1 /* 2 * linux/fs/nfs/dir.c 3 * 4 * Copyright (C) 1992 Rick Sladkey 5 * 6 * nfs directory handling functions 7 * 8 * 10 Apr 1996 Added silly rename for unlink --okir 9 * 28 Sep 1996 Improved directory cache --okir 10 * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de 11 * Re-implemented silly rename for unlink, newly implemented 12 * silly rename for nfs_rename() following the suggestions 13 * of Olaf Kirch (okir) found in this file. 14 * Following Linus comments on my original hack, this version 15 * depends only on the dcache stuff and doesn't touch the inode 16 * layer (iput() and friends). 17 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM 18 */ 19 20 #include <linux/time.h> 21 #include <linux/errno.h> 22 #include <linux/stat.h> 23 #include <linux/fcntl.h> 24 #include <linux/string.h> 25 #include <linux/kernel.h> 26 #include <linux/slab.h> 27 #include <linux/mm.h> 28 #include <linux/sunrpc/clnt.h> 29 #include <linux/nfs_fs.h> 30 #include <linux/nfs_mount.h> 31 #include <linux/pagemap.h> 32 #include <linux/smp_lock.h> 33 #include <linux/pagevec.h> 34 #include <linux/namei.h> 35 #include <linux/mount.h> 36 37 #include "nfs4_fs.h" 38 #include "delegation.h" 39 #include "iostat.h" 40 41 #define NFS_PARANOIA 1 42 /* #define NFS_DEBUG_VERBOSE 1 */ 43 44 static int nfs_opendir(struct inode *, struct file *); 45 static int nfs_readdir(struct file *, void *, filldir_t); 46 static struct dentry *nfs_lookup(struct inode *, struct dentry *, struct nameidata *); 47 static int nfs_create(struct inode *, struct dentry *, int, struct nameidata *); 48 static int nfs_mkdir(struct inode *, struct dentry *, int); 49 static int nfs_rmdir(struct inode *, struct dentry *); 50 static int nfs_unlink(struct inode *, struct dentry *); 51 static int nfs_symlink(struct inode *, struct dentry *, const char *); 52 static int nfs_link(struct dentry *, struct inode *, struct dentry *); 53 static int nfs_mknod(struct inode *, struct dentry *, int, dev_t); 54 static int nfs_rename(struct inode *, struct dentry *, 55 struct inode *, struct dentry *); 56 static int nfs_fsync_dir(struct file *, struct dentry *, int); 57 static loff_t nfs_llseek_dir(struct file *, loff_t, int); 58 59 const struct file_operations nfs_dir_operations = { 60 .llseek = nfs_llseek_dir, 61 .read = generic_read_dir, 62 .readdir = nfs_readdir, 63 .open = nfs_opendir, 64 .release = nfs_release, 65 .fsync = nfs_fsync_dir, 66 }; 67 68 struct inode_operations nfs_dir_inode_operations = { 69 .create = nfs_create, 70 .lookup = nfs_lookup, 71 .link = nfs_link, 72 .unlink = nfs_unlink, 73 .symlink = nfs_symlink, 74 .mkdir = nfs_mkdir, 75 .rmdir = nfs_rmdir, 76 .mknod = nfs_mknod, 77 .rename = nfs_rename, 78 .permission = nfs_permission, 79 .getattr = nfs_getattr, 80 .setattr = nfs_setattr, 81 }; 82 83 #ifdef CONFIG_NFS_V3 84 struct inode_operations nfs3_dir_inode_operations = { 85 .create = nfs_create, 86 .lookup = nfs_lookup, 87 .link = nfs_link, 88 .unlink = nfs_unlink, 89 .symlink = nfs_symlink, 90 .mkdir = nfs_mkdir, 91 .rmdir = nfs_rmdir, 92 .mknod = nfs_mknod, 93 .rename = nfs_rename, 94 .permission = nfs_permission, 95 .getattr = nfs_getattr, 96 .setattr = nfs_setattr, 97 .listxattr = nfs3_listxattr, 98 .getxattr = nfs3_getxattr, 99 .setxattr = nfs3_setxattr, 100 .removexattr = nfs3_removexattr, 101 }; 102 #endif /* CONFIG_NFS_V3 */ 103 104 #ifdef CONFIG_NFS_V4 105 106 static struct dentry *nfs_atomic_lookup(struct inode *, struct dentry *, struct nameidata *); 107 struct inode_operations nfs4_dir_inode_operations = { 108 .create = nfs_create, 109 .lookup = nfs_atomic_lookup, 110 .link = nfs_link, 111 .unlink = nfs_unlink, 112 .symlink = nfs_symlink, 113 .mkdir = nfs_mkdir, 114 .rmdir = nfs_rmdir, 115 .mknod = nfs_mknod, 116 .rename = nfs_rename, 117 .permission = nfs_permission, 118 .getattr = nfs_getattr, 119 .setattr = nfs_setattr, 120 .getxattr = nfs4_getxattr, 121 .setxattr = nfs4_setxattr, 122 .listxattr = nfs4_listxattr, 123 }; 124 125 #endif /* CONFIG_NFS_V4 */ 126 127 /* 128 * Open file 129 */ 130 static int 131 nfs_opendir(struct inode *inode, struct file *filp) 132 { 133 int res; 134 135 dfprintk(VFS, "NFS: opendir(%s/%ld)\n", 136 inode->i_sb->s_id, inode->i_ino); 137 138 lock_kernel(); 139 /* Call generic open code in order to cache credentials */ 140 res = nfs_open(inode, filp); 141 unlock_kernel(); 142 return res; 143 } 144 145 typedef __be32 * (*decode_dirent_t)(__be32 *, struct nfs_entry *, int); 146 typedef struct { 147 struct file *file; 148 struct page *page; 149 unsigned long page_index; 150 __be32 *ptr; 151 u64 *dir_cookie; 152 loff_t current_index; 153 struct nfs_entry *entry; 154 decode_dirent_t decode; 155 int plus; 156 int error; 157 } nfs_readdir_descriptor_t; 158 159 /* Now we cache directories properly, by stuffing the dirent 160 * data directly in the page cache. 161 * 162 * Inode invalidation due to refresh etc. takes care of 163 * _everything_, no sloppy entry flushing logic, no extraneous 164 * copying, network direct to page cache, the way it was meant 165 * to be. 166 * 167 * NOTE: Dirent information verification is done always by the 168 * page-in of the RPC reply, nowhere else, this simplies 169 * things substantially. 170 */ 171 static 172 int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page *page) 173 { 174 struct file *file = desc->file; 175 struct inode *inode = file->f_path.dentry->d_inode; 176 struct rpc_cred *cred = nfs_file_cred(file); 177 unsigned long timestamp; 178 int error; 179 180 dfprintk(DIRCACHE, "NFS: %s: reading cookie %Lu into page %lu\n", 181 __FUNCTION__, (long long)desc->entry->cookie, 182 page->index); 183 184 again: 185 timestamp = jiffies; 186 error = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred, desc->entry->cookie, page, 187 NFS_SERVER(inode)->dtsize, desc->plus); 188 if (error < 0) { 189 /* We requested READDIRPLUS, but the server doesn't grok it */ 190 if (error == -ENOTSUPP && desc->plus) { 191 NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS; 192 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_FLAGS(inode)); 193 desc->plus = 0; 194 goto again; 195 } 196 goto error; 197 } 198 SetPageUptodate(page); 199 spin_lock(&inode->i_lock); 200 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_ATIME; 201 spin_unlock(&inode->i_lock); 202 /* Ensure consistent page alignment of the data. 203 * Note: assumes we have exclusive access to this mapping either 204 * through inode->i_mutex or some other mechanism. 205 */ 206 if (page->index == 0 && invalidate_inode_pages2_range(inode->i_mapping, PAGE_CACHE_SIZE, -1) < 0) { 207 /* Should never happen */ 208 nfs_zap_mapping(inode, inode->i_mapping); 209 } 210 unlock_page(page); 211 return 0; 212 error: 213 SetPageError(page); 214 unlock_page(page); 215 nfs_zap_caches(inode); 216 desc->error = error; 217 return -EIO; 218 } 219 220 static inline 221 int dir_decode(nfs_readdir_descriptor_t *desc) 222 { 223 __be32 *p = desc->ptr; 224 p = desc->decode(p, desc->entry, desc->plus); 225 if (IS_ERR(p)) 226 return PTR_ERR(p); 227 desc->ptr = p; 228 return 0; 229 } 230 231 static inline 232 void dir_page_release(nfs_readdir_descriptor_t *desc) 233 { 234 kunmap(desc->page); 235 page_cache_release(desc->page); 236 desc->page = NULL; 237 desc->ptr = NULL; 238 } 239 240 /* 241 * Given a pointer to a buffer that has already been filled by a call 242 * to readdir, find the next entry with cookie '*desc->dir_cookie'. 243 * 244 * If the end of the buffer has been reached, return -EAGAIN, if not, 245 * return the offset within the buffer of the next entry to be 246 * read. 247 */ 248 static inline 249 int find_dirent(nfs_readdir_descriptor_t *desc) 250 { 251 struct nfs_entry *entry = desc->entry; 252 int loop_count = 0, 253 status; 254 255 while((status = dir_decode(desc)) == 0) { 256 dfprintk(DIRCACHE, "NFS: %s: examining cookie %Lu\n", 257 __FUNCTION__, (unsigned long long)entry->cookie); 258 if (entry->prev_cookie == *desc->dir_cookie) 259 break; 260 if (loop_count++ > 200) { 261 loop_count = 0; 262 schedule(); 263 } 264 } 265 return status; 266 } 267 268 /* 269 * Given a pointer to a buffer that has already been filled by a call 270 * to readdir, find the entry at offset 'desc->file->f_pos'. 271 * 272 * If the end of the buffer has been reached, return -EAGAIN, if not, 273 * return the offset within the buffer of the next entry to be 274 * read. 275 */ 276 static inline 277 int find_dirent_index(nfs_readdir_descriptor_t *desc) 278 { 279 struct nfs_entry *entry = desc->entry; 280 int loop_count = 0, 281 status; 282 283 for(;;) { 284 status = dir_decode(desc); 285 if (status) 286 break; 287 288 dfprintk(DIRCACHE, "NFS: found cookie %Lu at index %Ld\n", 289 (unsigned long long)entry->cookie, desc->current_index); 290 291 if (desc->file->f_pos == desc->current_index) { 292 *desc->dir_cookie = entry->cookie; 293 break; 294 } 295 desc->current_index++; 296 if (loop_count++ > 200) { 297 loop_count = 0; 298 schedule(); 299 } 300 } 301 return status; 302 } 303 304 /* 305 * Find the given page, and call find_dirent() or find_dirent_index in 306 * order to try to return the next entry. 307 */ 308 static inline 309 int find_dirent_page(nfs_readdir_descriptor_t *desc) 310 { 311 struct inode *inode = desc->file->f_path.dentry->d_inode; 312 struct page *page; 313 int status; 314 315 dfprintk(DIRCACHE, "NFS: %s: searching page %ld for target %Lu\n", 316 __FUNCTION__, desc->page_index, 317 (long long) *desc->dir_cookie); 318 319 page = read_cache_page(inode->i_mapping, desc->page_index, 320 (filler_t *)nfs_readdir_filler, desc); 321 if (IS_ERR(page)) { 322 status = PTR_ERR(page); 323 goto out; 324 } 325 if (!PageUptodate(page)) 326 goto read_error; 327 328 /* NOTE: Someone else may have changed the READDIRPLUS flag */ 329 desc->page = page; 330 desc->ptr = kmap(page); /* matching kunmap in nfs_do_filldir */ 331 if (*desc->dir_cookie != 0) 332 status = find_dirent(desc); 333 else 334 status = find_dirent_index(desc); 335 if (status < 0) 336 dir_page_release(desc); 337 out: 338 dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __FUNCTION__, status); 339 return status; 340 read_error: 341 page_cache_release(page); 342 return -EIO; 343 } 344 345 /* 346 * Recurse through the page cache pages, and return a 347 * filled nfs_entry structure of the next directory entry if possible. 348 * 349 * The target for the search is '*desc->dir_cookie' if non-0, 350 * 'desc->file->f_pos' otherwise 351 */ 352 static inline 353 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc) 354 { 355 int loop_count = 0; 356 int res; 357 358 /* Always search-by-index from the beginning of the cache */ 359 if (*desc->dir_cookie == 0) { 360 dfprintk(DIRCACHE, "NFS: readdir_search_pagecache() searching for offset %Ld\n", 361 (long long)desc->file->f_pos); 362 desc->page_index = 0; 363 desc->entry->cookie = desc->entry->prev_cookie = 0; 364 desc->entry->eof = 0; 365 desc->current_index = 0; 366 } else 367 dfprintk(DIRCACHE, "NFS: readdir_search_pagecache() searching for cookie %Lu\n", 368 (unsigned long long)*desc->dir_cookie); 369 370 for (;;) { 371 res = find_dirent_page(desc); 372 if (res != -EAGAIN) 373 break; 374 /* Align to beginning of next page */ 375 desc->page_index ++; 376 if (loop_count++ > 200) { 377 loop_count = 0; 378 schedule(); 379 } 380 } 381 382 dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __FUNCTION__, res); 383 return res; 384 } 385 386 static inline unsigned int dt_type(struct inode *inode) 387 { 388 return (inode->i_mode >> 12) & 15; 389 } 390 391 static struct dentry *nfs_readdir_lookup(nfs_readdir_descriptor_t *desc); 392 393 /* 394 * Once we've found the start of the dirent within a page: fill 'er up... 395 */ 396 static 397 int nfs_do_filldir(nfs_readdir_descriptor_t *desc, void *dirent, 398 filldir_t filldir) 399 { 400 struct file *file = desc->file; 401 struct nfs_entry *entry = desc->entry; 402 struct dentry *dentry = NULL; 403 unsigned long fileid; 404 int loop_count = 0, 405 res; 406 407 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling starting @ cookie %Lu\n", 408 (unsigned long long)entry->cookie); 409 410 for(;;) { 411 unsigned d_type = DT_UNKNOWN; 412 /* Note: entry->prev_cookie contains the cookie for 413 * retrieving the current dirent on the server */ 414 fileid = nfs_fileid_to_ino_t(entry->ino); 415 416 /* Get a dentry if we have one */ 417 if (dentry != NULL) 418 dput(dentry); 419 dentry = nfs_readdir_lookup(desc); 420 421 /* Use readdirplus info */ 422 if (dentry != NULL && dentry->d_inode != NULL) { 423 d_type = dt_type(dentry->d_inode); 424 fileid = dentry->d_inode->i_ino; 425 } 426 427 res = filldir(dirent, entry->name, entry->len, 428 file->f_pos, fileid, d_type); 429 if (res < 0) 430 break; 431 file->f_pos++; 432 *desc->dir_cookie = entry->cookie; 433 if (dir_decode(desc) != 0) { 434 desc->page_index ++; 435 break; 436 } 437 if (loop_count++ > 200) { 438 loop_count = 0; 439 schedule(); 440 } 441 } 442 dir_page_release(desc); 443 if (dentry != NULL) 444 dput(dentry); 445 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n", 446 (unsigned long long)*desc->dir_cookie, res); 447 return res; 448 } 449 450 /* 451 * If we cannot find a cookie in our cache, we suspect that this is 452 * because it points to a deleted file, so we ask the server to return 453 * whatever it thinks is the next entry. We then feed this to filldir. 454 * If all goes well, we should then be able to find our way round the 455 * cache on the next call to readdir_search_pagecache(); 456 * 457 * NOTE: we cannot add the anonymous page to the pagecache because 458 * the data it contains might not be page aligned. Besides, 459 * we should already have a complete representation of the 460 * directory in the page cache by the time we get here. 461 */ 462 static inline 463 int uncached_readdir(nfs_readdir_descriptor_t *desc, void *dirent, 464 filldir_t filldir) 465 { 466 struct file *file = desc->file; 467 struct inode *inode = file->f_path.dentry->d_inode; 468 struct rpc_cred *cred = nfs_file_cred(file); 469 struct page *page = NULL; 470 int status; 471 472 dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n", 473 (unsigned long long)*desc->dir_cookie); 474 475 page = alloc_page(GFP_HIGHUSER); 476 if (!page) { 477 status = -ENOMEM; 478 goto out; 479 } 480 desc->error = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred, *desc->dir_cookie, 481 page, 482 NFS_SERVER(inode)->dtsize, 483 desc->plus); 484 spin_lock(&inode->i_lock); 485 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_ATIME; 486 spin_unlock(&inode->i_lock); 487 desc->page = page; 488 desc->ptr = kmap(page); /* matching kunmap in nfs_do_filldir */ 489 if (desc->error >= 0) { 490 if ((status = dir_decode(desc)) == 0) 491 desc->entry->prev_cookie = *desc->dir_cookie; 492 } else 493 status = -EIO; 494 if (status < 0) 495 goto out_release; 496 497 status = nfs_do_filldir(desc, dirent, filldir); 498 499 /* Reset read descriptor so it searches the page cache from 500 * the start upon the next call to readdir_search_pagecache() */ 501 desc->page_index = 0; 502 desc->entry->cookie = desc->entry->prev_cookie = 0; 503 desc->entry->eof = 0; 504 out: 505 dfprintk(DIRCACHE, "NFS: %s: returns %d\n", 506 __FUNCTION__, status); 507 return status; 508 out_release: 509 dir_page_release(desc); 510 goto out; 511 } 512 513 /* The file offset position represents the dirent entry number. A 514 last cookie cache takes care of the common case of reading the 515 whole directory. 516 */ 517 static int nfs_readdir(struct file *filp, void *dirent, filldir_t filldir) 518 { 519 struct dentry *dentry = filp->f_path.dentry; 520 struct inode *inode = dentry->d_inode; 521 nfs_readdir_descriptor_t my_desc, 522 *desc = &my_desc; 523 struct nfs_entry my_entry; 524 struct nfs_fh fh; 525 struct nfs_fattr fattr; 526 long res; 527 528 dfprintk(VFS, "NFS: readdir(%s/%s) starting at cookie %Lu\n", 529 dentry->d_parent->d_name.name, dentry->d_name.name, 530 (long long)filp->f_pos); 531 nfs_inc_stats(inode, NFSIOS_VFSGETDENTS); 532 533 lock_kernel(); 534 535 res = nfs_revalidate_mapping_nolock(inode, filp->f_mapping); 536 if (res < 0) { 537 unlock_kernel(); 538 return res; 539 } 540 541 /* 542 * filp->f_pos points to the dirent entry number. 543 * *desc->dir_cookie has the cookie for the next entry. We have 544 * to either find the entry with the appropriate number or 545 * revalidate the cookie. 546 */ 547 memset(desc, 0, sizeof(*desc)); 548 549 desc->file = filp; 550 desc->dir_cookie = &((struct nfs_open_context *)filp->private_data)->dir_cookie; 551 desc->decode = NFS_PROTO(inode)->decode_dirent; 552 desc->plus = NFS_USE_READDIRPLUS(inode); 553 554 my_entry.cookie = my_entry.prev_cookie = 0; 555 my_entry.eof = 0; 556 my_entry.fh = &fh; 557 my_entry.fattr = &fattr; 558 nfs_fattr_init(&fattr); 559 desc->entry = &my_entry; 560 561 while(!desc->entry->eof) { 562 res = readdir_search_pagecache(desc); 563 564 if (res == -EBADCOOKIE) { 565 /* This means either end of directory */ 566 if (*desc->dir_cookie && desc->entry->cookie != *desc->dir_cookie) { 567 /* Or that the server has 'lost' a cookie */ 568 res = uncached_readdir(desc, dirent, filldir); 569 if (res >= 0) 570 continue; 571 } 572 res = 0; 573 break; 574 } 575 if (res == -ETOOSMALL && desc->plus) { 576 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_FLAGS(inode)); 577 nfs_zap_caches(inode); 578 desc->plus = 0; 579 desc->entry->eof = 0; 580 continue; 581 } 582 if (res < 0) 583 break; 584 585 res = nfs_do_filldir(desc, dirent, filldir); 586 if (res < 0) { 587 res = 0; 588 break; 589 } 590 } 591 unlock_kernel(); 592 if (res > 0) 593 res = 0; 594 dfprintk(VFS, "NFS: readdir(%s/%s) returns %ld\n", 595 dentry->d_parent->d_name.name, dentry->d_name.name, 596 res); 597 return res; 598 } 599 600 loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int origin) 601 { 602 mutex_lock(&filp->f_path.dentry->d_inode->i_mutex); 603 switch (origin) { 604 case 1: 605 offset += filp->f_pos; 606 case 0: 607 if (offset >= 0) 608 break; 609 default: 610 offset = -EINVAL; 611 goto out; 612 } 613 if (offset != filp->f_pos) { 614 filp->f_pos = offset; 615 ((struct nfs_open_context *)filp->private_data)->dir_cookie = 0; 616 } 617 out: 618 mutex_unlock(&filp->f_path.dentry->d_inode->i_mutex); 619 return offset; 620 } 621 622 /* 623 * All directory operations under NFS are synchronous, so fsync() 624 * is a dummy operation. 625 */ 626 int nfs_fsync_dir(struct file *filp, struct dentry *dentry, int datasync) 627 { 628 dfprintk(VFS, "NFS: fsync_dir(%s/%s) datasync %d\n", 629 dentry->d_parent->d_name.name, dentry->d_name.name, 630 datasync); 631 632 return 0; 633 } 634 635 /* 636 * A check for whether or not the parent directory has changed. 637 * In the case it has, we assume that the dentries are untrustworthy 638 * and may need to be looked up again. 639 */ 640 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry) 641 { 642 if (IS_ROOT(dentry)) 643 return 1; 644 if ((NFS_I(dir)->cache_validity & NFS_INO_INVALID_ATTR) != 0 645 || nfs_attribute_timeout(dir)) 646 return 0; 647 return nfs_verify_change_attribute(dir, (unsigned long)dentry->d_fsdata); 648 } 649 650 static inline void nfs_set_verifier(struct dentry * dentry, unsigned long verf) 651 { 652 dentry->d_fsdata = (void *)verf; 653 } 654 655 static void nfs_refresh_verifier(struct dentry * dentry, unsigned long verf) 656 { 657 if (time_after(verf, (unsigned long)dentry->d_fsdata)) 658 nfs_set_verifier(dentry, verf); 659 } 660 661 /* 662 * Whenever an NFS operation succeeds, we know that the dentry 663 * is valid, so we update the revalidation timestamp. 664 */ 665 static inline void nfs_renew_times(struct dentry * dentry) 666 { 667 dentry->d_time = jiffies; 668 } 669 670 /* 671 * Return the intent data that applies to this particular path component 672 * 673 * Note that the current set of intents only apply to the very last 674 * component of the path. 675 * We check for this using LOOKUP_CONTINUE and LOOKUP_PARENT. 676 */ 677 static inline unsigned int nfs_lookup_check_intent(struct nameidata *nd, unsigned int mask) 678 { 679 if (nd->flags & (LOOKUP_CONTINUE|LOOKUP_PARENT)) 680 return 0; 681 return nd->flags & mask; 682 } 683 684 /* 685 * Inode and filehandle revalidation for lookups. 686 * 687 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL, 688 * or if the intent information indicates that we're about to open this 689 * particular file and the "nocto" mount flag is not set. 690 * 691 */ 692 static inline 693 int nfs_lookup_verify_inode(struct inode *inode, struct nameidata *nd) 694 { 695 struct nfs_server *server = NFS_SERVER(inode); 696 697 if (nd != NULL) { 698 /* VFS wants an on-the-wire revalidation */ 699 if (nd->flags & LOOKUP_REVAL) 700 goto out_force; 701 /* This is an open(2) */ 702 if (nfs_lookup_check_intent(nd, LOOKUP_OPEN) != 0 && 703 !(server->flags & NFS_MOUNT_NOCTO) && 704 (S_ISREG(inode->i_mode) || 705 S_ISDIR(inode->i_mode))) 706 goto out_force; 707 } 708 return nfs_revalidate_inode(server, inode); 709 out_force: 710 return __nfs_revalidate_inode(server, inode); 711 } 712 713 /* 714 * We judge how long we want to trust negative 715 * dentries by looking at the parent inode mtime. 716 * 717 * If parent mtime has changed, we revalidate, else we wait for a 718 * period corresponding to the parent's attribute cache timeout value. 719 */ 720 static inline 721 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry, 722 struct nameidata *nd) 723 { 724 /* Don't revalidate a negative dentry if we're creating a new file */ 725 if (nd != NULL && nfs_lookup_check_intent(nd, LOOKUP_CREATE) != 0) 726 return 0; 727 return !nfs_check_verifier(dir, dentry); 728 } 729 730 /* 731 * This is called every time the dcache has a lookup hit, 732 * and we should check whether we can really trust that 733 * lookup. 734 * 735 * NOTE! The hit can be a negative hit too, don't assume 736 * we have an inode! 737 * 738 * If the parent directory is seen to have changed, we throw out the 739 * cached dentry and do a new lookup. 740 */ 741 static int nfs_lookup_revalidate(struct dentry * dentry, struct nameidata *nd) 742 { 743 struct inode *dir; 744 struct inode *inode; 745 struct dentry *parent; 746 int error; 747 struct nfs_fh fhandle; 748 struct nfs_fattr fattr; 749 unsigned long verifier; 750 751 parent = dget_parent(dentry); 752 lock_kernel(); 753 dir = parent->d_inode; 754 nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE); 755 inode = dentry->d_inode; 756 757 if (!inode) { 758 if (nfs_neg_need_reval(dir, dentry, nd)) 759 goto out_bad; 760 goto out_valid; 761 } 762 763 if (is_bad_inode(inode)) { 764 dfprintk(LOOKUPCACHE, "%s: %s/%s has dud inode\n", 765 __FUNCTION__, dentry->d_parent->d_name.name, 766 dentry->d_name.name); 767 goto out_bad; 768 } 769 770 /* Revalidate parent directory attribute cache */ 771 if (nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0) 772 goto out_zap_parent; 773 774 /* Force a full look up iff the parent directory has changed */ 775 if (nfs_check_verifier(dir, dentry)) { 776 if (nfs_lookup_verify_inode(inode, nd)) 777 goto out_zap_parent; 778 goto out_valid; 779 } 780 781 if (NFS_STALE(inode)) 782 goto out_bad; 783 784 verifier = nfs_save_change_attribute(dir); 785 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, &fhandle, &fattr); 786 if (error) 787 goto out_bad; 788 if (nfs_compare_fh(NFS_FH(inode), &fhandle)) 789 goto out_bad; 790 if ((error = nfs_refresh_inode(inode, &fattr)) != 0) 791 goto out_bad; 792 793 nfs_renew_times(dentry); 794 nfs_refresh_verifier(dentry, verifier); 795 out_valid: 796 unlock_kernel(); 797 dput(parent); 798 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is valid\n", 799 __FUNCTION__, dentry->d_parent->d_name.name, 800 dentry->d_name.name); 801 return 1; 802 out_zap_parent: 803 nfs_zap_caches(dir); 804 out_bad: 805 NFS_CACHEINV(dir); 806 if (inode && S_ISDIR(inode->i_mode)) { 807 /* Purge readdir caches. */ 808 nfs_zap_caches(inode); 809 /* If we have submounts, don't unhash ! */ 810 if (have_submounts(dentry)) 811 goto out_valid; 812 shrink_dcache_parent(dentry); 813 } 814 d_drop(dentry); 815 unlock_kernel(); 816 dput(parent); 817 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is invalid\n", 818 __FUNCTION__, dentry->d_parent->d_name.name, 819 dentry->d_name.name); 820 return 0; 821 } 822 823 /* 824 * This is called from dput() when d_count is going to 0. 825 */ 826 static int nfs_dentry_delete(struct dentry *dentry) 827 { 828 dfprintk(VFS, "NFS: dentry_delete(%s/%s, %x)\n", 829 dentry->d_parent->d_name.name, dentry->d_name.name, 830 dentry->d_flags); 831 832 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 833 /* Unhash it, so that ->d_iput() would be called */ 834 return 1; 835 } 836 if (!(dentry->d_sb->s_flags & MS_ACTIVE)) { 837 /* Unhash it, so that ancestors of killed async unlink 838 * files will be cleaned up during umount */ 839 return 1; 840 } 841 return 0; 842 843 } 844 845 /* 846 * Called when the dentry loses inode. 847 * We use it to clean up silly-renamed files. 848 */ 849 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode) 850 { 851 nfs_inode_return_delegation(inode); 852 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 853 lock_kernel(); 854 drop_nlink(inode); 855 nfs_complete_unlink(dentry); 856 unlock_kernel(); 857 } 858 /* When creating a negative dentry, we want to renew d_time */ 859 nfs_renew_times(dentry); 860 iput(inode); 861 } 862 863 struct dentry_operations nfs_dentry_operations = { 864 .d_revalidate = nfs_lookup_revalidate, 865 .d_delete = nfs_dentry_delete, 866 .d_iput = nfs_dentry_iput, 867 }; 868 869 /* 870 * Use intent information to check whether or not we're going to do 871 * an O_EXCL create using this path component. 872 */ 873 static inline 874 int nfs_is_exclusive_create(struct inode *dir, struct nameidata *nd) 875 { 876 if (NFS_PROTO(dir)->version == 2) 877 return 0; 878 if (nd == NULL || nfs_lookup_check_intent(nd, LOOKUP_CREATE) == 0) 879 return 0; 880 return (nd->intent.open.flags & O_EXCL) != 0; 881 } 882 883 static inline int nfs_reval_fsid(struct vfsmount *mnt, struct inode *dir, 884 struct nfs_fh *fh, struct nfs_fattr *fattr) 885 { 886 struct nfs_server *server = NFS_SERVER(dir); 887 888 if (!nfs_fsid_equal(&server->fsid, &fattr->fsid)) 889 /* Revalidate fsid on root dir */ 890 return __nfs_revalidate_inode(server, mnt->mnt_root->d_inode); 891 return 0; 892 } 893 894 static struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd) 895 { 896 struct dentry *res; 897 struct inode *inode = NULL; 898 int error; 899 struct nfs_fh fhandle; 900 struct nfs_fattr fattr; 901 902 dfprintk(VFS, "NFS: lookup(%s/%s)\n", 903 dentry->d_parent->d_name.name, dentry->d_name.name); 904 nfs_inc_stats(dir, NFSIOS_VFSLOOKUP); 905 906 res = ERR_PTR(-ENAMETOOLONG); 907 if (dentry->d_name.len > NFS_SERVER(dir)->namelen) 908 goto out; 909 910 res = ERR_PTR(-ENOMEM); 911 dentry->d_op = NFS_PROTO(dir)->dentry_ops; 912 913 lock_kernel(); 914 915 /* 916 * If we're doing an exclusive create, optimize away the lookup 917 * but don't hash the dentry. 918 */ 919 if (nfs_is_exclusive_create(dir, nd)) { 920 d_instantiate(dentry, NULL); 921 res = NULL; 922 goto out_unlock; 923 } 924 925 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, &fhandle, &fattr); 926 if (error == -ENOENT) 927 goto no_entry; 928 if (error < 0) { 929 res = ERR_PTR(error); 930 goto out_unlock; 931 } 932 error = nfs_reval_fsid(nd->mnt, dir, &fhandle, &fattr); 933 if (error < 0) { 934 res = ERR_PTR(error); 935 goto out_unlock; 936 } 937 inode = nfs_fhget(dentry->d_sb, &fhandle, &fattr); 938 res = (struct dentry *)inode; 939 if (IS_ERR(res)) 940 goto out_unlock; 941 942 no_entry: 943 res = d_materialise_unique(dentry, inode); 944 if (res != NULL) { 945 struct dentry *parent; 946 if (IS_ERR(res)) 947 goto out_unlock; 948 /* Was a directory renamed! */ 949 parent = dget_parent(res); 950 if (!IS_ROOT(parent)) 951 nfs_mark_for_revalidate(parent->d_inode); 952 dput(parent); 953 dentry = res; 954 } 955 nfs_renew_times(dentry); 956 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 957 out_unlock: 958 unlock_kernel(); 959 out: 960 return res; 961 } 962 963 #ifdef CONFIG_NFS_V4 964 static int nfs_open_revalidate(struct dentry *, struct nameidata *); 965 966 struct dentry_operations nfs4_dentry_operations = { 967 .d_revalidate = nfs_open_revalidate, 968 .d_delete = nfs_dentry_delete, 969 .d_iput = nfs_dentry_iput, 970 }; 971 972 /* 973 * Use intent information to determine whether we need to substitute 974 * the NFSv4-style stateful OPEN for the LOOKUP call 975 */ 976 static int is_atomic_open(struct inode *dir, struct nameidata *nd) 977 { 978 if (nd == NULL || nfs_lookup_check_intent(nd, LOOKUP_OPEN) == 0) 979 return 0; 980 /* NFS does not (yet) have a stateful open for directories */ 981 if (nd->flags & LOOKUP_DIRECTORY) 982 return 0; 983 /* Are we trying to write to a read only partition? */ 984 if (IS_RDONLY(dir) && (nd->intent.open.flags & (O_CREAT|O_TRUNC|FMODE_WRITE))) 985 return 0; 986 return 1; 987 } 988 989 static struct dentry *nfs_atomic_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd) 990 { 991 struct dentry *res = NULL; 992 int error; 993 994 dfprintk(VFS, "NFS: atomic_lookup(%s/%ld), %s\n", 995 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name); 996 997 /* Check that we are indeed trying to open this file */ 998 if (!is_atomic_open(dir, nd)) 999 goto no_open; 1000 1001 if (dentry->d_name.len > NFS_SERVER(dir)->namelen) { 1002 res = ERR_PTR(-ENAMETOOLONG); 1003 goto out; 1004 } 1005 dentry->d_op = NFS_PROTO(dir)->dentry_ops; 1006 1007 /* Let vfs_create() deal with O_EXCL */ 1008 if (nd->intent.open.flags & O_EXCL) { 1009 d_add(dentry, NULL); 1010 goto out; 1011 } 1012 1013 /* Open the file on the server */ 1014 lock_kernel(); 1015 /* Revalidate parent directory attribute cache */ 1016 error = nfs_revalidate_inode(NFS_SERVER(dir), dir); 1017 if (error < 0) { 1018 res = ERR_PTR(error); 1019 unlock_kernel(); 1020 goto out; 1021 } 1022 1023 if (nd->intent.open.flags & O_CREAT) { 1024 nfs_begin_data_update(dir); 1025 res = nfs4_atomic_open(dir, dentry, nd); 1026 nfs_end_data_update(dir); 1027 } else 1028 res = nfs4_atomic_open(dir, dentry, nd); 1029 unlock_kernel(); 1030 if (IS_ERR(res)) { 1031 error = PTR_ERR(res); 1032 switch (error) { 1033 /* Make a negative dentry */ 1034 case -ENOENT: 1035 res = NULL; 1036 goto out; 1037 /* This turned out not to be a regular file */ 1038 case -EISDIR: 1039 case -ENOTDIR: 1040 goto no_open; 1041 case -ELOOP: 1042 if (!(nd->intent.open.flags & O_NOFOLLOW)) 1043 goto no_open; 1044 /* case -EINVAL: */ 1045 default: 1046 goto out; 1047 } 1048 } else if (res != NULL) 1049 dentry = res; 1050 nfs_renew_times(dentry); 1051 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1052 out: 1053 return res; 1054 no_open: 1055 return nfs_lookup(dir, dentry, nd); 1056 } 1057 1058 static int nfs_open_revalidate(struct dentry *dentry, struct nameidata *nd) 1059 { 1060 struct dentry *parent = NULL; 1061 struct inode *inode = dentry->d_inode; 1062 struct inode *dir; 1063 unsigned long verifier; 1064 int openflags, ret = 0; 1065 1066 parent = dget_parent(dentry); 1067 dir = parent->d_inode; 1068 if (!is_atomic_open(dir, nd)) 1069 goto no_open; 1070 /* We can't create new files in nfs_open_revalidate(), so we 1071 * optimize away revalidation of negative dentries. 1072 */ 1073 if (inode == NULL) 1074 goto out; 1075 /* NFS only supports OPEN on regular files */ 1076 if (!S_ISREG(inode->i_mode)) 1077 goto no_open; 1078 openflags = nd->intent.open.flags; 1079 /* We cannot do exclusive creation on a positive dentry */ 1080 if ((openflags & (O_CREAT|O_EXCL)) == (O_CREAT|O_EXCL)) 1081 goto no_open; 1082 /* We can't create new files, or truncate existing ones here */ 1083 openflags &= ~(O_CREAT|O_TRUNC); 1084 1085 /* 1086 * Note: we're not holding inode->i_mutex and so may be racing with 1087 * operations that change the directory. We therefore save the 1088 * change attribute *before* we do the RPC call. 1089 */ 1090 lock_kernel(); 1091 verifier = nfs_save_change_attribute(dir); 1092 ret = nfs4_open_revalidate(dir, dentry, openflags, nd); 1093 if (!ret) 1094 nfs_refresh_verifier(dentry, verifier); 1095 unlock_kernel(); 1096 out: 1097 dput(parent); 1098 if (!ret) 1099 d_drop(dentry); 1100 return ret; 1101 no_open: 1102 dput(parent); 1103 if (inode != NULL && nfs_have_delegation(inode, FMODE_READ)) 1104 return 1; 1105 return nfs_lookup_revalidate(dentry, nd); 1106 } 1107 #endif /* CONFIG_NFSV4 */ 1108 1109 static struct dentry *nfs_readdir_lookup(nfs_readdir_descriptor_t *desc) 1110 { 1111 struct dentry *parent = desc->file->f_path.dentry; 1112 struct inode *dir = parent->d_inode; 1113 struct nfs_entry *entry = desc->entry; 1114 struct dentry *dentry, *alias; 1115 struct qstr name = { 1116 .name = entry->name, 1117 .len = entry->len, 1118 }; 1119 struct inode *inode; 1120 1121 switch (name.len) { 1122 case 2: 1123 if (name.name[0] == '.' && name.name[1] == '.') 1124 return dget_parent(parent); 1125 break; 1126 case 1: 1127 if (name.name[0] == '.') 1128 return dget(parent); 1129 } 1130 name.hash = full_name_hash(name.name, name.len); 1131 dentry = d_lookup(parent, &name); 1132 if (dentry != NULL) { 1133 /* Is this a positive dentry that matches the readdir info? */ 1134 if (dentry->d_inode != NULL && 1135 (NFS_FILEID(dentry->d_inode) == entry->ino || 1136 d_mountpoint(dentry))) { 1137 if (!desc->plus || entry->fh->size == 0) 1138 return dentry; 1139 if (nfs_compare_fh(NFS_FH(dentry->d_inode), 1140 entry->fh) == 0) 1141 goto out_renew; 1142 } 1143 /* No, so d_drop to allow one to be created */ 1144 d_drop(dentry); 1145 dput(dentry); 1146 } 1147 if (!desc->plus || !(entry->fattr->valid & NFS_ATTR_FATTR)) 1148 return NULL; 1149 /* Note: caller is already holding the dir->i_mutex! */ 1150 dentry = d_alloc(parent, &name); 1151 if (dentry == NULL) 1152 return NULL; 1153 dentry->d_op = NFS_PROTO(dir)->dentry_ops; 1154 inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr); 1155 if (IS_ERR(inode)) { 1156 dput(dentry); 1157 return NULL; 1158 } 1159 1160 alias = d_materialise_unique(dentry, inode); 1161 if (alias != NULL) { 1162 dput(dentry); 1163 if (IS_ERR(alias)) 1164 return NULL; 1165 dentry = alias; 1166 } 1167 1168 nfs_renew_times(dentry); 1169 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1170 return dentry; 1171 out_renew: 1172 nfs_renew_times(dentry); 1173 nfs_refresh_verifier(dentry, nfs_save_change_attribute(dir)); 1174 return dentry; 1175 } 1176 1177 /* 1178 * Code common to create, mkdir, and mknod. 1179 */ 1180 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle, 1181 struct nfs_fattr *fattr) 1182 { 1183 struct inode *inode; 1184 int error = -EACCES; 1185 1186 /* We may have been initialized further down */ 1187 if (dentry->d_inode) 1188 return 0; 1189 if (fhandle->size == 0) { 1190 struct inode *dir = dentry->d_parent->d_inode; 1191 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr); 1192 if (error) 1193 return error; 1194 } 1195 if (!(fattr->valid & NFS_ATTR_FATTR)) { 1196 struct nfs_server *server = NFS_SB(dentry->d_sb); 1197 error = server->nfs_client->rpc_ops->getattr(server, fhandle, fattr); 1198 if (error < 0) 1199 return error; 1200 } 1201 inode = nfs_fhget(dentry->d_sb, fhandle, fattr); 1202 error = PTR_ERR(inode); 1203 if (IS_ERR(inode)) 1204 return error; 1205 d_instantiate(dentry, inode); 1206 if (d_unhashed(dentry)) 1207 d_rehash(dentry); 1208 return 0; 1209 } 1210 1211 /* 1212 * Following a failed create operation, we drop the dentry rather 1213 * than retain a negative dentry. This avoids a problem in the event 1214 * that the operation succeeded on the server, but an error in the 1215 * reply path made it appear to have failed. 1216 */ 1217 static int nfs_create(struct inode *dir, struct dentry *dentry, int mode, 1218 struct nameidata *nd) 1219 { 1220 struct iattr attr; 1221 int error; 1222 int open_flags = 0; 1223 1224 dfprintk(VFS, "NFS: create(%s/%ld), %s\n", 1225 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name); 1226 1227 attr.ia_mode = mode; 1228 attr.ia_valid = ATTR_MODE; 1229 1230 if (nd && (nd->flags & LOOKUP_CREATE)) 1231 open_flags = nd->intent.open.flags; 1232 1233 lock_kernel(); 1234 nfs_begin_data_update(dir); 1235 error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags, nd); 1236 nfs_end_data_update(dir); 1237 if (error != 0) 1238 goto out_err; 1239 nfs_renew_times(dentry); 1240 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1241 unlock_kernel(); 1242 return 0; 1243 out_err: 1244 unlock_kernel(); 1245 d_drop(dentry); 1246 return error; 1247 } 1248 1249 /* 1250 * See comments for nfs_proc_create regarding failed operations. 1251 */ 1252 static int 1253 nfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t rdev) 1254 { 1255 struct iattr attr; 1256 int status; 1257 1258 dfprintk(VFS, "NFS: mknod(%s/%ld), %s\n", 1259 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name); 1260 1261 if (!new_valid_dev(rdev)) 1262 return -EINVAL; 1263 1264 attr.ia_mode = mode; 1265 attr.ia_valid = ATTR_MODE; 1266 1267 lock_kernel(); 1268 nfs_begin_data_update(dir); 1269 status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev); 1270 nfs_end_data_update(dir); 1271 if (status != 0) 1272 goto out_err; 1273 nfs_renew_times(dentry); 1274 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1275 unlock_kernel(); 1276 return 0; 1277 out_err: 1278 unlock_kernel(); 1279 d_drop(dentry); 1280 return status; 1281 } 1282 1283 /* 1284 * See comments for nfs_proc_create regarding failed operations. 1285 */ 1286 static int nfs_mkdir(struct inode *dir, struct dentry *dentry, int mode) 1287 { 1288 struct iattr attr; 1289 int error; 1290 1291 dfprintk(VFS, "NFS: mkdir(%s/%ld), %s\n", 1292 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name); 1293 1294 attr.ia_valid = ATTR_MODE; 1295 attr.ia_mode = mode | S_IFDIR; 1296 1297 lock_kernel(); 1298 nfs_begin_data_update(dir); 1299 error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr); 1300 nfs_end_data_update(dir); 1301 if (error != 0) 1302 goto out_err; 1303 nfs_renew_times(dentry); 1304 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1305 unlock_kernel(); 1306 return 0; 1307 out_err: 1308 d_drop(dentry); 1309 unlock_kernel(); 1310 return error; 1311 } 1312 1313 static int nfs_rmdir(struct inode *dir, struct dentry *dentry) 1314 { 1315 int error; 1316 1317 dfprintk(VFS, "NFS: rmdir(%s/%ld), %s\n", 1318 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name); 1319 1320 lock_kernel(); 1321 nfs_begin_data_update(dir); 1322 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name); 1323 /* Ensure the VFS deletes this inode */ 1324 if (error == 0 && dentry->d_inode != NULL) 1325 clear_nlink(dentry->d_inode); 1326 nfs_end_data_update(dir); 1327 unlock_kernel(); 1328 1329 return error; 1330 } 1331 1332 static int nfs_sillyrename(struct inode *dir, struct dentry *dentry) 1333 { 1334 static unsigned int sillycounter; 1335 const int i_inosize = sizeof(dir->i_ino)*2; 1336 const int countersize = sizeof(sillycounter)*2; 1337 const int slen = sizeof(".nfs") + i_inosize + countersize - 1; 1338 char silly[slen+1]; 1339 struct qstr qsilly; 1340 struct dentry *sdentry; 1341 int error = -EIO; 1342 1343 dfprintk(VFS, "NFS: silly-rename(%s/%s, ct=%d)\n", 1344 dentry->d_parent->d_name.name, dentry->d_name.name, 1345 atomic_read(&dentry->d_count)); 1346 nfs_inc_stats(dir, NFSIOS_SILLYRENAME); 1347 1348 #ifdef NFS_PARANOIA 1349 if (!dentry->d_inode) 1350 printk("NFS: silly-renaming %s/%s, negative dentry??\n", 1351 dentry->d_parent->d_name.name, dentry->d_name.name); 1352 #endif 1353 /* 1354 * We don't allow a dentry to be silly-renamed twice. 1355 */ 1356 error = -EBUSY; 1357 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) 1358 goto out; 1359 1360 sprintf(silly, ".nfs%*.*lx", 1361 i_inosize, i_inosize, dentry->d_inode->i_ino); 1362 1363 /* Return delegation in anticipation of the rename */ 1364 nfs_inode_return_delegation(dentry->d_inode); 1365 1366 sdentry = NULL; 1367 do { 1368 char *suffix = silly + slen - countersize; 1369 1370 dput(sdentry); 1371 sillycounter++; 1372 sprintf(suffix, "%*.*x", countersize, countersize, sillycounter); 1373 1374 dfprintk(VFS, "NFS: trying to rename %s to %s\n", 1375 dentry->d_name.name, silly); 1376 1377 sdentry = lookup_one_len(silly, dentry->d_parent, slen); 1378 /* 1379 * N.B. Better to return EBUSY here ... it could be 1380 * dangerous to delete the file while it's in use. 1381 */ 1382 if (IS_ERR(sdentry)) 1383 goto out; 1384 } while(sdentry->d_inode != NULL); /* need negative lookup */ 1385 1386 qsilly.name = silly; 1387 qsilly.len = strlen(silly); 1388 nfs_begin_data_update(dir); 1389 if (dentry->d_inode) { 1390 nfs_begin_data_update(dentry->d_inode); 1391 error = NFS_PROTO(dir)->rename(dir, &dentry->d_name, 1392 dir, &qsilly); 1393 nfs_mark_for_revalidate(dentry->d_inode); 1394 nfs_end_data_update(dentry->d_inode); 1395 } else 1396 error = NFS_PROTO(dir)->rename(dir, &dentry->d_name, 1397 dir, &qsilly); 1398 nfs_end_data_update(dir); 1399 if (!error) { 1400 nfs_renew_times(dentry); 1401 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1402 d_move(dentry, sdentry); 1403 error = nfs_async_unlink(dentry); 1404 /* If we return 0 we don't unlink */ 1405 } 1406 dput(sdentry); 1407 out: 1408 return error; 1409 } 1410 1411 /* 1412 * Remove a file after making sure there are no pending writes, 1413 * and after checking that the file has only one user. 1414 * 1415 * We invalidate the attribute cache and free the inode prior to the operation 1416 * to avoid possible races if the server reuses the inode. 1417 */ 1418 static int nfs_safe_remove(struct dentry *dentry) 1419 { 1420 struct inode *dir = dentry->d_parent->d_inode; 1421 struct inode *inode = dentry->d_inode; 1422 int error = -EBUSY; 1423 1424 dfprintk(VFS, "NFS: safe_remove(%s/%s)\n", 1425 dentry->d_parent->d_name.name, dentry->d_name.name); 1426 1427 /* If the dentry was sillyrenamed, we simply call d_delete() */ 1428 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 1429 error = 0; 1430 goto out; 1431 } 1432 1433 nfs_begin_data_update(dir); 1434 if (inode != NULL) { 1435 nfs_inode_return_delegation(inode); 1436 nfs_begin_data_update(inode); 1437 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name); 1438 /* The VFS may want to delete this inode */ 1439 if (error == 0) 1440 drop_nlink(inode); 1441 nfs_mark_for_revalidate(inode); 1442 nfs_end_data_update(inode); 1443 } else 1444 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name); 1445 nfs_end_data_update(dir); 1446 out: 1447 return error; 1448 } 1449 1450 /* We do silly rename. In case sillyrename() returns -EBUSY, the inode 1451 * belongs to an active ".nfs..." file and we return -EBUSY. 1452 * 1453 * If sillyrename() returns 0, we do nothing, otherwise we unlink. 1454 */ 1455 static int nfs_unlink(struct inode *dir, struct dentry *dentry) 1456 { 1457 int error; 1458 int need_rehash = 0; 1459 1460 dfprintk(VFS, "NFS: unlink(%s/%ld, %s)\n", dir->i_sb->s_id, 1461 dir->i_ino, dentry->d_name.name); 1462 1463 lock_kernel(); 1464 spin_lock(&dcache_lock); 1465 spin_lock(&dentry->d_lock); 1466 if (atomic_read(&dentry->d_count) > 1) { 1467 spin_unlock(&dentry->d_lock); 1468 spin_unlock(&dcache_lock); 1469 /* Start asynchronous writeout of the inode */ 1470 write_inode_now(dentry->d_inode, 0); 1471 error = nfs_sillyrename(dir, dentry); 1472 unlock_kernel(); 1473 return error; 1474 } 1475 if (!d_unhashed(dentry)) { 1476 __d_drop(dentry); 1477 need_rehash = 1; 1478 } 1479 spin_unlock(&dentry->d_lock); 1480 spin_unlock(&dcache_lock); 1481 error = nfs_safe_remove(dentry); 1482 if (!error) { 1483 nfs_renew_times(dentry); 1484 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1485 } else if (need_rehash) 1486 d_rehash(dentry); 1487 unlock_kernel(); 1488 return error; 1489 } 1490 1491 /* 1492 * To create a symbolic link, most file systems instantiate a new inode, 1493 * add a page to it containing the path, then write it out to the disk 1494 * using prepare_write/commit_write. 1495 * 1496 * Unfortunately the NFS client can't create the in-core inode first 1497 * because it needs a file handle to create an in-core inode (see 1498 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the 1499 * symlink request has completed on the server. 1500 * 1501 * So instead we allocate a raw page, copy the symname into it, then do 1502 * the SYMLINK request with the page as the buffer. If it succeeds, we 1503 * now have a new file handle and can instantiate an in-core NFS inode 1504 * and move the raw page into its mapping. 1505 */ 1506 static int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname) 1507 { 1508 struct pagevec lru_pvec; 1509 struct page *page; 1510 char *kaddr; 1511 struct iattr attr; 1512 unsigned int pathlen = strlen(symname); 1513 int error; 1514 1515 dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s)\n", dir->i_sb->s_id, 1516 dir->i_ino, dentry->d_name.name, symname); 1517 1518 if (pathlen > PAGE_SIZE) 1519 return -ENAMETOOLONG; 1520 1521 attr.ia_mode = S_IFLNK | S_IRWXUGO; 1522 attr.ia_valid = ATTR_MODE; 1523 1524 lock_kernel(); 1525 1526 page = alloc_page(GFP_KERNEL); 1527 if (!page) { 1528 unlock_kernel(); 1529 return -ENOMEM; 1530 } 1531 1532 kaddr = kmap_atomic(page, KM_USER0); 1533 memcpy(kaddr, symname, pathlen); 1534 if (pathlen < PAGE_SIZE) 1535 memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen); 1536 kunmap_atomic(kaddr, KM_USER0); 1537 1538 nfs_begin_data_update(dir); 1539 error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr); 1540 nfs_end_data_update(dir); 1541 if (error != 0) { 1542 dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s) error %d\n", 1543 dir->i_sb->s_id, dir->i_ino, 1544 dentry->d_name.name, symname, error); 1545 d_drop(dentry); 1546 __free_page(page); 1547 unlock_kernel(); 1548 return error; 1549 } 1550 1551 /* 1552 * No big deal if we can't add this page to the page cache here. 1553 * READLINK will get the missing page from the server if needed. 1554 */ 1555 pagevec_init(&lru_pvec, 0); 1556 if (!add_to_page_cache(page, dentry->d_inode->i_mapping, 0, 1557 GFP_KERNEL)) { 1558 pagevec_add(&lru_pvec, page); 1559 pagevec_lru_add(&lru_pvec); 1560 SetPageUptodate(page); 1561 unlock_page(page); 1562 } else 1563 __free_page(page); 1564 1565 unlock_kernel(); 1566 return 0; 1567 } 1568 1569 static int 1570 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 1571 { 1572 struct inode *inode = old_dentry->d_inode; 1573 int error; 1574 1575 dfprintk(VFS, "NFS: link(%s/%s -> %s/%s)\n", 1576 old_dentry->d_parent->d_name.name, old_dentry->d_name.name, 1577 dentry->d_parent->d_name.name, dentry->d_name.name); 1578 1579 lock_kernel(); 1580 nfs_begin_data_update(dir); 1581 nfs_begin_data_update(inode); 1582 error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name); 1583 if (error == 0) { 1584 atomic_inc(&inode->i_count); 1585 d_instantiate(dentry, inode); 1586 } 1587 nfs_end_data_update(inode); 1588 nfs_end_data_update(dir); 1589 unlock_kernel(); 1590 return error; 1591 } 1592 1593 /* 1594 * RENAME 1595 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a 1596 * different file handle for the same inode after a rename (e.g. when 1597 * moving to a different directory). A fail-safe method to do so would 1598 * be to look up old_dir/old_name, create a link to new_dir/new_name and 1599 * rename the old file using the sillyrename stuff. This way, the original 1600 * file in old_dir will go away when the last process iput()s the inode. 1601 * 1602 * FIXED. 1603 * 1604 * It actually works quite well. One needs to have the possibility for 1605 * at least one ".nfs..." file in each directory the file ever gets 1606 * moved or linked to which happens automagically with the new 1607 * implementation that only depends on the dcache stuff instead of 1608 * using the inode layer 1609 * 1610 * Unfortunately, things are a little more complicated than indicated 1611 * above. For a cross-directory move, we want to make sure we can get 1612 * rid of the old inode after the operation. This means there must be 1613 * no pending writes (if it's a file), and the use count must be 1. 1614 * If these conditions are met, we can drop the dentries before doing 1615 * the rename. 1616 */ 1617 static int nfs_rename(struct inode *old_dir, struct dentry *old_dentry, 1618 struct inode *new_dir, struct dentry *new_dentry) 1619 { 1620 struct inode *old_inode = old_dentry->d_inode; 1621 struct inode *new_inode = new_dentry->d_inode; 1622 struct dentry *dentry = NULL, *rehash = NULL; 1623 int error = -EBUSY; 1624 1625 /* 1626 * To prevent any new references to the target during the rename, 1627 * we unhash the dentry and free the inode in advance. 1628 */ 1629 lock_kernel(); 1630 if (!d_unhashed(new_dentry)) { 1631 d_drop(new_dentry); 1632 rehash = new_dentry; 1633 } 1634 1635 dfprintk(VFS, "NFS: rename(%s/%s -> %s/%s, ct=%d)\n", 1636 old_dentry->d_parent->d_name.name, old_dentry->d_name.name, 1637 new_dentry->d_parent->d_name.name, new_dentry->d_name.name, 1638 atomic_read(&new_dentry->d_count)); 1639 1640 /* 1641 * First check whether the target is busy ... we can't 1642 * safely do _any_ rename if the target is in use. 1643 * 1644 * For files, make a copy of the dentry and then do a 1645 * silly-rename. If the silly-rename succeeds, the 1646 * copied dentry is hashed and becomes the new target. 1647 */ 1648 if (!new_inode) 1649 goto go_ahead; 1650 if (S_ISDIR(new_inode->i_mode)) { 1651 error = -EISDIR; 1652 if (!S_ISDIR(old_inode->i_mode)) 1653 goto out; 1654 } else if (atomic_read(&new_dentry->d_count) > 2) { 1655 int err; 1656 /* copy the target dentry's name */ 1657 dentry = d_alloc(new_dentry->d_parent, 1658 &new_dentry->d_name); 1659 if (!dentry) 1660 goto out; 1661 1662 /* silly-rename the existing target ... */ 1663 err = nfs_sillyrename(new_dir, new_dentry); 1664 if (!err) { 1665 new_dentry = rehash = dentry; 1666 new_inode = NULL; 1667 /* instantiate the replacement target */ 1668 d_instantiate(new_dentry, NULL); 1669 } else if (atomic_read(&new_dentry->d_count) > 1) { 1670 /* dentry still busy? */ 1671 #ifdef NFS_PARANOIA 1672 printk("nfs_rename: target %s/%s busy, d_count=%d\n", 1673 new_dentry->d_parent->d_name.name, 1674 new_dentry->d_name.name, 1675 atomic_read(&new_dentry->d_count)); 1676 #endif 1677 goto out; 1678 } 1679 } else 1680 drop_nlink(new_inode); 1681 1682 go_ahead: 1683 /* 1684 * ... prune child dentries and writebacks if needed. 1685 */ 1686 if (atomic_read(&old_dentry->d_count) > 1) { 1687 nfs_wb_all(old_inode); 1688 shrink_dcache_parent(old_dentry); 1689 } 1690 nfs_inode_return_delegation(old_inode); 1691 1692 if (new_inode != NULL) { 1693 nfs_inode_return_delegation(new_inode); 1694 d_delete(new_dentry); 1695 } 1696 1697 nfs_begin_data_update(old_dir); 1698 nfs_begin_data_update(new_dir); 1699 nfs_begin_data_update(old_inode); 1700 error = NFS_PROTO(old_dir)->rename(old_dir, &old_dentry->d_name, 1701 new_dir, &new_dentry->d_name); 1702 nfs_mark_for_revalidate(old_inode); 1703 nfs_end_data_update(old_inode); 1704 nfs_end_data_update(new_dir); 1705 nfs_end_data_update(old_dir); 1706 out: 1707 if (rehash) 1708 d_rehash(rehash); 1709 if (!error) { 1710 d_move(old_dentry, new_dentry); 1711 nfs_renew_times(new_dentry); 1712 nfs_refresh_verifier(new_dentry, nfs_save_change_attribute(new_dir)); 1713 } 1714 1715 /* new dentry created? */ 1716 if (dentry) 1717 dput(dentry); 1718 unlock_kernel(); 1719 return error; 1720 } 1721 1722 static DEFINE_SPINLOCK(nfs_access_lru_lock); 1723 static LIST_HEAD(nfs_access_lru_list); 1724 static atomic_long_t nfs_access_nr_entries; 1725 1726 static void nfs_access_free_entry(struct nfs_access_entry *entry) 1727 { 1728 put_rpccred(entry->cred); 1729 kfree(entry); 1730 smp_mb__before_atomic_dec(); 1731 atomic_long_dec(&nfs_access_nr_entries); 1732 smp_mb__after_atomic_dec(); 1733 } 1734 1735 int nfs_access_cache_shrinker(int nr_to_scan, gfp_t gfp_mask) 1736 { 1737 LIST_HEAD(head); 1738 struct nfs_inode *nfsi; 1739 struct nfs_access_entry *cache; 1740 1741 spin_lock(&nfs_access_lru_lock); 1742 restart: 1743 list_for_each_entry(nfsi, &nfs_access_lru_list, access_cache_inode_lru) { 1744 struct inode *inode; 1745 1746 if (nr_to_scan-- == 0) 1747 break; 1748 inode = igrab(&nfsi->vfs_inode); 1749 if (inode == NULL) 1750 continue; 1751 spin_lock(&inode->i_lock); 1752 if (list_empty(&nfsi->access_cache_entry_lru)) 1753 goto remove_lru_entry; 1754 cache = list_entry(nfsi->access_cache_entry_lru.next, 1755 struct nfs_access_entry, lru); 1756 list_move(&cache->lru, &head); 1757 rb_erase(&cache->rb_node, &nfsi->access_cache); 1758 if (!list_empty(&nfsi->access_cache_entry_lru)) 1759 list_move_tail(&nfsi->access_cache_inode_lru, 1760 &nfs_access_lru_list); 1761 else { 1762 remove_lru_entry: 1763 list_del_init(&nfsi->access_cache_inode_lru); 1764 clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags); 1765 } 1766 spin_unlock(&inode->i_lock); 1767 iput(inode); 1768 goto restart; 1769 } 1770 spin_unlock(&nfs_access_lru_lock); 1771 while (!list_empty(&head)) { 1772 cache = list_entry(head.next, struct nfs_access_entry, lru); 1773 list_del(&cache->lru); 1774 nfs_access_free_entry(cache); 1775 } 1776 return (atomic_long_read(&nfs_access_nr_entries) / 100) * sysctl_vfs_cache_pressure; 1777 } 1778 1779 static void __nfs_access_zap_cache(struct inode *inode) 1780 { 1781 struct nfs_inode *nfsi = NFS_I(inode); 1782 struct rb_root *root_node = &nfsi->access_cache; 1783 struct rb_node *n, *dispose = NULL; 1784 struct nfs_access_entry *entry; 1785 1786 /* Unhook entries from the cache */ 1787 while ((n = rb_first(root_node)) != NULL) { 1788 entry = rb_entry(n, struct nfs_access_entry, rb_node); 1789 rb_erase(n, root_node); 1790 list_del(&entry->lru); 1791 n->rb_left = dispose; 1792 dispose = n; 1793 } 1794 nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS; 1795 spin_unlock(&inode->i_lock); 1796 1797 /* Now kill them all! */ 1798 while (dispose != NULL) { 1799 n = dispose; 1800 dispose = n->rb_left; 1801 nfs_access_free_entry(rb_entry(n, struct nfs_access_entry, rb_node)); 1802 } 1803 } 1804 1805 void nfs_access_zap_cache(struct inode *inode) 1806 { 1807 /* Remove from global LRU init */ 1808 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_FLAGS(inode))) { 1809 spin_lock(&nfs_access_lru_lock); 1810 list_del_init(&NFS_I(inode)->access_cache_inode_lru); 1811 spin_unlock(&nfs_access_lru_lock); 1812 } 1813 1814 spin_lock(&inode->i_lock); 1815 /* This will release the spinlock */ 1816 __nfs_access_zap_cache(inode); 1817 } 1818 1819 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred) 1820 { 1821 struct rb_node *n = NFS_I(inode)->access_cache.rb_node; 1822 struct nfs_access_entry *entry; 1823 1824 while (n != NULL) { 1825 entry = rb_entry(n, struct nfs_access_entry, rb_node); 1826 1827 if (cred < entry->cred) 1828 n = n->rb_left; 1829 else if (cred > entry->cred) 1830 n = n->rb_right; 1831 else 1832 return entry; 1833 } 1834 return NULL; 1835 } 1836 1837 int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res) 1838 { 1839 struct nfs_inode *nfsi = NFS_I(inode); 1840 struct nfs_access_entry *cache; 1841 int err = -ENOENT; 1842 1843 spin_lock(&inode->i_lock); 1844 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS) 1845 goto out_zap; 1846 cache = nfs_access_search_rbtree(inode, cred); 1847 if (cache == NULL) 1848 goto out; 1849 if (time_after(jiffies, cache->jiffies + NFS_ATTRTIMEO(inode))) 1850 goto out_stale; 1851 res->jiffies = cache->jiffies; 1852 res->cred = cache->cred; 1853 res->mask = cache->mask; 1854 list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru); 1855 err = 0; 1856 out: 1857 spin_unlock(&inode->i_lock); 1858 return err; 1859 out_stale: 1860 rb_erase(&cache->rb_node, &nfsi->access_cache); 1861 list_del(&cache->lru); 1862 spin_unlock(&inode->i_lock); 1863 nfs_access_free_entry(cache); 1864 return -ENOENT; 1865 out_zap: 1866 /* This will release the spinlock */ 1867 __nfs_access_zap_cache(inode); 1868 return -ENOENT; 1869 } 1870 1871 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set) 1872 { 1873 struct nfs_inode *nfsi = NFS_I(inode); 1874 struct rb_root *root_node = &nfsi->access_cache; 1875 struct rb_node **p = &root_node->rb_node; 1876 struct rb_node *parent = NULL; 1877 struct nfs_access_entry *entry; 1878 1879 spin_lock(&inode->i_lock); 1880 while (*p != NULL) { 1881 parent = *p; 1882 entry = rb_entry(parent, struct nfs_access_entry, rb_node); 1883 1884 if (set->cred < entry->cred) 1885 p = &parent->rb_left; 1886 else if (set->cred > entry->cred) 1887 p = &parent->rb_right; 1888 else 1889 goto found; 1890 } 1891 rb_link_node(&set->rb_node, parent, p); 1892 rb_insert_color(&set->rb_node, root_node); 1893 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru); 1894 spin_unlock(&inode->i_lock); 1895 return; 1896 found: 1897 rb_replace_node(parent, &set->rb_node, root_node); 1898 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru); 1899 list_del(&entry->lru); 1900 spin_unlock(&inode->i_lock); 1901 nfs_access_free_entry(entry); 1902 } 1903 1904 void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set) 1905 { 1906 struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL); 1907 if (cache == NULL) 1908 return; 1909 RB_CLEAR_NODE(&cache->rb_node); 1910 cache->jiffies = set->jiffies; 1911 cache->cred = get_rpccred(set->cred); 1912 cache->mask = set->mask; 1913 1914 nfs_access_add_rbtree(inode, cache); 1915 1916 /* Update accounting */ 1917 smp_mb__before_atomic_inc(); 1918 atomic_long_inc(&nfs_access_nr_entries); 1919 smp_mb__after_atomic_inc(); 1920 1921 /* Add inode to global LRU list */ 1922 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_FLAGS(inode))) { 1923 spin_lock(&nfs_access_lru_lock); 1924 list_add_tail(&NFS_I(inode)->access_cache_inode_lru, &nfs_access_lru_list); 1925 spin_unlock(&nfs_access_lru_lock); 1926 } 1927 } 1928 1929 static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask) 1930 { 1931 struct nfs_access_entry cache; 1932 int status; 1933 1934 status = nfs_access_get_cached(inode, cred, &cache); 1935 if (status == 0) 1936 goto out; 1937 1938 /* Be clever: ask server to check for all possible rights */ 1939 cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ; 1940 cache.cred = cred; 1941 cache.jiffies = jiffies; 1942 status = NFS_PROTO(inode)->access(inode, &cache); 1943 if (status != 0) 1944 return status; 1945 nfs_access_add_cache(inode, &cache); 1946 out: 1947 if ((cache.mask & mask) == mask) 1948 return 0; 1949 return -EACCES; 1950 } 1951 1952 int nfs_permission(struct inode *inode, int mask, struct nameidata *nd) 1953 { 1954 struct rpc_cred *cred; 1955 int res = 0; 1956 1957 nfs_inc_stats(inode, NFSIOS_VFSACCESS); 1958 1959 if (mask == 0) 1960 goto out; 1961 /* Is this sys_access() ? */ 1962 if (nd != NULL && (nd->flags & LOOKUP_ACCESS)) 1963 goto force_lookup; 1964 1965 switch (inode->i_mode & S_IFMT) { 1966 case S_IFLNK: 1967 goto out; 1968 case S_IFREG: 1969 /* NFSv4 has atomic_open... */ 1970 if (nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN) 1971 && nd != NULL 1972 && (nd->flags & LOOKUP_OPEN)) 1973 goto out; 1974 break; 1975 case S_IFDIR: 1976 /* 1977 * Optimize away all write operations, since the server 1978 * will check permissions when we perform the op. 1979 */ 1980 if ((mask & MAY_WRITE) && !(mask & MAY_READ)) 1981 goto out; 1982 } 1983 1984 force_lookup: 1985 lock_kernel(); 1986 1987 if (!NFS_PROTO(inode)->access) 1988 goto out_notsup; 1989 1990 cred = rpcauth_lookupcred(NFS_CLIENT(inode)->cl_auth, 0); 1991 if (!IS_ERR(cred)) { 1992 res = nfs_do_access(inode, cred, mask); 1993 put_rpccred(cred); 1994 } else 1995 res = PTR_ERR(cred); 1996 unlock_kernel(); 1997 out: 1998 dfprintk(VFS, "NFS: permission(%s/%ld), mask=0x%x, res=%d\n", 1999 inode->i_sb->s_id, inode->i_ino, mask, res); 2000 return res; 2001 out_notsup: 2002 res = nfs_revalidate_inode(NFS_SERVER(inode), inode); 2003 if (res == 0) 2004 res = generic_permission(inode, mask, NULL); 2005 unlock_kernel(); 2006 goto out; 2007 } 2008 2009 /* 2010 * Local variables: 2011 * version-control: t 2012 * kept-new-versions: 5 2013 * End: 2014 */ 2015