1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/fs/nfs/dir.c 4 * 5 * Copyright (C) 1992 Rick Sladkey 6 * 7 * nfs directory handling functions 8 * 9 * 10 Apr 1996 Added silly rename for unlink --okir 10 * 28 Sep 1996 Improved directory cache --okir 11 * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de 12 * Re-implemented silly rename for unlink, newly implemented 13 * silly rename for nfs_rename() following the suggestions 14 * of Olaf Kirch (okir) found in this file. 15 * Following Linus comments on my original hack, this version 16 * depends only on the dcache stuff and doesn't touch the inode 17 * layer (iput() and friends). 18 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM 19 */ 20 21 #include <linux/module.h> 22 #include <linux/time.h> 23 #include <linux/errno.h> 24 #include <linux/stat.h> 25 #include <linux/fcntl.h> 26 #include <linux/string.h> 27 #include <linux/kernel.h> 28 #include <linux/slab.h> 29 #include <linux/mm.h> 30 #include <linux/sunrpc/clnt.h> 31 #include <linux/nfs_fs.h> 32 #include <linux/nfs_mount.h> 33 #include <linux/pagemap.h> 34 #include <linux/pagevec.h> 35 #include <linux/namei.h> 36 #include <linux/mount.h> 37 #include <linux/swap.h> 38 #include <linux/sched.h> 39 #include <linux/kmemleak.h> 40 #include <linux/xattr.h> 41 42 #include "delegation.h" 43 #include "iostat.h" 44 #include "internal.h" 45 #include "fscache.h" 46 47 #include "nfstrace.h" 48 49 /* #define NFS_DEBUG_VERBOSE 1 */ 50 51 static int nfs_opendir(struct inode *, struct file *); 52 static int nfs_closedir(struct inode *, struct file *); 53 static int nfs_readdir(struct file *, struct dir_context *); 54 static int nfs_fsync_dir(struct file *, loff_t, loff_t, int); 55 static loff_t nfs_llseek_dir(struct file *, loff_t, int); 56 static void nfs_readdir_clear_array(struct page*); 57 58 const struct file_operations nfs_dir_operations = { 59 .llseek = nfs_llseek_dir, 60 .read = generic_read_dir, 61 .iterate_shared = nfs_readdir, 62 .open = nfs_opendir, 63 .release = nfs_closedir, 64 .fsync = nfs_fsync_dir, 65 }; 66 67 const struct address_space_operations nfs_dir_aops = { 68 .freepage = nfs_readdir_clear_array, 69 }; 70 71 static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct inode *dir) 72 { 73 struct nfs_inode *nfsi = NFS_I(dir); 74 struct nfs_open_dir_context *ctx; 75 ctx = kmalloc(sizeof(*ctx), GFP_KERNEL); 76 if (ctx != NULL) { 77 ctx->duped = 0; 78 ctx->attr_gencount = nfsi->attr_gencount; 79 ctx->dir_cookie = 0; 80 ctx->dup_cookie = 0; 81 spin_lock(&dir->i_lock); 82 if (list_empty(&nfsi->open_files) && 83 (nfsi->cache_validity & NFS_INO_DATA_INVAL_DEFER)) 84 nfsi->cache_validity |= NFS_INO_INVALID_DATA | 85 NFS_INO_REVAL_FORCED; 86 list_add(&ctx->list, &nfsi->open_files); 87 spin_unlock(&dir->i_lock); 88 return ctx; 89 } 90 return ERR_PTR(-ENOMEM); 91 } 92 93 static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx) 94 { 95 spin_lock(&dir->i_lock); 96 list_del(&ctx->list); 97 spin_unlock(&dir->i_lock); 98 kfree(ctx); 99 } 100 101 /* 102 * Open file 103 */ 104 static int 105 nfs_opendir(struct inode *inode, struct file *filp) 106 { 107 int res = 0; 108 struct nfs_open_dir_context *ctx; 109 110 dfprintk(FILE, "NFS: open dir(%pD2)\n", filp); 111 112 nfs_inc_stats(inode, NFSIOS_VFSOPEN); 113 114 ctx = alloc_nfs_open_dir_context(inode); 115 if (IS_ERR(ctx)) { 116 res = PTR_ERR(ctx); 117 goto out; 118 } 119 filp->private_data = ctx; 120 out: 121 return res; 122 } 123 124 static int 125 nfs_closedir(struct inode *inode, struct file *filp) 126 { 127 put_nfs_open_dir_context(file_inode(filp), filp->private_data); 128 return 0; 129 } 130 131 struct nfs_cache_array_entry { 132 u64 cookie; 133 u64 ino; 134 const char *name; 135 unsigned int name_len; 136 unsigned char d_type; 137 }; 138 139 struct nfs_cache_array { 140 u64 last_cookie; 141 unsigned int size; 142 unsigned char page_full : 1, 143 page_is_eof : 1; 144 struct nfs_cache_array_entry array[]; 145 }; 146 147 typedef struct nfs_readdir_descriptor { 148 struct file *file; 149 struct page *page; 150 struct dir_context *ctx; 151 pgoff_t page_index; 152 u64 dir_cookie; 153 u64 last_cookie; 154 u64 dup_cookie; 155 loff_t current_index; 156 loff_t prev_index; 157 158 unsigned long dir_verifier; 159 unsigned long timestamp; 160 unsigned long gencount; 161 unsigned long attr_gencount; 162 unsigned int cache_entry_index; 163 signed char duped; 164 bool plus; 165 bool eof; 166 } nfs_readdir_descriptor_t; 167 168 static void nfs_readdir_array_init(struct nfs_cache_array *array) 169 { 170 memset(array, 0, sizeof(struct nfs_cache_array)); 171 } 172 173 static void nfs_readdir_page_init_array(struct page *page, u64 last_cookie) 174 { 175 struct nfs_cache_array *array; 176 177 array = kmap_atomic(page); 178 nfs_readdir_array_init(array); 179 array->last_cookie = last_cookie; 180 kunmap_atomic(array); 181 } 182 183 /* 184 * we are freeing strings created by nfs_add_to_readdir_array() 185 */ 186 static 187 void nfs_readdir_clear_array(struct page *page) 188 { 189 struct nfs_cache_array *array; 190 int i; 191 192 array = kmap_atomic(page); 193 for (i = 0; i < array->size; i++) 194 kfree(array->array[i].name); 195 nfs_readdir_array_init(array); 196 kunmap_atomic(array); 197 } 198 199 static void nfs_readdir_array_set_eof(struct nfs_cache_array *array) 200 { 201 array->page_is_eof = 1; 202 array->page_full = 1; 203 } 204 205 static bool nfs_readdir_array_is_full(struct nfs_cache_array *array) 206 { 207 return array->page_full; 208 } 209 210 /* 211 * the caller is responsible for freeing qstr.name 212 * when called by nfs_readdir_add_to_array, the strings will be freed in 213 * nfs_clear_readdir_array() 214 */ 215 static const char *nfs_readdir_copy_name(const char *name, unsigned int len) 216 { 217 const char *ret = kmemdup_nul(name, len, GFP_KERNEL); 218 219 /* 220 * Avoid a kmemleak false positive. The pointer to the name is stored 221 * in a page cache page which kmemleak does not scan. 222 */ 223 if (ret != NULL) 224 kmemleak_not_leak(ret); 225 return ret; 226 } 227 228 /* 229 * Check that the next array entry lies entirely within the page bounds 230 */ 231 static int nfs_readdir_array_can_expand(struct nfs_cache_array *array) 232 { 233 struct nfs_cache_array_entry *cache_entry; 234 235 if (array->page_full) 236 return -ENOSPC; 237 cache_entry = &array->array[array->size + 1]; 238 if ((char *)cache_entry - (char *)array > PAGE_SIZE) { 239 array->page_full = 1; 240 return -ENOSPC; 241 } 242 return 0; 243 } 244 245 static 246 int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page) 247 { 248 struct nfs_cache_array *array; 249 struct nfs_cache_array_entry *cache_entry; 250 const char *name; 251 int ret; 252 253 name = nfs_readdir_copy_name(entry->name, entry->len); 254 if (!name) 255 return -ENOMEM; 256 257 array = kmap_atomic(page); 258 ret = nfs_readdir_array_can_expand(array); 259 if (ret) { 260 kfree(name); 261 goto out; 262 } 263 264 cache_entry = &array->array[array->size]; 265 cache_entry->cookie = entry->prev_cookie; 266 cache_entry->ino = entry->ino; 267 cache_entry->d_type = entry->d_type; 268 cache_entry->name_len = entry->len; 269 cache_entry->name = name; 270 array->last_cookie = entry->cookie; 271 array->size++; 272 if (entry->eof != 0) 273 nfs_readdir_array_set_eof(array); 274 out: 275 kunmap_atomic(array); 276 return ret; 277 } 278 279 static struct page *nfs_readdir_page_get_locked(struct address_space *mapping, 280 pgoff_t index, u64 last_cookie) 281 { 282 struct page *page; 283 284 page = grab_cache_page(mapping, index); 285 if (page && !PageUptodate(page)) { 286 nfs_readdir_page_init_array(page, last_cookie); 287 if (invalidate_inode_pages2_range(mapping, index + 1, -1) < 0) 288 nfs_zap_mapping(mapping->host, mapping); 289 SetPageUptodate(page); 290 } 291 292 return page; 293 } 294 295 static u64 nfs_readdir_page_last_cookie(struct page *page) 296 { 297 struct nfs_cache_array *array; 298 u64 ret; 299 300 array = kmap_atomic(page); 301 ret = array->last_cookie; 302 kunmap_atomic(array); 303 return ret; 304 } 305 306 static bool nfs_readdir_page_needs_filling(struct page *page) 307 { 308 struct nfs_cache_array *array; 309 bool ret; 310 311 array = kmap_atomic(page); 312 ret = !nfs_readdir_array_is_full(array); 313 kunmap_atomic(array); 314 return ret; 315 } 316 317 static void nfs_readdir_page_set_eof(struct page *page) 318 { 319 struct nfs_cache_array *array; 320 321 array = kmap_atomic(page); 322 nfs_readdir_array_set_eof(array); 323 kunmap_atomic(array); 324 } 325 326 static void nfs_readdir_page_unlock_and_put(struct page *page) 327 { 328 unlock_page(page); 329 put_page(page); 330 } 331 332 static struct page *nfs_readdir_page_get_next(struct address_space *mapping, 333 pgoff_t index, u64 cookie) 334 { 335 struct page *page; 336 337 page = nfs_readdir_page_get_locked(mapping, index, cookie); 338 if (page) { 339 if (nfs_readdir_page_last_cookie(page) == cookie) 340 return page; 341 nfs_readdir_page_unlock_and_put(page); 342 } 343 return NULL; 344 } 345 346 static inline 347 int is_32bit_api(void) 348 { 349 #ifdef CONFIG_COMPAT 350 return in_compat_syscall(); 351 #else 352 return (BITS_PER_LONG == 32); 353 #endif 354 } 355 356 static 357 bool nfs_readdir_use_cookie(const struct file *filp) 358 { 359 if ((filp->f_mode & FMODE_32BITHASH) || 360 (!(filp->f_mode & FMODE_64BITHASH) && is_32bit_api())) 361 return false; 362 return true; 363 } 364 365 static 366 int nfs_readdir_search_for_pos(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc) 367 { 368 loff_t diff = desc->ctx->pos - desc->current_index; 369 unsigned int index; 370 371 if (diff < 0) 372 goto out_eof; 373 if (diff >= array->size) { 374 if (array->page_is_eof) 375 goto out_eof; 376 return -EAGAIN; 377 } 378 379 index = (unsigned int)diff; 380 desc->dir_cookie = array->array[index].cookie; 381 desc->cache_entry_index = index; 382 return 0; 383 out_eof: 384 desc->eof = true; 385 return -EBADCOOKIE; 386 } 387 388 static bool 389 nfs_readdir_inode_mapping_valid(struct nfs_inode *nfsi) 390 { 391 if (nfsi->cache_validity & (NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA)) 392 return false; 393 smp_rmb(); 394 return !test_bit(NFS_INO_INVALIDATING, &nfsi->flags); 395 } 396 397 static 398 int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc) 399 { 400 int i; 401 loff_t new_pos; 402 int status = -EAGAIN; 403 404 for (i = 0; i < array->size; i++) { 405 if (array->array[i].cookie == desc->dir_cookie) { 406 struct nfs_inode *nfsi = NFS_I(file_inode(desc->file)); 407 408 new_pos = desc->current_index + i; 409 if (desc->attr_gencount != nfsi->attr_gencount || 410 !nfs_readdir_inode_mapping_valid(nfsi)) { 411 desc->duped = 0; 412 desc->attr_gencount = nfsi->attr_gencount; 413 } else if (new_pos < desc->prev_index) { 414 if (desc->duped > 0 415 && desc->dup_cookie == desc->dir_cookie) { 416 if (printk_ratelimit()) { 417 pr_notice("NFS: directory %pD2 contains a readdir loop." 418 "Please contact your server vendor. " 419 "The file: %s has duplicate cookie %llu\n", 420 desc->file, array->array[i].name, desc->dir_cookie); 421 } 422 status = -ELOOP; 423 goto out; 424 } 425 desc->dup_cookie = desc->dir_cookie; 426 desc->duped = -1; 427 } 428 if (nfs_readdir_use_cookie(desc->file)) 429 desc->ctx->pos = desc->dir_cookie; 430 else 431 desc->ctx->pos = new_pos; 432 desc->prev_index = new_pos; 433 desc->cache_entry_index = i; 434 return 0; 435 } 436 } 437 if (array->page_is_eof) { 438 status = -EBADCOOKIE; 439 if (desc->dir_cookie == array->last_cookie) 440 desc->eof = true; 441 } 442 out: 443 return status; 444 } 445 446 static 447 int nfs_readdir_search_array(nfs_readdir_descriptor_t *desc) 448 { 449 struct nfs_cache_array *array; 450 int status; 451 452 array = kmap_atomic(desc->page); 453 454 if (desc->dir_cookie == 0) 455 status = nfs_readdir_search_for_pos(array, desc); 456 else 457 status = nfs_readdir_search_for_cookie(array, desc); 458 459 if (status == -EAGAIN) { 460 desc->last_cookie = array->last_cookie; 461 desc->current_index += array->size; 462 desc->page_index++; 463 } 464 kunmap_atomic(array); 465 return status; 466 } 467 468 /* Fill a page with xdr information before transferring to the cache page */ 469 static int nfs_readdir_xdr_filler(struct nfs_readdir_descriptor *desc, 470 u64 cookie, struct page **pages, 471 size_t bufsize) 472 { 473 struct file *file = desc->file; 474 struct inode *inode = file_inode(file); 475 unsigned long timestamp, gencount; 476 int error; 477 478 again: 479 timestamp = jiffies; 480 gencount = nfs_inc_attr_generation_counter(); 481 desc->dir_verifier = nfs_save_change_attribute(inode); 482 error = NFS_PROTO(inode)->readdir(file_dentry(file), file->f_cred, 483 cookie, pages, bufsize, desc->plus); 484 if (error < 0) { 485 /* We requested READDIRPLUS, but the server doesn't grok it */ 486 if (error == -ENOTSUPP && desc->plus) { 487 NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS; 488 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags); 489 desc->plus = false; 490 goto again; 491 } 492 goto error; 493 } 494 desc->timestamp = timestamp; 495 desc->gencount = gencount; 496 error: 497 return error; 498 } 499 500 static int xdr_decode(nfs_readdir_descriptor_t *desc, 501 struct nfs_entry *entry, struct xdr_stream *xdr) 502 { 503 struct inode *inode = file_inode(desc->file); 504 int error; 505 506 error = NFS_PROTO(inode)->decode_dirent(xdr, entry, desc->plus); 507 if (error) 508 return error; 509 entry->fattr->time_start = desc->timestamp; 510 entry->fattr->gencount = desc->gencount; 511 return 0; 512 } 513 514 /* Match file and dirent using either filehandle or fileid 515 * Note: caller is responsible for checking the fsid 516 */ 517 static 518 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry) 519 { 520 struct inode *inode; 521 struct nfs_inode *nfsi; 522 523 if (d_really_is_negative(dentry)) 524 return 0; 525 526 inode = d_inode(dentry); 527 if (is_bad_inode(inode) || NFS_STALE(inode)) 528 return 0; 529 530 nfsi = NFS_I(inode); 531 if (entry->fattr->fileid != nfsi->fileid) 532 return 0; 533 if (entry->fh->size && nfs_compare_fh(entry->fh, &nfsi->fh) != 0) 534 return 0; 535 return 1; 536 } 537 538 static 539 bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx) 540 { 541 if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS)) 542 return false; 543 if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags)) 544 return true; 545 if (ctx->pos == 0) 546 return true; 547 return false; 548 } 549 550 /* 551 * This function is called by the lookup and getattr code to request the 552 * use of readdirplus to accelerate any future lookups in the same 553 * directory. 554 */ 555 void nfs_advise_use_readdirplus(struct inode *dir) 556 { 557 struct nfs_inode *nfsi = NFS_I(dir); 558 559 if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) && 560 !list_empty(&nfsi->open_files)) 561 set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags); 562 } 563 564 /* 565 * This function is mainly for use by nfs_getattr(). 566 * 567 * If this is an 'ls -l', we want to force use of readdirplus. 568 * Do this by checking if there is an active file descriptor 569 * and calling nfs_advise_use_readdirplus, then forcing a 570 * cache flush. 571 */ 572 void nfs_force_use_readdirplus(struct inode *dir) 573 { 574 struct nfs_inode *nfsi = NFS_I(dir); 575 576 if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) && 577 !list_empty(&nfsi->open_files)) { 578 set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags); 579 invalidate_mapping_pages(dir->i_mapping, 580 nfsi->page_index + 1, -1); 581 } 582 } 583 584 static 585 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry, 586 unsigned long dir_verifier) 587 { 588 struct qstr filename = QSTR_INIT(entry->name, entry->len); 589 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 590 struct dentry *dentry; 591 struct dentry *alias; 592 struct inode *inode; 593 int status; 594 595 if (!(entry->fattr->valid & NFS_ATTR_FATTR_FILEID)) 596 return; 597 if (!(entry->fattr->valid & NFS_ATTR_FATTR_FSID)) 598 return; 599 if (filename.len == 0) 600 return; 601 /* Validate that the name doesn't contain any illegal '\0' */ 602 if (strnlen(filename.name, filename.len) != filename.len) 603 return; 604 /* ...or '/' */ 605 if (strnchr(filename.name, filename.len, '/')) 606 return; 607 if (filename.name[0] == '.') { 608 if (filename.len == 1) 609 return; 610 if (filename.len == 2 && filename.name[1] == '.') 611 return; 612 } 613 filename.hash = full_name_hash(parent, filename.name, filename.len); 614 615 dentry = d_lookup(parent, &filename); 616 again: 617 if (!dentry) { 618 dentry = d_alloc_parallel(parent, &filename, &wq); 619 if (IS_ERR(dentry)) 620 return; 621 } 622 if (!d_in_lookup(dentry)) { 623 /* Is there a mountpoint here? If so, just exit */ 624 if (!nfs_fsid_equal(&NFS_SB(dentry->d_sb)->fsid, 625 &entry->fattr->fsid)) 626 goto out; 627 if (nfs_same_file(dentry, entry)) { 628 if (!entry->fh->size) 629 goto out; 630 nfs_set_verifier(dentry, dir_verifier); 631 status = nfs_refresh_inode(d_inode(dentry), entry->fattr); 632 if (!status) 633 nfs_setsecurity(d_inode(dentry), entry->fattr, entry->label); 634 goto out; 635 } else { 636 d_invalidate(dentry); 637 dput(dentry); 638 dentry = NULL; 639 goto again; 640 } 641 } 642 if (!entry->fh->size) { 643 d_lookup_done(dentry); 644 goto out; 645 } 646 647 inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr, entry->label); 648 alias = d_splice_alias(inode, dentry); 649 d_lookup_done(dentry); 650 if (alias) { 651 if (IS_ERR(alias)) 652 goto out; 653 dput(dentry); 654 dentry = alias; 655 } 656 nfs_set_verifier(dentry, dir_verifier); 657 out: 658 dput(dentry); 659 } 660 661 /* Perform conversion from xdr to cache array */ 662 static int nfs_readdir_page_filler(struct nfs_readdir_descriptor *desc, 663 struct nfs_entry *entry, 664 struct page **xdr_pages, 665 struct page *fillme, unsigned int buflen) 666 { 667 struct address_space *mapping = desc->file->f_mapping; 668 struct xdr_stream stream; 669 struct xdr_buf buf; 670 struct page *scratch, *new, *page = fillme; 671 int status; 672 673 scratch = alloc_page(GFP_KERNEL); 674 if (scratch == NULL) 675 return -ENOMEM; 676 677 xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen); 678 xdr_set_scratch_buffer(&stream, page_address(scratch), PAGE_SIZE); 679 680 do { 681 if (entry->label) 682 entry->label->len = NFS4_MAXLABELLEN; 683 684 status = xdr_decode(desc, entry, &stream); 685 if (status != 0) 686 break; 687 688 if (desc->plus) 689 nfs_prime_dcache(file_dentry(desc->file), entry, 690 desc->dir_verifier); 691 692 status = nfs_readdir_add_to_array(entry, page); 693 if (status != -ENOSPC) 694 continue; 695 696 if (page->mapping != mapping) 697 break; 698 new = nfs_readdir_page_get_next(mapping, page->index + 1, 699 entry->prev_cookie); 700 if (!new) 701 break; 702 if (page != fillme) 703 nfs_readdir_page_unlock_and_put(page); 704 page = new; 705 status = nfs_readdir_add_to_array(entry, page); 706 } while (!status && !entry->eof); 707 708 switch (status) { 709 case -EBADCOOKIE: 710 if (entry->eof) { 711 nfs_readdir_page_set_eof(page); 712 status = 0; 713 } 714 break; 715 case -ENOSPC: 716 case -EAGAIN: 717 status = 0; 718 break; 719 } 720 721 if (page != fillme) 722 nfs_readdir_page_unlock_and_put(page); 723 724 put_page(scratch); 725 return status; 726 } 727 728 static void nfs_readdir_free_pages(struct page **pages, size_t npages) 729 { 730 while (npages--) 731 put_page(pages[npages]); 732 kfree(pages); 733 } 734 735 /* 736 * nfs_readdir_alloc_pages() will allocate pages that must be freed with a call 737 * to nfs_readdir_free_pages() 738 */ 739 static struct page **nfs_readdir_alloc_pages(size_t npages) 740 { 741 struct page **pages; 742 size_t i; 743 744 pages = kmalloc_array(npages, sizeof(*pages), GFP_KERNEL); 745 if (!pages) 746 return NULL; 747 for (i = 0; i < npages; i++) { 748 struct page *page = alloc_page(GFP_KERNEL); 749 if (page == NULL) 750 goto out_freepages; 751 pages[i] = page; 752 } 753 return pages; 754 755 out_freepages: 756 nfs_readdir_free_pages(pages, i); 757 return NULL; 758 } 759 760 static 761 int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t *desc, struct page *page, struct inode *inode) 762 { 763 struct page **pages; 764 struct nfs_entry entry; 765 size_t array_size; 766 size_t dtsize = NFS_SERVER(inode)->dtsize; 767 int status = -ENOMEM; 768 769 entry.prev_cookie = 0; 770 entry.cookie = nfs_readdir_page_last_cookie(page); 771 entry.eof = 0; 772 entry.fh = nfs_alloc_fhandle(); 773 entry.fattr = nfs_alloc_fattr(); 774 entry.server = NFS_SERVER(inode); 775 if (entry.fh == NULL || entry.fattr == NULL) 776 goto out; 777 778 entry.label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT); 779 if (IS_ERR(entry.label)) { 780 status = PTR_ERR(entry.label); 781 goto out; 782 } 783 784 array_size = (dtsize + PAGE_SIZE - 1) >> PAGE_SHIFT; 785 pages = nfs_readdir_alloc_pages(array_size); 786 if (!pages) 787 goto out_release_label; 788 789 do { 790 unsigned int pglen; 791 status = nfs_readdir_xdr_filler(desc, entry.cookie, 792 pages, dtsize); 793 if (status < 0) 794 break; 795 796 pglen = status; 797 if (pglen == 0) { 798 nfs_readdir_page_set_eof(page); 799 break; 800 } 801 802 status = nfs_readdir_page_filler(desc, &entry, pages, page, pglen); 803 } while (!status && nfs_readdir_page_needs_filling(page)); 804 805 nfs_readdir_free_pages(pages, array_size); 806 out_release_label: 807 nfs4_label_free(entry.label); 808 out: 809 nfs_free_fattr(entry.fattr); 810 nfs_free_fhandle(entry.fh); 811 return status; 812 } 813 814 static void nfs_readdir_page_put(struct nfs_readdir_descriptor *desc) 815 { 816 put_page(desc->page); 817 desc->page = NULL; 818 } 819 820 static void 821 nfs_readdir_page_unlock_and_put_cached(struct nfs_readdir_descriptor *desc) 822 { 823 unlock_page(desc->page); 824 nfs_readdir_page_put(desc); 825 } 826 827 static struct page * 828 nfs_readdir_page_get_cached(struct nfs_readdir_descriptor *desc) 829 { 830 return nfs_readdir_page_get_locked(desc->file->f_mapping, 831 desc->page_index, 832 desc->last_cookie); 833 } 834 835 /* 836 * Returns 0 if desc->dir_cookie was found on page desc->page_index 837 * and locks the page to prevent removal from the page cache. 838 */ 839 static 840 int find_and_lock_cache_page(nfs_readdir_descriptor_t *desc) 841 { 842 struct inode *inode = file_inode(desc->file); 843 struct nfs_inode *nfsi = NFS_I(inode); 844 int res; 845 846 desc->page = nfs_readdir_page_get_cached(desc); 847 if (!desc->page) 848 return -ENOMEM; 849 if (nfs_readdir_page_needs_filling(desc->page)) { 850 res = nfs_readdir_xdr_to_array(desc, desc->page, inode); 851 if (res < 0) 852 goto error; 853 } 854 res = nfs_readdir_search_array(desc); 855 if (res == 0) { 856 nfsi->page_index = desc->page_index; 857 return 0; 858 } 859 error: 860 nfs_readdir_page_unlock_and_put_cached(desc); 861 return res; 862 } 863 864 /* Search for desc->dir_cookie from the beginning of the page cache */ 865 static inline 866 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc) 867 { 868 int res; 869 870 if (desc->page_index == 0) { 871 desc->current_index = 0; 872 desc->prev_index = 0; 873 desc->last_cookie = 0; 874 } 875 do { 876 res = find_and_lock_cache_page(desc); 877 } while (res == -EAGAIN); 878 return res; 879 } 880 881 /* 882 * Once we've found the start of the dirent within a page: fill 'er up... 883 */ 884 static void nfs_do_filldir(struct nfs_readdir_descriptor *desc) 885 { 886 struct file *file = desc->file; 887 struct nfs_cache_array *array; 888 unsigned int i = 0; 889 890 array = kmap(desc->page); 891 for (i = desc->cache_entry_index; i < array->size; i++) { 892 struct nfs_cache_array_entry *ent; 893 894 ent = &array->array[i]; 895 if (!dir_emit(desc->ctx, ent->name, ent->name_len, 896 nfs_compat_user_ino64(ent->ino), ent->d_type)) { 897 desc->eof = true; 898 break; 899 } 900 if (i < (array->size-1)) 901 desc->dir_cookie = array->array[i+1].cookie; 902 else 903 desc->dir_cookie = array->last_cookie; 904 if (nfs_readdir_use_cookie(file)) 905 desc->ctx->pos = desc->dir_cookie; 906 else 907 desc->ctx->pos++; 908 if (desc->duped != 0) 909 desc->duped = 1; 910 } 911 if (array->page_is_eof) 912 desc->eof = true; 913 914 kunmap(desc->page); 915 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %llu\n", 916 (unsigned long long)desc->dir_cookie); 917 } 918 919 /* 920 * If we cannot find a cookie in our cache, we suspect that this is 921 * because it points to a deleted file, so we ask the server to return 922 * whatever it thinks is the next entry. We then feed this to filldir. 923 * If all goes well, we should then be able to find our way round the 924 * cache on the next call to readdir_search_pagecache(); 925 * 926 * NOTE: we cannot add the anonymous page to the pagecache because 927 * the data it contains might not be page aligned. Besides, 928 * we should already have a complete representation of the 929 * directory in the page cache by the time we get here. 930 */ 931 static inline 932 int uncached_readdir(nfs_readdir_descriptor_t *desc) 933 { 934 struct page *page = NULL; 935 int status; 936 struct inode *inode = file_inode(desc->file); 937 938 dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n", 939 (unsigned long long)desc->dir_cookie); 940 941 page = alloc_page(GFP_HIGHUSER); 942 if (!page) { 943 status = -ENOMEM; 944 goto out; 945 } 946 947 desc->page_index = 0; 948 desc->last_cookie = desc->dir_cookie; 949 desc->page = page; 950 desc->duped = 0; 951 952 nfs_readdir_page_init_array(page, desc->dir_cookie); 953 status = nfs_readdir_xdr_to_array(desc, page, inode); 954 if (status < 0) 955 goto out_release; 956 957 nfs_do_filldir(desc); 958 959 out_release: 960 nfs_readdir_clear_array(desc->page); 961 nfs_readdir_page_put(desc); 962 out: 963 dfprintk(DIRCACHE, "NFS: %s: returns %d\n", 964 __func__, status); 965 return status; 966 } 967 968 /* The file offset position represents the dirent entry number. A 969 last cookie cache takes care of the common case of reading the 970 whole directory. 971 */ 972 static int nfs_readdir(struct file *file, struct dir_context *ctx) 973 { 974 struct dentry *dentry = file_dentry(file); 975 struct inode *inode = d_inode(dentry); 976 struct nfs_open_dir_context *dir_ctx = file->private_data; 977 nfs_readdir_descriptor_t my_desc = { 978 .file = file, 979 .ctx = ctx, 980 .plus = nfs_use_readdirplus(inode, ctx), 981 }, 982 *desc = &my_desc; 983 int res = 0; 984 985 dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n", 986 file, (long long)ctx->pos); 987 nfs_inc_stats(inode, NFSIOS_VFSGETDENTS); 988 989 /* 990 * ctx->pos points to the dirent entry number. 991 * *desc->dir_cookie has the cookie for the next entry. We have 992 * to either find the entry with the appropriate number or 993 * revalidate the cookie. 994 */ 995 if (ctx->pos == 0 || nfs_attribute_cache_expired(inode)) 996 res = nfs_revalidate_mapping(inode, file->f_mapping); 997 if (res < 0) 998 goto out; 999 1000 spin_lock(&file->f_lock); 1001 desc->dir_cookie = dir_ctx->dir_cookie; 1002 desc->dup_cookie = dir_ctx->dup_cookie; 1003 desc->duped = dir_ctx->duped; 1004 desc->attr_gencount = dir_ctx->attr_gencount; 1005 spin_unlock(&file->f_lock); 1006 1007 do { 1008 res = readdir_search_pagecache(desc); 1009 1010 if (res == -EBADCOOKIE) { 1011 res = 0; 1012 /* This means either end of directory */ 1013 if (desc->dir_cookie && !desc->eof) { 1014 /* Or that the server has 'lost' a cookie */ 1015 res = uncached_readdir(desc); 1016 if (res == 0) 1017 continue; 1018 } 1019 break; 1020 } 1021 if (res == -ETOOSMALL && desc->plus) { 1022 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags); 1023 nfs_zap_caches(inode); 1024 desc->page_index = 0; 1025 desc->plus = false; 1026 desc->eof = false; 1027 continue; 1028 } 1029 if (res < 0) 1030 break; 1031 1032 nfs_do_filldir(desc); 1033 nfs_readdir_page_unlock_and_put_cached(desc); 1034 } while (!desc->eof); 1035 1036 spin_lock(&file->f_lock); 1037 dir_ctx->dir_cookie = desc->dir_cookie; 1038 dir_ctx->dup_cookie = desc->dup_cookie; 1039 dir_ctx->duped = desc->duped; 1040 dir_ctx->attr_gencount = desc->attr_gencount; 1041 spin_unlock(&file->f_lock); 1042 1043 out: 1044 dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res); 1045 return res; 1046 } 1047 1048 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence) 1049 { 1050 struct nfs_open_dir_context *dir_ctx = filp->private_data; 1051 1052 dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n", 1053 filp, offset, whence); 1054 1055 switch (whence) { 1056 default: 1057 return -EINVAL; 1058 case SEEK_SET: 1059 if (offset < 0) 1060 return -EINVAL; 1061 spin_lock(&filp->f_lock); 1062 break; 1063 case SEEK_CUR: 1064 if (offset == 0) 1065 return filp->f_pos; 1066 spin_lock(&filp->f_lock); 1067 offset += filp->f_pos; 1068 if (offset < 0) { 1069 spin_unlock(&filp->f_lock); 1070 return -EINVAL; 1071 } 1072 } 1073 if (offset != filp->f_pos) { 1074 filp->f_pos = offset; 1075 if (nfs_readdir_use_cookie(filp)) 1076 dir_ctx->dir_cookie = offset; 1077 else 1078 dir_ctx->dir_cookie = 0; 1079 dir_ctx->duped = 0; 1080 } 1081 spin_unlock(&filp->f_lock); 1082 return offset; 1083 } 1084 1085 /* 1086 * All directory operations under NFS are synchronous, so fsync() 1087 * is a dummy operation. 1088 */ 1089 static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end, 1090 int datasync) 1091 { 1092 dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync); 1093 1094 nfs_inc_stats(file_inode(filp), NFSIOS_VFSFSYNC); 1095 return 0; 1096 } 1097 1098 /** 1099 * nfs_force_lookup_revalidate - Mark the directory as having changed 1100 * @dir: pointer to directory inode 1101 * 1102 * This forces the revalidation code in nfs_lookup_revalidate() to do a 1103 * full lookup on all child dentries of 'dir' whenever a change occurs 1104 * on the server that might have invalidated our dcache. 1105 * 1106 * Note that we reserve bit '0' as a tag to let us know when a dentry 1107 * was revalidated while holding a delegation on its inode. 1108 * 1109 * The caller should be holding dir->i_lock 1110 */ 1111 void nfs_force_lookup_revalidate(struct inode *dir) 1112 { 1113 NFS_I(dir)->cache_change_attribute += 2; 1114 } 1115 EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate); 1116 1117 /** 1118 * nfs_verify_change_attribute - Detects NFS remote directory changes 1119 * @dir: pointer to parent directory inode 1120 * @verf: previously saved change attribute 1121 * 1122 * Return "false" if the verifiers doesn't match the change attribute. 1123 * This would usually indicate that the directory contents have changed on 1124 * the server, and that any dentries need revalidating. 1125 */ 1126 static bool nfs_verify_change_attribute(struct inode *dir, unsigned long verf) 1127 { 1128 return (verf & ~1UL) == nfs_save_change_attribute(dir); 1129 } 1130 1131 static void nfs_set_verifier_delegated(unsigned long *verf) 1132 { 1133 *verf |= 1UL; 1134 } 1135 1136 #if IS_ENABLED(CONFIG_NFS_V4) 1137 static void nfs_unset_verifier_delegated(unsigned long *verf) 1138 { 1139 *verf &= ~1UL; 1140 } 1141 #endif /* IS_ENABLED(CONFIG_NFS_V4) */ 1142 1143 static bool nfs_test_verifier_delegated(unsigned long verf) 1144 { 1145 return verf & 1; 1146 } 1147 1148 static bool nfs_verifier_is_delegated(struct dentry *dentry) 1149 { 1150 return nfs_test_verifier_delegated(dentry->d_time); 1151 } 1152 1153 static void nfs_set_verifier_locked(struct dentry *dentry, unsigned long verf) 1154 { 1155 struct inode *inode = d_inode(dentry); 1156 1157 if (!nfs_verifier_is_delegated(dentry) && 1158 !nfs_verify_change_attribute(d_inode(dentry->d_parent), verf)) 1159 goto out; 1160 if (inode && NFS_PROTO(inode)->have_delegation(inode, FMODE_READ)) 1161 nfs_set_verifier_delegated(&verf); 1162 out: 1163 dentry->d_time = verf; 1164 } 1165 1166 /** 1167 * nfs_set_verifier - save a parent directory verifier in the dentry 1168 * @dentry: pointer to dentry 1169 * @verf: verifier to save 1170 * 1171 * Saves the parent directory verifier in @dentry. If the inode has 1172 * a delegation, we also tag the dentry as having been revalidated 1173 * while holding a delegation so that we know we don't have to 1174 * look it up again after a directory change. 1175 */ 1176 void nfs_set_verifier(struct dentry *dentry, unsigned long verf) 1177 { 1178 1179 spin_lock(&dentry->d_lock); 1180 nfs_set_verifier_locked(dentry, verf); 1181 spin_unlock(&dentry->d_lock); 1182 } 1183 EXPORT_SYMBOL_GPL(nfs_set_verifier); 1184 1185 #if IS_ENABLED(CONFIG_NFS_V4) 1186 /** 1187 * nfs_clear_verifier_delegated - clear the dir verifier delegation tag 1188 * @inode: pointer to inode 1189 * 1190 * Iterates through the dentries in the inode alias list and clears 1191 * the tag used to indicate that the dentry has been revalidated 1192 * while holding a delegation. 1193 * This function is intended for use when the delegation is being 1194 * returned or revoked. 1195 */ 1196 void nfs_clear_verifier_delegated(struct inode *inode) 1197 { 1198 struct dentry *alias; 1199 1200 if (!inode) 1201 return; 1202 spin_lock(&inode->i_lock); 1203 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) { 1204 spin_lock(&alias->d_lock); 1205 nfs_unset_verifier_delegated(&alias->d_time); 1206 spin_unlock(&alias->d_lock); 1207 } 1208 spin_unlock(&inode->i_lock); 1209 } 1210 EXPORT_SYMBOL_GPL(nfs_clear_verifier_delegated); 1211 #endif /* IS_ENABLED(CONFIG_NFS_V4) */ 1212 1213 /* 1214 * A check for whether or not the parent directory has changed. 1215 * In the case it has, we assume that the dentries are untrustworthy 1216 * and may need to be looked up again. 1217 * If rcu_walk prevents us from performing a full check, return 0. 1218 */ 1219 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry, 1220 int rcu_walk) 1221 { 1222 if (IS_ROOT(dentry)) 1223 return 1; 1224 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE) 1225 return 0; 1226 if (!nfs_verify_change_attribute(dir, dentry->d_time)) 1227 return 0; 1228 /* Revalidate nfsi->cache_change_attribute before we declare a match */ 1229 if (nfs_mapping_need_revalidate_inode(dir)) { 1230 if (rcu_walk) 1231 return 0; 1232 if (__nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0) 1233 return 0; 1234 } 1235 if (!nfs_verify_change_attribute(dir, dentry->d_time)) 1236 return 0; 1237 return 1; 1238 } 1239 1240 /* 1241 * Use intent information to check whether or not we're going to do 1242 * an O_EXCL create using this path component. 1243 */ 1244 static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags) 1245 { 1246 if (NFS_PROTO(dir)->version == 2) 1247 return 0; 1248 return flags & LOOKUP_EXCL; 1249 } 1250 1251 /* 1252 * Inode and filehandle revalidation for lookups. 1253 * 1254 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL, 1255 * or if the intent information indicates that we're about to open this 1256 * particular file and the "nocto" mount flag is not set. 1257 * 1258 */ 1259 static 1260 int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags) 1261 { 1262 struct nfs_server *server = NFS_SERVER(inode); 1263 int ret; 1264 1265 if (IS_AUTOMOUNT(inode)) 1266 return 0; 1267 1268 if (flags & LOOKUP_OPEN) { 1269 switch (inode->i_mode & S_IFMT) { 1270 case S_IFREG: 1271 /* A NFSv4 OPEN will revalidate later */ 1272 if (server->caps & NFS_CAP_ATOMIC_OPEN) 1273 goto out; 1274 fallthrough; 1275 case S_IFDIR: 1276 if (server->flags & NFS_MOUNT_NOCTO) 1277 break; 1278 /* NFS close-to-open cache consistency validation */ 1279 goto out_force; 1280 } 1281 } 1282 1283 /* VFS wants an on-the-wire revalidation */ 1284 if (flags & LOOKUP_REVAL) 1285 goto out_force; 1286 out: 1287 return (inode->i_nlink == 0) ? -ESTALE : 0; 1288 out_force: 1289 if (flags & LOOKUP_RCU) 1290 return -ECHILD; 1291 ret = __nfs_revalidate_inode(server, inode); 1292 if (ret != 0) 1293 return ret; 1294 goto out; 1295 } 1296 1297 /* 1298 * We judge how long we want to trust negative 1299 * dentries by looking at the parent inode mtime. 1300 * 1301 * If parent mtime has changed, we revalidate, else we wait for a 1302 * period corresponding to the parent's attribute cache timeout value. 1303 * 1304 * If LOOKUP_RCU prevents us from performing a full check, return 1 1305 * suggesting a reval is needed. 1306 * 1307 * Note that when creating a new file, or looking up a rename target, 1308 * then it shouldn't be necessary to revalidate a negative dentry. 1309 */ 1310 static inline 1311 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry, 1312 unsigned int flags) 1313 { 1314 if (flags & (LOOKUP_CREATE | LOOKUP_RENAME_TARGET)) 1315 return 0; 1316 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG) 1317 return 1; 1318 return !nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU); 1319 } 1320 1321 static int 1322 nfs_lookup_revalidate_done(struct inode *dir, struct dentry *dentry, 1323 struct inode *inode, int error) 1324 { 1325 switch (error) { 1326 case 1: 1327 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is valid\n", 1328 __func__, dentry); 1329 return 1; 1330 case 0: 1331 nfs_mark_for_revalidate(dir); 1332 if (inode && S_ISDIR(inode->i_mode)) { 1333 /* Purge readdir caches. */ 1334 nfs_zap_caches(inode); 1335 /* 1336 * We can't d_drop the root of a disconnected tree: 1337 * its d_hash is on the s_anon list and d_drop() would hide 1338 * it from shrink_dcache_for_unmount(), leading to busy 1339 * inodes on unmount and further oopses. 1340 */ 1341 if (IS_ROOT(dentry)) 1342 return 1; 1343 } 1344 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is invalid\n", 1345 __func__, dentry); 1346 return 0; 1347 } 1348 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) lookup returned error %d\n", 1349 __func__, dentry, error); 1350 return error; 1351 } 1352 1353 static int 1354 nfs_lookup_revalidate_negative(struct inode *dir, struct dentry *dentry, 1355 unsigned int flags) 1356 { 1357 int ret = 1; 1358 if (nfs_neg_need_reval(dir, dentry, flags)) { 1359 if (flags & LOOKUP_RCU) 1360 return -ECHILD; 1361 ret = 0; 1362 } 1363 return nfs_lookup_revalidate_done(dir, dentry, NULL, ret); 1364 } 1365 1366 static int 1367 nfs_lookup_revalidate_delegated(struct inode *dir, struct dentry *dentry, 1368 struct inode *inode) 1369 { 1370 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1371 return nfs_lookup_revalidate_done(dir, dentry, inode, 1); 1372 } 1373 1374 static int 1375 nfs_lookup_revalidate_dentry(struct inode *dir, struct dentry *dentry, 1376 struct inode *inode) 1377 { 1378 struct nfs_fh *fhandle; 1379 struct nfs_fattr *fattr; 1380 struct nfs4_label *label; 1381 unsigned long dir_verifier; 1382 int ret; 1383 1384 ret = -ENOMEM; 1385 fhandle = nfs_alloc_fhandle(); 1386 fattr = nfs_alloc_fattr(); 1387 label = nfs4_label_alloc(NFS_SERVER(inode), GFP_KERNEL); 1388 if (fhandle == NULL || fattr == NULL || IS_ERR(label)) 1389 goto out; 1390 1391 dir_verifier = nfs_save_change_attribute(dir); 1392 ret = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr, label); 1393 if (ret < 0) { 1394 switch (ret) { 1395 case -ESTALE: 1396 case -ENOENT: 1397 ret = 0; 1398 break; 1399 case -ETIMEDOUT: 1400 if (NFS_SERVER(inode)->flags & NFS_MOUNT_SOFTREVAL) 1401 ret = 1; 1402 } 1403 goto out; 1404 } 1405 ret = 0; 1406 if (nfs_compare_fh(NFS_FH(inode), fhandle)) 1407 goto out; 1408 if (nfs_refresh_inode(inode, fattr) < 0) 1409 goto out; 1410 1411 nfs_setsecurity(inode, fattr, label); 1412 nfs_set_verifier(dentry, dir_verifier); 1413 1414 /* set a readdirplus hint that we had a cache miss */ 1415 nfs_force_use_readdirplus(dir); 1416 ret = 1; 1417 out: 1418 nfs_free_fattr(fattr); 1419 nfs_free_fhandle(fhandle); 1420 nfs4_label_free(label); 1421 return nfs_lookup_revalidate_done(dir, dentry, inode, ret); 1422 } 1423 1424 /* 1425 * This is called every time the dcache has a lookup hit, 1426 * and we should check whether we can really trust that 1427 * lookup. 1428 * 1429 * NOTE! The hit can be a negative hit too, don't assume 1430 * we have an inode! 1431 * 1432 * If the parent directory is seen to have changed, we throw out the 1433 * cached dentry and do a new lookup. 1434 */ 1435 static int 1436 nfs_do_lookup_revalidate(struct inode *dir, struct dentry *dentry, 1437 unsigned int flags) 1438 { 1439 struct inode *inode; 1440 int error; 1441 1442 nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE); 1443 inode = d_inode(dentry); 1444 1445 if (!inode) 1446 return nfs_lookup_revalidate_negative(dir, dentry, flags); 1447 1448 if (is_bad_inode(inode)) { 1449 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n", 1450 __func__, dentry); 1451 goto out_bad; 1452 } 1453 1454 if (nfs_verifier_is_delegated(dentry)) 1455 return nfs_lookup_revalidate_delegated(dir, dentry, inode); 1456 1457 /* Force a full look up iff the parent directory has changed */ 1458 if (!(flags & (LOOKUP_EXCL | LOOKUP_REVAL)) && 1459 nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) { 1460 error = nfs_lookup_verify_inode(inode, flags); 1461 if (error) { 1462 if (error == -ESTALE) 1463 nfs_zap_caches(dir); 1464 goto out_bad; 1465 } 1466 nfs_advise_use_readdirplus(dir); 1467 goto out_valid; 1468 } 1469 1470 if (flags & LOOKUP_RCU) 1471 return -ECHILD; 1472 1473 if (NFS_STALE(inode)) 1474 goto out_bad; 1475 1476 trace_nfs_lookup_revalidate_enter(dir, dentry, flags); 1477 error = nfs_lookup_revalidate_dentry(dir, dentry, inode); 1478 trace_nfs_lookup_revalidate_exit(dir, dentry, flags, error); 1479 return error; 1480 out_valid: 1481 return nfs_lookup_revalidate_done(dir, dentry, inode, 1); 1482 out_bad: 1483 if (flags & LOOKUP_RCU) 1484 return -ECHILD; 1485 return nfs_lookup_revalidate_done(dir, dentry, inode, 0); 1486 } 1487 1488 static int 1489 __nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags, 1490 int (*reval)(struct inode *, struct dentry *, unsigned int)) 1491 { 1492 struct dentry *parent; 1493 struct inode *dir; 1494 int ret; 1495 1496 if (flags & LOOKUP_RCU) { 1497 parent = READ_ONCE(dentry->d_parent); 1498 dir = d_inode_rcu(parent); 1499 if (!dir) 1500 return -ECHILD; 1501 ret = reval(dir, dentry, flags); 1502 if (parent != READ_ONCE(dentry->d_parent)) 1503 return -ECHILD; 1504 } else { 1505 parent = dget_parent(dentry); 1506 ret = reval(d_inode(parent), dentry, flags); 1507 dput(parent); 1508 } 1509 return ret; 1510 } 1511 1512 static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags) 1513 { 1514 return __nfs_lookup_revalidate(dentry, flags, nfs_do_lookup_revalidate); 1515 } 1516 1517 /* 1518 * A weaker form of d_revalidate for revalidating just the d_inode(dentry) 1519 * when we don't really care about the dentry name. This is called when a 1520 * pathwalk ends on a dentry that was not found via a normal lookup in the 1521 * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals). 1522 * 1523 * In this situation, we just want to verify that the inode itself is OK 1524 * since the dentry might have changed on the server. 1525 */ 1526 static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags) 1527 { 1528 struct inode *inode = d_inode(dentry); 1529 int error = 0; 1530 1531 /* 1532 * I believe we can only get a negative dentry here in the case of a 1533 * procfs-style symlink. Just assume it's correct for now, but we may 1534 * eventually need to do something more here. 1535 */ 1536 if (!inode) { 1537 dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n", 1538 __func__, dentry); 1539 return 1; 1540 } 1541 1542 if (is_bad_inode(inode)) { 1543 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n", 1544 __func__, dentry); 1545 return 0; 1546 } 1547 1548 error = nfs_lookup_verify_inode(inode, flags); 1549 dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n", 1550 __func__, inode->i_ino, error ? "invalid" : "valid"); 1551 return !error; 1552 } 1553 1554 /* 1555 * This is called from dput() when d_count is going to 0. 1556 */ 1557 static int nfs_dentry_delete(const struct dentry *dentry) 1558 { 1559 dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n", 1560 dentry, dentry->d_flags); 1561 1562 /* Unhash any dentry with a stale inode */ 1563 if (d_really_is_positive(dentry) && NFS_STALE(d_inode(dentry))) 1564 return 1; 1565 1566 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 1567 /* Unhash it, so that ->d_iput() would be called */ 1568 return 1; 1569 } 1570 if (!(dentry->d_sb->s_flags & SB_ACTIVE)) { 1571 /* Unhash it, so that ancestors of killed async unlink 1572 * files will be cleaned up during umount */ 1573 return 1; 1574 } 1575 return 0; 1576 1577 } 1578 1579 /* Ensure that we revalidate inode->i_nlink */ 1580 static void nfs_drop_nlink(struct inode *inode) 1581 { 1582 spin_lock(&inode->i_lock); 1583 /* drop the inode if we're reasonably sure this is the last link */ 1584 if (inode->i_nlink > 0) 1585 drop_nlink(inode); 1586 NFS_I(inode)->attr_gencount = nfs_inc_attr_generation_counter(); 1587 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_CHANGE 1588 | NFS_INO_INVALID_CTIME 1589 | NFS_INO_INVALID_OTHER 1590 | NFS_INO_REVAL_FORCED; 1591 spin_unlock(&inode->i_lock); 1592 } 1593 1594 /* 1595 * Called when the dentry loses inode. 1596 * We use it to clean up silly-renamed files. 1597 */ 1598 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode) 1599 { 1600 if (S_ISDIR(inode->i_mode)) 1601 /* drop any readdir cache as it could easily be old */ 1602 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA; 1603 1604 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 1605 nfs_complete_unlink(dentry, inode); 1606 nfs_drop_nlink(inode); 1607 } 1608 iput(inode); 1609 } 1610 1611 static void nfs_d_release(struct dentry *dentry) 1612 { 1613 /* free cached devname value, if it survived that far */ 1614 if (unlikely(dentry->d_fsdata)) { 1615 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) 1616 WARN_ON(1); 1617 else 1618 kfree(dentry->d_fsdata); 1619 } 1620 } 1621 1622 const struct dentry_operations nfs_dentry_operations = { 1623 .d_revalidate = nfs_lookup_revalidate, 1624 .d_weak_revalidate = nfs_weak_revalidate, 1625 .d_delete = nfs_dentry_delete, 1626 .d_iput = nfs_dentry_iput, 1627 .d_automount = nfs_d_automount, 1628 .d_release = nfs_d_release, 1629 }; 1630 EXPORT_SYMBOL_GPL(nfs_dentry_operations); 1631 1632 struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags) 1633 { 1634 struct dentry *res; 1635 struct inode *inode = NULL; 1636 struct nfs_fh *fhandle = NULL; 1637 struct nfs_fattr *fattr = NULL; 1638 struct nfs4_label *label = NULL; 1639 unsigned long dir_verifier; 1640 int error; 1641 1642 dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry); 1643 nfs_inc_stats(dir, NFSIOS_VFSLOOKUP); 1644 1645 if (unlikely(dentry->d_name.len > NFS_SERVER(dir)->namelen)) 1646 return ERR_PTR(-ENAMETOOLONG); 1647 1648 /* 1649 * If we're doing an exclusive create, optimize away the lookup 1650 * but don't hash the dentry. 1651 */ 1652 if (nfs_is_exclusive_create(dir, flags) || flags & LOOKUP_RENAME_TARGET) 1653 return NULL; 1654 1655 res = ERR_PTR(-ENOMEM); 1656 fhandle = nfs_alloc_fhandle(); 1657 fattr = nfs_alloc_fattr(); 1658 if (fhandle == NULL || fattr == NULL) 1659 goto out; 1660 1661 label = nfs4_label_alloc(NFS_SERVER(dir), GFP_NOWAIT); 1662 if (IS_ERR(label)) 1663 goto out; 1664 1665 dir_verifier = nfs_save_change_attribute(dir); 1666 trace_nfs_lookup_enter(dir, dentry, flags); 1667 error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr, label); 1668 if (error == -ENOENT) 1669 goto no_entry; 1670 if (error < 0) { 1671 res = ERR_PTR(error); 1672 goto out_label; 1673 } 1674 inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label); 1675 res = ERR_CAST(inode); 1676 if (IS_ERR(res)) 1677 goto out_label; 1678 1679 /* Notify readdir to use READDIRPLUS */ 1680 nfs_force_use_readdirplus(dir); 1681 1682 no_entry: 1683 res = d_splice_alias(inode, dentry); 1684 if (res != NULL) { 1685 if (IS_ERR(res)) 1686 goto out_label; 1687 dentry = res; 1688 } 1689 nfs_set_verifier(dentry, dir_verifier); 1690 out_label: 1691 trace_nfs_lookup_exit(dir, dentry, flags, error); 1692 nfs4_label_free(label); 1693 out: 1694 nfs_free_fattr(fattr); 1695 nfs_free_fhandle(fhandle); 1696 return res; 1697 } 1698 EXPORT_SYMBOL_GPL(nfs_lookup); 1699 1700 #if IS_ENABLED(CONFIG_NFS_V4) 1701 static int nfs4_lookup_revalidate(struct dentry *, unsigned int); 1702 1703 const struct dentry_operations nfs4_dentry_operations = { 1704 .d_revalidate = nfs4_lookup_revalidate, 1705 .d_weak_revalidate = nfs_weak_revalidate, 1706 .d_delete = nfs_dentry_delete, 1707 .d_iput = nfs_dentry_iput, 1708 .d_automount = nfs_d_automount, 1709 .d_release = nfs_d_release, 1710 }; 1711 EXPORT_SYMBOL_GPL(nfs4_dentry_operations); 1712 1713 static fmode_t flags_to_mode(int flags) 1714 { 1715 fmode_t res = (__force fmode_t)flags & FMODE_EXEC; 1716 if ((flags & O_ACCMODE) != O_WRONLY) 1717 res |= FMODE_READ; 1718 if ((flags & O_ACCMODE) != O_RDONLY) 1719 res |= FMODE_WRITE; 1720 return res; 1721 } 1722 1723 static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags, struct file *filp) 1724 { 1725 return alloc_nfs_open_context(dentry, flags_to_mode(open_flags), filp); 1726 } 1727 1728 static int do_open(struct inode *inode, struct file *filp) 1729 { 1730 nfs_fscache_open_file(inode, filp); 1731 return 0; 1732 } 1733 1734 static int nfs_finish_open(struct nfs_open_context *ctx, 1735 struct dentry *dentry, 1736 struct file *file, unsigned open_flags) 1737 { 1738 int err; 1739 1740 err = finish_open(file, dentry, do_open); 1741 if (err) 1742 goto out; 1743 if (S_ISREG(file->f_path.dentry->d_inode->i_mode)) 1744 nfs_file_set_open_context(file, ctx); 1745 else 1746 err = -EOPENSTALE; 1747 out: 1748 return err; 1749 } 1750 1751 int nfs_atomic_open(struct inode *dir, struct dentry *dentry, 1752 struct file *file, unsigned open_flags, 1753 umode_t mode) 1754 { 1755 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 1756 struct nfs_open_context *ctx; 1757 struct dentry *res; 1758 struct iattr attr = { .ia_valid = ATTR_OPEN }; 1759 struct inode *inode; 1760 unsigned int lookup_flags = 0; 1761 bool switched = false; 1762 int created = 0; 1763 int err; 1764 1765 /* Expect a negative dentry */ 1766 BUG_ON(d_inode(dentry)); 1767 1768 dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n", 1769 dir->i_sb->s_id, dir->i_ino, dentry); 1770 1771 err = nfs_check_flags(open_flags); 1772 if (err) 1773 return err; 1774 1775 /* NFS only supports OPEN on regular files */ 1776 if ((open_flags & O_DIRECTORY)) { 1777 if (!d_in_lookup(dentry)) { 1778 /* 1779 * Hashed negative dentry with O_DIRECTORY: dentry was 1780 * revalidated and is fine, no need to perform lookup 1781 * again 1782 */ 1783 return -ENOENT; 1784 } 1785 lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY; 1786 goto no_open; 1787 } 1788 1789 if (dentry->d_name.len > NFS_SERVER(dir)->namelen) 1790 return -ENAMETOOLONG; 1791 1792 if (open_flags & O_CREAT) { 1793 struct nfs_server *server = NFS_SERVER(dir); 1794 1795 if (!(server->attr_bitmask[2] & FATTR4_WORD2_MODE_UMASK)) 1796 mode &= ~current_umask(); 1797 1798 attr.ia_valid |= ATTR_MODE; 1799 attr.ia_mode = mode; 1800 } 1801 if (open_flags & O_TRUNC) { 1802 attr.ia_valid |= ATTR_SIZE; 1803 attr.ia_size = 0; 1804 } 1805 1806 if (!(open_flags & O_CREAT) && !d_in_lookup(dentry)) { 1807 d_drop(dentry); 1808 switched = true; 1809 dentry = d_alloc_parallel(dentry->d_parent, 1810 &dentry->d_name, &wq); 1811 if (IS_ERR(dentry)) 1812 return PTR_ERR(dentry); 1813 if (unlikely(!d_in_lookup(dentry))) 1814 return finish_no_open(file, dentry); 1815 } 1816 1817 ctx = create_nfs_open_context(dentry, open_flags, file); 1818 err = PTR_ERR(ctx); 1819 if (IS_ERR(ctx)) 1820 goto out; 1821 1822 trace_nfs_atomic_open_enter(dir, ctx, open_flags); 1823 inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, &created); 1824 if (created) 1825 file->f_mode |= FMODE_CREATED; 1826 if (IS_ERR(inode)) { 1827 err = PTR_ERR(inode); 1828 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err); 1829 put_nfs_open_context(ctx); 1830 d_drop(dentry); 1831 switch (err) { 1832 case -ENOENT: 1833 d_splice_alias(NULL, dentry); 1834 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1835 break; 1836 case -EISDIR: 1837 case -ENOTDIR: 1838 goto no_open; 1839 case -ELOOP: 1840 if (!(open_flags & O_NOFOLLOW)) 1841 goto no_open; 1842 break; 1843 /* case -EINVAL: */ 1844 default: 1845 break; 1846 } 1847 goto out; 1848 } 1849 1850 err = nfs_finish_open(ctx, ctx->dentry, file, open_flags); 1851 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err); 1852 put_nfs_open_context(ctx); 1853 out: 1854 if (unlikely(switched)) { 1855 d_lookup_done(dentry); 1856 dput(dentry); 1857 } 1858 return err; 1859 1860 no_open: 1861 res = nfs_lookup(dir, dentry, lookup_flags); 1862 if (switched) { 1863 d_lookup_done(dentry); 1864 if (!res) 1865 res = dentry; 1866 else 1867 dput(dentry); 1868 } 1869 if (IS_ERR(res)) 1870 return PTR_ERR(res); 1871 return finish_no_open(file, res); 1872 } 1873 EXPORT_SYMBOL_GPL(nfs_atomic_open); 1874 1875 static int 1876 nfs4_do_lookup_revalidate(struct inode *dir, struct dentry *dentry, 1877 unsigned int flags) 1878 { 1879 struct inode *inode; 1880 1881 if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY)) 1882 goto full_reval; 1883 if (d_mountpoint(dentry)) 1884 goto full_reval; 1885 1886 inode = d_inode(dentry); 1887 1888 /* We can't create new files in nfs_open_revalidate(), so we 1889 * optimize away revalidation of negative dentries. 1890 */ 1891 if (inode == NULL) 1892 goto full_reval; 1893 1894 if (nfs_verifier_is_delegated(dentry)) 1895 return nfs_lookup_revalidate_delegated(dir, dentry, inode); 1896 1897 /* NFS only supports OPEN on regular files */ 1898 if (!S_ISREG(inode->i_mode)) 1899 goto full_reval; 1900 1901 /* We cannot do exclusive creation on a positive dentry */ 1902 if (flags & (LOOKUP_EXCL | LOOKUP_REVAL)) 1903 goto reval_dentry; 1904 1905 /* Check if the directory changed */ 1906 if (!nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) 1907 goto reval_dentry; 1908 1909 /* Let f_op->open() actually open (and revalidate) the file */ 1910 return 1; 1911 reval_dentry: 1912 if (flags & LOOKUP_RCU) 1913 return -ECHILD; 1914 return nfs_lookup_revalidate_dentry(dir, dentry, inode); 1915 1916 full_reval: 1917 return nfs_do_lookup_revalidate(dir, dentry, flags); 1918 } 1919 1920 static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags) 1921 { 1922 return __nfs_lookup_revalidate(dentry, flags, 1923 nfs4_do_lookup_revalidate); 1924 } 1925 1926 #endif /* CONFIG_NFSV4 */ 1927 1928 struct dentry * 1929 nfs_add_or_obtain(struct dentry *dentry, struct nfs_fh *fhandle, 1930 struct nfs_fattr *fattr, 1931 struct nfs4_label *label) 1932 { 1933 struct dentry *parent = dget_parent(dentry); 1934 struct inode *dir = d_inode(parent); 1935 struct inode *inode; 1936 struct dentry *d; 1937 int error; 1938 1939 d_drop(dentry); 1940 1941 if (fhandle->size == 0) { 1942 error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr, NULL); 1943 if (error) 1944 goto out_error; 1945 } 1946 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1947 if (!(fattr->valid & NFS_ATTR_FATTR)) { 1948 struct nfs_server *server = NFS_SB(dentry->d_sb); 1949 error = server->nfs_client->rpc_ops->getattr(server, fhandle, 1950 fattr, NULL, NULL); 1951 if (error < 0) 1952 goto out_error; 1953 } 1954 inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label); 1955 d = d_splice_alias(inode, dentry); 1956 out: 1957 dput(parent); 1958 return d; 1959 out_error: 1960 nfs_mark_for_revalidate(dir); 1961 d = ERR_PTR(error); 1962 goto out; 1963 } 1964 EXPORT_SYMBOL_GPL(nfs_add_or_obtain); 1965 1966 /* 1967 * Code common to create, mkdir, and mknod. 1968 */ 1969 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle, 1970 struct nfs_fattr *fattr, 1971 struct nfs4_label *label) 1972 { 1973 struct dentry *d; 1974 1975 d = nfs_add_or_obtain(dentry, fhandle, fattr, label); 1976 if (IS_ERR(d)) 1977 return PTR_ERR(d); 1978 1979 /* Callers don't care */ 1980 dput(d); 1981 return 0; 1982 } 1983 EXPORT_SYMBOL_GPL(nfs_instantiate); 1984 1985 /* 1986 * Following a failed create operation, we drop the dentry rather 1987 * than retain a negative dentry. This avoids a problem in the event 1988 * that the operation succeeded on the server, but an error in the 1989 * reply path made it appear to have failed. 1990 */ 1991 int nfs_create(struct inode *dir, struct dentry *dentry, 1992 umode_t mode, bool excl) 1993 { 1994 struct iattr attr; 1995 int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT; 1996 int error; 1997 1998 dfprintk(VFS, "NFS: create(%s/%lu), %pd\n", 1999 dir->i_sb->s_id, dir->i_ino, dentry); 2000 2001 attr.ia_mode = mode; 2002 attr.ia_valid = ATTR_MODE; 2003 2004 trace_nfs_create_enter(dir, dentry, open_flags); 2005 error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags); 2006 trace_nfs_create_exit(dir, dentry, open_flags, error); 2007 if (error != 0) 2008 goto out_err; 2009 return 0; 2010 out_err: 2011 d_drop(dentry); 2012 return error; 2013 } 2014 EXPORT_SYMBOL_GPL(nfs_create); 2015 2016 /* 2017 * See comments for nfs_proc_create regarding failed operations. 2018 */ 2019 int 2020 nfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t rdev) 2021 { 2022 struct iattr attr; 2023 int status; 2024 2025 dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n", 2026 dir->i_sb->s_id, dir->i_ino, dentry); 2027 2028 attr.ia_mode = mode; 2029 attr.ia_valid = ATTR_MODE; 2030 2031 trace_nfs_mknod_enter(dir, dentry); 2032 status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev); 2033 trace_nfs_mknod_exit(dir, dentry, status); 2034 if (status != 0) 2035 goto out_err; 2036 return 0; 2037 out_err: 2038 d_drop(dentry); 2039 return status; 2040 } 2041 EXPORT_SYMBOL_GPL(nfs_mknod); 2042 2043 /* 2044 * See comments for nfs_proc_create regarding failed operations. 2045 */ 2046 int nfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 2047 { 2048 struct iattr attr; 2049 int error; 2050 2051 dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n", 2052 dir->i_sb->s_id, dir->i_ino, dentry); 2053 2054 attr.ia_valid = ATTR_MODE; 2055 attr.ia_mode = mode | S_IFDIR; 2056 2057 trace_nfs_mkdir_enter(dir, dentry); 2058 error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr); 2059 trace_nfs_mkdir_exit(dir, dentry, error); 2060 if (error != 0) 2061 goto out_err; 2062 return 0; 2063 out_err: 2064 d_drop(dentry); 2065 return error; 2066 } 2067 EXPORT_SYMBOL_GPL(nfs_mkdir); 2068 2069 static void nfs_dentry_handle_enoent(struct dentry *dentry) 2070 { 2071 if (simple_positive(dentry)) 2072 d_delete(dentry); 2073 } 2074 2075 int nfs_rmdir(struct inode *dir, struct dentry *dentry) 2076 { 2077 int error; 2078 2079 dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n", 2080 dir->i_sb->s_id, dir->i_ino, dentry); 2081 2082 trace_nfs_rmdir_enter(dir, dentry); 2083 if (d_really_is_positive(dentry)) { 2084 down_write(&NFS_I(d_inode(dentry))->rmdir_sem); 2085 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name); 2086 /* Ensure the VFS deletes this inode */ 2087 switch (error) { 2088 case 0: 2089 clear_nlink(d_inode(dentry)); 2090 break; 2091 case -ENOENT: 2092 nfs_dentry_handle_enoent(dentry); 2093 } 2094 up_write(&NFS_I(d_inode(dentry))->rmdir_sem); 2095 } else 2096 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name); 2097 trace_nfs_rmdir_exit(dir, dentry, error); 2098 2099 return error; 2100 } 2101 EXPORT_SYMBOL_GPL(nfs_rmdir); 2102 2103 /* 2104 * Remove a file after making sure there are no pending writes, 2105 * and after checking that the file has only one user. 2106 * 2107 * We invalidate the attribute cache and free the inode prior to the operation 2108 * to avoid possible races if the server reuses the inode. 2109 */ 2110 static int nfs_safe_remove(struct dentry *dentry) 2111 { 2112 struct inode *dir = d_inode(dentry->d_parent); 2113 struct inode *inode = d_inode(dentry); 2114 int error = -EBUSY; 2115 2116 dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry); 2117 2118 /* If the dentry was sillyrenamed, we simply call d_delete() */ 2119 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 2120 error = 0; 2121 goto out; 2122 } 2123 2124 trace_nfs_remove_enter(dir, dentry); 2125 if (inode != NULL) { 2126 error = NFS_PROTO(dir)->remove(dir, dentry); 2127 if (error == 0) 2128 nfs_drop_nlink(inode); 2129 } else 2130 error = NFS_PROTO(dir)->remove(dir, dentry); 2131 if (error == -ENOENT) 2132 nfs_dentry_handle_enoent(dentry); 2133 trace_nfs_remove_exit(dir, dentry, error); 2134 out: 2135 return error; 2136 } 2137 2138 /* We do silly rename. In case sillyrename() returns -EBUSY, the inode 2139 * belongs to an active ".nfs..." file and we return -EBUSY. 2140 * 2141 * If sillyrename() returns 0, we do nothing, otherwise we unlink. 2142 */ 2143 int nfs_unlink(struct inode *dir, struct dentry *dentry) 2144 { 2145 int error; 2146 int need_rehash = 0; 2147 2148 dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id, 2149 dir->i_ino, dentry); 2150 2151 trace_nfs_unlink_enter(dir, dentry); 2152 spin_lock(&dentry->d_lock); 2153 if (d_count(dentry) > 1) { 2154 spin_unlock(&dentry->d_lock); 2155 /* Start asynchronous writeout of the inode */ 2156 write_inode_now(d_inode(dentry), 0); 2157 error = nfs_sillyrename(dir, dentry); 2158 goto out; 2159 } 2160 if (!d_unhashed(dentry)) { 2161 __d_drop(dentry); 2162 need_rehash = 1; 2163 } 2164 spin_unlock(&dentry->d_lock); 2165 error = nfs_safe_remove(dentry); 2166 if (!error || error == -ENOENT) { 2167 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 2168 } else if (need_rehash) 2169 d_rehash(dentry); 2170 out: 2171 trace_nfs_unlink_exit(dir, dentry, error); 2172 return error; 2173 } 2174 EXPORT_SYMBOL_GPL(nfs_unlink); 2175 2176 /* 2177 * To create a symbolic link, most file systems instantiate a new inode, 2178 * add a page to it containing the path, then write it out to the disk 2179 * using prepare_write/commit_write. 2180 * 2181 * Unfortunately the NFS client can't create the in-core inode first 2182 * because it needs a file handle to create an in-core inode (see 2183 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the 2184 * symlink request has completed on the server. 2185 * 2186 * So instead we allocate a raw page, copy the symname into it, then do 2187 * the SYMLINK request with the page as the buffer. If it succeeds, we 2188 * now have a new file handle and can instantiate an in-core NFS inode 2189 * and move the raw page into its mapping. 2190 */ 2191 int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname) 2192 { 2193 struct page *page; 2194 char *kaddr; 2195 struct iattr attr; 2196 unsigned int pathlen = strlen(symname); 2197 int error; 2198 2199 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id, 2200 dir->i_ino, dentry, symname); 2201 2202 if (pathlen > PAGE_SIZE) 2203 return -ENAMETOOLONG; 2204 2205 attr.ia_mode = S_IFLNK | S_IRWXUGO; 2206 attr.ia_valid = ATTR_MODE; 2207 2208 page = alloc_page(GFP_USER); 2209 if (!page) 2210 return -ENOMEM; 2211 2212 kaddr = page_address(page); 2213 memcpy(kaddr, symname, pathlen); 2214 if (pathlen < PAGE_SIZE) 2215 memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen); 2216 2217 trace_nfs_symlink_enter(dir, dentry); 2218 error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr); 2219 trace_nfs_symlink_exit(dir, dentry, error); 2220 if (error != 0) { 2221 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n", 2222 dir->i_sb->s_id, dir->i_ino, 2223 dentry, symname, error); 2224 d_drop(dentry); 2225 __free_page(page); 2226 return error; 2227 } 2228 2229 /* 2230 * No big deal if we can't add this page to the page cache here. 2231 * READLINK will get the missing page from the server if needed. 2232 */ 2233 if (!add_to_page_cache_lru(page, d_inode(dentry)->i_mapping, 0, 2234 GFP_KERNEL)) { 2235 SetPageUptodate(page); 2236 unlock_page(page); 2237 /* 2238 * add_to_page_cache_lru() grabs an extra page refcount. 2239 * Drop it here to avoid leaking this page later. 2240 */ 2241 put_page(page); 2242 } else 2243 __free_page(page); 2244 2245 return 0; 2246 } 2247 EXPORT_SYMBOL_GPL(nfs_symlink); 2248 2249 int 2250 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 2251 { 2252 struct inode *inode = d_inode(old_dentry); 2253 int error; 2254 2255 dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n", 2256 old_dentry, dentry); 2257 2258 trace_nfs_link_enter(inode, dir, dentry); 2259 d_drop(dentry); 2260 error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name); 2261 if (error == 0) { 2262 ihold(inode); 2263 d_add(dentry, inode); 2264 } 2265 trace_nfs_link_exit(inode, dir, dentry, error); 2266 return error; 2267 } 2268 EXPORT_SYMBOL_GPL(nfs_link); 2269 2270 /* 2271 * RENAME 2272 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a 2273 * different file handle for the same inode after a rename (e.g. when 2274 * moving to a different directory). A fail-safe method to do so would 2275 * be to look up old_dir/old_name, create a link to new_dir/new_name and 2276 * rename the old file using the sillyrename stuff. This way, the original 2277 * file in old_dir will go away when the last process iput()s the inode. 2278 * 2279 * FIXED. 2280 * 2281 * It actually works quite well. One needs to have the possibility for 2282 * at least one ".nfs..." file in each directory the file ever gets 2283 * moved or linked to which happens automagically with the new 2284 * implementation that only depends on the dcache stuff instead of 2285 * using the inode layer 2286 * 2287 * Unfortunately, things are a little more complicated than indicated 2288 * above. For a cross-directory move, we want to make sure we can get 2289 * rid of the old inode after the operation. This means there must be 2290 * no pending writes (if it's a file), and the use count must be 1. 2291 * If these conditions are met, we can drop the dentries before doing 2292 * the rename. 2293 */ 2294 int nfs_rename(struct inode *old_dir, struct dentry *old_dentry, 2295 struct inode *new_dir, struct dentry *new_dentry, 2296 unsigned int flags) 2297 { 2298 struct inode *old_inode = d_inode(old_dentry); 2299 struct inode *new_inode = d_inode(new_dentry); 2300 struct dentry *dentry = NULL, *rehash = NULL; 2301 struct rpc_task *task; 2302 int error = -EBUSY; 2303 2304 if (flags) 2305 return -EINVAL; 2306 2307 dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n", 2308 old_dentry, new_dentry, 2309 d_count(new_dentry)); 2310 2311 trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry); 2312 /* 2313 * For non-directories, check whether the target is busy and if so, 2314 * make a copy of the dentry and then do a silly-rename. If the 2315 * silly-rename succeeds, the copied dentry is hashed and becomes 2316 * the new target. 2317 */ 2318 if (new_inode && !S_ISDIR(new_inode->i_mode)) { 2319 /* 2320 * To prevent any new references to the target during the 2321 * rename, we unhash the dentry in advance. 2322 */ 2323 if (!d_unhashed(new_dentry)) { 2324 d_drop(new_dentry); 2325 rehash = new_dentry; 2326 } 2327 2328 if (d_count(new_dentry) > 2) { 2329 int err; 2330 2331 /* copy the target dentry's name */ 2332 dentry = d_alloc(new_dentry->d_parent, 2333 &new_dentry->d_name); 2334 if (!dentry) 2335 goto out; 2336 2337 /* silly-rename the existing target ... */ 2338 err = nfs_sillyrename(new_dir, new_dentry); 2339 if (err) 2340 goto out; 2341 2342 new_dentry = dentry; 2343 rehash = NULL; 2344 new_inode = NULL; 2345 } 2346 } 2347 2348 task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry, NULL); 2349 if (IS_ERR(task)) { 2350 error = PTR_ERR(task); 2351 goto out; 2352 } 2353 2354 error = rpc_wait_for_completion_task(task); 2355 if (error != 0) { 2356 ((struct nfs_renamedata *)task->tk_calldata)->cancelled = 1; 2357 /* Paired with the atomic_dec_and_test() barrier in rpc_do_put_task() */ 2358 smp_wmb(); 2359 } else 2360 error = task->tk_status; 2361 rpc_put_task(task); 2362 /* Ensure the inode attributes are revalidated */ 2363 if (error == 0) { 2364 spin_lock(&old_inode->i_lock); 2365 NFS_I(old_inode)->attr_gencount = nfs_inc_attr_generation_counter(); 2366 NFS_I(old_inode)->cache_validity |= NFS_INO_INVALID_CHANGE 2367 | NFS_INO_INVALID_CTIME 2368 | NFS_INO_REVAL_FORCED; 2369 spin_unlock(&old_inode->i_lock); 2370 } 2371 out: 2372 if (rehash) 2373 d_rehash(rehash); 2374 trace_nfs_rename_exit(old_dir, old_dentry, 2375 new_dir, new_dentry, error); 2376 if (!error) { 2377 if (new_inode != NULL) 2378 nfs_drop_nlink(new_inode); 2379 /* 2380 * The d_move() should be here instead of in an async RPC completion 2381 * handler because we need the proper locks to move the dentry. If 2382 * we're interrupted by a signal, the async RPC completion handler 2383 * should mark the directories for revalidation. 2384 */ 2385 d_move(old_dentry, new_dentry); 2386 nfs_set_verifier(old_dentry, 2387 nfs_save_change_attribute(new_dir)); 2388 } else if (error == -ENOENT) 2389 nfs_dentry_handle_enoent(old_dentry); 2390 2391 /* new dentry created? */ 2392 if (dentry) 2393 dput(dentry); 2394 return error; 2395 } 2396 EXPORT_SYMBOL_GPL(nfs_rename); 2397 2398 static DEFINE_SPINLOCK(nfs_access_lru_lock); 2399 static LIST_HEAD(nfs_access_lru_list); 2400 static atomic_long_t nfs_access_nr_entries; 2401 2402 static unsigned long nfs_access_max_cachesize = 4*1024*1024; 2403 module_param(nfs_access_max_cachesize, ulong, 0644); 2404 MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length"); 2405 2406 static void nfs_access_free_entry(struct nfs_access_entry *entry) 2407 { 2408 put_cred(entry->cred); 2409 kfree_rcu(entry, rcu_head); 2410 smp_mb__before_atomic(); 2411 atomic_long_dec(&nfs_access_nr_entries); 2412 smp_mb__after_atomic(); 2413 } 2414 2415 static void nfs_access_free_list(struct list_head *head) 2416 { 2417 struct nfs_access_entry *cache; 2418 2419 while (!list_empty(head)) { 2420 cache = list_entry(head->next, struct nfs_access_entry, lru); 2421 list_del(&cache->lru); 2422 nfs_access_free_entry(cache); 2423 } 2424 } 2425 2426 static unsigned long 2427 nfs_do_access_cache_scan(unsigned int nr_to_scan) 2428 { 2429 LIST_HEAD(head); 2430 struct nfs_inode *nfsi, *next; 2431 struct nfs_access_entry *cache; 2432 long freed = 0; 2433 2434 spin_lock(&nfs_access_lru_lock); 2435 list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) { 2436 struct inode *inode; 2437 2438 if (nr_to_scan-- == 0) 2439 break; 2440 inode = &nfsi->vfs_inode; 2441 spin_lock(&inode->i_lock); 2442 if (list_empty(&nfsi->access_cache_entry_lru)) 2443 goto remove_lru_entry; 2444 cache = list_entry(nfsi->access_cache_entry_lru.next, 2445 struct nfs_access_entry, lru); 2446 list_move(&cache->lru, &head); 2447 rb_erase(&cache->rb_node, &nfsi->access_cache); 2448 freed++; 2449 if (!list_empty(&nfsi->access_cache_entry_lru)) 2450 list_move_tail(&nfsi->access_cache_inode_lru, 2451 &nfs_access_lru_list); 2452 else { 2453 remove_lru_entry: 2454 list_del_init(&nfsi->access_cache_inode_lru); 2455 smp_mb__before_atomic(); 2456 clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags); 2457 smp_mb__after_atomic(); 2458 } 2459 spin_unlock(&inode->i_lock); 2460 } 2461 spin_unlock(&nfs_access_lru_lock); 2462 nfs_access_free_list(&head); 2463 return freed; 2464 } 2465 2466 unsigned long 2467 nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc) 2468 { 2469 int nr_to_scan = sc->nr_to_scan; 2470 gfp_t gfp_mask = sc->gfp_mask; 2471 2472 if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL) 2473 return SHRINK_STOP; 2474 return nfs_do_access_cache_scan(nr_to_scan); 2475 } 2476 2477 2478 unsigned long 2479 nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc) 2480 { 2481 return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries)); 2482 } 2483 2484 static void 2485 nfs_access_cache_enforce_limit(void) 2486 { 2487 long nr_entries = atomic_long_read(&nfs_access_nr_entries); 2488 unsigned long diff; 2489 unsigned int nr_to_scan; 2490 2491 if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize) 2492 return; 2493 nr_to_scan = 100; 2494 diff = nr_entries - nfs_access_max_cachesize; 2495 if (diff < nr_to_scan) 2496 nr_to_scan = diff; 2497 nfs_do_access_cache_scan(nr_to_scan); 2498 } 2499 2500 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head) 2501 { 2502 struct rb_root *root_node = &nfsi->access_cache; 2503 struct rb_node *n; 2504 struct nfs_access_entry *entry; 2505 2506 /* Unhook entries from the cache */ 2507 while ((n = rb_first(root_node)) != NULL) { 2508 entry = rb_entry(n, struct nfs_access_entry, rb_node); 2509 rb_erase(n, root_node); 2510 list_move(&entry->lru, head); 2511 } 2512 nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS; 2513 } 2514 2515 void nfs_access_zap_cache(struct inode *inode) 2516 { 2517 LIST_HEAD(head); 2518 2519 if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0) 2520 return; 2521 /* Remove from global LRU init */ 2522 spin_lock(&nfs_access_lru_lock); 2523 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) 2524 list_del_init(&NFS_I(inode)->access_cache_inode_lru); 2525 2526 spin_lock(&inode->i_lock); 2527 __nfs_access_zap_cache(NFS_I(inode), &head); 2528 spin_unlock(&inode->i_lock); 2529 spin_unlock(&nfs_access_lru_lock); 2530 nfs_access_free_list(&head); 2531 } 2532 EXPORT_SYMBOL_GPL(nfs_access_zap_cache); 2533 2534 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, const struct cred *cred) 2535 { 2536 struct rb_node *n = NFS_I(inode)->access_cache.rb_node; 2537 2538 while (n != NULL) { 2539 struct nfs_access_entry *entry = 2540 rb_entry(n, struct nfs_access_entry, rb_node); 2541 int cmp = cred_fscmp(cred, entry->cred); 2542 2543 if (cmp < 0) 2544 n = n->rb_left; 2545 else if (cmp > 0) 2546 n = n->rb_right; 2547 else 2548 return entry; 2549 } 2550 return NULL; 2551 } 2552 2553 static int nfs_access_get_cached_locked(struct inode *inode, const struct cred *cred, struct nfs_access_entry *res, bool may_block) 2554 { 2555 struct nfs_inode *nfsi = NFS_I(inode); 2556 struct nfs_access_entry *cache; 2557 bool retry = true; 2558 int err; 2559 2560 spin_lock(&inode->i_lock); 2561 for(;;) { 2562 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS) 2563 goto out_zap; 2564 cache = nfs_access_search_rbtree(inode, cred); 2565 err = -ENOENT; 2566 if (cache == NULL) 2567 goto out; 2568 /* Found an entry, is our attribute cache valid? */ 2569 if (!nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS)) 2570 break; 2571 if (!retry) 2572 break; 2573 err = -ECHILD; 2574 if (!may_block) 2575 goto out; 2576 spin_unlock(&inode->i_lock); 2577 err = __nfs_revalidate_inode(NFS_SERVER(inode), inode); 2578 if (err) 2579 return err; 2580 spin_lock(&inode->i_lock); 2581 retry = false; 2582 } 2583 res->cred = cache->cred; 2584 res->mask = cache->mask; 2585 list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru); 2586 err = 0; 2587 out: 2588 spin_unlock(&inode->i_lock); 2589 return err; 2590 out_zap: 2591 spin_unlock(&inode->i_lock); 2592 nfs_access_zap_cache(inode); 2593 return -ENOENT; 2594 } 2595 2596 static int nfs_access_get_cached_rcu(struct inode *inode, const struct cred *cred, struct nfs_access_entry *res) 2597 { 2598 /* Only check the most recently returned cache entry, 2599 * but do it without locking. 2600 */ 2601 struct nfs_inode *nfsi = NFS_I(inode); 2602 struct nfs_access_entry *cache; 2603 int err = -ECHILD; 2604 struct list_head *lh; 2605 2606 rcu_read_lock(); 2607 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS) 2608 goto out; 2609 lh = rcu_dereference(list_tail_rcu(&nfsi->access_cache_entry_lru)); 2610 cache = list_entry(lh, struct nfs_access_entry, lru); 2611 if (lh == &nfsi->access_cache_entry_lru || 2612 cred_fscmp(cred, cache->cred) != 0) 2613 cache = NULL; 2614 if (cache == NULL) 2615 goto out; 2616 if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS)) 2617 goto out; 2618 res->cred = cache->cred; 2619 res->mask = cache->mask; 2620 err = 0; 2621 out: 2622 rcu_read_unlock(); 2623 return err; 2624 } 2625 2626 int nfs_access_get_cached(struct inode *inode, const struct cred *cred, struct 2627 nfs_access_entry *res, bool may_block) 2628 { 2629 int status; 2630 2631 status = nfs_access_get_cached_rcu(inode, cred, res); 2632 if (status != 0) 2633 status = nfs_access_get_cached_locked(inode, cred, res, 2634 may_block); 2635 2636 return status; 2637 } 2638 EXPORT_SYMBOL_GPL(nfs_access_get_cached); 2639 2640 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set) 2641 { 2642 struct nfs_inode *nfsi = NFS_I(inode); 2643 struct rb_root *root_node = &nfsi->access_cache; 2644 struct rb_node **p = &root_node->rb_node; 2645 struct rb_node *parent = NULL; 2646 struct nfs_access_entry *entry; 2647 int cmp; 2648 2649 spin_lock(&inode->i_lock); 2650 while (*p != NULL) { 2651 parent = *p; 2652 entry = rb_entry(parent, struct nfs_access_entry, rb_node); 2653 cmp = cred_fscmp(set->cred, entry->cred); 2654 2655 if (cmp < 0) 2656 p = &parent->rb_left; 2657 else if (cmp > 0) 2658 p = &parent->rb_right; 2659 else 2660 goto found; 2661 } 2662 rb_link_node(&set->rb_node, parent, p); 2663 rb_insert_color(&set->rb_node, root_node); 2664 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru); 2665 spin_unlock(&inode->i_lock); 2666 return; 2667 found: 2668 rb_replace_node(parent, &set->rb_node, root_node); 2669 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru); 2670 list_del(&entry->lru); 2671 spin_unlock(&inode->i_lock); 2672 nfs_access_free_entry(entry); 2673 } 2674 2675 void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set) 2676 { 2677 struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL); 2678 if (cache == NULL) 2679 return; 2680 RB_CLEAR_NODE(&cache->rb_node); 2681 cache->cred = get_cred(set->cred); 2682 cache->mask = set->mask; 2683 2684 /* The above field assignments must be visible 2685 * before this item appears on the lru. We cannot easily 2686 * use rcu_assign_pointer, so just force the memory barrier. 2687 */ 2688 smp_wmb(); 2689 nfs_access_add_rbtree(inode, cache); 2690 2691 /* Update accounting */ 2692 smp_mb__before_atomic(); 2693 atomic_long_inc(&nfs_access_nr_entries); 2694 smp_mb__after_atomic(); 2695 2696 /* Add inode to global LRU list */ 2697 if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) { 2698 spin_lock(&nfs_access_lru_lock); 2699 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) 2700 list_add_tail(&NFS_I(inode)->access_cache_inode_lru, 2701 &nfs_access_lru_list); 2702 spin_unlock(&nfs_access_lru_lock); 2703 } 2704 nfs_access_cache_enforce_limit(); 2705 } 2706 EXPORT_SYMBOL_GPL(nfs_access_add_cache); 2707 2708 #define NFS_MAY_READ (NFS_ACCESS_READ) 2709 #define NFS_MAY_WRITE (NFS_ACCESS_MODIFY | \ 2710 NFS_ACCESS_EXTEND | \ 2711 NFS_ACCESS_DELETE) 2712 #define NFS_FILE_MAY_WRITE (NFS_ACCESS_MODIFY | \ 2713 NFS_ACCESS_EXTEND) 2714 #define NFS_DIR_MAY_WRITE NFS_MAY_WRITE 2715 #define NFS_MAY_LOOKUP (NFS_ACCESS_LOOKUP) 2716 #define NFS_MAY_EXECUTE (NFS_ACCESS_EXECUTE) 2717 static int 2718 nfs_access_calc_mask(u32 access_result, umode_t umode) 2719 { 2720 int mask = 0; 2721 2722 if (access_result & NFS_MAY_READ) 2723 mask |= MAY_READ; 2724 if (S_ISDIR(umode)) { 2725 if ((access_result & NFS_DIR_MAY_WRITE) == NFS_DIR_MAY_WRITE) 2726 mask |= MAY_WRITE; 2727 if ((access_result & NFS_MAY_LOOKUP) == NFS_MAY_LOOKUP) 2728 mask |= MAY_EXEC; 2729 } else if (S_ISREG(umode)) { 2730 if ((access_result & NFS_FILE_MAY_WRITE) == NFS_FILE_MAY_WRITE) 2731 mask |= MAY_WRITE; 2732 if ((access_result & NFS_MAY_EXECUTE) == NFS_MAY_EXECUTE) 2733 mask |= MAY_EXEC; 2734 } else if (access_result & NFS_MAY_WRITE) 2735 mask |= MAY_WRITE; 2736 return mask; 2737 } 2738 2739 void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result) 2740 { 2741 entry->mask = access_result; 2742 } 2743 EXPORT_SYMBOL_GPL(nfs_access_set_mask); 2744 2745 static int nfs_do_access(struct inode *inode, const struct cred *cred, int mask) 2746 { 2747 struct nfs_access_entry cache; 2748 bool may_block = (mask & MAY_NOT_BLOCK) == 0; 2749 int cache_mask = -1; 2750 int status; 2751 2752 trace_nfs_access_enter(inode); 2753 2754 status = nfs_access_get_cached(inode, cred, &cache, may_block); 2755 if (status == 0) 2756 goto out_cached; 2757 2758 status = -ECHILD; 2759 if (!may_block) 2760 goto out; 2761 2762 /* 2763 * Determine which access bits we want to ask for... 2764 */ 2765 cache.mask = NFS_ACCESS_READ | NFS_ACCESS_MODIFY | NFS_ACCESS_EXTEND; 2766 if (nfs_server_capable(inode, NFS_CAP_XATTR)) { 2767 cache.mask |= NFS_ACCESS_XAREAD | NFS_ACCESS_XAWRITE | 2768 NFS_ACCESS_XALIST; 2769 } 2770 if (S_ISDIR(inode->i_mode)) 2771 cache.mask |= NFS_ACCESS_DELETE | NFS_ACCESS_LOOKUP; 2772 else 2773 cache.mask |= NFS_ACCESS_EXECUTE; 2774 cache.cred = cred; 2775 status = NFS_PROTO(inode)->access(inode, &cache); 2776 if (status != 0) { 2777 if (status == -ESTALE) { 2778 if (!S_ISDIR(inode->i_mode)) 2779 nfs_set_inode_stale(inode); 2780 else 2781 nfs_zap_caches(inode); 2782 } 2783 goto out; 2784 } 2785 nfs_access_add_cache(inode, &cache); 2786 out_cached: 2787 cache_mask = nfs_access_calc_mask(cache.mask, inode->i_mode); 2788 if ((mask & ~cache_mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0) 2789 status = -EACCES; 2790 out: 2791 trace_nfs_access_exit(inode, mask, cache_mask, status); 2792 return status; 2793 } 2794 2795 static int nfs_open_permission_mask(int openflags) 2796 { 2797 int mask = 0; 2798 2799 if (openflags & __FMODE_EXEC) { 2800 /* ONLY check exec rights */ 2801 mask = MAY_EXEC; 2802 } else { 2803 if ((openflags & O_ACCMODE) != O_WRONLY) 2804 mask |= MAY_READ; 2805 if ((openflags & O_ACCMODE) != O_RDONLY) 2806 mask |= MAY_WRITE; 2807 } 2808 2809 return mask; 2810 } 2811 2812 int nfs_may_open(struct inode *inode, const struct cred *cred, int openflags) 2813 { 2814 return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags)); 2815 } 2816 EXPORT_SYMBOL_GPL(nfs_may_open); 2817 2818 static int nfs_execute_ok(struct inode *inode, int mask) 2819 { 2820 struct nfs_server *server = NFS_SERVER(inode); 2821 int ret = 0; 2822 2823 if (S_ISDIR(inode->i_mode)) 2824 return 0; 2825 if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_OTHER)) { 2826 if (mask & MAY_NOT_BLOCK) 2827 return -ECHILD; 2828 ret = __nfs_revalidate_inode(server, inode); 2829 } 2830 if (ret == 0 && !execute_ok(inode)) 2831 ret = -EACCES; 2832 return ret; 2833 } 2834 2835 int nfs_permission(struct inode *inode, int mask) 2836 { 2837 const struct cred *cred = current_cred(); 2838 int res = 0; 2839 2840 nfs_inc_stats(inode, NFSIOS_VFSACCESS); 2841 2842 if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0) 2843 goto out; 2844 /* Is this sys_access() ? */ 2845 if (mask & (MAY_ACCESS | MAY_CHDIR)) 2846 goto force_lookup; 2847 2848 switch (inode->i_mode & S_IFMT) { 2849 case S_IFLNK: 2850 goto out; 2851 case S_IFREG: 2852 if ((mask & MAY_OPEN) && 2853 nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN)) 2854 return 0; 2855 break; 2856 case S_IFDIR: 2857 /* 2858 * Optimize away all write operations, since the server 2859 * will check permissions when we perform the op. 2860 */ 2861 if ((mask & MAY_WRITE) && !(mask & MAY_READ)) 2862 goto out; 2863 } 2864 2865 force_lookup: 2866 if (!NFS_PROTO(inode)->access) 2867 goto out_notsup; 2868 2869 res = nfs_do_access(inode, cred, mask); 2870 out: 2871 if (!res && (mask & MAY_EXEC)) 2872 res = nfs_execute_ok(inode, mask); 2873 2874 dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n", 2875 inode->i_sb->s_id, inode->i_ino, mask, res); 2876 return res; 2877 out_notsup: 2878 if (mask & MAY_NOT_BLOCK) 2879 return -ECHILD; 2880 2881 res = nfs_revalidate_inode(NFS_SERVER(inode), inode); 2882 if (res == 0) 2883 res = generic_permission(inode, mask); 2884 goto out; 2885 } 2886 EXPORT_SYMBOL_GPL(nfs_permission); 2887 2888 /* 2889 * Local variables: 2890 * version-control: t 2891 * kept-new-versions: 5 2892 * End: 2893 */ 2894