeout value. 750 */ 751 static inline 752 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry, 753 struct nameidata *nd) 754 { 755 /* Don't revalidate a negative dentry if we're creating a new file */ 756 if (nd != NULL && nfs_lookup_check_intent(nd, LOOKUP_CREATE) != 0) 757 return 0; 758 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG) 759 return 1; 760 return !nfs_check_verifier(dir, dentry); 761 } 762 763 /* 764 * This is called every time the dcache has a lookup hit, 765 * and we should check whether we can really trust that 766 * lookup. 767 * 768 * NOTE! The hit can be a negative hit too, don't assume 769 * we have an inode! 770 * 771 * If the parent directory is seen to have changed, we throw out the 772 * cached dentry and do a new lookup. 773 */ 774 static int nfs_lookup_revalidate(struct dentry * dentry, struct nameidata *nd) 775 { 776 struct inode *dir; 777 struct inode *inode; 778 struct dentry *parent; 779 struct nfs_fh *fhandle = NULL; 780 struct nfs_fattr *fattr = NULL; 781 int error; 782 783 parent = dget_parent(dentry); 784 dir = parent->d_inode; 785 nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE); 786 inode = dentry->d_inode; 787 788 if (!inode) { 789 if (nfs_neg_need_reval(dir, dentry, nd)) 790 goto out_bad; 791 goto out_valid; 792 } 793 794 if (is_bad_inode(inode)) { 795 dfprintk(LOOKUPCACHE, "%s: %s/%s has dud inode\n", 796 __func__, dentry->d_parent->d_name.name, 797 dentry->d_name.name); 798 goto out_bad; 799 } 800 801 if (nfs_have_delegation(inode, FMODE_READ)) 802 goto out_set_verifier; 803 804 /* Force a full look up iff the parent directory has changed */ 805 if (!nfs_is_exclusive_create(dir, nd) && nfs_check_verifier(dir, dentry)) { 806 if (nfs_lookup_verify_inode(inode, nd)) 807 goto out_zap_parent; 808 goto out_valid; 809 } 810 811 if (NFS_STALE(inode)) 812 goto out_bad; 813 814 error = -ENOMEM; 815 fhandle = nfs_alloc_fhandle(); 816 fattr = nfs_alloc_fattr(); 817 if (fhandle == NULL || fattr == NULL) 818 goto out_error; 819 820 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr); 821 if (error) 822 goto out_bad; 823 if (nfs_compare_fh(NFS_FH(inode), fhandle)) 824 goto out_bad; 825 if ((error = nfs_refresh_inode(inode, fattr)) != 0) 826 goto out_bad; 827 828 nfs_free_fattr(fattr); 829 nfs_free_fhandle(fhandle); 830 out_set_verifier: 831 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 832 out_valid: 833 dput(parent); 834 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is valid\n", 835 __func__, dentry->d_parent->d_name.name, 836 dentry->d_name.name); 837 return 1; 838 out_zap_parent: 839 nfs_zap_caches(dir); 840 out_bad: 841 nfs_mark_for_revalidate(dir); 842 if (inode && S_ISDIR(inode->i_mode)) { 843 /* Purge readdir caches. */ 844 nfs_zap_caches(inode); 845 /* If we have submounts, don't unhash ! */ 846 if (have_submounts(dentry)) 847 goto out_valid; 848 if (dentry->d_flags & DCACHE_DISCONNECTED) 849 goto out_valid; 850 shrink_dcache_parent(dentry); 851 } 852 d_drop(dentry); 853 nfs_free_fattr(fattr); 854 nfs_free_fhandle(fhandle); 855 dput(parent); 856 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is invalid\n", 857 __func__, dentry->d_parent->d_name.name, 858 dentry->d_name.name); 859 return 0; 860 out_error: 861 nfs_free_fattr(fattr); 862 nfs_free_fhandle(fhandle); 863 dput(parent); 864 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) lookup returned error %d\n", 865 __func__, dentry->d_parent->d_name.name, 866 dentry->d_name.name, error); 867 return error; 868 } 869 870 /* 871 * This is called from dput() when d_count is going to 0. 872 */ 873 static int nfs_dentry_delete(struct dentry *dentry) 874 { 875 dfprintk(VFS, "NFS: dentry_delete(%s/%s, %x)\n", 876 dentry->d_parent->d_name.name, dentry->d_name.name, 877 dentry->d_flags); 878 879 /* Unhash any dentry with a stale inode */ 880 if (dentry->d_inode != NULL && NFS_STALE(dentry->d_inode)) 881 return 1; 882 883 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 884 /* Unhash it, so that ->d_iput() would be called */ 885 return 1; 886 } 887 if (!(dentry->d_sb->s_flags & MS_ACTIVE)) { 888 /* Unhash it, so that ancestors of killed async unlink 889 * files will be cleaned up during umount */ 890 return 1; 891 } 892 return 0; 893 894 } 895 896 static void nfs_drop_nlink(struct inode *inode) 897 { 898 spin_lock(&inode->i_lock); 899 if (inode->i_nlink > 0) 900 drop_nlink(inode); 901 spin_unlock(&inode->i_lock); 902 } 903 904 /* 905 * Called when the dentry loses inode. 906 * We use it to clean up silly-renamed files. 907 */ 908 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode) 909 { 910 if (S_ISDIR(inode->i_mode)) 911 /* drop any readdir cache as it could easily be old */ 912 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA; 913 914 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 915 drop_nlink(inode); 916 nfs_complete_unlink(dentry, inode); 917 } 918 iput(inode); 919 } 920 921 const struct dentry_operations nfs_dentry_operations = { 922 .d_revalidate = nfs_lookup_revalidate, 923 .d_delete = nfs_dentry_delete, 924 .d_iput = nfs_dentry_iput, 925 }; 926 927 static struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd) 928 { 929 struct dentry *res; 930 struct dentry *parent; 931 struct inode *inode = NULL; 932 struct nfs_fh *fhandle = NULL; 933 struct nfs_fattr *fattr = NULL; 934 int error; 935 936 dfprintk(VFS, "NFS: lookup(%s/%s)\n", 937 dentry->d_parent->d_name.name, dentry->d_name.name); 938 nfs_inc_stats(dir, NFSIOS_VFSLOOKUP); 939 940 res = ERR_PTR(-ENAMETOOLONG); 941 if (dentry->d_name.len > NFS_SERVER(dir)->namelen) 942 goto out; 943 944 dentry->d_op = NFS_PROTO(dir)->dentry_ops; 945 946 /* 947 * If we're doing an exclusive create, optimize away the lookup 948 * but don't hash the dentry. 949 */ 950 if (nfs_is_exclusive_create(dir, nd)) { 951 d_instantiate(dentry, NULL); 952 res = NULL; 953 goto out; 954 } 955 956 res = ERR_PTR(-ENOMEM); 957 fhandle = nfs_alloc_fhandle(); 958 fattr = nfs_alloc_fattr(); 959 if (fhandle == NULL || fattr == NULL) 960 goto out; 961 962 parent = dentry->d_parent; 963 /* Protect against concurrent sillydeletes */ 964 nfs_block_sillyrename(parent); 965 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr); 966 if (error == -ENOENT) 967 goto no_entry; 968 if (error < 0) { 969 res = ERR_PTR(error); 970 goto out_unblock_sillyrename; 971 } 972 inode = nfs_fhget(dentry->d_sb, fhandle, fattr); 973 res = (struct dentry *)inode; 974 if (IS_ERR(res)) 975 goto out_unblock_sillyrename; 976 977 no_entry: 978 res = d_materialise_unique(dentry, inode); 979 if (res != NULL) { 980 if (IS_ERR(res)) 981 goto out_unblock_sillyrename; 982 dentry = res; 983 } 984 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 985 out_unblock_sillyrename: 986 nfs_unblock_sillyrename(parent); 987 out: 988 nfs_free_fattr(fattr); 989 nfs_free_fhandle(fhandle); 990 return res; 991 } 992 993 #ifdef CONFIG_NFS_V4 994 static int nfs_open_revalidate(struct dentry *, struct nameidata *); 995 996 const struct dentry_operations nfs4_dentry_operations = { 997 .d_revalidate = nfs_open_revalidate, 998 .d_delete = nfs_dentry_delete, 999 .d_iput = nfs_dentry_iput, 1000 }; 1001 1002 /* 1003 * Use intent information to determine whether we need to substitute 1004 * the NFSv4-style stateful OPEN for the LOOKUP call 1005 */ 1006 static int is_atomic_open(struct nameidata *nd) 1007 { 1008 if (nd == NULL || nfs_lookup_check_intent(nd, LOOKUP_OPEN) == 0) 1009 return 0; 1010 /* NFS does not (yet) have a stateful open for directories */ 1011 if (nd->flags & LOOKUP_DIRECTORY) 1012 return 0; 1013 /* Are we trying to write to a read only partition? */ 1014 if (__mnt_is_readonly(nd->path.mnt) && 1015 (nd->intent.open.flags & (O_CREAT|O_TRUNC|FMODE_WRITE))) 1016 return 0; 1017 return 1; 1018 } 1019 1020 static struct dentry *nfs_atomic_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd) 1021 { 1022 struct dentry *res = NULL; 1023 int error; 1024 1025 dfprintk(VFS, "NFS: atomic_lookup(%s/%ld), %s\n", 1026 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name); 1027 1028 /* Check that we are indeed trying to open this file */ 1029 if (!is_atomic_open(nd)) 1030 goto no_open; 1031 1032 if (dentry->d_name.len > NFS_SERVER(dir)->namelen) { 1033 res = ERR_PTR(-ENAMETOOLONG); 1034 goto out; 1035 } 1036 dentry->d_op = NFS_PROTO(dir)->dentry_ops; 1037 1038 /* Let vfs_create() deal with O_EXCL. Instantiate, but don't hash 1039 * the dentry. */ 1040 if (nd->flags & LOOKUP_EXCL) { 1041 d_instantiate(dentry, NULL); 1042 goto out; 1043 } 1044 1045 /* Open the file on the server */ 1046 res = nfs4_atomic_open(dir, dentry, nd); 1047 if (IS_ERR(res)) { 1048 error = PTR_ERR(res); 1049 switch (error) { 1050 /* Make a negative dentry */ 1051 case -ENOENT: 1052 res = NULL; 1053 goto out; 1054 /* This turned out not to be a regular file */ 1055 case -EISDIR: 1056 case -ENOTDIR: 1057 goto no_open; 1058 case -ELOOP: 1059 if (!(nd->intent.open.flags & O_NOFOLLOW)) 1060 goto no_open; 1061 /* case -EINVAL: */ 1062 default: 1063 goto out; 1064 } 1065 } else if (res != NULL) 1066 dentry = res; 1067 out: 1068 return res; 1069 no_open: 1070 return nfs_lookup(dir, dentry, nd); 1071 } 1072 1073 static int nfs_open_revalidate(struct dentry *dentry, struct nameidata *nd) 1074 { 1075 struct dentry *parent = NULL; 1076 struct inode *inode = dentry->d_inode; 1077 struct inode *dir; 1078 int openflags, ret = 0; 1079 1080 if (!is_atomic_open(nd) || d_mountpoint(dentry)) 1081 goto no_open; 1082 parent = dget_parent(dentry); 1083 dir = parent->d_inode; 1084 /* We can't create new files in nfs_open_revalidate(), so we 1085 * optimize away revalidation of negative dentries. 1086 */ 1087 if (inode == NULL) { 1088 if (!nfs_neg_need_reval(dir, dentry, nd)) 1089 ret = 1; 1090 goto out; 1091 } 1092 1093 /* NFS only supports OPEN on regular files */ 1094 if (!S_ISREG(inode->i_mode)) 1095 goto no_open_dput; 1096 openflags = nd->intent.open.flags; 1097 /* We cannot do exclusive creation on a positive dentry */ 1098 if ((openflags & (O_CREAT|O_EXCL)) == (O_CREAT|O_EXCL)) 1099 goto no_open_dput; 1100 /* We can't create new files, or truncate existing ones here */ 1101 openflags &= ~(O_CREAT|O_TRUNC); 1102 1103 /* 1104 * Note: we're not holding inode->i_mutex and so may be racing with 1105 * operations that change the directory. We therefore save the 1106 * change attribute *before* we do the RPC call. 1107 */ 1108 ret = nfs4_open_revalidate(dir, dentry, openflags, nd); 1109 out: 1110 dput(parent); 1111 if (!ret) 1112 d_drop(dentry); 1113 return ret; 1114 no_open_dput: 1115 dput(parent); 1116 no_open: 1117 return nfs_lookup_revalidate(dentry, nd); 1118 } 1119 #endif /* CONFIG_NFSV4 */ 1120 1121 static struct dentry *nfs_readdir_lookup(nfs_readdir_descriptor_t *desc) 1122 { 1123 struct dentry *parent = desc->file->f_path.dentry; 1124 struct inode *dir = parent->d_inode; 1125 struct nfs_entry *entry = desc->entry; 1126 struct dentry *dentry, *alias; 1127 struct qstr name = { 1128 .name = entry->name, 1129 .len = entry->len, 1130 }; 1131 struct inode *inode; 1132 unsigned long verf = nfs_save_change_attribute(dir); 1133 1134 switch (name.len) { 1135 case 2: 1136 if (name.name[0] == '.' && name.name[1] == '.') 1137 return dget_parent(parent); 1138 break; 1139 case 1: 1140 if (name.name[0] == '.') 1141 return dget(parent); 1142 } 1143 1144 spin_lock(&dir->i_lock); 1145 if (NFS_I(dir)->cache_validity & NFS_INO_INVALID_DATA) { 1146 spin_unlock(&dir->i_lock); 1147 return NULL; 1148 } 1149 spin_unlock(&dir->i_lock); 1150 1151 name.hash = full_name_hash(name.name, name.len); 1152 dentry = d_lookup(parent, &name); 1153 if (dentry != NULL) { 1154 /* Is this a positive dentry that matches the readdir info? */ 1155 if (dentry->d_inode != NULL && 1156 (NFS_FILEID(dentry->d_inode) == entry->ino || 1157 d_mountpoint(dentry))) { 1158 if (!desc->plus || entry->fh->size == 0) 1159 return dentry; 1160 if (nfs_compare_fh(NFS_FH(dentry->d_inode), 1161 entry->fh) == 0) 1162 goto out_renew; 1163 } 1164 /* No, so d_drop to allow one to be created */ 1165 d_drop(dentry); 1166 dput(dentry); 1167 } 1168 if (!desc->plus || !(entry->fattr->valid & NFS_ATTR_FATTR)) 1169 return NULL; 1170 if (name.len > NFS_SERVER(dir)->namelen) 1171 return NULL; 1172 /* Note: caller is already holding the dir->i_mutex! */ 1173 dentry = d_alloc(parent, &name); 1174 if (dentry == NULL) 1175 return NULL; 1176 dentry->d_op = NFS_PROTO(dir)->dentry_ops; 1177 inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr); 1178 if (IS_ERR(inode)) { 1179 dput(dentry); 1180 return NULL; 1181 } 1182 1183 alias = d_materialise_unique(dentry, inode); 1184 if (alias != NULL) { 1185 dput(dentry); 1186 if (IS_ERR(alias)) 1187 return NULL; 1188 dentry = alias; 1189 } 1190 1191 out_renew: 1192 nfs_set_verifier(dentry, verf); 1193 return dentry; 1194 } 1195 1196 /* 1197 * Code common to create, mkdir, and mknod. 1198 */ 1199 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle, 1200 struct nfs_fattr *fattr) 1201 { 1202 struct dentry *parent = dget_parent(dentry); 1203 struct inode *dir = parent->d_inode; 1204 struct inode *inode; 1205 int error = -EACCES; 1206 1207 d_drop(dentry); 1208 1209 /* We may have been initialized further down */ 1210 if (dentry->d_inode) 1211 goto out; 1212 if (fhandle->size == 0) { 1213 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr); 1214 if (error) 1215 goto out_error; 1216 } 1217 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1218 if (!(fattr->valid & NFS_ATTR_FATTR)) { 1219 struct nfs_server *server = NFS_SB(dentry->d_sb); 1220 error = server->nfs_client->rpc_ops->getattr(server, fhandle, fattr); 1221 if (error < 0) 1222 goto out_error; 1223 } 1224 inode = nfs_fhget(dentry->d_sb, fhandle, fattr); 1225 error = PTR_ERR(inode); 1226 if (IS_ERR(inode)) 1227 goto out_error; 1228 d_add(dentry, inode); 1229 out: 1230 dput(parent); 1231 return 0; 1232 out_error: 1233 nfs_mark_for_revalidate(dir); 1234 dput(parent); 1235 return error; 1236 } 1237 1238 /* 1239 * Following a failed create operation, we drop the dentry rather 1240 * than retain a negative dentry. This avoids a problem in the event 1241 * that the operation succeeded on the server, but an error in the 1242 * reply path made it appear to have failed. 1243 */ 1244 static int nfs_create(struct inode *dir, struct dentry *dentry, int mode, 1245 struct nameidata *nd) 1246 { 1247 struct iattr attr; 1248 int error; 1249 int open_flags = 0; 1250 1251 dfprintk(VFS, "NFS: create(%s/%ld), %s\n", 1252 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name); 1253 1254 attr.ia_mode = mode; 1255 attr.ia_valid = ATTR_MODE; 1256 1257 if ((nd->flags & LOOKUP_CREATE) != 0) 1258 open_flags = nd->intent.open.flags; 1259 1260 error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags, nd); 1261 if (error != 0) 1262 goto out_err; 1263 return 0; 1264 out_err: 1265 d_drop(dentry); 1266 return error; 1267 } 1268 1269 /* 1270 * See comments for nfs_proc_create regarding failed operations. 1271 */ 1272 static int 1273 nfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t rdev) 1274 { 1275 struct iattr attr; 1276 int status; 1277 1278 dfprintk(VFS, "NFS: mknod(%s/%ld), %s\n", 1279 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name); 1280 1281 if (!new_valid_dev(rdev)) 1282 return -EINVAL; 1283 1284 attr.ia_mode = mode; 1285 attr.ia_valid = ATTR_MODE; 1286 1287 status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev); 1288 if (status != 0) 1289 goto out_err; 1290 return 0; 1291 out_err: 1292 d_drop(dentry); 1293 return status; 1294 } 1295 1296 /* 1297 * See comments for nfs_proc_create regarding failed operations. 1298 */ 1299 static int nfs_mkdir(struct inode *dir, struct dentry *dentry, int mode) 1300 { 1301 struct iattr attr; 1302 int error; 1303 1304 dfprintk(VFS, "NFS: mkdir(%s/%ld), %s\n", 1305 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name); 1306 1307 attr.ia_valid = ATTR_MODE; 1308 attr.ia_mode = mode | S_IFDIR; 1309 1310 error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr); 1311 if (error != 0) 1312 goto out_err; 1313 return 0; 1314 out_err: 1315 d_drop(dentry); 1316 return error; 1317 } 1318 1319 static void nfs_dentry_handle_enoent(struct dentry *dentry) 1320 { 1321 if (dentry->d_inode != NULL && !d_unhashed(dentry)) 1322 d_delete(dentry); 1323 } 1324 1325 static int nfs_rmdir(struct inode *dir, struct dentry *dentry) 1326 { 1327 int error; 1328 1329 dfprintk(VFS, "NFS: rmdir(%s/%ld), %s\n", 1330 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name); 1331 1332 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name); 1333 /* Ensure the VFS deletes this inode */ 1334 if (error == 0 && dentry->d_inode != NULL) 1335 clear_nlink(dentry->d_inode); 1336 else if (error == -ENOENT) 1337 nfs_dentry_handle_enoent(dentry); 1338 1339 return error; 1340 } 1341 1342 static int nfs_sillyrename(struct inode *dir, struct dentry *dentry) 1343 { 1344 static unsigned int sillycounter; 1345 const int fileidsize = sizeof(NFS_FILEID(dentry->d_inode))*2; 1346 const int countersize = sizeof(sillycounter)*2; 1347 const int slen = sizeof(".nfs")+fileidsize+countersize-1; 1348 char silly[slen+1]; 1349 struct qstr qsilly; 1350 struct dentry *sdentry; 1351 int error = -EIO; 1352 1353 dfprintk(VFS, "NFS: silly-rename(%s/%s, ct=%d)\n", 1354 dentry->d_parent->d_name.name, dentry->d_name.name, 1355 atomic_read(&dentry->d_count)); 1356 nfs_inc_stats(dir, NFSIOS_SILLYRENAME); 1357 1358 /* 1359 * We don't allow a dentry to be silly-renamed twice. 1360 */ 1361 error = -EBUSY; 1362 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) 1363 goto out; 1364 1365 sprintf(silly, ".nfs%*.*Lx", 1366 fileidsize, fileidsize, 1367 (unsigned long long)NFS_FILEID(dentry->d_inode)); 1368 1369 /* Return delegation in anticipation of the rename */ 1370 nfs_inode_return_delegation(dentry->d_inode); 1371 1372 sdentry = NULL; 1373 do { 1374 char *suffix = silly + slen - countersize; 1375 1376 dput(sdentry); 1377 sillycounter++; 1378 sprintf(suffix, "%*.*x", countersize, countersize, sillycounter); 1379 1380 dfprintk(VFS, "NFS: trying to rename %s to %s\n", 1381 dentry->d_name.name, silly); 1382 1383 sdentry = lookup_one_len(silly, dentry->d_parent, slen); 1384 /* 1385 * N.B. Better to return EBUSY here ... it could be 1386 * dangerous to delete the file while it's in use. 1387 */ 1388 if (IS_ERR(sdentry)) 1389 goto out; 1390 } while(sdentry->d_inode != NULL); /* need negative lookup */ 1391 1392 qsilly.name = silly; 1393 qsilly.len = strlen(silly); 1394 if (dentry->d_inode) { 1395 error = NFS_PROTO(dir)->rename(dir, &dentry->d_name, 1396 dir, &qsilly); 1397 nfs_mark_for_revalidate(dentry->d_inode); 1398 } else 1399 error = NFS_PROTO(dir)->rename(dir, &dentry->d_name, 1400 dir, &qsilly); 1401 if (!error) { 1402 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1403 d_move(dentry, sdentry); 1404 error = nfs_async_unlink(dir, dentry); 1405 /* If we return 0 we don't unlink */ 1406 } 1407 dput(sdentry); 1408 out: 1409 return error; 1410 } 1411 1412 /* 1413 * Remove a file after making sure there are no pending writes, 1414 * and after checking that the file has only one user. 1415 * 1416 * We invalidate the attribute cache and free the inode prior to the operation 1417 * to avoid possible races if the server reuses the inode. 1418 */ 1419 static int nfs_safe_remove(struct dentry *dentry) 1420 { 1421 struct inode *dir = dentry->d_parent->d_inode; 1422 struct inode *inode = dentry->d_inode; 1423 int error = -EBUSY; 1424 1425 dfprintk(VFS, "NFS: safe_remove(%s/%s)\n", 1426 dentry->d_parent->d_name.name, dentry->d_name.name); 1427 1428 /* If the dentry was sillyrenamed, we simply call d_delete() */ 1429 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 1430 error = 0; 1431 goto out; 1432 } 1433 1434 if (inode != NULL) { 1435 nfs_inode_return_delegation(inode); 1436 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name); 1437 /* The VFS may want to delete this inode */ 1438 if (error == 0) 1439 nfs_drop_nlink(inode); 1440 nfs_mark_for_revalidate(inode); 1441 } else 1442 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name); 1443 if (error == -ENOENT) 1444 nfs_dentry_handle_enoent(dentry); 1445 out: 1446 return error; 1447 } 1448 1449 /* We do silly rename. In case sillyrename() returns -EBUSY, the inode 1450 * belongs to an active ".nfs..." file and we return -EBUSY. 1451 * 1452 * If sillyrename() returns 0, we do nothing, otherwise we unlink. 1453 */ 1454 static int nfs_unlink(struct inode *dir, struct dentry *dentry) 1455 { 1456 int error; 1457 int need_rehash = 0; 1458 1459 dfprintk(VFS, "NFS: unlink(%s/%ld, %s)\n", dir->i_sb->s_id, 1460 dir->i_ino, dentry->d_name.name); 1461 1462 spin_lock(&dcache_lock); 1463 spin_lock(&dentry->d_lock); 1464 if (atomic_read(&dentry->d_count) > 1) { 1465 spin_unlock(&dentry->d_lock); 1466 spin_unlock(&dcache_lock); 1467 /* Start asynchronous writeout of the inode */ 1468 write_inode_now(dentry->d_inode, 0); 1469 error = nfs_sillyrename(dir, dentry); 1470 return error; 1471 } 1472 if (!d_unhashed(dentry)) { 1473 __d_drop(dentry); 1474 need_rehash = 1; 1475 } 1476 spin_unlock(&dentry->d_lock); 1477 spin_unlock(&dcache_lock); 1478 error = nfs_safe_remove(dentry); 1479 if (!error || error == -ENOENT) { 1480 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1481 } else if (need_rehash) 1482 d_rehash(dentry); 1483 return error; 1484 } 1485 1486 /* 1487 * To create a symbolic link, most file systems instantiate a new inode, 1488 * add a page to it containing the path, then write it out to the disk 1489 * using prepare_write/commit_write. 1490 * 1491 * Unfortunately the NFS client can't create the in-core inode first 1492 * because it needs a file handle to create an in-core inode (see 1493 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the 1494 * symlink request has completed on the server. 1495 * 1496 * So instead we allocate a raw page, copy the symname into it, then do 1497 * the SYMLINK request with the page as the buffer. If it succeeds, we 1498 * now have a new file handle and can instantiate an in-core NFS inode 1499 * and move the raw page into its mapping. 1500 */ 1501 static int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname) 1502 { 1503 struct pagevec lru_pvec; 1504 struct page *page; 1505 char *kaddr; 1506 struct iattr attr; 1507 unsigned int pathlen = strlen(symname); 1508 int error; 1509 1510 dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s)\n", dir->i_sb->s_id, 1511 dir->i_ino, dentry->d_name.name, symname); 1512 1513 if (pathlen > PAGE_SIZE) 1514 return -ENAMETOOLONG; 1515 1516 attr.ia_mode = S_IFLNK | S_IRWXUGO; 1517 attr.ia_valid = ATTR_MODE; 1518 1519 page = alloc_page(GFP_HIGHUSER); 1520 if (!page) 1521 return -ENOMEM; 1522 1523 kaddr = kmap_atomic(page, KM_USER0); 1524 memcpy(kaddr, symname, pathlen); 1525 if (pathlen < PAGE_SIZE) 1526 memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen); 1527 kunmap_atomic(kaddr, KM_USER0); 1528 1529 error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr); 1530 if (error != 0) { 1531 dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s) error %d\n", 1532 dir->i_sb->s_id, dir->i_ino, 1533 dentry->d_name.name, symname, error); 1534 d_drop(dentry); 1535 __free_page(page); 1536 return error; 1537 } 1538 1539 /* 1540 * No big deal if we can't add this page to the page cache here. 1541 * READLINK will get the missing page from the server if needed. 1542 */ 1543 pagevec_init(&lru_pvec, 0); 1544 if (!add_to_page_cache(page, dentry->d_inode->i_mapping, 0, 1545 GFP_KERNEL)) { 1546 pagevec_add(&lru_pvec, page); 1547 pagevec_lru_add_file(&lru_pvec); 1548 SetPageUptodate(page); 1549 unlock_page(page); 1550 } else 1551 __free_page(page); 1552 1553 return 0; 1554 } 1555 1556 static int 1557 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 1558 { 1559 struct inode *inode = old_dentry->d_inode; 1560 int error; 1561 1562 dfprintk(VFS, "NFS: link(%s/%s -> %s/%s)\n", 1563 old_dentry->d_parent->d_name.name, old_dentry->d_name.name, 1564 dentry->d_parent->d_name.name, dentry->d_name.name); 1565 1566 nfs_inode_return_delegation(inode); 1567 1568 d_drop(dentry); 1569 error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name); 1570 if (error == 0) { 1571 atomic_inc(&inode->i_count); 1572 d_add(dentry, inode); 1573 } 1574 return error; 1575 } 1576 1577 /* 1578 * RENAME 1579 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a 1580 * different file handle for the same inode after a rename (e.g. when 1581 * moving to a different directory). A fail-safe method to do so would 1582 * be to look up old_dir/old_name, create a link to new_dir/new_name and 1583 * rename the old file using the sillyrename stuff. This way, the original 1584 * file in old_dir will go away when the last process iput()s the inode. 1585 * 1586 * FIXED. 1587 * 1588 * It actually works quite well. One needs to have the possibility for 1589 * at least one ".nfs..." file in each directory the file ever gets 1590 * moved or linked to which happens automagically with the new 1591 * implementation that only depends on the dcache stuff instead of 1592 * using the inode layer 1593 * 1594 * Unfortunately, things are a little more complicated than indicated 1595 * above. For a cross-directory move, we want to make sure we can get 1596 * rid of the old inode after the operation. This means there must be 1597 * no pending writes (if it's a file), and the use count must be 1. 1598 * If these conditions are met, we can drop the dentries before doing 1599 * the rename. 1600 */ 1601 static int nfs_rename(struct inode *old_dir, struct dentry *old_dentry, 1602 struct inode *new_dir, struct dentry *new_dentry) 1603 { 1604 struct inode *old_inode = old_dentry->d_inode; 1605 struct inode *new_inode = new_dentry->d_inode; 1606 struct dentry *dentry = NULL, *rehash = NULL; 1607 int error = -EBUSY; 1608 1609 dfprintk(VFS, "NFS: rename(%s/%s -> %s/%s, ct=%d)\n", 1610 old_dentry->d_parent->d_name.name, old_dentry->d_name.name, 1611 new_dentry->d_parent->d_name.name, new_dentry->d_name.name, 1612 atomic_read(&new_dentry->d_count)); 1613 1614 /* 1615 * For non-directories, check whether the target is busy and if so, 1616 * make a copy of the dentry and then do a silly-rename. If the 1617 * silly-rename succeeds, the copied dentry is hashed and becomes 1618 * the new target. 1619 */ 1620 if (new_inode && !S_ISDIR(new_inode->i_mode)) { 1621 /* 1622 * To prevent any new references to the target during the 1623 * rename, we unhash the dentry in advance. 1624 */ 1625 if (!d_unhashed(new_dentry)) { 1626 d_drop(new_dentry); 1627 rehash = new_dentry; 1628 } 1629 1630 if (atomic_read(&new_dentry->d_count) > 2) { 1631 int err; 1632 1633 /* copy the target dentry's name */ 1634 dentry = d_alloc(new_dentry->d_parent, 1635 &new_dentry->d_name); 1636 if (!dentry) 1637 goto out; 1638 1639 /* silly-rename the existing target ... */ 1640 err = nfs_sillyrename(new_dir, new_dentry); 1641 if (err) 1642 goto out; 1643 1644 new_dentry = dentry; 1645 rehash = NULL; 1646 new_inode = NULL; 1647 } 1648 } 1649 1650 /* 1651 * ... prune child dentries and writebacks if needed. 1652 */ 1653 if (atomic_read(&old_dentry->d_count) > 1) { 1654 if (S_ISREG(old_inode->i_mode)) 1655 nfs_wb_all(old_inode); 1656 shrink_dcache_parent(old_dentry); 1657 } 1658 nfs_inode_return_delegation(old_inode); 1659 1660 if (new_inode != NULL) 1661 nfs_inode_return_delegation(new_inode); 1662 1663 error = NFS_PROTO(old_dir)->rename(old_dir, &old_dentry->d_name, 1664 new_dir, &new_dentry->d_name); 1665 nfs_mark_for_revalidate(old_inode); 1666 out: 1667 if (rehash) 1668 d_rehash(rehash); 1669 if (!error) { 1670 if (new_inode != NULL) 1671 nfs_drop_nlink(new_inode); 1672 d_move(old_dentry, new_dentry); 1673 nfs_set_verifier(new_dentry, 1674 nfs_save_change_attribute(new_dir)); 1675 } else if (error == -ENOENT) 1676 nfs_dentry_handle_enoent(old_dentry); 1677 1678 /* new dentry created? */ 1679 if (dentry) 1680 dput(dentry); 1681 return error; 1682 } 1683 1684 static DEFINE_SPINLOCK(nfs_access_lru_lock); 1685 static LIST_HEAD(nfs_access_lru_list); 1686 static atomic_long_t nfs_access_nr_entries; 1687 1688 static void nfs_access_free_entry(struct nfs_access_entry *entry) 1689 { 1690 put_rpccred(entry->cred); 1691 kfree(entry); 1692 smp_mb__before_atomic_dec(); 1693 atomic_long_dec(&nfs_access_nr_entries); 1694 smp_mb__after_atomic_dec(); 1695 } 1696 1697 int nfs_access_cache_shrinker(int nr_to_scan, gfp_t gfp_mask) 1698 { 1699 LIST_HEAD(head); 1700 struct nfs_inode *nfsi; 1701 struct nfs_access_entry *cache; 1702 1703 restart: 1704 spin_lock(&nfs_access_lru_lock); 1705 list_for_each_entry(nfsi, &nfs_access_lru_list, access_cache_inode_lru) { 1706 struct rw_semaphore *s_umount; 1707 struct inode *inode; 1708 1709 if (nr_to_scan-- == 0) 1710 break; 1711 s_umount = &nfsi->vfs_inode.i_sb->s_umount; 1712 if (!down_read_trylock(s_umount)) 1713 continue; 1714 inode = igrab(&nfsi->vfs_inode); 1715 if (inode == NULL) { 1716 up_read(s_umount); 1717 continue; 1718 } 1719 spin_lock(&inode->i_lock); 1720 if (list_empty(&nfsi->access_cache_entry_lru)) 1721 goto remove_lru_entry; 1722 cache = list_entry(nfsi->access_cache_entry_lru.next, 1723 struct nfs_access_entry, lru); 1724 list_move(&cache->lru, &head); 1725 rb_erase(&cache->rb_node, &nfsi->access_cache); 1726 if (!list_empty(&nfsi->access_cache_entry_lru)) 1727 list_move_tail(&nfsi->access_cache_inode_lru, 1728 &nfs_access_lru_list); 1729 else { 1730 remove_lru_entry: 1731 list_del_init(&nfsi->access_cache_inode_lru); 1732 clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags); 1733 } 1734 spin_unlock(&inode->i_lock); 1735 spin_unlock(&nfs_access_lru_lock); 1736 iput(inode); 1737 up_read(s_umount); 1738 goto restart; 1739 } 1740 spin_unlock(&nfs_access_lru_lock); 1741 while (!list_empty(&head)) { 1742 cache = list_entry(head.next, struct nfs_access_entry, lru); 1743 list_del(&cache->lru); 1744 nfs_access_free_entry(cache); 1745 } 1746 return (atomic_long_read(&nfs_access_nr_entries) / 100) * sysctl_vfs_cache_pressure; 1747 } 1748 1749 static void __nfs_access_zap_cache(struct inode *inode) 1750 { 1751 struct nfs_inode *nfsi = NFS_I(inode); 1752 struct rb_root *root_node = &nfsi->access_cache; 1753 struct rb_node *n, *dispose = NULL; 1754 struct nfs_access_entry *entry; 1755 1756 /* Unhook entries from the cache */ 1757 while ((n = rb_first(root_node)) != NULL) { 1758 entry = rb_entry(n, struct nfs_access_entry, rb_node); 1759 rb_erase(n, root_node); 1760 list_del(&entry->lru); 1761 n->rb_left = dispose; 1762 dispose = n; 1763 } 1764 nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS; 1765 spin_unlock(&inode->i_lock); 1766 1767 /* Now kill them all! */ 1768 while (dispose != NULL) { 1769 n = dispose; 1770 dispose = n->rb_left; 1771 nfs_access_free_entry(rb_entry(n, struct nfs_access_entry, rb_node)); 1772 } 1773 } 1774 1775 void nfs_access_zap_cache(struct inode *inode) 1776 { 1777 /* Remove from global LRU init */ 1778 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) { 1779 spin_lock(&nfs_access_lru_lock); 1780 list_del_init(&NFS_I(inode)->access_cache_inode_lru); 1781 spin_unlock(&nfs_access_lru_lock); 1782 } 1783 1784 spin_lock(&inode->i_lock); 1785 /* This will release the spinlock */ 1786 __nfs_access_zap_cache(inode); 1787 } 1788 1789 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred) 1790 { 1791 struct rb_node *n = NFS_I(inode)->access_cache.rb_node; 1792 struct nfs_access_entry *entry; 1793 1794 while (n != NULL) { 1795 entry = rb_entry(n, struct nfs_access_entry, rb_node); 1796 1797 if (cred < entry->cred) 1798 n = n->rb_left; 1799 else if (cred > entry->cred) 1800 n = n->rb_right; 1801 else 1802 return entry; 1803 } 1804 return NULL; 1805 } 1806 1807 static int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res) 1808 { 1809 struct nfs_inode *nfsi = NFS_I(inode); 1810 struct nfs_access_entry *cache; 1811 int err = -ENOENT; 1812 1813 spin_lock(&inode->i_lock); 1814 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS) 1815 goto out_zap; 1816 cache = nfs_access_search_rbtree(inode, cred); 1817 if (cache == NULL) 1818 goto out; 1819 if (!nfs_have_delegated_attributes(inode) && 1820 !time_in_range_open(jiffies, cache->jiffies, cache->jiffies + nfsi->attrtimeo)) 1821 goto out_stale; 1822 res->jiffies = cache->jiffies; 1823 res->cred = cache->cred; 1824 res->mask = cache->mask; 1825 list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru); 1826 err = 0; 1827 out: 1828 spin_unlock(&inode->i_lock); 1829 return err; 1830 out_stale: 1831 rb_erase(&cache->rb_node, &nfsi->access_cache); 1832 list_del(&cache->lru); 1833 spin_unlock(&inode->i_lock); 1834 nfs_access_free_entry(cache); 1835 return -ENOENT; 1836 out_zap: 1837 /* This will release the spinlock */ 1838 __nfs_access_zap_cache(inode); 1839 return -ENOENT; 1840 } 1841 1842 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set) 1843 { 1844 struct nfs_inode *nfsi = NFS_I(inode); 1845 struct rb_root *root_node = &nfsi->access_cache; 1846 struct rb_node **p = &root_node->rb_node; 1847 struct rb_node *parent = NULL; 1848 struct nfs_access_entry *entry; 1849 1850 spin_lock(&inode->i_lock); 1851 while (*p != NULL) { 1852 parent = *p; 1853 entry = rb_entry(parent, struct nfs_access_entry, rb_node); 1854 1855 if (set->cred < entry->cred) 1856 p = &parent->rb_left; 1857 else if (set->cred > entry->cred) 1858 p = &parent->rb_right; 1859 else 1860 goto found; 1861 } 1862 rb_link_node(&set->rb_node, parent, p); 1863 rb_insert_color(&set->rb_node, root_node); 1864 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru); 1865 spin_unlock(&inode->i_lock); 1866 return; 1867 found: 1868 rb_replace_node(parent, &set->rb_node, root_node); 1869 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru); 1870 list_del(&entry->lru); 1871 spin_unlock(&inode->i_lock); 1872 nfs_access_free_entry(entry); 1873 } 1874 1875 static void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set) 1876 { 1877 struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL); 1878 if (cache == NULL) 1879 return; 1880 RB_CLEAR_NODE(&cache->rb_node); 1881 cache->jiffies = set->jiffies; 1882 cache->cred = get_rpccred(set->cred); 1883 cache->mask = set->mask; 1884 1885 nfs_access_add_rbtree(inode, cache); 1886 1887 /* Update accounting */ 1888 smp_mb__before_atomic_inc(); 1889 atomic_long_inc(&nfs_access_nr_entries); 1890 smp_mb__after_atomic_inc(); 1891 1892 /* Add inode to global LRU list */ 1893 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) { 1894 spin_lock(&nfs_access_lru_lock); 1895 list_add_tail(&NFS_I(inode)->access_cache_inode_lru, &nfs_access_lru_list); 1896 spin_unlock(&nfs_access_lru_lock); 1897 } 1898 } 1899 1900 static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask) 1901 { 1902 struct nfs_access_entry cache; 1903 int status; 1904 1905 status = nfs_access_get_cached(inode, cred, &cache); 1906 if (status == 0) 1907 goto out; 1908 1909 /* Be clever: ask server to check for all possible rights */ 1910 cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ; 1911 cache.cred = cred; 1912 cache.jiffies = jiffies; 1913 status = NFS_PROTO(inode)->access(inode, &cache); 1914 if (status != 0) { 1915 if (status == -ESTALE) { 1916 nfs_zap_caches(inode); 1917 if (!S_ISDIR(inode->i_mode)) 1918 set_bit(NFS_INO_STALE, &NFS_I(inode)->flags); 1919 } 1920 return status; 1921 } 1922 nfs_access_add_cache(inode, &cache); 1923 out: 1924 if ((mask & ~cache.mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0) 1925 return 0; 1926 return -EACCES; 1927 } 1928 1929 static int nfs_open_permission_mask(int openflags) 1930 { 1931 int mask = 0; 1932 1933 if (openflags & FMODE_READ) 1934 mask |= MAY_READ; 1935 if (openflags & FMODE_WRITE) 1936 mask |= MAY_WRITE; 1937 if (openflags & FMODE_EXEC) 1938 mask |= MAY_EXEC; 1939 return mask; 1940 } 1941 1942 int nfs_may_open(struct inode *inode, struct rpc_cred *cred, int openflags) 1943 { 1944 return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags)); 1945 } 1946 1947 int nfs_permission(struct inode *inode, int mask) 1948 { 1949 struct rpc_cred *cred; 1950 int res = 0; 1951 1952 nfs_inc_stats(inode, NFSIOS_VFSACCESS); 1953 1954 if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0) 1955 goto out; 1956 /* Is this sys_access() ? */ 1957 if (mask & MAY_ACCESS) 1958 goto force_lookup; 1959 1960 switch (inode->i_mode & S_IFMT) { 1961 case S_IFLNK: 1962 goto out; 1963 case S_IFREG: 1964 /* NFSv4 has atomic_open... */ 1965 if (nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN) 1966 && (mask & MAY_OPEN) 1967 && !(mask & MAY_EXEC)) 1968 goto out; 1969 break; 1970 case S_IFDIR: 1971 /* 1972 * Optimize away all write operations, since the server 1973 * will check permissions when we perform the op. 1974 */ 1975 if ((mask & MAY_WRITE) && !(mask & MAY_READ)) 1976 goto out; 1977 } 1978 1979 force_lookup: 1980 if (!NFS_PROTO(inode)->access) 1981 goto out_notsup; 1982 1983 cred = rpc_lookup_cred(); 1984 if (!IS_ERR(cred)) { 1985 res = nfs_do_access(inode, cred, mask); 1986 put_rpccred(cred); 1987 } else 1988 res = PTR_ERR(cred); 1989 out: 1990 if (!res && (mask & MAY_EXEC) && !execute_ok(inode)) 1991 res = -EACCES; 1992 1993 dfprintk(VFS, "NFS: permission(%s/%ld), mask=0x%x, res=%d\n", 1994 inode->i_sb->s_id, inode->i_ino, mask, res); 1995 return res; 1996 out_notsup: 1997 res = nfs_revalidate_inode(NFS_SERVER(inode), inode); 1998 if (res == 0) 1999 res = generic_permission(inode, mask, NULL); 2000 goto out; 2001 } 2002 2003 /* 2004 * Local variables: 2005 * version-control: t 2006 * kept-new-versions: 5 2007 * End: 2008 */ 2009