xref: /openbmc/linux/fs/nfs/dir.c (revision c79ba787c11e767ffaf8d723923afda99ba6c63c)
1 /*
2  *  linux/fs/nfs/dir.c
3  *
4  *  Copyright (C) 1992  Rick Sladkey
5  *
6  *  nfs directory handling functions
7  *
8  * 10 Apr 1996	Added silly rename for unlink	--okir
9  * 28 Sep 1996	Improved directory cache --okir
10  * 23 Aug 1997  Claus Heine claus@momo.math.rwth-aachen.de
11  *              Re-implemented silly rename for unlink, newly implemented
12  *              silly rename for nfs_rename() following the suggestions
13  *              of Olaf Kirch (okir) found in this file.
14  *              Following Linus comments on my original hack, this version
15  *              depends only on the dcache stuff and doesn't touch the inode
16  *              layer (iput() and friends).
17  *  6 Jun 1999	Cache readdir lookups in the page cache. -DaveM
18  */
19 
20 #include <linux/time.h>
21 #include <linux/errno.h>
22 #include <linux/stat.h>
23 #include <linux/fcntl.h>
24 #include <linux/string.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
27 #include <linux/mm.h>
28 #include <linux/sunrpc/clnt.h>
29 #include <linux/nfs_fs.h>
30 #include <linux/nfs_mount.h>
31 #include <linux/pagemap.h>
32 #include <linux/smp_lock.h>
33 #include <linux/pagevec.h>
34 #include <linux/namei.h>
35 #include <linux/mount.h>
36 
37 #include "nfs4_fs.h"
38 #include "delegation.h"
39 #include "iostat.h"
40 
41 #define NFS_PARANOIA 1
42 /* #define NFS_DEBUG_VERBOSE 1 */
43 
44 static int nfs_opendir(struct inode *, struct file *);
45 static int nfs_readdir(struct file *, void *, filldir_t);
46 static struct dentry *nfs_lookup(struct inode *, struct dentry *, struct nameidata *);
47 static int nfs_create(struct inode *, struct dentry *, int, struct nameidata *);
48 static int nfs_mkdir(struct inode *, struct dentry *, int);
49 static int nfs_rmdir(struct inode *, struct dentry *);
50 static int nfs_unlink(struct inode *, struct dentry *);
51 static int nfs_symlink(struct inode *, struct dentry *, const char *);
52 static int nfs_link(struct dentry *, struct inode *, struct dentry *);
53 static int nfs_mknod(struct inode *, struct dentry *, int, dev_t);
54 static int nfs_rename(struct inode *, struct dentry *,
55 		      struct inode *, struct dentry *);
56 static int nfs_fsync_dir(struct file *, struct dentry *, int);
57 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
58 
59 const struct file_operations nfs_dir_operations = {
60 	.llseek		= nfs_llseek_dir,
61 	.read		= generic_read_dir,
62 	.readdir	= nfs_readdir,
63 	.open		= nfs_opendir,
64 	.release	= nfs_release,
65 	.fsync		= nfs_fsync_dir,
66 };
67 
68 struct inode_operations nfs_dir_inode_operations = {
69 	.create		= nfs_create,
70 	.lookup		= nfs_lookup,
71 	.link		= nfs_link,
72 	.unlink		= nfs_unlink,
73 	.symlink	= nfs_symlink,
74 	.mkdir		= nfs_mkdir,
75 	.rmdir		= nfs_rmdir,
76 	.mknod		= nfs_mknod,
77 	.rename		= nfs_rename,
78 	.permission	= nfs_permission,
79 	.getattr	= nfs_getattr,
80 	.setattr	= nfs_setattr,
81 };
82 
83 #ifdef CONFIG_NFS_V3
84 struct inode_operations nfs3_dir_inode_operations = {
85 	.create		= nfs_create,
86 	.lookup		= nfs_lookup,
87 	.link		= nfs_link,
88 	.unlink		= nfs_unlink,
89 	.symlink	= nfs_symlink,
90 	.mkdir		= nfs_mkdir,
91 	.rmdir		= nfs_rmdir,
92 	.mknod		= nfs_mknod,
93 	.rename		= nfs_rename,
94 	.permission	= nfs_permission,
95 	.getattr	= nfs_getattr,
96 	.setattr	= nfs_setattr,
97 	.listxattr	= nfs3_listxattr,
98 	.getxattr	= nfs3_getxattr,
99 	.setxattr	= nfs3_setxattr,
100 	.removexattr	= nfs3_removexattr,
101 };
102 #endif  /* CONFIG_NFS_V3 */
103 
104 #ifdef CONFIG_NFS_V4
105 
106 static struct dentry *nfs_atomic_lookup(struct inode *, struct dentry *, struct nameidata *);
107 struct inode_operations nfs4_dir_inode_operations = {
108 	.create		= nfs_create,
109 	.lookup		= nfs_atomic_lookup,
110 	.link		= nfs_link,
111 	.unlink		= nfs_unlink,
112 	.symlink	= nfs_symlink,
113 	.mkdir		= nfs_mkdir,
114 	.rmdir		= nfs_rmdir,
115 	.mknod		= nfs_mknod,
116 	.rename		= nfs_rename,
117 	.permission	= nfs_permission,
118 	.getattr	= nfs_getattr,
119 	.setattr	= nfs_setattr,
120 	.getxattr       = nfs4_getxattr,
121 	.setxattr       = nfs4_setxattr,
122 	.listxattr      = nfs4_listxattr,
123 };
124 
125 #endif /* CONFIG_NFS_V4 */
126 
127 /*
128  * Open file
129  */
130 static int
131 nfs_opendir(struct inode *inode, struct file *filp)
132 {
133 	int res;
134 
135 	dfprintk(VFS, "NFS: opendir(%s/%ld)\n",
136 			inode->i_sb->s_id, inode->i_ino);
137 
138 	lock_kernel();
139 	/* Call generic open code in order to cache credentials */
140 	res = nfs_open(inode, filp);
141 	unlock_kernel();
142 	return res;
143 }
144 
145 typedef __be32 * (*decode_dirent_t)(__be32 *, struct nfs_entry *, int);
146 typedef struct {
147 	struct file	*file;
148 	struct page	*page;
149 	unsigned long	page_index;
150 	__be32		*ptr;
151 	u64		*dir_cookie;
152 	loff_t		current_index;
153 	struct nfs_entry *entry;
154 	decode_dirent_t	decode;
155 	int		plus;
156 	int		error;
157 } nfs_readdir_descriptor_t;
158 
159 /* Now we cache directories properly, by stuffing the dirent
160  * data directly in the page cache.
161  *
162  * Inode invalidation due to refresh etc. takes care of
163  * _everything_, no sloppy entry flushing logic, no extraneous
164  * copying, network direct to page cache, the way it was meant
165  * to be.
166  *
167  * NOTE: Dirent information verification is done always by the
168  *	 page-in of the RPC reply, nowhere else, this simplies
169  *	 things substantially.
170  */
171 static
172 int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page *page)
173 {
174 	struct file	*file = desc->file;
175 	struct inode	*inode = file->f_path.dentry->d_inode;
176 	struct rpc_cred	*cred = nfs_file_cred(file);
177 	unsigned long	timestamp;
178 	int		error;
179 
180 	dfprintk(DIRCACHE, "NFS: %s: reading cookie %Lu into page %lu\n",
181 			__FUNCTION__, (long long)desc->entry->cookie,
182 			page->index);
183 
184  again:
185 	timestamp = jiffies;
186 	error = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred, desc->entry->cookie, page,
187 					  NFS_SERVER(inode)->dtsize, desc->plus);
188 	if (error < 0) {
189 		/* We requested READDIRPLUS, but the server doesn't grok it */
190 		if (error == -ENOTSUPP && desc->plus) {
191 			NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
192 			clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_FLAGS(inode));
193 			desc->plus = 0;
194 			goto again;
195 		}
196 		goto error;
197 	}
198 	SetPageUptodate(page);
199 	spin_lock(&inode->i_lock);
200 	NFS_I(inode)->cache_validity |= NFS_INO_INVALID_ATIME;
201 	spin_unlock(&inode->i_lock);
202 	/* Ensure consistent page alignment of the data.
203 	 * Note: assumes we have exclusive access to this mapping either
204 	 *	 through inode->i_mutex or some other mechanism.
205 	 */
206 	if (page->index == 0 && invalidate_inode_pages2_range(inode->i_mapping, PAGE_CACHE_SIZE, -1) < 0) {
207 		/* Should never happen */
208 		nfs_zap_mapping(inode, inode->i_mapping);
209 	}
210 	unlock_page(page);
211 	return 0;
212  error:
213 	SetPageError(page);
214 	unlock_page(page);
215 	nfs_zap_caches(inode);
216 	desc->error = error;
217 	return -EIO;
218 }
219 
220 static inline
221 int dir_decode(nfs_readdir_descriptor_t *desc)
222 {
223 	__be32	*p = desc->ptr;
224 	p = desc->decode(p, desc->entry, desc->plus);
225 	if (IS_ERR(p))
226 		return PTR_ERR(p);
227 	desc->ptr = p;
228 	return 0;
229 }
230 
231 static inline
232 void dir_page_release(nfs_readdir_descriptor_t *desc)
233 {
234 	kunmap(desc->page);
235 	page_cache_release(desc->page);
236 	desc->page = NULL;
237 	desc->ptr = NULL;
238 }
239 
240 /*
241  * Given a pointer to a buffer that has already been filled by a call
242  * to readdir, find the next entry with cookie '*desc->dir_cookie'.
243  *
244  * If the end of the buffer has been reached, return -EAGAIN, if not,
245  * return the offset within the buffer of the next entry to be
246  * read.
247  */
248 static inline
249 int find_dirent(nfs_readdir_descriptor_t *desc)
250 {
251 	struct nfs_entry *entry = desc->entry;
252 	int		loop_count = 0,
253 			status;
254 
255 	while((status = dir_decode(desc)) == 0) {
256 		dfprintk(DIRCACHE, "NFS: %s: examining cookie %Lu\n",
257 				__FUNCTION__, (unsigned long long)entry->cookie);
258 		if (entry->prev_cookie == *desc->dir_cookie)
259 			break;
260 		if (loop_count++ > 200) {
261 			loop_count = 0;
262 			schedule();
263 		}
264 	}
265 	return status;
266 }
267 
268 /*
269  * Given a pointer to a buffer that has already been filled by a call
270  * to readdir, find the entry at offset 'desc->file->f_pos'.
271  *
272  * If the end of the buffer has been reached, return -EAGAIN, if not,
273  * return the offset within the buffer of the next entry to be
274  * read.
275  */
276 static inline
277 int find_dirent_index(nfs_readdir_descriptor_t *desc)
278 {
279 	struct nfs_entry *entry = desc->entry;
280 	int		loop_count = 0,
281 			status;
282 
283 	for(;;) {
284 		status = dir_decode(desc);
285 		if (status)
286 			break;
287 
288 		dfprintk(DIRCACHE, "NFS: found cookie %Lu at index %Ld\n",
289 				(unsigned long long)entry->cookie, desc->current_index);
290 
291 		if (desc->file->f_pos == desc->current_index) {
292 			*desc->dir_cookie = entry->cookie;
293 			break;
294 		}
295 		desc->current_index++;
296 		if (loop_count++ > 200) {
297 			loop_count = 0;
298 			schedule();
299 		}
300 	}
301 	return status;
302 }
303 
304 /*
305  * Find the given page, and call find_dirent() or find_dirent_index in
306  * order to try to return the next entry.
307  */
308 static inline
309 int find_dirent_page(nfs_readdir_descriptor_t *desc)
310 {
311 	struct inode	*inode = desc->file->f_path.dentry->d_inode;
312 	struct page	*page;
313 	int		status;
314 
315 	dfprintk(DIRCACHE, "NFS: %s: searching page %ld for target %Lu\n",
316 			__FUNCTION__, desc->page_index,
317 			(long long) *desc->dir_cookie);
318 
319 	page = read_cache_page(inode->i_mapping, desc->page_index,
320 			       (filler_t *)nfs_readdir_filler, desc);
321 	if (IS_ERR(page)) {
322 		status = PTR_ERR(page);
323 		goto out;
324 	}
325 	if (!PageUptodate(page))
326 		goto read_error;
327 
328 	/* NOTE: Someone else may have changed the READDIRPLUS flag */
329 	desc->page = page;
330 	desc->ptr = kmap(page);		/* matching kunmap in nfs_do_filldir */
331 	if (*desc->dir_cookie != 0)
332 		status = find_dirent(desc);
333 	else
334 		status = find_dirent_index(desc);
335 	if (status < 0)
336 		dir_page_release(desc);
337  out:
338 	dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __FUNCTION__, status);
339 	return status;
340  read_error:
341 	page_cache_release(page);
342 	return -EIO;
343 }
344 
345 /*
346  * Recurse through the page cache pages, and return a
347  * filled nfs_entry structure of the next directory entry if possible.
348  *
349  * The target for the search is '*desc->dir_cookie' if non-0,
350  * 'desc->file->f_pos' otherwise
351  */
352 static inline
353 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc)
354 {
355 	int		loop_count = 0;
356 	int		res;
357 
358 	/* Always search-by-index from the beginning of the cache */
359 	if (*desc->dir_cookie == 0) {
360 		dfprintk(DIRCACHE, "NFS: readdir_search_pagecache() searching for offset %Ld\n",
361 				(long long)desc->file->f_pos);
362 		desc->page_index = 0;
363 		desc->entry->cookie = desc->entry->prev_cookie = 0;
364 		desc->entry->eof = 0;
365 		desc->current_index = 0;
366 	} else
367 		dfprintk(DIRCACHE, "NFS: readdir_search_pagecache() searching for cookie %Lu\n",
368 				(unsigned long long)*desc->dir_cookie);
369 
370 	for (;;) {
371 		res = find_dirent_page(desc);
372 		if (res != -EAGAIN)
373 			break;
374 		/* Align to beginning of next page */
375 		desc->page_index ++;
376 		if (loop_count++ > 200) {
377 			loop_count = 0;
378 			schedule();
379 		}
380 	}
381 
382 	dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __FUNCTION__, res);
383 	return res;
384 }
385 
386 static inline unsigned int dt_type(struct inode *inode)
387 {
388 	return (inode->i_mode >> 12) & 15;
389 }
390 
391 static struct dentry *nfs_readdir_lookup(nfs_readdir_descriptor_t *desc);
392 
393 /*
394  * Once we've found the start of the dirent within a page: fill 'er up...
395  */
396 static
397 int nfs_do_filldir(nfs_readdir_descriptor_t *desc, void *dirent,
398 		   filldir_t filldir)
399 {
400 	struct file	*file = desc->file;
401 	struct nfs_entry *entry = desc->entry;
402 	struct dentry	*dentry = NULL;
403 	unsigned long	fileid;
404 	int		loop_count = 0,
405 			res;
406 
407 	dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling starting @ cookie %Lu\n",
408 			(unsigned long long)entry->cookie);
409 
410 	for(;;) {
411 		unsigned d_type = DT_UNKNOWN;
412 		/* Note: entry->prev_cookie contains the cookie for
413 		 *	 retrieving the current dirent on the server */
414 		fileid = nfs_fileid_to_ino_t(entry->ino);
415 
416 		/* Get a dentry if we have one */
417 		if (dentry != NULL)
418 			dput(dentry);
419 		dentry = nfs_readdir_lookup(desc);
420 
421 		/* Use readdirplus info */
422 		if (dentry != NULL && dentry->d_inode != NULL) {
423 			d_type = dt_type(dentry->d_inode);
424 			fileid = dentry->d_inode->i_ino;
425 		}
426 
427 		res = filldir(dirent, entry->name, entry->len,
428 			      file->f_pos, fileid, d_type);
429 		if (res < 0)
430 			break;
431 		file->f_pos++;
432 		*desc->dir_cookie = entry->cookie;
433 		if (dir_decode(desc) != 0) {
434 			desc->page_index ++;
435 			break;
436 		}
437 		if (loop_count++ > 200) {
438 			loop_count = 0;
439 			schedule();
440 		}
441 	}
442 	dir_page_release(desc);
443 	if (dentry != NULL)
444 		dput(dentry);
445 	dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
446 			(unsigned long long)*desc->dir_cookie, res);
447 	return res;
448 }
449 
450 /*
451  * If we cannot find a cookie in our cache, we suspect that this is
452  * because it points to a deleted file, so we ask the server to return
453  * whatever it thinks is the next entry. We then feed this to filldir.
454  * If all goes well, we should then be able to find our way round the
455  * cache on the next call to readdir_search_pagecache();
456  *
457  * NOTE: we cannot add the anonymous page to the pagecache because
458  *	 the data it contains might not be page aligned. Besides,
459  *	 we should already have a complete representation of the
460  *	 directory in the page cache by the time we get here.
461  */
462 static inline
463 int uncached_readdir(nfs_readdir_descriptor_t *desc, void *dirent,
464 		     filldir_t filldir)
465 {
466 	struct file	*file = desc->file;
467 	struct inode	*inode = file->f_path.dentry->d_inode;
468 	struct rpc_cred	*cred = nfs_file_cred(file);
469 	struct page	*page = NULL;
470 	int		status;
471 
472 	dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n",
473 			(unsigned long long)*desc->dir_cookie);
474 
475 	page = alloc_page(GFP_HIGHUSER);
476 	if (!page) {
477 		status = -ENOMEM;
478 		goto out;
479 	}
480 	desc->error = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred, *desc->dir_cookie,
481 						page,
482 						NFS_SERVER(inode)->dtsize,
483 						desc->plus);
484 	spin_lock(&inode->i_lock);
485 	NFS_I(inode)->cache_validity |= NFS_INO_INVALID_ATIME;
486 	spin_unlock(&inode->i_lock);
487 	desc->page = page;
488 	desc->ptr = kmap(page);		/* matching kunmap in nfs_do_filldir */
489 	if (desc->error >= 0) {
490 		if ((status = dir_decode(desc)) == 0)
491 			desc->entry->prev_cookie = *desc->dir_cookie;
492 	} else
493 		status = -EIO;
494 	if (status < 0)
495 		goto out_release;
496 
497 	status = nfs_do_filldir(desc, dirent, filldir);
498 
499 	/* Reset read descriptor so it searches the page cache from
500 	 * the start upon the next call to readdir_search_pagecache() */
501 	desc->page_index = 0;
502 	desc->entry->cookie = desc->entry->prev_cookie = 0;
503 	desc->entry->eof = 0;
504  out:
505 	dfprintk(DIRCACHE, "NFS: %s: returns %d\n",
506 			__FUNCTION__, status);
507 	return status;
508  out_release:
509 	dir_page_release(desc);
510 	goto out;
511 }
512 
513 /* The file offset position represents the dirent entry number.  A
514    last cookie cache takes care of the common case of reading the
515    whole directory.
516  */
517 static int nfs_readdir(struct file *filp, void *dirent, filldir_t filldir)
518 {
519 	struct dentry	*dentry = filp->f_path.dentry;
520 	struct inode	*inode = dentry->d_inode;
521 	nfs_readdir_descriptor_t my_desc,
522 			*desc = &my_desc;
523 	struct nfs_entry my_entry;
524 	struct nfs_fh	 fh;
525 	struct nfs_fattr fattr;
526 	long		res;
527 
528 	dfprintk(VFS, "NFS: readdir(%s/%s) starting at cookie %Lu\n",
529 			dentry->d_parent->d_name.name, dentry->d_name.name,
530 			(long long)filp->f_pos);
531 	nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
532 
533 	lock_kernel();
534 
535 	res = nfs_revalidate_mapping_nolock(inode, filp->f_mapping);
536 	if (res < 0) {
537 		unlock_kernel();
538 		return res;
539 	}
540 
541 	/*
542 	 * filp->f_pos points to the dirent entry number.
543 	 * *desc->dir_cookie has the cookie for the next entry. We have
544 	 * to either find the entry with the appropriate number or
545 	 * revalidate the cookie.
546 	 */
547 	memset(desc, 0, sizeof(*desc));
548 
549 	desc->file = filp;
550 	desc->dir_cookie = &((struct nfs_open_context *)filp->private_data)->dir_cookie;
551 	desc->decode = NFS_PROTO(inode)->decode_dirent;
552 	desc->plus = NFS_USE_READDIRPLUS(inode);
553 
554 	my_entry.cookie = my_entry.prev_cookie = 0;
555 	my_entry.eof = 0;
556 	my_entry.fh = &fh;
557 	my_entry.fattr = &fattr;
558 	nfs_fattr_init(&fattr);
559 	desc->entry = &my_entry;
560 
561 	while(!desc->entry->eof) {
562 		res = readdir_search_pagecache(desc);
563 
564 		if (res == -EBADCOOKIE) {
565 			/* This means either end of directory */
566 			if (*desc->dir_cookie && desc->entry->cookie != *desc->dir_cookie) {
567 				/* Or that the server has 'lost' a cookie */
568 				res = uncached_readdir(desc, dirent, filldir);
569 				if (res >= 0)
570 					continue;
571 			}
572 			res = 0;
573 			break;
574 		}
575 		if (res == -ETOOSMALL && desc->plus) {
576 			clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_FLAGS(inode));
577 			nfs_zap_caches(inode);
578 			desc->plus = 0;
579 			desc->entry->eof = 0;
580 			continue;
581 		}
582 		if (res < 0)
583 			break;
584 
585 		res = nfs_do_filldir(desc, dirent, filldir);
586 		if (res < 0) {
587 			res = 0;
588 			break;
589 		}
590 	}
591 	unlock_kernel();
592 	if (res > 0)
593 		res = 0;
594 	dfprintk(VFS, "NFS: readdir(%s/%s) returns %ld\n",
595 			dentry->d_parent->d_name.name, dentry->d_name.name,
596 			res);
597 	return res;
598 }
599 
600 loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int origin)
601 {
602 	mutex_lock(&filp->f_path.dentry->d_inode->i_mutex);
603 	switch (origin) {
604 		case 1:
605 			offset += filp->f_pos;
606 		case 0:
607 			if (offset >= 0)
608 				break;
609 		default:
610 			offset = -EINVAL;
611 			goto out;
612 	}
613 	if (offset != filp->f_pos) {
614 		filp->f_pos = offset;
615 		((struct nfs_open_context *)filp->private_data)->dir_cookie = 0;
616 	}
617 out:
618 	mutex_unlock(&filp->f_path.dentry->d_inode->i_mutex);
619 	return offset;
620 }
621 
622 /*
623  * All directory operations under NFS are synchronous, so fsync()
624  * is a dummy operation.
625  */
626 int nfs_fsync_dir(struct file *filp, struct dentry *dentry, int datasync)
627 {
628 	dfprintk(VFS, "NFS: fsync_dir(%s/%s) datasync %d\n",
629 			dentry->d_parent->d_name.name, dentry->d_name.name,
630 			datasync);
631 
632 	return 0;
633 }
634 
635 /*
636  * A check for whether or not the parent directory has changed.
637  * In the case it has, we assume that the dentries are untrustworthy
638  * and may need to be looked up again.
639  */
640 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry)
641 {
642 	if (IS_ROOT(dentry))
643 		return 1;
644 	if ((NFS_I(dir)->cache_validity & NFS_INO_INVALID_ATTR) != 0
645 			|| nfs_attribute_timeout(dir))
646 		return 0;
647 	return nfs_verify_change_attribute(dir, (unsigned long)dentry->d_fsdata);
648 }
649 
650 static inline void nfs_set_verifier(struct dentry * dentry, unsigned long verf)
651 {
652 	dentry->d_fsdata = (void *)verf;
653 }
654 
655 static void nfs_refresh_verifier(struct dentry * dentry, unsigned long verf)
656 {
657 	if (time_after(verf, (unsigned long)dentry->d_fsdata))
658 		nfs_set_verifier(dentry, verf);
659 }
660 
661 /*
662  * Whenever an NFS operation succeeds, we know that the dentry
663  * is valid, so we update the revalidation timestamp.
664  */
665 static inline void nfs_renew_times(struct dentry * dentry)
666 {
667 	dentry->d_time = jiffies;
668 }
669 
670 /*
671  * Return the intent data that applies to this particular path component
672  *
673  * Note that the current set of intents only apply to the very last
674  * component of the path.
675  * We check for this using LOOKUP_CONTINUE and LOOKUP_PARENT.
676  */
677 static inline unsigned int nfs_lookup_check_intent(struct nameidata *nd, unsigned int mask)
678 {
679 	if (nd->flags & (LOOKUP_CONTINUE|LOOKUP_PARENT))
680 		return 0;
681 	return nd->flags & mask;
682 }
683 
684 /*
685  * Inode and filehandle revalidation for lookups.
686  *
687  * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
688  * or if the intent information indicates that we're about to open this
689  * particular file and the "nocto" mount flag is not set.
690  *
691  */
692 static inline
693 int nfs_lookup_verify_inode(struct inode *inode, struct nameidata *nd)
694 {
695 	struct nfs_server *server = NFS_SERVER(inode);
696 
697 	if (nd != NULL) {
698 		/* VFS wants an on-the-wire revalidation */
699 		if (nd->flags & LOOKUP_REVAL)
700 			goto out_force;
701 		/* This is an open(2) */
702 		if (nfs_lookup_check_intent(nd, LOOKUP_OPEN) != 0 &&
703 				!(server->flags & NFS_MOUNT_NOCTO) &&
704 				(S_ISREG(inode->i_mode) ||
705 				 S_ISDIR(inode->i_mode)))
706 			goto out_force;
707 	}
708 	return nfs_revalidate_inode(server, inode);
709 out_force:
710 	return __nfs_revalidate_inode(server, inode);
711 }
712 
713 /*
714  * We judge how long we want to trust negative
715  * dentries by looking at the parent inode mtime.
716  *
717  * If parent mtime has changed, we revalidate, else we wait for a
718  * period corresponding to the parent's attribute cache timeout value.
719  */
720 static inline
721 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
722 		       struct nameidata *nd)
723 {
724 	/* Don't revalidate a negative dentry if we're creating a new file */
725 	if (nd != NULL && nfs_lookup_check_intent(nd, LOOKUP_CREATE) != 0)
726 		return 0;
727 	return !nfs_check_verifier(dir, dentry);
728 }
729 
730 /*
731  * This is called every time the dcache has a lookup hit,
732  * and we should check whether we can really trust that
733  * lookup.
734  *
735  * NOTE! The hit can be a negative hit too, don't assume
736  * we have an inode!
737  *
738  * If the parent directory is seen to have changed, we throw out the
739  * cached dentry and do a new lookup.
740  */
741 static int nfs_lookup_revalidate(struct dentry * dentry, struct nameidata *nd)
742 {
743 	struct inode *dir;
744 	struct inode *inode;
745 	struct dentry *parent;
746 	int error;
747 	struct nfs_fh fhandle;
748 	struct nfs_fattr fattr;
749 	unsigned long verifier;
750 
751 	parent = dget_parent(dentry);
752 	lock_kernel();
753 	dir = parent->d_inode;
754 	nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
755 	inode = dentry->d_inode;
756 
757 	if (!inode) {
758 		if (nfs_neg_need_reval(dir, dentry, nd))
759 			goto out_bad;
760 		goto out_valid;
761 	}
762 
763 	if (is_bad_inode(inode)) {
764 		dfprintk(LOOKUPCACHE, "%s: %s/%s has dud inode\n",
765 				__FUNCTION__, dentry->d_parent->d_name.name,
766 				dentry->d_name.name);
767 		goto out_bad;
768 	}
769 
770 	/* Revalidate parent directory attribute cache */
771 	if (nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
772 		goto out_zap_parent;
773 
774 	/* Force a full look up iff the parent directory has changed */
775 	if (nfs_check_verifier(dir, dentry)) {
776 		if (nfs_lookup_verify_inode(inode, nd))
777 			goto out_zap_parent;
778 		goto out_valid;
779 	}
780 
781 	if (NFS_STALE(inode))
782 		goto out_bad;
783 
784 	verifier = nfs_save_change_attribute(dir);
785 	error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, &fhandle, &fattr);
786 	if (error)
787 		goto out_bad;
788 	if (nfs_compare_fh(NFS_FH(inode), &fhandle))
789 		goto out_bad;
790 	if ((error = nfs_refresh_inode(inode, &fattr)) != 0)
791 		goto out_bad;
792 
793 	nfs_renew_times(dentry);
794 	nfs_refresh_verifier(dentry, verifier);
795  out_valid:
796 	unlock_kernel();
797 	dput(parent);
798 	dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is valid\n",
799 			__FUNCTION__, dentry->d_parent->d_name.name,
800 			dentry->d_name.name);
801 	return 1;
802 out_zap_parent:
803 	nfs_zap_caches(dir);
804  out_bad:
805 	NFS_CACHEINV(dir);
806 	if (inode && S_ISDIR(inode->i_mode)) {
807 		/* Purge readdir caches. */
808 		nfs_zap_caches(inode);
809 		/* If we have submounts, don't unhash ! */
810 		if (have_submounts(dentry))
811 			goto out_valid;
812 		shrink_dcache_parent(dentry);
813 	}
814 	d_drop(dentry);
815 	unlock_kernel();
816 	dput(parent);
817 	dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is invalid\n",
818 			__FUNCTION__, dentry->d_parent->d_name.name,
819 			dentry->d_name.name);
820 	return 0;
821 }
822 
823 /*
824  * This is called from dput() when d_count is going to 0.
825  */
826 static int nfs_dentry_delete(struct dentry *dentry)
827 {
828 	dfprintk(VFS, "NFS: dentry_delete(%s/%s, %x)\n",
829 		dentry->d_parent->d_name.name, dentry->d_name.name,
830 		dentry->d_flags);
831 
832 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
833 		/* Unhash it, so that ->d_iput() would be called */
834 		return 1;
835 	}
836 	if (!(dentry->d_sb->s_flags & MS_ACTIVE)) {
837 		/* Unhash it, so that ancestors of killed async unlink
838 		 * files will be cleaned up during umount */
839 		return 1;
840 	}
841 	return 0;
842 
843 }
844 
845 /*
846  * Called when the dentry loses inode.
847  * We use it to clean up silly-renamed files.
848  */
849 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
850 {
851 	nfs_inode_return_delegation(inode);
852 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
853 		lock_kernel();
854 		drop_nlink(inode);
855 		nfs_complete_unlink(dentry);
856 		unlock_kernel();
857 	}
858 	/* When creating a negative dentry, we want to renew d_time */
859 	nfs_renew_times(dentry);
860 	iput(inode);
861 }
862 
863 struct dentry_operations nfs_dentry_operations = {
864 	.d_revalidate	= nfs_lookup_revalidate,
865 	.d_delete	= nfs_dentry_delete,
866 	.d_iput		= nfs_dentry_iput,
867 };
868 
869 /*
870  * Use intent information to check whether or not we're going to do
871  * an O_EXCL create using this path component.
872  */
873 static inline
874 int nfs_is_exclusive_create(struct inode *dir, struct nameidata *nd)
875 {
876 	if (NFS_PROTO(dir)->version == 2)
877 		return 0;
878 	if (nd == NULL || nfs_lookup_check_intent(nd, LOOKUP_CREATE) == 0)
879 		return 0;
880 	return (nd->intent.open.flags & O_EXCL) != 0;
881 }
882 
883 static inline int nfs_reval_fsid(struct vfsmount *mnt, struct inode *dir,
884 				 struct nfs_fh *fh, struct nfs_fattr *fattr)
885 {
886 	struct nfs_server *server = NFS_SERVER(dir);
887 
888 	if (!nfs_fsid_equal(&server->fsid, &fattr->fsid))
889 		/* Revalidate fsid on root dir */
890 		return __nfs_revalidate_inode(server, mnt->mnt_root->d_inode);
891 	return 0;
892 }
893 
894 static struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
895 {
896 	struct dentry *res;
897 	struct inode *inode = NULL;
898 	int error;
899 	struct nfs_fh fhandle;
900 	struct nfs_fattr fattr;
901 
902 	dfprintk(VFS, "NFS: lookup(%s/%s)\n",
903 		dentry->d_parent->d_name.name, dentry->d_name.name);
904 	nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
905 
906 	res = ERR_PTR(-ENAMETOOLONG);
907 	if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
908 		goto out;
909 
910 	res = ERR_PTR(-ENOMEM);
911 	dentry->d_op = NFS_PROTO(dir)->dentry_ops;
912 
913 	lock_kernel();
914 
915 	/*
916 	 * If we're doing an exclusive create, optimize away the lookup
917 	 * but don't hash the dentry.
918 	 */
919 	if (nfs_is_exclusive_create(dir, nd)) {
920 		d_instantiate(dentry, NULL);
921 		res = NULL;
922 		goto out_unlock;
923 	}
924 
925 	error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, &fhandle, &fattr);
926 	if (error == -ENOENT)
927 		goto no_entry;
928 	if (error < 0) {
929 		res = ERR_PTR(error);
930 		goto out_unlock;
931 	}
932 	error = nfs_reval_fsid(nd->mnt, dir, &fhandle, &fattr);
933 	if (error < 0) {
934 		res = ERR_PTR(error);
935 		goto out_unlock;
936 	}
937 	inode = nfs_fhget(dentry->d_sb, &fhandle, &fattr);
938 	res = (struct dentry *)inode;
939 	if (IS_ERR(res))
940 		goto out_unlock;
941 
942 no_entry:
943 	res = d_materialise_unique(dentry, inode);
944 	if (res != NULL) {
945 		struct dentry *parent;
946 		if (IS_ERR(res))
947 			goto out_unlock;
948 		/* Was a directory renamed! */
949 		parent = dget_parent(res);
950 		if (!IS_ROOT(parent))
951 			nfs_mark_for_revalidate(parent->d_inode);
952 		dput(parent);
953 		dentry = res;
954 	}
955 	nfs_renew_times(dentry);
956 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
957 out_unlock:
958 	unlock_kernel();
959 out:
960 	return res;
961 }
962 
963 #ifdef CONFIG_NFS_V4
964 static int nfs_open_revalidate(struct dentry *, struct nameidata *);
965 
966 struct dentry_operations nfs4_dentry_operations = {
967 	.d_revalidate	= nfs_open_revalidate,
968 	.d_delete	= nfs_dentry_delete,
969 	.d_iput		= nfs_dentry_iput,
970 };
971 
972 /*
973  * Use intent information to determine whether we need to substitute
974  * the NFSv4-style stateful OPEN for the LOOKUP call
975  */
976 static int is_atomic_open(struct inode *dir, struct nameidata *nd)
977 {
978 	if (nd == NULL || nfs_lookup_check_intent(nd, LOOKUP_OPEN) == 0)
979 		return 0;
980 	/* NFS does not (yet) have a stateful open for directories */
981 	if (nd->flags & LOOKUP_DIRECTORY)
982 		return 0;
983 	/* Are we trying to write to a read only partition? */
984 	if (IS_RDONLY(dir) && (nd->intent.open.flags & (O_CREAT|O_TRUNC|FMODE_WRITE)))
985 		return 0;
986 	return 1;
987 }
988 
989 static struct dentry *nfs_atomic_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
990 {
991 	struct dentry *res = NULL;
992 	int error;
993 
994 	dfprintk(VFS, "NFS: atomic_lookup(%s/%ld), %s\n",
995 			dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
996 
997 	/* Check that we are indeed trying to open this file */
998 	if (!is_atomic_open(dir, nd))
999 		goto no_open;
1000 
1001 	if (dentry->d_name.len > NFS_SERVER(dir)->namelen) {
1002 		res = ERR_PTR(-ENAMETOOLONG);
1003 		goto out;
1004 	}
1005 	dentry->d_op = NFS_PROTO(dir)->dentry_ops;
1006 
1007 	/* Let vfs_create() deal with O_EXCL */
1008 	if (nd->intent.open.flags & O_EXCL) {
1009 		d_add(dentry, NULL);
1010 		goto out;
1011 	}
1012 
1013 	/* Open the file on the server */
1014 	lock_kernel();
1015 	/* Revalidate parent directory attribute cache */
1016 	error = nfs_revalidate_inode(NFS_SERVER(dir), dir);
1017 	if (error < 0) {
1018 		res = ERR_PTR(error);
1019 		unlock_kernel();
1020 		goto out;
1021 	}
1022 
1023 	if (nd->intent.open.flags & O_CREAT) {
1024 		nfs_begin_data_update(dir);
1025 		res = nfs4_atomic_open(dir, dentry, nd);
1026 		nfs_end_data_update(dir);
1027 	} else
1028 		res = nfs4_atomic_open(dir, dentry, nd);
1029 	unlock_kernel();
1030 	if (IS_ERR(res)) {
1031 		error = PTR_ERR(res);
1032 		switch (error) {
1033 			/* Make a negative dentry */
1034 			case -ENOENT:
1035 				res = NULL;
1036 				goto out;
1037 			/* This turned out not to be a regular file */
1038 			case -EISDIR:
1039 			case -ENOTDIR:
1040 				goto no_open;
1041 			case -ELOOP:
1042 				if (!(nd->intent.open.flags & O_NOFOLLOW))
1043 					goto no_open;
1044 			/* case -EINVAL: */
1045 			default:
1046 				goto out;
1047 		}
1048 	} else if (res != NULL)
1049 		dentry = res;
1050 	nfs_renew_times(dentry);
1051 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1052 out:
1053 	return res;
1054 no_open:
1055 	return nfs_lookup(dir, dentry, nd);
1056 }
1057 
1058 static int nfs_open_revalidate(struct dentry *dentry, struct nameidata *nd)
1059 {
1060 	struct dentry *parent = NULL;
1061 	struct inode *inode = dentry->d_inode;
1062 	struct inode *dir;
1063 	unsigned long verifier;
1064 	int openflags, ret = 0;
1065 
1066 	parent = dget_parent(dentry);
1067 	dir = parent->d_inode;
1068 	if (!is_atomic_open(dir, nd))
1069 		goto no_open;
1070 	/* We can't create new files in nfs_open_revalidate(), so we
1071 	 * optimize away revalidation of negative dentries.
1072 	 */
1073 	if (inode == NULL)
1074 		goto out;
1075 	/* NFS only supports OPEN on regular files */
1076 	if (!S_ISREG(inode->i_mode))
1077 		goto no_open;
1078 	openflags = nd->intent.open.flags;
1079 	/* We cannot do exclusive creation on a positive dentry */
1080 	if ((openflags & (O_CREAT|O_EXCL)) == (O_CREAT|O_EXCL))
1081 		goto no_open;
1082 	/* We can't create new files, or truncate existing ones here */
1083 	openflags &= ~(O_CREAT|O_TRUNC);
1084 
1085 	/*
1086 	 * Note: we're not holding inode->i_mutex and so may be racing with
1087 	 * operations that change the directory. We therefore save the
1088 	 * change attribute *before* we do the RPC call.
1089 	 */
1090 	lock_kernel();
1091 	verifier = nfs_save_change_attribute(dir);
1092 	ret = nfs4_open_revalidate(dir, dentry, openflags, nd);
1093 	if (!ret)
1094 		nfs_refresh_verifier(dentry, verifier);
1095 	unlock_kernel();
1096 out:
1097 	dput(parent);
1098 	if (!ret)
1099 		d_drop(dentry);
1100 	return ret;
1101 no_open:
1102 	dput(parent);
1103 	if (inode != NULL && nfs_have_delegation(inode, FMODE_READ))
1104 		return 1;
1105 	return nfs_lookup_revalidate(dentry, nd);
1106 }
1107 #endif /* CONFIG_NFSV4 */
1108 
1109 static struct dentry *nfs_readdir_lookup(nfs_readdir_descriptor_t *desc)
1110 {
1111 	struct dentry *parent = desc->file->f_path.dentry;
1112 	struct inode *dir = parent->d_inode;
1113 	struct nfs_entry *entry = desc->entry;
1114 	struct dentry *dentry, *alias;
1115 	struct qstr name = {
1116 		.name = entry->name,
1117 		.len = entry->len,
1118 	};
1119 	struct inode *inode;
1120 
1121 	switch (name.len) {
1122 		case 2:
1123 			if (name.name[0] == '.' && name.name[1] == '.')
1124 				return dget_parent(parent);
1125 			break;
1126 		case 1:
1127 			if (name.name[0] == '.')
1128 				return dget(parent);
1129 	}
1130 	name.hash = full_name_hash(name.name, name.len);
1131 	dentry = d_lookup(parent, &name);
1132 	if (dentry != NULL) {
1133 		/* Is this a positive dentry that matches the readdir info? */
1134 		if (dentry->d_inode != NULL &&
1135 				(NFS_FILEID(dentry->d_inode) == entry->ino ||
1136 				d_mountpoint(dentry))) {
1137 			if (!desc->plus || entry->fh->size == 0)
1138 				return dentry;
1139 			if (nfs_compare_fh(NFS_FH(dentry->d_inode),
1140 						entry->fh) == 0)
1141 				goto out_renew;
1142 		}
1143 		/* No, so d_drop to allow one to be created */
1144 		d_drop(dentry);
1145 		dput(dentry);
1146 	}
1147 	if (!desc->plus || !(entry->fattr->valid & NFS_ATTR_FATTR))
1148 		return NULL;
1149 	/* Note: caller is already holding the dir->i_mutex! */
1150 	dentry = d_alloc(parent, &name);
1151 	if (dentry == NULL)
1152 		return NULL;
1153 	dentry->d_op = NFS_PROTO(dir)->dentry_ops;
1154 	inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr);
1155 	if (IS_ERR(inode)) {
1156 		dput(dentry);
1157 		return NULL;
1158 	}
1159 
1160 	alias = d_materialise_unique(dentry, inode);
1161 	if (alias != NULL) {
1162 		dput(dentry);
1163 		if (IS_ERR(alias))
1164 			return NULL;
1165 		dentry = alias;
1166 	}
1167 
1168 	nfs_renew_times(dentry);
1169 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1170 	return dentry;
1171 out_renew:
1172 	nfs_renew_times(dentry);
1173 	nfs_refresh_verifier(dentry, nfs_save_change_attribute(dir));
1174 	return dentry;
1175 }
1176 
1177 /*
1178  * Code common to create, mkdir, and mknod.
1179  */
1180 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
1181 				struct nfs_fattr *fattr)
1182 {
1183 	struct inode *inode;
1184 	int error = -EACCES;
1185 
1186 	/* We may have been initialized further down */
1187 	if (dentry->d_inode)
1188 		return 0;
1189 	if (fhandle->size == 0) {
1190 		struct inode *dir = dentry->d_parent->d_inode;
1191 		error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr);
1192 		if (error)
1193 			return error;
1194 	}
1195 	if (!(fattr->valid & NFS_ATTR_FATTR)) {
1196 		struct nfs_server *server = NFS_SB(dentry->d_sb);
1197 		error = server->nfs_client->rpc_ops->getattr(server, fhandle, fattr);
1198 		if (error < 0)
1199 			return error;
1200 	}
1201 	inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
1202 	error = PTR_ERR(inode);
1203 	if (IS_ERR(inode))
1204 		return error;
1205 	d_instantiate(dentry, inode);
1206 	if (d_unhashed(dentry))
1207 		d_rehash(dentry);
1208 	return 0;
1209 }
1210 
1211 /*
1212  * Following a failed create operation, we drop the dentry rather
1213  * than retain a negative dentry. This avoids a problem in the event
1214  * that the operation succeeded on the server, but an error in the
1215  * reply path made it appear to have failed.
1216  */
1217 static int nfs_create(struct inode *dir, struct dentry *dentry, int mode,
1218 		struct nameidata *nd)
1219 {
1220 	struct iattr attr;
1221 	int error;
1222 	int open_flags = 0;
1223 
1224 	dfprintk(VFS, "NFS: create(%s/%ld), %s\n",
1225 			dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1226 
1227 	attr.ia_mode = mode;
1228 	attr.ia_valid = ATTR_MODE;
1229 
1230 	if (nd && (nd->flags & LOOKUP_CREATE))
1231 		open_flags = nd->intent.open.flags;
1232 
1233 	lock_kernel();
1234 	nfs_begin_data_update(dir);
1235 	error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags, nd);
1236 	nfs_end_data_update(dir);
1237 	if (error != 0)
1238 		goto out_err;
1239 	nfs_renew_times(dentry);
1240 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1241 	unlock_kernel();
1242 	return 0;
1243 out_err:
1244 	unlock_kernel();
1245 	d_drop(dentry);
1246 	return error;
1247 }
1248 
1249 /*
1250  * See comments for nfs_proc_create regarding failed operations.
1251  */
1252 static int
1253 nfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t rdev)
1254 {
1255 	struct iattr attr;
1256 	int status;
1257 
1258 	dfprintk(VFS, "NFS: mknod(%s/%ld), %s\n",
1259 			dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1260 
1261 	if (!new_valid_dev(rdev))
1262 		return -EINVAL;
1263 
1264 	attr.ia_mode = mode;
1265 	attr.ia_valid = ATTR_MODE;
1266 
1267 	lock_kernel();
1268 	nfs_begin_data_update(dir);
1269 	status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
1270 	nfs_end_data_update(dir);
1271 	if (status != 0)
1272 		goto out_err;
1273 	nfs_renew_times(dentry);
1274 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1275 	unlock_kernel();
1276 	return 0;
1277 out_err:
1278 	unlock_kernel();
1279 	d_drop(dentry);
1280 	return status;
1281 }
1282 
1283 /*
1284  * See comments for nfs_proc_create regarding failed operations.
1285  */
1286 static int nfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1287 {
1288 	struct iattr attr;
1289 	int error;
1290 
1291 	dfprintk(VFS, "NFS: mkdir(%s/%ld), %s\n",
1292 			dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1293 
1294 	attr.ia_valid = ATTR_MODE;
1295 	attr.ia_mode = mode | S_IFDIR;
1296 
1297 	lock_kernel();
1298 	nfs_begin_data_update(dir);
1299 	error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
1300 	nfs_end_data_update(dir);
1301 	if (error != 0)
1302 		goto out_err;
1303 	nfs_renew_times(dentry);
1304 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1305 	unlock_kernel();
1306 	return 0;
1307 out_err:
1308 	d_drop(dentry);
1309 	unlock_kernel();
1310 	return error;
1311 }
1312 
1313 static int nfs_rmdir(struct inode *dir, struct dentry *dentry)
1314 {
1315 	int error;
1316 
1317 	dfprintk(VFS, "NFS: rmdir(%s/%ld), %s\n",
1318 			dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1319 
1320 	lock_kernel();
1321 	nfs_begin_data_update(dir);
1322 	error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1323 	/* Ensure the VFS deletes this inode */
1324 	if (error == 0 && dentry->d_inode != NULL)
1325 		clear_nlink(dentry->d_inode);
1326 	nfs_end_data_update(dir);
1327 	unlock_kernel();
1328 
1329 	return error;
1330 }
1331 
1332 static int nfs_sillyrename(struct inode *dir, struct dentry *dentry)
1333 {
1334 	static unsigned int sillycounter;
1335 	const int      i_inosize  = sizeof(dir->i_ino)*2;
1336 	const int      countersize = sizeof(sillycounter)*2;
1337 	const int      slen       = sizeof(".nfs") + i_inosize + countersize - 1;
1338 	char           silly[slen+1];
1339 	struct qstr    qsilly;
1340 	struct dentry *sdentry;
1341 	int            error = -EIO;
1342 
1343 	dfprintk(VFS, "NFS: silly-rename(%s/%s, ct=%d)\n",
1344 		dentry->d_parent->d_name.name, dentry->d_name.name,
1345 		atomic_read(&dentry->d_count));
1346 	nfs_inc_stats(dir, NFSIOS_SILLYRENAME);
1347 
1348 #ifdef NFS_PARANOIA
1349 if (!dentry->d_inode)
1350 printk("NFS: silly-renaming %s/%s, negative dentry??\n",
1351 dentry->d_parent->d_name.name, dentry->d_name.name);
1352 #endif
1353 	/*
1354 	 * We don't allow a dentry to be silly-renamed twice.
1355 	 */
1356 	error = -EBUSY;
1357 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1358 		goto out;
1359 
1360 	sprintf(silly, ".nfs%*.*lx",
1361 		i_inosize, i_inosize, dentry->d_inode->i_ino);
1362 
1363 	/* Return delegation in anticipation of the rename */
1364 	nfs_inode_return_delegation(dentry->d_inode);
1365 
1366 	sdentry = NULL;
1367 	do {
1368 		char *suffix = silly + slen - countersize;
1369 
1370 		dput(sdentry);
1371 		sillycounter++;
1372 		sprintf(suffix, "%*.*x", countersize, countersize, sillycounter);
1373 
1374 		dfprintk(VFS, "NFS: trying to rename %s to %s\n",
1375 				dentry->d_name.name, silly);
1376 
1377 		sdentry = lookup_one_len(silly, dentry->d_parent, slen);
1378 		/*
1379 		 * N.B. Better to return EBUSY here ... it could be
1380 		 * dangerous to delete the file while it's in use.
1381 		 */
1382 		if (IS_ERR(sdentry))
1383 			goto out;
1384 	} while(sdentry->d_inode != NULL); /* need negative lookup */
1385 
1386 	qsilly.name = silly;
1387 	qsilly.len  = strlen(silly);
1388 	nfs_begin_data_update(dir);
1389 	if (dentry->d_inode) {
1390 		nfs_begin_data_update(dentry->d_inode);
1391 		error = NFS_PROTO(dir)->rename(dir, &dentry->d_name,
1392 				dir, &qsilly);
1393 		nfs_mark_for_revalidate(dentry->d_inode);
1394 		nfs_end_data_update(dentry->d_inode);
1395 	} else
1396 		error = NFS_PROTO(dir)->rename(dir, &dentry->d_name,
1397 				dir, &qsilly);
1398 	nfs_end_data_update(dir);
1399 	if (!error) {
1400 		nfs_renew_times(dentry);
1401 		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1402 		d_move(dentry, sdentry);
1403 		error = nfs_async_unlink(dentry);
1404  		/* If we return 0 we don't unlink */
1405 	}
1406 	dput(sdentry);
1407 out:
1408 	return error;
1409 }
1410 
1411 /*
1412  * Remove a file after making sure there are no pending writes,
1413  * and after checking that the file has only one user.
1414  *
1415  * We invalidate the attribute cache and free the inode prior to the operation
1416  * to avoid possible races if the server reuses the inode.
1417  */
1418 static int nfs_safe_remove(struct dentry *dentry)
1419 {
1420 	struct inode *dir = dentry->d_parent->d_inode;
1421 	struct inode *inode = dentry->d_inode;
1422 	int error = -EBUSY;
1423 
1424 	dfprintk(VFS, "NFS: safe_remove(%s/%s)\n",
1425 		dentry->d_parent->d_name.name, dentry->d_name.name);
1426 
1427 	/* If the dentry was sillyrenamed, we simply call d_delete() */
1428 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1429 		error = 0;
1430 		goto out;
1431 	}
1432 
1433 	nfs_begin_data_update(dir);
1434 	if (inode != NULL) {
1435 		nfs_inode_return_delegation(inode);
1436 		nfs_begin_data_update(inode);
1437 		error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1438 		/* The VFS may want to delete this inode */
1439 		if (error == 0)
1440 			drop_nlink(inode);
1441 		nfs_mark_for_revalidate(inode);
1442 		nfs_end_data_update(inode);
1443 	} else
1444 		error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1445 	nfs_end_data_update(dir);
1446 out:
1447 	return error;
1448 }
1449 
1450 /*  We do silly rename. In case sillyrename() returns -EBUSY, the inode
1451  *  belongs to an active ".nfs..." file and we return -EBUSY.
1452  *
1453  *  If sillyrename() returns 0, we do nothing, otherwise we unlink.
1454  */
1455 static int nfs_unlink(struct inode *dir, struct dentry *dentry)
1456 {
1457 	int error;
1458 	int need_rehash = 0;
1459 
1460 	dfprintk(VFS, "NFS: unlink(%s/%ld, %s)\n", dir->i_sb->s_id,
1461 		dir->i_ino, dentry->d_name.name);
1462 
1463 	lock_kernel();
1464 	spin_lock(&dcache_lock);
1465 	spin_lock(&dentry->d_lock);
1466 	if (atomic_read(&dentry->d_count) > 1) {
1467 		spin_unlock(&dentry->d_lock);
1468 		spin_unlock(&dcache_lock);
1469 		/* Start asynchronous writeout of the inode */
1470 		write_inode_now(dentry->d_inode, 0);
1471 		error = nfs_sillyrename(dir, dentry);
1472 		unlock_kernel();
1473 		return error;
1474 	}
1475 	if (!d_unhashed(dentry)) {
1476 		__d_drop(dentry);
1477 		need_rehash = 1;
1478 	}
1479 	spin_unlock(&dentry->d_lock);
1480 	spin_unlock(&dcache_lock);
1481 	error = nfs_safe_remove(dentry);
1482 	if (!error) {
1483 		nfs_renew_times(dentry);
1484 		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1485 	} else if (need_rehash)
1486 		d_rehash(dentry);
1487 	unlock_kernel();
1488 	return error;
1489 }
1490 
1491 /*
1492  * To create a symbolic link, most file systems instantiate a new inode,
1493  * add a page to it containing the path, then write it out to the disk
1494  * using prepare_write/commit_write.
1495  *
1496  * Unfortunately the NFS client can't create the in-core inode first
1497  * because it needs a file handle to create an in-core inode (see
1498  * fs/nfs/inode.c:nfs_fhget).  We only have a file handle *after* the
1499  * symlink request has completed on the server.
1500  *
1501  * So instead we allocate a raw page, copy the symname into it, then do
1502  * the SYMLINK request with the page as the buffer.  If it succeeds, we
1503  * now have a new file handle and can instantiate an in-core NFS inode
1504  * and move the raw page into its mapping.
1505  */
1506 static int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1507 {
1508 	struct pagevec lru_pvec;
1509 	struct page *page;
1510 	char *kaddr;
1511 	struct iattr attr;
1512 	unsigned int pathlen = strlen(symname);
1513 	int error;
1514 
1515 	dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s)\n", dir->i_sb->s_id,
1516 		dir->i_ino, dentry->d_name.name, symname);
1517 
1518 	if (pathlen > PAGE_SIZE)
1519 		return -ENAMETOOLONG;
1520 
1521 	attr.ia_mode = S_IFLNK | S_IRWXUGO;
1522 	attr.ia_valid = ATTR_MODE;
1523 
1524 	lock_kernel();
1525 
1526 	page = alloc_page(GFP_KERNEL);
1527 	if (!page) {
1528 		unlock_kernel();
1529 		return -ENOMEM;
1530 	}
1531 
1532 	kaddr = kmap_atomic(page, KM_USER0);
1533 	memcpy(kaddr, symname, pathlen);
1534 	if (pathlen < PAGE_SIZE)
1535 		memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
1536 	kunmap_atomic(kaddr, KM_USER0);
1537 
1538 	nfs_begin_data_update(dir);
1539 	error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
1540 	nfs_end_data_update(dir);
1541 	if (error != 0) {
1542 		dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s) error %d\n",
1543 			dir->i_sb->s_id, dir->i_ino,
1544 			dentry->d_name.name, symname, error);
1545 		d_drop(dentry);
1546 		__free_page(page);
1547 		unlock_kernel();
1548 		return error;
1549 	}
1550 
1551 	/*
1552 	 * No big deal if we can't add this page to the page cache here.
1553 	 * READLINK will get the missing page from the server if needed.
1554 	 */
1555 	pagevec_init(&lru_pvec, 0);
1556 	if (!add_to_page_cache(page, dentry->d_inode->i_mapping, 0,
1557 							GFP_KERNEL)) {
1558 		pagevec_add(&lru_pvec, page);
1559 		pagevec_lru_add(&lru_pvec);
1560 		SetPageUptodate(page);
1561 		unlock_page(page);
1562 	} else
1563 		__free_page(page);
1564 
1565 	unlock_kernel();
1566 	return 0;
1567 }
1568 
1569 static int
1570 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1571 {
1572 	struct inode *inode = old_dentry->d_inode;
1573 	int error;
1574 
1575 	dfprintk(VFS, "NFS: link(%s/%s -> %s/%s)\n",
1576 		old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1577 		dentry->d_parent->d_name.name, dentry->d_name.name);
1578 
1579 	lock_kernel();
1580 	nfs_begin_data_update(dir);
1581 	nfs_begin_data_update(inode);
1582 	error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
1583 	if (error == 0) {
1584 		atomic_inc(&inode->i_count);
1585 		d_instantiate(dentry, inode);
1586 	}
1587 	nfs_end_data_update(inode);
1588 	nfs_end_data_update(dir);
1589 	unlock_kernel();
1590 	return error;
1591 }
1592 
1593 /*
1594  * RENAME
1595  * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
1596  * different file handle for the same inode after a rename (e.g. when
1597  * moving to a different directory). A fail-safe method to do so would
1598  * be to look up old_dir/old_name, create a link to new_dir/new_name and
1599  * rename the old file using the sillyrename stuff. This way, the original
1600  * file in old_dir will go away when the last process iput()s the inode.
1601  *
1602  * FIXED.
1603  *
1604  * It actually works quite well. One needs to have the possibility for
1605  * at least one ".nfs..." file in each directory the file ever gets
1606  * moved or linked to which happens automagically with the new
1607  * implementation that only depends on the dcache stuff instead of
1608  * using the inode layer
1609  *
1610  * Unfortunately, things are a little more complicated than indicated
1611  * above. For a cross-directory move, we want to make sure we can get
1612  * rid of the old inode after the operation.  This means there must be
1613  * no pending writes (if it's a file), and the use count must be 1.
1614  * If these conditions are met, we can drop the dentries before doing
1615  * the rename.
1616  */
1617 static int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
1618 		      struct inode *new_dir, struct dentry *new_dentry)
1619 {
1620 	struct inode *old_inode = old_dentry->d_inode;
1621 	struct inode *new_inode = new_dentry->d_inode;
1622 	struct dentry *dentry = NULL, *rehash = NULL;
1623 	int error = -EBUSY;
1624 
1625 	/*
1626 	 * To prevent any new references to the target during the rename,
1627 	 * we unhash the dentry and free the inode in advance.
1628 	 */
1629 	lock_kernel();
1630 	if (!d_unhashed(new_dentry)) {
1631 		d_drop(new_dentry);
1632 		rehash = new_dentry;
1633 	}
1634 
1635 	dfprintk(VFS, "NFS: rename(%s/%s -> %s/%s, ct=%d)\n",
1636 		 old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1637 		 new_dentry->d_parent->d_name.name, new_dentry->d_name.name,
1638 		 atomic_read(&new_dentry->d_count));
1639 
1640 	/*
1641 	 * First check whether the target is busy ... we can't
1642 	 * safely do _any_ rename if the target is in use.
1643 	 *
1644 	 * For files, make a copy of the dentry and then do a
1645 	 * silly-rename. If the silly-rename succeeds, the
1646 	 * copied dentry is hashed and becomes the new target.
1647 	 */
1648 	if (!new_inode)
1649 		goto go_ahead;
1650 	if (S_ISDIR(new_inode->i_mode)) {
1651 		error = -EISDIR;
1652 		if (!S_ISDIR(old_inode->i_mode))
1653 			goto out;
1654 	} else if (atomic_read(&new_dentry->d_count) > 2) {
1655 		int err;
1656 		/* copy the target dentry's name */
1657 		dentry = d_alloc(new_dentry->d_parent,
1658 				 &new_dentry->d_name);
1659 		if (!dentry)
1660 			goto out;
1661 
1662 		/* silly-rename the existing target ... */
1663 		err = nfs_sillyrename(new_dir, new_dentry);
1664 		if (!err) {
1665 			new_dentry = rehash = dentry;
1666 			new_inode = NULL;
1667 			/* instantiate the replacement target */
1668 			d_instantiate(new_dentry, NULL);
1669 		} else if (atomic_read(&new_dentry->d_count) > 1) {
1670 		/* dentry still busy? */
1671 #ifdef NFS_PARANOIA
1672 			printk("nfs_rename: target %s/%s busy, d_count=%d\n",
1673 			       new_dentry->d_parent->d_name.name,
1674 			       new_dentry->d_name.name,
1675 			       atomic_read(&new_dentry->d_count));
1676 #endif
1677 			goto out;
1678 		}
1679 	} else
1680 		drop_nlink(new_inode);
1681 
1682 go_ahead:
1683 	/*
1684 	 * ... prune child dentries and writebacks if needed.
1685 	 */
1686 	if (atomic_read(&old_dentry->d_count) > 1) {
1687 		nfs_wb_all(old_inode);
1688 		shrink_dcache_parent(old_dentry);
1689 	}
1690 	nfs_inode_return_delegation(old_inode);
1691 
1692 	if (new_inode != NULL) {
1693 		nfs_inode_return_delegation(new_inode);
1694 		d_delete(new_dentry);
1695 	}
1696 
1697 	nfs_begin_data_update(old_dir);
1698 	nfs_begin_data_update(new_dir);
1699 	nfs_begin_data_update(old_inode);
1700 	error = NFS_PROTO(old_dir)->rename(old_dir, &old_dentry->d_name,
1701 					   new_dir, &new_dentry->d_name);
1702 	nfs_mark_for_revalidate(old_inode);
1703 	nfs_end_data_update(old_inode);
1704 	nfs_end_data_update(new_dir);
1705 	nfs_end_data_update(old_dir);
1706 out:
1707 	if (rehash)
1708 		d_rehash(rehash);
1709 	if (!error) {
1710 		d_move(old_dentry, new_dentry);
1711 		nfs_renew_times(new_dentry);
1712 		nfs_refresh_verifier(new_dentry, nfs_save_change_attribute(new_dir));
1713 	}
1714 
1715 	/* new dentry created? */
1716 	if (dentry)
1717 		dput(dentry);
1718 	unlock_kernel();
1719 	return error;
1720 }
1721 
1722 static DEFINE_SPINLOCK(nfs_access_lru_lock);
1723 static LIST_HEAD(nfs_access_lru_list);
1724 static atomic_long_t nfs_access_nr_entries;
1725 
1726 static void nfs_access_free_entry(struct nfs_access_entry *entry)
1727 {
1728 	put_rpccred(entry->cred);
1729 	kfree(entry);
1730 	smp_mb__before_atomic_dec();
1731 	atomic_long_dec(&nfs_access_nr_entries);
1732 	smp_mb__after_atomic_dec();
1733 }
1734 
1735 int nfs_access_cache_shrinker(int nr_to_scan, gfp_t gfp_mask)
1736 {
1737 	LIST_HEAD(head);
1738 	struct nfs_inode *nfsi;
1739 	struct nfs_access_entry *cache;
1740 
1741 	spin_lock(&nfs_access_lru_lock);
1742 restart:
1743 	list_for_each_entry(nfsi, &nfs_access_lru_list, access_cache_inode_lru) {
1744 		struct inode *inode;
1745 
1746 		if (nr_to_scan-- == 0)
1747 			break;
1748 		inode = igrab(&nfsi->vfs_inode);
1749 		if (inode == NULL)
1750 			continue;
1751 		spin_lock(&inode->i_lock);
1752 		if (list_empty(&nfsi->access_cache_entry_lru))
1753 			goto remove_lru_entry;
1754 		cache = list_entry(nfsi->access_cache_entry_lru.next,
1755 				struct nfs_access_entry, lru);
1756 		list_move(&cache->lru, &head);
1757 		rb_erase(&cache->rb_node, &nfsi->access_cache);
1758 		if (!list_empty(&nfsi->access_cache_entry_lru))
1759 			list_move_tail(&nfsi->access_cache_inode_lru,
1760 					&nfs_access_lru_list);
1761 		else {
1762 remove_lru_entry:
1763 			list_del_init(&nfsi->access_cache_inode_lru);
1764 			clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
1765 		}
1766 		spin_unlock(&inode->i_lock);
1767 		iput(inode);
1768 		goto restart;
1769 	}
1770 	spin_unlock(&nfs_access_lru_lock);
1771 	while (!list_empty(&head)) {
1772 		cache = list_entry(head.next, struct nfs_access_entry, lru);
1773 		list_del(&cache->lru);
1774 		nfs_access_free_entry(cache);
1775 	}
1776 	return (atomic_long_read(&nfs_access_nr_entries) / 100) * sysctl_vfs_cache_pressure;
1777 }
1778 
1779 static void __nfs_access_zap_cache(struct inode *inode)
1780 {
1781 	struct nfs_inode *nfsi = NFS_I(inode);
1782 	struct rb_root *root_node = &nfsi->access_cache;
1783 	struct rb_node *n, *dispose = NULL;
1784 	struct nfs_access_entry *entry;
1785 
1786 	/* Unhook entries from the cache */
1787 	while ((n = rb_first(root_node)) != NULL) {
1788 		entry = rb_entry(n, struct nfs_access_entry, rb_node);
1789 		rb_erase(n, root_node);
1790 		list_del(&entry->lru);
1791 		n->rb_left = dispose;
1792 		dispose = n;
1793 	}
1794 	nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
1795 	spin_unlock(&inode->i_lock);
1796 
1797 	/* Now kill them all! */
1798 	while (dispose != NULL) {
1799 		n = dispose;
1800 		dispose = n->rb_left;
1801 		nfs_access_free_entry(rb_entry(n, struct nfs_access_entry, rb_node));
1802 	}
1803 }
1804 
1805 void nfs_access_zap_cache(struct inode *inode)
1806 {
1807 	/* Remove from global LRU init */
1808 	if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_FLAGS(inode))) {
1809 		spin_lock(&nfs_access_lru_lock);
1810 		list_del_init(&NFS_I(inode)->access_cache_inode_lru);
1811 		spin_unlock(&nfs_access_lru_lock);
1812 	}
1813 
1814 	spin_lock(&inode->i_lock);
1815 	/* This will release the spinlock */
1816 	__nfs_access_zap_cache(inode);
1817 }
1818 
1819 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred)
1820 {
1821 	struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
1822 	struct nfs_access_entry *entry;
1823 
1824 	while (n != NULL) {
1825 		entry = rb_entry(n, struct nfs_access_entry, rb_node);
1826 
1827 		if (cred < entry->cred)
1828 			n = n->rb_left;
1829 		else if (cred > entry->cred)
1830 			n = n->rb_right;
1831 		else
1832 			return entry;
1833 	}
1834 	return NULL;
1835 }
1836 
1837 int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res)
1838 {
1839 	struct nfs_inode *nfsi = NFS_I(inode);
1840 	struct nfs_access_entry *cache;
1841 	int err = -ENOENT;
1842 
1843 	spin_lock(&inode->i_lock);
1844 	if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
1845 		goto out_zap;
1846 	cache = nfs_access_search_rbtree(inode, cred);
1847 	if (cache == NULL)
1848 		goto out;
1849 	if (time_after(jiffies, cache->jiffies + NFS_ATTRTIMEO(inode)))
1850 		goto out_stale;
1851 	res->jiffies = cache->jiffies;
1852 	res->cred = cache->cred;
1853 	res->mask = cache->mask;
1854 	list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
1855 	err = 0;
1856 out:
1857 	spin_unlock(&inode->i_lock);
1858 	return err;
1859 out_stale:
1860 	rb_erase(&cache->rb_node, &nfsi->access_cache);
1861 	list_del(&cache->lru);
1862 	spin_unlock(&inode->i_lock);
1863 	nfs_access_free_entry(cache);
1864 	return -ENOENT;
1865 out_zap:
1866 	/* This will release the spinlock */
1867 	__nfs_access_zap_cache(inode);
1868 	return -ENOENT;
1869 }
1870 
1871 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
1872 {
1873 	struct nfs_inode *nfsi = NFS_I(inode);
1874 	struct rb_root *root_node = &nfsi->access_cache;
1875 	struct rb_node **p = &root_node->rb_node;
1876 	struct rb_node *parent = NULL;
1877 	struct nfs_access_entry *entry;
1878 
1879 	spin_lock(&inode->i_lock);
1880 	while (*p != NULL) {
1881 		parent = *p;
1882 		entry = rb_entry(parent, struct nfs_access_entry, rb_node);
1883 
1884 		if (set->cred < entry->cred)
1885 			p = &parent->rb_left;
1886 		else if (set->cred > entry->cred)
1887 			p = &parent->rb_right;
1888 		else
1889 			goto found;
1890 	}
1891 	rb_link_node(&set->rb_node, parent, p);
1892 	rb_insert_color(&set->rb_node, root_node);
1893 	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
1894 	spin_unlock(&inode->i_lock);
1895 	return;
1896 found:
1897 	rb_replace_node(parent, &set->rb_node, root_node);
1898 	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
1899 	list_del(&entry->lru);
1900 	spin_unlock(&inode->i_lock);
1901 	nfs_access_free_entry(entry);
1902 }
1903 
1904 void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
1905 {
1906 	struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
1907 	if (cache == NULL)
1908 		return;
1909 	RB_CLEAR_NODE(&cache->rb_node);
1910 	cache->jiffies = set->jiffies;
1911 	cache->cred = get_rpccred(set->cred);
1912 	cache->mask = set->mask;
1913 
1914 	nfs_access_add_rbtree(inode, cache);
1915 
1916 	/* Update accounting */
1917 	smp_mb__before_atomic_inc();
1918 	atomic_long_inc(&nfs_access_nr_entries);
1919 	smp_mb__after_atomic_inc();
1920 
1921 	/* Add inode to global LRU list */
1922 	if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_FLAGS(inode))) {
1923 		spin_lock(&nfs_access_lru_lock);
1924 		list_add_tail(&NFS_I(inode)->access_cache_inode_lru, &nfs_access_lru_list);
1925 		spin_unlock(&nfs_access_lru_lock);
1926 	}
1927 }
1928 
1929 static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask)
1930 {
1931 	struct nfs_access_entry cache;
1932 	int status;
1933 
1934 	status = nfs_access_get_cached(inode, cred, &cache);
1935 	if (status == 0)
1936 		goto out;
1937 
1938 	/* Be clever: ask server to check for all possible rights */
1939 	cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ;
1940 	cache.cred = cred;
1941 	cache.jiffies = jiffies;
1942 	status = NFS_PROTO(inode)->access(inode, &cache);
1943 	if (status != 0)
1944 		return status;
1945 	nfs_access_add_cache(inode, &cache);
1946 out:
1947 	if ((cache.mask & mask) == mask)
1948 		return 0;
1949 	return -EACCES;
1950 }
1951 
1952 int nfs_permission(struct inode *inode, int mask, struct nameidata *nd)
1953 {
1954 	struct rpc_cred *cred;
1955 	int res = 0;
1956 
1957 	nfs_inc_stats(inode, NFSIOS_VFSACCESS);
1958 
1959 	if (mask == 0)
1960 		goto out;
1961 	/* Is this sys_access() ? */
1962 	if (nd != NULL && (nd->flags & LOOKUP_ACCESS))
1963 		goto force_lookup;
1964 
1965 	switch (inode->i_mode & S_IFMT) {
1966 		case S_IFLNK:
1967 			goto out;
1968 		case S_IFREG:
1969 			/* NFSv4 has atomic_open... */
1970 			if (nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN)
1971 					&& nd != NULL
1972 					&& (nd->flags & LOOKUP_OPEN))
1973 				goto out;
1974 			break;
1975 		case S_IFDIR:
1976 			/*
1977 			 * Optimize away all write operations, since the server
1978 			 * will check permissions when we perform the op.
1979 			 */
1980 			if ((mask & MAY_WRITE) && !(mask & MAY_READ))
1981 				goto out;
1982 	}
1983 
1984 force_lookup:
1985 	lock_kernel();
1986 
1987 	if (!NFS_PROTO(inode)->access)
1988 		goto out_notsup;
1989 
1990 	cred = rpcauth_lookupcred(NFS_CLIENT(inode)->cl_auth, 0);
1991 	if (!IS_ERR(cred)) {
1992 		res = nfs_do_access(inode, cred, mask);
1993 		put_rpccred(cred);
1994 	} else
1995 		res = PTR_ERR(cred);
1996 	unlock_kernel();
1997 out:
1998 	dfprintk(VFS, "NFS: permission(%s/%ld), mask=0x%x, res=%d\n",
1999 		inode->i_sb->s_id, inode->i_ino, mask, res);
2000 	return res;
2001 out_notsup:
2002 	res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
2003 	if (res == 0)
2004 		res = generic_permission(inode, mask, NULL);
2005 	unlock_kernel();
2006 	goto out;
2007 }
2008 
2009 /*
2010  * Local variables:
2011  *  version-control: t
2012  *  kept-new-versions: 5
2013  * End:
2014  */
2015