xref: /openbmc/linux/fs/nfs/dir.c (revision a8f59497a430e8a93aa9a5b0fb0feefe061195ee)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/nfs/dir.c
4  *
5  *  Copyright (C) 1992  Rick Sladkey
6  *
7  *  nfs directory handling functions
8  *
9  * 10 Apr 1996	Added silly rename for unlink	--okir
10  * 28 Sep 1996	Improved directory cache --okir
11  * 23 Aug 1997  Claus Heine claus@momo.math.rwth-aachen.de
12  *              Re-implemented silly rename for unlink, newly implemented
13  *              silly rename for nfs_rename() following the suggestions
14  *              of Olaf Kirch (okir) found in this file.
15  *              Following Linus comments on my original hack, this version
16  *              depends only on the dcache stuff and doesn't touch the inode
17  *              layer (iput() and friends).
18  *  6 Jun 1999	Cache readdir lookups in the page cache. -DaveM
19  */
20 
21 #include <linux/compat.h>
22 #include <linux/module.h>
23 #include <linux/time.h>
24 #include <linux/errno.h>
25 #include <linux/stat.h>
26 #include <linux/fcntl.h>
27 #include <linux/string.h>
28 #include <linux/kernel.h>
29 #include <linux/slab.h>
30 #include <linux/mm.h>
31 #include <linux/sunrpc/clnt.h>
32 #include <linux/nfs_fs.h>
33 #include <linux/nfs_mount.h>
34 #include <linux/pagemap.h>
35 #include <linux/pagevec.h>
36 #include <linux/namei.h>
37 #include <linux/mount.h>
38 #include <linux/swap.h>
39 #include <linux/sched.h>
40 #include <linux/kmemleak.h>
41 #include <linux/xattr.h>
42 
43 #include "delegation.h"
44 #include "iostat.h"
45 #include "internal.h"
46 #include "fscache.h"
47 
48 #include "nfstrace.h"
49 
50 /* #define NFS_DEBUG_VERBOSE 1 */
51 
52 static int nfs_opendir(struct inode *, struct file *);
53 static int nfs_closedir(struct inode *, struct file *);
54 static int nfs_readdir(struct file *, struct dir_context *);
55 static int nfs_fsync_dir(struct file *, loff_t, loff_t, int);
56 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
57 static void nfs_readdir_clear_array(struct page*);
58 
59 const struct file_operations nfs_dir_operations = {
60 	.llseek		= nfs_llseek_dir,
61 	.read		= generic_read_dir,
62 	.iterate_shared	= nfs_readdir,
63 	.open		= nfs_opendir,
64 	.release	= nfs_closedir,
65 	.fsync		= nfs_fsync_dir,
66 };
67 
68 const struct address_space_operations nfs_dir_aops = {
69 	.freepage = nfs_readdir_clear_array,
70 };
71 
72 static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct inode *dir)
73 {
74 	struct nfs_inode *nfsi = NFS_I(dir);
75 	struct nfs_open_dir_context *ctx;
76 	ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
77 	if (ctx != NULL) {
78 		ctx->duped = 0;
79 		ctx->attr_gencount = nfsi->attr_gencount;
80 		ctx->dir_cookie = 0;
81 		ctx->dup_cookie = 0;
82 		ctx->page_index = 0;
83 		spin_lock(&dir->i_lock);
84 		if (list_empty(&nfsi->open_files) &&
85 		    (nfsi->cache_validity & NFS_INO_DATA_INVAL_DEFER))
86 			nfs_set_cache_invalid(dir,
87 					      NFS_INO_INVALID_DATA |
88 						      NFS_INO_REVAL_FORCED);
89 		list_add(&ctx->list, &nfsi->open_files);
90 		clear_bit(NFS_INO_FORCE_READDIR, &nfsi->flags);
91 		spin_unlock(&dir->i_lock);
92 		return ctx;
93 	}
94 	return  ERR_PTR(-ENOMEM);
95 }
96 
97 static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx)
98 {
99 	spin_lock(&dir->i_lock);
100 	list_del(&ctx->list);
101 	spin_unlock(&dir->i_lock);
102 	kfree(ctx);
103 }
104 
105 /*
106  * Open file
107  */
108 static int
109 nfs_opendir(struct inode *inode, struct file *filp)
110 {
111 	int res = 0;
112 	struct nfs_open_dir_context *ctx;
113 
114 	dfprintk(FILE, "NFS: open dir(%pD2)\n", filp);
115 
116 	nfs_inc_stats(inode, NFSIOS_VFSOPEN);
117 
118 	ctx = alloc_nfs_open_dir_context(inode);
119 	if (IS_ERR(ctx)) {
120 		res = PTR_ERR(ctx);
121 		goto out;
122 	}
123 	filp->private_data = ctx;
124 out:
125 	return res;
126 }
127 
128 static int
129 nfs_closedir(struct inode *inode, struct file *filp)
130 {
131 	put_nfs_open_dir_context(file_inode(filp), filp->private_data);
132 	return 0;
133 }
134 
135 struct nfs_cache_array_entry {
136 	u64 cookie;
137 	u64 ino;
138 	const char *name;
139 	unsigned int name_len;
140 	unsigned char d_type;
141 };
142 
143 struct nfs_cache_array {
144 	u64 last_cookie;
145 	unsigned int size;
146 	unsigned char page_full : 1,
147 		      page_is_eof : 1,
148 		      cookies_are_ordered : 1;
149 	struct nfs_cache_array_entry array[];
150 };
151 
152 struct nfs_readdir_descriptor {
153 	struct file	*file;
154 	struct page	*page;
155 	struct dir_context *ctx;
156 	pgoff_t		page_index;
157 	u64		dir_cookie;
158 	u64		last_cookie;
159 	u64		dup_cookie;
160 	loff_t		current_index;
161 	loff_t		prev_index;
162 
163 	__be32		verf[NFS_DIR_VERIFIER_SIZE];
164 	unsigned long	dir_verifier;
165 	unsigned long	timestamp;
166 	unsigned long	gencount;
167 	unsigned long	attr_gencount;
168 	unsigned int	cache_entry_index;
169 	signed char duped;
170 	bool plus;
171 	bool eof;
172 };
173 
174 static void nfs_readdir_array_init(struct nfs_cache_array *array)
175 {
176 	memset(array, 0, sizeof(struct nfs_cache_array));
177 }
178 
179 static void nfs_readdir_page_init_array(struct page *page, u64 last_cookie)
180 {
181 	struct nfs_cache_array *array;
182 
183 	array = kmap_atomic(page);
184 	nfs_readdir_array_init(array);
185 	array->last_cookie = last_cookie;
186 	array->cookies_are_ordered = 1;
187 	kunmap_atomic(array);
188 }
189 
190 /*
191  * we are freeing strings created by nfs_add_to_readdir_array()
192  */
193 static
194 void nfs_readdir_clear_array(struct page *page)
195 {
196 	struct nfs_cache_array *array;
197 	int i;
198 
199 	array = kmap_atomic(page);
200 	for (i = 0; i < array->size; i++)
201 		kfree(array->array[i].name);
202 	nfs_readdir_array_init(array);
203 	kunmap_atomic(array);
204 }
205 
206 static struct page *
207 nfs_readdir_page_array_alloc(u64 last_cookie, gfp_t gfp_flags)
208 {
209 	struct page *page = alloc_page(gfp_flags);
210 	if (page)
211 		nfs_readdir_page_init_array(page, last_cookie);
212 	return page;
213 }
214 
215 static void nfs_readdir_page_array_free(struct page *page)
216 {
217 	if (page) {
218 		nfs_readdir_clear_array(page);
219 		put_page(page);
220 	}
221 }
222 
223 static void nfs_readdir_array_set_eof(struct nfs_cache_array *array)
224 {
225 	array->page_is_eof = 1;
226 	array->page_full = 1;
227 }
228 
229 static bool nfs_readdir_array_is_full(struct nfs_cache_array *array)
230 {
231 	return array->page_full;
232 }
233 
234 /*
235  * the caller is responsible for freeing qstr.name
236  * when called by nfs_readdir_add_to_array, the strings will be freed in
237  * nfs_clear_readdir_array()
238  */
239 static const char *nfs_readdir_copy_name(const char *name, unsigned int len)
240 {
241 	const char *ret = kmemdup_nul(name, len, GFP_KERNEL);
242 
243 	/*
244 	 * Avoid a kmemleak false positive. The pointer to the name is stored
245 	 * in a page cache page which kmemleak does not scan.
246 	 */
247 	if (ret != NULL)
248 		kmemleak_not_leak(ret);
249 	return ret;
250 }
251 
252 /*
253  * Check that the next array entry lies entirely within the page bounds
254  */
255 static int nfs_readdir_array_can_expand(struct nfs_cache_array *array)
256 {
257 	struct nfs_cache_array_entry *cache_entry;
258 
259 	if (array->page_full)
260 		return -ENOSPC;
261 	cache_entry = &array->array[array->size + 1];
262 	if ((char *)cache_entry - (char *)array > PAGE_SIZE) {
263 		array->page_full = 1;
264 		return -ENOSPC;
265 	}
266 	return 0;
267 }
268 
269 static
270 int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page)
271 {
272 	struct nfs_cache_array *array;
273 	struct nfs_cache_array_entry *cache_entry;
274 	const char *name;
275 	int ret;
276 
277 	name = nfs_readdir_copy_name(entry->name, entry->len);
278 	if (!name)
279 		return -ENOMEM;
280 
281 	array = kmap_atomic(page);
282 	ret = nfs_readdir_array_can_expand(array);
283 	if (ret) {
284 		kfree(name);
285 		goto out;
286 	}
287 
288 	cache_entry = &array->array[array->size];
289 	cache_entry->cookie = entry->prev_cookie;
290 	cache_entry->ino = entry->ino;
291 	cache_entry->d_type = entry->d_type;
292 	cache_entry->name_len = entry->len;
293 	cache_entry->name = name;
294 	array->last_cookie = entry->cookie;
295 	if (array->last_cookie <= cache_entry->cookie)
296 		array->cookies_are_ordered = 0;
297 	array->size++;
298 	if (entry->eof != 0)
299 		nfs_readdir_array_set_eof(array);
300 out:
301 	kunmap_atomic(array);
302 	return ret;
303 }
304 
305 static struct page *nfs_readdir_page_get_locked(struct address_space *mapping,
306 						pgoff_t index, u64 last_cookie)
307 {
308 	struct page *page;
309 
310 	page = grab_cache_page(mapping, index);
311 	if (page && !PageUptodate(page)) {
312 		nfs_readdir_page_init_array(page, last_cookie);
313 		if (invalidate_inode_pages2_range(mapping, index + 1, -1) < 0)
314 			nfs_zap_mapping(mapping->host, mapping);
315 		SetPageUptodate(page);
316 	}
317 
318 	return page;
319 }
320 
321 static u64 nfs_readdir_page_last_cookie(struct page *page)
322 {
323 	struct nfs_cache_array *array;
324 	u64 ret;
325 
326 	array = kmap_atomic(page);
327 	ret = array->last_cookie;
328 	kunmap_atomic(array);
329 	return ret;
330 }
331 
332 static bool nfs_readdir_page_needs_filling(struct page *page)
333 {
334 	struct nfs_cache_array *array;
335 	bool ret;
336 
337 	array = kmap_atomic(page);
338 	ret = !nfs_readdir_array_is_full(array);
339 	kunmap_atomic(array);
340 	return ret;
341 }
342 
343 static void nfs_readdir_page_set_eof(struct page *page)
344 {
345 	struct nfs_cache_array *array;
346 
347 	array = kmap_atomic(page);
348 	nfs_readdir_array_set_eof(array);
349 	kunmap_atomic(array);
350 }
351 
352 static void nfs_readdir_page_unlock_and_put(struct page *page)
353 {
354 	unlock_page(page);
355 	put_page(page);
356 }
357 
358 static struct page *nfs_readdir_page_get_next(struct address_space *mapping,
359 					      pgoff_t index, u64 cookie)
360 {
361 	struct page *page;
362 
363 	page = nfs_readdir_page_get_locked(mapping, index, cookie);
364 	if (page) {
365 		if (nfs_readdir_page_last_cookie(page) == cookie)
366 			return page;
367 		nfs_readdir_page_unlock_and_put(page);
368 	}
369 	return NULL;
370 }
371 
372 static inline
373 int is_32bit_api(void)
374 {
375 #ifdef CONFIG_COMPAT
376 	return in_compat_syscall();
377 #else
378 	return (BITS_PER_LONG == 32);
379 #endif
380 }
381 
382 static
383 bool nfs_readdir_use_cookie(const struct file *filp)
384 {
385 	if ((filp->f_mode & FMODE_32BITHASH) ||
386 	    (!(filp->f_mode & FMODE_64BITHASH) && is_32bit_api()))
387 		return false;
388 	return true;
389 }
390 
391 static int nfs_readdir_search_for_pos(struct nfs_cache_array *array,
392 				      struct nfs_readdir_descriptor *desc)
393 {
394 	loff_t diff = desc->ctx->pos - desc->current_index;
395 	unsigned int index;
396 
397 	if (diff < 0)
398 		goto out_eof;
399 	if (diff >= array->size) {
400 		if (array->page_is_eof)
401 			goto out_eof;
402 		return -EAGAIN;
403 	}
404 
405 	index = (unsigned int)diff;
406 	desc->dir_cookie = array->array[index].cookie;
407 	desc->cache_entry_index = index;
408 	return 0;
409 out_eof:
410 	desc->eof = true;
411 	return -EBADCOOKIE;
412 }
413 
414 static bool
415 nfs_readdir_inode_mapping_valid(struct nfs_inode *nfsi)
416 {
417 	if (nfsi->cache_validity & (NFS_INO_INVALID_CHANGE |
418 				    NFS_INO_INVALID_DATA))
419 		return false;
420 	smp_rmb();
421 	return !test_bit(NFS_INO_INVALIDATING, &nfsi->flags);
422 }
423 
424 static bool nfs_readdir_array_cookie_in_range(struct nfs_cache_array *array,
425 					      u64 cookie)
426 {
427 	if (!array->cookies_are_ordered)
428 		return true;
429 	/* Optimisation for monotonically increasing cookies */
430 	if (cookie >= array->last_cookie)
431 		return false;
432 	if (array->size && cookie < array->array[0].cookie)
433 		return false;
434 	return true;
435 }
436 
437 static int nfs_readdir_search_for_cookie(struct nfs_cache_array *array,
438 					 struct nfs_readdir_descriptor *desc)
439 {
440 	int i;
441 	loff_t new_pos;
442 	int status = -EAGAIN;
443 
444 	if (!nfs_readdir_array_cookie_in_range(array, desc->dir_cookie))
445 		goto check_eof;
446 
447 	for (i = 0; i < array->size; i++) {
448 		if (array->array[i].cookie == desc->dir_cookie) {
449 			struct nfs_inode *nfsi = NFS_I(file_inode(desc->file));
450 
451 			new_pos = desc->current_index + i;
452 			if (desc->attr_gencount != nfsi->attr_gencount ||
453 			    !nfs_readdir_inode_mapping_valid(nfsi)) {
454 				desc->duped = 0;
455 				desc->attr_gencount = nfsi->attr_gencount;
456 			} else if (new_pos < desc->prev_index) {
457 				if (desc->duped > 0
458 				    && desc->dup_cookie == desc->dir_cookie) {
459 					if (printk_ratelimit()) {
460 						pr_notice("NFS: directory %pD2 contains a readdir loop."
461 								"Please contact your server vendor.  "
462 								"The file: %s has duplicate cookie %llu\n",
463 								desc->file, array->array[i].name, desc->dir_cookie);
464 					}
465 					status = -ELOOP;
466 					goto out;
467 				}
468 				desc->dup_cookie = desc->dir_cookie;
469 				desc->duped = -1;
470 			}
471 			if (nfs_readdir_use_cookie(desc->file))
472 				desc->ctx->pos = desc->dir_cookie;
473 			else
474 				desc->ctx->pos = new_pos;
475 			desc->prev_index = new_pos;
476 			desc->cache_entry_index = i;
477 			return 0;
478 		}
479 	}
480 check_eof:
481 	if (array->page_is_eof) {
482 		status = -EBADCOOKIE;
483 		if (desc->dir_cookie == array->last_cookie)
484 			desc->eof = true;
485 	}
486 out:
487 	return status;
488 }
489 
490 static int nfs_readdir_search_array(struct nfs_readdir_descriptor *desc)
491 {
492 	struct nfs_cache_array *array;
493 	int status;
494 
495 	array = kmap_atomic(desc->page);
496 
497 	if (desc->dir_cookie == 0)
498 		status = nfs_readdir_search_for_pos(array, desc);
499 	else
500 		status = nfs_readdir_search_for_cookie(array, desc);
501 
502 	if (status == -EAGAIN) {
503 		desc->last_cookie = array->last_cookie;
504 		desc->current_index += array->size;
505 		desc->page_index++;
506 	}
507 	kunmap_atomic(array);
508 	return status;
509 }
510 
511 /* Fill a page with xdr information before transferring to the cache page */
512 static int nfs_readdir_xdr_filler(struct nfs_readdir_descriptor *desc,
513 				  __be32 *verf, u64 cookie,
514 				  struct page **pages, size_t bufsize,
515 				  __be32 *verf_res)
516 {
517 	struct inode *inode = file_inode(desc->file);
518 	struct nfs_readdir_arg arg = {
519 		.dentry = file_dentry(desc->file),
520 		.cred = desc->file->f_cred,
521 		.verf = verf,
522 		.cookie = cookie,
523 		.pages = pages,
524 		.page_len = bufsize,
525 		.plus = desc->plus,
526 	};
527 	struct nfs_readdir_res res = {
528 		.verf = verf_res,
529 	};
530 	unsigned long	timestamp, gencount;
531 	int		error;
532 
533  again:
534 	timestamp = jiffies;
535 	gencount = nfs_inc_attr_generation_counter();
536 	desc->dir_verifier = nfs_save_change_attribute(inode);
537 	error = NFS_PROTO(inode)->readdir(&arg, &res);
538 	if (error < 0) {
539 		/* We requested READDIRPLUS, but the server doesn't grok it */
540 		if (error == -ENOTSUPP && desc->plus) {
541 			NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
542 			clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
543 			desc->plus = arg.plus = false;
544 			goto again;
545 		}
546 		goto error;
547 	}
548 	desc->timestamp = timestamp;
549 	desc->gencount = gencount;
550 error:
551 	return error;
552 }
553 
554 static int xdr_decode(struct nfs_readdir_descriptor *desc,
555 		      struct nfs_entry *entry, struct xdr_stream *xdr)
556 {
557 	struct inode *inode = file_inode(desc->file);
558 	int error;
559 
560 	error = NFS_PROTO(inode)->decode_dirent(xdr, entry, desc->plus);
561 	if (error)
562 		return error;
563 	entry->fattr->time_start = desc->timestamp;
564 	entry->fattr->gencount = desc->gencount;
565 	return 0;
566 }
567 
568 /* Match file and dirent using either filehandle or fileid
569  * Note: caller is responsible for checking the fsid
570  */
571 static
572 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
573 {
574 	struct inode *inode;
575 	struct nfs_inode *nfsi;
576 
577 	if (d_really_is_negative(dentry))
578 		return 0;
579 
580 	inode = d_inode(dentry);
581 	if (is_bad_inode(inode) || NFS_STALE(inode))
582 		return 0;
583 
584 	nfsi = NFS_I(inode);
585 	if (entry->fattr->fileid != nfsi->fileid)
586 		return 0;
587 	if (entry->fh->size && nfs_compare_fh(entry->fh, &nfsi->fh) != 0)
588 		return 0;
589 	return 1;
590 }
591 
592 static
593 bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx)
594 {
595 	if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS))
596 		return false;
597 	if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags))
598 		return true;
599 	if (ctx->pos == 0)
600 		return true;
601 	return false;
602 }
603 
604 /*
605  * This function is called by the lookup and getattr code to request the
606  * use of readdirplus to accelerate any future lookups in the same
607  * directory.
608  */
609 void nfs_advise_use_readdirplus(struct inode *dir)
610 {
611 	struct nfs_inode *nfsi = NFS_I(dir);
612 
613 	if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
614 	    !list_empty(&nfsi->open_files))
615 		set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags);
616 }
617 
618 /*
619  * This function is mainly for use by nfs_getattr().
620  *
621  * If this is an 'ls -l', we want to force use of readdirplus.
622  * Do this by checking if there is an active file descriptor
623  * and calling nfs_advise_use_readdirplus, then forcing a
624  * cache flush.
625  */
626 void nfs_force_use_readdirplus(struct inode *dir)
627 {
628 	struct nfs_inode *nfsi = NFS_I(dir);
629 
630 	if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
631 	    !list_empty(&nfsi->open_files)) {
632 		set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags);
633 		set_bit(NFS_INO_FORCE_READDIR, &nfsi->flags);
634 	}
635 }
636 
637 static
638 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry,
639 		unsigned long dir_verifier)
640 {
641 	struct qstr filename = QSTR_INIT(entry->name, entry->len);
642 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
643 	struct dentry *dentry;
644 	struct dentry *alias;
645 	struct inode *inode;
646 	int status;
647 
648 	if (!(entry->fattr->valid & NFS_ATTR_FATTR_FILEID))
649 		return;
650 	if (!(entry->fattr->valid & NFS_ATTR_FATTR_FSID))
651 		return;
652 	if (filename.len == 0)
653 		return;
654 	/* Validate that the name doesn't contain any illegal '\0' */
655 	if (strnlen(filename.name, filename.len) != filename.len)
656 		return;
657 	/* ...or '/' */
658 	if (strnchr(filename.name, filename.len, '/'))
659 		return;
660 	if (filename.name[0] == '.') {
661 		if (filename.len == 1)
662 			return;
663 		if (filename.len == 2 && filename.name[1] == '.')
664 			return;
665 	}
666 	filename.hash = full_name_hash(parent, filename.name, filename.len);
667 
668 	dentry = d_lookup(parent, &filename);
669 again:
670 	if (!dentry) {
671 		dentry = d_alloc_parallel(parent, &filename, &wq);
672 		if (IS_ERR(dentry))
673 			return;
674 	}
675 	if (!d_in_lookup(dentry)) {
676 		/* Is there a mountpoint here? If so, just exit */
677 		if (!nfs_fsid_equal(&NFS_SB(dentry->d_sb)->fsid,
678 					&entry->fattr->fsid))
679 			goto out;
680 		if (nfs_same_file(dentry, entry)) {
681 			if (!entry->fh->size)
682 				goto out;
683 			nfs_set_verifier(dentry, dir_verifier);
684 			status = nfs_refresh_inode(d_inode(dentry), entry->fattr);
685 			if (!status)
686 				nfs_setsecurity(d_inode(dentry), entry->fattr);
687 			goto out;
688 		} else {
689 			d_invalidate(dentry);
690 			dput(dentry);
691 			dentry = NULL;
692 			goto again;
693 		}
694 	}
695 	if (!entry->fh->size) {
696 		d_lookup_done(dentry);
697 		goto out;
698 	}
699 
700 	inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr);
701 	alias = d_splice_alias(inode, dentry);
702 	d_lookup_done(dentry);
703 	if (alias) {
704 		if (IS_ERR(alias))
705 			goto out;
706 		dput(dentry);
707 		dentry = alias;
708 	}
709 	nfs_set_verifier(dentry, dir_verifier);
710 out:
711 	dput(dentry);
712 }
713 
714 /* Perform conversion from xdr to cache array */
715 static int nfs_readdir_page_filler(struct nfs_readdir_descriptor *desc,
716 				   struct nfs_entry *entry,
717 				   struct page **xdr_pages,
718 				   unsigned int buflen,
719 				   struct page **arrays,
720 				   size_t narrays)
721 {
722 	struct address_space *mapping = desc->file->f_mapping;
723 	struct xdr_stream stream;
724 	struct xdr_buf buf;
725 	struct page *scratch, *new, *page = *arrays;
726 	int status;
727 
728 	scratch = alloc_page(GFP_KERNEL);
729 	if (scratch == NULL)
730 		return -ENOMEM;
731 
732 	xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen);
733 	xdr_set_scratch_page(&stream, scratch);
734 
735 	do {
736 		if (entry->fattr->label)
737 			entry->fattr->label->len = NFS4_MAXLABELLEN;
738 
739 		status = xdr_decode(desc, entry, &stream);
740 		if (status != 0)
741 			break;
742 
743 		if (desc->plus)
744 			nfs_prime_dcache(file_dentry(desc->file), entry,
745 					desc->dir_verifier);
746 
747 		status = nfs_readdir_add_to_array(entry, page);
748 		if (status != -ENOSPC)
749 			continue;
750 
751 		if (page->mapping != mapping) {
752 			if (!--narrays)
753 				break;
754 			new = nfs_readdir_page_array_alloc(entry->prev_cookie,
755 							   GFP_KERNEL);
756 			if (!new)
757 				break;
758 			arrays++;
759 			*arrays = page = new;
760 		} else {
761 			new = nfs_readdir_page_get_next(mapping,
762 							page->index + 1,
763 							entry->prev_cookie);
764 			if (!new)
765 				break;
766 			if (page != *arrays)
767 				nfs_readdir_page_unlock_and_put(page);
768 			page = new;
769 		}
770 		status = nfs_readdir_add_to_array(entry, page);
771 	} while (!status && !entry->eof);
772 
773 	switch (status) {
774 	case -EBADCOOKIE:
775 		if (entry->eof) {
776 			nfs_readdir_page_set_eof(page);
777 			status = 0;
778 		}
779 		break;
780 	case -ENOSPC:
781 	case -EAGAIN:
782 		status = 0;
783 		break;
784 	}
785 
786 	if (page != *arrays)
787 		nfs_readdir_page_unlock_and_put(page);
788 
789 	put_page(scratch);
790 	return status;
791 }
792 
793 static void nfs_readdir_free_pages(struct page **pages, size_t npages)
794 {
795 	while (npages--)
796 		put_page(pages[npages]);
797 	kfree(pages);
798 }
799 
800 /*
801  * nfs_readdir_alloc_pages() will allocate pages that must be freed with a call
802  * to nfs_readdir_free_pages()
803  */
804 static struct page **nfs_readdir_alloc_pages(size_t npages)
805 {
806 	struct page **pages;
807 	size_t i;
808 
809 	pages = kmalloc_array(npages, sizeof(*pages), GFP_KERNEL);
810 	if (!pages)
811 		return NULL;
812 	for (i = 0; i < npages; i++) {
813 		struct page *page = alloc_page(GFP_KERNEL);
814 		if (page == NULL)
815 			goto out_freepages;
816 		pages[i] = page;
817 	}
818 	return pages;
819 
820 out_freepages:
821 	nfs_readdir_free_pages(pages, i);
822 	return NULL;
823 }
824 
825 static int nfs_readdir_xdr_to_array(struct nfs_readdir_descriptor *desc,
826 				    __be32 *verf_arg, __be32 *verf_res,
827 				    struct page **arrays, size_t narrays)
828 {
829 	struct page **pages;
830 	struct page *page = *arrays;
831 	struct nfs_entry *entry;
832 	size_t array_size;
833 	struct inode *inode = file_inode(desc->file);
834 	size_t dtsize = NFS_SERVER(inode)->dtsize;
835 	int status = -ENOMEM;
836 
837 	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
838 	if (!entry)
839 		return -ENOMEM;
840 	entry->cookie = nfs_readdir_page_last_cookie(page);
841 	entry->fh = nfs_alloc_fhandle();
842 	entry->fattr = nfs_alloc_fattr_with_label(NFS_SERVER(inode));
843 	entry->server = NFS_SERVER(inode);
844 	if (entry->fh == NULL || entry->fattr == NULL)
845 		goto out;
846 
847 	array_size = (dtsize + PAGE_SIZE - 1) >> PAGE_SHIFT;
848 	pages = nfs_readdir_alloc_pages(array_size);
849 	if (!pages)
850 		goto out;
851 
852 	do {
853 		unsigned int pglen;
854 		status = nfs_readdir_xdr_filler(desc, verf_arg, entry->cookie,
855 						pages, dtsize,
856 						verf_res);
857 		if (status < 0)
858 			break;
859 
860 		pglen = status;
861 		if (pglen == 0) {
862 			nfs_readdir_page_set_eof(page);
863 			break;
864 		}
865 
866 		verf_arg = verf_res;
867 
868 		status = nfs_readdir_page_filler(desc, entry, pages, pglen,
869 						 arrays, narrays);
870 	} while (!status && nfs_readdir_page_needs_filling(page));
871 
872 	nfs_readdir_free_pages(pages, array_size);
873 out:
874 	nfs_free_fattr(entry->fattr);
875 	nfs_free_fhandle(entry->fh);
876 	kfree(entry);
877 	return status;
878 }
879 
880 static void nfs_readdir_page_put(struct nfs_readdir_descriptor *desc)
881 {
882 	put_page(desc->page);
883 	desc->page = NULL;
884 }
885 
886 static void
887 nfs_readdir_page_unlock_and_put_cached(struct nfs_readdir_descriptor *desc)
888 {
889 	unlock_page(desc->page);
890 	nfs_readdir_page_put(desc);
891 }
892 
893 static struct page *
894 nfs_readdir_page_get_cached(struct nfs_readdir_descriptor *desc)
895 {
896 	return nfs_readdir_page_get_locked(desc->file->f_mapping,
897 					   desc->page_index,
898 					   desc->last_cookie);
899 }
900 
901 /*
902  * Returns 0 if desc->dir_cookie was found on page desc->page_index
903  * and locks the page to prevent removal from the page cache.
904  */
905 static int find_and_lock_cache_page(struct nfs_readdir_descriptor *desc)
906 {
907 	struct inode *inode = file_inode(desc->file);
908 	struct nfs_inode *nfsi = NFS_I(inode);
909 	__be32 verf[NFS_DIR_VERIFIER_SIZE];
910 	int res;
911 
912 	desc->page = nfs_readdir_page_get_cached(desc);
913 	if (!desc->page)
914 		return -ENOMEM;
915 	if (nfs_readdir_page_needs_filling(desc->page)) {
916 		res = nfs_readdir_xdr_to_array(desc, nfsi->cookieverf, verf,
917 					       &desc->page, 1);
918 		if (res < 0) {
919 			nfs_readdir_page_unlock_and_put_cached(desc);
920 			if (res == -EBADCOOKIE || res == -ENOTSYNC) {
921 				invalidate_inode_pages2(desc->file->f_mapping);
922 				desc->page_index = 0;
923 				return -EAGAIN;
924 			}
925 			return res;
926 		}
927 		/*
928 		 * Set the cookie verifier if the page cache was empty
929 		 */
930 		if (desc->page_index == 0)
931 			memcpy(nfsi->cookieverf, verf,
932 			       sizeof(nfsi->cookieverf));
933 	}
934 	res = nfs_readdir_search_array(desc);
935 	if (res == 0)
936 		return 0;
937 	nfs_readdir_page_unlock_and_put_cached(desc);
938 	return res;
939 }
940 
941 static bool nfs_readdir_dont_search_cache(struct nfs_readdir_descriptor *desc)
942 {
943 	struct address_space *mapping = desc->file->f_mapping;
944 	struct inode *dir = file_inode(desc->file);
945 	unsigned int dtsize = NFS_SERVER(dir)->dtsize;
946 	loff_t size = i_size_read(dir);
947 
948 	/*
949 	 * Default to uncached readdir if the page cache is empty, and
950 	 * we're looking for a non-zero cookie in a large directory.
951 	 */
952 	return desc->dir_cookie != 0 && mapping->nrpages == 0 && size > dtsize;
953 }
954 
955 /* Search for desc->dir_cookie from the beginning of the page cache */
956 static int readdir_search_pagecache(struct nfs_readdir_descriptor *desc)
957 {
958 	int res;
959 
960 	if (nfs_readdir_dont_search_cache(desc))
961 		return -EBADCOOKIE;
962 
963 	do {
964 		if (desc->page_index == 0) {
965 			desc->current_index = 0;
966 			desc->prev_index = 0;
967 			desc->last_cookie = 0;
968 		}
969 		res = find_and_lock_cache_page(desc);
970 	} while (res == -EAGAIN);
971 	return res;
972 }
973 
974 /*
975  * Once we've found the start of the dirent within a page: fill 'er up...
976  */
977 static void nfs_do_filldir(struct nfs_readdir_descriptor *desc,
978 			   const __be32 *verf)
979 {
980 	struct file	*file = desc->file;
981 	struct nfs_cache_array *array;
982 	unsigned int i = 0;
983 
984 	array = kmap(desc->page);
985 	for (i = desc->cache_entry_index; i < array->size; i++) {
986 		struct nfs_cache_array_entry *ent;
987 
988 		ent = &array->array[i];
989 		if (!dir_emit(desc->ctx, ent->name, ent->name_len,
990 		    nfs_compat_user_ino64(ent->ino), ent->d_type)) {
991 			desc->eof = true;
992 			break;
993 		}
994 		memcpy(desc->verf, verf, sizeof(desc->verf));
995 		if (i < (array->size-1))
996 			desc->dir_cookie = array->array[i+1].cookie;
997 		else
998 			desc->dir_cookie = array->last_cookie;
999 		if (nfs_readdir_use_cookie(file))
1000 			desc->ctx->pos = desc->dir_cookie;
1001 		else
1002 			desc->ctx->pos++;
1003 		if (desc->duped != 0)
1004 			desc->duped = 1;
1005 	}
1006 	if (array->page_is_eof)
1007 		desc->eof = true;
1008 
1009 	kunmap(desc->page);
1010 	dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %llu\n",
1011 			(unsigned long long)desc->dir_cookie);
1012 }
1013 
1014 /*
1015  * If we cannot find a cookie in our cache, we suspect that this is
1016  * because it points to a deleted file, so we ask the server to return
1017  * whatever it thinks is the next entry. We then feed this to filldir.
1018  * If all goes well, we should then be able to find our way round the
1019  * cache on the next call to readdir_search_pagecache();
1020  *
1021  * NOTE: we cannot add the anonymous page to the pagecache because
1022  *	 the data it contains might not be page aligned. Besides,
1023  *	 we should already have a complete representation of the
1024  *	 directory in the page cache by the time we get here.
1025  */
1026 static int uncached_readdir(struct nfs_readdir_descriptor *desc)
1027 {
1028 	struct page	**arrays;
1029 	size_t		i, sz = 512;
1030 	__be32		verf[NFS_DIR_VERIFIER_SIZE];
1031 	int		status = -ENOMEM;
1032 
1033 	dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %llu\n",
1034 			(unsigned long long)desc->dir_cookie);
1035 
1036 	arrays = kcalloc(sz, sizeof(*arrays), GFP_KERNEL);
1037 	if (!arrays)
1038 		goto out;
1039 	arrays[0] = nfs_readdir_page_array_alloc(desc->dir_cookie, GFP_KERNEL);
1040 	if (!arrays[0])
1041 		goto out;
1042 
1043 	desc->page_index = 0;
1044 	desc->last_cookie = desc->dir_cookie;
1045 	desc->duped = 0;
1046 
1047 	status = nfs_readdir_xdr_to_array(desc, desc->verf, verf, arrays, sz);
1048 
1049 	for (i = 0; !desc->eof && i < sz && arrays[i]; i++) {
1050 		desc->page = arrays[i];
1051 		nfs_do_filldir(desc, verf);
1052 	}
1053 	desc->page = NULL;
1054 
1055 
1056 	for (i = 0; i < sz && arrays[i]; i++)
1057 		nfs_readdir_page_array_free(arrays[i]);
1058 out:
1059 	kfree(arrays);
1060 	dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __func__, status);
1061 	return status;
1062 }
1063 
1064 /* The file offset position represents the dirent entry number.  A
1065    last cookie cache takes care of the common case of reading the
1066    whole directory.
1067  */
1068 static int nfs_readdir(struct file *file, struct dir_context *ctx)
1069 {
1070 	struct dentry	*dentry = file_dentry(file);
1071 	struct inode	*inode = d_inode(dentry);
1072 	struct nfs_inode *nfsi = NFS_I(inode);
1073 	struct nfs_open_dir_context *dir_ctx = file->private_data;
1074 	struct nfs_readdir_descriptor *desc;
1075 	pgoff_t page_index;
1076 	int res;
1077 
1078 	dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n",
1079 			file, (long long)ctx->pos);
1080 	nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
1081 
1082 	/*
1083 	 * ctx->pos points to the dirent entry number.
1084 	 * *desc->dir_cookie has the cookie for the next entry. We have
1085 	 * to either find the entry with the appropriate number or
1086 	 * revalidate the cookie.
1087 	 */
1088 	if (ctx->pos == 0 || nfs_attribute_cache_expired(inode)) {
1089 		res = nfs_revalidate_mapping(inode, file->f_mapping);
1090 		if (res < 0)
1091 			goto out;
1092 	}
1093 
1094 	res = -ENOMEM;
1095 	desc = kzalloc(sizeof(*desc), GFP_KERNEL);
1096 	if (!desc)
1097 		goto out;
1098 	desc->file = file;
1099 	desc->ctx = ctx;
1100 	desc->plus = nfs_use_readdirplus(inode, ctx);
1101 
1102 	spin_lock(&file->f_lock);
1103 	desc->dir_cookie = dir_ctx->dir_cookie;
1104 	desc->dup_cookie = dir_ctx->dup_cookie;
1105 	desc->duped = dir_ctx->duped;
1106 	page_index = dir_ctx->page_index;
1107 	desc->attr_gencount = dir_ctx->attr_gencount;
1108 	memcpy(desc->verf, dir_ctx->verf, sizeof(desc->verf));
1109 	spin_unlock(&file->f_lock);
1110 
1111 	if (test_and_clear_bit(NFS_INO_FORCE_READDIR, &nfsi->flags) &&
1112 	    list_is_singular(&nfsi->open_files))
1113 		invalidate_mapping_pages(inode->i_mapping, page_index + 1, -1);
1114 
1115 	do {
1116 		res = readdir_search_pagecache(desc);
1117 
1118 		if (res == -EBADCOOKIE) {
1119 			res = 0;
1120 			/* This means either end of directory */
1121 			if (desc->dir_cookie && !desc->eof) {
1122 				/* Or that the server has 'lost' a cookie */
1123 				res = uncached_readdir(desc);
1124 				if (res == 0)
1125 					continue;
1126 				if (res == -EBADCOOKIE || res == -ENOTSYNC)
1127 					res = 0;
1128 			}
1129 			break;
1130 		}
1131 		if (res == -ETOOSMALL && desc->plus) {
1132 			clear_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags);
1133 			nfs_zap_caches(inode);
1134 			desc->page_index = 0;
1135 			desc->plus = false;
1136 			desc->eof = false;
1137 			continue;
1138 		}
1139 		if (res < 0)
1140 			break;
1141 
1142 		nfs_do_filldir(desc, nfsi->cookieverf);
1143 		nfs_readdir_page_unlock_and_put_cached(desc);
1144 	} while (!desc->eof);
1145 
1146 	spin_lock(&file->f_lock);
1147 	dir_ctx->dir_cookie = desc->dir_cookie;
1148 	dir_ctx->dup_cookie = desc->dup_cookie;
1149 	dir_ctx->duped = desc->duped;
1150 	dir_ctx->attr_gencount = desc->attr_gencount;
1151 	dir_ctx->page_index = desc->page_index;
1152 	memcpy(dir_ctx->verf, desc->verf, sizeof(dir_ctx->verf));
1153 	spin_unlock(&file->f_lock);
1154 
1155 	kfree(desc);
1156 
1157 out:
1158 	dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res);
1159 	return res;
1160 }
1161 
1162 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence)
1163 {
1164 	struct nfs_open_dir_context *dir_ctx = filp->private_data;
1165 
1166 	dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n",
1167 			filp, offset, whence);
1168 
1169 	switch (whence) {
1170 	default:
1171 		return -EINVAL;
1172 	case SEEK_SET:
1173 		if (offset < 0)
1174 			return -EINVAL;
1175 		spin_lock(&filp->f_lock);
1176 		break;
1177 	case SEEK_CUR:
1178 		if (offset == 0)
1179 			return filp->f_pos;
1180 		spin_lock(&filp->f_lock);
1181 		offset += filp->f_pos;
1182 		if (offset < 0) {
1183 			spin_unlock(&filp->f_lock);
1184 			return -EINVAL;
1185 		}
1186 	}
1187 	if (offset != filp->f_pos) {
1188 		filp->f_pos = offset;
1189 		if (nfs_readdir_use_cookie(filp))
1190 			dir_ctx->dir_cookie = offset;
1191 		else
1192 			dir_ctx->dir_cookie = 0;
1193 		if (offset == 0)
1194 			memset(dir_ctx->verf, 0, sizeof(dir_ctx->verf));
1195 		dir_ctx->duped = 0;
1196 	}
1197 	spin_unlock(&filp->f_lock);
1198 	return offset;
1199 }
1200 
1201 /*
1202  * All directory operations under NFS are synchronous, so fsync()
1203  * is a dummy operation.
1204  */
1205 static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end,
1206 			 int datasync)
1207 {
1208 	dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync);
1209 
1210 	nfs_inc_stats(file_inode(filp), NFSIOS_VFSFSYNC);
1211 	return 0;
1212 }
1213 
1214 /**
1215  * nfs_force_lookup_revalidate - Mark the directory as having changed
1216  * @dir: pointer to directory inode
1217  *
1218  * This forces the revalidation code in nfs_lookup_revalidate() to do a
1219  * full lookup on all child dentries of 'dir' whenever a change occurs
1220  * on the server that might have invalidated our dcache.
1221  *
1222  * Note that we reserve bit '0' as a tag to let us know when a dentry
1223  * was revalidated while holding a delegation on its inode.
1224  *
1225  * The caller should be holding dir->i_lock
1226  */
1227 void nfs_force_lookup_revalidate(struct inode *dir)
1228 {
1229 	NFS_I(dir)->cache_change_attribute += 2;
1230 }
1231 EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate);
1232 
1233 /**
1234  * nfs_verify_change_attribute - Detects NFS remote directory changes
1235  * @dir: pointer to parent directory inode
1236  * @verf: previously saved change attribute
1237  *
1238  * Return "false" if the verifiers doesn't match the change attribute.
1239  * This would usually indicate that the directory contents have changed on
1240  * the server, and that any dentries need revalidating.
1241  */
1242 static bool nfs_verify_change_attribute(struct inode *dir, unsigned long verf)
1243 {
1244 	return (verf & ~1UL) == nfs_save_change_attribute(dir);
1245 }
1246 
1247 static void nfs_set_verifier_delegated(unsigned long *verf)
1248 {
1249 	*verf |= 1UL;
1250 }
1251 
1252 #if IS_ENABLED(CONFIG_NFS_V4)
1253 static void nfs_unset_verifier_delegated(unsigned long *verf)
1254 {
1255 	*verf &= ~1UL;
1256 }
1257 #endif /* IS_ENABLED(CONFIG_NFS_V4) */
1258 
1259 static bool nfs_test_verifier_delegated(unsigned long verf)
1260 {
1261 	return verf & 1;
1262 }
1263 
1264 static bool nfs_verifier_is_delegated(struct dentry *dentry)
1265 {
1266 	return nfs_test_verifier_delegated(dentry->d_time);
1267 }
1268 
1269 static void nfs_set_verifier_locked(struct dentry *dentry, unsigned long verf)
1270 {
1271 	struct inode *inode = d_inode(dentry);
1272 	struct inode *dir = d_inode(dentry->d_parent);
1273 
1274 	if (!nfs_verify_change_attribute(dir, verf))
1275 		return;
1276 	if (inode && NFS_PROTO(inode)->have_delegation(inode, FMODE_READ))
1277 		nfs_set_verifier_delegated(&verf);
1278 	dentry->d_time = verf;
1279 }
1280 
1281 /**
1282  * nfs_set_verifier - save a parent directory verifier in the dentry
1283  * @dentry: pointer to dentry
1284  * @verf: verifier to save
1285  *
1286  * Saves the parent directory verifier in @dentry. If the inode has
1287  * a delegation, we also tag the dentry as having been revalidated
1288  * while holding a delegation so that we know we don't have to
1289  * look it up again after a directory change.
1290  */
1291 void nfs_set_verifier(struct dentry *dentry, unsigned long verf)
1292 {
1293 
1294 	spin_lock(&dentry->d_lock);
1295 	nfs_set_verifier_locked(dentry, verf);
1296 	spin_unlock(&dentry->d_lock);
1297 }
1298 EXPORT_SYMBOL_GPL(nfs_set_verifier);
1299 
1300 #if IS_ENABLED(CONFIG_NFS_V4)
1301 /**
1302  * nfs_clear_verifier_delegated - clear the dir verifier delegation tag
1303  * @inode: pointer to inode
1304  *
1305  * Iterates through the dentries in the inode alias list and clears
1306  * the tag used to indicate that the dentry has been revalidated
1307  * while holding a delegation.
1308  * This function is intended for use when the delegation is being
1309  * returned or revoked.
1310  */
1311 void nfs_clear_verifier_delegated(struct inode *inode)
1312 {
1313 	struct dentry *alias;
1314 
1315 	if (!inode)
1316 		return;
1317 	spin_lock(&inode->i_lock);
1318 	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
1319 		spin_lock(&alias->d_lock);
1320 		nfs_unset_verifier_delegated(&alias->d_time);
1321 		spin_unlock(&alias->d_lock);
1322 	}
1323 	spin_unlock(&inode->i_lock);
1324 }
1325 EXPORT_SYMBOL_GPL(nfs_clear_verifier_delegated);
1326 #endif /* IS_ENABLED(CONFIG_NFS_V4) */
1327 
1328 static int nfs_dentry_verify_change(struct inode *dir, struct dentry *dentry)
1329 {
1330 	if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE) &&
1331 	    d_really_is_negative(dentry))
1332 		return dentry->d_time == inode_peek_iversion_raw(dir);
1333 	return nfs_verify_change_attribute(dir, dentry->d_time);
1334 }
1335 
1336 /*
1337  * A check for whether or not the parent directory has changed.
1338  * In the case it has, we assume that the dentries are untrustworthy
1339  * and may need to be looked up again.
1340  * If rcu_walk prevents us from performing a full check, return 0.
1341  */
1342 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry,
1343 			      int rcu_walk)
1344 {
1345 	if (IS_ROOT(dentry))
1346 		return 1;
1347 	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
1348 		return 0;
1349 	if (!nfs_dentry_verify_change(dir, dentry))
1350 		return 0;
1351 	/* Revalidate nfsi->cache_change_attribute before we declare a match */
1352 	if (nfs_mapping_need_revalidate_inode(dir)) {
1353 		if (rcu_walk)
1354 			return 0;
1355 		if (__nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
1356 			return 0;
1357 	}
1358 	if (!nfs_dentry_verify_change(dir, dentry))
1359 		return 0;
1360 	return 1;
1361 }
1362 
1363 /*
1364  * Use intent information to check whether or not we're going to do
1365  * an O_EXCL create using this path component.
1366  */
1367 static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags)
1368 {
1369 	if (NFS_PROTO(dir)->version == 2)
1370 		return 0;
1371 	return flags & LOOKUP_EXCL;
1372 }
1373 
1374 /*
1375  * Inode and filehandle revalidation for lookups.
1376  *
1377  * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
1378  * or if the intent information indicates that we're about to open this
1379  * particular file and the "nocto" mount flag is not set.
1380  *
1381  */
1382 static
1383 int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags)
1384 {
1385 	struct nfs_server *server = NFS_SERVER(inode);
1386 	int ret;
1387 
1388 	if (IS_AUTOMOUNT(inode))
1389 		return 0;
1390 
1391 	if (flags & LOOKUP_OPEN) {
1392 		switch (inode->i_mode & S_IFMT) {
1393 		case S_IFREG:
1394 			/* A NFSv4 OPEN will revalidate later */
1395 			if (server->caps & NFS_CAP_ATOMIC_OPEN)
1396 				goto out;
1397 			fallthrough;
1398 		case S_IFDIR:
1399 			if (server->flags & NFS_MOUNT_NOCTO)
1400 				break;
1401 			/* NFS close-to-open cache consistency validation */
1402 			goto out_force;
1403 		}
1404 	}
1405 
1406 	/* VFS wants an on-the-wire revalidation */
1407 	if (flags & LOOKUP_REVAL)
1408 		goto out_force;
1409 out:
1410 	return (inode->i_nlink == 0) ? -ESTALE : 0;
1411 out_force:
1412 	if (flags & LOOKUP_RCU)
1413 		return -ECHILD;
1414 	ret = __nfs_revalidate_inode(server, inode);
1415 	if (ret != 0)
1416 		return ret;
1417 	goto out;
1418 }
1419 
1420 static void nfs_mark_dir_for_revalidate(struct inode *inode)
1421 {
1422 	spin_lock(&inode->i_lock);
1423 	nfs_set_cache_invalid(inode, NFS_INO_INVALID_CHANGE);
1424 	spin_unlock(&inode->i_lock);
1425 }
1426 
1427 /*
1428  * We judge how long we want to trust negative
1429  * dentries by looking at the parent inode mtime.
1430  *
1431  * If parent mtime has changed, we revalidate, else we wait for a
1432  * period corresponding to the parent's attribute cache timeout value.
1433  *
1434  * If LOOKUP_RCU prevents us from performing a full check, return 1
1435  * suggesting a reval is needed.
1436  *
1437  * Note that when creating a new file, or looking up a rename target,
1438  * then it shouldn't be necessary to revalidate a negative dentry.
1439  */
1440 static inline
1441 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1442 		       unsigned int flags)
1443 {
1444 	if (flags & (LOOKUP_CREATE | LOOKUP_RENAME_TARGET))
1445 		return 0;
1446 	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1447 		return 1;
1448 	/* Case insensitive server? Revalidate negative dentries */
1449 	if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE))
1450 		return 1;
1451 	return !nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU);
1452 }
1453 
1454 static int
1455 nfs_lookup_revalidate_done(struct inode *dir, struct dentry *dentry,
1456 			   struct inode *inode, int error)
1457 {
1458 	switch (error) {
1459 	case 1:
1460 		dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is valid\n",
1461 			__func__, dentry);
1462 		return 1;
1463 	case 0:
1464 		/*
1465 		 * We can't d_drop the root of a disconnected tree:
1466 		 * its d_hash is on the s_anon list and d_drop() would hide
1467 		 * it from shrink_dcache_for_unmount(), leading to busy
1468 		 * inodes on unmount and further oopses.
1469 		 */
1470 		if (inode && IS_ROOT(dentry))
1471 			return 1;
1472 		dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is invalid\n",
1473 				__func__, dentry);
1474 		return 0;
1475 	}
1476 	dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) lookup returned error %d\n",
1477 				__func__, dentry, error);
1478 	return error;
1479 }
1480 
1481 static int
1482 nfs_lookup_revalidate_negative(struct inode *dir, struct dentry *dentry,
1483 			       unsigned int flags)
1484 {
1485 	int ret = 1;
1486 	if (nfs_neg_need_reval(dir, dentry, flags)) {
1487 		if (flags & LOOKUP_RCU)
1488 			return -ECHILD;
1489 		ret = 0;
1490 	}
1491 	return nfs_lookup_revalidate_done(dir, dentry, NULL, ret);
1492 }
1493 
1494 static int
1495 nfs_lookup_revalidate_delegated(struct inode *dir, struct dentry *dentry,
1496 				struct inode *inode)
1497 {
1498 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1499 	return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1500 }
1501 
1502 static int
1503 nfs_lookup_revalidate_dentry(struct inode *dir, struct dentry *dentry,
1504 			     struct inode *inode)
1505 {
1506 	struct nfs_fh *fhandle;
1507 	struct nfs_fattr *fattr;
1508 	unsigned long dir_verifier;
1509 	int ret;
1510 
1511 	ret = -ENOMEM;
1512 	fhandle = nfs_alloc_fhandle();
1513 	fattr = nfs_alloc_fattr_with_label(NFS_SERVER(inode));
1514 	if (fhandle == NULL || fattr == NULL)
1515 		goto out;
1516 
1517 	dir_verifier = nfs_save_change_attribute(dir);
1518 	ret = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr);
1519 	if (ret < 0) {
1520 		switch (ret) {
1521 		case -ESTALE:
1522 		case -ENOENT:
1523 			ret = 0;
1524 			break;
1525 		case -ETIMEDOUT:
1526 			if (NFS_SERVER(inode)->flags & NFS_MOUNT_SOFTREVAL)
1527 				ret = 1;
1528 		}
1529 		goto out;
1530 	}
1531 	ret = 0;
1532 	if (nfs_compare_fh(NFS_FH(inode), fhandle))
1533 		goto out;
1534 	if (nfs_refresh_inode(inode, fattr) < 0)
1535 		goto out;
1536 
1537 	nfs_setsecurity(inode, fattr);
1538 	nfs_set_verifier(dentry, dir_verifier);
1539 
1540 	/* set a readdirplus hint that we had a cache miss */
1541 	nfs_force_use_readdirplus(dir);
1542 	ret = 1;
1543 out:
1544 	nfs_free_fattr(fattr);
1545 	nfs_free_fhandle(fhandle);
1546 
1547 	/*
1548 	 * If the lookup failed despite the dentry change attribute being
1549 	 * a match, then we should revalidate the directory cache.
1550 	 */
1551 	if (!ret && nfs_dentry_verify_change(dir, dentry))
1552 		nfs_mark_dir_for_revalidate(dir);
1553 	return nfs_lookup_revalidate_done(dir, dentry, inode, ret);
1554 }
1555 
1556 /*
1557  * This is called every time the dcache has a lookup hit,
1558  * and we should check whether we can really trust that
1559  * lookup.
1560  *
1561  * NOTE! The hit can be a negative hit too, don't assume
1562  * we have an inode!
1563  *
1564  * If the parent directory is seen to have changed, we throw out the
1565  * cached dentry and do a new lookup.
1566  */
1567 static int
1568 nfs_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
1569 			 unsigned int flags)
1570 {
1571 	struct inode *inode;
1572 	int error;
1573 
1574 	nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1575 	inode = d_inode(dentry);
1576 
1577 	if (!inode)
1578 		return nfs_lookup_revalidate_negative(dir, dentry, flags);
1579 
1580 	if (is_bad_inode(inode)) {
1581 		dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1582 				__func__, dentry);
1583 		goto out_bad;
1584 	}
1585 
1586 	if (nfs_verifier_is_delegated(dentry))
1587 		return nfs_lookup_revalidate_delegated(dir, dentry, inode);
1588 
1589 	/* Force a full look up iff the parent directory has changed */
1590 	if (!(flags & (LOOKUP_EXCL | LOOKUP_REVAL)) &&
1591 	    nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) {
1592 		error = nfs_lookup_verify_inode(inode, flags);
1593 		if (error) {
1594 			if (error == -ESTALE)
1595 				nfs_mark_dir_for_revalidate(dir);
1596 			goto out_bad;
1597 		}
1598 		nfs_advise_use_readdirplus(dir);
1599 		goto out_valid;
1600 	}
1601 
1602 	if (flags & LOOKUP_RCU)
1603 		return -ECHILD;
1604 
1605 	if (NFS_STALE(inode))
1606 		goto out_bad;
1607 
1608 	trace_nfs_lookup_revalidate_enter(dir, dentry, flags);
1609 	error = nfs_lookup_revalidate_dentry(dir, dentry, inode);
1610 	trace_nfs_lookup_revalidate_exit(dir, dentry, flags, error);
1611 	return error;
1612 out_valid:
1613 	return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1614 out_bad:
1615 	if (flags & LOOKUP_RCU)
1616 		return -ECHILD;
1617 	return nfs_lookup_revalidate_done(dir, dentry, inode, 0);
1618 }
1619 
1620 static int
1621 __nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags,
1622 			int (*reval)(struct inode *, struct dentry *, unsigned int))
1623 {
1624 	struct dentry *parent;
1625 	struct inode *dir;
1626 	int ret;
1627 
1628 	if (flags & LOOKUP_RCU) {
1629 		parent = READ_ONCE(dentry->d_parent);
1630 		dir = d_inode_rcu(parent);
1631 		if (!dir)
1632 			return -ECHILD;
1633 		ret = reval(dir, dentry, flags);
1634 		if (parent != READ_ONCE(dentry->d_parent))
1635 			return -ECHILD;
1636 	} else {
1637 		parent = dget_parent(dentry);
1638 		ret = reval(d_inode(parent), dentry, flags);
1639 		dput(parent);
1640 	}
1641 	return ret;
1642 }
1643 
1644 static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1645 {
1646 	return __nfs_lookup_revalidate(dentry, flags, nfs_do_lookup_revalidate);
1647 }
1648 
1649 /*
1650  * A weaker form of d_revalidate for revalidating just the d_inode(dentry)
1651  * when we don't really care about the dentry name. This is called when a
1652  * pathwalk ends on a dentry that was not found via a normal lookup in the
1653  * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals).
1654  *
1655  * In this situation, we just want to verify that the inode itself is OK
1656  * since the dentry might have changed on the server.
1657  */
1658 static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags)
1659 {
1660 	struct inode *inode = d_inode(dentry);
1661 	int error = 0;
1662 
1663 	/*
1664 	 * I believe we can only get a negative dentry here in the case of a
1665 	 * procfs-style symlink. Just assume it's correct for now, but we may
1666 	 * eventually need to do something more here.
1667 	 */
1668 	if (!inode) {
1669 		dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n",
1670 				__func__, dentry);
1671 		return 1;
1672 	}
1673 
1674 	if (is_bad_inode(inode)) {
1675 		dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1676 				__func__, dentry);
1677 		return 0;
1678 	}
1679 
1680 	error = nfs_lookup_verify_inode(inode, flags);
1681 	dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n",
1682 			__func__, inode->i_ino, error ? "invalid" : "valid");
1683 	return !error;
1684 }
1685 
1686 /*
1687  * This is called from dput() when d_count is going to 0.
1688  */
1689 static int nfs_dentry_delete(const struct dentry *dentry)
1690 {
1691 	dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n",
1692 		dentry, dentry->d_flags);
1693 
1694 	/* Unhash any dentry with a stale inode */
1695 	if (d_really_is_positive(dentry) && NFS_STALE(d_inode(dentry)))
1696 		return 1;
1697 
1698 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1699 		/* Unhash it, so that ->d_iput() would be called */
1700 		return 1;
1701 	}
1702 	if (!(dentry->d_sb->s_flags & SB_ACTIVE)) {
1703 		/* Unhash it, so that ancestors of killed async unlink
1704 		 * files will be cleaned up during umount */
1705 		return 1;
1706 	}
1707 	return 0;
1708 
1709 }
1710 
1711 /* Ensure that we revalidate inode->i_nlink */
1712 static void nfs_drop_nlink(struct inode *inode)
1713 {
1714 	spin_lock(&inode->i_lock);
1715 	/* drop the inode if we're reasonably sure this is the last link */
1716 	if (inode->i_nlink > 0)
1717 		drop_nlink(inode);
1718 	NFS_I(inode)->attr_gencount = nfs_inc_attr_generation_counter();
1719 	nfs_set_cache_invalid(
1720 		inode, NFS_INO_INVALID_CHANGE | NFS_INO_INVALID_CTIME |
1721 			       NFS_INO_INVALID_NLINK);
1722 	spin_unlock(&inode->i_lock);
1723 }
1724 
1725 /*
1726  * Called when the dentry loses inode.
1727  * We use it to clean up silly-renamed files.
1728  */
1729 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1730 {
1731 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1732 		nfs_complete_unlink(dentry, inode);
1733 		nfs_drop_nlink(inode);
1734 	}
1735 	iput(inode);
1736 }
1737 
1738 static void nfs_d_release(struct dentry *dentry)
1739 {
1740 	/* free cached devname value, if it survived that far */
1741 	if (unlikely(dentry->d_fsdata)) {
1742 		if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1743 			WARN_ON(1);
1744 		else
1745 			kfree(dentry->d_fsdata);
1746 	}
1747 }
1748 
1749 const struct dentry_operations nfs_dentry_operations = {
1750 	.d_revalidate	= nfs_lookup_revalidate,
1751 	.d_weak_revalidate	= nfs_weak_revalidate,
1752 	.d_delete	= nfs_dentry_delete,
1753 	.d_iput		= nfs_dentry_iput,
1754 	.d_automount	= nfs_d_automount,
1755 	.d_release	= nfs_d_release,
1756 };
1757 EXPORT_SYMBOL_GPL(nfs_dentry_operations);
1758 
1759 struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
1760 {
1761 	struct dentry *res;
1762 	struct inode *inode = NULL;
1763 	struct nfs_fh *fhandle = NULL;
1764 	struct nfs_fattr *fattr = NULL;
1765 	unsigned long dir_verifier;
1766 	int error;
1767 
1768 	dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry);
1769 	nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1770 
1771 	if (unlikely(dentry->d_name.len > NFS_SERVER(dir)->namelen))
1772 		return ERR_PTR(-ENAMETOOLONG);
1773 
1774 	/*
1775 	 * If we're doing an exclusive create, optimize away the lookup
1776 	 * but don't hash the dentry.
1777 	 */
1778 	if (nfs_is_exclusive_create(dir, flags) || flags & LOOKUP_RENAME_TARGET)
1779 		return NULL;
1780 
1781 	res = ERR_PTR(-ENOMEM);
1782 	fhandle = nfs_alloc_fhandle();
1783 	fattr = nfs_alloc_fattr_with_label(NFS_SERVER(dir));
1784 	if (fhandle == NULL || fattr == NULL)
1785 		goto out;
1786 
1787 	dir_verifier = nfs_save_change_attribute(dir);
1788 	trace_nfs_lookup_enter(dir, dentry, flags);
1789 	error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr);
1790 	if (error == -ENOENT) {
1791 		if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE))
1792 			dir_verifier = inode_peek_iversion_raw(dir);
1793 		goto no_entry;
1794 	}
1795 	if (error < 0) {
1796 		res = ERR_PTR(error);
1797 		goto out;
1798 	}
1799 	inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
1800 	res = ERR_CAST(inode);
1801 	if (IS_ERR(res))
1802 		goto out;
1803 
1804 	/* Notify readdir to use READDIRPLUS */
1805 	nfs_force_use_readdirplus(dir);
1806 
1807 no_entry:
1808 	res = d_splice_alias(inode, dentry);
1809 	if (res != NULL) {
1810 		if (IS_ERR(res))
1811 			goto out;
1812 		dentry = res;
1813 	}
1814 	nfs_set_verifier(dentry, dir_verifier);
1815 out:
1816 	trace_nfs_lookup_exit(dir, dentry, flags, PTR_ERR_OR_ZERO(res));
1817 	nfs_free_fattr(fattr);
1818 	nfs_free_fhandle(fhandle);
1819 	return res;
1820 }
1821 EXPORT_SYMBOL_GPL(nfs_lookup);
1822 
1823 void nfs_d_prune_case_insensitive_aliases(struct inode *inode)
1824 {
1825 	/* Case insensitive server? Revalidate dentries */
1826 	if (inode && nfs_server_capable(inode, NFS_CAP_CASE_INSENSITIVE))
1827 		d_prune_aliases(inode);
1828 }
1829 EXPORT_SYMBOL_GPL(nfs_d_prune_case_insensitive_aliases);
1830 
1831 #if IS_ENABLED(CONFIG_NFS_V4)
1832 static int nfs4_lookup_revalidate(struct dentry *, unsigned int);
1833 
1834 const struct dentry_operations nfs4_dentry_operations = {
1835 	.d_revalidate	= nfs4_lookup_revalidate,
1836 	.d_weak_revalidate	= nfs_weak_revalidate,
1837 	.d_delete	= nfs_dentry_delete,
1838 	.d_iput		= nfs_dentry_iput,
1839 	.d_automount	= nfs_d_automount,
1840 	.d_release	= nfs_d_release,
1841 };
1842 EXPORT_SYMBOL_GPL(nfs4_dentry_operations);
1843 
1844 static fmode_t flags_to_mode(int flags)
1845 {
1846 	fmode_t res = (__force fmode_t)flags & FMODE_EXEC;
1847 	if ((flags & O_ACCMODE) != O_WRONLY)
1848 		res |= FMODE_READ;
1849 	if ((flags & O_ACCMODE) != O_RDONLY)
1850 		res |= FMODE_WRITE;
1851 	return res;
1852 }
1853 
1854 static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags, struct file *filp)
1855 {
1856 	return alloc_nfs_open_context(dentry, flags_to_mode(open_flags), filp);
1857 }
1858 
1859 static int do_open(struct inode *inode, struct file *filp)
1860 {
1861 	nfs_fscache_open_file(inode, filp);
1862 	return 0;
1863 }
1864 
1865 static int nfs_finish_open(struct nfs_open_context *ctx,
1866 			   struct dentry *dentry,
1867 			   struct file *file, unsigned open_flags)
1868 {
1869 	int err;
1870 
1871 	err = finish_open(file, dentry, do_open);
1872 	if (err)
1873 		goto out;
1874 	if (S_ISREG(file->f_path.dentry->d_inode->i_mode))
1875 		nfs_file_set_open_context(file, ctx);
1876 	else
1877 		err = -EOPENSTALE;
1878 out:
1879 	return err;
1880 }
1881 
1882 int nfs_atomic_open(struct inode *dir, struct dentry *dentry,
1883 		    struct file *file, unsigned open_flags,
1884 		    umode_t mode)
1885 {
1886 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1887 	struct nfs_open_context *ctx;
1888 	struct dentry *res;
1889 	struct iattr attr = { .ia_valid = ATTR_OPEN };
1890 	struct inode *inode;
1891 	unsigned int lookup_flags = 0;
1892 	unsigned long dir_verifier;
1893 	bool switched = false;
1894 	int created = 0;
1895 	int err;
1896 
1897 	/* Expect a negative dentry */
1898 	BUG_ON(d_inode(dentry));
1899 
1900 	dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n",
1901 			dir->i_sb->s_id, dir->i_ino, dentry);
1902 
1903 	err = nfs_check_flags(open_flags);
1904 	if (err)
1905 		return err;
1906 
1907 	/* NFS only supports OPEN on regular files */
1908 	if ((open_flags & O_DIRECTORY)) {
1909 		if (!d_in_lookup(dentry)) {
1910 			/*
1911 			 * Hashed negative dentry with O_DIRECTORY: dentry was
1912 			 * revalidated and is fine, no need to perform lookup
1913 			 * again
1914 			 */
1915 			return -ENOENT;
1916 		}
1917 		lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY;
1918 		goto no_open;
1919 	}
1920 
1921 	if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1922 		return -ENAMETOOLONG;
1923 
1924 	if (open_flags & O_CREAT) {
1925 		struct nfs_server *server = NFS_SERVER(dir);
1926 
1927 		if (!(server->attr_bitmask[2] & FATTR4_WORD2_MODE_UMASK))
1928 			mode &= ~current_umask();
1929 
1930 		attr.ia_valid |= ATTR_MODE;
1931 		attr.ia_mode = mode;
1932 	}
1933 	if (open_flags & O_TRUNC) {
1934 		attr.ia_valid |= ATTR_SIZE;
1935 		attr.ia_size = 0;
1936 	}
1937 
1938 	if (!(open_flags & O_CREAT) && !d_in_lookup(dentry)) {
1939 		d_drop(dentry);
1940 		switched = true;
1941 		dentry = d_alloc_parallel(dentry->d_parent,
1942 					  &dentry->d_name, &wq);
1943 		if (IS_ERR(dentry))
1944 			return PTR_ERR(dentry);
1945 		if (unlikely(!d_in_lookup(dentry)))
1946 			return finish_no_open(file, dentry);
1947 	}
1948 
1949 	ctx = create_nfs_open_context(dentry, open_flags, file);
1950 	err = PTR_ERR(ctx);
1951 	if (IS_ERR(ctx))
1952 		goto out;
1953 
1954 	trace_nfs_atomic_open_enter(dir, ctx, open_flags);
1955 	inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, &created);
1956 	if (created)
1957 		file->f_mode |= FMODE_CREATED;
1958 	if (IS_ERR(inode)) {
1959 		err = PTR_ERR(inode);
1960 		trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1961 		put_nfs_open_context(ctx);
1962 		d_drop(dentry);
1963 		switch (err) {
1964 		case -ENOENT:
1965 			d_splice_alias(NULL, dentry);
1966 			if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE))
1967 				dir_verifier = inode_peek_iversion_raw(dir);
1968 			else
1969 				dir_verifier = nfs_save_change_attribute(dir);
1970 			nfs_set_verifier(dentry, dir_verifier);
1971 			break;
1972 		case -EISDIR:
1973 		case -ENOTDIR:
1974 			goto no_open;
1975 		case -ELOOP:
1976 			if (!(open_flags & O_NOFOLLOW))
1977 				goto no_open;
1978 			break;
1979 			/* case -EINVAL: */
1980 		default:
1981 			break;
1982 		}
1983 		goto out;
1984 	}
1985 
1986 	err = nfs_finish_open(ctx, ctx->dentry, file, open_flags);
1987 	trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1988 	put_nfs_open_context(ctx);
1989 out:
1990 	if (unlikely(switched)) {
1991 		d_lookup_done(dentry);
1992 		dput(dentry);
1993 	}
1994 	return err;
1995 
1996 no_open:
1997 	res = nfs_lookup(dir, dentry, lookup_flags);
1998 	if (!res) {
1999 		inode = d_inode(dentry);
2000 		if ((lookup_flags & LOOKUP_DIRECTORY) && inode &&
2001 		    !S_ISDIR(inode->i_mode))
2002 			res = ERR_PTR(-ENOTDIR);
2003 		else if (inode && S_ISREG(inode->i_mode))
2004 			res = ERR_PTR(-EOPENSTALE);
2005 	} else if (!IS_ERR(res)) {
2006 		inode = d_inode(res);
2007 		if ((lookup_flags & LOOKUP_DIRECTORY) && inode &&
2008 		    !S_ISDIR(inode->i_mode)) {
2009 			dput(res);
2010 			res = ERR_PTR(-ENOTDIR);
2011 		} else if (inode && S_ISREG(inode->i_mode)) {
2012 			dput(res);
2013 			res = ERR_PTR(-EOPENSTALE);
2014 		}
2015 	}
2016 	if (switched) {
2017 		d_lookup_done(dentry);
2018 		if (!res)
2019 			res = dentry;
2020 		else
2021 			dput(dentry);
2022 	}
2023 	if (IS_ERR(res))
2024 		return PTR_ERR(res);
2025 	return finish_no_open(file, res);
2026 }
2027 EXPORT_SYMBOL_GPL(nfs_atomic_open);
2028 
2029 static int
2030 nfs4_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
2031 			  unsigned int flags)
2032 {
2033 	struct inode *inode;
2034 
2035 	if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY))
2036 		goto full_reval;
2037 	if (d_mountpoint(dentry))
2038 		goto full_reval;
2039 
2040 	inode = d_inode(dentry);
2041 
2042 	/* We can't create new files in nfs_open_revalidate(), so we
2043 	 * optimize away revalidation of negative dentries.
2044 	 */
2045 	if (inode == NULL)
2046 		goto full_reval;
2047 
2048 	if (nfs_verifier_is_delegated(dentry))
2049 		return nfs_lookup_revalidate_delegated(dir, dentry, inode);
2050 
2051 	/* NFS only supports OPEN on regular files */
2052 	if (!S_ISREG(inode->i_mode))
2053 		goto full_reval;
2054 
2055 	/* We cannot do exclusive creation on a positive dentry */
2056 	if (flags & (LOOKUP_EXCL | LOOKUP_REVAL))
2057 		goto reval_dentry;
2058 
2059 	/* Check if the directory changed */
2060 	if (!nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU))
2061 		goto reval_dentry;
2062 
2063 	/* Let f_op->open() actually open (and revalidate) the file */
2064 	return 1;
2065 reval_dentry:
2066 	if (flags & LOOKUP_RCU)
2067 		return -ECHILD;
2068 	return nfs_lookup_revalidate_dentry(dir, dentry, inode);
2069 
2070 full_reval:
2071 	return nfs_do_lookup_revalidate(dir, dentry, flags);
2072 }
2073 
2074 static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags)
2075 {
2076 	return __nfs_lookup_revalidate(dentry, flags,
2077 			nfs4_do_lookup_revalidate);
2078 }
2079 
2080 #endif /* CONFIG_NFSV4 */
2081 
2082 struct dentry *
2083 nfs_add_or_obtain(struct dentry *dentry, struct nfs_fh *fhandle,
2084 				struct nfs_fattr *fattr)
2085 {
2086 	struct dentry *parent = dget_parent(dentry);
2087 	struct inode *dir = d_inode(parent);
2088 	struct inode *inode;
2089 	struct dentry *d;
2090 	int error;
2091 
2092 	d_drop(dentry);
2093 
2094 	if (fhandle->size == 0) {
2095 		error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr);
2096 		if (error)
2097 			goto out_error;
2098 	}
2099 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2100 	if (!(fattr->valid & NFS_ATTR_FATTR)) {
2101 		struct nfs_server *server = NFS_SB(dentry->d_sb);
2102 		error = server->nfs_client->rpc_ops->getattr(server, fhandle,
2103 				fattr, NULL);
2104 		if (error < 0)
2105 			goto out_error;
2106 	}
2107 	inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
2108 	d = d_splice_alias(inode, dentry);
2109 out:
2110 	dput(parent);
2111 	return d;
2112 out_error:
2113 	d = ERR_PTR(error);
2114 	goto out;
2115 }
2116 EXPORT_SYMBOL_GPL(nfs_add_or_obtain);
2117 
2118 /*
2119  * Code common to create, mkdir, and mknod.
2120  */
2121 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
2122 				struct nfs_fattr *fattr)
2123 {
2124 	struct dentry *d;
2125 
2126 	d = nfs_add_or_obtain(dentry, fhandle, fattr);
2127 	if (IS_ERR(d))
2128 		return PTR_ERR(d);
2129 
2130 	/* Callers don't care */
2131 	dput(d);
2132 	return 0;
2133 }
2134 EXPORT_SYMBOL_GPL(nfs_instantiate);
2135 
2136 /*
2137  * Following a failed create operation, we drop the dentry rather
2138  * than retain a negative dentry. This avoids a problem in the event
2139  * that the operation succeeded on the server, but an error in the
2140  * reply path made it appear to have failed.
2141  */
2142 int nfs_create(struct user_namespace *mnt_userns, struct inode *dir,
2143 	       struct dentry *dentry, umode_t mode, bool excl)
2144 {
2145 	struct iattr attr;
2146 	int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT;
2147 	int error;
2148 
2149 	dfprintk(VFS, "NFS: create(%s/%lu), %pd\n",
2150 			dir->i_sb->s_id, dir->i_ino, dentry);
2151 
2152 	attr.ia_mode = mode;
2153 	attr.ia_valid = ATTR_MODE;
2154 
2155 	trace_nfs_create_enter(dir, dentry, open_flags);
2156 	error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags);
2157 	trace_nfs_create_exit(dir, dentry, open_flags, error);
2158 	if (error != 0)
2159 		goto out_err;
2160 	return 0;
2161 out_err:
2162 	d_drop(dentry);
2163 	return error;
2164 }
2165 EXPORT_SYMBOL_GPL(nfs_create);
2166 
2167 /*
2168  * See comments for nfs_proc_create regarding failed operations.
2169  */
2170 int
2171 nfs_mknod(struct user_namespace *mnt_userns, struct inode *dir,
2172 	  struct dentry *dentry, umode_t mode, dev_t rdev)
2173 {
2174 	struct iattr attr;
2175 	int status;
2176 
2177 	dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n",
2178 			dir->i_sb->s_id, dir->i_ino, dentry);
2179 
2180 	attr.ia_mode = mode;
2181 	attr.ia_valid = ATTR_MODE;
2182 
2183 	trace_nfs_mknod_enter(dir, dentry);
2184 	status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
2185 	trace_nfs_mknod_exit(dir, dentry, status);
2186 	if (status != 0)
2187 		goto out_err;
2188 	return 0;
2189 out_err:
2190 	d_drop(dentry);
2191 	return status;
2192 }
2193 EXPORT_SYMBOL_GPL(nfs_mknod);
2194 
2195 /*
2196  * See comments for nfs_proc_create regarding failed operations.
2197  */
2198 int nfs_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
2199 	      struct dentry *dentry, umode_t mode)
2200 {
2201 	struct iattr attr;
2202 	int error;
2203 
2204 	dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n",
2205 			dir->i_sb->s_id, dir->i_ino, dentry);
2206 
2207 	attr.ia_valid = ATTR_MODE;
2208 	attr.ia_mode = mode | S_IFDIR;
2209 
2210 	trace_nfs_mkdir_enter(dir, dentry);
2211 	error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
2212 	trace_nfs_mkdir_exit(dir, dentry, error);
2213 	if (error != 0)
2214 		goto out_err;
2215 	return 0;
2216 out_err:
2217 	d_drop(dentry);
2218 	return error;
2219 }
2220 EXPORT_SYMBOL_GPL(nfs_mkdir);
2221 
2222 static void nfs_dentry_handle_enoent(struct dentry *dentry)
2223 {
2224 	if (simple_positive(dentry))
2225 		d_delete(dentry);
2226 }
2227 
2228 static void nfs_dentry_remove_handle_error(struct inode *dir,
2229 					   struct dentry *dentry, int error)
2230 {
2231 	switch (error) {
2232 	case -ENOENT:
2233 		d_delete(dentry);
2234 		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2235 		break;
2236 	case 0:
2237 		nfs_d_prune_case_insensitive_aliases(d_inode(dentry));
2238 		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2239 	}
2240 }
2241 
2242 int nfs_rmdir(struct inode *dir, struct dentry *dentry)
2243 {
2244 	int error;
2245 
2246 	dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n",
2247 			dir->i_sb->s_id, dir->i_ino, dentry);
2248 
2249 	trace_nfs_rmdir_enter(dir, dentry);
2250 	if (d_really_is_positive(dentry)) {
2251 		down_write(&NFS_I(d_inode(dentry))->rmdir_sem);
2252 		error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
2253 		/* Ensure the VFS deletes this inode */
2254 		switch (error) {
2255 		case 0:
2256 			clear_nlink(d_inode(dentry));
2257 			break;
2258 		case -ENOENT:
2259 			nfs_dentry_handle_enoent(dentry);
2260 		}
2261 		up_write(&NFS_I(d_inode(dentry))->rmdir_sem);
2262 	} else
2263 		error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
2264 	nfs_dentry_remove_handle_error(dir, dentry, error);
2265 	trace_nfs_rmdir_exit(dir, dentry, error);
2266 
2267 	return error;
2268 }
2269 EXPORT_SYMBOL_GPL(nfs_rmdir);
2270 
2271 /*
2272  * Remove a file after making sure there are no pending writes,
2273  * and after checking that the file has only one user.
2274  *
2275  * We invalidate the attribute cache and free the inode prior to the operation
2276  * to avoid possible races if the server reuses the inode.
2277  */
2278 static int nfs_safe_remove(struct dentry *dentry)
2279 {
2280 	struct inode *dir = d_inode(dentry->d_parent);
2281 	struct inode *inode = d_inode(dentry);
2282 	int error = -EBUSY;
2283 
2284 	dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry);
2285 
2286 	/* If the dentry was sillyrenamed, we simply call d_delete() */
2287 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
2288 		error = 0;
2289 		goto out;
2290 	}
2291 
2292 	trace_nfs_remove_enter(dir, dentry);
2293 	if (inode != NULL) {
2294 		error = NFS_PROTO(dir)->remove(dir, dentry);
2295 		if (error == 0)
2296 			nfs_drop_nlink(inode);
2297 	} else
2298 		error = NFS_PROTO(dir)->remove(dir, dentry);
2299 	if (error == -ENOENT)
2300 		nfs_dentry_handle_enoent(dentry);
2301 	trace_nfs_remove_exit(dir, dentry, error);
2302 out:
2303 	return error;
2304 }
2305 
2306 /*  We do silly rename. In case sillyrename() returns -EBUSY, the inode
2307  *  belongs to an active ".nfs..." file and we return -EBUSY.
2308  *
2309  *  If sillyrename() returns 0, we do nothing, otherwise we unlink.
2310  */
2311 int nfs_unlink(struct inode *dir, struct dentry *dentry)
2312 {
2313 	int error;
2314 	int need_rehash = 0;
2315 
2316 	dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id,
2317 		dir->i_ino, dentry);
2318 
2319 	trace_nfs_unlink_enter(dir, dentry);
2320 	spin_lock(&dentry->d_lock);
2321 	if (d_count(dentry) > 1) {
2322 		spin_unlock(&dentry->d_lock);
2323 		/* Start asynchronous writeout of the inode */
2324 		write_inode_now(d_inode(dentry), 0);
2325 		error = nfs_sillyrename(dir, dentry);
2326 		goto out;
2327 	}
2328 	if (!d_unhashed(dentry)) {
2329 		__d_drop(dentry);
2330 		need_rehash = 1;
2331 	}
2332 	spin_unlock(&dentry->d_lock);
2333 	error = nfs_safe_remove(dentry);
2334 	nfs_dentry_remove_handle_error(dir, dentry, error);
2335 	if (need_rehash)
2336 		d_rehash(dentry);
2337 out:
2338 	trace_nfs_unlink_exit(dir, dentry, error);
2339 	return error;
2340 }
2341 EXPORT_SYMBOL_GPL(nfs_unlink);
2342 
2343 /*
2344  * To create a symbolic link, most file systems instantiate a new inode,
2345  * add a page to it containing the path, then write it out to the disk
2346  * using prepare_write/commit_write.
2347  *
2348  * Unfortunately the NFS client can't create the in-core inode first
2349  * because it needs a file handle to create an in-core inode (see
2350  * fs/nfs/inode.c:nfs_fhget).  We only have a file handle *after* the
2351  * symlink request has completed on the server.
2352  *
2353  * So instead we allocate a raw page, copy the symname into it, then do
2354  * the SYMLINK request with the page as the buffer.  If it succeeds, we
2355  * now have a new file handle and can instantiate an in-core NFS inode
2356  * and move the raw page into its mapping.
2357  */
2358 int nfs_symlink(struct user_namespace *mnt_userns, struct inode *dir,
2359 		struct dentry *dentry, const char *symname)
2360 {
2361 	struct page *page;
2362 	char *kaddr;
2363 	struct iattr attr;
2364 	unsigned int pathlen = strlen(symname);
2365 	int error;
2366 
2367 	dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id,
2368 		dir->i_ino, dentry, symname);
2369 
2370 	if (pathlen > PAGE_SIZE)
2371 		return -ENAMETOOLONG;
2372 
2373 	attr.ia_mode = S_IFLNK | S_IRWXUGO;
2374 	attr.ia_valid = ATTR_MODE;
2375 
2376 	page = alloc_page(GFP_USER);
2377 	if (!page)
2378 		return -ENOMEM;
2379 
2380 	kaddr = page_address(page);
2381 	memcpy(kaddr, symname, pathlen);
2382 	if (pathlen < PAGE_SIZE)
2383 		memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
2384 
2385 	trace_nfs_symlink_enter(dir, dentry);
2386 	error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
2387 	trace_nfs_symlink_exit(dir, dentry, error);
2388 	if (error != 0) {
2389 		dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n",
2390 			dir->i_sb->s_id, dir->i_ino,
2391 			dentry, symname, error);
2392 		d_drop(dentry);
2393 		__free_page(page);
2394 		return error;
2395 	}
2396 
2397 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2398 
2399 	/*
2400 	 * No big deal if we can't add this page to the page cache here.
2401 	 * READLINK will get the missing page from the server if needed.
2402 	 */
2403 	if (!add_to_page_cache_lru(page, d_inode(dentry)->i_mapping, 0,
2404 							GFP_KERNEL)) {
2405 		SetPageUptodate(page);
2406 		unlock_page(page);
2407 		/*
2408 		 * add_to_page_cache_lru() grabs an extra page refcount.
2409 		 * Drop it here to avoid leaking this page later.
2410 		 */
2411 		put_page(page);
2412 	} else
2413 		__free_page(page);
2414 
2415 	return 0;
2416 }
2417 EXPORT_SYMBOL_GPL(nfs_symlink);
2418 
2419 int
2420 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2421 {
2422 	struct inode *inode = d_inode(old_dentry);
2423 	int error;
2424 
2425 	dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n",
2426 		old_dentry, dentry);
2427 
2428 	trace_nfs_link_enter(inode, dir, dentry);
2429 	d_drop(dentry);
2430 	if (S_ISREG(inode->i_mode))
2431 		nfs_sync_inode(inode);
2432 	error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
2433 	if (error == 0) {
2434 		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2435 		ihold(inode);
2436 		d_add(dentry, inode);
2437 	}
2438 	trace_nfs_link_exit(inode, dir, dentry, error);
2439 	return error;
2440 }
2441 EXPORT_SYMBOL_GPL(nfs_link);
2442 
2443 /*
2444  * RENAME
2445  * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
2446  * different file handle for the same inode after a rename (e.g. when
2447  * moving to a different directory). A fail-safe method to do so would
2448  * be to look up old_dir/old_name, create a link to new_dir/new_name and
2449  * rename the old file using the sillyrename stuff. This way, the original
2450  * file in old_dir will go away when the last process iput()s the inode.
2451  *
2452  * FIXED.
2453  *
2454  * It actually works quite well. One needs to have the possibility for
2455  * at least one ".nfs..." file in each directory the file ever gets
2456  * moved or linked to which happens automagically with the new
2457  * implementation that only depends on the dcache stuff instead of
2458  * using the inode layer
2459  *
2460  * Unfortunately, things are a little more complicated than indicated
2461  * above. For a cross-directory move, we want to make sure we can get
2462  * rid of the old inode after the operation.  This means there must be
2463  * no pending writes (if it's a file), and the use count must be 1.
2464  * If these conditions are met, we can drop the dentries before doing
2465  * the rename.
2466  */
2467 int nfs_rename(struct user_namespace *mnt_userns, struct inode *old_dir,
2468 	       struct dentry *old_dentry, struct inode *new_dir,
2469 	       struct dentry *new_dentry, unsigned int flags)
2470 {
2471 	struct inode *old_inode = d_inode(old_dentry);
2472 	struct inode *new_inode = d_inode(new_dentry);
2473 	struct dentry *dentry = NULL, *rehash = NULL;
2474 	struct rpc_task *task;
2475 	int error = -EBUSY;
2476 
2477 	if (flags)
2478 		return -EINVAL;
2479 
2480 	dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n",
2481 		 old_dentry, new_dentry,
2482 		 d_count(new_dentry));
2483 
2484 	trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry);
2485 	/*
2486 	 * For non-directories, check whether the target is busy and if so,
2487 	 * make a copy of the dentry and then do a silly-rename. If the
2488 	 * silly-rename succeeds, the copied dentry is hashed and becomes
2489 	 * the new target.
2490 	 */
2491 	if (new_inode && !S_ISDIR(new_inode->i_mode)) {
2492 		/*
2493 		 * To prevent any new references to the target during the
2494 		 * rename, we unhash the dentry in advance.
2495 		 */
2496 		if (!d_unhashed(new_dentry)) {
2497 			d_drop(new_dentry);
2498 			rehash = new_dentry;
2499 		}
2500 
2501 		if (d_count(new_dentry) > 2) {
2502 			int err;
2503 
2504 			/* copy the target dentry's name */
2505 			dentry = d_alloc(new_dentry->d_parent,
2506 					 &new_dentry->d_name);
2507 			if (!dentry)
2508 				goto out;
2509 
2510 			/* silly-rename the existing target ... */
2511 			err = nfs_sillyrename(new_dir, new_dentry);
2512 			if (err)
2513 				goto out;
2514 
2515 			new_dentry = dentry;
2516 			rehash = NULL;
2517 			new_inode = NULL;
2518 		}
2519 	}
2520 
2521 	if (S_ISREG(old_inode->i_mode))
2522 		nfs_sync_inode(old_inode);
2523 	task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry, NULL);
2524 	if (IS_ERR(task)) {
2525 		error = PTR_ERR(task);
2526 		goto out;
2527 	}
2528 
2529 	error = rpc_wait_for_completion_task(task);
2530 	if (error != 0) {
2531 		((struct nfs_renamedata *)task->tk_calldata)->cancelled = 1;
2532 		/* Paired with the atomic_dec_and_test() barrier in rpc_do_put_task() */
2533 		smp_wmb();
2534 	} else
2535 		error = task->tk_status;
2536 	rpc_put_task(task);
2537 	/* Ensure the inode attributes are revalidated */
2538 	if (error == 0) {
2539 		spin_lock(&old_inode->i_lock);
2540 		NFS_I(old_inode)->attr_gencount = nfs_inc_attr_generation_counter();
2541 		nfs_set_cache_invalid(old_inode, NFS_INO_INVALID_CHANGE |
2542 							 NFS_INO_INVALID_CTIME |
2543 							 NFS_INO_REVAL_FORCED);
2544 		spin_unlock(&old_inode->i_lock);
2545 	}
2546 out:
2547 	if (rehash)
2548 		d_rehash(rehash);
2549 	trace_nfs_rename_exit(old_dir, old_dentry,
2550 			new_dir, new_dentry, error);
2551 	if (!error) {
2552 		if (new_inode != NULL)
2553 			nfs_drop_nlink(new_inode);
2554 		/*
2555 		 * The d_move() should be here instead of in an async RPC completion
2556 		 * handler because we need the proper locks to move the dentry.  If
2557 		 * we're interrupted by a signal, the async RPC completion handler
2558 		 * should mark the directories for revalidation.
2559 		 */
2560 		d_move(old_dentry, new_dentry);
2561 		nfs_set_verifier(old_dentry,
2562 					nfs_save_change_attribute(new_dir));
2563 	} else if (error == -ENOENT)
2564 		nfs_dentry_handle_enoent(old_dentry);
2565 
2566 	/* new dentry created? */
2567 	if (dentry)
2568 		dput(dentry);
2569 	return error;
2570 }
2571 EXPORT_SYMBOL_GPL(nfs_rename);
2572 
2573 static DEFINE_SPINLOCK(nfs_access_lru_lock);
2574 static LIST_HEAD(nfs_access_lru_list);
2575 static atomic_long_t nfs_access_nr_entries;
2576 
2577 static unsigned long nfs_access_max_cachesize = 4*1024*1024;
2578 module_param(nfs_access_max_cachesize, ulong, 0644);
2579 MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length");
2580 
2581 static void nfs_access_free_entry(struct nfs_access_entry *entry)
2582 {
2583 	put_group_info(entry->group_info);
2584 	kfree_rcu(entry, rcu_head);
2585 	smp_mb__before_atomic();
2586 	atomic_long_dec(&nfs_access_nr_entries);
2587 	smp_mb__after_atomic();
2588 }
2589 
2590 static void nfs_access_free_list(struct list_head *head)
2591 {
2592 	struct nfs_access_entry *cache;
2593 
2594 	while (!list_empty(head)) {
2595 		cache = list_entry(head->next, struct nfs_access_entry, lru);
2596 		list_del(&cache->lru);
2597 		nfs_access_free_entry(cache);
2598 	}
2599 }
2600 
2601 static unsigned long
2602 nfs_do_access_cache_scan(unsigned int nr_to_scan)
2603 {
2604 	LIST_HEAD(head);
2605 	struct nfs_inode *nfsi, *next;
2606 	struct nfs_access_entry *cache;
2607 	long freed = 0;
2608 
2609 	spin_lock(&nfs_access_lru_lock);
2610 	list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
2611 		struct inode *inode;
2612 
2613 		if (nr_to_scan-- == 0)
2614 			break;
2615 		inode = &nfsi->vfs_inode;
2616 		spin_lock(&inode->i_lock);
2617 		if (list_empty(&nfsi->access_cache_entry_lru))
2618 			goto remove_lru_entry;
2619 		cache = list_entry(nfsi->access_cache_entry_lru.next,
2620 				struct nfs_access_entry, lru);
2621 		list_move(&cache->lru, &head);
2622 		rb_erase(&cache->rb_node, &nfsi->access_cache);
2623 		freed++;
2624 		if (!list_empty(&nfsi->access_cache_entry_lru))
2625 			list_move_tail(&nfsi->access_cache_inode_lru,
2626 					&nfs_access_lru_list);
2627 		else {
2628 remove_lru_entry:
2629 			list_del_init(&nfsi->access_cache_inode_lru);
2630 			smp_mb__before_atomic();
2631 			clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
2632 			smp_mb__after_atomic();
2633 		}
2634 		spin_unlock(&inode->i_lock);
2635 	}
2636 	spin_unlock(&nfs_access_lru_lock);
2637 	nfs_access_free_list(&head);
2638 	return freed;
2639 }
2640 
2641 unsigned long
2642 nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
2643 {
2644 	int nr_to_scan = sc->nr_to_scan;
2645 	gfp_t gfp_mask = sc->gfp_mask;
2646 
2647 	if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
2648 		return SHRINK_STOP;
2649 	return nfs_do_access_cache_scan(nr_to_scan);
2650 }
2651 
2652 
2653 unsigned long
2654 nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc)
2655 {
2656 	return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries));
2657 }
2658 
2659 static void
2660 nfs_access_cache_enforce_limit(void)
2661 {
2662 	long nr_entries = atomic_long_read(&nfs_access_nr_entries);
2663 	unsigned long diff;
2664 	unsigned int nr_to_scan;
2665 
2666 	if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize)
2667 		return;
2668 	nr_to_scan = 100;
2669 	diff = nr_entries - nfs_access_max_cachesize;
2670 	if (diff < nr_to_scan)
2671 		nr_to_scan = diff;
2672 	nfs_do_access_cache_scan(nr_to_scan);
2673 }
2674 
2675 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
2676 {
2677 	struct rb_root *root_node = &nfsi->access_cache;
2678 	struct rb_node *n;
2679 	struct nfs_access_entry *entry;
2680 
2681 	/* Unhook entries from the cache */
2682 	while ((n = rb_first(root_node)) != NULL) {
2683 		entry = rb_entry(n, struct nfs_access_entry, rb_node);
2684 		rb_erase(n, root_node);
2685 		list_move(&entry->lru, head);
2686 	}
2687 	nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
2688 }
2689 
2690 void nfs_access_zap_cache(struct inode *inode)
2691 {
2692 	LIST_HEAD(head);
2693 
2694 	if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
2695 		return;
2696 	/* Remove from global LRU init */
2697 	spin_lock(&nfs_access_lru_lock);
2698 	if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2699 		list_del_init(&NFS_I(inode)->access_cache_inode_lru);
2700 
2701 	spin_lock(&inode->i_lock);
2702 	__nfs_access_zap_cache(NFS_I(inode), &head);
2703 	spin_unlock(&inode->i_lock);
2704 	spin_unlock(&nfs_access_lru_lock);
2705 	nfs_access_free_list(&head);
2706 }
2707 EXPORT_SYMBOL_GPL(nfs_access_zap_cache);
2708 
2709 static int access_cmp(const struct cred *a, const struct nfs_access_entry *b)
2710 {
2711 	struct group_info *ga, *gb;
2712 	int g;
2713 
2714 	if (uid_lt(a->fsuid, b->fsuid))
2715 		return -1;
2716 	if (uid_gt(a->fsuid, b->fsuid))
2717 		return 1;
2718 
2719 	if (gid_lt(a->fsgid, b->fsgid))
2720 		return -1;
2721 	if (gid_gt(a->fsgid, b->fsgid))
2722 		return 1;
2723 
2724 	ga = a->group_info;
2725 	gb = b->group_info;
2726 	if (ga == gb)
2727 		return 0;
2728 	if (ga == NULL)
2729 		return -1;
2730 	if (gb == NULL)
2731 		return 1;
2732 	if (ga->ngroups < gb->ngroups)
2733 		return -1;
2734 	if (ga->ngroups > gb->ngroups)
2735 		return 1;
2736 
2737 	for (g = 0; g < ga->ngroups; g++) {
2738 		if (gid_lt(ga->gid[g], gb->gid[g]))
2739 			return -1;
2740 		if (gid_gt(ga->gid[g], gb->gid[g]))
2741 			return 1;
2742 	}
2743 	return 0;
2744 }
2745 
2746 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, const struct cred *cred)
2747 {
2748 	struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
2749 
2750 	while (n != NULL) {
2751 		struct nfs_access_entry *entry =
2752 			rb_entry(n, struct nfs_access_entry, rb_node);
2753 		int cmp = access_cmp(cred, entry);
2754 
2755 		if (cmp < 0)
2756 			n = n->rb_left;
2757 		else if (cmp > 0)
2758 			n = n->rb_right;
2759 		else
2760 			return entry;
2761 	}
2762 	return NULL;
2763 }
2764 
2765 static int nfs_access_get_cached_locked(struct inode *inode, const struct cred *cred, u32 *mask, bool may_block)
2766 {
2767 	struct nfs_inode *nfsi = NFS_I(inode);
2768 	struct nfs_access_entry *cache;
2769 	bool retry = true;
2770 	int err;
2771 
2772 	spin_lock(&inode->i_lock);
2773 	for(;;) {
2774 		if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2775 			goto out_zap;
2776 		cache = nfs_access_search_rbtree(inode, cred);
2777 		err = -ENOENT;
2778 		if (cache == NULL)
2779 			goto out;
2780 		/* Found an entry, is our attribute cache valid? */
2781 		if (!nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
2782 			break;
2783 		if (!retry)
2784 			break;
2785 		err = -ECHILD;
2786 		if (!may_block)
2787 			goto out;
2788 		spin_unlock(&inode->i_lock);
2789 		err = __nfs_revalidate_inode(NFS_SERVER(inode), inode);
2790 		if (err)
2791 			return err;
2792 		spin_lock(&inode->i_lock);
2793 		retry = false;
2794 	}
2795 	*mask = cache->mask;
2796 	list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
2797 	err = 0;
2798 out:
2799 	spin_unlock(&inode->i_lock);
2800 	return err;
2801 out_zap:
2802 	spin_unlock(&inode->i_lock);
2803 	nfs_access_zap_cache(inode);
2804 	return -ENOENT;
2805 }
2806 
2807 static int nfs_access_get_cached_rcu(struct inode *inode, const struct cred *cred, u32 *mask)
2808 {
2809 	/* Only check the most recently returned cache entry,
2810 	 * but do it without locking.
2811 	 */
2812 	struct nfs_inode *nfsi = NFS_I(inode);
2813 	struct nfs_access_entry *cache;
2814 	int err = -ECHILD;
2815 	struct list_head *lh;
2816 
2817 	rcu_read_lock();
2818 	if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2819 		goto out;
2820 	lh = rcu_dereference(list_tail_rcu(&nfsi->access_cache_entry_lru));
2821 	cache = list_entry(lh, struct nfs_access_entry, lru);
2822 	if (lh == &nfsi->access_cache_entry_lru ||
2823 	    access_cmp(cred, cache) != 0)
2824 		cache = NULL;
2825 	if (cache == NULL)
2826 		goto out;
2827 	if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
2828 		goto out;
2829 	*mask = cache->mask;
2830 	err = 0;
2831 out:
2832 	rcu_read_unlock();
2833 	return err;
2834 }
2835 
2836 int nfs_access_get_cached(struct inode *inode, const struct cred *cred,
2837 			  u32 *mask, bool may_block)
2838 {
2839 	int status;
2840 
2841 	status = nfs_access_get_cached_rcu(inode, cred, mask);
2842 	if (status != 0)
2843 		status = nfs_access_get_cached_locked(inode, cred, mask,
2844 		    may_block);
2845 
2846 	return status;
2847 }
2848 EXPORT_SYMBOL_GPL(nfs_access_get_cached);
2849 
2850 static void nfs_access_add_rbtree(struct inode *inode,
2851 				  struct nfs_access_entry *set,
2852 				  const struct cred *cred)
2853 {
2854 	struct nfs_inode *nfsi = NFS_I(inode);
2855 	struct rb_root *root_node = &nfsi->access_cache;
2856 	struct rb_node **p = &root_node->rb_node;
2857 	struct rb_node *parent = NULL;
2858 	struct nfs_access_entry *entry;
2859 	int cmp;
2860 
2861 	spin_lock(&inode->i_lock);
2862 	while (*p != NULL) {
2863 		parent = *p;
2864 		entry = rb_entry(parent, struct nfs_access_entry, rb_node);
2865 		cmp = access_cmp(cred, entry);
2866 
2867 		if (cmp < 0)
2868 			p = &parent->rb_left;
2869 		else if (cmp > 0)
2870 			p = &parent->rb_right;
2871 		else
2872 			goto found;
2873 	}
2874 	rb_link_node(&set->rb_node, parent, p);
2875 	rb_insert_color(&set->rb_node, root_node);
2876 	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2877 	spin_unlock(&inode->i_lock);
2878 	return;
2879 found:
2880 	rb_replace_node(parent, &set->rb_node, root_node);
2881 	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2882 	list_del(&entry->lru);
2883 	spin_unlock(&inode->i_lock);
2884 	nfs_access_free_entry(entry);
2885 }
2886 
2887 void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set,
2888 			  const struct cred *cred)
2889 {
2890 	struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
2891 	if (cache == NULL)
2892 		return;
2893 	RB_CLEAR_NODE(&cache->rb_node);
2894 	cache->fsuid = cred->fsuid;
2895 	cache->fsgid = cred->fsgid;
2896 	cache->group_info = get_group_info(cred->group_info);
2897 	cache->mask = set->mask;
2898 
2899 	/* The above field assignments must be visible
2900 	 * before this item appears on the lru.  We cannot easily
2901 	 * use rcu_assign_pointer, so just force the memory barrier.
2902 	 */
2903 	smp_wmb();
2904 	nfs_access_add_rbtree(inode, cache, cred);
2905 
2906 	/* Update accounting */
2907 	smp_mb__before_atomic();
2908 	atomic_long_inc(&nfs_access_nr_entries);
2909 	smp_mb__after_atomic();
2910 
2911 	/* Add inode to global LRU list */
2912 	if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
2913 		spin_lock(&nfs_access_lru_lock);
2914 		if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2915 			list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
2916 					&nfs_access_lru_list);
2917 		spin_unlock(&nfs_access_lru_lock);
2918 	}
2919 	nfs_access_cache_enforce_limit();
2920 }
2921 EXPORT_SYMBOL_GPL(nfs_access_add_cache);
2922 
2923 #define NFS_MAY_READ (NFS_ACCESS_READ)
2924 #define NFS_MAY_WRITE (NFS_ACCESS_MODIFY | \
2925 		NFS_ACCESS_EXTEND | \
2926 		NFS_ACCESS_DELETE)
2927 #define NFS_FILE_MAY_WRITE (NFS_ACCESS_MODIFY | \
2928 		NFS_ACCESS_EXTEND)
2929 #define NFS_DIR_MAY_WRITE NFS_MAY_WRITE
2930 #define NFS_MAY_LOOKUP (NFS_ACCESS_LOOKUP)
2931 #define NFS_MAY_EXECUTE (NFS_ACCESS_EXECUTE)
2932 static int
2933 nfs_access_calc_mask(u32 access_result, umode_t umode)
2934 {
2935 	int mask = 0;
2936 
2937 	if (access_result & NFS_MAY_READ)
2938 		mask |= MAY_READ;
2939 	if (S_ISDIR(umode)) {
2940 		if ((access_result & NFS_DIR_MAY_WRITE) == NFS_DIR_MAY_WRITE)
2941 			mask |= MAY_WRITE;
2942 		if ((access_result & NFS_MAY_LOOKUP) == NFS_MAY_LOOKUP)
2943 			mask |= MAY_EXEC;
2944 	} else if (S_ISREG(umode)) {
2945 		if ((access_result & NFS_FILE_MAY_WRITE) == NFS_FILE_MAY_WRITE)
2946 			mask |= MAY_WRITE;
2947 		if ((access_result & NFS_MAY_EXECUTE) == NFS_MAY_EXECUTE)
2948 			mask |= MAY_EXEC;
2949 	} else if (access_result & NFS_MAY_WRITE)
2950 			mask |= MAY_WRITE;
2951 	return mask;
2952 }
2953 
2954 void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result)
2955 {
2956 	entry->mask = access_result;
2957 }
2958 EXPORT_SYMBOL_GPL(nfs_access_set_mask);
2959 
2960 static int nfs_do_access(struct inode *inode, const struct cred *cred, int mask)
2961 {
2962 	struct nfs_access_entry cache;
2963 	bool may_block = (mask & MAY_NOT_BLOCK) == 0;
2964 	int cache_mask = -1;
2965 	int status;
2966 
2967 	trace_nfs_access_enter(inode);
2968 
2969 	status = nfs_access_get_cached(inode, cred, &cache.mask, may_block);
2970 	if (status == 0)
2971 		goto out_cached;
2972 
2973 	status = -ECHILD;
2974 	if (!may_block)
2975 		goto out;
2976 
2977 	/*
2978 	 * Determine which access bits we want to ask for...
2979 	 */
2980 	cache.mask = NFS_ACCESS_READ | NFS_ACCESS_MODIFY | NFS_ACCESS_EXTEND;
2981 	if (nfs_server_capable(inode, NFS_CAP_XATTR)) {
2982 		cache.mask |= NFS_ACCESS_XAREAD | NFS_ACCESS_XAWRITE |
2983 		    NFS_ACCESS_XALIST;
2984 	}
2985 	if (S_ISDIR(inode->i_mode))
2986 		cache.mask |= NFS_ACCESS_DELETE | NFS_ACCESS_LOOKUP;
2987 	else
2988 		cache.mask |= NFS_ACCESS_EXECUTE;
2989 	status = NFS_PROTO(inode)->access(inode, &cache, cred);
2990 	if (status != 0) {
2991 		if (status == -ESTALE) {
2992 			if (!S_ISDIR(inode->i_mode))
2993 				nfs_set_inode_stale(inode);
2994 			else
2995 				nfs_zap_caches(inode);
2996 		}
2997 		goto out;
2998 	}
2999 	nfs_access_add_cache(inode, &cache, cred);
3000 out_cached:
3001 	cache_mask = nfs_access_calc_mask(cache.mask, inode->i_mode);
3002 	if ((mask & ~cache_mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0)
3003 		status = -EACCES;
3004 out:
3005 	trace_nfs_access_exit(inode, mask, cache_mask, status);
3006 	return status;
3007 }
3008 
3009 static int nfs_open_permission_mask(int openflags)
3010 {
3011 	int mask = 0;
3012 
3013 	if (openflags & __FMODE_EXEC) {
3014 		/* ONLY check exec rights */
3015 		mask = MAY_EXEC;
3016 	} else {
3017 		if ((openflags & O_ACCMODE) != O_WRONLY)
3018 			mask |= MAY_READ;
3019 		if ((openflags & O_ACCMODE) != O_RDONLY)
3020 			mask |= MAY_WRITE;
3021 	}
3022 
3023 	return mask;
3024 }
3025 
3026 int nfs_may_open(struct inode *inode, const struct cred *cred, int openflags)
3027 {
3028 	return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
3029 }
3030 EXPORT_SYMBOL_GPL(nfs_may_open);
3031 
3032 static int nfs_execute_ok(struct inode *inode, int mask)
3033 {
3034 	struct nfs_server *server = NFS_SERVER(inode);
3035 	int ret = 0;
3036 
3037 	if (S_ISDIR(inode->i_mode))
3038 		return 0;
3039 	if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_MODE)) {
3040 		if (mask & MAY_NOT_BLOCK)
3041 			return -ECHILD;
3042 		ret = __nfs_revalidate_inode(server, inode);
3043 	}
3044 	if (ret == 0 && !execute_ok(inode))
3045 		ret = -EACCES;
3046 	return ret;
3047 }
3048 
3049 int nfs_permission(struct user_namespace *mnt_userns,
3050 		   struct inode *inode,
3051 		   int mask)
3052 {
3053 	const struct cred *cred = current_cred();
3054 	int res = 0;
3055 
3056 	nfs_inc_stats(inode, NFSIOS_VFSACCESS);
3057 
3058 	if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
3059 		goto out;
3060 	/* Is this sys_access() ? */
3061 	if (mask & (MAY_ACCESS | MAY_CHDIR))
3062 		goto force_lookup;
3063 
3064 	switch (inode->i_mode & S_IFMT) {
3065 		case S_IFLNK:
3066 			goto out;
3067 		case S_IFREG:
3068 			if ((mask & MAY_OPEN) &&
3069 			   nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN))
3070 				return 0;
3071 			break;
3072 		case S_IFDIR:
3073 			/*
3074 			 * Optimize away all write operations, since the server
3075 			 * will check permissions when we perform the op.
3076 			 */
3077 			if ((mask & MAY_WRITE) && !(mask & MAY_READ))
3078 				goto out;
3079 	}
3080 
3081 force_lookup:
3082 	if (!NFS_PROTO(inode)->access)
3083 		goto out_notsup;
3084 
3085 	res = nfs_do_access(inode, cred, mask);
3086 out:
3087 	if (!res && (mask & MAY_EXEC))
3088 		res = nfs_execute_ok(inode, mask);
3089 
3090 	dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n",
3091 		inode->i_sb->s_id, inode->i_ino, mask, res);
3092 	return res;
3093 out_notsup:
3094 	if (mask & MAY_NOT_BLOCK)
3095 		return -ECHILD;
3096 
3097 	res = nfs_revalidate_inode(inode, NFS_INO_INVALID_MODE |
3098 						  NFS_INO_INVALID_OTHER);
3099 	if (res == 0)
3100 		res = generic_permission(&init_user_ns, inode, mask);
3101 	goto out;
3102 }
3103 EXPORT_SYMBOL_GPL(nfs_permission);
3104