xref: /openbmc/linux/fs/nfs/dir.c (revision cda57a1ef6f0da7e24f392ffdf00538ec0480310)
1 /*
2  *  linux/fs/nfs/dir.c
3  *
4  *  Copyright (C) 1992  Rick Sladkey
5  *
6  *  nfs directory handling functions
7  *
8  * 10 Apr 1996	Added silly rename for unlink	--okir
9  * 28 Sep 1996	Improved directory cache --okir
10  * 23 Aug 1997  Claus Heine claus@momo.math.rwth-aachen.de
11  *              Re-implemented silly rename for unlink, newly implemented
12  *              silly rename for nfs_rename() following the suggestions
13  *              of Olaf Kirch (okir) found in this file.
14  *              Following Linus comments on my original hack, this version
15  *              depends only on the dcache stuff and doesn't touch the inode
16  *              layer (iput() and friends).
17  *  6 Jun 1999	Cache readdir lookups in the page cache. -DaveM
18  */
19 
20 #include <linux/module.h>
21 #include <linux/time.h>
22 #include <linux/errno.h>
23 #include <linux/stat.h>
24 #include <linux/fcntl.h>
25 #include <linux/string.h>
26 #include <linux/kernel.h>
27 #include <linux/slab.h>
28 #include <linux/mm.h>
29 #include <linux/sunrpc/clnt.h>
30 #include <linux/nfs_fs.h>
31 #include <linux/nfs_mount.h>
32 #include <linux/pagemap.h>
33 #include <linux/pagevec.h>
34 #include <linux/namei.h>
35 #include <linux/mount.h>
36 #include <linux/swap.h>
37 #include <linux/sched.h>
38 #include <linux/kmemleak.h>
39 #include <linux/xattr.h>
40 
41 #include "delegation.h"
42 #include "iostat.h"
43 #include "internal.h"
44 #include "fscache.h"
45 
46 /* #define NFS_DEBUG_VERBOSE 1 */
47 
48 static int nfs_opendir(struct inode *, struct file *);
49 static int nfs_closedir(struct inode *, struct file *);
50 static int nfs_readdir(struct file *, struct dir_context *);
51 static int nfs_fsync_dir(struct file *, loff_t, loff_t, int);
52 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
53 static void nfs_readdir_clear_array(struct page*);
54 
55 const struct file_operations nfs_dir_operations = {
56 	.llseek		= nfs_llseek_dir,
57 	.read		= generic_read_dir,
58 	.iterate	= nfs_readdir,
59 	.open		= nfs_opendir,
60 	.release	= nfs_closedir,
61 	.fsync		= nfs_fsync_dir,
62 };
63 
64 const struct address_space_operations nfs_dir_aops = {
65 	.freepage = nfs_readdir_clear_array,
66 };
67 
68 static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct inode *dir, struct rpc_cred *cred)
69 {
70 	struct nfs_open_dir_context *ctx;
71 	ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
72 	if (ctx != NULL) {
73 		ctx->duped = 0;
74 		ctx->attr_gencount = NFS_I(dir)->attr_gencount;
75 		ctx->dir_cookie = 0;
76 		ctx->dup_cookie = 0;
77 		ctx->cred = get_rpccred(cred);
78 		return ctx;
79 	}
80 	return  ERR_PTR(-ENOMEM);
81 }
82 
83 static void put_nfs_open_dir_context(struct nfs_open_dir_context *ctx)
84 {
85 	put_rpccred(ctx->cred);
86 	kfree(ctx);
87 }
88 
89 /*
90  * Open file
91  */
92 static int
93 nfs_opendir(struct inode *inode, struct file *filp)
94 {
95 	int res = 0;
96 	struct nfs_open_dir_context *ctx;
97 	struct rpc_cred *cred;
98 
99 	dfprintk(FILE, "NFS: open dir(%s/%s)\n",
100 			filp->f_path.dentry->d_parent->d_name.name,
101 			filp->f_path.dentry->d_name.name);
102 
103 	nfs_inc_stats(inode, NFSIOS_VFSOPEN);
104 
105 	cred = rpc_lookup_cred();
106 	if (IS_ERR(cred))
107 		return PTR_ERR(cred);
108 	ctx = alloc_nfs_open_dir_context(inode, cred);
109 	if (IS_ERR(ctx)) {
110 		res = PTR_ERR(ctx);
111 		goto out;
112 	}
113 	filp->private_data = ctx;
114 	if (filp->f_path.dentry == filp->f_path.mnt->mnt_root) {
115 		/* This is a mountpoint, so d_revalidate will never
116 		 * have been called, so we need to refresh the
117 		 * inode (for close-open consistency) ourselves.
118 		 */
119 		__nfs_revalidate_inode(NFS_SERVER(inode), inode);
120 	}
121 out:
122 	put_rpccred(cred);
123 	return res;
124 }
125 
126 static int
127 nfs_closedir(struct inode *inode, struct file *filp)
128 {
129 	put_nfs_open_dir_context(filp->private_data);
130 	return 0;
131 }
132 
133 struct nfs_cache_array_entry {
134 	u64 cookie;
135 	u64 ino;
136 	struct qstr string;
137 	unsigned char d_type;
138 };
139 
140 struct nfs_cache_array {
141 	int size;
142 	int eof_index;
143 	u64 last_cookie;
144 	struct nfs_cache_array_entry array[0];
145 };
146 
147 typedef int (*decode_dirent_t)(struct xdr_stream *, struct nfs_entry *, int);
148 typedef struct {
149 	struct file	*file;
150 	struct page	*page;
151 	struct dir_context *ctx;
152 	unsigned long	page_index;
153 	u64		*dir_cookie;
154 	u64		last_cookie;
155 	loff_t		current_index;
156 	decode_dirent_t	decode;
157 
158 	unsigned long	timestamp;
159 	unsigned long	gencount;
160 	unsigned int	cache_entry_index;
161 	unsigned int	plus:1;
162 	unsigned int	eof:1;
163 } nfs_readdir_descriptor_t;
164 
165 /*
166  * The caller is responsible for calling nfs_readdir_release_array(page)
167  */
168 static
169 struct nfs_cache_array *nfs_readdir_get_array(struct page *page)
170 {
171 	void *ptr;
172 	if (page == NULL)
173 		return ERR_PTR(-EIO);
174 	ptr = kmap(page);
175 	if (ptr == NULL)
176 		return ERR_PTR(-ENOMEM);
177 	return ptr;
178 }
179 
180 static
181 void nfs_readdir_release_array(struct page *page)
182 {
183 	kunmap(page);
184 }
185 
186 /*
187  * we are freeing strings created by nfs_add_to_readdir_array()
188  */
189 static
190 void nfs_readdir_clear_array(struct page *page)
191 {
192 	struct nfs_cache_array *array;
193 	int i;
194 
195 	array = kmap_atomic(page);
196 	for (i = 0; i < array->size; i++)
197 		kfree(array->array[i].string.name);
198 	kunmap_atomic(array);
199 }
200 
201 /*
202  * the caller is responsible for freeing qstr.name
203  * when called by nfs_readdir_add_to_array, the strings will be freed in
204  * nfs_clear_readdir_array()
205  */
206 static
207 int nfs_readdir_make_qstr(struct qstr *string, const char *name, unsigned int len)
208 {
209 	string->len = len;
210 	string->name = kmemdup(name, len, GFP_KERNEL);
211 	if (string->name == NULL)
212 		return -ENOMEM;
213 	/*
214 	 * Avoid a kmemleak false positive. The pointer to the name is stored
215 	 * in a page cache page which kmemleak does not scan.
216 	 */
217 	kmemleak_not_leak(string->name);
218 	string->hash = full_name_hash(name, len);
219 	return 0;
220 }
221 
222 static
223 int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page)
224 {
225 	struct nfs_cache_array *array = nfs_readdir_get_array(page);
226 	struct nfs_cache_array_entry *cache_entry;
227 	int ret;
228 
229 	if (IS_ERR(array))
230 		return PTR_ERR(array);
231 
232 	cache_entry = &array->array[array->size];
233 
234 	/* Check that this entry lies within the page bounds */
235 	ret = -ENOSPC;
236 	if ((char *)&cache_entry[1] - (char *)page_address(page) > PAGE_SIZE)
237 		goto out;
238 
239 	cache_entry->cookie = entry->prev_cookie;
240 	cache_entry->ino = entry->ino;
241 	cache_entry->d_type = entry->d_type;
242 	ret = nfs_readdir_make_qstr(&cache_entry->string, entry->name, entry->len);
243 	if (ret)
244 		goto out;
245 	array->last_cookie = entry->cookie;
246 	array->size++;
247 	if (entry->eof != 0)
248 		array->eof_index = array->size;
249 out:
250 	nfs_readdir_release_array(page);
251 	return ret;
252 }
253 
254 static
255 int nfs_readdir_search_for_pos(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
256 {
257 	loff_t diff = desc->ctx->pos - desc->current_index;
258 	unsigned int index;
259 
260 	if (diff < 0)
261 		goto out_eof;
262 	if (diff >= array->size) {
263 		if (array->eof_index >= 0)
264 			goto out_eof;
265 		return -EAGAIN;
266 	}
267 
268 	index = (unsigned int)diff;
269 	*desc->dir_cookie = array->array[index].cookie;
270 	desc->cache_entry_index = index;
271 	return 0;
272 out_eof:
273 	desc->eof = 1;
274 	return -EBADCOOKIE;
275 }
276 
277 static
278 int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
279 {
280 	int i;
281 	loff_t new_pos;
282 	int status = -EAGAIN;
283 
284 	for (i = 0; i < array->size; i++) {
285 		if (array->array[i].cookie == *desc->dir_cookie) {
286 			struct nfs_inode *nfsi = NFS_I(file_inode(desc->file));
287 			struct nfs_open_dir_context *ctx = desc->file->private_data;
288 
289 			new_pos = desc->current_index + i;
290 			if (ctx->attr_gencount != nfsi->attr_gencount
291 			    || (nfsi->cache_validity & (NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA))) {
292 				ctx->duped = 0;
293 				ctx->attr_gencount = nfsi->attr_gencount;
294 			} else if (new_pos < desc->ctx->pos) {
295 				if (ctx->duped > 0
296 				    && ctx->dup_cookie == *desc->dir_cookie) {
297 					if (printk_ratelimit()) {
298 						pr_notice("NFS: directory %s/%s contains a readdir loop."
299 								"Please contact your server vendor.  "
300 								"The file: %s has duplicate cookie %llu\n",
301 								desc->file->f_dentry->d_parent->d_name.name,
302 								desc->file->f_dentry->d_name.name,
303 								array->array[i].string.name,
304 								*desc->dir_cookie);
305 					}
306 					status = -ELOOP;
307 					goto out;
308 				}
309 				ctx->dup_cookie = *desc->dir_cookie;
310 				ctx->duped = -1;
311 			}
312 			desc->ctx->pos = new_pos;
313 			desc->cache_entry_index = i;
314 			return 0;
315 		}
316 	}
317 	if (array->eof_index >= 0) {
318 		status = -EBADCOOKIE;
319 		if (*desc->dir_cookie == array->last_cookie)
320 			desc->eof = 1;
321 	}
322 out:
323 	return status;
324 }
325 
326 static
327 int nfs_readdir_search_array(nfs_readdir_descriptor_t *desc)
328 {
329 	struct nfs_cache_array *array;
330 	int status;
331 
332 	array = nfs_readdir_get_array(desc->page);
333 	if (IS_ERR(array)) {
334 		status = PTR_ERR(array);
335 		goto out;
336 	}
337 
338 	if (*desc->dir_cookie == 0)
339 		status = nfs_readdir_search_for_pos(array, desc);
340 	else
341 		status = nfs_readdir_search_for_cookie(array, desc);
342 
343 	if (status == -EAGAIN) {
344 		desc->last_cookie = array->last_cookie;
345 		desc->current_index += array->size;
346 		desc->page_index++;
347 	}
348 	nfs_readdir_release_array(desc->page);
349 out:
350 	return status;
351 }
352 
353 /* Fill a page with xdr information before transferring to the cache page */
354 static
355 int nfs_readdir_xdr_filler(struct page **pages, nfs_readdir_descriptor_t *desc,
356 			struct nfs_entry *entry, struct file *file, struct inode *inode)
357 {
358 	struct nfs_open_dir_context *ctx = file->private_data;
359 	struct rpc_cred	*cred = ctx->cred;
360 	unsigned long	timestamp, gencount;
361 	int		error;
362 
363  again:
364 	timestamp = jiffies;
365 	gencount = nfs_inc_attr_generation_counter();
366 	error = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred, entry->cookie, pages,
367 					  NFS_SERVER(inode)->dtsize, desc->plus);
368 	if (error < 0) {
369 		/* We requested READDIRPLUS, but the server doesn't grok it */
370 		if (error == -ENOTSUPP && desc->plus) {
371 			NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
372 			clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
373 			desc->plus = 0;
374 			goto again;
375 		}
376 		goto error;
377 	}
378 	desc->timestamp = timestamp;
379 	desc->gencount = gencount;
380 error:
381 	return error;
382 }
383 
384 static int xdr_decode(nfs_readdir_descriptor_t *desc,
385 		      struct nfs_entry *entry, struct xdr_stream *xdr)
386 {
387 	int error;
388 
389 	error = desc->decode(xdr, entry, desc->plus);
390 	if (error)
391 		return error;
392 	entry->fattr->time_start = desc->timestamp;
393 	entry->fattr->gencount = desc->gencount;
394 	return 0;
395 }
396 
397 static
398 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
399 {
400 	if (dentry->d_inode == NULL)
401 		goto different;
402 	if (nfs_compare_fh(entry->fh, NFS_FH(dentry->d_inode)) != 0)
403 		goto different;
404 	return 1;
405 different:
406 	return 0;
407 }
408 
409 static
410 bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx)
411 {
412 	if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS))
413 		return false;
414 	if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags))
415 		return true;
416 	if (ctx->pos == 0)
417 		return true;
418 	return false;
419 }
420 
421 /*
422  * This function is called by the lookup code to request the use of
423  * readdirplus to accelerate any future lookups in the same
424  * directory.
425  */
426 static
427 void nfs_advise_use_readdirplus(struct inode *dir)
428 {
429 	set_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags);
430 }
431 
432 static
433 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry)
434 {
435 	struct qstr filename = QSTR_INIT(entry->name, entry->len);
436 	struct dentry *dentry;
437 	struct dentry *alias;
438 	struct inode *dir = parent->d_inode;
439 	struct inode *inode;
440 	int status;
441 
442 	if (filename.name[0] == '.') {
443 		if (filename.len == 1)
444 			return;
445 		if (filename.len == 2 && filename.name[1] == '.')
446 			return;
447 	}
448 	filename.hash = full_name_hash(filename.name, filename.len);
449 
450 	dentry = d_lookup(parent, &filename);
451 	if (dentry != NULL) {
452 		if (nfs_same_file(dentry, entry)) {
453 			nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
454 			status = nfs_refresh_inode(dentry->d_inode, entry->fattr);
455 			if (!status)
456 				nfs_setsecurity(dentry->d_inode, entry->fattr, entry->label);
457 			goto out;
458 		} else {
459 			if (d_invalidate(dentry) != 0)
460 				goto out;
461 			dput(dentry);
462 		}
463 	}
464 
465 	dentry = d_alloc(parent, &filename);
466 	if (dentry == NULL)
467 		return;
468 
469 	inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr, entry->label);
470 	if (IS_ERR(inode))
471 		goto out;
472 
473 	alias = d_materialise_unique(dentry, inode);
474 	if (IS_ERR(alias))
475 		goto out;
476 	else if (alias) {
477 		nfs_set_verifier(alias, nfs_save_change_attribute(dir));
478 		dput(alias);
479 	} else
480 		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
481 
482 out:
483 	dput(dentry);
484 }
485 
486 /* Perform conversion from xdr to cache array */
487 static
488 int nfs_readdir_page_filler(nfs_readdir_descriptor_t *desc, struct nfs_entry *entry,
489 				struct page **xdr_pages, struct page *page, unsigned int buflen)
490 {
491 	struct xdr_stream stream;
492 	struct xdr_buf buf;
493 	struct page *scratch;
494 	struct nfs_cache_array *array;
495 	unsigned int count = 0;
496 	int status;
497 
498 	scratch = alloc_page(GFP_KERNEL);
499 	if (scratch == NULL)
500 		return -ENOMEM;
501 
502 	xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen);
503 	xdr_set_scratch_buffer(&stream, page_address(scratch), PAGE_SIZE);
504 
505 	do {
506 		status = xdr_decode(desc, entry, &stream);
507 		if (status != 0) {
508 			if (status == -EAGAIN)
509 				status = 0;
510 			break;
511 		}
512 
513 		count++;
514 
515 		if (desc->plus != 0)
516 			nfs_prime_dcache(desc->file->f_path.dentry, entry);
517 
518 		status = nfs_readdir_add_to_array(entry, page);
519 		if (status != 0)
520 			break;
521 	} while (!entry->eof);
522 
523 	if (count == 0 || (status == -EBADCOOKIE && entry->eof != 0)) {
524 		array = nfs_readdir_get_array(page);
525 		if (!IS_ERR(array)) {
526 			array->eof_index = array->size;
527 			status = 0;
528 			nfs_readdir_release_array(page);
529 		} else
530 			status = PTR_ERR(array);
531 	}
532 
533 	put_page(scratch);
534 	return status;
535 }
536 
537 static
538 void nfs_readdir_free_pagearray(struct page **pages, unsigned int npages)
539 {
540 	unsigned int i;
541 	for (i = 0; i < npages; i++)
542 		put_page(pages[i]);
543 }
544 
545 static
546 void nfs_readdir_free_large_page(void *ptr, struct page **pages,
547 		unsigned int npages)
548 {
549 	nfs_readdir_free_pagearray(pages, npages);
550 }
551 
552 /*
553  * nfs_readdir_large_page will allocate pages that must be freed with a call
554  * to nfs_readdir_free_large_page
555  */
556 static
557 int nfs_readdir_large_page(struct page **pages, unsigned int npages)
558 {
559 	unsigned int i;
560 
561 	for (i = 0; i < npages; i++) {
562 		struct page *page = alloc_page(GFP_KERNEL);
563 		if (page == NULL)
564 			goto out_freepages;
565 		pages[i] = page;
566 	}
567 	return 0;
568 
569 out_freepages:
570 	nfs_readdir_free_pagearray(pages, i);
571 	return -ENOMEM;
572 }
573 
574 static
575 int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t *desc, struct page *page, struct inode *inode)
576 {
577 	struct page *pages[NFS_MAX_READDIR_PAGES];
578 	void *pages_ptr = NULL;
579 	struct nfs_entry entry;
580 	struct file	*file = desc->file;
581 	struct nfs_cache_array *array;
582 	int status = -ENOMEM;
583 	unsigned int array_size = ARRAY_SIZE(pages);
584 
585 	entry.prev_cookie = 0;
586 	entry.cookie = desc->last_cookie;
587 	entry.eof = 0;
588 	entry.fh = nfs_alloc_fhandle();
589 	entry.fattr = nfs_alloc_fattr();
590 	entry.server = NFS_SERVER(inode);
591 	if (entry.fh == NULL || entry.fattr == NULL)
592 		goto out;
593 
594 	entry.label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT);
595 	if (IS_ERR(entry.label)) {
596 		status = PTR_ERR(entry.label);
597 		goto out;
598 	}
599 
600 	array = nfs_readdir_get_array(page);
601 	if (IS_ERR(array)) {
602 		status = PTR_ERR(array);
603 		goto out_label_free;
604 	}
605 	memset(array, 0, sizeof(struct nfs_cache_array));
606 	array->eof_index = -1;
607 
608 	status = nfs_readdir_large_page(pages, array_size);
609 	if (status < 0)
610 		goto out_release_array;
611 	do {
612 		unsigned int pglen;
613 		status = nfs_readdir_xdr_filler(pages, desc, &entry, file, inode);
614 
615 		if (status < 0)
616 			break;
617 		pglen = status;
618 		status = nfs_readdir_page_filler(desc, &entry, pages, page, pglen);
619 		if (status < 0) {
620 			if (status == -ENOSPC)
621 				status = 0;
622 			break;
623 		}
624 	} while (array->eof_index < 0);
625 
626 	nfs_readdir_free_large_page(pages_ptr, pages, array_size);
627 out_release_array:
628 	nfs_readdir_release_array(page);
629 out_label_free:
630 	nfs4_label_free(entry.label);
631 out:
632 	nfs_free_fattr(entry.fattr);
633 	nfs_free_fhandle(entry.fh);
634 	return status;
635 }
636 
637 /*
638  * Now we cache directories properly, by converting xdr information
639  * to an array that can be used for lookups later.  This results in
640  * fewer cache pages, since we can store more information on each page.
641  * We only need to convert from xdr once so future lookups are much simpler
642  */
643 static
644 int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page* page)
645 {
646 	struct inode	*inode = file_inode(desc->file);
647 	int ret;
648 
649 	ret = nfs_readdir_xdr_to_array(desc, page, inode);
650 	if (ret < 0)
651 		goto error;
652 	SetPageUptodate(page);
653 
654 	if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) {
655 		/* Should never happen */
656 		nfs_zap_mapping(inode, inode->i_mapping);
657 	}
658 	unlock_page(page);
659 	return 0;
660  error:
661 	unlock_page(page);
662 	return ret;
663 }
664 
665 static
666 void cache_page_release(nfs_readdir_descriptor_t *desc)
667 {
668 	if (!desc->page->mapping)
669 		nfs_readdir_clear_array(desc->page);
670 	page_cache_release(desc->page);
671 	desc->page = NULL;
672 }
673 
674 static
675 struct page *get_cache_page(nfs_readdir_descriptor_t *desc)
676 {
677 	return read_cache_page(file_inode(desc->file)->i_mapping,
678 			desc->page_index, (filler_t *)nfs_readdir_filler, desc);
679 }
680 
681 /*
682  * Returns 0 if desc->dir_cookie was found on page desc->page_index
683  */
684 static
685 int find_cache_page(nfs_readdir_descriptor_t *desc)
686 {
687 	int res;
688 
689 	desc->page = get_cache_page(desc);
690 	if (IS_ERR(desc->page))
691 		return PTR_ERR(desc->page);
692 
693 	res = nfs_readdir_search_array(desc);
694 	if (res != 0)
695 		cache_page_release(desc);
696 	return res;
697 }
698 
699 /* Search for desc->dir_cookie from the beginning of the page cache */
700 static inline
701 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc)
702 {
703 	int res;
704 
705 	if (desc->page_index == 0) {
706 		desc->current_index = 0;
707 		desc->last_cookie = 0;
708 	}
709 	do {
710 		res = find_cache_page(desc);
711 	} while (res == -EAGAIN);
712 	return res;
713 }
714 
715 /*
716  * Once we've found the start of the dirent within a page: fill 'er up...
717  */
718 static
719 int nfs_do_filldir(nfs_readdir_descriptor_t *desc)
720 {
721 	struct file	*file = desc->file;
722 	int i = 0;
723 	int res = 0;
724 	struct nfs_cache_array *array = NULL;
725 	struct nfs_open_dir_context *ctx = file->private_data;
726 
727 	array = nfs_readdir_get_array(desc->page);
728 	if (IS_ERR(array)) {
729 		res = PTR_ERR(array);
730 		goto out;
731 	}
732 
733 	for (i = desc->cache_entry_index; i < array->size; i++) {
734 		struct nfs_cache_array_entry *ent;
735 
736 		ent = &array->array[i];
737 		if (!dir_emit(desc->ctx, ent->string.name, ent->string.len,
738 		    nfs_compat_user_ino64(ent->ino), ent->d_type)) {
739 			desc->eof = 1;
740 			break;
741 		}
742 		desc->ctx->pos++;
743 		if (i < (array->size-1))
744 			*desc->dir_cookie = array->array[i+1].cookie;
745 		else
746 			*desc->dir_cookie = array->last_cookie;
747 		if (ctx->duped != 0)
748 			ctx->duped = 1;
749 	}
750 	if (array->eof_index >= 0)
751 		desc->eof = 1;
752 
753 	nfs_readdir_release_array(desc->page);
754 out:
755 	cache_page_release(desc);
756 	dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
757 			(unsigned long long)*desc->dir_cookie, res);
758 	return res;
759 }
760 
761 /*
762  * If we cannot find a cookie in our cache, we suspect that this is
763  * because it points to a deleted file, so we ask the server to return
764  * whatever it thinks is the next entry. We then feed this to filldir.
765  * If all goes well, we should then be able to find our way round the
766  * cache on the next call to readdir_search_pagecache();
767  *
768  * NOTE: we cannot add the anonymous page to the pagecache because
769  *	 the data it contains might not be page aligned. Besides,
770  *	 we should already have a complete representation of the
771  *	 directory in the page cache by the time we get here.
772  */
773 static inline
774 int uncached_readdir(nfs_readdir_descriptor_t *desc)
775 {
776 	struct page	*page = NULL;
777 	int		status;
778 	struct inode *inode = file_inode(desc->file);
779 	struct nfs_open_dir_context *ctx = desc->file->private_data;
780 
781 	dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n",
782 			(unsigned long long)*desc->dir_cookie);
783 
784 	page = alloc_page(GFP_HIGHUSER);
785 	if (!page) {
786 		status = -ENOMEM;
787 		goto out;
788 	}
789 
790 	desc->page_index = 0;
791 	desc->last_cookie = *desc->dir_cookie;
792 	desc->page = page;
793 	ctx->duped = 0;
794 
795 	status = nfs_readdir_xdr_to_array(desc, page, inode);
796 	if (status < 0)
797 		goto out_release;
798 
799 	status = nfs_do_filldir(desc);
800 
801  out:
802 	dfprintk(DIRCACHE, "NFS: %s: returns %d\n",
803 			__func__, status);
804 	return status;
805  out_release:
806 	cache_page_release(desc);
807 	goto out;
808 }
809 
810 /* The file offset position represents the dirent entry number.  A
811    last cookie cache takes care of the common case of reading the
812    whole directory.
813  */
814 static int nfs_readdir(struct file *file, struct dir_context *ctx)
815 {
816 	struct dentry	*dentry = file->f_path.dentry;
817 	struct inode	*inode = dentry->d_inode;
818 	nfs_readdir_descriptor_t my_desc,
819 			*desc = &my_desc;
820 	struct nfs_open_dir_context *dir_ctx = file->private_data;
821 	int res;
822 
823 	dfprintk(FILE, "NFS: readdir(%s/%s) starting at cookie %llu\n",
824 			dentry->d_parent->d_name.name, dentry->d_name.name,
825 			(long long)ctx->pos);
826 	nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
827 
828 	/*
829 	 * ctx->pos points to the dirent entry number.
830 	 * *desc->dir_cookie has the cookie for the next entry. We have
831 	 * to either find the entry with the appropriate number or
832 	 * revalidate the cookie.
833 	 */
834 	memset(desc, 0, sizeof(*desc));
835 
836 	desc->file = file;
837 	desc->ctx = ctx;
838 	desc->dir_cookie = &dir_ctx->dir_cookie;
839 	desc->decode = NFS_PROTO(inode)->decode_dirent;
840 	desc->plus = nfs_use_readdirplus(inode, ctx) ? 1 : 0;
841 
842 	nfs_block_sillyrename(dentry);
843 	res = nfs_revalidate_mapping(inode, file->f_mapping);
844 	if (res < 0)
845 		goto out;
846 
847 	do {
848 		res = readdir_search_pagecache(desc);
849 
850 		if (res == -EBADCOOKIE) {
851 			res = 0;
852 			/* This means either end of directory */
853 			if (*desc->dir_cookie && desc->eof == 0) {
854 				/* Or that the server has 'lost' a cookie */
855 				res = uncached_readdir(desc);
856 				if (res == 0)
857 					continue;
858 			}
859 			break;
860 		}
861 		if (res == -ETOOSMALL && desc->plus) {
862 			clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
863 			nfs_zap_caches(inode);
864 			desc->page_index = 0;
865 			desc->plus = 0;
866 			desc->eof = 0;
867 			continue;
868 		}
869 		if (res < 0)
870 			break;
871 
872 		res = nfs_do_filldir(desc);
873 		if (res < 0)
874 			break;
875 	} while (!desc->eof);
876 out:
877 	nfs_unblock_sillyrename(dentry);
878 	if (res > 0)
879 		res = 0;
880 	dfprintk(FILE, "NFS: readdir(%s/%s) returns %d\n",
881 			dentry->d_parent->d_name.name, dentry->d_name.name,
882 			res);
883 	return res;
884 }
885 
886 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence)
887 {
888 	struct dentry *dentry = filp->f_path.dentry;
889 	struct inode *inode = dentry->d_inode;
890 	struct nfs_open_dir_context *dir_ctx = filp->private_data;
891 
892 	dfprintk(FILE, "NFS: llseek dir(%s/%s, %lld, %d)\n",
893 			dentry->d_parent->d_name.name,
894 			dentry->d_name.name,
895 			offset, whence);
896 
897 	mutex_lock(&inode->i_mutex);
898 	switch (whence) {
899 		case 1:
900 			offset += filp->f_pos;
901 		case 0:
902 			if (offset >= 0)
903 				break;
904 		default:
905 			offset = -EINVAL;
906 			goto out;
907 	}
908 	if (offset != filp->f_pos) {
909 		filp->f_pos = offset;
910 		dir_ctx->dir_cookie = 0;
911 		dir_ctx->duped = 0;
912 	}
913 out:
914 	mutex_unlock(&inode->i_mutex);
915 	return offset;
916 }
917 
918 /*
919  * All directory operations under NFS are synchronous, so fsync()
920  * is a dummy operation.
921  */
922 static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end,
923 			 int datasync)
924 {
925 	struct dentry *dentry = filp->f_path.dentry;
926 	struct inode *inode = dentry->d_inode;
927 
928 	dfprintk(FILE, "NFS: fsync dir(%s/%s) datasync %d\n",
929 			dentry->d_parent->d_name.name, dentry->d_name.name,
930 			datasync);
931 
932 	mutex_lock(&inode->i_mutex);
933 	nfs_inc_stats(dentry->d_inode, NFSIOS_VFSFSYNC);
934 	mutex_unlock(&inode->i_mutex);
935 	return 0;
936 }
937 
938 /**
939  * nfs_force_lookup_revalidate - Mark the directory as having changed
940  * @dir - pointer to directory inode
941  *
942  * This forces the revalidation code in nfs_lookup_revalidate() to do a
943  * full lookup on all child dentries of 'dir' whenever a change occurs
944  * on the server that might have invalidated our dcache.
945  *
946  * The caller should be holding dir->i_lock
947  */
948 void nfs_force_lookup_revalidate(struct inode *dir)
949 {
950 	NFS_I(dir)->cache_change_attribute++;
951 }
952 EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate);
953 
954 /*
955  * A check for whether or not the parent directory has changed.
956  * In the case it has, we assume that the dentries are untrustworthy
957  * and may need to be looked up again.
958  */
959 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry)
960 {
961 	if (IS_ROOT(dentry))
962 		return 1;
963 	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
964 		return 0;
965 	if (!nfs_verify_change_attribute(dir, dentry->d_time))
966 		return 0;
967 	/* Revalidate nfsi->cache_change_attribute before we declare a match */
968 	if (nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
969 		return 0;
970 	if (!nfs_verify_change_attribute(dir, dentry->d_time))
971 		return 0;
972 	return 1;
973 }
974 
975 /*
976  * Use intent information to check whether or not we're going to do
977  * an O_EXCL create using this path component.
978  */
979 static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags)
980 {
981 	if (NFS_PROTO(dir)->version == 2)
982 		return 0;
983 	return flags & LOOKUP_EXCL;
984 }
985 
986 /*
987  * Inode and filehandle revalidation for lookups.
988  *
989  * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
990  * or if the intent information indicates that we're about to open this
991  * particular file and the "nocto" mount flag is not set.
992  *
993  */
994 static
995 int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags)
996 {
997 	struct nfs_server *server = NFS_SERVER(inode);
998 	int ret;
999 
1000 	if (IS_AUTOMOUNT(inode))
1001 		return 0;
1002 	/* VFS wants an on-the-wire revalidation */
1003 	if (flags & LOOKUP_REVAL)
1004 		goto out_force;
1005 	/* This is an open(2) */
1006 	if ((flags & LOOKUP_OPEN) && !(server->flags & NFS_MOUNT_NOCTO) &&
1007 	    (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode)))
1008 		goto out_force;
1009 out:
1010 	return (inode->i_nlink == 0) ? -ENOENT : 0;
1011 out_force:
1012 	ret = __nfs_revalidate_inode(server, inode);
1013 	if (ret != 0)
1014 		return ret;
1015 	goto out;
1016 }
1017 
1018 /*
1019  * We judge how long we want to trust negative
1020  * dentries by looking at the parent inode mtime.
1021  *
1022  * If parent mtime has changed, we revalidate, else we wait for a
1023  * period corresponding to the parent's attribute cache timeout value.
1024  */
1025 static inline
1026 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1027 		       unsigned int flags)
1028 {
1029 	/* Don't revalidate a negative dentry if we're creating a new file */
1030 	if (flags & LOOKUP_CREATE)
1031 		return 0;
1032 	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1033 		return 1;
1034 	return !nfs_check_verifier(dir, dentry);
1035 }
1036 
1037 /*
1038  * This is called every time the dcache has a lookup hit,
1039  * and we should check whether we can really trust that
1040  * lookup.
1041  *
1042  * NOTE! The hit can be a negative hit too, don't assume
1043  * we have an inode!
1044  *
1045  * If the parent directory is seen to have changed, we throw out the
1046  * cached dentry and do a new lookup.
1047  */
1048 static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1049 {
1050 	struct inode *dir;
1051 	struct inode *inode;
1052 	struct dentry *parent;
1053 	struct nfs_fh *fhandle = NULL;
1054 	struct nfs_fattr *fattr = NULL;
1055 	struct nfs4_label *label = NULL;
1056 	int error;
1057 
1058 	if (flags & LOOKUP_RCU)
1059 		return -ECHILD;
1060 
1061 	parent = dget_parent(dentry);
1062 	dir = parent->d_inode;
1063 	nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1064 	inode = dentry->d_inode;
1065 
1066 	if (!inode) {
1067 		if (nfs_neg_need_reval(dir, dentry, flags))
1068 			goto out_bad;
1069 		goto out_valid_noent;
1070 	}
1071 
1072 	if (is_bad_inode(inode)) {
1073 		dfprintk(LOOKUPCACHE, "%s: %s/%s has dud inode\n",
1074 				__func__, dentry->d_parent->d_name.name,
1075 				dentry->d_name.name);
1076 		goto out_bad;
1077 	}
1078 
1079 	if (NFS_PROTO(dir)->have_delegation(inode, FMODE_READ))
1080 		goto out_set_verifier;
1081 
1082 	/* Force a full look up iff the parent directory has changed */
1083 	if (!nfs_is_exclusive_create(dir, flags) && nfs_check_verifier(dir, dentry)) {
1084 		if (nfs_lookup_verify_inode(inode, flags))
1085 			goto out_zap_parent;
1086 		goto out_valid;
1087 	}
1088 
1089 	if (NFS_STALE(inode))
1090 		goto out_bad;
1091 
1092 	error = -ENOMEM;
1093 	fhandle = nfs_alloc_fhandle();
1094 	fattr = nfs_alloc_fattr();
1095 	if (fhandle == NULL || fattr == NULL)
1096 		goto out_error;
1097 
1098 	label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT);
1099 	if (IS_ERR(label))
1100 		goto out_error;
1101 
1102 	error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label);
1103 	if (error)
1104 		goto out_bad;
1105 	if (nfs_compare_fh(NFS_FH(inode), fhandle))
1106 		goto out_bad;
1107 	if ((error = nfs_refresh_inode(inode, fattr)) != 0)
1108 		goto out_bad;
1109 
1110 	nfs_setsecurity(inode, fattr, label);
1111 
1112 	nfs_free_fattr(fattr);
1113 	nfs_free_fhandle(fhandle);
1114 	nfs4_label_free(label);
1115 
1116 out_set_verifier:
1117 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1118  out_valid:
1119 	/* Success: notify readdir to use READDIRPLUS */
1120 	nfs_advise_use_readdirplus(dir);
1121  out_valid_noent:
1122 	dput(parent);
1123 	dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is valid\n",
1124 			__func__, dentry->d_parent->d_name.name,
1125 			dentry->d_name.name);
1126 	return 1;
1127 out_zap_parent:
1128 	nfs_zap_caches(dir);
1129  out_bad:
1130 	nfs_free_fattr(fattr);
1131 	nfs_free_fhandle(fhandle);
1132 	nfs4_label_free(label);
1133 	nfs_mark_for_revalidate(dir);
1134 	if (inode && S_ISDIR(inode->i_mode)) {
1135 		/* Purge readdir caches. */
1136 		nfs_zap_caches(inode);
1137 		/* If we have submounts, don't unhash ! */
1138 		if (have_submounts(dentry))
1139 			goto out_valid;
1140 		if (dentry->d_flags & DCACHE_DISCONNECTED)
1141 			goto out_valid;
1142 		shrink_dcache_parent(dentry);
1143 	}
1144 	d_drop(dentry);
1145 	dput(parent);
1146 	dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is invalid\n",
1147 			__func__, dentry->d_parent->d_name.name,
1148 			dentry->d_name.name);
1149 	return 0;
1150 out_error:
1151 	nfs_free_fattr(fattr);
1152 	nfs_free_fhandle(fhandle);
1153 	nfs4_label_free(label);
1154 	dput(parent);
1155 	dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) lookup returned error %d\n",
1156 			__func__, dentry->d_parent->d_name.name,
1157 			dentry->d_name.name, error);
1158 	return error;
1159 }
1160 
1161 /*
1162  * A weaker form of d_revalidate for revalidating just the dentry->d_inode
1163  * when we don't really care about the dentry name. This is called when a
1164  * pathwalk ends on a dentry that was not found via a normal lookup in the
1165  * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals).
1166  *
1167  * In this situation, we just want to verify that the inode itself is OK
1168  * since the dentry might have changed on the server.
1169  */
1170 static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags)
1171 {
1172 	int error;
1173 	struct inode *inode = dentry->d_inode;
1174 
1175 	/*
1176 	 * I believe we can only get a negative dentry here in the case of a
1177 	 * procfs-style symlink. Just assume it's correct for now, but we may
1178 	 * eventually need to do something more here.
1179 	 */
1180 	if (!inode) {
1181 		dfprintk(LOOKUPCACHE, "%s: %s/%s has negative inode\n",
1182 				__func__, dentry->d_parent->d_name.name,
1183 				dentry->d_name.name);
1184 		return 1;
1185 	}
1186 
1187 	if (is_bad_inode(inode)) {
1188 		dfprintk(LOOKUPCACHE, "%s: %s/%s has dud inode\n",
1189 				__func__, dentry->d_parent->d_name.name,
1190 				dentry->d_name.name);
1191 		return 0;
1192 	}
1193 
1194 	error = nfs_revalidate_inode(NFS_SERVER(inode), inode);
1195 	dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n",
1196 			__func__, inode->i_ino, error ? "invalid" : "valid");
1197 	return !error;
1198 }
1199 
1200 /*
1201  * This is called from dput() when d_count is going to 0.
1202  */
1203 static int nfs_dentry_delete(const struct dentry *dentry)
1204 {
1205 	dfprintk(VFS, "NFS: dentry_delete(%s/%s, %x)\n",
1206 		dentry->d_parent->d_name.name, dentry->d_name.name,
1207 		dentry->d_flags);
1208 
1209 	/* Unhash any dentry with a stale inode */
1210 	if (dentry->d_inode != NULL && NFS_STALE(dentry->d_inode))
1211 		return 1;
1212 
1213 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1214 		/* Unhash it, so that ->d_iput() would be called */
1215 		return 1;
1216 	}
1217 	if (!(dentry->d_sb->s_flags & MS_ACTIVE)) {
1218 		/* Unhash it, so that ancestors of killed async unlink
1219 		 * files will be cleaned up during umount */
1220 		return 1;
1221 	}
1222 	return 0;
1223 
1224 }
1225 
1226 /* Ensure that we revalidate inode->i_nlink */
1227 static void nfs_drop_nlink(struct inode *inode)
1228 {
1229 	spin_lock(&inode->i_lock);
1230 	/* drop the inode if we're reasonably sure this is the last link */
1231 	if (inode->i_nlink == 1)
1232 		clear_nlink(inode);
1233 	NFS_I(inode)->cache_validity |= NFS_INO_INVALID_ATTR;
1234 	spin_unlock(&inode->i_lock);
1235 }
1236 
1237 /*
1238  * Called when the dentry loses inode.
1239  * We use it to clean up silly-renamed files.
1240  */
1241 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1242 {
1243 	if (S_ISDIR(inode->i_mode))
1244 		/* drop any readdir cache as it could easily be old */
1245 		NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA;
1246 
1247 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1248 		nfs_complete_unlink(dentry, inode);
1249 		nfs_drop_nlink(inode);
1250 	}
1251 	iput(inode);
1252 }
1253 
1254 static void nfs_d_release(struct dentry *dentry)
1255 {
1256 	/* free cached devname value, if it survived that far */
1257 	if (unlikely(dentry->d_fsdata)) {
1258 		if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1259 			WARN_ON(1);
1260 		else
1261 			kfree(dentry->d_fsdata);
1262 	}
1263 }
1264 
1265 const struct dentry_operations nfs_dentry_operations = {
1266 	.d_revalidate	= nfs_lookup_revalidate,
1267 	.d_weak_revalidate	= nfs_weak_revalidate,
1268 	.d_delete	= nfs_dentry_delete,
1269 	.d_iput		= nfs_dentry_iput,
1270 	.d_automount	= nfs_d_automount,
1271 	.d_release	= nfs_d_release,
1272 };
1273 EXPORT_SYMBOL_GPL(nfs_dentry_operations);
1274 
1275 struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
1276 {
1277 	struct dentry *res;
1278 	struct dentry *parent;
1279 	struct inode *inode = NULL;
1280 	struct nfs_fh *fhandle = NULL;
1281 	struct nfs_fattr *fattr = NULL;
1282 	struct nfs4_label *label = NULL;
1283 	int error;
1284 
1285 	dfprintk(VFS, "NFS: lookup(%s/%s)\n",
1286 		dentry->d_parent->d_name.name, dentry->d_name.name);
1287 	nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1288 
1289 	res = ERR_PTR(-ENAMETOOLONG);
1290 	if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1291 		goto out;
1292 
1293 	/*
1294 	 * If we're doing an exclusive create, optimize away the lookup
1295 	 * but don't hash the dentry.
1296 	 */
1297 	if (nfs_is_exclusive_create(dir, flags)) {
1298 		d_instantiate(dentry, NULL);
1299 		res = NULL;
1300 		goto out;
1301 	}
1302 
1303 	res = ERR_PTR(-ENOMEM);
1304 	fhandle = nfs_alloc_fhandle();
1305 	fattr = nfs_alloc_fattr();
1306 	if (fhandle == NULL || fattr == NULL)
1307 		goto out;
1308 
1309 	label = nfs4_label_alloc(NFS_SERVER(dir), GFP_NOWAIT);
1310 	if (IS_ERR(label))
1311 		goto out;
1312 
1313 	parent = dentry->d_parent;
1314 	/* Protect against concurrent sillydeletes */
1315 	nfs_block_sillyrename(parent);
1316 	error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label);
1317 	if (error == -ENOENT)
1318 		goto no_entry;
1319 	if (error < 0) {
1320 		res = ERR_PTR(error);
1321 		goto out_unblock_sillyrename;
1322 	}
1323 	inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1324 	res = ERR_CAST(inode);
1325 	if (IS_ERR(res))
1326 		goto out_unblock_sillyrename;
1327 
1328 	/* Success: notify readdir to use READDIRPLUS */
1329 	nfs_advise_use_readdirplus(dir);
1330 
1331 no_entry:
1332 	res = d_materialise_unique(dentry, inode);
1333 	if (res != NULL) {
1334 		if (IS_ERR(res))
1335 			goto out_unblock_sillyrename;
1336 		dentry = res;
1337 	}
1338 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1339 out_unblock_sillyrename:
1340 	nfs_unblock_sillyrename(parent);
1341 	nfs4_label_free(label);
1342 out:
1343 	nfs_free_fattr(fattr);
1344 	nfs_free_fhandle(fhandle);
1345 	return res;
1346 }
1347 EXPORT_SYMBOL_GPL(nfs_lookup);
1348 
1349 #if IS_ENABLED(CONFIG_NFS_V4)
1350 static int nfs4_lookup_revalidate(struct dentry *, unsigned int);
1351 
1352 const struct dentry_operations nfs4_dentry_operations = {
1353 	.d_revalidate	= nfs4_lookup_revalidate,
1354 	.d_delete	= nfs_dentry_delete,
1355 	.d_iput		= nfs_dentry_iput,
1356 	.d_automount	= nfs_d_automount,
1357 	.d_release	= nfs_d_release,
1358 };
1359 EXPORT_SYMBOL_GPL(nfs4_dentry_operations);
1360 
1361 static fmode_t flags_to_mode(int flags)
1362 {
1363 	fmode_t res = (__force fmode_t)flags & FMODE_EXEC;
1364 	if ((flags & O_ACCMODE) != O_WRONLY)
1365 		res |= FMODE_READ;
1366 	if ((flags & O_ACCMODE) != O_RDONLY)
1367 		res |= FMODE_WRITE;
1368 	return res;
1369 }
1370 
1371 static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags)
1372 {
1373 	return alloc_nfs_open_context(dentry, flags_to_mode(open_flags));
1374 }
1375 
1376 static int do_open(struct inode *inode, struct file *filp)
1377 {
1378 	nfs_fscache_set_inode_cookie(inode, filp);
1379 	return 0;
1380 }
1381 
1382 static int nfs_finish_open(struct nfs_open_context *ctx,
1383 			   struct dentry *dentry,
1384 			   struct file *file, unsigned open_flags,
1385 			   int *opened)
1386 {
1387 	int err;
1388 
1389 	err = finish_open(file, dentry, do_open, opened);
1390 	if (err)
1391 		goto out;
1392 	nfs_file_set_open_context(file, ctx);
1393 
1394 out:
1395 	put_nfs_open_context(ctx);
1396 	return err;
1397 }
1398 
1399 int nfs_atomic_open(struct inode *dir, struct dentry *dentry,
1400 		    struct file *file, unsigned open_flags,
1401 		    umode_t mode, int *opened)
1402 {
1403 	struct nfs_open_context *ctx;
1404 	struct dentry *res;
1405 	struct iattr attr = { .ia_valid = ATTR_OPEN };
1406 	struct inode *inode;
1407 	int err;
1408 
1409 	/* Expect a negative dentry */
1410 	BUG_ON(dentry->d_inode);
1411 
1412 	dfprintk(VFS, "NFS: atomic_open(%s/%ld), %s\n",
1413 			dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1414 
1415 	/* NFS only supports OPEN on regular files */
1416 	if ((open_flags & O_DIRECTORY)) {
1417 		if (!d_unhashed(dentry)) {
1418 			/*
1419 			 * Hashed negative dentry with O_DIRECTORY: dentry was
1420 			 * revalidated and is fine, no need to perform lookup
1421 			 * again
1422 			 */
1423 			return -ENOENT;
1424 		}
1425 		goto no_open;
1426 	}
1427 
1428 	if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1429 		return -ENAMETOOLONG;
1430 
1431 	if (open_flags & O_CREAT) {
1432 		attr.ia_valid |= ATTR_MODE;
1433 		attr.ia_mode = mode & ~current_umask();
1434 	}
1435 	if (open_flags & O_TRUNC) {
1436 		attr.ia_valid |= ATTR_SIZE;
1437 		attr.ia_size = 0;
1438 	}
1439 
1440 	ctx = create_nfs_open_context(dentry, open_flags);
1441 	err = PTR_ERR(ctx);
1442 	if (IS_ERR(ctx))
1443 		goto out;
1444 
1445 	nfs_block_sillyrename(dentry->d_parent);
1446 	inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr);
1447 	nfs_unblock_sillyrename(dentry->d_parent);
1448 	if (IS_ERR(inode)) {
1449 		put_nfs_open_context(ctx);
1450 		err = PTR_ERR(inode);
1451 		switch (err) {
1452 		case -ENOENT:
1453 			d_drop(dentry);
1454 			d_add(dentry, NULL);
1455 			break;
1456 		case -EISDIR:
1457 		case -ENOTDIR:
1458 			goto no_open;
1459 		case -ELOOP:
1460 			if (!(open_flags & O_NOFOLLOW))
1461 				goto no_open;
1462 			break;
1463 			/* case -EINVAL: */
1464 		default:
1465 			break;
1466 		}
1467 		goto out;
1468 	}
1469 
1470 	err = nfs_finish_open(ctx, ctx->dentry, file, open_flags, opened);
1471 out:
1472 	return err;
1473 
1474 no_open:
1475 	res = nfs_lookup(dir, dentry, 0);
1476 	err = PTR_ERR(res);
1477 	if (IS_ERR(res))
1478 		goto out;
1479 
1480 	return finish_no_open(file, res);
1481 }
1482 EXPORT_SYMBOL_GPL(nfs_atomic_open);
1483 
1484 static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1485 {
1486 	struct dentry *parent = NULL;
1487 	struct inode *inode;
1488 	struct inode *dir;
1489 	int ret = 0;
1490 
1491 	if (flags & LOOKUP_RCU)
1492 		return -ECHILD;
1493 
1494 	if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY))
1495 		goto no_open;
1496 	if (d_mountpoint(dentry))
1497 		goto no_open;
1498 	if (NFS_SB(dentry->d_sb)->caps & NFS_CAP_ATOMIC_OPEN_V1)
1499 		goto no_open;
1500 
1501 	inode = dentry->d_inode;
1502 	parent = dget_parent(dentry);
1503 	dir = parent->d_inode;
1504 
1505 	/* We can't create new files in nfs_open_revalidate(), so we
1506 	 * optimize away revalidation of negative dentries.
1507 	 */
1508 	if (inode == NULL) {
1509 		if (!nfs_neg_need_reval(dir, dentry, flags))
1510 			ret = 1;
1511 		goto out;
1512 	}
1513 
1514 	/* NFS only supports OPEN on regular files */
1515 	if (!S_ISREG(inode->i_mode))
1516 		goto no_open_dput;
1517 	/* We cannot do exclusive creation on a positive dentry */
1518 	if (flags & LOOKUP_EXCL)
1519 		goto no_open_dput;
1520 
1521 	/* Let f_op->open() actually open (and revalidate) the file */
1522 	ret = 1;
1523 
1524 out:
1525 	dput(parent);
1526 	return ret;
1527 
1528 no_open_dput:
1529 	dput(parent);
1530 no_open:
1531 	return nfs_lookup_revalidate(dentry, flags);
1532 }
1533 
1534 #endif /* CONFIG_NFSV4 */
1535 
1536 /*
1537  * Code common to create, mkdir, and mknod.
1538  */
1539 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
1540 				struct nfs_fattr *fattr,
1541 				struct nfs4_label *label)
1542 {
1543 	struct dentry *parent = dget_parent(dentry);
1544 	struct inode *dir = parent->d_inode;
1545 	struct inode *inode;
1546 	int error = -EACCES;
1547 
1548 	d_drop(dentry);
1549 
1550 	/* We may have been initialized further down */
1551 	if (dentry->d_inode)
1552 		goto out;
1553 	if (fhandle->size == 0) {
1554 		error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, NULL);
1555 		if (error)
1556 			goto out_error;
1557 	}
1558 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1559 	if (!(fattr->valid & NFS_ATTR_FATTR)) {
1560 		struct nfs_server *server = NFS_SB(dentry->d_sb);
1561 		error = server->nfs_client->rpc_ops->getattr(server, fhandle, fattr, NULL);
1562 		if (error < 0)
1563 			goto out_error;
1564 	}
1565 	inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1566 	error = PTR_ERR(inode);
1567 	if (IS_ERR(inode))
1568 		goto out_error;
1569 	d_add(dentry, inode);
1570 out:
1571 	dput(parent);
1572 	return 0;
1573 out_error:
1574 	nfs_mark_for_revalidate(dir);
1575 	dput(parent);
1576 	return error;
1577 }
1578 EXPORT_SYMBOL_GPL(nfs_instantiate);
1579 
1580 /*
1581  * Following a failed create operation, we drop the dentry rather
1582  * than retain a negative dentry. This avoids a problem in the event
1583  * that the operation succeeded on the server, but an error in the
1584  * reply path made it appear to have failed.
1585  */
1586 int nfs_create(struct inode *dir, struct dentry *dentry,
1587 		umode_t mode, bool excl)
1588 {
1589 	struct iattr attr;
1590 	int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT;
1591 	int error;
1592 
1593 	dfprintk(VFS, "NFS: create(%s/%ld), %s\n",
1594 			dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1595 
1596 	attr.ia_mode = mode;
1597 	attr.ia_valid = ATTR_MODE;
1598 
1599 	error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags);
1600 	if (error != 0)
1601 		goto out_err;
1602 	return 0;
1603 out_err:
1604 	d_drop(dentry);
1605 	return error;
1606 }
1607 EXPORT_SYMBOL_GPL(nfs_create);
1608 
1609 /*
1610  * See comments for nfs_proc_create regarding failed operations.
1611  */
1612 int
1613 nfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t rdev)
1614 {
1615 	struct iattr attr;
1616 	int status;
1617 
1618 	dfprintk(VFS, "NFS: mknod(%s/%ld), %s\n",
1619 			dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1620 
1621 	if (!new_valid_dev(rdev))
1622 		return -EINVAL;
1623 
1624 	attr.ia_mode = mode;
1625 	attr.ia_valid = ATTR_MODE;
1626 
1627 	status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
1628 	if (status != 0)
1629 		goto out_err;
1630 	return 0;
1631 out_err:
1632 	d_drop(dentry);
1633 	return status;
1634 }
1635 EXPORT_SYMBOL_GPL(nfs_mknod);
1636 
1637 /*
1638  * See comments for nfs_proc_create regarding failed operations.
1639  */
1640 int nfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1641 {
1642 	struct iattr attr;
1643 	int error;
1644 
1645 	dfprintk(VFS, "NFS: mkdir(%s/%ld), %s\n",
1646 			dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1647 
1648 	attr.ia_valid = ATTR_MODE;
1649 	attr.ia_mode = mode | S_IFDIR;
1650 
1651 	error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
1652 	if (error != 0)
1653 		goto out_err;
1654 	return 0;
1655 out_err:
1656 	d_drop(dentry);
1657 	return error;
1658 }
1659 EXPORT_SYMBOL_GPL(nfs_mkdir);
1660 
1661 static void nfs_dentry_handle_enoent(struct dentry *dentry)
1662 {
1663 	if (dentry->d_inode != NULL && !d_unhashed(dentry))
1664 		d_delete(dentry);
1665 }
1666 
1667 int nfs_rmdir(struct inode *dir, struct dentry *dentry)
1668 {
1669 	int error;
1670 
1671 	dfprintk(VFS, "NFS: rmdir(%s/%ld), %s\n",
1672 			dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1673 
1674 	error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1675 	/* Ensure the VFS deletes this inode */
1676 	if (error == 0 && dentry->d_inode != NULL)
1677 		clear_nlink(dentry->d_inode);
1678 	else if (error == -ENOENT)
1679 		nfs_dentry_handle_enoent(dentry);
1680 
1681 	return error;
1682 }
1683 EXPORT_SYMBOL_GPL(nfs_rmdir);
1684 
1685 /*
1686  * Remove a file after making sure there are no pending writes,
1687  * and after checking that the file has only one user.
1688  *
1689  * We invalidate the attribute cache and free the inode prior to the operation
1690  * to avoid possible races if the server reuses the inode.
1691  */
1692 static int nfs_safe_remove(struct dentry *dentry)
1693 {
1694 	struct inode *dir = dentry->d_parent->d_inode;
1695 	struct inode *inode = dentry->d_inode;
1696 	int error = -EBUSY;
1697 
1698 	dfprintk(VFS, "NFS: safe_remove(%s/%s)\n",
1699 		dentry->d_parent->d_name.name, dentry->d_name.name);
1700 
1701 	/* If the dentry was sillyrenamed, we simply call d_delete() */
1702 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1703 		error = 0;
1704 		goto out;
1705 	}
1706 
1707 	if (inode != NULL) {
1708 		NFS_PROTO(inode)->return_delegation(inode);
1709 		error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1710 		if (error == 0)
1711 			nfs_drop_nlink(inode);
1712 	} else
1713 		error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1714 	if (error == -ENOENT)
1715 		nfs_dentry_handle_enoent(dentry);
1716 out:
1717 	return error;
1718 }
1719 
1720 /*  We do silly rename. In case sillyrename() returns -EBUSY, the inode
1721  *  belongs to an active ".nfs..." file and we return -EBUSY.
1722  *
1723  *  If sillyrename() returns 0, we do nothing, otherwise we unlink.
1724  */
1725 int nfs_unlink(struct inode *dir, struct dentry *dentry)
1726 {
1727 	int error;
1728 	int need_rehash = 0;
1729 
1730 	dfprintk(VFS, "NFS: unlink(%s/%ld, %s)\n", dir->i_sb->s_id,
1731 		dir->i_ino, dentry->d_name.name);
1732 
1733 	spin_lock(&dentry->d_lock);
1734 	if (d_count(dentry) > 1) {
1735 		spin_unlock(&dentry->d_lock);
1736 		/* Start asynchronous writeout of the inode */
1737 		write_inode_now(dentry->d_inode, 0);
1738 		error = nfs_sillyrename(dir, dentry);
1739 		return error;
1740 	}
1741 	if (!d_unhashed(dentry)) {
1742 		__d_drop(dentry);
1743 		need_rehash = 1;
1744 	}
1745 	spin_unlock(&dentry->d_lock);
1746 	error = nfs_safe_remove(dentry);
1747 	if (!error || error == -ENOENT) {
1748 		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1749 	} else if (need_rehash)
1750 		d_rehash(dentry);
1751 	return error;
1752 }
1753 EXPORT_SYMBOL_GPL(nfs_unlink);
1754 
1755 /*
1756  * To create a symbolic link, most file systems instantiate a new inode,
1757  * add a page to it containing the path, then write it out to the disk
1758  * using prepare_write/commit_write.
1759  *
1760  * Unfortunately the NFS client can't create the in-core inode first
1761  * because it needs a file handle to create an in-core inode (see
1762  * fs/nfs/inode.c:nfs_fhget).  We only have a file handle *after* the
1763  * symlink request has completed on the server.
1764  *
1765  * So instead we allocate a raw page, copy the symname into it, then do
1766  * the SYMLINK request with the page as the buffer.  If it succeeds, we
1767  * now have a new file handle and can instantiate an in-core NFS inode
1768  * and move the raw page into its mapping.
1769  */
1770 int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1771 {
1772 	struct page *page;
1773 	char *kaddr;
1774 	struct iattr attr;
1775 	unsigned int pathlen = strlen(symname);
1776 	int error;
1777 
1778 	dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s)\n", dir->i_sb->s_id,
1779 		dir->i_ino, dentry->d_name.name, symname);
1780 
1781 	if (pathlen > PAGE_SIZE)
1782 		return -ENAMETOOLONG;
1783 
1784 	attr.ia_mode = S_IFLNK | S_IRWXUGO;
1785 	attr.ia_valid = ATTR_MODE;
1786 
1787 	page = alloc_page(GFP_HIGHUSER);
1788 	if (!page)
1789 		return -ENOMEM;
1790 
1791 	kaddr = kmap_atomic(page);
1792 	memcpy(kaddr, symname, pathlen);
1793 	if (pathlen < PAGE_SIZE)
1794 		memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
1795 	kunmap_atomic(kaddr);
1796 
1797 	error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
1798 	if (error != 0) {
1799 		dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s) error %d\n",
1800 			dir->i_sb->s_id, dir->i_ino,
1801 			dentry->d_name.name, symname, error);
1802 		d_drop(dentry);
1803 		__free_page(page);
1804 		return error;
1805 	}
1806 
1807 	/*
1808 	 * No big deal if we can't add this page to the page cache here.
1809 	 * READLINK will get the missing page from the server if needed.
1810 	 */
1811 	if (!add_to_page_cache_lru(page, dentry->d_inode->i_mapping, 0,
1812 							GFP_KERNEL)) {
1813 		SetPageUptodate(page);
1814 		unlock_page(page);
1815 	} else
1816 		__free_page(page);
1817 
1818 	return 0;
1819 }
1820 EXPORT_SYMBOL_GPL(nfs_symlink);
1821 
1822 int
1823 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1824 {
1825 	struct inode *inode = old_dentry->d_inode;
1826 	int error;
1827 
1828 	dfprintk(VFS, "NFS: link(%s/%s -> %s/%s)\n",
1829 		old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1830 		dentry->d_parent->d_name.name, dentry->d_name.name);
1831 
1832 	NFS_PROTO(inode)->return_delegation(inode);
1833 
1834 	d_drop(dentry);
1835 	error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
1836 	if (error == 0) {
1837 		ihold(inode);
1838 		d_add(dentry, inode);
1839 	}
1840 	return error;
1841 }
1842 EXPORT_SYMBOL_GPL(nfs_link);
1843 
1844 /*
1845  * RENAME
1846  * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
1847  * different file handle for the same inode after a rename (e.g. when
1848  * moving to a different directory). A fail-safe method to do so would
1849  * be to look up old_dir/old_name, create a link to new_dir/new_name and
1850  * rename the old file using the sillyrename stuff. This way, the original
1851  * file in old_dir will go away when the last process iput()s the inode.
1852  *
1853  * FIXED.
1854  *
1855  * It actually works quite well. One needs to have the possibility for
1856  * at least one ".nfs..." file in each directory the file ever gets
1857  * moved or linked to which happens automagically with the new
1858  * implementation that only depends on the dcache stuff instead of
1859  * using the inode layer
1860  *
1861  * Unfortunately, things are a little more complicated than indicated
1862  * above. For a cross-directory move, we want to make sure we can get
1863  * rid of the old inode after the operation.  This means there must be
1864  * no pending writes (if it's a file), and the use count must be 1.
1865  * If these conditions are met, we can drop the dentries before doing
1866  * the rename.
1867  */
1868 int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
1869 		      struct inode *new_dir, struct dentry *new_dentry)
1870 {
1871 	struct inode *old_inode = old_dentry->d_inode;
1872 	struct inode *new_inode = new_dentry->d_inode;
1873 	struct dentry *dentry = NULL, *rehash = NULL;
1874 	int error = -EBUSY;
1875 
1876 	dfprintk(VFS, "NFS: rename(%s/%s -> %s/%s, ct=%d)\n",
1877 		 old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1878 		 new_dentry->d_parent->d_name.name, new_dentry->d_name.name,
1879 		 d_count(new_dentry));
1880 
1881 	/*
1882 	 * For non-directories, check whether the target is busy and if so,
1883 	 * make a copy of the dentry and then do a silly-rename. If the
1884 	 * silly-rename succeeds, the copied dentry is hashed and becomes
1885 	 * the new target.
1886 	 */
1887 	if (new_inode && !S_ISDIR(new_inode->i_mode)) {
1888 		/*
1889 		 * To prevent any new references to the target during the
1890 		 * rename, we unhash the dentry in advance.
1891 		 */
1892 		if (!d_unhashed(new_dentry)) {
1893 			d_drop(new_dentry);
1894 			rehash = new_dentry;
1895 		}
1896 
1897 		if (d_count(new_dentry) > 2) {
1898 			int err;
1899 
1900 			/* copy the target dentry's name */
1901 			dentry = d_alloc(new_dentry->d_parent,
1902 					 &new_dentry->d_name);
1903 			if (!dentry)
1904 				goto out;
1905 
1906 			/* silly-rename the existing target ... */
1907 			err = nfs_sillyrename(new_dir, new_dentry);
1908 			if (err)
1909 				goto out;
1910 
1911 			new_dentry = dentry;
1912 			rehash = NULL;
1913 			new_inode = NULL;
1914 		}
1915 	}
1916 
1917 	NFS_PROTO(old_inode)->return_delegation(old_inode);
1918 	if (new_inode != NULL)
1919 		NFS_PROTO(new_inode)->return_delegation(new_inode);
1920 
1921 	error = NFS_PROTO(old_dir)->rename(old_dir, &old_dentry->d_name,
1922 					   new_dir, &new_dentry->d_name);
1923 	nfs_mark_for_revalidate(old_inode);
1924 out:
1925 	if (rehash)
1926 		d_rehash(rehash);
1927 	if (!error) {
1928 		if (new_inode != NULL)
1929 			nfs_drop_nlink(new_inode);
1930 		d_move(old_dentry, new_dentry);
1931 		nfs_set_verifier(new_dentry,
1932 					nfs_save_change_attribute(new_dir));
1933 	} else if (error == -ENOENT)
1934 		nfs_dentry_handle_enoent(old_dentry);
1935 
1936 	/* new dentry created? */
1937 	if (dentry)
1938 		dput(dentry);
1939 	return error;
1940 }
1941 EXPORT_SYMBOL_GPL(nfs_rename);
1942 
1943 static DEFINE_SPINLOCK(nfs_access_lru_lock);
1944 static LIST_HEAD(nfs_access_lru_list);
1945 static atomic_long_t nfs_access_nr_entries;
1946 
1947 static void nfs_access_free_entry(struct nfs_access_entry *entry)
1948 {
1949 	put_rpccred(entry->cred);
1950 	kfree(entry);
1951 	smp_mb__before_atomic_dec();
1952 	atomic_long_dec(&nfs_access_nr_entries);
1953 	smp_mb__after_atomic_dec();
1954 }
1955 
1956 static void nfs_access_free_list(struct list_head *head)
1957 {
1958 	struct nfs_access_entry *cache;
1959 
1960 	while (!list_empty(head)) {
1961 		cache = list_entry(head->next, struct nfs_access_entry, lru);
1962 		list_del(&cache->lru);
1963 		nfs_access_free_entry(cache);
1964 	}
1965 }
1966 
1967 int nfs_access_cache_shrinker(struct shrinker *shrink,
1968 			      struct shrink_control *sc)
1969 {
1970 	LIST_HEAD(head);
1971 	struct nfs_inode *nfsi, *next;
1972 	struct nfs_access_entry *cache;
1973 	int nr_to_scan = sc->nr_to_scan;
1974 	gfp_t gfp_mask = sc->gfp_mask;
1975 
1976 	if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
1977 		return (nr_to_scan == 0) ? 0 : -1;
1978 
1979 	spin_lock(&nfs_access_lru_lock);
1980 	list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
1981 		struct inode *inode;
1982 
1983 		if (nr_to_scan-- == 0)
1984 			break;
1985 		inode = &nfsi->vfs_inode;
1986 		spin_lock(&inode->i_lock);
1987 		if (list_empty(&nfsi->access_cache_entry_lru))
1988 			goto remove_lru_entry;
1989 		cache = list_entry(nfsi->access_cache_entry_lru.next,
1990 				struct nfs_access_entry, lru);
1991 		list_move(&cache->lru, &head);
1992 		rb_erase(&cache->rb_node, &nfsi->access_cache);
1993 		if (!list_empty(&nfsi->access_cache_entry_lru))
1994 			list_move_tail(&nfsi->access_cache_inode_lru,
1995 					&nfs_access_lru_list);
1996 		else {
1997 remove_lru_entry:
1998 			list_del_init(&nfsi->access_cache_inode_lru);
1999 			smp_mb__before_clear_bit();
2000 			clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
2001 			smp_mb__after_clear_bit();
2002 		}
2003 		spin_unlock(&inode->i_lock);
2004 	}
2005 	spin_unlock(&nfs_access_lru_lock);
2006 	nfs_access_free_list(&head);
2007 	return (atomic_long_read(&nfs_access_nr_entries) / 100) * sysctl_vfs_cache_pressure;
2008 }
2009 
2010 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
2011 {
2012 	struct rb_root *root_node = &nfsi->access_cache;
2013 	struct rb_node *n;
2014 	struct nfs_access_entry *entry;
2015 
2016 	/* Unhook entries from the cache */
2017 	while ((n = rb_first(root_node)) != NULL) {
2018 		entry = rb_entry(n, struct nfs_access_entry, rb_node);
2019 		rb_erase(n, root_node);
2020 		list_move(&entry->lru, head);
2021 	}
2022 	nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
2023 }
2024 
2025 void nfs_access_zap_cache(struct inode *inode)
2026 {
2027 	LIST_HEAD(head);
2028 
2029 	if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
2030 		return;
2031 	/* Remove from global LRU init */
2032 	spin_lock(&nfs_access_lru_lock);
2033 	if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2034 		list_del_init(&NFS_I(inode)->access_cache_inode_lru);
2035 
2036 	spin_lock(&inode->i_lock);
2037 	__nfs_access_zap_cache(NFS_I(inode), &head);
2038 	spin_unlock(&inode->i_lock);
2039 	spin_unlock(&nfs_access_lru_lock);
2040 	nfs_access_free_list(&head);
2041 }
2042 EXPORT_SYMBOL_GPL(nfs_access_zap_cache);
2043 
2044 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred)
2045 {
2046 	struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
2047 	struct nfs_access_entry *entry;
2048 
2049 	while (n != NULL) {
2050 		entry = rb_entry(n, struct nfs_access_entry, rb_node);
2051 
2052 		if (cred < entry->cred)
2053 			n = n->rb_left;
2054 		else if (cred > entry->cred)
2055 			n = n->rb_right;
2056 		else
2057 			return entry;
2058 	}
2059 	return NULL;
2060 }
2061 
2062 static int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res)
2063 {
2064 	struct nfs_inode *nfsi = NFS_I(inode);
2065 	struct nfs_access_entry *cache;
2066 	int err = -ENOENT;
2067 
2068 	spin_lock(&inode->i_lock);
2069 	if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2070 		goto out_zap;
2071 	cache = nfs_access_search_rbtree(inode, cred);
2072 	if (cache == NULL)
2073 		goto out;
2074 	if (!nfs_have_delegated_attributes(inode) &&
2075 	    !time_in_range_open(jiffies, cache->jiffies, cache->jiffies + nfsi->attrtimeo))
2076 		goto out_stale;
2077 	res->jiffies = cache->jiffies;
2078 	res->cred = cache->cred;
2079 	res->mask = cache->mask;
2080 	list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
2081 	err = 0;
2082 out:
2083 	spin_unlock(&inode->i_lock);
2084 	return err;
2085 out_stale:
2086 	rb_erase(&cache->rb_node, &nfsi->access_cache);
2087 	list_del(&cache->lru);
2088 	spin_unlock(&inode->i_lock);
2089 	nfs_access_free_entry(cache);
2090 	return -ENOENT;
2091 out_zap:
2092 	spin_unlock(&inode->i_lock);
2093 	nfs_access_zap_cache(inode);
2094 	return -ENOENT;
2095 }
2096 
2097 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
2098 {
2099 	struct nfs_inode *nfsi = NFS_I(inode);
2100 	struct rb_root *root_node = &nfsi->access_cache;
2101 	struct rb_node **p = &root_node->rb_node;
2102 	struct rb_node *parent = NULL;
2103 	struct nfs_access_entry *entry;
2104 
2105 	spin_lock(&inode->i_lock);
2106 	while (*p != NULL) {
2107 		parent = *p;
2108 		entry = rb_entry(parent, struct nfs_access_entry, rb_node);
2109 
2110 		if (set->cred < entry->cred)
2111 			p = &parent->rb_left;
2112 		else if (set->cred > entry->cred)
2113 			p = &parent->rb_right;
2114 		else
2115 			goto found;
2116 	}
2117 	rb_link_node(&set->rb_node, parent, p);
2118 	rb_insert_color(&set->rb_node, root_node);
2119 	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2120 	spin_unlock(&inode->i_lock);
2121 	return;
2122 found:
2123 	rb_replace_node(parent, &set->rb_node, root_node);
2124 	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2125 	list_del(&entry->lru);
2126 	spin_unlock(&inode->i_lock);
2127 	nfs_access_free_entry(entry);
2128 }
2129 
2130 void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
2131 {
2132 	struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
2133 	if (cache == NULL)
2134 		return;
2135 	RB_CLEAR_NODE(&cache->rb_node);
2136 	cache->jiffies = set->jiffies;
2137 	cache->cred = get_rpccred(set->cred);
2138 	cache->mask = set->mask;
2139 
2140 	nfs_access_add_rbtree(inode, cache);
2141 
2142 	/* Update accounting */
2143 	smp_mb__before_atomic_inc();
2144 	atomic_long_inc(&nfs_access_nr_entries);
2145 	smp_mb__after_atomic_inc();
2146 
2147 	/* Add inode to global LRU list */
2148 	if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
2149 		spin_lock(&nfs_access_lru_lock);
2150 		if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2151 			list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
2152 					&nfs_access_lru_list);
2153 		spin_unlock(&nfs_access_lru_lock);
2154 	}
2155 }
2156 EXPORT_SYMBOL_GPL(nfs_access_add_cache);
2157 
2158 void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result)
2159 {
2160 	entry->mask = 0;
2161 	if (access_result & NFS4_ACCESS_READ)
2162 		entry->mask |= MAY_READ;
2163 	if (access_result &
2164 	    (NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND | NFS4_ACCESS_DELETE))
2165 		entry->mask |= MAY_WRITE;
2166 	if (access_result & (NFS4_ACCESS_LOOKUP|NFS4_ACCESS_EXECUTE))
2167 		entry->mask |= MAY_EXEC;
2168 }
2169 EXPORT_SYMBOL_GPL(nfs_access_set_mask);
2170 
2171 static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask)
2172 {
2173 	struct nfs_access_entry cache;
2174 	int status;
2175 
2176 	status = nfs_access_get_cached(inode, cred, &cache);
2177 	if (status == 0)
2178 		goto out;
2179 
2180 	/* Be clever: ask server to check for all possible rights */
2181 	cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ;
2182 	cache.cred = cred;
2183 	cache.jiffies = jiffies;
2184 	status = NFS_PROTO(inode)->access(inode, &cache);
2185 	if (status != 0) {
2186 		if (status == -ESTALE) {
2187 			nfs_zap_caches(inode);
2188 			if (!S_ISDIR(inode->i_mode))
2189 				set_bit(NFS_INO_STALE, &NFS_I(inode)->flags);
2190 		}
2191 		return status;
2192 	}
2193 	nfs_access_add_cache(inode, &cache);
2194 out:
2195 	if ((mask & ~cache.mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2196 		return 0;
2197 	return -EACCES;
2198 }
2199 
2200 static int nfs_open_permission_mask(int openflags)
2201 {
2202 	int mask = 0;
2203 
2204 	if (openflags & __FMODE_EXEC) {
2205 		/* ONLY check exec rights */
2206 		mask = MAY_EXEC;
2207 	} else {
2208 		if ((openflags & O_ACCMODE) != O_WRONLY)
2209 			mask |= MAY_READ;
2210 		if ((openflags & O_ACCMODE) != O_RDONLY)
2211 			mask |= MAY_WRITE;
2212 	}
2213 
2214 	return mask;
2215 }
2216 
2217 int nfs_may_open(struct inode *inode, struct rpc_cred *cred, int openflags)
2218 {
2219 	return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
2220 }
2221 EXPORT_SYMBOL_GPL(nfs_may_open);
2222 
2223 int nfs_permission(struct inode *inode, int mask)
2224 {
2225 	struct rpc_cred *cred;
2226 	int res = 0;
2227 
2228 	if (mask & MAY_NOT_BLOCK)
2229 		return -ECHILD;
2230 
2231 	nfs_inc_stats(inode, NFSIOS_VFSACCESS);
2232 
2233 	if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2234 		goto out;
2235 	/* Is this sys_access() ? */
2236 	if (mask & (MAY_ACCESS | MAY_CHDIR))
2237 		goto force_lookup;
2238 
2239 	switch (inode->i_mode & S_IFMT) {
2240 		case S_IFLNK:
2241 			goto out;
2242 		case S_IFREG:
2243 			/* NFSv4 has atomic_open... */
2244 			if (nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN)
2245 					&& (mask & MAY_OPEN)
2246 					&& !(mask & MAY_EXEC))
2247 				goto out;
2248 			break;
2249 		case S_IFDIR:
2250 			/*
2251 			 * Optimize away all write operations, since the server
2252 			 * will check permissions when we perform the op.
2253 			 */
2254 			if ((mask & MAY_WRITE) && !(mask & MAY_READ))
2255 				goto out;
2256 	}
2257 
2258 force_lookup:
2259 	if (!NFS_PROTO(inode)->access)
2260 		goto out_notsup;
2261 
2262 	cred = rpc_lookup_cred();
2263 	if (!IS_ERR(cred)) {
2264 		res = nfs_do_access(inode, cred, mask);
2265 		put_rpccred(cred);
2266 	} else
2267 		res = PTR_ERR(cred);
2268 out:
2269 	if (!res && (mask & MAY_EXEC) && !execute_ok(inode))
2270 		res = -EACCES;
2271 
2272 	dfprintk(VFS, "NFS: permission(%s/%ld), mask=0x%x, res=%d\n",
2273 		inode->i_sb->s_id, inode->i_ino, mask, res);
2274 	return res;
2275 out_notsup:
2276 	res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
2277 	if (res == 0)
2278 		res = generic_permission(inode, mask);
2279 	goto out;
2280 }
2281 EXPORT_SYMBOL_GPL(nfs_permission);
2282 
2283 /*
2284  * Local variables:
2285  *  version-control: t
2286  *  kept-new-versions: 5
2287  * End:
2288  */
2289