1 /* 2 * linux/fs/nfs/dir.c 3 * 4 * Copyright (C) 1992 Rick Sladkey 5 * 6 * nfs directory handling functions 7 * 8 * 10 Apr 1996 Added silly rename for unlink --okir 9 * 28 Sep 1996 Improved directory cache --okir 10 * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de 11 * Re-implemented silly rename for unlink, newly implemented 12 * silly rename for nfs_rename() following the suggestions 13 * of Olaf Kirch (okir) found in this file. 14 * Following Linus comments on my original hack, this version 15 * depends only on the dcache stuff and doesn't touch the inode 16 * layer (iput() and friends). 17 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM 18 */ 19 20 #include <linux/module.h> 21 #include <linux/time.h> 22 #include <linux/errno.h> 23 #include <linux/stat.h> 24 #include <linux/fcntl.h> 25 #include <linux/string.h> 26 #include <linux/kernel.h> 27 #include <linux/slab.h> 28 #include <linux/mm.h> 29 #include <linux/sunrpc/clnt.h> 30 #include <linux/nfs_fs.h> 31 #include <linux/nfs_mount.h> 32 #include <linux/pagemap.h> 33 #include <linux/pagevec.h> 34 #include <linux/namei.h> 35 #include <linux/mount.h> 36 #include <linux/swap.h> 37 #include <linux/sched.h> 38 #include <linux/kmemleak.h> 39 #include <linux/xattr.h> 40 41 #include "delegation.h" 42 #include "iostat.h" 43 #include "internal.h" 44 #include "fscache.h" 45 46 /* #define NFS_DEBUG_VERBOSE 1 */ 47 48 static int nfs_opendir(struct inode *, struct file *); 49 static int nfs_closedir(struct inode *, struct file *); 50 static int nfs_readdir(struct file *, struct dir_context *); 51 static int nfs_fsync_dir(struct file *, loff_t, loff_t, int); 52 static loff_t nfs_llseek_dir(struct file *, loff_t, int); 53 static void nfs_readdir_clear_array(struct page*); 54 55 const struct file_operations nfs_dir_operations = { 56 .llseek = nfs_llseek_dir, 57 .read = generic_read_dir, 58 .iterate = nfs_readdir, 59 .open = nfs_opendir, 60 .release = nfs_closedir, 61 .fsync = nfs_fsync_dir, 62 }; 63 64 const struct address_space_operations nfs_dir_aops = { 65 .freepage = nfs_readdir_clear_array, 66 }; 67 68 static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct inode *dir, struct rpc_cred *cred) 69 { 70 struct nfs_open_dir_context *ctx; 71 ctx = kmalloc(sizeof(*ctx), GFP_KERNEL); 72 if (ctx != NULL) { 73 ctx->duped = 0; 74 ctx->attr_gencount = NFS_I(dir)->attr_gencount; 75 ctx->dir_cookie = 0; 76 ctx->dup_cookie = 0; 77 ctx->cred = get_rpccred(cred); 78 return ctx; 79 } 80 return ERR_PTR(-ENOMEM); 81 } 82 83 static void put_nfs_open_dir_context(struct nfs_open_dir_context *ctx) 84 { 85 put_rpccred(ctx->cred); 86 kfree(ctx); 87 } 88 89 /* 90 * Open file 91 */ 92 static int 93 nfs_opendir(struct inode *inode, struct file *filp) 94 { 95 int res = 0; 96 struct nfs_open_dir_context *ctx; 97 struct rpc_cred *cred; 98 99 dfprintk(FILE, "NFS: open dir(%s/%s)\n", 100 filp->f_path.dentry->d_parent->d_name.name, 101 filp->f_path.dentry->d_name.name); 102 103 nfs_inc_stats(inode, NFSIOS_VFSOPEN); 104 105 cred = rpc_lookup_cred(); 106 if (IS_ERR(cred)) 107 return PTR_ERR(cred); 108 ctx = alloc_nfs_open_dir_context(inode, cred); 109 if (IS_ERR(ctx)) { 110 res = PTR_ERR(ctx); 111 goto out; 112 } 113 filp->private_data = ctx; 114 if (filp->f_path.dentry == filp->f_path.mnt->mnt_root) { 115 /* This is a mountpoint, so d_revalidate will never 116 * have been called, so we need to refresh the 117 * inode (for close-open consistency) ourselves. 118 */ 119 __nfs_revalidate_inode(NFS_SERVER(inode), inode); 120 } 121 out: 122 put_rpccred(cred); 123 return res; 124 } 125 126 static int 127 nfs_closedir(struct inode *inode, struct file *filp) 128 { 129 put_nfs_open_dir_context(filp->private_data); 130 return 0; 131 } 132 133 struct nfs_cache_array_entry { 134 u64 cookie; 135 u64 ino; 136 struct qstr string; 137 unsigned char d_type; 138 }; 139 140 struct nfs_cache_array { 141 int size; 142 int eof_index; 143 u64 last_cookie; 144 struct nfs_cache_array_entry array[0]; 145 }; 146 147 typedef int (*decode_dirent_t)(struct xdr_stream *, struct nfs_entry *, int); 148 typedef struct { 149 struct file *file; 150 struct page *page; 151 struct dir_context *ctx; 152 unsigned long page_index; 153 u64 *dir_cookie; 154 u64 last_cookie; 155 loff_t current_index; 156 decode_dirent_t decode; 157 158 unsigned long timestamp; 159 unsigned long gencount; 160 unsigned int cache_entry_index; 161 unsigned int plus:1; 162 unsigned int eof:1; 163 } nfs_readdir_descriptor_t; 164 165 /* 166 * The caller is responsible for calling nfs_readdir_release_array(page) 167 */ 168 static 169 struct nfs_cache_array *nfs_readdir_get_array(struct page *page) 170 { 171 void *ptr; 172 if (page == NULL) 173 return ERR_PTR(-EIO); 174 ptr = kmap(page); 175 if (ptr == NULL) 176 return ERR_PTR(-ENOMEM); 177 return ptr; 178 } 179 180 static 181 void nfs_readdir_release_array(struct page *page) 182 { 183 kunmap(page); 184 } 185 186 /* 187 * we are freeing strings created by nfs_add_to_readdir_array() 188 */ 189 static 190 void nfs_readdir_clear_array(struct page *page) 191 { 192 struct nfs_cache_array *array; 193 int i; 194 195 array = kmap_atomic(page); 196 for (i = 0; i < array->size; i++) 197 kfree(array->array[i].string.name); 198 kunmap_atomic(array); 199 } 200 201 /* 202 * the caller is responsible for freeing qstr.name 203 * when called by nfs_readdir_add_to_array, the strings will be freed in 204 * nfs_clear_readdir_array() 205 */ 206 static 207 int nfs_readdir_make_qstr(struct qstr *string, const char *name, unsigned int len) 208 { 209 string->len = len; 210 string->name = kmemdup(name, len, GFP_KERNEL); 211 if (string->name == NULL) 212 return -ENOMEM; 213 /* 214 * Avoid a kmemleak false positive. The pointer to the name is stored 215 * in a page cache page which kmemleak does not scan. 216 */ 217 kmemleak_not_leak(string->name); 218 string->hash = full_name_hash(name, len); 219 return 0; 220 } 221 222 static 223 int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page) 224 { 225 struct nfs_cache_array *array = nfs_readdir_get_array(page); 226 struct nfs_cache_array_entry *cache_entry; 227 int ret; 228 229 if (IS_ERR(array)) 230 return PTR_ERR(array); 231 232 cache_entry = &array->array[array->size]; 233 234 /* Check that this entry lies within the page bounds */ 235 ret = -ENOSPC; 236 if ((char *)&cache_entry[1] - (char *)page_address(page) > PAGE_SIZE) 237 goto out; 238 239 cache_entry->cookie = entry->prev_cookie; 240 cache_entry->ino = entry->ino; 241 cache_entry->d_type = entry->d_type; 242 ret = nfs_readdir_make_qstr(&cache_entry->string, entry->name, entry->len); 243 if (ret) 244 goto out; 245 array->last_cookie = entry->cookie; 246 array->size++; 247 if (entry->eof != 0) 248 array->eof_index = array->size; 249 out: 250 nfs_readdir_release_array(page); 251 return ret; 252 } 253 254 static 255 int nfs_readdir_search_for_pos(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc) 256 { 257 loff_t diff = desc->ctx->pos - desc->current_index; 258 unsigned int index; 259 260 if (diff < 0) 261 goto out_eof; 262 if (diff >= array->size) { 263 if (array->eof_index >= 0) 264 goto out_eof; 265 return -EAGAIN; 266 } 267 268 index = (unsigned int)diff; 269 *desc->dir_cookie = array->array[index].cookie; 270 desc->cache_entry_index = index; 271 return 0; 272 out_eof: 273 desc->eof = 1; 274 return -EBADCOOKIE; 275 } 276 277 static 278 int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc) 279 { 280 int i; 281 loff_t new_pos; 282 int status = -EAGAIN; 283 284 for (i = 0; i < array->size; i++) { 285 if (array->array[i].cookie == *desc->dir_cookie) { 286 struct nfs_inode *nfsi = NFS_I(file_inode(desc->file)); 287 struct nfs_open_dir_context *ctx = desc->file->private_data; 288 289 new_pos = desc->current_index + i; 290 if (ctx->attr_gencount != nfsi->attr_gencount 291 || (nfsi->cache_validity & (NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA))) { 292 ctx->duped = 0; 293 ctx->attr_gencount = nfsi->attr_gencount; 294 } else if (new_pos < desc->ctx->pos) { 295 if (ctx->duped > 0 296 && ctx->dup_cookie == *desc->dir_cookie) { 297 if (printk_ratelimit()) { 298 pr_notice("NFS: directory %s/%s contains a readdir loop." 299 "Please contact your server vendor. " 300 "The file: %s has duplicate cookie %llu\n", 301 desc->file->f_dentry->d_parent->d_name.name, 302 desc->file->f_dentry->d_name.name, 303 array->array[i].string.name, 304 *desc->dir_cookie); 305 } 306 status = -ELOOP; 307 goto out; 308 } 309 ctx->dup_cookie = *desc->dir_cookie; 310 ctx->duped = -1; 311 } 312 desc->ctx->pos = new_pos; 313 desc->cache_entry_index = i; 314 return 0; 315 } 316 } 317 if (array->eof_index >= 0) { 318 status = -EBADCOOKIE; 319 if (*desc->dir_cookie == array->last_cookie) 320 desc->eof = 1; 321 } 322 out: 323 return status; 324 } 325 326 static 327 int nfs_readdir_search_array(nfs_readdir_descriptor_t *desc) 328 { 329 struct nfs_cache_array *array; 330 int status; 331 332 array = nfs_readdir_get_array(desc->page); 333 if (IS_ERR(array)) { 334 status = PTR_ERR(array); 335 goto out; 336 } 337 338 if (*desc->dir_cookie == 0) 339 status = nfs_readdir_search_for_pos(array, desc); 340 else 341 status = nfs_readdir_search_for_cookie(array, desc); 342 343 if (status == -EAGAIN) { 344 desc->last_cookie = array->last_cookie; 345 desc->current_index += array->size; 346 desc->page_index++; 347 } 348 nfs_readdir_release_array(desc->page); 349 out: 350 return status; 351 } 352 353 /* Fill a page with xdr information before transferring to the cache page */ 354 static 355 int nfs_readdir_xdr_filler(struct page **pages, nfs_readdir_descriptor_t *desc, 356 struct nfs_entry *entry, struct file *file, struct inode *inode) 357 { 358 struct nfs_open_dir_context *ctx = file->private_data; 359 struct rpc_cred *cred = ctx->cred; 360 unsigned long timestamp, gencount; 361 int error; 362 363 again: 364 timestamp = jiffies; 365 gencount = nfs_inc_attr_generation_counter(); 366 error = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred, entry->cookie, pages, 367 NFS_SERVER(inode)->dtsize, desc->plus); 368 if (error < 0) { 369 /* We requested READDIRPLUS, but the server doesn't grok it */ 370 if (error == -ENOTSUPP && desc->plus) { 371 NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS; 372 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags); 373 desc->plus = 0; 374 goto again; 375 } 376 goto error; 377 } 378 desc->timestamp = timestamp; 379 desc->gencount = gencount; 380 error: 381 return error; 382 } 383 384 static int xdr_decode(nfs_readdir_descriptor_t *desc, 385 struct nfs_entry *entry, struct xdr_stream *xdr) 386 { 387 int error; 388 389 error = desc->decode(xdr, entry, desc->plus); 390 if (error) 391 return error; 392 entry->fattr->time_start = desc->timestamp; 393 entry->fattr->gencount = desc->gencount; 394 return 0; 395 } 396 397 static 398 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry) 399 { 400 if (dentry->d_inode == NULL) 401 goto different; 402 if (nfs_compare_fh(entry->fh, NFS_FH(dentry->d_inode)) != 0) 403 goto different; 404 return 1; 405 different: 406 return 0; 407 } 408 409 static 410 bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx) 411 { 412 if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS)) 413 return false; 414 if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags)) 415 return true; 416 if (ctx->pos == 0) 417 return true; 418 return false; 419 } 420 421 /* 422 * This function is called by the lookup code to request the use of 423 * readdirplus to accelerate any future lookups in the same 424 * directory. 425 */ 426 static 427 void nfs_advise_use_readdirplus(struct inode *dir) 428 { 429 set_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags); 430 } 431 432 static 433 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry) 434 { 435 struct qstr filename = QSTR_INIT(entry->name, entry->len); 436 struct dentry *dentry; 437 struct dentry *alias; 438 struct inode *dir = parent->d_inode; 439 struct inode *inode; 440 int status; 441 442 if (filename.name[0] == '.') { 443 if (filename.len == 1) 444 return; 445 if (filename.len == 2 && filename.name[1] == '.') 446 return; 447 } 448 filename.hash = full_name_hash(filename.name, filename.len); 449 450 dentry = d_lookup(parent, &filename); 451 if (dentry != NULL) { 452 if (nfs_same_file(dentry, entry)) { 453 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 454 status = nfs_refresh_inode(dentry->d_inode, entry->fattr); 455 if (!status) 456 nfs_setsecurity(dentry->d_inode, entry->fattr, entry->label); 457 goto out; 458 } else { 459 if (d_invalidate(dentry) != 0) 460 goto out; 461 dput(dentry); 462 } 463 } 464 465 dentry = d_alloc(parent, &filename); 466 if (dentry == NULL) 467 return; 468 469 inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr, entry->label); 470 if (IS_ERR(inode)) 471 goto out; 472 473 alias = d_materialise_unique(dentry, inode); 474 if (IS_ERR(alias)) 475 goto out; 476 else if (alias) { 477 nfs_set_verifier(alias, nfs_save_change_attribute(dir)); 478 dput(alias); 479 } else 480 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 481 482 out: 483 dput(dentry); 484 } 485 486 /* Perform conversion from xdr to cache array */ 487 static 488 int nfs_readdir_page_filler(nfs_readdir_descriptor_t *desc, struct nfs_entry *entry, 489 struct page **xdr_pages, struct page *page, unsigned int buflen) 490 { 491 struct xdr_stream stream; 492 struct xdr_buf buf; 493 struct page *scratch; 494 struct nfs_cache_array *array; 495 unsigned int count = 0; 496 int status; 497 498 scratch = alloc_page(GFP_KERNEL); 499 if (scratch == NULL) 500 return -ENOMEM; 501 502 xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen); 503 xdr_set_scratch_buffer(&stream, page_address(scratch), PAGE_SIZE); 504 505 do { 506 status = xdr_decode(desc, entry, &stream); 507 if (status != 0) { 508 if (status == -EAGAIN) 509 status = 0; 510 break; 511 } 512 513 count++; 514 515 if (desc->plus != 0) 516 nfs_prime_dcache(desc->file->f_path.dentry, entry); 517 518 status = nfs_readdir_add_to_array(entry, page); 519 if (status != 0) 520 break; 521 } while (!entry->eof); 522 523 if (count == 0 || (status == -EBADCOOKIE && entry->eof != 0)) { 524 array = nfs_readdir_get_array(page); 525 if (!IS_ERR(array)) { 526 array->eof_index = array->size; 527 status = 0; 528 nfs_readdir_release_array(page); 529 } else 530 status = PTR_ERR(array); 531 } 532 533 put_page(scratch); 534 return status; 535 } 536 537 static 538 void nfs_readdir_free_pagearray(struct page **pages, unsigned int npages) 539 { 540 unsigned int i; 541 for (i = 0; i < npages; i++) 542 put_page(pages[i]); 543 } 544 545 static 546 void nfs_readdir_free_large_page(void *ptr, struct page **pages, 547 unsigned int npages) 548 { 549 nfs_readdir_free_pagearray(pages, npages); 550 } 551 552 /* 553 * nfs_readdir_large_page will allocate pages that must be freed with a call 554 * to nfs_readdir_free_large_page 555 */ 556 static 557 int nfs_readdir_large_page(struct page **pages, unsigned int npages) 558 { 559 unsigned int i; 560 561 for (i = 0; i < npages; i++) { 562 struct page *page = alloc_page(GFP_KERNEL); 563 if (page == NULL) 564 goto out_freepages; 565 pages[i] = page; 566 } 567 return 0; 568 569 out_freepages: 570 nfs_readdir_free_pagearray(pages, i); 571 return -ENOMEM; 572 } 573 574 static 575 int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t *desc, struct page *page, struct inode *inode) 576 { 577 struct page *pages[NFS_MAX_READDIR_PAGES]; 578 void *pages_ptr = NULL; 579 struct nfs_entry entry; 580 struct file *file = desc->file; 581 struct nfs_cache_array *array; 582 int status = -ENOMEM; 583 unsigned int array_size = ARRAY_SIZE(pages); 584 585 entry.prev_cookie = 0; 586 entry.cookie = desc->last_cookie; 587 entry.eof = 0; 588 entry.fh = nfs_alloc_fhandle(); 589 entry.fattr = nfs_alloc_fattr(); 590 entry.server = NFS_SERVER(inode); 591 if (entry.fh == NULL || entry.fattr == NULL) 592 goto out; 593 594 entry.label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT); 595 if (IS_ERR(entry.label)) { 596 status = PTR_ERR(entry.label); 597 goto out; 598 } 599 600 array = nfs_readdir_get_array(page); 601 if (IS_ERR(array)) { 602 status = PTR_ERR(array); 603 goto out_label_free; 604 } 605 memset(array, 0, sizeof(struct nfs_cache_array)); 606 array->eof_index = -1; 607 608 status = nfs_readdir_large_page(pages, array_size); 609 if (status < 0) 610 goto out_release_array; 611 do { 612 unsigned int pglen; 613 status = nfs_readdir_xdr_filler(pages, desc, &entry, file, inode); 614 615 if (status < 0) 616 break; 617 pglen = status; 618 status = nfs_readdir_page_filler(desc, &entry, pages, page, pglen); 619 if (status < 0) { 620 if (status == -ENOSPC) 621 status = 0; 622 break; 623 } 624 } while (array->eof_index < 0); 625 626 nfs_readdir_free_large_page(pages_ptr, pages, array_size); 627 out_release_array: 628 nfs_readdir_release_array(page); 629 out_label_free: 630 nfs4_label_free(entry.label); 631 out: 632 nfs_free_fattr(entry.fattr); 633 nfs_free_fhandle(entry.fh); 634 return status; 635 } 636 637 /* 638 * Now we cache directories properly, by converting xdr information 639 * to an array that can be used for lookups later. This results in 640 * fewer cache pages, since we can store more information on each page. 641 * We only need to convert from xdr once so future lookups are much simpler 642 */ 643 static 644 int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page* page) 645 { 646 struct inode *inode = file_inode(desc->file); 647 int ret; 648 649 ret = nfs_readdir_xdr_to_array(desc, page, inode); 650 if (ret < 0) 651 goto error; 652 SetPageUptodate(page); 653 654 if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) { 655 /* Should never happen */ 656 nfs_zap_mapping(inode, inode->i_mapping); 657 } 658 unlock_page(page); 659 return 0; 660 error: 661 unlock_page(page); 662 return ret; 663 } 664 665 static 666 void cache_page_release(nfs_readdir_descriptor_t *desc) 667 { 668 if (!desc->page->mapping) 669 nfs_readdir_clear_array(desc->page); 670 page_cache_release(desc->page); 671 desc->page = NULL; 672 } 673 674 static 675 struct page *get_cache_page(nfs_readdir_descriptor_t *desc) 676 { 677 return read_cache_page(file_inode(desc->file)->i_mapping, 678 desc->page_index, (filler_t *)nfs_readdir_filler, desc); 679 } 680 681 /* 682 * Returns 0 if desc->dir_cookie was found on page desc->page_index 683 */ 684 static 685 int find_cache_page(nfs_readdir_descriptor_t *desc) 686 { 687 int res; 688 689 desc->page = get_cache_page(desc); 690 if (IS_ERR(desc->page)) 691 return PTR_ERR(desc->page); 692 693 res = nfs_readdir_search_array(desc); 694 if (res != 0) 695 cache_page_release(desc); 696 return res; 697 } 698 699 /* Search for desc->dir_cookie from the beginning of the page cache */ 700 static inline 701 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc) 702 { 703 int res; 704 705 if (desc->page_index == 0) { 706 desc->current_index = 0; 707 desc->last_cookie = 0; 708 } 709 do { 710 res = find_cache_page(desc); 711 } while (res == -EAGAIN); 712 return res; 713 } 714 715 /* 716 * Once we've found the start of the dirent within a page: fill 'er up... 717 */ 718 static 719 int nfs_do_filldir(nfs_readdir_descriptor_t *desc) 720 { 721 struct file *file = desc->file; 722 int i = 0; 723 int res = 0; 724 struct nfs_cache_array *array = NULL; 725 struct nfs_open_dir_context *ctx = file->private_data; 726 727 array = nfs_readdir_get_array(desc->page); 728 if (IS_ERR(array)) { 729 res = PTR_ERR(array); 730 goto out; 731 } 732 733 for (i = desc->cache_entry_index; i < array->size; i++) { 734 struct nfs_cache_array_entry *ent; 735 736 ent = &array->array[i]; 737 if (!dir_emit(desc->ctx, ent->string.name, ent->string.len, 738 nfs_compat_user_ino64(ent->ino), ent->d_type)) { 739 desc->eof = 1; 740 break; 741 } 742 desc->ctx->pos++; 743 if (i < (array->size-1)) 744 *desc->dir_cookie = array->array[i+1].cookie; 745 else 746 *desc->dir_cookie = array->last_cookie; 747 if (ctx->duped != 0) 748 ctx->duped = 1; 749 } 750 if (array->eof_index >= 0) 751 desc->eof = 1; 752 753 nfs_readdir_release_array(desc->page); 754 out: 755 cache_page_release(desc); 756 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n", 757 (unsigned long long)*desc->dir_cookie, res); 758 return res; 759 } 760 761 /* 762 * If we cannot find a cookie in our cache, we suspect that this is 763 * because it points to a deleted file, so we ask the server to return 764 * whatever it thinks is the next entry. We then feed this to filldir. 765 * If all goes well, we should then be able to find our way round the 766 * cache on the next call to readdir_search_pagecache(); 767 * 768 * NOTE: we cannot add the anonymous page to the pagecache because 769 * the data it contains might not be page aligned. Besides, 770 * we should already have a complete representation of the 771 * directory in the page cache by the time we get here. 772 */ 773 static inline 774 int uncached_readdir(nfs_readdir_descriptor_t *desc) 775 { 776 struct page *page = NULL; 777 int status; 778 struct inode *inode = file_inode(desc->file); 779 struct nfs_open_dir_context *ctx = desc->file->private_data; 780 781 dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n", 782 (unsigned long long)*desc->dir_cookie); 783 784 page = alloc_page(GFP_HIGHUSER); 785 if (!page) { 786 status = -ENOMEM; 787 goto out; 788 } 789 790 desc->page_index = 0; 791 desc->last_cookie = *desc->dir_cookie; 792 desc->page = page; 793 ctx->duped = 0; 794 795 status = nfs_readdir_xdr_to_array(desc, page, inode); 796 if (status < 0) 797 goto out_release; 798 799 status = nfs_do_filldir(desc); 800 801 out: 802 dfprintk(DIRCACHE, "NFS: %s: returns %d\n", 803 __func__, status); 804 return status; 805 out_release: 806 cache_page_release(desc); 807 goto out; 808 } 809 810 /* The file offset position represents the dirent entry number. A 811 last cookie cache takes care of the common case of reading the 812 whole directory. 813 */ 814 static int nfs_readdir(struct file *file, struct dir_context *ctx) 815 { 816 struct dentry *dentry = file->f_path.dentry; 817 struct inode *inode = dentry->d_inode; 818 nfs_readdir_descriptor_t my_desc, 819 *desc = &my_desc; 820 struct nfs_open_dir_context *dir_ctx = file->private_data; 821 int res; 822 823 dfprintk(FILE, "NFS: readdir(%s/%s) starting at cookie %llu\n", 824 dentry->d_parent->d_name.name, dentry->d_name.name, 825 (long long)ctx->pos); 826 nfs_inc_stats(inode, NFSIOS_VFSGETDENTS); 827 828 /* 829 * ctx->pos points to the dirent entry number. 830 * *desc->dir_cookie has the cookie for the next entry. We have 831 * to either find the entry with the appropriate number or 832 * revalidate the cookie. 833 */ 834 memset(desc, 0, sizeof(*desc)); 835 836 desc->file = file; 837 desc->ctx = ctx; 838 desc->dir_cookie = &dir_ctx->dir_cookie; 839 desc->decode = NFS_PROTO(inode)->decode_dirent; 840 desc->plus = nfs_use_readdirplus(inode, ctx) ? 1 : 0; 841 842 nfs_block_sillyrename(dentry); 843 res = nfs_revalidate_mapping(inode, file->f_mapping); 844 if (res < 0) 845 goto out; 846 847 do { 848 res = readdir_search_pagecache(desc); 849 850 if (res == -EBADCOOKIE) { 851 res = 0; 852 /* This means either end of directory */ 853 if (*desc->dir_cookie && desc->eof == 0) { 854 /* Or that the server has 'lost' a cookie */ 855 res = uncached_readdir(desc); 856 if (res == 0) 857 continue; 858 } 859 break; 860 } 861 if (res == -ETOOSMALL && desc->plus) { 862 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags); 863 nfs_zap_caches(inode); 864 desc->page_index = 0; 865 desc->plus = 0; 866 desc->eof = 0; 867 continue; 868 } 869 if (res < 0) 870 break; 871 872 res = nfs_do_filldir(desc); 873 if (res < 0) 874 break; 875 } while (!desc->eof); 876 out: 877 nfs_unblock_sillyrename(dentry); 878 if (res > 0) 879 res = 0; 880 dfprintk(FILE, "NFS: readdir(%s/%s) returns %d\n", 881 dentry->d_parent->d_name.name, dentry->d_name.name, 882 res); 883 return res; 884 } 885 886 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence) 887 { 888 struct dentry *dentry = filp->f_path.dentry; 889 struct inode *inode = dentry->d_inode; 890 struct nfs_open_dir_context *dir_ctx = filp->private_data; 891 892 dfprintk(FILE, "NFS: llseek dir(%s/%s, %lld, %d)\n", 893 dentry->d_parent->d_name.name, 894 dentry->d_name.name, 895 offset, whence); 896 897 mutex_lock(&inode->i_mutex); 898 switch (whence) { 899 case 1: 900 offset += filp->f_pos; 901 case 0: 902 if (offset >= 0) 903 break; 904 default: 905 offset = -EINVAL; 906 goto out; 907 } 908 if (offset != filp->f_pos) { 909 filp->f_pos = offset; 910 dir_ctx->dir_cookie = 0; 911 dir_ctx->duped = 0; 912 } 913 out: 914 mutex_unlock(&inode->i_mutex); 915 return offset; 916 } 917 918 /* 919 * All directory operations under NFS are synchronous, so fsync() 920 * is a dummy operation. 921 */ 922 static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end, 923 int datasync) 924 { 925 struct dentry *dentry = filp->f_path.dentry; 926 struct inode *inode = dentry->d_inode; 927 928 dfprintk(FILE, "NFS: fsync dir(%s/%s) datasync %d\n", 929 dentry->d_parent->d_name.name, dentry->d_name.name, 930 datasync); 931 932 mutex_lock(&inode->i_mutex); 933 nfs_inc_stats(dentry->d_inode, NFSIOS_VFSFSYNC); 934 mutex_unlock(&inode->i_mutex); 935 return 0; 936 } 937 938 /** 939 * nfs_force_lookup_revalidate - Mark the directory as having changed 940 * @dir - pointer to directory inode 941 * 942 * This forces the revalidation code in nfs_lookup_revalidate() to do a 943 * full lookup on all child dentries of 'dir' whenever a change occurs 944 * on the server that might have invalidated our dcache. 945 * 946 * The caller should be holding dir->i_lock 947 */ 948 void nfs_force_lookup_revalidate(struct inode *dir) 949 { 950 NFS_I(dir)->cache_change_attribute++; 951 } 952 EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate); 953 954 /* 955 * A check for whether or not the parent directory has changed. 956 * In the case it has, we assume that the dentries are untrustworthy 957 * and may need to be looked up again. 958 */ 959 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry) 960 { 961 if (IS_ROOT(dentry)) 962 return 1; 963 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE) 964 return 0; 965 if (!nfs_verify_change_attribute(dir, dentry->d_time)) 966 return 0; 967 /* Revalidate nfsi->cache_change_attribute before we declare a match */ 968 if (nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0) 969 return 0; 970 if (!nfs_verify_change_attribute(dir, dentry->d_time)) 971 return 0; 972 return 1; 973 } 974 975 /* 976 * Use intent information to check whether or not we're going to do 977 * an O_EXCL create using this path component. 978 */ 979 static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags) 980 { 981 if (NFS_PROTO(dir)->version == 2) 982 return 0; 983 return flags & LOOKUP_EXCL; 984 } 985 986 /* 987 * Inode and filehandle revalidation for lookups. 988 * 989 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL, 990 * or if the intent information indicates that we're about to open this 991 * particular file and the "nocto" mount flag is not set. 992 * 993 */ 994 static 995 int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags) 996 { 997 struct nfs_server *server = NFS_SERVER(inode); 998 int ret; 999 1000 if (IS_AUTOMOUNT(inode)) 1001 return 0; 1002 /* VFS wants an on-the-wire revalidation */ 1003 if (flags & LOOKUP_REVAL) 1004 goto out_force; 1005 /* This is an open(2) */ 1006 if ((flags & LOOKUP_OPEN) && !(server->flags & NFS_MOUNT_NOCTO) && 1007 (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode))) 1008 goto out_force; 1009 out: 1010 return (inode->i_nlink == 0) ? -ENOENT : 0; 1011 out_force: 1012 ret = __nfs_revalidate_inode(server, inode); 1013 if (ret != 0) 1014 return ret; 1015 goto out; 1016 } 1017 1018 /* 1019 * We judge how long we want to trust negative 1020 * dentries by looking at the parent inode mtime. 1021 * 1022 * If parent mtime has changed, we revalidate, else we wait for a 1023 * period corresponding to the parent's attribute cache timeout value. 1024 */ 1025 static inline 1026 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry, 1027 unsigned int flags) 1028 { 1029 /* Don't revalidate a negative dentry if we're creating a new file */ 1030 if (flags & LOOKUP_CREATE) 1031 return 0; 1032 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG) 1033 return 1; 1034 return !nfs_check_verifier(dir, dentry); 1035 } 1036 1037 /* 1038 * This is called every time the dcache has a lookup hit, 1039 * and we should check whether we can really trust that 1040 * lookup. 1041 * 1042 * NOTE! The hit can be a negative hit too, don't assume 1043 * we have an inode! 1044 * 1045 * If the parent directory is seen to have changed, we throw out the 1046 * cached dentry and do a new lookup. 1047 */ 1048 static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags) 1049 { 1050 struct inode *dir; 1051 struct inode *inode; 1052 struct dentry *parent; 1053 struct nfs_fh *fhandle = NULL; 1054 struct nfs_fattr *fattr = NULL; 1055 struct nfs4_label *label = NULL; 1056 int error; 1057 1058 if (flags & LOOKUP_RCU) 1059 return -ECHILD; 1060 1061 parent = dget_parent(dentry); 1062 dir = parent->d_inode; 1063 nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE); 1064 inode = dentry->d_inode; 1065 1066 if (!inode) { 1067 if (nfs_neg_need_reval(dir, dentry, flags)) 1068 goto out_bad; 1069 goto out_valid_noent; 1070 } 1071 1072 if (is_bad_inode(inode)) { 1073 dfprintk(LOOKUPCACHE, "%s: %s/%s has dud inode\n", 1074 __func__, dentry->d_parent->d_name.name, 1075 dentry->d_name.name); 1076 goto out_bad; 1077 } 1078 1079 if (NFS_PROTO(dir)->have_delegation(inode, FMODE_READ)) 1080 goto out_set_verifier; 1081 1082 /* Force a full look up iff the parent directory has changed */ 1083 if (!nfs_is_exclusive_create(dir, flags) && nfs_check_verifier(dir, dentry)) { 1084 if (nfs_lookup_verify_inode(inode, flags)) 1085 goto out_zap_parent; 1086 goto out_valid; 1087 } 1088 1089 if (NFS_STALE(inode)) 1090 goto out_bad; 1091 1092 error = -ENOMEM; 1093 fhandle = nfs_alloc_fhandle(); 1094 fattr = nfs_alloc_fattr(); 1095 if (fhandle == NULL || fattr == NULL) 1096 goto out_error; 1097 1098 label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT); 1099 if (IS_ERR(label)) 1100 goto out_error; 1101 1102 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label); 1103 if (error) 1104 goto out_bad; 1105 if (nfs_compare_fh(NFS_FH(inode), fhandle)) 1106 goto out_bad; 1107 if ((error = nfs_refresh_inode(inode, fattr)) != 0) 1108 goto out_bad; 1109 1110 nfs_setsecurity(inode, fattr, label); 1111 1112 nfs_free_fattr(fattr); 1113 nfs_free_fhandle(fhandle); 1114 nfs4_label_free(label); 1115 1116 out_set_verifier: 1117 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1118 out_valid: 1119 /* Success: notify readdir to use READDIRPLUS */ 1120 nfs_advise_use_readdirplus(dir); 1121 out_valid_noent: 1122 dput(parent); 1123 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is valid\n", 1124 __func__, dentry->d_parent->d_name.name, 1125 dentry->d_name.name); 1126 return 1; 1127 out_zap_parent: 1128 nfs_zap_caches(dir); 1129 out_bad: 1130 nfs_free_fattr(fattr); 1131 nfs_free_fhandle(fhandle); 1132 nfs4_label_free(label); 1133 nfs_mark_for_revalidate(dir); 1134 if (inode && S_ISDIR(inode->i_mode)) { 1135 /* Purge readdir caches. */ 1136 nfs_zap_caches(inode); 1137 /* If we have submounts, don't unhash ! */ 1138 if (have_submounts(dentry)) 1139 goto out_valid; 1140 if (dentry->d_flags & DCACHE_DISCONNECTED) 1141 goto out_valid; 1142 shrink_dcache_parent(dentry); 1143 } 1144 d_drop(dentry); 1145 dput(parent); 1146 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is invalid\n", 1147 __func__, dentry->d_parent->d_name.name, 1148 dentry->d_name.name); 1149 return 0; 1150 out_error: 1151 nfs_free_fattr(fattr); 1152 nfs_free_fhandle(fhandle); 1153 nfs4_label_free(label); 1154 dput(parent); 1155 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) lookup returned error %d\n", 1156 __func__, dentry->d_parent->d_name.name, 1157 dentry->d_name.name, error); 1158 return error; 1159 } 1160 1161 /* 1162 * A weaker form of d_revalidate for revalidating just the dentry->d_inode 1163 * when we don't really care about the dentry name. This is called when a 1164 * pathwalk ends on a dentry that was not found via a normal lookup in the 1165 * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals). 1166 * 1167 * In this situation, we just want to verify that the inode itself is OK 1168 * since the dentry might have changed on the server. 1169 */ 1170 static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags) 1171 { 1172 int error; 1173 struct inode *inode = dentry->d_inode; 1174 1175 /* 1176 * I believe we can only get a negative dentry here in the case of a 1177 * procfs-style symlink. Just assume it's correct for now, but we may 1178 * eventually need to do something more here. 1179 */ 1180 if (!inode) { 1181 dfprintk(LOOKUPCACHE, "%s: %s/%s has negative inode\n", 1182 __func__, dentry->d_parent->d_name.name, 1183 dentry->d_name.name); 1184 return 1; 1185 } 1186 1187 if (is_bad_inode(inode)) { 1188 dfprintk(LOOKUPCACHE, "%s: %s/%s has dud inode\n", 1189 __func__, dentry->d_parent->d_name.name, 1190 dentry->d_name.name); 1191 return 0; 1192 } 1193 1194 error = nfs_revalidate_inode(NFS_SERVER(inode), inode); 1195 dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n", 1196 __func__, inode->i_ino, error ? "invalid" : "valid"); 1197 return !error; 1198 } 1199 1200 /* 1201 * This is called from dput() when d_count is going to 0. 1202 */ 1203 static int nfs_dentry_delete(const struct dentry *dentry) 1204 { 1205 dfprintk(VFS, "NFS: dentry_delete(%s/%s, %x)\n", 1206 dentry->d_parent->d_name.name, dentry->d_name.name, 1207 dentry->d_flags); 1208 1209 /* Unhash any dentry with a stale inode */ 1210 if (dentry->d_inode != NULL && NFS_STALE(dentry->d_inode)) 1211 return 1; 1212 1213 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 1214 /* Unhash it, so that ->d_iput() would be called */ 1215 return 1; 1216 } 1217 if (!(dentry->d_sb->s_flags & MS_ACTIVE)) { 1218 /* Unhash it, so that ancestors of killed async unlink 1219 * files will be cleaned up during umount */ 1220 return 1; 1221 } 1222 return 0; 1223 1224 } 1225 1226 /* Ensure that we revalidate inode->i_nlink */ 1227 static void nfs_drop_nlink(struct inode *inode) 1228 { 1229 spin_lock(&inode->i_lock); 1230 /* drop the inode if we're reasonably sure this is the last link */ 1231 if (inode->i_nlink == 1) 1232 clear_nlink(inode); 1233 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_ATTR; 1234 spin_unlock(&inode->i_lock); 1235 } 1236 1237 /* 1238 * Called when the dentry loses inode. 1239 * We use it to clean up silly-renamed files. 1240 */ 1241 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode) 1242 { 1243 if (S_ISDIR(inode->i_mode)) 1244 /* drop any readdir cache as it could easily be old */ 1245 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA; 1246 1247 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 1248 nfs_complete_unlink(dentry, inode); 1249 nfs_drop_nlink(inode); 1250 } 1251 iput(inode); 1252 } 1253 1254 static void nfs_d_release(struct dentry *dentry) 1255 { 1256 /* free cached devname value, if it survived that far */ 1257 if (unlikely(dentry->d_fsdata)) { 1258 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) 1259 WARN_ON(1); 1260 else 1261 kfree(dentry->d_fsdata); 1262 } 1263 } 1264 1265 const struct dentry_operations nfs_dentry_operations = { 1266 .d_revalidate = nfs_lookup_revalidate, 1267 .d_weak_revalidate = nfs_weak_revalidate, 1268 .d_delete = nfs_dentry_delete, 1269 .d_iput = nfs_dentry_iput, 1270 .d_automount = nfs_d_automount, 1271 .d_release = nfs_d_release, 1272 }; 1273 EXPORT_SYMBOL_GPL(nfs_dentry_operations); 1274 1275 struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags) 1276 { 1277 struct dentry *res; 1278 struct dentry *parent; 1279 struct inode *inode = NULL; 1280 struct nfs_fh *fhandle = NULL; 1281 struct nfs_fattr *fattr = NULL; 1282 struct nfs4_label *label = NULL; 1283 int error; 1284 1285 dfprintk(VFS, "NFS: lookup(%s/%s)\n", 1286 dentry->d_parent->d_name.name, dentry->d_name.name); 1287 nfs_inc_stats(dir, NFSIOS_VFSLOOKUP); 1288 1289 res = ERR_PTR(-ENAMETOOLONG); 1290 if (dentry->d_name.len > NFS_SERVER(dir)->namelen) 1291 goto out; 1292 1293 /* 1294 * If we're doing an exclusive create, optimize away the lookup 1295 * but don't hash the dentry. 1296 */ 1297 if (nfs_is_exclusive_create(dir, flags)) { 1298 d_instantiate(dentry, NULL); 1299 res = NULL; 1300 goto out; 1301 } 1302 1303 res = ERR_PTR(-ENOMEM); 1304 fhandle = nfs_alloc_fhandle(); 1305 fattr = nfs_alloc_fattr(); 1306 if (fhandle == NULL || fattr == NULL) 1307 goto out; 1308 1309 label = nfs4_label_alloc(NFS_SERVER(dir), GFP_NOWAIT); 1310 if (IS_ERR(label)) 1311 goto out; 1312 1313 parent = dentry->d_parent; 1314 /* Protect against concurrent sillydeletes */ 1315 nfs_block_sillyrename(parent); 1316 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label); 1317 if (error == -ENOENT) 1318 goto no_entry; 1319 if (error < 0) { 1320 res = ERR_PTR(error); 1321 goto out_unblock_sillyrename; 1322 } 1323 inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label); 1324 res = ERR_CAST(inode); 1325 if (IS_ERR(res)) 1326 goto out_unblock_sillyrename; 1327 1328 /* Success: notify readdir to use READDIRPLUS */ 1329 nfs_advise_use_readdirplus(dir); 1330 1331 no_entry: 1332 res = d_materialise_unique(dentry, inode); 1333 if (res != NULL) { 1334 if (IS_ERR(res)) 1335 goto out_unblock_sillyrename; 1336 dentry = res; 1337 } 1338 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1339 out_unblock_sillyrename: 1340 nfs_unblock_sillyrename(parent); 1341 nfs4_label_free(label); 1342 out: 1343 nfs_free_fattr(fattr); 1344 nfs_free_fhandle(fhandle); 1345 return res; 1346 } 1347 EXPORT_SYMBOL_GPL(nfs_lookup); 1348 1349 #if IS_ENABLED(CONFIG_NFS_V4) 1350 static int nfs4_lookup_revalidate(struct dentry *, unsigned int); 1351 1352 const struct dentry_operations nfs4_dentry_operations = { 1353 .d_revalidate = nfs4_lookup_revalidate, 1354 .d_delete = nfs_dentry_delete, 1355 .d_iput = nfs_dentry_iput, 1356 .d_automount = nfs_d_automount, 1357 .d_release = nfs_d_release, 1358 }; 1359 EXPORT_SYMBOL_GPL(nfs4_dentry_operations); 1360 1361 static fmode_t flags_to_mode(int flags) 1362 { 1363 fmode_t res = (__force fmode_t)flags & FMODE_EXEC; 1364 if ((flags & O_ACCMODE) != O_WRONLY) 1365 res |= FMODE_READ; 1366 if ((flags & O_ACCMODE) != O_RDONLY) 1367 res |= FMODE_WRITE; 1368 return res; 1369 } 1370 1371 static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags) 1372 { 1373 return alloc_nfs_open_context(dentry, flags_to_mode(open_flags)); 1374 } 1375 1376 static int do_open(struct inode *inode, struct file *filp) 1377 { 1378 nfs_fscache_set_inode_cookie(inode, filp); 1379 return 0; 1380 } 1381 1382 static int nfs_finish_open(struct nfs_open_context *ctx, 1383 struct dentry *dentry, 1384 struct file *file, unsigned open_flags, 1385 int *opened) 1386 { 1387 int err; 1388 1389 err = finish_open(file, dentry, do_open, opened); 1390 if (err) 1391 goto out; 1392 nfs_file_set_open_context(file, ctx); 1393 1394 out: 1395 put_nfs_open_context(ctx); 1396 return err; 1397 } 1398 1399 int nfs_atomic_open(struct inode *dir, struct dentry *dentry, 1400 struct file *file, unsigned open_flags, 1401 umode_t mode, int *opened) 1402 { 1403 struct nfs_open_context *ctx; 1404 struct dentry *res; 1405 struct iattr attr = { .ia_valid = ATTR_OPEN }; 1406 struct inode *inode; 1407 int err; 1408 1409 /* Expect a negative dentry */ 1410 BUG_ON(dentry->d_inode); 1411 1412 dfprintk(VFS, "NFS: atomic_open(%s/%ld), %s\n", 1413 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name); 1414 1415 /* NFS only supports OPEN on regular files */ 1416 if ((open_flags & O_DIRECTORY)) { 1417 if (!d_unhashed(dentry)) { 1418 /* 1419 * Hashed negative dentry with O_DIRECTORY: dentry was 1420 * revalidated and is fine, no need to perform lookup 1421 * again 1422 */ 1423 return -ENOENT; 1424 } 1425 goto no_open; 1426 } 1427 1428 if (dentry->d_name.len > NFS_SERVER(dir)->namelen) 1429 return -ENAMETOOLONG; 1430 1431 if (open_flags & O_CREAT) { 1432 attr.ia_valid |= ATTR_MODE; 1433 attr.ia_mode = mode & ~current_umask(); 1434 } 1435 if (open_flags & O_TRUNC) { 1436 attr.ia_valid |= ATTR_SIZE; 1437 attr.ia_size = 0; 1438 } 1439 1440 ctx = create_nfs_open_context(dentry, open_flags); 1441 err = PTR_ERR(ctx); 1442 if (IS_ERR(ctx)) 1443 goto out; 1444 1445 nfs_block_sillyrename(dentry->d_parent); 1446 inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr); 1447 nfs_unblock_sillyrename(dentry->d_parent); 1448 if (IS_ERR(inode)) { 1449 put_nfs_open_context(ctx); 1450 err = PTR_ERR(inode); 1451 switch (err) { 1452 case -ENOENT: 1453 d_drop(dentry); 1454 d_add(dentry, NULL); 1455 break; 1456 case -EISDIR: 1457 case -ENOTDIR: 1458 goto no_open; 1459 case -ELOOP: 1460 if (!(open_flags & O_NOFOLLOW)) 1461 goto no_open; 1462 break; 1463 /* case -EINVAL: */ 1464 default: 1465 break; 1466 } 1467 goto out; 1468 } 1469 1470 err = nfs_finish_open(ctx, ctx->dentry, file, open_flags, opened); 1471 out: 1472 return err; 1473 1474 no_open: 1475 res = nfs_lookup(dir, dentry, 0); 1476 err = PTR_ERR(res); 1477 if (IS_ERR(res)) 1478 goto out; 1479 1480 return finish_no_open(file, res); 1481 } 1482 EXPORT_SYMBOL_GPL(nfs_atomic_open); 1483 1484 static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags) 1485 { 1486 struct dentry *parent = NULL; 1487 struct inode *inode; 1488 struct inode *dir; 1489 int ret = 0; 1490 1491 if (flags & LOOKUP_RCU) 1492 return -ECHILD; 1493 1494 if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY)) 1495 goto no_open; 1496 if (d_mountpoint(dentry)) 1497 goto no_open; 1498 if (NFS_SB(dentry->d_sb)->caps & NFS_CAP_ATOMIC_OPEN_V1) 1499 goto no_open; 1500 1501 inode = dentry->d_inode; 1502 parent = dget_parent(dentry); 1503 dir = parent->d_inode; 1504 1505 /* We can't create new files in nfs_open_revalidate(), so we 1506 * optimize away revalidation of negative dentries. 1507 */ 1508 if (inode == NULL) { 1509 if (!nfs_neg_need_reval(dir, dentry, flags)) 1510 ret = 1; 1511 goto out; 1512 } 1513 1514 /* NFS only supports OPEN on regular files */ 1515 if (!S_ISREG(inode->i_mode)) 1516 goto no_open_dput; 1517 /* We cannot do exclusive creation on a positive dentry */ 1518 if (flags & LOOKUP_EXCL) 1519 goto no_open_dput; 1520 1521 /* Let f_op->open() actually open (and revalidate) the file */ 1522 ret = 1; 1523 1524 out: 1525 dput(parent); 1526 return ret; 1527 1528 no_open_dput: 1529 dput(parent); 1530 no_open: 1531 return nfs_lookup_revalidate(dentry, flags); 1532 } 1533 1534 #endif /* CONFIG_NFSV4 */ 1535 1536 /* 1537 * Code common to create, mkdir, and mknod. 1538 */ 1539 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle, 1540 struct nfs_fattr *fattr, 1541 struct nfs4_label *label) 1542 { 1543 struct dentry *parent = dget_parent(dentry); 1544 struct inode *dir = parent->d_inode; 1545 struct inode *inode; 1546 int error = -EACCES; 1547 1548 d_drop(dentry); 1549 1550 /* We may have been initialized further down */ 1551 if (dentry->d_inode) 1552 goto out; 1553 if (fhandle->size == 0) { 1554 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, NULL); 1555 if (error) 1556 goto out_error; 1557 } 1558 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1559 if (!(fattr->valid & NFS_ATTR_FATTR)) { 1560 struct nfs_server *server = NFS_SB(dentry->d_sb); 1561 error = server->nfs_client->rpc_ops->getattr(server, fhandle, fattr, NULL); 1562 if (error < 0) 1563 goto out_error; 1564 } 1565 inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label); 1566 error = PTR_ERR(inode); 1567 if (IS_ERR(inode)) 1568 goto out_error; 1569 d_add(dentry, inode); 1570 out: 1571 dput(parent); 1572 return 0; 1573 out_error: 1574 nfs_mark_for_revalidate(dir); 1575 dput(parent); 1576 return error; 1577 } 1578 EXPORT_SYMBOL_GPL(nfs_instantiate); 1579 1580 /* 1581 * Following a failed create operation, we drop the dentry rather 1582 * than retain a negative dentry. This avoids a problem in the event 1583 * that the operation succeeded on the server, but an error in the 1584 * reply path made it appear to have failed. 1585 */ 1586 int nfs_create(struct inode *dir, struct dentry *dentry, 1587 umode_t mode, bool excl) 1588 { 1589 struct iattr attr; 1590 int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT; 1591 int error; 1592 1593 dfprintk(VFS, "NFS: create(%s/%ld), %s\n", 1594 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name); 1595 1596 attr.ia_mode = mode; 1597 attr.ia_valid = ATTR_MODE; 1598 1599 error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags); 1600 if (error != 0) 1601 goto out_err; 1602 return 0; 1603 out_err: 1604 d_drop(dentry); 1605 return error; 1606 } 1607 EXPORT_SYMBOL_GPL(nfs_create); 1608 1609 /* 1610 * See comments for nfs_proc_create regarding failed operations. 1611 */ 1612 int 1613 nfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t rdev) 1614 { 1615 struct iattr attr; 1616 int status; 1617 1618 dfprintk(VFS, "NFS: mknod(%s/%ld), %s\n", 1619 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name); 1620 1621 if (!new_valid_dev(rdev)) 1622 return -EINVAL; 1623 1624 attr.ia_mode = mode; 1625 attr.ia_valid = ATTR_MODE; 1626 1627 status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev); 1628 if (status != 0) 1629 goto out_err; 1630 return 0; 1631 out_err: 1632 d_drop(dentry); 1633 return status; 1634 } 1635 EXPORT_SYMBOL_GPL(nfs_mknod); 1636 1637 /* 1638 * See comments for nfs_proc_create regarding failed operations. 1639 */ 1640 int nfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 1641 { 1642 struct iattr attr; 1643 int error; 1644 1645 dfprintk(VFS, "NFS: mkdir(%s/%ld), %s\n", 1646 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name); 1647 1648 attr.ia_valid = ATTR_MODE; 1649 attr.ia_mode = mode | S_IFDIR; 1650 1651 error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr); 1652 if (error != 0) 1653 goto out_err; 1654 return 0; 1655 out_err: 1656 d_drop(dentry); 1657 return error; 1658 } 1659 EXPORT_SYMBOL_GPL(nfs_mkdir); 1660 1661 static void nfs_dentry_handle_enoent(struct dentry *dentry) 1662 { 1663 if (dentry->d_inode != NULL && !d_unhashed(dentry)) 1664 d_delete(dentry); 1665 } 1666 1667 int nfs_rmdir(struct inode *dir, struct dentry *dentry) 1668 { 1669 int error; 1670 1671 dfprintk(VFS, "NFS: rmdir(%s/%ld), %s\n", 1672 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name); 1673 1674 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name); 1675 /* Ensure the VFS deletes this inode */ 1676 if (error == 0 && dentry->d_inode != NULL) 1677 clear_nlink(dentry->d_inode); 1678 else if (error == -ENOENT) 1679 nfs_dentry_handle_enoent(dentry); 1680 1681 return error; 1682 } 1683 EXPORT_SYMBOL_GPL(nfs_rmdir); 1684 1685 /* 1686 * Remove a file after making sure there are no pending writes, 1687 * and after checking that the file has only one user. 1688 * 1689 * We invalidate the attribute cache and free the inode prior to the operation 1690 * to avoid possible races if the server reuses the inode. 1691 */ 1692 static int nfs_safe_remove(struct dentry *dentry) 1693 { 1694 struct inode *dir = dentry->d_parent->d_inode; 1695 struct inode *inode = dentry->d_inode; 1696 int error = -EBUSY; 1697 1698 dfprintk(VFS, "NFS: safe_remove(%s/%s)\n", 1699 dentry->d_parent->d_name.name, dentry->d_name.name); 1700 1701 /* If the dentry was sillyrenamed, we simply call d_delete() */ 1702 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 1703 error = 0; 1704 goto out; 1705 } 1706 1707 if (inode != NULL) { 1708 NFS_PROTO(inode)->return_delegation(inode); 1709 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name); 1710 if (error == 0) 1711 nfs_drop_nlink(inode); 1712 } else 1713 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name); 1714 if (error == -ENOENT) 1715 nfs_dentry_handle_enoent(dentry); 1716 out: 1717 return error; 1718 } 1719 1720 /* We do silly rename. In case sillyrename() returns -EBUSY, the inode 1721 * belongs to an active ".nfs..." file and we return -EBUSY. 1722 * 1723 * If sillyrename() returns 0, we do nothing, otherwise we unlink. 1724 */ 1725 int nfs_unlink(struct inode *dir, struct dentry *dentry) 1726 { 1727 int error; 1728 int need_rehash = 0; 1729 1730 dfprintk(VFS, "NFS: unlink(%s/%ld, %s)\n", dir->i_sb->s_id, 1731 dir->i_ino, dentry->d_name.name); 1732 1733 spin_lock(&dentry->d_lock); 1734 if (d_count(dentry) > 1) { 1735 spin_unlock(&dentry->d_lock); 1736 /* Start asynchronous writeout of the inode */ 1737 write_inode_now(dentry->d_inode, 0); 1738 error = nfs_sillyrename(dir, dentry); 1739 return error; 1740 } 1741 if (!d_unhashed(dentry)) { 1742 __d_drop(dentry); 1743 need_rehash = 1; 1744 } 1745 spin_unlock(&dentry->d_lock); 1746 error = nfs_safe_remove(dentry); 1747 if (!error || error == -ENOENT) { 1748 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1749 } else if (need_rehash) 1750 d_rehash(dentry); 1751 return error; 1752 } 1753 EXPORT_SYMBOL_GPL(nfs_unlink); 1754 1755 /* 1756 * To create a symbolic link, most file systems instantiate a new inode, 1757 * add a page to it containing the path, then write it out to the disk 1758 * using prepare_write/commit_write. 1759 * 1760 * Unfortunately the NFS client can't create the in-core inode first 1761 * because it needs a file handle to create an in-core inode (see 1762 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the 1763 * symlink request has completed on the server. 1764 * 1765 * So instead we allocate a raw page, copy the symname into it, then do 1766 * the SYMLINK request with the page as the buffer. If it succeeds, we 1767 * now have a new file handle and can instantiate an in-core NFS inode 1768 * and move the raw page into its mapping. 1769 */ 1770 int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname) 1771 { 1772 struct page *page; 1773 char *kaddr; 1774 struct iattr attr; 1775 unsigned int pathlen = strlen(symname); 1776 int error; 1777 1778 dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s)\n", dir->i_sb->s_id, 1779 dir->i_ino, dentry->d_name.name, symname); 1780 1781 if (pathlen > PAGE_SIZE) 1782 return -ENAMETOOLONG; 1783 1784 attr.ia_mode = S_IFLNK | S_IRWXUGO; 1785 attr.ia_valid = ATTR_MODE; 1786 1787 page = alloc_page(GFP_HIGHUSER); 1788 if (!page) 1789 return -ENOMEM; 1790 1791 kaddr = kmap_atomic(page); 1792 memcpy(kaddr, symname, pathlen); 1793 if (pathlen < PAGE_SIZE) 1794 memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen); 1795 kunmap_atomic(kaddr); 1796 1797 error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr); 1798 if (error != 0) { 1799 dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s) error %d\n", 1800 dir->i_sb->s_id, dir->i_ino, 1801 dentry->d_name.name, symname, error); 1802 d_drop(dentry); 1803 __free_page(page); 1804 return error; 1805 } 1806 1807 /* 1808 * No big deal if we can't add this page to the page cache here. 1809 * READLINK will get the missing page from the server if needed. 1810 */ 1811 if (!add_to_page_cache_lru(page, dentry->d_inode->i_mapping, 0, 1812 GFP_KERNEL)) { 1813 SetPageUptodate(page); 1814 unlock_page(page); 1815 } else 1816 __free_page(page); 1817 1818 return 0; 1819 } 1820 EXPORT_SYMBOL_GPL(nfs_symlink); 1821 1822 int 1823 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 1824 { 1825 struct inode *inode = old_dentry->d_inode; 1826 int error; 1827 1828 dfprintk(VFS, "NFS: link(%s/%s -> %s/%s)\n", 1829 old_dentry->d_parent->d_name.name, old_dentry->d_name.name, 1830 dentry->d_parent->d_name.name, dentry->d_name.name); 1831 1832 NFS_PROTO(inode)->return_delegation(inode); 1833 1834 d_drop(dentry); 1835 error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name); 1836 if (error == 0) { 1837 ihold(inode); 1838 d_add(dentry, inode); 1839 } 1840 return error; 1841 } 1842 EXPORT_SYMBOL_GPL(nfs_link); 1843 1844 /* 1845 * RENAME 1846 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a 1847 * different file handle for the same inode after a rename (e.g. when 1848 * moving to a different directory). A fail-safe method to do so would 1849 * be to look up old_dir/old_name, create a link to new_dir/new_name and 1850 * rename the old file using the sillyrename stuff. This way, the original 1851 * file in old_dir will go away when the last process iput()s the inode. 1852 * 1853 * FIXED. 1854 * 1855 * It actually works quite well. One needs to have the possibility for 1856 * at least one ".nfs..." file in each directory the file ever gets 1857 * moved or linked to which happens automagically with the new 1858 * implementation that only depends on the dcache stuff instead of 1859 * using the inode layer 1860 * 1861 * Unfortunately, things are a little more complicated than indicated 1862 * above. For a cross-directory move, we want to make sure we can get 1863 * rid of the old inode after the operation. This means there must be 1864 * no pending writes (if it's a file), and the use count must be 1. 1865 * If these conditions are met, we can drop the dentries before doing 1866 * the rename. 1867 */ 1868 int nfs_rename(struct inode *old_dir, struct dentry *old_dentry, 1869 struct inode *new_dir, struct dentry *new_dentry) 1870 { 1871 struct inode *old_inode = old_dentry->d_inode; 1872 struct inode *new_inode = new_dentry->d_inode; 1873 struct dentry *dentry = NULL, *rehash = NULL; 1874 int error = -EBUSY; 1875 1876 dfprintk(VFS, "NFS: rename(%s/%s -> %s/%s, ct=%d)\n", 1877 old_dentry->d_parent->d_name.name, old_dentry->d_name.name, 1878 new_dentry->d_parent->d_name.name, new_dentry->d_name.name, 1879 d_count(new_dentry)); 1880 1881 /* 1882 * For non-directories, check whether the target is busy and if so, 1883 * make a copy of the dentry and then do a silly-rename. If the 1884 * silly-rename succeeds, the copied dentry is hashed and becomes 1885 * the new target. 1886 */ 1887 if (new_inode && !S_ISDIR(new_inode->i_mode)) { 1888 /* 1889 * To prevent any new references to the target during the 1890 * rename, we unhash the dentry in advance. 1891 */ 1892 if (!d_unhashed(new_dentry)) { 1893 d_drop(new_dentry); 1894 rehash = new_dentry; 1895 } 1896 1897 if (d_count(new_dentry) > 2) { 1898 int err; 1899 1900 /* copy the target dentry's name */ 1901 dentry = d_alloc(new_dentry->d_parent, 1902 &new_dentry->d_name); 1903 if (!dentry) 1904 goto out; 1905 1906 /* silly-rename the existing target ... */ 1907 err = nfs_sillyrename(new_dir, new_dentry); 1908 if (err) 1909 goto out; 1910 1911 new_dentry = dentry; 1912 rehash = NULL; 1913 new_inode = NULL; 1914 } 1915 } 1916 1917 NFS_PROTO(old_inode)->return_delegation(old_inode); 1918 if (new_inode != NULL) 1919 NFS_PROTO(new_inode)->return_delegation(new_inode); 1920 1921 error = NFS_PROTO(old_dir)->rename(old_dir, &old_dentry->d_name, 1922 new_dir, &new_dentry->d_name); 1923 nfs_mark_for_revalidate(old_inode); 1924 out: 1925 if (rehash) 1926 d_rehash(rehash); 1927 if (!error) { 1928 if (new_inode != NULL) 1929 nfs_drop_nlink(new_inode); 1930 d_move(old_dentry, new_dentry); 1931 nfs_set_verifier(new_dentry, 1932 nfs_save_change_attribute(new_dir)); 1933 } else if (error == -ENOENT) 1934 nfs_dentry_handle_enoent(old_dentry); 1935 1936 /* new dentry created? */ 1937 if (dentry) 1938 dput(dentry); 1939 return error; 1940 } 1941 EXPORT_SYMBOL_GPL(nfs_rename); 1942 1943 static DEFINE_SPINLOCK(nfs_access_lru_lock); 1944 static LIST_HEAD(nfs_access_lru_list); 1945 static atomic_long_t nfs_access_nr_entries; 1946 1947 static void nfs_access_free_entry(struct nfs_access_entry *entry) 1948 { 1949 put_rpccred(entry->cred); 1950 kfree(entry); 1951 smp_mb__before_atomic_dec(); 1952 atomic_long_dec(&nfs_access_nr_entries); 1953 smp_mb__after_atomic_dec(); 1954 } 1955 1956 static void nfs_access_free_list(struct list_head *head) 1957 { 1958 struct nfs_access_entry *cache; 1959 1960 while (!list_empty(head)) { 1961 cache = list_entry(head->next, struct nfs_access_entry, lru); 1962 list_del(&cache->lru); 1963 nfs_access_free_entry(cache); 1964 } 1965 } 1966 1967 int nfs_access_cache_shrinker(struct shrinker *shrink, 1968 struct shrink_control *sc) 1969 { 1970 LIST_HEAD(head); 1971 struct nfs_inode *nfsi, *next; 1972 struct nfs_access_entry *cache; 1973 int nr_to_scan = sc->nr_to_scan; 1974 gfp_t gfp_mask = sc->gfp_mask; 1975 1976 if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL) 1977 return (nr_to_scan == 0) ? 0 : -1; 1978 1979 spin_lock(&nfs_access_lru_lock); 1980 list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) { 1981 struct inode *inode; 1982 1983 if (nr_to_scan-- == 0) 1984 break; 1985 inode = &nfsi->vfs_inode; 1986 spin_lock(&inode->i_lock); 1987 if (list_empty(&nfsi->access_cache_entry_lru)) 1988 goto remove_lru_entry; 1989 cache = list_entry(nfsi->access_cache_entry_lru.next, 1990 struct nfs_access_entry, lru); 1991 list_move(&cache->lru, &head); 1992 rb_erase(&cache->rb_node, &nfsi->access_cache); 1993 if (!list_empty(&nfsi->access_cache_entry_lru)) 1994 list_move_tail(&nfsi->access_cache_inode_lru, 1995 &nfs_access_lru_list); 1996 else { 1997 remove_lru_entry: 1998 list_del_init(&nfsi->access_cache_inode_lru); 1999 smp_mb__before_clear_bit(); 2000 clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags); 2001 smp_mb__after_clear_bit(); 2002 } 2003 spin_unlock(&inode->i_lock); 2004 } 2005 spin_unlock(&nfs_access_lru_lock); 2006 nfs_access_free_list(&head); 2007 return (atomic_long_read(&nfs_access_nr_entries) / 100) * sysctl_vfs_cache_pressure; 2008 } 2009 2010 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head) 2011 { 2012 struct rb_root *root_node = &nfsi->access_cache; 2013 struct rb_node *n; 2014 struct nfs_access_entry *entry; 2015 2016 /* Unhook entries from the cache */ 2017 while ((n = rb_first(root_node)) != NULL) { 2018 entry = rb_entry(n, struct nfs_access_entry, rb_node); 2019 rb_erase(n, root_node); 2020 list_move(&entry->lru, head); 2021 } 2022 nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS; 2023 } 2024 2025 void nfs_access_zap_cache(struct inode *inode) 2026 { 2027 LIST_HEAD(head); 2028 2029 if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0) 2030 return; 2031 /* Remove from global LRU init */ 2032 spin_lock(&nfs_access_lru_lock); 2033 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) 2034 list_del_init(&NFS_I(inode)->access_cache_inode_lru); 2035 2036 spin_lock(&inode->i_lock); 2037 __nfs_access_zap_cache(NFS_I(inode), &head); 2038 spin_unlock(&inode->i_lock); 2039 spin_unlock(&nfs_access_lru_lock); 2040 nfs_access_free_list(&head); 2041 } 2042 EXPORT_SYMBOL_GPL(nfs_access_zap_cache); 2043 2044 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred) 2045 { 2046 struct rb_node *n = NFS_I(inode)->access_cache.rb_node; 2047 struct nfs_access_entry *entry; 2048 2049 while (n != NULL) { 2050 entry = rb_entry(n, struct nfs_access_entry, rb_node); 2051 2052 if (cred < entry->cred) 2053 n = n->rb_left; 2054 else if (cred > entry->cred) 2055 n = n->rb_right; 2056 else 2057 return entry; 2058 } 2059 return NULL; 2060 } 2061 2062 static int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res) 2063 { 2064 struct nfs_inode *nfsi = NFS_I(inode); 2065 struct nfs_access_entry *cache; 2066 int err = -ENOENT; 2067 2068 spin_lock(&inode->i_lock); 2069 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS) 2070 goto out_zap; 2071 cache = nfs_access_search_rbtree(inode, cred); 2072 if (cache == NULL) 2073 goto out; 2074 if (!nfs_have_delegated_attributes(inode) && 2075 !time_in_range_open(jiffies, cache->jiffies, cache->jiffies + nfsi->attrtimeo)) 2076 goto out_stale; 2077 res->jiffies = cache->jiffies; 2078 res->cred = cache->cred; 2079 res->mask = cache->mask; 2080 list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru); 2081 err = 0; 2082 out: 2083 spin_unlock(&inode->i_lock); 2084 return err; 2085 out_stale: 2086 rb_erase(&cache->rb_node, &nfsi->access_cache); 2087 list_del(&cache->lru); 2088 spin_unlock(&inode->i_lock); 2089 nfs_access_free_entry(cache); 2090 return -ENOENT; 2091 out_zap: 2092 spin_unlock(&inode->i_lock); 2093 nfs_access_zap_cache(inode); 2094 return -ENOENT; 2095 } 2096 2097 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set) 2098 { 2099 struct nfs_inode *nfsi = NFS_I(inode); 2100 struct rb_root *root_node = &nfsi->access_cache; 2101 struct rb_node **p = &root_node->rb_node; 2102 struct rb_node *parent = NULL; 2103 struct nfs_access_entry *entry; 2104 2105 spin_lock(&inode->i_lock); 2106 while (*p != NULL) { 2107 parent = *p; 2108 entry = rb_entry(parent, struct nfs_access_entry, rb_node); 2109 2110 if (set->cred < entry->cred) 2111 p = &parent->rb_left; 2112 else if (set->cred > entry->cred) 2113 p = &parent->rb_right; 2114 else 2115 goto found; 2116 } 2117 rb_link_node(&set->rb_node, parent, p); 2118 rb_insert_color(&set->rb_node, root_node); 2119 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru); 2120 spin_unlock(&inode->i_lock); 2121 return; 2122 found: 2123 rb_replace_node(parent, &set->rb_node, root_node); 2124 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru); 2125 list_del(&entry->lru); 2126 spin_unlock(&inode->i_lock); 2127 nfs_access_free_entry(entry); 2128 } 2129 2130 void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set) 2131 { 2132 struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL); 2133 if (cache == NULL) 2134 return; 2135 RB_CLEAR_NODE(&cache->rb_node); 2136 cache->jiffies = set->jiffies; 2137 cache->cred = get_rpccred(set->cred); 2138 cache->mask = set->mask; 2139 2140 nfs_access_add_rbtree(inode, cache); 2141 2142 /* Update accounting */ 2143 smp_mb__before_atomic_inc(); 2144 atomic_long_inc(&nfs_access_nr_entries); 2145 smp_mb__after_atomic_inc(); 2146 2147 /* Add inode to global LRU list */ 2148 if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) { 2149 spin_lock(&nfs_access_lru_lock); 2150 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) 2151 list_add_tail(&NFS_I(inode)->access_cache_inode_lru, 2152 &nfs_access_lru_list); 2153 spin_unlock(&nfs_access_lru_lock); 2154 } 2155 } 2156 EXPORT_SYMBOL_GPL(nfs_access_add_cache); 2157 2158 void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result) 2159 { 2160 entry->mask = 0; 2161 if (access_result & NFS4_ACCESS_READ) 2162 entry->mask |= MAY_READ; 2163 if (access_result & 2164 (NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND | NFS4_ACCESS_DELETE)) 2165 entry->mask |= MAY_WRITE; 2166 if (access_result & (NFS4_ACCESS_LOOKUP|NFS4_ACCESS_EXECUTE)) 2167 entry->mask |= MAY_EXEC; 2168 } 2169 EXPORT_SYMBOL_GPL(nfs_access_set_mask); 2170 2171 static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask) 2172 { 2173 struct nfs_access_entry cache; 2174 int status; 2175 2176 status = nfs_access_get_cached(inode, cred, &cache); 2177 if (status == 0) 2178 goto out; 2179 2180 /* Be clever: ask server to check for all possible rights */ 2181 cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ; 2182 cache.cred = cred; 2183 cache.jiffies = jiffies; 2184 status = NFS_PROTO(inode)->access(inode, &cache); 2185 if (status != 0) { 2186 if (status == -ESTALE) { 2187 nfs_zap_caches(inode); 2188 if (!S_ISDIR(inode->i_mode)) 2189 set_bit(NFS_INO_STALE, &NFS_I(inode)->flags); 2190 } 2191 return status; 2192 } 2193 nfs_access_add_cache(inode, &cache); 2194 out: 2195 if ((mask & ~cache.mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0) 2196 return 0; 2197 return -EACCES; 2198 } 2199 2200 static int nfs_open_permission_mask(int openflags) 2201 { 2202 int mask = 0; 2203 2204 if (openflags & __FMODE_EXEC) { 2205 /* ONLY check exec rights */ 2206 mask = MAY_EXEC; 2207 } else { 2208 if ((openflags & O_ACCMODE) != O_WRONLY) 2209 mask |= MAY_READ; 2210 if ((openflags & O_ACCMODE) != O_RDONLY) 2211 mask |= MAY_WRITE; 2212 } 2213 2214 return mask; 2215 } 2216 2217 int nfs_may_open(struct inode *inode, struct rpc_cred *cred, int openflags) 2218 { 2219 return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags)); 2220 } 2221 EXPORT_SYMBOL_GPL(nfs_may_open); 2222 2223 int nfs_permission(struct inode *inode, int mask) 2224 { 2225 struct rpc_cred *cred; 2226 int res = 0; 2227 2228 if (mask & MAY_NOT_BLOCK) 2229 return -ECHILD; 2230 2231 nfs_inc_stats(inode, NFSIOS_VFSACCESS); 2232 2233 if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0) 2234 goto out; 2235 /* Is this sys_access() ? */ 2236 if (mask & (MAY_ACCESS | MAY_CHDIR)) 2237 goto force_lookup; 2238 2239 switch (inode->i_mode & S_IFMT) { 2240 case S_IFLNK: 2241 goto out; 2242 case S_IFREG: 2243 /* NFSv4 has atomic_open... */ 2244 if (nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN) 2245 && (mask & MAY_OPEN) 2246 && !(mask & MAY_EXEC)) 2247 goto out; 2248 break; 2249 case S_IFDIR: 2250 /* 2251 * Optimize away all write operations, since the server 2252 * will check permissions when we perform the op. 2253 */ 2254 if ((mask & MAY_WRITE) && !(mask & MAY_READ)) 2255 goto out; 2256 } 2257 2258 force_lookup: 2259 if (!NFS_PROTO(inode)->access) 2260 goto out_notsup; 2261 2262 cred = rpc_lookup_cred(); 2263 if (!IS_ERR(cred)) { 2264 res = nfs_do_access(inode, cred, mask); 2265 put_rpccred(cred); 2266 } else 2267 res = PTR_ERR(cred); 2268 out: 2269 if (!res && (mask & MAY_EXEC) && !execute_ok(inode)) 2270 res = -EACCES; 2271 2272 dfprintk(VFS, "NFS: permission(%s/%ld), mask=0x%x, res=%d\n", 2273 inode->i_sb->s_id, inode->i_ino, mask, res); 2274 return res; 2275 out_notsup: 2276 res = nfs_revalidate_inode(NFS_SERVER(inode), inode); 2277 if (res == 0) 2278 res = generic_permission(inode, mask); 2279 goto out; 2280 } 2281 EXPORT_SYMBOL_GPL(nfs_permission); 2282 2283 /* 2284 * Local variables: 2285 * version-control: t 2286 * kept-new-versions: 5 2287 * End: 2288 */ 2289